
Technical Report
Number 778

Computer Laboratory

UCAM-CL-TR-778
ISSN 1476-2986

Automatically proving linearizability

Viktor Vafeiadis

September 2016

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2016 Viktor Vafeiadis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Automatically proving linearizability

Viktor Vafeiadis

University of Cambridge

Abstract

This technical report presents a practical automatic verification procedure for
proving linearizability (i.e., atomicity and functional correctness) of concurrent data
structure implementations. The procedure employs a novel instrumentation to ver-
ify logically pure executions, and is evaluated on a number of standard concurrent
stack, queue and set algorithms.

1 Introduction

Linearizability [11] is the standard correctness requirement for concurrent implementa-
tions of abstract data structures (such as stacks, queues, sets and finite maps) packaged
into a concurrent library (such as java.util.concurrent). It requires every library op-
eration to be atomic (behave as if it were executed in one indivisible step) and to satisfy
a given functional correctness specification.

The most common way to prove linearizability is to identify the so-called linearization
points of each operation. These are program points where the entire effect of a method
call logically takes place. Sadly, however, these linearization points are often rather com-
plicated: they can depend on a non-local boolean condition and can even reside within
other concurrently executing threads. This makes a brute force search for the linearization
points infeasible.

We observe, however, that in practice such complicated linearization points arise only
in operation executions that do not logically update the library’s shared state. It is
therefore possible to search for the linearization points for operations whose specification
is always effectful (i.e., modifies the shared state), but we need a different approach to
verify operations with a possibly pure specification (i.e., one not modifying the shared
state).

This paper presents one such procedure for proving linearizability (see §4). For oper-
ations with a possibly pure specification, it instruments the library code with a certain
‘pure linearizability checker,’ derived from the specification, and runs a suitably powerful
abstract interpreter to validate that there are no assertion violations. This effectively
considers all possible linearization points in one go and results in a non-constructive lin-
earizability proof. As a result, we have succeeded in verifying several concurrent stack
and queue implementations, and have obtained mixed results for set implementations (see
§5 for details).

Related work. The related verification work can be classified in three groups.
First, there are various model-checking papers [22, 13, 4]. These do not prove cor-

rectness; they merely check short execution traces of a small number of threads. On the

3



Sequence AQ = @empty;

void enqueue(int e) {
atomic {

AQ = @app(AQ, @singl(e));

}
}

int tryDequeue(void) { int ARes;

atomic {
if (AQ == @empty) return EMPTY;

else { ARes = @hd(AQ);

AQ = @tl(AQ);

return ARes; }
} }

Figure 1: Specification of a concurrent queue object.

positive side, such tools do not require linearization points to be annotated, are good at
quickly finding bugs, and return concrete counterexample traces for failed verifications.

Second, there are static analyses (shape analyses, in particular) [2, 3, 19]. With the
exception of [2], these analyses work for an unbounded number of threads and result in
a proof of linearizability. Unfortunately, all of these analyses require the programmer to
specify the linearization points, a task that is quite difficult when the linearization points
are conditional or within the source code of other concurrently executing operations, as
we will shortly see.

Finally, there are manual verification efforts. Some (e.g.,[18]) are pencil and paper
proofs in a particular program logic, others (e.g.,[5]) do a direct simulation proof in a
mechanised proof assistant, while some more recent work [15] does part of the proof in a
program logic and another part using operational reasoning on traces.

2 A motivating example: the M&S queue

We start with a motivating example for the rest of the paper: the well known Michael
& Scott non-blocking queue [14] (henceforth referred to as the M&S queue). Figure 1
contains the specification of the concurrent queue operations written in C-like pseudocode.
The state of the queue is represented by the shared variable AQ, which holds a sequence
of values. We use the following notation for mathematical sequences: @empty stands
for the empty sequence; @singl constructs a sequence consisting of one element; @app

concatenates two sequences; @hd returns the first element of a sequence; and @tl returns
all but the first element of a sequence.

The queue supports two atomic operations: (1) enqueue, which adds an item to the
end of the queue, and (2) tryDequeue, which removes and returns the first item of the
queue if there is one, or returns EMPTY, if the queue is empty. Both operations are supposed
to be atomic, i.e., executing in one step.

Figure 2 contains the M&S queue implementation which is significantly more com-
plicated than the specification above. The queue is represented by two pointers into a
null-terminated singly-linked list. The first pointer (Q->head) points to the beginning
of the list and is updated by tryDequeue operations. The second pointer (Q->tail) is
used to find the end of the list so that enqueue can locate the last node of the list. It
does not necessarily point to the last node of the list, but it can lag behind. This is
because there is no widely available hardware instruction that can change Q->tail and
append one node onto the list in one atomic step. Consequently, enqueue first appends a
node onto the list with the underlined CAS instruction, and later updates Q->tail with
its final CAS instruction. In addition, whenever a concurrently executing thread notices
that the tail pointer is lagging behind the end of the list, it tries to advance it using the
CAS(&Q->tail,tail,next) instructions.

4



typedef struct Node s *Node;

struct Node s {
int val;

Node tl;

}

struct Queue {
Node head, tail;

} *Q;

void enqueue(int value) {
Node node, next, tail;

node = new node();

node->val = value;

node->tl = NULL;

while(true) {
tail = Q->tail;

next = tail->tl;

if (Q->tail != tail) continue;

if (next == NULL) {
if (CAS(&tail->tl,next,node))

break;

} else {
CAS(&Q->tail,tail,next);

}
}
CAS(&Q->tail,tail,node);

}

void init(void) {
Node node = new node();

node->tl = NULL;

Q = new queue();

Q->head = node;

Q->tail = node;

}

int tryDequeue(void) {
Node next, head, tail;

int pval;

while(true) {
head = Q->head;

tail = Q->tail;

next = head->tl;

if (Q->head != head) continue;

if (head == tail) {
if (next == NULL)

return EMPTY;

CAS(&Q->tail,tail,next);

} else {
pval = next->val;

if (CAS(&Q->head,head,next))

return pval;

}
}

}

Figure 2: The M&S non–blocking queue implementation.

In the remainder of this paper we shall define what it means for the implementation
to satisfy its specification and present a method for proving this.

3 Linearizability

We take programs to consist of a sequential initialisation phase followed by a parallel
composition of a fixed (but not statically bounded) number of threads, T . The state
consists of a set of global variables, G, and a set of local variables per thread, Lt, that
includes the thread’s program counter, pct. As a convention, we will subscript thread-
local variables with the corresponding thread identifier to distinguish them from the global
variables. We model each thread as a transition relation on the valuations of the global
and its local variables.

A library, A, consists of a constructor, Ainit, and a number of operations (a.k.a.,
methods), A1, . . . , An, each expecting a single argument, argt, and returning their result
in the thread-local variable rest. A client of the library is any program that calls the
library’s constructor once in its initial sequential phase, and then can call any number of
the library’s methods possibly concurrently with one another. Let C[A] be the transition
relation denoting the composition of the client C with the library A. We write C[A]∗

5



for its reflexive and transitive closure. In such a composition, we write GC (resp. LCt )
for the global (resp. local) variables belonging to the client and, analogously, GA and LAt
for those belonging to the library. We assume that GC and GA are disjoint, and that
LCt ∩ LAt = {argt, rest, pct}.

Linearizability [11] is a formalisation of the concept of atomicity. Briefly, it requires
that every execution history consisting of calls to enqueue and tryDequeue is equivalent
(up to reordering of events) to a legal, sequential history that preserves the order of non-
overlapping methods in the original history. We say that a history is sequential if none of
its methods overlap in time; moreover, it is legal if each method satisfies its specification.

In this paper, we prefer a slightly different definition of linearizability given in terms
of instrumented clients.

Definition 1. An instrumented client of a library A is a client annotated with an auxiliary
global variable h as follows: (1) At the initial state, let h = ε; (2) before every call to Ai
by thread t, append (call t, i, argt) to h; and (3) after each return from a call to Ai by
thread t, append (ret t, i, rest) to h.

In effect, the auxiliary variable h records the observed execution history. Note that
there is a gap in time between when a method returns and when the return is recorded
in h. This gap allows us to define linearizability as follows:

Definition 2 (Linearizability). A library A is linearizable with respect to a specification
B if and only if for all instrumented clients C and every state s, if (sinit, s) ∈ C[A]∗, then
there exists a state s′ such that (s′init, s

′) ∈ C[B]∗ and s(h) = s′(h), where sinit and s′init
are the initial states after calling Ainit and Binit respectively.

This definition is slightly easier to work with than the original one by Herlihy and
Wing [11], because it uses syntactic equality on the recorded histories rather than equiv-
alence up to reordering of non-overlapping calls of the actual histories. It is also more
general as it corresponds to the original definition only if all of B’s methods are atomic.
The same generalisation is found in the definition of Filipović et al. [7].

3.1 Proving linearizability using linearization points

The most common way of proving linearizability of a concurrent library is to find the
so-called linearization points of each operation and to demonstrate that the chosen points
are correct. These are points in the source code of the library which, when executed,
are deemed to perform atomically the entire observable effect of the operation, and hence
define the order in which the concurrent operations are to be linearized. Within each
operation execution, exactly one linearization point must occur, but statically there can
be multiple such points along different execution paths of the operation, some of which
might not even be inside the operation!

Linearization points of the M&S queue. The linearization point of enqueue is the
underlined CAS instruction, when it succeeds. Its effect is to link a node to the end of the
concrete list, which logically corresponds to appending an item to the queue.

The tryDequeue method has two linearization points depending on the result. The
linearization point for the empty case is the underlined assignment next = head->tl.
This is a linearization point only if the same loop iteration later executes return EMPTY.
The second linearization point is the underlined CAS instruction. Its effect is to advance
the Q->head pointer, which logically removes the first element from the queue.

6



As presented, these linearization points are conditional: not every time the underlined
instructions are executed, they are linearization points. Fortunately, the conditions of the
two points involving CAS can easily be eliminated by unfolding the definition of CAS. For
example, if we expand out the definition of the underlined CAS of enqueue, we get:

atomic { if (tail->tl == next) { tail->tl = node; break; } }

Thus, it is easy to identify the linearization point of enqueue with the assignment to
tail->tl whenever that assignment is executed. We can do likewise with the second
linearization point of tryDequeue.

In contrast, the first linearization point of tryDequeue is truly conditional. Specifying
it formally requires an auxiliary prophecy variable [1] to record whether the program will
later execute return EMPTY in the same loop iteration. The prophecy variable is needed
because when executing the underlined read from head->tl we cannot tell whether the
test Q->head != head on the following line will succeed. Therefore, the full condition is:

¬prophecy(Q->head!=head) ∧ head==tail ∧ next==NULL .

In the next section, we will see a method for proving that tryDequeue is linearizable that
avoids the conditions on this linearization point and the prophecy variable.

4 Automatic proof technique

4.1 Key observation

It is clear from the M&S queue that linearization points are often conditional, and that
some conditions can be quite involved. Searching for such complex conditions is clearly
infeasible. We can, however, observe that

Operations have complex conditional linearization points
only in executions that do not logically modify the state.

For example, at the first linearization point of tryDequeue, the operation does not logi-
cally modify the state. That is, if we execute the tryDequeue specification at that point,
the value of AQ will not be affected. It is, however, possible that tryDequeue updates the
concrete state (e.g., by performing the CAS(&Q->tail, tail, next) in a previous loop
iteration), but these updates do not affect the logical contents of the queue.

Quite surprisingly, this observation holds for most concurrent algorithms in the liter-
ature. To the best of our knowledge, it holds for all but two of the algorithms in Herlihy
& Shavit’s book [12]. A possible explanation as to why this is so is that logically effectful
operation executions are much more difficult to optimise than the ones that only do not
logically modify the state. Therefore, they tend to have simpler correctness arguments
than the more heavily optimised logically pure executions. Notable exceptions where our
observation does not hold are: (i) the Herlihy & Wing queue [11], (ii) the elimination-
based stack of Hendler et al. [10], and (iii) RDCSS by Harris et al. [9]. Verifying these
algorithms automatically is beyond the scope of this paper.

In the following, we shall distinguish between pure and effectful executions of the
abstract operations, i.e. the operation specifications. We say that an abstract operation
execution is pure if it does not modify the abstract state. Otherwise, we say that the
execution is effectful.

7



4.2 Dealing with logically pure executions

To verify logically pure executions, we introduce one auxiliary boolean array per thread
and per library operation, can returnt,op []. Each array is indexed by the set of possible
return values. While thread t is executing the operation op, then can returnt,op satis-
fies the following invariant: whenever an entry, can returnt,op [v], in the array is true,
then there exists an instant since the operation was called at which if the operation’s
specification had been executed, it would not have modified the global (abstract) state
and would have returned v. Therefore, if can returnt,op [rest] is true when the operation
returns, then we know that there existed a valid linearization point during the operation’s
execution.

To ensure that the aforementioned invariant holds, we initialise every element of
can return[] to false at the beginning of the operation. Then, at any later point, we
can set can return[v] to true provided that executing the operation’s specification does
not modify the global (abstract) state and returns v. This is the task of the ‘pure lin-
earizability checker,’ which we introduce below.

Pure linearizability checker construction. Assuming that the specifications do not
contain any loops or any function calls, we rewrite each specification as a non-deterministic
choice of a number of execution paths consisting of assignments, assume statements, and
terminated by a return command. For uniformity, we change specifications that do not
return any value to return 0. For example, the enqueue and tryDequeue specifications
become:

enq
def
= AQ=@app(AQ,@singl(e)); return 0

deq(1)
def
= assume(AQ==@empty); return EMPTY

deq(2)
def
= assume(AQ6=@empty); ARes=@hd(AQ); AQ=@tl(AQ); return ARes

where tryDequeue corresponds to the non-deterministic choice among the paths deq(1)
and deq(2). We say that one of these paths is syntactically pure if and only if it has no
assignments to global variables. For example, deq(1) is syntactically pure, but enq and
deq(2) are not.

The pure linearizability checker is constructed by replacing return v with the assign-
ment can return[v]=true along every syntactically pure specification path of the method,
and by truncating the non-pure paths before their first effectful command (namely, an as-
signment to a global variable). This construction ensures that pure linearizability checkers
set can return[v] to true only if at the current point the specification does not modify
the global state and returns v.

Going back to the queue specifications, the pure linearizability checker of enqueue is
simply the empty command, because enq is not syntactically pure. The pure linearizability
checker of tryDequeue is

if(*) {assume(AQ==@empty); can return[EMPTY]=true;}
else {assume(AQ!=@empty); ARes=@hd(AQ);}

In this case, as ARes is a dead local variable, the assignment can be removed, and the
checker can be rewritten as follows:1

if(AQ==@empty) {can return[EMPTY]=true;}
1This simplification is for presentation purposes only. The implementation does not perform such

simplifications.

8



Algorithm 1 ProveLinearizable(op init, specinit, op1, spec1, . . . , opn, specn)

1: iop init ← (op init; specinit)
2: for i← 1 to n do
3: check i ← GeneratePureChecker(speci)
4: (C, op1, . . . , opn)← GetCandidateLinPoints(op1, . . . , opn)
5: for all cand ∈ C do
6: for i← 1 to n do
7: iopi ← InstrumentLinPoints(cand, opi, speci)
8: if Verify(iop init, iop1, check 1, . . . , iopn, checkn) then
9: return ‘Success’

10: return ‘Failure’

Linearization points in other threads. Note that it is sound to execute the pure
checker for a thread, t, at any point in time, even between atomic steps of other threads.
Hence, we can also handle linearization points that are in the source code of other con-
currently executing operations. Basically, when the static analyser verifies one thread
with a compositional verification technique, it has a model of what updates all the other
threads can do and how these updates affect the current thread. Thus, when symbolically
evaluating the operation being verified, after each of its atomic commands, the static
analyser also symbolically evaluates the model of what all the other threads can do, be-
fore proceeding with the operation’s next atomic command. Therefore, if we instrument
also the model of all the other threads’ behaviour with calls to to the pure linearizability
checker, then the static analyser is able to establish linearizability even in cases where
some linearization points are within the code of a concurrently executing thread.

Return set abstraction. To ensure that the static analyser terminates, we often need
to abstract the return set (i.e., the set of values v such that can return[v] is true). While
this is unnecessary for specifications, such as tryDequeue, whose pure executions return
only one of a small number of results, it is crucial for specifications, such as peek on a
stack or a queue, whose pure executions can return an unbounded number of different
answers. So, to abstract over this set of variables we apply ‘canonical abstraction’ [16],
which effectively remembers only which program variables and program constants are
contained in the set. As there is only a finite set of variables and constants appearing in
the input program, the range of this abstraction is finite, and hence the termination of
the underlying static analysis is not affected.

4.3 Verification procedure outline

Algorithm 1 contains our procedure for proving linearizability. ProveLinearizable
takes as arguments the library’s constructor (op init) with its specification (specinit), and
the set of library operations (op1, . . . , opn) with their specifications (spec1, . . . , specn). The
specifications are just normal methods that operate on the logical state, which is disjoint
from the concrete state.

The algorithm consists of two phases. First, it instruments the constructor of the
library, computes the pure checkers for each operation and generates a set of candidate
linearization point assignments, C. Then, it iterates over that set checking whether any of
these assignments is valid. If a valid assignment is found, the procedure returns ‘Success’
indicating that linearizability has been proved; otherwise, it returns ‘Failure.’

9



Preparation phase. First, the algorithm instruments the library’s constructor: iop init

is simply the sequential composition of the constructor, op init, and its specification,
specspec. Next, pure checkers are generated, as described in §4.2.

Then, GetCandidateLinPoints is called. This, first, unfolds the definitions of CAS
and DCAS in the various operations. This syntactic transformation exposes the trivial con-
ditions governing the linearization points of effectful operations, so that the transformed
operation has unconditional linearization points. For uniformity, it arranges that methods
and specifications that do not return any results, return 0 instead.

Then, along each execution path of each operation, it chooses one command writing
to the shared state as the effectful linearization point. If the operation’s specification has
pure executions (e.g., tryDequeue), it also can choose no linearization point on some of its
execution paths in the hope that the execution path corresponds to pure execution of its
specification. Obviously, memory writes appearing within loops are discarded since they
can be executed multiple times. This process produces one linearization point assignment:
a set of program points that are to be treated as (unconditional) linearization points of
the method they belong to. GetCandidateLinPoints returns the set, C, of all possible
linearization point assignments.

Checking phase. Each operation opi is instrumented with its specification speci by
adding the two new auxiliary local variables:

• lres, holding the result of the abstract method call at the effectful linearization
point if this has occurred, or the reserved value UNDEF otherwise,

• can return, an array storing the allowed return values of any pure linearization
points that have been executed so far,

and the following code:

• At the beginning of the method, InstrumentLinPoints sets lres to UNDEF. and
all the elements of can return[] to false.

• At the chosen candidate linearization points in cand that are in the source code of
opi, it inserts an assertion checking that the linearization point has not occurred
followed by a call to the abstract method:

assert(lres==UNDEF); lres=speci(args)

where args are the arguments of opi (which we assume are not modified by opi).
The assertion about lres and the subsequent assignment ensure that the candidate
linearization point is executed at most once along every execution path.

• Finally, at the method’s return point(s), it inserts the following check:

assert(lres==res ∨ (lres==UNDEF ∧ can return[res]))

where res is the variable storing the concrete method’s return value. This check
ensures that either an effectful linearization point has occurred and that the method
returned the same result as its specification, or that no effectful linearization point
has occurred, but there has been a pure linearization point whose return value
matches the concrete return value.

10



The instrumented operations are validated by calling Verify. Verify takes as
arguments the library’s instrumented constructor (iop init), its instrumented operations
(iop1, . . . , iopn), and one command per operation that is to be inserted at each point
during the execution of that operation. These are the just the previously computed pure
linearization checkers: spec1, . . . , specn. Note that these checkers have to be passed as
arguments to Verify (and cannot simply be instrumented in the source code of the
operations), because we want to allow linearization points of pure executions to reside
in the code of other threads. To handle this case, Verify also inserts the checkers in
its abstractions of the other threads’ behaviour. This instrumentation cannot be done
statically before calling Verify because these abstractions have not yet been computed.

Verify constructs the most general client of the library and uses an automatic static
analysis to prove that the library is memory safe and that the assertions in any assert

statements in the library are always satisfied. The most general client is a top-level
program which models all possible usages of the library. It consists of the initializa-
tion routine followed by an unbounded parallel composition of threads, each of which
non-deterministically executes one of public methods of the library in a loop. So, if so as-
sertion violations occur for the most general client of the library, then no library assertion
violations will occur for any client of the library.

4.4 Soundness

To prove soundness of our algorithm, we first show that the instrumentation described in
§4.2 and §4.3 implies linearizability:

Theorem 1 (Instrumentation Correctness). If a library A is instrumented as described
in §4.2 and §4.3 with respect to the specification B, and an execution of a client of the
instrumented library did not violate any of assertions, then that execution was linearizable.

The proof of this theorem is quite technical and can be found in the appendix. Briefly,
for each operation, we can pick the instant when lres was set as its linearization point,
or if lres was never set, then the point when can return[r] was first set to true, where
r is the eventual return value of the operation.

The soundness of ProveLinearizable follows directly from Theorem 1 and the spec-
ification of Verify, which checks absence of library assertion violations for any execution
for any valid client of the library.

Theorem 2 (Soundness). If ProveLinearizable(init , init spec, op1, spec1, . . . , opn, specn)
returns ‘Success,’ then the library consisting of the constructor init and methods op1, . . . , opn
is linearizable with respect to its specification (init spec, spec1, . . . , specn).

4.5 Implementation

We have implemented the algorithm for proving linearizability within Cave, an automatic
verification tool for concurrent algorithms based on RGSep. We take Verify to be
the RGSep action inference algorithm [20], adapted to execute the corresponding pure
checker, check i, symbolically at every step of the ‘stabilisation’ calculations within each
instrumented operation, iopi. Thus, in effect, Verify simulates the pure checker after
every atomic command of the current thread accessing the shared state and also after
every atomic command of other concurrently executing threads.

11



Data structure Lines Ops Eff Pure LpO Time(s)

DCAS stack 52/93 2/7 2/4 1/4 0 0.1/0.2
Treiber stack [17] 52/93 2/7 2/4 1/4 0 0.1/0.2
M&S two-lock queue [14] 54/85 2/4 2/3 1/2 0 2.0/16.5
M&S non-block. queue [14] 82/127 2/4 2/3 1/2 0 1.7/4.9
DGLM non-block. queue [5] 82/126 2/4 2/3 1/2 0 1.8/7.6

Pessimistic set [12] 100 3 2 3 0 392.9
V&Y DCAS-based set [22] 101 3 2 3 0 51.0
ORVYY lazy set [15] 94 3 2 3 1 521.5

Figure 3: Verification statistics for a collection of stack, queue, and set benchmarks.

Implementation optimisations. Before executing Alg. 1, Cave first calls Verify
with arguments (init , op1, skip, . . . , opn, skip) to check that the uninstrumented library
is memory safe: that it does not dereference any invalid pointers and that it does not
violate any assertions. The purpose of this initial call is threefold:

• First, it aids debugging. If action inference cannot verify that the uninstrumented
program is safe (either because the program is erroneous, or because the analysis
is imprecise), there is no way that it will succeed in verifying the instrumented
programs. Thus, it is better to fail quickly, and give a simpler error message to the
user.

• Second, it can help quickly prune the search space of linearization point assignments.
Action inference distinguishes updates to shared memory locations from updates to
thread-local data, as only the former have an action associated with them. Thus, we
can ignore any candidate linearization point assignments that involve thread-local
accesses.

• Third, the set of RGSep actions inferred by this phase can then used as a starting
point for the following Verify calls within Alg. 1, thereby making later action
inference calls reach their fix-point in a single iteration.

We can further optimise the call to Verify in Alg. 1 in two ways. First, it can fail im-
mediately if the correlation between the abstract state and the concrete state is lost. This
allows us to fail much more quickly on erroneous linearization point assignments. Second,
it first tries to prove linearizability by inlining the instrumented checkers only within the
source code of the current thread (i.e., only at the beginning of every stabilisation), and
if that fails to establish linearizability, then also after every stabilisation iteration. This
alleviates the cost of inserting the pure checkers within the abstraction of other threads,
when this is not needed to prove linearizability.

5 Experimental evaluation

We have successfully applied Cave to a number of practical concurrent stack, queue, and
set algorithms from the literature, which are reported in Fig. 3. For some algorithms, we
have considered two versions: one being just core algorithm as normally published, and
one being a mostly straightforward extension of the algorithm providing supplementary
operations. We present our results for both versions in the same line separating the
corresponding numbers with a slash. For each algorithm, we record the number of lines

12



of code excluding comments, blank lines, and the specifications (Lines), the number of
public methods of the library (Ops), the number of effectful methods (Eff), the number
of methods with pure executions (Pure), the number of methods with linearization points
in other threads (LpO) and the total verification time in seconds (Time).

Stack & queue benchmarks. The DCAS and Treiber stack algorithms use non-
blocking synchronisation, respectively performing a DCAS or a CAS to update the top
of the stack. The basic versions of the stack algorithm provide just push and tryPop

operations. The tryPop operation has a pure execution in case the stack was empty, in
which case it returns a special value (similar to the tryDequeue of Fig. 1). The extended
implementations also provide a variant of pop which blocks if the stack is empty, a peek

operation, a blocking operation waiting for the stack to become empty, and for testing
for emptiness and clearing the stack.

The queue algorithms support enqueue and tryDequeue operations with the specifi-
cations shown in Fig. 1. The extended versions have two further operations: a blocking
dequeue and an emptiness test. The first algorithm is a lock-based design due to Michael
and Scott that uses a different lock to protect each end of the queue. The second one is
due to the same authors and was presented in Fig. 2. The DGLM queue is a variant of
M&S non-blocking queue that was proposed by Doherty et al. [5] and verified in the PVS
theorem prover.

Set benchmarks. These have three operations: adding an element to the set, removing
one element from the set, and testing for membership in the set. The first two operations
are effectful, but have pure executions whenever the item to be added (resp. removed)
was already in the set (resp. not in the set). In all cases, the set is represented as a sorted
singly linked list with two sentinel nodes.

The pessimistic set has a lock per list node, acquired in a hand-over-hand fashion.
The V&Y DCAS-set [22] traverses the list optimistically (i.e., with no synchronisation)
and then validates that the traversal was correct. The ORVYY lazy set [15] also performs
optimistic traversals and uses a bit for marking nodes that are about to be deleted. This
allows it to have an efficient wait-free contains implementation. The ORVYY lazy set
is particularly interesting, because one of the linearization points of contains lies within
code of a different thread.

We have also run Cave on two further set algorithms: the V&Y CAS-based set [22]
and the HHLMSS lazy set [12, §9.7], but it failed to prove linearizability. Verification of
the first example failed because one of the calls to Verify timed out, probably due to the
current näıve axiomatisation of sorted sequences in the analyser. In the second algorithm,
the correct abstraction map lies outside of the abstract domain of our implementation of
Verify and, hence, was not be found.2

Discussion. As it can be seen from the execution times, the stack algorithms are rather
easy to verify. This is mainly because these algorithms have rather simple data structure
invariants (e.g. the stack is represented by a null-terminated singly-linked list), which
can be found easily by the underlying shape analysis. In contrast, the queue algorithms
and especially the set algorithms have much more complicated data structure invariants

2The abstraction map for the HHLMSS lazy set is the set of the values of unmarked nodes that are
reachable from the head of the list. In contrast, the ORVYY lazy set has a simpler abstraction map: it
is the set of the values of all the nodes that are reachable from the head of the list. While it is plausible
to extend the analyser to infer such complicated abstraction maps automatically, it is probably better to
leave them as input by the programmer.

13



(e.g. the set being represented by a sorted list with special sentinel nodes and there can
be multiple arbitrarily long chains of deleted nodes pointing into the sorted list), which
take significantly more effort to prove. In all these algorithms, the search space for the
effectful candidate linearization point assignments was quite small and did not increase
significantly by adding a few more operations.

Since our tool relies on abstract interpretation, our verification procedure is incom-
plete: it is unable to verify many correct programs that lie outside its domain (such as the
aforementioned HHLMSS lazy set), and does not provide concrete counterexample traces
when the verification fails. Moreover, Cave cannot prove linearizability of effectful exe-
cutions whose linearization points are inside the code of different threads (such as RDCSS
and the elimination-based stack), unless these linearization points are somehow annotated
by the programmer. It can, however, prove linearizability of method executions having
linearization points within different threads, provided that these executions are logically
effect-free, as was the case with the ORVYY lazy set.

The main observation of this paper that enabled these verification results was to dis-
tinguish executions of the abstract operations (i.e., the specifications) that are pure from
those that are effectful. This is related to Elmas et al. [6], who in the context of runtime
refinement-violation detection treat operations with a pure specification differently than
ordinary operations. Flanagan et al. [8] also had a somewhat related concept of purity,
but in their work there is no notion of an abstract operation, and purity is applied only
to the implementation. None of the algorithms verified here could have been verified with
brute-force search for linearization points.

6 Conclusion

This paper presented a practical technique for automatically proving linearizability. This
was implemented in a tool, Cave, which expects a library to be verified together with
its atomic functional correctness specification and attempts to prove that the library is
linearizable with respect to its specification. We have applied our tool to a number of
concurrent stack, queue, and set algorithms, some of which were mechanically verified for
the first time.

As this is the first automatic technique for verifying functional correctness of non-
trivial concurrent programs, there are several ways in which it can be improved. One
such way would be to deal with effectful linearization points in other threads that are
‘similar’ to a linearization point in the thread being verified (where two program state-
ments are deemed ‘similar’ if they are abstracted by the same RGSep action). More
practically, our prover should be combined with lightweight methods for proving atom-
icity (e.g., [8]) and with testing techniques for eliminating incorrect linearization point
assignments quickly. Further, as such provers become increasingly sophisticated, it will
be important to generate proof objects that can be independently checked by a trusted
computer program. Last, but not least, there is a never-ending challenge in devising more
powerful and more efficient abstract domains for the underlying static analyses used in
procedures such as Verify. In particular, improving the support for arrays would enable
us to reason about several more concurrent algorithms, such as concurrent hashtables.

Acknowledgements. I would like to thank the anonymous reviewers for their useful
feedback that helped improve the paper. This work was supported by EPSRC grant
EP/F036345.

14



References

[1] Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science, 82(2):253–284 (1991)

[2] Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearisability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590. Springer, Heidelberg (2007)

[3] Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, S.: Thread quan-
tification for concurrent shape analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)

[4] Burckhardt, S., Dern, C., Tan, R., Musuvathi, M.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010. ACM, New York (2010)

[5] Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

[6] Elmas, T., Tasiran, S., Qadeer, S.: VYRD: verifying concurrent programs by runtime
refinement-violation detection. In: PLDI, pp. 27–37. ACM, New York (2005)

[7] Filipović, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer,
Heidelberg (2009)

[8] Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity. IEEE Trans.
Software Eng., 31(4):275–291 (2005)

[9] Harris, T., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap op-
eration. In: 16th International Symposium on Distributed Computing, pp. 265–279
(2002)

[10] Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004, pp. 206–215. ACM, New York (2004)

[11] Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS, 12(3):463–492. ACM, New York (1990)

[12] Herlihy, M.P., Shavit, N.: The art of multiprocessor programming. Morgan Kauf-
mann (2008)

[13] Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D. (eds.) FM 2009, LNCS, vol. 5850, pp. 321–337. Springer,
Heidelberg (2009)

[14] Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: PODC 1996. ACM, New York (1996)

[15] O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC 2010. ACM, New York (2010)

[16] Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL 1999, pp. 105–118. ACM, New York (1999)

15



[17] Treiber, R.K.: Systems programming: Coping with parallelism. Tech. report RJ5118,
IBM Almaden Res. Ctr. (1986)

[18] Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis. Tech.
report UCAML-CL-TR-726, Univ. of Cambridge Computer Laboratory (2007)

[19] Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 335–348. Springer, Hei-
delberg (2009)

[20] Vafeiadis, V.: RGSep action inference. In: Barthe, G., Hermenegildo, M. (eds.)
VMCAI 2010. LNCS, vol. 5944, pp. 345–361. Springer, Heidelberg (2010)

[21] Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450-464. Springer, Heidelberg (2010)

[22] Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
Gupta, R., Amarasinghe, S.P. (eds.) PLDI, pp. 125–135. ACM, New York (2008)

A Soundness

We say that an annotated library is one where we have added the auxiliary code dealing
with lres, can return, etc. as described in Sec. 4. Note that a library is annotated
always with respect to a given specification. A verified library is one in which, in every
possible execution of the library, no assertion violations occur in the library’s source code.
Our main soundness theorem then follows from the following theorem:

Theorem 3 (Soundness). Every verified annotated library A is linearizable with respect
to its specification.

To prove this theorem, we use some auxiliary definitions and lemmas. We use s to
range over states (functions from global and thread-local variables to their values) and τ
to range over traces (sequences of states). We write |τ | to denote the length of the trace
τ and τn to denote the nth state of the trace (where 0 ≤ n < |τ |).

We define Traces(R) to be the set of traces generated from the initial state, sinit, and
the transition relation, R. Formally,

Traces(R)
def
= {τ | τ0 = sinit ∧ (∀i. 0 ≤ i < |τ | − 1⇒ (τi, τi+1) ∈ R)}

We write R∗ for the reflexive and transitive closure of R, and C[A] for the relation on
states acting as the combination of a client C with the library A.

For notational simplicity, we assume that the internal state of A’s specification is a
single variable abs state. Further, we assume that we have the following functions for
distinguishing transitions of the client from those of the library:

• InAi(s) is true if and only if the program counter, s(pci), is in the code of a call to
one of A’s methods.

• Begi(s) returns the program counter of the beginning of the call to Aop that pci is
currently in (and is undefined if ¬InAi(s)).

• Endi(s) returns the program counter of the end of the call toAop that pci is currently
in (and is undefined if ¬InAi(s)).

16



We define the function Res i(τ, n) to check whether thread i has an outstanding call
at τn to one of A’s methods which will return at some later point m without having
executed an effectful linearization point (τm(lresi) = UNDEF), and if so, to return the
call’s returned result:

Res i(τ, n)
def
=

τm(resi)
if n < m < |τ | ∧ τm(lresi) = UNDEF ∧ ¬InAi(τm)

∧ (∀k. n ≤ k < m⇒ InA(τk))

undefined otherwise

Note that this function is well-defined. It searches for the first m > n such that InA(τm)
is false, and returns the value of resi at the state τm provided that τm(lresi) = UNDEF.
One can think of Res i(τ, n) as a ‘prophecy variable’ at state τn holding the future return
value of thread i’s outstanding library invocation.

Next, we define the predicate CRi(τ, n, t) to hold whenever can return is set for i’s
eventual return value, Res i(τ, n), in the current state (τn) if i < t, or in the previous state
if i ≥ t:

CRi(τ, n, t)
def
= defined(Res i(τ, n)) ∧

(
i < t ∧ τn(can returni[Res i(τ, n)])

∨ i ≥ t ∧ τn−1(can returni[Res i(τ, n)])

)
In essense, t counts the number of pure linearization checkers executed at the current state,
τn. As constructed, threads from 0 to t − 1 have executed the pure checker, and hence
CRi looks at the value of can returni[Res i(τ, n)] in the current state, τn. In contrast,
threads from t to T − 1 have not yet executed the pure checker, and hence CRi evaluates
can returni[Res i(τ, n)] in the previous state, τn−1.

Further, we define the function f which maps an instrumented concrete trace τ ∈
Traces(C[A]), an index 0 ≤ n < |τ |, and a thread number t to an abstract state. (Again,
t represents the number of pure linearization checkers executed at the current state.)

f(τ, n, t)
def
= λv.



Begi(τn) if v = pci ∧ InAi(τn) ∧ τn(lresi) = UNDEF ∧ ¬CRi(τ, n, t)

Endi(τn) if v = pci ∧ InAi(τn) ∧ (τn(lresi) 6= UNDEF ∨ CRi(τ, n, t))

τn(lresi) if v = resi ∧ InAi(τn) ∧ τn(lresi) 6= UNDEF

Res i(τ, n) if v = resi ∧ InAi(τn) ∧ τn(lresi) = UNDEF ∧ CRi(τ, n, t)

undefined if v = resi ∧ InAi(τn) ∧ τn(lresi) = UNDEF ∧ ¬CRi(τ, n, t)

τn(v) otherwise

For each thread i, if pci is within a library call, f maps the program counter pci to
the beginning or the end of the call depending on whether a linearization point has
occurred. Similarly, f maps the result register, resi, to the value of lresi after an
effectful linearization point, or to Res i(τ, n) after a pure linearization point. For all other
variables v, f(τ, n, t)(v) = τn(v).

Within a library call, it maps the program counters to either the beginning or end
of the call depending on whether the auxiliary state records that a valid linearization
point has occurred or not. In the former case, it also maps the res variable to the
recorded abstract result. Finally, it maps all other variables (as well as pci and resi when
¬InAi(τn)) as in τn. This includes the client’s variables, argi, all the auxiliary variables
(such as abs state, lresi, can returni and h, but not any local variables of the library
A. The function, f , has the following properties:

Lemma 4. For all instrumented clients C of a verified, annotated library A with specifi-
cation B, all traces τ ∈ Traces(C[A]) and all n < |τ |, (f(τ, n, T ), f(τ, n+ 1, 0)) ∈ C[B]∗.

17



Proof. Let t be the thread that did the transition from τn to τn+1. The local variables of
all other threads are unchanged by the transition: ∀i 6= t. ∀v. τn+1(vi) = τn(vi). We do a
case split on what t’s transition can be:

• Case InAt(τn) ∧ InAt(τn+1):

(a) If τn+1(lrest) = τn(lrest), then f(τ, n+ 1, 0) = f(τ, n, T ) and so the transition
is included in C[B]∗.

(b) If τn(lrest) = UNDEF ∧ τn+1(lrest) 6= UNDEF, then the program has assigned a
value to the auxiliary variable lrest. By inspection, whenever this happens, the
abstract operation is also called updating τn(abs state) to τn+1(abs state) and
τn+1(lres) contains the result of the call.

Hence, noting that ∀i. CRi(τ, n + 1, 0) = CRi(τ, n, T ), there is a C[B] transition
from f(τ, n, T ) to f(τ, n+ 1, 0).

(c) The third possibility (namely, τn(lrest) 6= UNDEF ∧ τn+1(lrest) = UNDEF) can-
not arise as UNDEF cannot be assigned to lrest other than at the beginning of an
operation.

• Case InAt(τn) ∧ ¬InAt(τn+1):

This corresponds to returning from an operation. Hence for every variable v 6= pct,
τn+1(v) = τn(v). From the assertion check at the operation’s return node, we know
that:

τn(lrest) = τn(rest) ∨ τn(lrest) = UNDEF ∧ τn(can returnt[τn(rest)])

In both cases, it follows that f(τ, n, T )(rest) = τn(rest) and f(τ, n, T )(pct) =
Endt(τn) = τn(pct) (note that in the first case we know that τn(rest) 6= UNDEF).
Moreover, we have f(τ, n + 1, 0)(rest) = τn+1(rest) = τn(rest). Hence, ∀v 6= pct,
f(τ, n+ 1, 0)(v) = f(τ, n, T )(v), and, thus, the transition is included in C[B].

• Case ¬InAt(τn) ∧ InAt(τn+1):

This corresponds to call into an operation of A. By the instrumentation at the
beginning of the library’s operations, we have:

τn+1(lrest) = UNDEF ∧ (∀v. τn+1(can rest[v]))

Hence, f(τ, n+1, 0)(pct) = Begt(τn+1) = τn+1(pct), f(τ, n+1, 0)(rest) is undefined,
and ∀v /∈ {pct, rest}, f(τ, n+ 1, 0)(v) = f(τ, n, T )(v).
Therefore, the transition (f(τ, n, T ), f(τ, n+ 1, 0)) is included in C[B].

• Case ¬InAt(τn) ∧ ¬InAt(τn+1):

This corresponds to a context transition, and the pair (f(τ, n, T ), f(τ, n + 1, 0)) is
included in the respective C[B] transition.

Lemma 5. For all instrumented clients C of a verified, annotated library A with specifi-
cation B, all τ ∈ Traces(C[A]), all n such that 0 ≤ n < |τ |, and all i such that 0 ≤ i < T ,
we have (f(τ,m, i), f(τ,m, i+ 1)) ∈ C[B]∗.

Proof. If ¬InAi(τn) then f(τ, n, i + 1) = f(τ, n, i) and the conclusion holds trivially. If
n = 0, from the definition of Traces, ¬InAi(τn), and hence the conclusion is trivial.
Therefore, we are left with the case where n > 0 and InAi(τn).

Let r = Res i(τ, n). If r is undefined, then f(τ, n, i+ 1) = f(τ, n, i) and the conclusion
holds trivially. So, we assume that r is defined. There are two cases to consider:

18



• Case ¬τn−1(can returni[r])∧τn(can returni[r]): The only difference between f(τ, n, i)
and f(τ, n, i + 1) is that f(τ, n, i + 1)(pci) = Endi(τn) and f(τ, n, i + 1)(resi) = r
whereas f(τ, n, i)(pci) = Begi(τn) and f(τ, n, i)(resi) = undef .

For the auxiliary assignment can returni[r] := true to have occurred, we must have
PureCond(spec, r) be true, which in turn means that C[B] can do a transition from
f(τ, n, i) to f(τ, n, i+ 1).

• Case τn−1(can returni[r]) ∨ ¬τn(can returni[r]):

Then, f(τ, n, i+ 1) = f(τ, n, i), and the conclusion holds trivially.

From these two lemmas, by an inductive argument, we conclude that:

Corollary 6. For all τ ∈ Traces(C[A]), all m,n < |τ | and all i, j ≤ T , if (m, i) ≤lex (n, j),
then (f(τ,m, i), f(τ, n, j)) ∈ C[B]∗.

Finally, we can proceed with the proof of the soundness theorem:

Proof of Theorem 3. From Definition 2, we have to prove that for every instrumented
client C, for every state s such that (sinit, s) ∈ C[A]∗, there exists a state s′ such that
(s′init, s

′) ∈ C[B]∗ and s′(h) = s(h) (where sinit (resp. s′init) is the initial states after the
constructor of A (resp. B) has been called).

Fix C and s. Since (sinit, s) ∈ C[A]∗, there is a trace τ such that τ0 = sinit, τ|τ | = s,
and (τi, τi+1) ∈ C[A] for all i < |τ |. Pick s′ = f(τ, |τ |, T ) as the witness to the existential.
From Corollary 6, we know that (f(τ, 0, T ), f(τ, |τ |, T )) ∈ C[B]∗. From the definition of
f , we get f(τ, 0, T ) = s′init and f(τ, |τ |, T )(h) = τ|τ |(h) = s(h), as required.

19


