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Stage scheduling for CPU-intensive servers

Minor E. Gordon

Summary

The increasing prevalence of multicore, multiprocessor commodity hardware calls for
server software architectures that are cycle-efficient on individual cores and can maximize
concurrency across an entire machine. In order to achieve both ends this dissertation ad-
vocates stage architectures that put software concurrency foremost and aggressive CPU
scheduling that exploits the common structure and runtime behavior of CPU-intensive
servers. For these servers user-level scheduling policies that multiplex one kernel thread
per physical core can outperform those that utilize pools of worker threads per stage on
CPU-intensive workloads. Boosting the hardware efficiency of servers in userspace means
a single machine can handle more users without tuning, operating system modifications,
or better hardware.
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Chapter 1

Introduction

Structuring server request processing logic as a series of concurrently-executable stages
and aggressively scheduling stage execution in userspace with a single kernel thread per
core can increase the throughput of a CPU-intensive server running on a multiprocessor
machine in comparison to thread-per-connection concurrency and thread pool-per-stage
scheduling. The resulting gains in throughput do not come at the expense of significantly
increased latency, which is kept under acceptable upper bounds for a given application.

That is my thesis. The remainder of this chapter defines the key terms in the thesis, sets
the scope of the dissertation, and outlines its contents.

1.1 Servers

A server is a program that manages access to a shared resource, such as a database, a
file system, or a web site. Servers are reactive: they receive requests from clients, process
each request, and [optionally] produce responses or other results. From a CPU scheduling
perspective the most interesting servers are those that

1. are highly concurrent, where n = the number of requests being processed con-
currently is much greater than p = cores in a multiprocessor machine, with n on
the order of thousands or tens of thousands and 2 ≤ p ≤ 32 in current hardware

2. process requests independently with little or no unavoidable read/write con-
tention between requests

3. apply a sequence of operations in request processing that require minimal syn-
chronization between operations

4. provide “best effort” service with no hard or soft real-time guarantees

5. are CPU-bound or at least CPU-intensive, so greater CPU efficiency will increase
the throughput of the server

This class of servers includes web applications that process images and videos uploaded
by users; daemons that apply CPU- and memory-intensive algorithms such as statistical
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10 1.2. STAGES

inference mail filters [PRH07] or subscription matching [FJL+01] to incoming requests;
caching DNS [Moc87] servers [JV06], HTTP [FGM+99] file servers [PBH+07], and others
that work entirely from memory; servers that do extensive parsing and serialization of
text formats [KS03]; and database servers under read-intensive workloads [HPJ+07].

1.2 Stages

The request processing operations of a server can be divided into stages. A stage is an
operation that can run simultaneously with another, different operation on a different
physical core with minimal or no synchronization between the two operations. Stages
have task parallelism [Amd67]. “Minimal synchronization” means that a stage often
requires synchronization in order to have work to do, but runs to completion without
synchronization in doing the actual work. The initial synchronization often takes the
form of signaled queues: a stage dequeues work from a queue, possibly waiting on the
queue if it is empty, and a stage generates work for other stages by enqueueing the work
into other stages’ queues. The interaction patterns between stages can be described by a
directed graph, called a stage graph.

When server logic is explicitly structured as a series of stages, a CPU scheduler that is
aware of these divisions can exploit optimizations that would be unavailable to a scheduler
that had less information about the instruction stream under its control.

1.3 An image processing server

Figure 1.1 illustrates a staged server with each stage shown as a separate box. The
server is designed to process images uploaded by users via HTTP for subsequent display
on a web site. The stage graph for this server consists of an I/O stage for accepting
connections, reading HTTP requests from connections, parsing the requests, and writing
HTTP responses to connections; a stage for parsing JPEG [Wal91] image data from form-
encoded HTTP request bodies; a set of image transforms, such as scaling and blurring,
with one transform per stage; and auxiliary stages for collecting statistics and writing
output images to disk.

Figure 1.1: Image processing server
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The image processing server’s design was derived from a Python1 script that batch pro-
cesses images uploaded by users of a community site in Germany, wie-ich.de. On the
real site an Apache [LL02] web server with a Tomcat [BD03] application server back end
writes files to a directory on disk, where they are picked up asynchronously by the script.
After determining the resolution, metadata, and other parameters of the uploaded im-
age the script spawns separate processes to transform the image using a command line
interface to the popular ImageMagick tool2. ImageMagick expects files as input, so inter-
mediate results are also written to the file system. The overhead of continually forking
processes, decoding and encoding JPEGs many times, and writing all intermediate results
to the file system makes this script-based implementation extremely inefficient: it is only
able to process 1-2 images per second on a machine with one core. For this reason and
because of the tools involved the script works entirely offline.

Processing images online while the user is waiting for an HTTP response would require
much higher throughput and much lower latency from the servers and the script. This was
the impetus behind the staged server implementation, which subsumes the functions of
Apache, Tomcat, and the Python script. In the staged server all of the image transforms
as well as the auxiliary functions (accepting uploads, writing the final outputs to disk) are
executed in the web server. Only the final output images are written to the file system.
Eliminating most of the overhead in the application dramatically increases its performance
and makes the server a prototypical example of the class of CPU-bound servers described
above.

Given a staged server such as this, my goal is to maximize its throughput, where through-
put is defined as the number of requests a server can process to completion in a given
period of time3 while maintaining acceptable response times4. The number of requests
handled by a server is directly proportional to the number of clients, with anywhere from
one to a few dozen requests per client. The number of clients is in turn proportional to
the number of users, often in a 1:1 ratio. These relationships imply that a server with
higher throughput can support more users. When a server can support more users without
upgrading hardware, fewer or cheaper machines are required to support the same total
number of users. Less hardware translates to lower setup and maintenance costs.

1.4 Optimizing CPU scheduling for throughput

Throughput-oriented CPU scheduling is crucial to the performance of many compute-
intensive applications, including those in scientific computing [YRP+07] and information
retrieval [YRP+07]. Applications in these domains have much in common with CPU-
intensive servers: their interactions with human users are usually limited to initial inputs
(requests, data); they tend to have relatively few code paths compared to end user-facing
programs; they have inherent data parallelism [HGLS86] and task parallelism [Amd67],

1http://www.python.org/
2http://www.imagemagick.org/
3The period for measuring throughput is on the order of seconds or minutes rather than the hours or

days of e.g. [ABC+05].
4The definition of “acceptable response times” depends on the application and many other variables,

but see http://www.useit.com/papers/responsetime.html or [Nie94] for a brief overview of response
times from a user’s perspective.
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the latter often taking the form of pipelines; and they rely heavily on the branch predic-
tors, data and instruction caches, and other features of modern processors to maximize
throughput on individual cores. A well-designed CPU scheduler for servers can exploit all
of these characteristics through targeted optimizations that improve CPU efficiency on
individual cores by batching and prioritizing work as well as optimizations that increase
parallelism across cores.

Batching

A CPU scheduler can raise the throughput of a server by exploiting batching effects.
By applying the same operation with the same code on the same processor to different
requests one after the other, the scheduler can increase the instruction cache hit rate,
which decreases wasted (stalled) CPU time and thus improves the hardware efficiency of
the server. If an operation repeatedly accesses a data structure in memory batching the
operation can also increase the data cache hit rate. Aggressively exploiting L1 and L2
caches through spatial and temporal locality of memory references is essential to getting
good performance out of modern processors, where loading a word from primary storage
can take hundreds of cycles. Limiting the length of operation code paths and the size of
data structures to fit in cache (as in loop tiling [IT88]) is also important.

Prioritization

A CPU scheduler can increase a server’s total throughput by ensuring that some request
processing operations have priority over others. Accepting new connections to a server
might have priority over reading existing connections, because accepting more connections
under heavy load can prevent clients from going into TCP backoff or users initiating re-
tries [BPG04]. A scheduler can also limit the CPU time of low-priority operations without
limiting other, higher-priority operations on the same request. For example, an auxiliary
operation that generated statistics from input data might be given very low priority
compared to actually receiving the input and sending a response.

When it comes to prioritizing one request over another, the Shortest Remaining Processing
Time (SRPT) queue discipline is known to be optimal in terms of both throughput and
latency for most service and arrival rate distributions [HBBSA01]. The downside of SRPT
is that is a clairvoyant discipline: the scheduler must know the remaining processing times
of jobs (requests) in order to prefer jobs that are closer to completion than other jobs.
For most online applications, including servers, predicting the remaining processing time
of a job is difficult or impossible to do with absolute certainty. However, a server can
approximate this heuristic by executing stages at the end of a pipeline-like stage graph in
preference to those at the beginning, on the assumption that the relative position of an
operation is indicative of the amount of processing time required to complete all of the
server’s operations. The imposition of explicit signaled queues between stages also opens
up a number of possibilities for size- or age-based work reordering.

Parallelism

The stages of a server are usually defined by function and can vary in granularity: image
decoding, cache lookups, or XML parsing. Knowing what operations can execute con-
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currently simplifies the job of a multiprocessor scheduler, because it can guarantee that
no operation will block or spin waiting for the results of another operation once the first
operation has started. Having fixed code paths that perform only one or a few variations
of an operation also makes the runtime cost of operations easier to predict, which enables
more accurate resource control.

When the stage graph is known to the scheduler it can also reduce inter-core contention
by assigning stages that do not interact to separate cores and/or separate processors.
Conversely, when two stages are known to interact heavily they can be scheduled on the
same core or a neighboring core in order to increase data cache re-use. This is similar to
a contractive mapping of processes to machines in a cluster [HD94].

1.5 Outline

The last decade has seen numerous advances in server software architectures, particularly
in the way server logic is structured to handle many requests concurrently. The next
chapter surveys the state of the art in staged and other server architectures. Chapter
3 presents the main contributions of this dissertation and places them in the context of
previous work. Chapter 4 is the crux of the dissertation: in a set of experiments I evaluate
the performance of staged concurrency and stage scheduling policies on representative
servers. In chapter 5 I describe some of my experiences designing and implementing
staged servers. Chapter 6 briefly surveys related work, and the text concludes with a
chapter on future developments.

1.5.1 Results

The research reported in this dissertation starts from the basic premise that stages are a
fundamentally superior way of handling concurrency compared to naive kernel thread-per-
connection approaches. Rather than concentrating on the advantages of the concurrency
model over other models, I have focused on variations within the same model, particularly
scheduling policies for staged servers. In particular, I will show that:

1. Stage scheduling policies that multiplex stages over one kernel thread per core out-
perform policies that use more threads in terms of throughput on a CPU-intensive
workload.

2. Thread-per-core policies with feedback-driven stage selection heuristics are compa-
rable to those with simpler heuristics on the same benchmarks, despite expectations
that the former policies should exhibit better performance – a negative result.

3. Load balancing can increase the throughput of staged servers scheduled with thread-
per-core policies.

1.5.2 Scope

The primary focus of this dissertation is on optimizing CPU scheduling of staged servers
to increase throughput. Other optimization targets, such as reducing power consumption
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[MB08], scheduling to meet real-time deadlines [AB90], maintaining Quality of Service
guarantees [LMB+96] and target I/O rates [MP89, SGG+99], and provisioning virtual
machines [KC07], while equally valid, are outside the scope of the current work.

Furthermore, I have limited my investigations to CPU scheduling in userspace. Although
some of the techniques proposed here could be adapted to kernel schedulers, I have not
attempted to do so. Instead I have focused on user-level schedulers that multiplex stock
kernel threads. A few of the algorithms presented in this dissertation require the ability to
explicitly fix the processor affinity of a thread; a system call for this purpose is available
on most server-class systems.

Finally, in the course of this work I will consider CPU scheduling on a single machine
only. Coordinated CPU scheduling on multiple machines can improve the performance of
distributed applications [ADCM98], but this is beyond the scope of my research.

1.6 Terminology

In writing this dissertation I have assumed that readers are familiar with the basic mech-
anisms, algorithms, data structures, and other artifacts of CPU scheduling as well as the
terminology used to describe them (processes, run queues, quanta, etc.). For readers who
are not familiar with these terms, I recommend Marshall McKusick and George Neville-
Neil’s The Design and Implementation of the FreeBSD Operating System [MNN04] as an
introduction to CPU scheduling in operating systems. Before proceeding I would like to
clarify my use of a few of these terms in order to avoid misunderstanding:

Processes and threads

I will use the term thread in contexts where the terms process (a.k.a. heavyweight pro-
cesses) and thread are interchangeable, and I will consider threads as equivalent to
lightweight processes that share an address space. In all cases the unmodified use of
the nouns “process” or “thread” implies kernel process and kernel thread, respectively;
user-level threads are referred to by name where appropriate. I will also prefer the term
user-level to application-level, as in “user-level threads” or “user-level scheduler”, on the
assumption that the two modifiers are synonymous in the context of this dissertation.

Core

The current generation of processors combine multiple cores in a single physical package
on the processor die. The cores of a processor have individual L1 caches but usually share
L2 and occasionally L3 instruction and data caches. From the perspective of the CPU
scheduler a core is the unit of concurrency in hardware: two different cores can execute two
different instruction streams simultaneously, rather than merely providing the appearance
of concurrency while multiplexing at the hardware level, as in simultaneous multithread-
ing. The distinction is an important one, since one of the goals of the stage scheduling
algorithms discussed here is to minimize cache contention between cores, especially on L1
and L2 caches. In order to do so cores must be considered separately. Because a processor
may consist of multiple cores and thus be able to execute multiple instructions simulta-
neously, I will prefer the term “core” to “processor” or “CPU” when individual cores are
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targeted. In accordance with accepted nomenclature I will use the term multiprocessor to
refer to both multicore (two or more cores in a package) and traditional multiprocessor
(cores in separate packages) setups. The general term “CPU” will be relegated to contexts
where any or all cores and processors are involved, e.g. “CPU-bound”.

CPU scheduler

Although the term “CPU scheduler” is normally written in the singular, in multiprocessor
systems the CPU scheduler is usually not a monolithic entity that has global knowledge of
system state and makes scheduling decisions for all cores, which would imply that one core
makes scheduling decisions for itself and all others. Instead each core spends some of its
cycles running an instance of a CPU scheduling algorithm, which is designed to interact
with instances of the algorithm on different cores in a peer relationship. A limited set of
in-memory data structures are shared between the instances of the algorithms, while each
core also has its own private data structures. In the interests of simplicity I will refer to
this system of interacting algorithms as the CPU scheduler, in the singular.

Commodity [operating systems] [kernels]

I will use this generic term to refer to the most commonly-used server operating systems
as of this writing: Microsoft Windows and Linux, and, to a lesser extent, BSD derivatives
and Sun Solaris. Because of their widespread deployments and user bases Windows and
Linux are the primary targets of the current work.

Event

The term event is used in several contexts in this dissertation. Generally speaking, an
event is equivalent to a message in a message passing system. The term can also refer to
notifications that e.g. the kernel has read data from the network on a specific connection;
the term event-driven programming is often used to describe a way of programming sys-
tems to “react” to events of this kind. For the purposes of this dissertation event-driven
programming may be considered a specific case of message passing, where the sender is
usually the kernel rather than a peer in the message passing system. The fact that the
message may not actually contain the data is of secondary importance. I will use the term
event in preference to “message” because the former term predominates in discussions of
servers, while the latter is usually associated with more general distributed systems.

Stage

The term stage was inherited from previous researchers (see chapter 2). In the present con-
text the term has two slightly different definitions, one conceptual and the other grounded
in implementation. The conceptual definition of a stage is that of section 1.2 above. In
implementation contexts a stage is a class of objects that consist of a event queue for
communication between stages, an event handler (the concurrently-executable code), and
any constructs for supporting a particular scheduling policy, such as locks around an event
handler.



16 1.6. TERMINOLOGY

Clients and connections

Servers for stateless connection-oriented protocols such as HTTP and SMTP are usu-
ally designed to be agnostic of whether client software has one connection to the server
or many in parallel. The most popular web browsers in use today open at least two
connections to a given web server in order to increase request concurrency and decrease
user-perceived latency, and browsers can be configured to make 4, 8, or more connections
to a server5. In normal operation the server treats each connection separately, both in
terms of concurrent processing and state maintenance. Thus I will prefer terms such as
“thread-per-connection” and “connection state” to “thread-per-client” and “client state”,
since the former more accurately reflect the server’s internal design.

5http://www.die.net/musings/page_load_time/



Chapter 2

Background

This chapter surveys the state of the art in server concurrency models and stage scheduling
policies, using an HTTP file server as an illustrative example. Although HTTP file servers
are not always CPU-bound or even CPU-intensive, historically they have been the proving
ground for new server architectures and algorithms. In comparison to more complex
servers the set of basic operations of an HTTP file server is also quite limited, which
makes the server convenient as an example. These operations are:

1. Accept a TCP connection from the network
2. Read a request from the connection
3. Parse HTTP request headers
4. Translate the request URL into a file path
5. Read the file from disk
6. Generate HTTP response headers
7. Send the response headers over the network along with the file as the response body

A production server would also have facilities for logging, URL pattern matching, and the
like, but these are secondary to the main operations of the server.

Concurrency models

Server architectures can be classified according to numerous criteria, from the way servers
utilize operating system I/O primitives to their mechanisms for dealing with overload.
The concurrency model of a server architecture is one of its more definitive traits. A
server’s concurrency model describes how the server multiplexes connections, requests,
and operations on requests using limited hardware resources.

Figure 2.1 illustrates four concurrency models for servers, roughly in the order in which
they were developed. The basic operations of HTTP file servers, listed above, have been
separated into three general areas – network I/O, HTTP handling, and disk I/O – which
correspond to very coarse-grained stages in a stage concurrency model.

In the figure a continuous line with an arrow represents a single kernel thread and the
progression of the line represents request processing over time. Lines that form a half
circle, such as those at the beginning of the thread-per-connection row and the end of the
Flash row, indicate that a kernel thread blocks waiting for some event to occur, such as
an incoming connection or the completion of disk I/O.

The following sections describe each of the concurrency models in turn.

17
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Figure 2.1: Concurrency models for HTTP file servers
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2.1 Thread-per-connection concurrency

Kernel thread-per-connection concurrency is the basic model of the majority of HTTP
servers, mail servers, database query engines, and other connection-oriented servers in
production today. When a thread-per-connection server receives an incoming connection,
the server creates a kernel thread or draws one from a bounded pool for the sole purpose
of processing requests for that connection. In the case of the HTTP file server the thread
executes operations 2-7 one after the other, reading from the connection with blocking
system calls, parsing HTTP request headers, etc. with each thread executing the same
sequence of operations in its entirety without interacting with other threads. The kernel
assumes responsibility for time- and space-sharing cores, primary and secondary storage,
and peripherals between threads so that all connections receive service. This is done
transparently to the executing threads when they make blocking calls or run for an entire
quantum and are preempted1.

The primary advantage of kernel thread-per-connection concurrency is that it allows the
programmer to implement request processing logic as a “straight” line of execution, which
for the majority of developers is the most natural way of programming. Pushing all
responsibility for multiplexing the underlying hardware into the kernel does come at a
price, however. The problems with this concurrency model fall into several categories:
read/write contention on shared resources; the effects of “excessive fairness”; the opacity of

1Further details on the mechanics of kernel schedulers can be found in [BC05] or [MNN04]. W. Richard
Stevens’s excellent Unix Network Programming includes a thorough introduction to thread-per-connection
concurrency in servers.
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threads from the perspective of the scheduler; the overhead of multiplexing many threads;
and the problem of choosing the right number of kernel threads for a given workload. The
following sections describe these issues in detail, along with some proposed solutions to
them.

Read/write contention on shared resources

The thread-per-connection model of concurrency only works well when requests are largely
independent of one another and the threads processing concurrent requests can be time-
multiplexed by the kernel without the explicit direction of the programmer. Fortunately
this is the case for some of the most well-studied servers, such as HTTP file servers, in
which there is no read/write contention for the file system and other shared resources.
Unfortunately it is not the case for less trivial daemons that read and write to secondary
storage, such as SMTP servers. These servers must go through various contortions to
avoid having a thread overwrite or interleave another thread’s files [Ber95].

Writing multithreaded code that reads and writes shared data structures in memory is
even more challenging, due in large part to the discipline and care required to use locks,
the difficulty of reproducing concurrency-related bugs, and loose language integration
[Boe05], among other factors [SL05]. Alternatives to the status quo in this area have been
suggested (see e.g. [Lee06]), but these have made relatively little headway in practice.

Excessive fairness

In the past several mainstream operating system kernels such as those in Windows and
Mac OS have scheduled threads cooperatively, assuming that threads would voluntarily
relinquish access to the CPU to give other threads access. This assumption proved to be
untenable in practice: inevitably some applications would hog the available resources and
the performance of the system as a whole was degraded in the eyes of users. Today all
major operating system schedulers are designed to assume by default that fairness must
be enforced on threads using preemption. This is for the greater good of the system but
it has had a markedly detrimental effect on the performance of servers.

For example, a thread in an HTTP file server may be a few statements away from writing
a client’s response to the network when the thread is preempted. The thread then has
to wait for other threads to run; these other threads may or may not use all of their
quanta, and the cycle time between successive runs of the same thread can be long and
unpredictable. When the original thread finally receives a new quantum the data that
it was going to write will have almost certainly been evicted from the cache due to the
memory accesses of other threads, so the start of the quantum is wasted on processor stalls
for lower-level caches and/or memory. Once the data is back in cache the thread executes
a few statements and then enters the kernel again to write the data to the client’s network
socket. In the kernel the thread may have to block on space in the socket buffer, cutting
off its quantum prematurely. The end effect is that the overhead of thread preemption
and context switching can be significant in relation to the actual work accomplished.
Unfortunately, the kernel scheduler has no sure way of knowing when a thread is “almost
finished”. Having that information would allow the scheduler to be more lenient and
increase the quantum of finishing threads in order to decrease latency.
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Lengthening the base quantum for all threads can reduce the likelihood of prematurely in-
terrupting a thread and the deleterious cache effects that follow from it, but the duration
of a thread’s quantum is a tradeoff between responsiveness (shorter quanta) and through-
put (longer quanta). By reducing the quantum a scheduler gives more threads a chance
to run, but the effects of ill-timed preemption become more pronounced. Conversely, a
longer quantum increases the likelihood that threads will run until completion (i.e. to a
blocking point) but it also allows CPU-intensive threads to hog the CPU, which tends
to increase user-perceived latency. Even when resource hogs are restricted [BDM98], the
presence of many CPU-intensive threads will still mean longer inter-run times for threads
that do not use their full quanta. This is alleviated somewhat by scheduling heuristics
that prefer interactive (i.e. frequently blocking) threads, but in the end the kernel can
only provide an upper bound on how long a given thread will have to wait for the CPU.

Opacity

The cache effects of fair thread scheduling are part of a more general problem for kernel
thread schedulers, namely the opacity of thread logic in the view of the scheduler and the
effects of opaque thread scheduling on CPU efficiency. Multiprocessor thread scheduling
is another problem of this type. Most kernel schedulers use simple algorithms such as
work stealing [BL94] and affinity scheduling [TTG93] to distribute and migrate threads
between processors. These algorithms are usually agnostic of memory access patterns
and concurrency between threads, so two threads working on similar data may run on
two different cores, even when the system is not heavily loaded, which induces unnecessary
inter-core cache traffic and stalls.

The opacity of memory access patterns and other thread behavior is partly the result
of legacy API design, which traditionally gave preference to simplicity from the server
programmer’s viewpoint over other concerns, and thus necessitated the use of heuristics
like “prefer interactive threads” that attempt to predict the behavior of a thread based
on minimal information. Solutions to the problems that result from this opacity fall into
two basic categories: those that maintain the conservative status quo of legacy APIs and
attempt to extract more implicit information on thread behavior; and those that extend
and supplement legacy APIs and encourage the programmer to provide more explicit
information to the scheduler.

Extracting more implicit information

Many proposed improvements to existing kernel schedulers have relied on extracting
side channel information on thread behavior rather than extending or supplementing
legacy APIs. For example, several researchers have proposed scheduler optimizations
that observe and predict the memory access patterns of threads [BP05, FSSN05, SMD07].
With knowledge of these patterns an algorithm can automatically schedule “compatible”
threads on a single CPU or multiple CPUs in parallel or in sequence. The definition of
compatible depends on the workload:

• If threads are known to be working cooperatively (e.g. in thread groups), then
two threads are compatible if they read the same regions of memory and write to
different regions, which implies an overall increase in the cache hit rate and decrease
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in inter-core cache coherency traffic in comparison to two threads that read different
regions and write to the same region.

• However, for most workloads the algorithm designer must assume that threads are
competitive, and the capacity/conflict misses from multiple threads may be unpre-
dictable. Fedorova et al. [FSSN05] make the rather questionable assumption that
cache misses will be uniformly distributed throughout a cache, so the cache miss
rates of two competitive threads are linearly related.

Beyond this basic assumption the proposals also differ in their modes of operation:

• Offline: record memory accesses from a trial run of the application, construct a
hypergraph with vertices = threads and edges = memory regions accessed by two
threads, partition this graph across the available cores, and then run the application
with the resulting static thread assignment [SMD07] or group related fine-grained
threads on a core or processor [CGK+07].

• Online: determine a thread’s “fair CPI [cycles per instruction] ratio” [FSSN05] or
“performance ratio” [BP05] by observing hardware performance counters when the
thread is running exclusively; find a compatible thread with similar performance
characteristics; and compensate threads for extra cache misses / lower CPI induced
by co-runners by increasing a thread’s effective run time.

The offline approach proposed in [SMD07] is primarily intended for high-performance
computing applications, where threads cooperate and their memory access patterns are
deterministic across runs. The online proposals make a similar, though less explicit, as-
sumption of consistent memory access patterns but use online sampling of exclusive thread
execution to predict a thread’s behavior under multiplexing conditions rather than entire
offline runs with all threads executing. The two online optimizations [FSSN05, BP05]
were evaluated on the SPECcpu2000 benchmark [Sta00]; it is not clear whether their
improvements extend to other workloads such as the servers considered here. Predic-
tive models and offline runs might be rendered unnecessary if the processor architecture
can pinpoint cache sharing efficiently in real time, as in [TAS07], but most of today’s
commodity processors are not capable of this.

Changing legacy APIs

Some system researchers have been more optimistic about programmers’ willingness to
supply input and feedback to the kernel scheduler, and assumed that developers who want
CPU efficiency will be willing to bear some inconvenience for it. Proposals in this vein
vary according to how much input they ask of the programmer: from simply designating
and describing groups of compatible threads [SPM07, RLA07] to application-level Quality
of Service controllers [LMB+96]. Unfortunately, few research proposals of this kind have
been integrated into commodity operating system kernels, which typically export a well-
established but much more limited set of controls for users and developers to adjust in
order to steer the scheduler from an application. These controls include:

• static and real-time priorities and “niceness”, which affect the scheduler’s long-term
preference for one thread over others [MNN04]
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• explicit proportions, which indicate what fraction of available CPU time a thread
should receive in relation to other threads [WW94]

• real-time deadlines for thread execution [AB90]

While there are various means of translating one control to another (e.g. real-time dead-
lines into proportions [Reg01]), these tend to be coarse-grained at best, much like the
controls themselves. Priority-based scheduling is especially ill-designed in this regard: be-
cause of priority decay, unexpected blocking, and the presence of other threads a thread’s
priority may not have a linear relationship to how much and how often the thread actually
runs. Proportional share and real-time scheduling are slightly more dependable in this
respect, but they require more precise input from the application, which may have to
adapt this input continuously at run-time in reaction to changing load conditions. Even
then the application still has no control over the order in which and duration for which
threads are run in the short term, so the effects of detrimental context switching remain.

Overhead

Many of the most popular thread-per-connection servers in use today, such as the popular
Apache web server [LL02], were originally designed to use one heavyweight process per
connection and to create and destroy processes frequently. Over time the overhead of
heavyweight process creation and destruction as well as their memory footprint spurred
many developers to switch to lightweight processes or threads while retaining the same
concurrency model, at the expense of some isolation.

Poorly-designed scheduling algorithms and synchronization primitives can be a serious
problem when running many threads, especially on multiprocessors [ALL89]. Until re-
cently many commodity kernels were only able to manage a few hundred runnable threads
at a time without incurring significant runtime overhead [WCB01]. This was largely
due to the use of O(n) algorithms inherited from Unix variants for managing queues of
runnable threads [MNN04]. The last five years have seen much improvement in this area,
with the introduction of O(1) algorithms and more accurate bookkeeping data structures
[CCN+05, Mol07] and hybrid userspace/kernel mutexes [FRK02] to the Linux kernel.

Choosing the right number of threads

The problems of contention, excessive fairness, and opacity are less pronounced when
there are fewer threads in the system. With fewer threads in toto, each thread gets to run
more often than it would have in the presence of more threads. However, a thread-per-
connection server running with fewer threads can handle fewer connections. The server
must find a balance between having enough threads to handle connections and limiting
the effects of competition between threads, such as cache evictions and lock contention.
Choosing the right number of kernel threads for a given workload, or even a minimum
and maximum of that number, is a difficult problem, as evidenced by the abundance of
web pages, books, and other sources offering advice on how to tune the most popular
thread-per-connection servers [LL02, BD03, Lur06].
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2.1.1 User-level schedulers

One solution to the problems of adverse kernel thread scheduling is to allow programs
to observe and control their own CPU scheduling from userspace. A user-level scheduler
can mitigate many of the problems described above by making more informed scheduling
decisions. User-level schedulers also have the significant advantage of specialization. A
user-level scheduler that has been designed, adapted, and tuned for a specific application
or class of applications can almost always outperform a general kernel scheduler on the
same applications. The kernel scheduler must be robust and reasonably efficient for many
different kinds of workloads, but a user-level scheduler need not be.

The most direct way of scheduling in userspace is for the kernel to make an upcall into
userspace whenever the kernel scheduler would normally make a scheduling decision, i.e.
when a thread blocks or its quantum expires. This is the basic mechanism of scheduler
activations [ABLL91]. The advantage of this approach is obvious: the user-level sched-
uler has full control over the kernel scheduler, which means it can ensure fairness (using
preemption) and handle blocking gracefully. On the other hand, implementing sched-
uler activations efficiently is quite difficult, because the overhead of frequent kernel to
userspace upcalls can be significant. Scheduler activations have been successfully imple-
mented in the mainline FreeBSD2, NetBSD [Wil02], and Solaris [Mau99] kernels and as
patches to the Linux 2.4 kernel [DN03]. In these environments scheduler activations are
a viable approach to fine-grained scheduling in userspace.

Not all operating systems support scheduler activations, however, and developers who
wish to control the kernel schedulers in these operating systems (which include recent
versions of Linux as well as all versions of Microsoft Windows) must do so through more
indirect means, without explicit kernel cooperation:

1. By limiting the set of threads that are runnable at any one time to a subset of all
threads in the system (usually one kernel thread per connection), in effect forcing
the kernel to schedule only those threads

2. By reusing kernel threads (usually one thread per core) for different logical execution
contexts (usually one context per connection)

The first approach is the modus operandi of several user-level schedulers, including ALPS
[NP07], the Oracle Database Resource Manager [RCL01], and MS Manners [DB99]. This
method has the advantages of simplicity and portability. The application can be de-
signed to use conventional thread-per-connection concurrency, the scheduler has no extra
abstractions to manipulate, and it can handle blocking fairly easily. The major disadvan-
tages of this approach are essentially those of having one kernel thread per connection.
For applications like the Oracle database, with only a few dozen or hundred inbound con-
nections mainly executing I/O operations, the inefficiency associated with having many
kernel threads does not dominate execution times, so this type of user-level scheduling is
quite reasonable. For CPU-intensive servers that is much less likely.

The second approach to user-level scheduling is discussed in the next section on event-
driven programming.

2http://www.freebsd.org/kse/
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2.2 Single-threaded event loops

The single-threaded event loop was long perceived as the only viable alternative to thread-
per-connection concurrency, and a remedy to the problems discussed in section 2.1. In
classic event-driven servers like the Harvest web cache [CDN+96] a single thread waits
for events using an event notification system call such as select or poll and processes
events in an endless loop. Connections are accepted, requests are read, and responses
are written in non-blocking manner so that a single kernel thread can process requests
from many connections. The endless event loop is occasionally referred to as an “event
reactor” [Fet05] or the “reactor pattern” [SRSS00], because the code is structured as a
set of reactions to certain system events (incoming connections, data ready to be read,
data written). The code that “reacts” to an event is often called a continuation. Note
that in the event loop the state for each connection must be saved before a blocking
operation and restored before a continuation can run. This state is referred to as a
closure, and the process of saving and restoring it in an event loop is called “manual stack
management” [AHT+02], as contrasted to the “automatic stack management” of threads,
which automatically save and restore state before and after a blocking call.

The main problem with a single event loop is that not all blocking calls have non-blocking
variants: to cite two examples, open()ing or stat()ing a file on disk may block if the file
metadata is not in the operating system’s cache, yet there are no portable non-blocking
alternatives to these operations [RP04]. Because there is only a single kernel thread
running the event loop a blocking open() or stat() halts the entire server until the
blocking operation completes.

Now that multiprocessor machines have become the norm the use of a single thread is also
a liability even when it doesn’t block, because a single-threaded server can only exploit
a fraction of a machine’s cores. A multithreaded event loop requires the programmer
or a compiler/preprocessor to carefully consider how to parcel events out to different
cores in order to avoid data races. Schemes for accomplishing this include “coloring”
events to indicate those can be processed in parallel (libasync-smp [ZYD+03]) as well
as using preprocessor macros to translate lock- and fork-like constructs to restrict and
direct parallel event processing (Tame [KKK07]). Stage architectures are another, similar
solution to the multicore event handling problem, and will be discussed below.

2.2.1 Threads vs. events

The relative merits of thread vs. event programming have been the subject of a long
debate; see [Ous96] and [vBCB03] for opposing viewpoints. Event-driven programming
is widely considered to be fundamentally more difficult than programming with threads.
By preserving the [apparent] line of execution user-level threads facilitate a linear pro-
gramming style that most developers understand more intuitively than continuations and
closures. There is also much better tool and library support for thread programming,
in large part because it is easier to extend single-threaded tools to account for multiple
threads than it is to track an event-driven program. Proponents of thread programming
argue that the performance penalties associated with threads – the penalties that pushed
many serious developers to the event camp – can be remedied by better implementation
(see section 2.1), while the difficulty of working with events is unlikely to recede3.

3See [KKK07] for an attempt at rebutting this last argument.
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Despite these differences, thread and event/continuation programming are conceptual
duals of each other [LN79] and can co-exist in the same application [AHT+02, LZ07].
Event loops are often used to emulate threads in userspace. A user-level threads library
can abstract away the code for explicitly saving and restoring per-connection state and
calling continuations, so the server programmer can write normal threaded code with
“blocking” operations. When the server code calls one of these operations the user-level
thread library substitutes code for saving and restoring thread state and inserts reen-
trant code to try a non-blocking variant of the operation. This form of automatic stack
management can be implemented in several ways: at compile-time, with source- and
bytecode-level transformations from automatic stack management to a manual equiva-
lent [App92, DSVA06, FMM07, SM08]; at run-time within the operating system kernel
[DBRD91] or as an OS-provided API like Windows fibers [Duf08]; or with user-level stack
switching primitives such as the POSIX getcontext and setcontext calls [IEE88], sig-
nals and longjmps [Eng00], or processor-specific assembly language.

In the last decade a number of hybrid systems have emerged that incorporate some of the
strengths of thread programming (readable code paths, transparent multiplexing) while
eschewing some of its weaknesses (locking, expensive context switching). Programming
languages such as Erlang [Arm97] and user-level thread frameworks such as Kilim (for
Java) [SM08] can multiplex tens of thousands of extremely lightweight threads. These sys-
tems use message passing between threads instead of locking in order to reduce contention
and make multiprocessor thread scheduling simpler.

2.3 Flash

The Flash web server [PDZ99] was one of the first widely-publicized attempts by the
academic community to reconcile the increasing demand placed on servers with existing
process-oriented operating system APIs. Up until that point most researchers had focused
on improving server software performance through conventional means: changing the
operating system while preserving legacy interfaces and applications [BDM98]. These
improvements rarely found their way into commodity operating systems, and thus had
relatively little practical effect. The authors of Flash took the more pragmatic approach
of adapting to the current state of commodity operating systems by working around some
of their deficiencies.

Like many of its predecessors, Flash was optimized for serving static files from disk. Pai et
al. distinguished Flash from existing web servers such as Apache by Flash’s novel AMPED
(Asynchronous Multiple Process Event Driven) concurrency model. AMPED was a hybrid
of the classic single-threaded event loop and a worker thread pool for blocking on disk I/O.
The Flash server executes all of the request processing steps (accepting, reading, et al.)
in the event loop except blocking disk I/O and URI to file path translation. The design
was dictated by the following condition: if a request could be satisfied immediately by the
main server thread without blocking the main thread’s event loop would execute all the
steps necessary to respond to the request immediately. Otherwise the main thread would
offload the blocking task to a worker thread, which would signal the main thread when
the task was complete. The main server thread could then respond without blocking.

Flash combined the speed of the single-threaded event loop with the ability to block on
legacy system calls for disk I/O. This was an extremely pragmatic strategy for its time.
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In subsequent work the authors of Flash further optimized the server along the same
lines: eliminating potential blocking paths at the kernel interface and below, improving
file caching heuristics, and reordering requests to process shorter requests first [RP04].

Despite its narrow target the Flash architecture was an important milestone in server
design. It shifted the focus of server performance research from kernel to userspace, from
improving operating system support for servers [BDM98] to designing servers that could
better exploit existing systems [CM01a].

2.4 Stage concurrency

The staged server concurrency model introduced in chapter 1 was first publicly advocated
in the late 1990s in a new breed of server architectures. These architectures shared a basic
model of concurrently-executable code (stages) and mediating queues and were similar in
many other respects. However, the architectures differed significantly in the the way they
actually executed stages, i.e. their stage scheduling policies. A stage scheduling policy
dictates how an application execute stages over time, in approximately the same way that
a thread scheduling policy dictates how cores execute threads over time. Stage scheduling
policies tend to be much less accurate and deterministic than thread scheduling policies,
because stage scheduling is typically done in userspace, with cooperation between stages
rather than preemption. There may also be more threads involved in a stage scheduling
policy than there are cores in the system; time-sharing between these threads introduces
additional non-determinism.

Figure 2.2 shows the two main classes of stage scheduling policies, thread pool-per-stage
and thread-per-core. The lines and half circles have the same meaning as those of the
concurrency models depicted in figure 2.1.

Figure 2.2: Stage scheduling policies
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The following sections outline the historical development of these policies.
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2.4.1 SEDA and the thread pool-per-stage policy

The Staged Event-Driven Architecture (SEDA) was the first widely-publicized stage ar-
chitecture for servers [WCB01]. SEDA embodied a very specific notion of a stage archi-
tecture, one that was designed to support “well-conditioned services”. Well-conditioned
services are those that can degrade gracefully under overload by continuing to process
requests with acceptable latency from as many connections as possible. Conventional
thread-per-connection servers such as Apache are usually not well-conditioned: under
heavy load the threads in these servers spend much of their time waiting on and com-
peting for hardware resources (such as the CPU or the disk controller), which degrades
service for all threads, leading to unacceptable latency for all connections. SEDA sup-
ported well-conditioned services by ensuring that servers spent as few hardware resources
as possible on connections that cannot be served under a certain quality of service regime
(such as a maximum response time) and refusing additional connections under overload
conditions.

SEDA stages were defined by implementation rather than by an explicit notion of con-
currency like the definition in chapter 1. A SEDA stage consisted of a signaled queue of
events, an event handler, and a separate controller for admission control (of events) and
feedback control of stage scheduling.

SEDA stages and the architecture as a whole were associated with a specific stage schedul-
ing policy, one in which a pool of one or more threads is associated with each stage.
Threads in the pool block on a stage’s signaled event queue waiting for events, and a
thread dequeues and processes events for only a single stage over the thread’s lifetime.
The major advantage of the thread pool-per-stage policy is that it allows a stage’s event
handler to block, perhaps unexpectedly. As noted previously, on some operating systems
there are no nonblocking equivalents for some system calls, so having multiple threads
executing a call can be a necessity.

The main challenge in implementing this policy lies in controlling the number of threads
assigned to each stage’s pool. In the original implementation of SEDA the number of
threads in a stage’s pool was increased or decreased by the stage’s controller according to
load conditions. For instance, if the length of a stage’s event queue consistently exceeded
a certain threshold the controller would increase the number of threads dequeueing and
processing events for that stage, up to a certain limit on the thread pool size. In that
implementation the controllers for each stage operated independently, which could cause
severe problems with oscillation: two interacting stages would continually change their
thread pool sizes in reaction to each other’s behavior. Subsequent research by third parties
has attempted to address the problems of tuning thread pool sizes [LLCZ06] and limiting
the dilution of thread CPU time with a global cap on the number of threads [GR04].
User-level threads can also be substituted for kernel threads in the thread pool, which
preserves the main advantage of the thread pool-per-stage policy – the ability to block in
a stage – while allowing the user-level thread scheduler to control the order and duration
of thread execution [HA05].

The disadvantages of thread pool-per-stage scheduling are similar to those of thread-per-
connection concurrency: threads can be preempted at inopportune times, threads compete
with one another, context switching overhead, etc. There is also the problem of single-
threaded stages: adding and removing threads to a stage when only one thread can execute
the stage safely is obviously not an effective way of increasing or decreasing the stage’s
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output. Even for thread-safe stages, increasing and decreasing the number of threads at
a stage is a very coarse-grained and unpredictable way of giving a stage more time on
the CPU: depending on the blocking behavior of the stage’s code, the number of threads
at other stages, and the presence of intra-stage shared resources (including the event
queue), the effects of adding a thread to a stage’s thread pool can range from increasing
throughput only slightly (e.g. when threads spend most of their time blocking on slow
system calls, adding a single additional thread is unlikely to make much of a difference)
to actually decreasing throughput by increasing contention for shared resources.

2.4.2 Thread-per-core policies

The thread pool-per-stage policy adds and removes threads to and from stages as a means
of controlling CPU proportions and offsetting blocking, on the assumption that event
handlers are likely to block and the server programmer will not work around this. For
some servers, particular those that are CPU-bound, this assumption is too pessimistic and
the overhead it induces unnecessary. More optimistic policies eliminate this overhead by
only employing one thread per physical core of the machine, irrespective of the number of
stages, in order to eliminate the problems that come with time-sharing threads on cores
as well as to gain more control over the scheduler. The efficient use of a single thread per
core is predicated on the assumption that stages will not block.

Cohort scheduling

Cohort scheduling was the first thread-per-core scheduling policy specifically designed for
staged servers [LP02]. Like SEDA’s thread pool-per-stage policy, it was an integral part
of a larger platform for staged servers, called StagedServer. The StagedServer architec-
ture and implementation were developed independently of SEDA in the late 1990s and
published in 2002. Like SEDA, the StagedServer architecture featured explicitly-defined,
event-driven stages with mediating queues and event handlers. It also utilized several of
the same stage design patterns, such as partitioning a stage’s data structures across mul-
tiple cores and pipelining between stages [WGBC00]. In addition to SEDA-like synchro-
nized event queues, stages in a StagedServer-based application also incorporated per-core
event stacks as a means of increasing data cache re-use. Both SEDA and the StagedServer
architecture were designed to counter a specific problem with thread-per-connection con-
currency, though it was not the same problem: while SEDA’s well-conditioned services
were an improvement on the poor overload behavior of thread-per-connection servers,
the authors of [LP02] focused on the effects of thread context switching on data and
instruction locality.

In a Cohort-scheduled server the stages of the server are visited by a set of kernel threads,
one for each physical core of the machine, rather than having one or more kernel threads
blocked on empty event queues, as in SEDA. Each thread/core in a Cohort-scheduled
server iterates over the array of stages in a wavefront pattern, forward then backward,
polling each stage’s queue for events, processing any events in the queue by calling the
event handler, then moving on to the next stage. If a thread repeatedly polls empty
queues, it sleeps for exponentially increasing periods of time so the server can idle.
The idea of visiting stages in a wavefront pattern was inspired by the observation that
stage graphs usually resemble pipelines, with requests originating at the beginning of the
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pipeline and moving through subsequent stages and responses propagating along the re-
verse path. Linear pipelines such as this can be found in many staged servers, including
simple HTTP file servers.

In normal operation a Cohort scheduling thread would drain a stage’s event queue before
moving on to the next stage. Under heavy load completely draining each stage’s queue
could lead to long inter-stage visit times, which would increase request processing latency.
In order to avoid this situation the Cohort scheduling policy dictated that a thread/core
should switch from one stage to another if the other stage’s queue length exceeded a certain
threshold or the other stage’s inter-visit time exceeded a fixed interval. In either case the
thread would finish processing an event at the stage it was currently visiting, then switch to
visiting the threshold-exceeding stage until its queue was drained, then switch back to the
original stage. If another stage exceeded its thresholds while a threshold-exceeding stage
was being visited, the thread would not switch again, but continue processing the first
threshold-exceeding stage, switch back to the original stage, and continue the wavefront
as usual.

Other thread-per-core policies

Only one group has publicly attempted to apply the StagedServer techniques to other con-
texts, in this case a staged database management system (DBMS). In 2002 Harizopoulos
et al. proposed several variations on Cohort scheduling [HA02]:

• D-gated: process all events in the queue in FCFS order, excluding those that arrived
during the visit

• T-gated(N): process all events in the queue in FCFS order, excluding those that
arrived during the visit, up to a maximum batch size N

• C-gated: process all events in the queue in FCFS order, unless an event takes
longer to process than a cutoff value, in which case subsequent events from the
queue should be processed before returning to the large event(s) on the next visit –
equivalent to Processor Sharing (PS) for large events and FCFS for small events

The first two regimes had previously been investigated by the authors of the Cohort
scheduling paper, who reported that the size of batches was inversely proportional to
response times on a latency-oriented benchmark: a batch size of four increased the mean
response time of the server by 21%, while a batch size of twenty increased mean response
time by only 9% [LP02]. In [HA02] Harizopolous et al. reported that the C-gated ser-
vice regimes exhibited higher throughput than both D-gated and T-gated(N) regimes in
simulations.

In later implementation work [HA05] Harizopolous adopted a hybrid approach between
SEDA and Cohort scheduling, incorporating some aspects of both:

• Each stage is assigned a pool of user-level threads (vs. SEDA’s kernel threads),
which can “block” on I/O, ceding control to the user-level scheduler.

• There is a set of kernel threads, one per physical core, that visit stages.
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• When a stage is visited the priority of its thread group is raised so that the off-the-
shelf user-level thread scheduler will run the threads on the visiting core.

• A visit continues until a stage’s queue is empty, one of the gate conditions above is
reached, or all threads in the thread group have blocked on I/O.

This approach is well suited to a staged database, since it makes writing I/O-intensive
stages easier – the user-level threads in a stage can simply block, instead of explicitly
passing events to another stage – but without the overhead of SEDA’s per-stage kernel
thread pools. The gated policies (particularly C-gated) are also appropriate for systems in
which processing times take on a heavy-tailed distribution, and it is necessary to prevent
the head-of-line blocking that can occur in pure exhaustive FCFS systems such as Cohort
scheduling. A Shortest Remaining Processing Time (SRPT) queue discipline might be a
better answer to this problem, however.

Further details on Harizopolous’s work on staged databases can be found in chapter 6 on
related work.

2.5 Summary

In this chapter I have surveyed the state of the art in server concurrency models, from clas-
sic thread-per-connection and event-driven concurrency to staged concurrency to hybrid
systems such as the Flash web server. I have particularly focused on the similarities and
differences between servers based on the staged model, including SEDA and StagedServer
as well as later refinements.

The next chapter will introduce the new technical contributions of my work on scheduling
and load balancing in staged servers.



Chapter 3

Contributions

This chapter presents the main technical contributions of my work: four new thread-
per-core stage scheduling policies and two strategies for balancing load across cores in
thread-per-core-scheduled servers.

3.1 Improving thread-per-core stage scheduling

In developing and benchmarking the StagedServer architecture the authors of [LP02] were
able to prove that staged servers combined with cache-conscious scheduling policies can
offer significant performance advantages over conventional thread-per-connection servers.
SEDA likewise proved that a staged server could more gracefully degrade its service under
overload condition than a thread-per-connection server. There is significant evidence from
these and other authors [PBH+07] that stage concurrency is fundamentally superior to
more conventional concurrency models such as thread-per-connection concurrency.

However, despite these encouraging signs, there has been relatively little investigation into
the design space of staged servers since the early 2000s. Stage scheduling policies are one
of the more important dimensions of this space, especially the class of thread-per-core
policies. Policies in this class share the basic mechanisms of Cohort scheduling: threads
pinned to each core of a machine visit the available stages; threads idle when most of the
queues in the system are empty; and there is no allowance for blocking in stages.

3.1.1 The MG1 policy

Over the course of my research I have experimented with numerous thread-per-core poli-
cies, though only a few could be considered useful. One of these was MG1. Like Cohort
scheduling’s wavefront pattern, the MG1 policy was based on a very simple idea, namely
that stages should receive time on the CPU in proportion to their load. Here the load of
a stage i is its queueing theoretic load:

ρi =
λi
µi

=
arrival ratei
service ratei

=
the rate at which new events arrive at stage i’s queue

the rate at which stage i’s event handler can process events

Visiting stages in proportion to their load has two purposes:
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1. Reducing the number of visits to idle or mostly idle stages in comparison to “egalitar-
ian” visiting patterns such as Cohort scheduling in order to reduce polling overhead
(cache misses, atomic operations).

2. Ensuring that heavily-loaded stages are visited much more frequently than other
stages. This partly obviates the need for Cohort scheduling’s overflow/interval
threshold at each stage, which served much the same purpose but in a less explicit
manner.

The basic idea and formulas behind the MG1 policy were adapted from a 1993 paper by
Boxma et al. entitled “Efficient Visit Orders for Polling Systems” [BLW93]. The next
section briefly outlines the theory of polling systems before describing the MG1 policy in
detail.

Polling systems

From a theoretical perspective, the staged servers described in this dissertation can all be
modeled as a multiclass queueing system with k job classes (event types) and j single server
stations (stages), each with a single queue in front of it. Given arrival and service rate
distributions for the various job classes and stations, this model can accurately describe
the runtime behavior of a server in steady state. The problem is that in order to reach
a steady state the scheduling policy must be fixed, which is at cross-purposes with the
primary goal of this dissertation: finding scheduling policies that lead to high-throughput
steady states.

There are other formulations, derived from queueing networks, where the server:queue
ratio does not have to be 1:1, and a single server can process jobs (events) from multiple
queues. In these models a server is analogous to a physical core of a machine rather than
a stage. Polling systems are the general form of 1:n server:queue models. In a polling
system a single server (thread/core) polls a set of queues (stages) in some order, processing
some or all of the jobs (events) in each queue before moving on to the next queue. Polling
systems were introduced in the late 1950s to model a patrolling repairman, and have since
been used to analyze a wide range of applications, notably token ring networks and other
shared-medium scheduling problems1. The essential parameters of a polling system are
listed in table 3.1.

The literature on polling systems largely consists of theoretical analyses, although some
researchers have investigated real-world polling systems. To cite one example, Cheng et
al. [CSO99] analyzed factories where a machine must switch between producing different
types of goods. These factories can be modeled as polling systems with setup times, a.k.a.
“multiclass production systems with setups”. In [CSO99] Cheng derived a scheduling
heuristic in which queues with the largest total scaled age are preferred. The total scaled
age of a queue is the age of the jobs in a queue (i.e. how long they have been waiting in
that queue) divided by expected service time. The authors of [CSO99] ran a numerical
analysis of this heuristic on several industry data sets, and it compared favorably with
some of the known heuristics for these systems, such as “always visit the queue with the
most work”. The essential problem with these and similar heuristics is that they tend to
be tightly bound to a specific class of system. For example, Cheng et al. assume that no

1See [WWB07] for more background and references on scheduling in polling systems.
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Table 3.1: Parameters of a polling system

Parameter Typical values

visit order
cyclic: front-to-back, front-to-back
elevator: front-to-back, back-to-front
dynamic or fixed Hamiltonian cycles
other fixed orders

service
regime

exhaustive: process all jobs in the queue, including those that arrived
during the visit
gated: process all jobs in the queue, excluding those that arrived during
the visit
n-gated: process at most n jobs from the queue
time-gated: process jobs from the queue until a time period has elapsed
or the queue is empty

queue
discipline

First Come First Serve (FCFS)
Shortest Remaining Processing Time (SRPT)
Last Come First Serve (LCFS)

setups are done at empty queues, i.e. the server/machine knows enough about the state
of the system not to waste time polling empty queues. This is obviously not the case in
the servers considered here.

Theoretical considerations aside, the Cohort scheduling policy can be described in terms
of polling system parameters as a basis for comparison with other policies. A Cohort-
scheduled server is a polling system with an elevator visit order; exhaustive or time/n-
gated service, depending on system conditions (e.g. overloaded stages); and FCFS and
LCFS queueing disciplines. The phased switching between polling system parameters is
quite unorthodox and is rarely considered in the polling systems literature, though in
light of the benchmark results of [LP02] it is hard to argue that this is a practical issue.

Boxma’s efficient visit orders

The MG1 policy is slightly more orthodox in its design. It uses an exhaustive service
regime, the FCFS queue discipline, and a polling table visit order. A polling table is
simply an array that dictates the order in which stages should be visited. For example,
the polling table 0, 1, 2, 0 means that a thread should visit stage 0, then stage 1, then
stage 2, and finally stage 0. The polling tables for the MG1 policy are constructed in such
a way that the most heavily-loaded stages are visited more frequently than mostly-idle
stages. This is Boxma’s algorithm for efficient visit orders. The frequency with which
stage i is visited with exhaustive service is calculated as:
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fi =

√
ρi(1− ρi)∑

j

√
ρj(1− ρj)

These frequencies are each multiplied by the size of the polling table M such that
Mf1, ...,Mfn are as close to integers as possible. The resulting values m1, ...,mn are
the total number of times each stage is visited in that polling table. The mi visits for
each stage are distributed throughout the polling table using the following procedure from
[BLW93]:

Let φ−1 = 1
2
(
√

5 − 1) = 0.618034... . (φ−1 is also known as the Golden
Ratio; it is related to the Fibonacci numbers F1, F2, ..., Fn via Fk = [φk −
(1 − φ)k/

√
5].) Put the M numbers φ−1mod1, 2φ−1mod1, ...,Mφ−1mod1 in

increasing order. (This corresponds to placing them on a circle of unit cir-
cumference.) Let the jth smallest number correspond to the jth position
in the table. Assign φ−1mod1, 2φ−1mod1, ...,m1φ

−1mod1 to Q1 [stage 1],
(m1 + 1)φ−1mod1, ..., (m1 +m2)φ

−2mod1 to Q2 [stage 2], etc.

Note that mod1 simply distributes the numbers in the golden circle between 0 and 1 so
that each can be considered a percentage of the total number of polling entries in the
table.

This algorithm ensures that there are at most three different interval lengths between
successive placements (visits) of a stage. If M is a Fibonacci number there are at most
two different interval lengths. Successive visits to a stage are evenly distributed while
maintaining the property that stage i is visited with frequency fi. Figure 3.1 illustrates
a polling table with 34 entries (34 is a Fibonacci number) for a server with five stages.

Figure 3.1: An example polling table
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In this example the relative queueing theoretic loads of the stages are approximately the
same (close to 0.50), so the stages visits occur with approximately the same frequency,
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with stage 0 receiving 10 visits at evenly-spaced intervals and the other stages receiving
6 visits apiece (The slight imbalance in favor of stage 0 is an artifact of the small polling
table size, necessary for a simpler illustration, due to to fi ∗M being rounded down to
the nearest integer array index. In practice the algorithm uses polling table sizes of 144
or greater in order to ameliorate such imbalances).

3.1.2 The SRPT policy

The implementations of the Cohort and MG1 scheduling policies share much of their
code base: one thread per core, conditional locking on single-threaded stages, exponential
idling, etc. The main difference between the two is the way the next stage to visit is chosen
by each thread/core: a wavefront in Cohort scheduling, polling tables in MG1. Isolating
this difference in the implementation made it relatively straightforward to experiment
with other visit patterns. One of these was the SRPT scheduling policy, a variation on
Cohort’s wavefront heuristic for staged servers with pipelines. Instead of visiting stages
in a wavefront, SRPT always prefers stages at the end of the pipeline. These stages are
visited first, and a core works its way back to the head of the pipeline. As soon as any
stage is successfully visited (i.e. at least one event was processed), the scheduler restarts
at the end of the pipeline. For compact stage graphs this very roughly approximates
the Shortest Remaining Processing Time queue discipline, which is known to minimize
response times and maximize throughput for most workloads. The implementation of this
policy is shown below.

class SRPTVisitPolicy : public VisitPolicy

{

public:

SRPTVisitPolicy( Stage** stages ) : VisitPolicy( stages )

{

next_stage_i = 0;

}

// VisitPolicy

inline Stage*

getNextStageToVisit( bool last_visit_was_successful )

{

if ( last_visit_was_successful )

next_stage_i = 0;

else

next_stage_i = ( next_stage_i + 1 ) %

YIELD_STAGES_PER_GROUP_MAX;

return stages[next_stage_i];

}

private:

unsigned char next_stage_i;

};
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3.1.3 The DBR policy

The Drum Buffer Rope (DBR) stage scheduling policy was loosely inspired by Goldratt’s
Theory of Constraints [Gol90], the essence of which can be boiled down to “schedule
everything around the bottleneck.” The DBR policy prefers stages in ascending order of
their service rates, so that slower stages are visited frequently. Like the SRPT policy,
the DBR restarts polling at the first (slowest) stage after any stage has been successfully
visited. The implementation of this policy is shown below.

class DBRVisitPolicy : public VisitPolicy

{

public:

DBRVisitPolicy( Stage** stages )

: VisitPolicy( stages )

{

next_stage_i = YIELD_STAGES_PER_GROUP_MAX;

memset( sorted_stages, 0, sizeof( sorted_stages ) );

}

// VisitPolicy

inline Stage*

getNextStageToVisit( bool last_visit_was_successful )

{

if ( last_visit_was_successful )

{

next_stage_i = 0;

return sorted_stages[0];

}

else if ( next_stage_i < YIELD_STAGES_PER_GROUP_MAX )

return sorted_stages[next_stage_i++];

else

{

memcpy_s( sorted_stages,

sizeof( sorted_stages ),

stages,

sizeof( sorted_stages ) );

std::sort( &sorted_stages[0],

&sorted_stages[YIELD_STAGES_PER_GROUP_MAX-1],

compare_stages() );

next_stage_i = 0;

return sorted_stages[0];

}

}

private:

uint8_t next_stage_i;

Stage* sorted_stages[YIELD_STAGES_PER_GROUP_MAX];
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struct compare_stages

: public std::binary_function<Stage*, Stage*, bool>

{

bool operator()( Stage* left, Stage* right )

{

if ( left != NULL )

{

if ( right != NULL )

return left->get_service_rate_s() <

right->get_service_rate_s();

else

return true;

}

else

return false;

}

};

};

3.1.4 The Color policy

While the MG1, SRPT, and DBR policies inherited the basic mechanisms of Cohort
scheduling (polling, idling, etc.), the Color policy is a slightly different take on thread-per-
core stage scheduling. Rather than polling stages for new events as in Cohort scheduling,
each thread/core in a Color-scheduled system waits on a central event queue, shared
between stages. Each time an event is enqueued it is associated with a specific stage, which
is then visited when the event is dequeued. This is akin to Zeldovich’s event “coloring”
[ZYD+03] to indicate parallelism, with stages representing different colors. Like thread
pool-per-stage policies, the Color policy has an advantage over polling thread-per-core
policies in that it never visits an idle stage. Unlike thread pool-per-stage scheduling,
however, the Color policy never uses more than one thread per core, so it also retains the
main advantages (instruction, data locality) of thread-per-core policies. These advantages
offset the cost of having a central point of contention, the shared event queue.

3.2 Load balancing for thread-per-core policies

The thread-per-core policies discussed thus far were designed on the assumption that
every thread/core in the system visits all of the available stages and there is only one
instance of each stage in the system. This design is appropriate for most servers. However,
there are also situations in which explicitly segregating stages on different cores, e.g. load
balancing, can lead to better performance by reducing lock contention on single-threaded
stages and increasing cache hits by keeping instructions and data local to a core. This
section discusses two load balancing strategies for thread-per-core-scheduled servers.
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3.2.1 Replicating the stage graph

The first load balancing strategy is simply to replicate the entire stage graph on each core.
A single I/O front end distributes incoming requests to the different replicas using a simple
algorithm such as round robin. The main advantage of this strategy is that it approaches
the ideal of Cohort scheduling, with each processor forming batches (cohorts) of requests
that proceed through the stages together. Data cache contention is minimal because
request-related data is local to a single processor. Likewise, there is no lock contention on
single-threaded stages such as caches, since there is a replica of each single-threaded stage
on every processor. This can obviously be a disadvantage as well: if caching is crucial
to the performance of the server, replicating the cache on several processors makes cache
hits less likely, and can offset some of the other gains of this strategy.

3.2.2 Partitioning the stage graph

The second load balancing strategy is to divide the stage graph into p partitions, where
p is usually some divisor of the number of cores. A partitioned stage graph is shown in
figure 3.2.

Figure 3.2: Partitioned image processing server
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The goal of partitioning a stage graph is to balance the load assigned to each partition
while minimizing the edgecut between partitions of a graph. The load of a partition is
defined as the sum of the vertex weights in that partition, while the edgecut is the sum of
the weights of the edges that cross between two partitions. For stage graphs the weight
of a stage/vertex is defined as the load of that stage relative to other stages, as observed
in the total amount of time spent processing events at a given stage over a relatively long
period. In defining edge weights I assume that all events are of equal importance and
simply count the number of events that pass between two stages over the same period.

Practically speaking, partitioning the stage graph effectively means keeping all of the
cores of a machine equally busy; increasing instruction cache hits by limiting the number
of stages visited by a given core; having only a single instance of a cache in the system;
and minimizing inter-core data cache contention.
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There are numerous algorithms for partitioning weighted graphs, such as the Kernighan-
Lin [KL70] algorithm and its descendants. For the experiments in chapter 4 I measured
the load and communications patterns of stages in the benchmark server in a trial run,
then used the METIS family of algorithms [SKK00] to partition the weighted stage graph
offline. The server was then restarted and benchmarked with the stages in a given partition
pinned to one or more cores (the number of cores divided by the number of partitions).
The process of measuring and partitioning could also be done online at the expense of
some additional code complexity, which, as will be seen, would not have been justified by
the experiment results of chapter 4.

3.3 Summary

This chapter introduced the main technical contributions of my work: four new thread-
per-core stage scheduling policies (MG1, SRPT, DBR, and Color) and two strategies for
balancing load across cores in thread-per-core-scheduled servers (partitioning and repli-
cation). The new policies are similar in their basic aspects to Larus and Parkes’s Co-
hort/wavefront scheduling algorithm. They differ in the way they select stages to visit,
from feedback-driven heuristics (MG1) to simple fixed orders (SRPT).

In the next chapter I will evaluate the performance of the new stage scheduling policies in
comparison to the state of the art in thread-per-core and thread pool-per-stage policies.
I will also evaluate the effectiveness of the two load balancing strategies in increasing
throughput.





Chapter 4

Evaluation

This chapter briefly describes Yield, a platform for implementing staged servers in C++,
and presents empirical evaluations of different concurrency models and stage scheduling
policies using two Yield-based servers.

4.1 Yield

Yield1 is a stage architecture and a platform for staged applications. Yield is unique among
stage architectures in that it is not tied to any one stage scheduling policy, but supports
all of those listed in chapters 2 and 3 as well as thread-per-connection concurrency. Yield
can host almost any kind of staged, event-driven application, such as user interfaces or
software routers [KMC+00], in contrast to Flash, Apache, and other servers that are
specialized for specific protocols or applications of those protocols.

The development of Yield began in 2002. The code base was initially an adaptation of
Welsh’s SEDA implementation from Java into C++. This first C++ implementation was
written by Felix Hupfeld as part of his dissertation work on reconciliation algorithms for
distributed key-value databases [HG06]. In mid-2003 I joined Felix’s project as a student
assistant and assumed responsibility for the code that became Yield. Over the next
two years I re-designed and re-implemented the core code base several times, eventually
specializing Yield as a web application server. For my Master’s thesis in early 2005
[Gor05] I benchmarked a Yield-based static file web server using the SEDA and thread-
per-connection concurrency models in order to show that stage concurrency models like
SEDA perform better and allow more accurate control of a server than conventional
thread-per-connection concurrency. I also demonstrated that my server was competitive
with Welsh’s original SEDA implementation in Java. The focus of those experiments
was on admission control, particularly token-based schemes for dynamically limiting the
number of connections accepted by the server. The focus of the experiments in this
chapter, in contrast, is on scheduling under normal load rather than overload.

After joining the Computer Laboratory in Cambridge in late 2005 I decided to take up
staged servers again and try to rectify some of the shortcomings I perceived in existing
stage architectures. I subsequently re-generalized Yield to support stage groups and event

1http://yield.sf.net/
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targets (see below) and multiple inter-process communication protocols (HTTP, ONC-
RPC, JSON-RPC) and significantly extended the platform library. The experimental
servers evaluated in this chapter and the thread-per-core scheduling policies and load
balancing strategies described in chapter 3 were designed and implemented between 2005
and 2008.

4.1.1 Architecture

The Yield architecture inherited the basic building blocks of SEDA and the Staged-
Server architecture, namely events, event handlers, event queues, and stages. A Yield-
based application consists of an explicitly-defined network of stages that communicate via
reference-counted events. A Yield stage consists of an event queue and an event handler
supplied by the programmer. Unlike SEDA and the StagedServer architecture, the Yield
architecture also incorporates the notion of a stage group. Every stage is attached to a
stage group, which is responsible for scheduling the stages attached to it. A stage group
implements a specific stage scheduling policy, such as thread pool-per-stage or Cohort
scheduling. Different stage groups with the same or different scheduling policies may co-
exist within an application, although in practice there is usually only one stage group per
application.

4.1.2 Implementation

Yield’s C++ code base is modularized into three layers: a platform library; a stage
framework; and a library for inter-process communication.

Platform library

The Yield platform library is a portable (Windows, Linux, FreeBSD, Mac OS X, Solaris)
collection of objects that wrap platform-specific code. It was originally developed by Felix
Hupfeld and mostly rewritten by the present author. The library includes platform-specific
implementations of synchronization primitives (mutexes, semaphores, atomic operations),
file system interfaces (memory-mapped files, stat, Unicode disk path representations,
etc.), queues for kernel I/O notifications (epoll, kqueue, poll, libaio, Windows I/O
completion ports), and utility classes for timers, logging, and the like.

Stage framework

The Yield stage framework contains interfaces and implementations of Events, Stages,
EventHandlers, EventQueues, and StageGroups. Although the framework is similar in
its essential design to the implementations of SEDA and the StagedServer architecture,
the implementation diverges in a number of respects, including its conservative use of
stages and its substitution of non-blocking event queues for blocking, mutex-protected
equivalents.
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Event targets

Yield’s stage framework includes an interface for event targets. Event targets are objects
that can receive events. A stage is an event target that receives events via a mediating
event queue and processes events asynchronously by calling an event handler. Other
event targets simply pass through an event that is “sent” to them directly to the event
handler, so the event sender calls the target’s event handling code. This pass-through
event target is the default in Yield. Stages are reserved for CPU-intensive event handlers,
where the overhead of queueing and crossing thread boundaries is outweighed by gains
in batching, parallelism, and prioritization. Thread-per-core scheduling policies such as
Cohort scheduling are also more efficient when there are fewer but more heavily-loaded
stages to poll: the scheduler spends less time polling inactive or mostly-inactive stages
and more time processing large batches of events at active stages.

Non-blocking event queues

The default event queue in Yield is a non-blocking finite queue [MS96], in contrast to
SEDA’s lock-protected Vectors in Java. The use of non-blocking queues reduces con-
tention between threads dequeueing from the same structure and eliminates memory
allocations of bookkeeping data, which can also block in the presence of contention.

Unlike blocking queues, however, the non-blocking queue comes with no built-in means
of synchronization. Instead a semaphore-based signaling protocol allows consumers to
sleep on an empty queue until they are notified by producers [in a separate thread] of a
newly-enqueued event. The signaling mechanism can be optimized based on knowledge of
the number of producer and consumer threads: for example, if there is only one consumer
thread and it is known to be running, the producer need not signal after an enqueue
operation [Hup02, MP89].

Interprocess communication

Yield can transport events over TCP, SSL, and UDP. Requests and responses in appli-
cation-level protocols like HTTP are implemented as events that can deserialize and se-
rialize themselves to socket connections. These connections are accepted, read from, and
written to via asynchronous I/O (AIO) interfaces, which use native socket AIO where it is
available (Windows) and simulate it with non-blocking I/O otherwise (Linux and Solaris,
among others). Network I/O is threaded independently of the stage framework, with one
thread per core processing completed network operations and making callbacks.

Although I have used Yield primarily as an application server, it is capable of acting
both as a server and a client. This is needed to support any sort of distributed server
application, such as distributed databases.
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4.2. EXPERIMENT: COMPARING CONCURRENCY MODELS AND STAGE

SCHEDULING POLICIES IN AN IMAGE PROCESSING SERVER

4.2 Experiment: comparing concurrency models and

stage scheduling policies in an image processing

server

The image processing server introduced in section 1.3 was the focus of my first experi-
ment. The experiment was designed to compare different concurrency models (thread-per-
connection, staged) and stage scheduling policies (thread pool-per-stage, thread-per-core)
on a single Yield-based application.

4.2.1 Workload

As noted in chapter 1, the decode-scale-blur-encode image processing server was adapted
from a batch processing script used by a real web site, wie-ich.de. The data set for this
experiment consists of 947 megabytes of real image data in 4697 files uploaded by users
of the site over a 20 hour period, from 9 AM to 5 AM the next day. Table 4.1 shows some
statistics on the sizes of files in the data set.

Table 4.1: Image file size statistics

Minimum 398 bytes
Maximum 4.2 megabytes
Mean 204.4 kilobytes
Median 37.2 kilobytes
90th percentile 623.2 kilobytes

The statistics indicate that the majority of files are relatively small, less than 50 kilobytes,
but there is a heavy tail of much larger files that pulls the mean well above the median.
This is consistent with SPECweb99-like file size distributions as well as other researchers’
analyses of file sizes in real systems [Nah02].

In addition to the data set, a realistic arrival rate is required for a good workload, and
here there is a problem. Simply replaying the production server’s request stream (i.e.
duplicating its observed arrival rates) is unlikely to stress a machine that is even half
as powerful as the production server, because the site’s administrator has intentionally
overprovisioned the hardware so that the server can comfortably handle normal load while
using less than 50-80% of the CPU and other resources. This leaves enough headroom to
accommodate occasional periods of heavy load and reduces the potential for embarrassing
and costly overload. Most production services are over-provisioned this way: when a
machine sees more than 50-80% utilization it is time to install another machine to take over
part of the load. This means individual machines in a well-provisioned environment are
rarely pushed to peak performance. Single node performance still matters in some cases,
however: small operators may not be able to afford new machines, or the server software
may have been implemented in such a way that sharing load between two machines is not
a viable option. Even in an overprovisioned environment, software that makes efficient use
of the hardware can delay the point at which new hardware is needed, possibly indefinitely.

With this in mind I intentionally ignored the arrival rates of the real request stream,
choosing instead to send requests as quickly as possible in order to push the server to peak
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performance (but not into overload). This also had the desired effect of differentiating
the performance of the stage scheduling algorithms to a greater degree: when the server
is running idle most of the time there is plenty of room for inefficiency, so the algorithms
are less distinguishable.

4.2.2 Client software

The client software for this benchmark was a simple multithreaded Python script. The
main thread of this script read the entire data set into memory, pre-created the HTTP
requests for uploading each image (one image per request), and pre-filled a queue with the
set of requests. The main thread then created a set of worker threads to send the requests
and image data to the server. Each worker thread initiated a single connection to the
server, then proceeded to dequeue a request from the global queue, write the pre-created
request string to the network, and read the server’s response, repeating this cycle until
the queue was empty. A queue was chosen in preference to dividing the set of requests
into subsets for each worker node so that the stream of requests from different threads
would closely resemble the real stream, albeit with far smaller intervals between requests.

During a benchmark run each worker thread would send requests as quickly as possible and
keep track of response times. The server’s response time was defined as the time between
the completion of the client’s sending the request to the network and the completion of
the client’s recv of the response. Normally a response time does not include the time
the client takes to read the response, but only the first byte of it, so there is no bias
toward smaller responses. However, since responses from the image processing server
consisted solely of a status line and HTTP headers the size of all responses was the same,
and the difference between the time the first byte was read and the time the response
was completely read was negligible relative to the time the server needed to process the
request.

When there were no more requests to dequeue from the global queue a worker thread
would signal the main thread that it was finished and then exit. Once all worker threads
had finished the main thread would record a timestamp for the end of the benchmark
run. The difference between this timestamp and the time when the worker threads were
started was the duration of the experiment, which I referred to as the client makespan.
The client makespan indicates how long the server took to successfully respond to all of
the requests in the benchmark run. It is not the same as the server’s makespan (i.e. the
time the server needed to process every image from start to finish) because the server was
designed to send HTTP responses to an uploaded image as soon as the image had been
decoded (the stage where most errors occur) in order to minimize user-perceived latency
while still reporting most errors.

One major caveat with this setup is the ratio of requests to connections. The client
software utilized 4-16 worker threads, each of which initiated a single connection to the
server, in order to upload 4697 images in total, so the ratio of requests to connections
was 1174 to 1. This is hardly realistic in comparison to SPECweb99’s 5-15 requests per
connection, which was derived from analyses of real sessions. The limited number of
client worker threads was chosen to match the number of threads in a kernel thread-per-
connection version of the server (described in the next section), in order to demonstrate
the effects of increasing the number of threads above the number of physical cores. More
realistic connection patterns would have created additional I/O-related work on the server,
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but the cost of accepting more connections would still be dwarfed by the CPU consumption
of the image processing stages.

4.2.3 Server software

The image processing server consists of a series of Yield stages for the different image
transforms (decode, scale, blur, encode) as well as the support functions of the server
(reading and parsing HTTP requests, collecting statistics, etc.). The stages are divided
into two stage groups: the main group of non-blocking stages and an auxiliary group that
contains a disk I/O stage for writing statistics and the output JPEG images to the file
system. Figure 4.1 depicts the stages of the image processing server. This is the same
figure as figure 1.1 in chapter 1.

Figure 4.1: Image processing server
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Note that the “join” in the graph is not a real join in the classic sense, because the JPEG
encoding stage does not wait for all of the versions of an image to arrive before processing
any of them, but encodes each version as it arrives and forwards it to subsequent stages,
asynchronously from other versions of the same image.

The image transform stages relied on two third party libraries, libjpeg2 and CImg3.
The libjpeg library provided an API for decoding and encoding JPEG images into a
bitmap form CImg could manipulate. Both libraries are robust and perform well on
current hardware. An attempt to use the more well-known ImageMagick4 resulted in
severe bottlenecks related to temporary file I/O and unnecessarily helpful locking on the
part of the library.

Stage scheduling policies

Four stage scheduling policies were compared in this experiment: SEDA, Cohort schedul-
ing, MG1, and SRPT. The Cohort scheduling algorithm was benchmarked in two config-
urations, one with per-core event stacks in addition to inter-core event queues and one

2http://www.ijg.org/
3http://cimg.sourceforge.net/
4http://www.imagemagick.org/
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without; see appendix section A.1 for a discussion of these stacks and queues. SEDA-
style thread pool-per-stage scheduling was tested with several thread pool configurations,
shown in table 4.2.

Table 4.2: Image processing: SEDA configurations

Configuration I/O Form parser Decoder Blurrer Encoder
threads threads threads threads threads

SEDA 1 1 3 2 3
SEDA overthreaded 1 1 8 2 3
SEDA underthreaded 1 1 1 1 1

The original Java implementation of SEDA dynamically adjusted the number of threads
at each stage in response to load. This is possible with Yield, but my experience has been
that it often leads to oscillation of thread pool sizes. For this reason I chose to forego
experimenting with dynamic thread pool resizing here; the configurations in table 4.2
were selected after a trial-and-error search of the space for representative configurations.

The thread-per-core policies (Cohort, MG1, SRPT) each employed a full complement of 4
threads to poll the five stages in the system. With the exception of the I/O event handler
all of the event handlers in the system were thread-safe, so multiple threads/cores could
execute the same event handler concurrently.

Thread-per-connection front end

For this experiment I also implemented a special kernel thread-per-connection front end.
The front end was responsible for accepting incoming connections and farming them off
to worker threads, which then read HTTP requests and progressed through the event
handlers of the image processing server as if the handlers were simply function calls.
In other words, each of the worker threads executed the code for every event handler,
from decoding to sending an HTTP response to scaling and encoding, before reading
another HTTP request from the network. This configuration transformed the server
into the functional equivalent of an Apache web server with back end modules for image
processing.

Before each benchmark run, the pool of worker threads in this thread-per-connection
server was pre-sized to match the number of worker threads on the client. A real thread-
per-connection server would dynamically adjust the size of the worker thread pool in
order to decrease the server’s memory footprint in periods of low demand and increase
the number of clients the server could handle concurrently in periods of high demand.
However, the purpose of including the thread-per-connection front end in this experi-
ment was simply to demonstrate that adding more worker threads to the server induces
contention and competition between threads, which increases CPU use while decreasing
throughput. Three different worker thread pool sizes were tested: 4, 8, and 16 threads,
corresponding to 1, 2, and 4 times the number of physical cores in the machine.

Hoard

Some SEDA and thread-per-connection server configurations also incorporated Hoard
[BMBW00], a malloc replacement for multithreaded servers. Contention on memory
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allocation is known to be a significant problem for multithreaded servers running on
multiprocessor machines [MEG03]. Hoard tries to reduce contention on the global memory
pool by having separate memory pools for each thread that fall back to the main pool
when they are empty and release memory to the main pool when memory is scarce or
some memory is not needed by a thread. Hoard relies on the heuristic that the thread
that allocates a block of memory will also deallocate it, which is mostly true for a thread-
per-connection server but not necessarily so for a staged server. For example, HTTP
request data structures are usually allocated and deallocated in the same place, but the
data structure used to hold images is allocated by one stage and deallocated by another.
Depending on the number of cores in the system (> 1) and the stage scheduling policy, the
latter situation may involve two or more threads, which means there may be contention
on deallocation even if there is none on allocation. In these cases Hoard was excluded
from the experiment setup.

4.2.4 Metrics

The primary metric of the image processing server evaluation is the number of bytes
the server processes per second over the duration of a benchmark run. The server simply
counts the size of the input image when the first output image derived from that input has
cleared the server (i.e. reached the statistics stage after JPEG encoding). Approximately
every five seconds the byte counter was divided by the actual elapsed time as fractions
of seconds. The result was the throughput of the server in that interval. For comparison
purposes the counter was also divided by the total elapsed time of the benchmark run until
that point, also in fractions of seconds. Under different scheduling regimes the five second
throughput measurement tended to be bursty, low in one period and then high the next,
with variances on the order of 1000 bytes/s. The cumulative throughput (total input bytes
/ total seconds elapsed) represented a running arithmetic average across bursts. The end
cumulative throughput for each benchmark run was the same as the average of the five
second throughputs, plus or minus accumulated floating point error and time inaccuracy
(at most a few bytes/s).

In addition to the primary metric there are several other metrics of secondary importance,
all of which were correlated closely with the primary metric. These secondary metrics
include two indicators of client-perceived performance:

• Client makespan (s) The client makespan in seconds (i.e. the duration of the
benchmark run in seconds) is an indicator of client-perceived performance over an
entire benchmark run. The methodology for gathering this metric is described in
section 4.2.2 above.

• Client response rate (responses/s), client response time (s) Client response
rate is simply the client makespan divided by the total number of requests/responses
in the benchmark, 4697. The methodology for gathering the client response time in
seconds is also described in section 4.2.2. The ninetieth percentile of client response
times is preferred to the mean or median as an indicator of how users actually
perceive the responsiveness of a system [Wel02].

The secondary metrics for this experiment also included two profiles of server-side behav-
ior:
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• Server CPU use (mean) The percentage of idle CPU cycles of each core on the
server machine was measured at ten second intervals over the entire duration of the
benchmark run using sar. These percentages were averaged across cores by sar,
then averaged for a single benchmark run, the latter average excluding startup and
shutdown periods (points where the whole machine was more than 90% idle).

• Server incoming network throughput (max) During each benchmark run net-
work traffic statistics were sampled at ten second intervals. The interesting metric
is the maximum incoming network throughput (in megabits per second) observed
during each benchmark run.

4.2.5 Environment

The experiment was executed on the Darwin high performance computing cluster5 at the
University of Cambridge. The experiment required two nodes from the cluster, one node
for the server and one for the client. The exact hardware specifications for each node are
listed in table 4.3.

Table 4.3: Image processing: environment

Machine type Dual socket Dell 1950 1U rack mount server
CPU 2 CPUs per node

x 2 Intel Woodcrest cores per CPU
= 4 cores in total per node @ 3.00 GHz per core

Primary storage 8 GB per node (2 GB per core)
Network Gigabit Ethernet
Operating system ClusterVisionOS 2.1

Linux kernel 2.6.9-67.0.4.EL lustre.1.6.4.3smp x86 64

The job system on Darwin grants exclusive access to nodes, so no other non-idle processes
were running on the application or database server nodes during the benchmark runs. In
this and subsequent experiments each benchmark run was executed as a separate job.
Before the actual benchmark run the client would read the entire image set into memory
in order to avoid being bound to the high-latency network file system. After this initial
ramp up the client machine was mostly idle.

4.2.6 Results

The results of the experiment are listed in tables 4.4 (the primary metric), 4.5 (client-
perceived secondary metrics), and 4.6 (server-side secondary metrics) and figures that
show the same data in boxplot form for individual metrics, with each box representing
ten runs. The rows of table 4.4 are in descending order of the primary metric, and this
order is preserved in the other tables to make comparison simpler. Each of the metrics
listed in the tables represents an arithmetic mean of the metric across ten benchmark runs
for a given server configuration. In order to compare policies with similar performance in
detail the figures for each metric were divided into “top” and “bottom”, corresponding
to their ranking in table 4.4.

5http://www.hpc.cam.ac.uk/darwin.html
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Table 4.4: Image processing: server throughput in processed bytes/s

Configuration Mean Difference in mean Standard deviation
MG1 12450.92 35.40
Cohort w/o stack 12441.45 -0.08% 42.00
SRPT 12433.82 -0.14% 32.73
Cohort 12240.10 -1.71% 28.05
SEDA w/ Hoard 10843.27 -14% 60.22
SEDA 9490.45 -27% 43.66
SEDA overthreaded 7494.73 -50% 47.43
Thread-per-connection (4) 6120.20 -68% 23.21
SEDA underthreaded 5943.91 -71% 45.82
Thread-per-connection (8) 5845.49 -72% 41.45
Thread-per-connection (16) 4677.09 -91% 47.03

Figure 4.2: Image processing: server throughput (top)
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Table 4.5: Image processing: client-perceived performance indicators

Configuration Makespan (s) Responses/s Response time (s) 90th %
MG1 79.14 59.35 0.31
Cohort w/o stack 79.26 59.26 0.32
SRPT 80.76 58.16 0.32
Cohort 80.54 58.32 0.44
SEDA w/ Hoard 91.26 51.47 0.51
SEDA 103.69 43.31 0.53
SEDA overthreaded 131.11 35.83 0.69
Thread-per-connection (4) 161.10 29.16 0.25
SEDA underthreaded 165.77 28.34 0.98
Thread-per-connection (8) 168.33 27.90 0.51
Thread-per-connection (16) 208.75 22.50 1.11
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Figure 4.3: Image processing: server throughput (bottom)
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Figure 4.4: Image processing: client makespan (top)
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Figure 4.5: Image processing: client makespan (bottom)
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Figure 4.6: Image processing: client-perceived response rate (top)
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Figure 4.7: Image processing: client-perceived response rate (bottom)
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Figure 4.8: Image processing: client-perceived response time (top)
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Figure 4.9: Image processing: client-perceived response time (bottom)
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Table 4.6: Image processing: server-side performance indicators

Configuration Mean CPU use (%) Max net (Mbps)
MG1 84.65 116.48
Cohort w/o stack 83.36 116.84
SRPT 84.08 117.10
Cohort 86.04 115.82
SEDA w/ Hoard 79.72 101.14
SEDA 73.50 91.08
SEDA overthreaded 81.94 78.45
Thread-per-connection (4) 86.71 60.17
SEDA underthreaded 41.16 61.19
Thread-per-connection (8) 93.57 57.32
Thread-per-connection (16) 96.25 51.79
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Figure 4.10: Image processing: server CPU use (top)
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Figure 4.11: Image processing: server CPU use (bottom)
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Figure 4.12: Image processing: server incoming network traffic (top)
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Figure 4.13: Image processing: server incoming network traffic (bottom)
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The results of this experiment support my thesis that thread-per-core stage scheduling
policies as a class are superior to thread pool-per-stage policies on a throughput-oriented
server benchmark. The thread-per-core policies performed 12-14% better according to the
primary metric of the experiment, listed in table table 4.4 and figures 4.2 and 4.3. The
results also validate my assumption that staged concurrency as a whole performs better on
these kinds of benchmarks than conventional kernel thread-per-connection concurrency,
a conclusion that is well supported by the literature.

The thread-per-core policies are comparable to one another (within 2%) on the same
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Figure 4.14: Image processing: server incoming network traffic, single runs (top)
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Figure 4.15: Image processing: server incoming network traffic, single runs (bottom)
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benchmark, despite my expectation that the MG1 heuristic of visiting heavily-loaded
stages more frequently should result in better performance than simply iterating over the
array of stages in a fixed order. The Cohort scheduling/wavefront algorithm performs
slightly better without per-core stacks than with them. Assuming this is not an artifact
of the implementation, it could be attributed to the delays incurred by this system: the
events on a per-core stack can only be handled by that core, which means that they must
wait in the stack until the core has polled the other stages in the system.

Increasing or decreasing the size of the thread pools in SEDA thread pool-per-stage con-
currency has an obvious impact on the throughput of the server. When there are many
more threads than stages, the contention between threads and the fairness policy of the
kernel scheduler drags down the total throughput of the server and increases CPU use
(figure 4.11). Conversely, when there are too few threads they cannot fully exploit the
available processing power (figure 4.11), even if the number of threads is the same as the
number of cores: the CPU requirements of the different stages are not equal, and simply
assigning one thread/core to each stage is far from optimal. In other experiments (see
chapter 5) I have observed situations where a thread-safe stage could bear more load than
a single thread/core could handle, but adding another thread was overkill and upset the
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balance of the system by diluting the CPU shares of other stages.

As expected, the client-perceived performance indicators listed in table 4.5 are closely
correlated with the primary metric. Client makespan (figures 4.4 and 4.5) was initially
used in test runs to predict the performance of the various server configurations. Client
response rates (figures 4.6 and 4.7) also have a linear relationship with server throughput,
since requests were not reordered in the server.

Client-perceived response times (figures 4.8 and 4.9), though not the primary metric, are
also interesting in that they reflect the strengths and weaknesses of the tested policies. The
kernel thread-per-connection server with four threads, one for each core on the machine,
exhibited the lowest response times of any of the server configurations (figure 4.9). With
more threads in the system there was more contention between threads, which increased
CPU use (figure 4.11) while decreasing throughput (figure 4.3). The SRPT thread-per-
core policy was tied for the second lowest response times (figure 4.2), in keeping with its
preference for clearing stages at the end of the stage graph.

Table 4.6 lists the two server-side performance indicators, CPU use and incoming network
traffic. The CPU use of the different scheduling policies was comparable (figures 4.10
and 4.11), except where an algorithm was handicapped by contention (kernel thread-per-
connection with more than 4 threads, SEDA overthreaded, SEDA without the Hoard
memory allocator) or too few threads (SEDA underthreaded).

As expected, measurements of incoming network traffic tracked server throughput at
a coarser grain than that observed by the client as the primary metric. The maximum
incoming network throughput of the servers is plotted in figures 4.12 and 4.13. Figures 4.14
and 4.15 show observed incoming network traffic at the various servers over the duration
of a run (excluding startup and shutdown) for single, representative runs. Note that the
servers with lower throughput/network traffic took longer to complete the benchmark and
thus have more points in the two figures.

4.3 Experiment: comparing stage scheduling policies

in a site search engine

The mass of content available on the Web and the absence of a unified structure can
make finding specific content difficult. In the last decade users have come to rely heavily
on search engines to filter Web content and bypass site-specific navigation. Although
general, web-wide search engines have proved quite adept at this task, the largest and most
complex web sites often include site-specific search engines as well. These are designed
and optimized to exploit the structure and nature of content on the site and tuned to
serve specific kinds of user queries. For example, the site search engine for a hardware
manufacturer may attempt to match variations of a product name or model, variations
a general keyword-based search engines would likely miss because they are not listed on
any page.

The second experiment in this chapter involves a page lookup / search engine that is
optimized for a specific site, the English version of Wikipedia6. The purpose of this
experiment is to compare the stage scheduling policies described in chapters 2 and 3,

6http://en.wikipedia.org/
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including thread pool-per-stage policies (a.k.a. SEDA) and thread-per-core policies (Co-
hort scheduling, Color, MG1, SRPT, DBR). Thread-per-connection concurrency was not
evaluated in this experiment.

4.3.1 Workload

The ideal benchmark for this experiment would consist of a data set comprising the entire
content of a real web site (such as Wikipedia) and a trace of real queries seen by the site’s
existing search engine, replayed against the server. However, in order to test the efficiency
of the CPU scheduler the server must be CPU-intensive, which generally implies that the
server must be able to work almost entirely from main memory. The working set of this
server consists of various indices on the content of the site, and several of these indices
grow linearly with the size of the content base. Due to this working set constraint as well
as the unavailability of actual query data, the benchmark falls somewhat short of perfect
realism:

• In order for the working set of indices to fit in memory a two gigabyte file of circa 1.5
million page abstracts was substituted for the 60+ gigabyte full text of the English
Wikipedia7. Each abstract includes a page title, a short summary of the page, and
the page’s section headers. This information was sufficient to match most keyword
queries with realistic results.

• The query set was synthesized from the logs of page hit counts. The hit counts for
each page are aggregated per hour and archived per day8. The majority of page
requests were referrals from popular web-wide search engines, and were thus for
exact page titles, a fact which was exploited by the server. However, the logs also
included requests for pages that do not exist, variations on page titles, and apparent
conjunctive searches, which provided ample fodder for the server.

Both tradeoffs imply that the server is not a conventional site search engine that indexes
the site’s full content and answers real queries on that content. Rather, the server more
closely resembles the front end of a Content Management System. The front end’s main
function is to match request URIs against a database of pages, but the server will also
suggest “related pages” in the absence of an exact match, rather than simply returning a
missing page response as a normal web server would.

4.3.2 Client software

Thirty-two instances of httperf [MJ98] on eight machines acted as clients in this experi-
ment. The clients issued requests in a closed loop [SWHB06] from a pre-generated file of
request URIs, with each client utilizing several hundred connections to the server. As in
the previous experiment, the goal was to push the server to peak performance and observe
its throughput, rather than subjecting the server to overload in an open loop.

7Both the full text and abstracts file are available at http://en.wikipedia.org/wiki/Wikipedia:

Database_download. The July 24th, 2008 abstracts file was used for this benchmark.
8These logs are available at http://dammit.lt/wikistats/. The query set for this benchmark was

synthesized from the logs for August 1, 2008.



60
4.3. EXPERIMENT: COMPARING STAGE SCHEDULING POLICIES IN A SITE

SEARCH ENGINE

A benchmark run consisted of the 32 clients concurrently iterating through unique (per-
client) lists of 10,000 requests to warm up the server (i.e. retrieve the indices from memory)
then switching to a second unique list of 10,000 requests for the observed run. The 64
different lists of 10,000 requests apiece were generated by calculating the top 100,000
pages according to the day’s page count statistics (excluding special pages and files that
are not present in the abstracts file, such as Special:Random), putting these pages in a
range (page id * the number of hits per day), and drawing 80,000 random numbers
against the range. The page request distribution is heavy-tailed, with the top request URIs
all variations of page titles (e.g. Main Page, the most-requested page).

4.3.3 Server software

Figure 4.16 shows the stage graph of the benchmark server. The graph has 14 stages
in three major paths, which correspond to three types of matches: exact title matches,
single term searches, and multi-term searches. Error paths (such as e.g. searches with no
non-stopwords) are not shown.

Figure 4.16: Site search engine
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In the normal case request processing logic proceeds through the server as follows:

1. I/O: accepts a connection and reads HTTP requests
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2. Query decoder: checks the request URI for the right prefix (/wiki/), URI-decodes
it, and (for ASCII requests) transforms the URI a lower case copy, and sends the
newly-minted query to the title index reader

3. Title index reader: compares the query as decoded against a index of page titles,
both lower and normal case; exact matches are sent to the content index reader, all
other queries are sent to the tokenizer

4. Tokenizer: decomposes the query into tokens using a lexer from the Robust Accu-
rate Statistical Parsing (RASP) library [BCW06]

5. Stopword remover: removes common English words (“the”, “and”) from the list
of query tokens and sends this list to the exact spell checker

6. Exact spell checker: compares the list of non-stopword query terms to an index of
terms present in the abstracts file; when all words are spelled correctly (the normal
case) the query is sent to the stemmer, otherwise it is sent to the DM spell checker

7. DM spell checker: uses the Double Metaphone algorithm [Phi00] to replace mis-
spelled terms with similar-sounding words found in the abstracts library; the query
is then returned to the title index reader for rechecking, but bypasses spell checking
on a subsequent title index miss

8. Stemmer: reduces the query terms to their stems (e.g. removing “ing” at the end
of verbs) using a variant of the Porter stemming algorithm [Por80], then forwards
the query to either the single term index reader or the multi-term results cache

9. Single term index reader: checks the term index for the single query term and
returns the first ten matching document IDs, which are then sent to the content
index reader

10. Multi-term results cache: hashes the stemmed query terms and compares the
hash to a small (< 64M) cache of previously-generated multi-term query results
(e.g. deflated HTML); cache hits are responded to immediately, while cache misses
go on to the multi-term index reader

11. Multi-term index reader: iterates through the array of query terms, compiling
a list of document IDs that match any term in the abstract

12. Multi-term set combiner: calculates the intersection of the sets of document IDs
associated with each term and sends the first 10 document IDs in this combined set
to the content index reader

13. Content index reader: looks up document IDs from the title or term index
reader in an index of page titles and abstracts and produces a list of matching
title/abstracts

14. Results formatter: uses the ctemplate library to format the list of page titles
and abstracts as an HTML table and forwards the resulting HTML to be deflated

15. HTML deflater: compresses the HTML response body using zlib9 and responds
to the HTTP request

9http://www.zlib.net/
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The title, term, and spell checking indices are Berkeley DB10 B-trees pre-built by a sepa-
rate staged program, which re-uses many of the stages listed above. The term index is a
simple inverted index, using duplicate keys (one key per term) in lieu of more advanced
schemes such as e.g. compressing and packing values in order to minimize database page
overflow11. The algorithm for combining document IDs is also a simple mix of sorting and
duplicate counting; the problem of efficient integer set intersection as it arises in search
engines is well known and has been addressed in various clever ways, see e.g. [ST07]. Like
any benchmark implementation, the server is a compromise between realism and ease of
development.

As in the image processing server, not all of the potential stages in figure 4.16 were useful
in practice, and having more stages proved a hindrance to some of the scheduling policies
in cases where an event handler did not do enough work per event (in terms of CPU
cycles) to justify having a separate stage.

For this experiment the thread pool-per-stage policies were evaluated with three different
configurations: “normal”, in which the most CPU-intensive stage, the multi-term set
combiner, was given one thread per core and all other stages were given a single thread
each; “overthreaded”, in which every potential stage in the figure was a stage and each
thread-safe stage was given one thread per physical core; and “underthreaded”, in which
less CPU-intensive stages such as the stemmer and spell checkers were not made into
stages (i.e. they were pass-through), the multi-term set combiner was given one thread
per core, and the remaining stages were each given a single thread.

The thread-per-core policies were evaluated in only two configurations: “normal”, in
which all stages were visited by every core; and ”underthreaded”, in which the less CPU-
intensive stages were not made into stages while all other stages were visited by every
core.

4.3.4 Metrics

The primary metric in this experiment is the response rate observed by the client. Re-
sponse rates are an appropriate metric here because the server always returns responses
of approximately the same size (less than one kilobyte), which makes the response rates
under different scheduling regimes comparable.

The burstiness of some scheduling policies is reflected in differences between mean response
rates and the maximum response rate across measurement periods. httperf samples
response rates in five second intervals. The final mean response rate displayed by httperf

is the mean of the response rates in every sample, while the maximum is the maximum
response rate seen in any sample. Both metrics are included in the results below, in order
to indicate differences in mean and maximum throughput. As in the image processing
server experiment, all of the results are averages over ten runs.

In the majority of server configurations CPU use stayed around 80% on average during
a benchmark run. The exceptions were overthreaded SEDA configuration, which utilized
90-100% CPU due to increased contention. The amount of network I/O was proportional
to the number of responses and is not shown in the results.

10http://www.oracle.com/technology/products/berkeley-db/index.html
11See [MRYGM01] for an analysis of these schemes and other challenges in implementing search engines

using off-the-shelf software
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In order to better understand the performance differences between stage scheduling poli-
cies the total numbers of L1 data cache and L2 instruction cache misses across all cores
were measured during each benchmark run. The total number of L2 data cache misses
was not available on the server machine.

4.3.5 Environment

This experiment was run on the Alibaba cluster of Linux machines at the Konrad Zuse
Institut in Berlin12. The specifications of a single client machine are listed in table 4.7.
The experiment required eight identical client worker nodes, each hosting four instances
of httperf.

Table 4.7: Site search engine benchmark environment: clients

Machine type Dell PowerEdge (tm) 1950 Xeon E5420
CPU 2 processors per machine

x 2 Intel Woodcrest cores per processor
= 4 cores per machine @ 2.5 Ghz per core,

FSB 1333 MHz
Primary storage 8 GB
Network Doubled Gigabit Ethernet
Operating system SUSE Linux Enterprise Server 10

Linux kernel 2.6.16.53-0.16-smp x86 64

The server was a Sun Solaris/amd64 machine connected to the cluster. The specifications
of this machine are listed in table 4.8.

Table 4.8: Site search engine benchmark environment: server

Machine type Sun Blade X8440
CPU 2 processors per machine

x AMD Opteron quad-core (835x Series) processors
= 8 cores @ 2.3 Ghz per core

Primary storage 32 GB
Network Gigabit Ethernet
Operating system SunOS 5.10

4.3.6 Results

The results of the experiment are shown in tables 4.9, 4.10, 4.11, 4.12, and 4.13 and
boxplot figures covering the same data, with each figure separated into top and bottom
performers according to their rank in table 4.9. Each box represents the ten runs for a
given configuration.

12http://www.zib.de/cluster-user/view
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Table 4.9: Site search engine: mean response rate (responses/s)

Policy Configuration Mean Difference in mean Standard deviation
Color normal 922.31 0.86
Color underthreaded 921.98 -0.04% 1.66
SEDA normal 912.89 -1.03% 1.37
SEDA underthreaded 912.48 -1.07% 1.13
SRPT underthreaded 883.80 -4.26% 3.53
SRPT normal 883.48 -4.30% 1.43
MG1 normal 871.49 -5.67% 2.88
MG1 underthreaded 871.21 -5.70% 2.08
Cohort normal 846.46 -8.58% 12.49
Cohort underthreaded 843.39 -8.94% 8.55
DBR normal 800.82 -14.10% 41.24
DBR underthreaded 795.77 -14.73% 19.41
SEDA overthreaded 661.13 -32.99% 26.64

Figure 4.17: Site search engine: mean response rate (top)
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Figure 4.18: Site search engine: mean response rate (bottom)
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Table 4.10: Site search engine: max response rate (responses/s)

Policy Configuration Mean Difference in mean Standard deviation
Color underthreaded 1556.37 13.74
Color normal 1553.57 -0.18% 13.30
SEDA normal 1490.33 -4.34% 14.43
SEDA underthreaded 1463.60 -6.14% 29.29
SRPT normal 1406.98 -10.08% 13.12
SRPT underthreaded 1405.73 -10.17% 21.11
MG1 normal 1395.31 -10.91% 10.53
MG1 underthreaded 1387.22 -11.49% 16.35
Cohort normal 1381.92 -11.87% 20.17
Cohort underthreaded 1380.15 -12.00% 17.98
DBR normal 1308.14 -17.33% 63.22
DBR underthreaded 1301.52 -17.83% 79.65
SEDA overthreaded 1017.53 -41.87% 63.15
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Figure 4.19: Site search engine: max response rate (top)
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Figure 4.20: Site search engine: max response rate (bottom)
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Table 4.11: Site search engine: response time (ms)

Policy Configuration Mean Difference in mean Standard deviation
Color underthreaded 32.36 2.90
Color normal 33.97 +4.85% 1.22
SEDA underthreaded 199.67 +144.21% 20.92
SEDA normal 200.08 +144.31% 17.89
SRPT underthreaded 719.63 +182.79% 36.10
SRPT normal 739.81 +183.24% 22.40
MG1 underthreaded 941.01 +186.70% 35.52
MG1 normal 943.22 +186.73% 48.08
Cohort normal 1351.58 +190.65% 251.16
Cohort underthreaded 1418.06 +191.08% 154.87
DBR normal 2112.54 +193.97% 469.46
DBR underthreaded 2377.18 +194.63% 373.04
SEDA overthreaded 3310.98 +196.13% 1032.57

Figure 4.21: Site search engine: response time (top)
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Figure 4.22: Site search engine: response time (bottom)
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Table 4.12: Site search engine: L1 data cache misses

Policy Configuration Mean Difference in mean Standard deviation
MG1 underthreaded 3855586.27 241220.45
Cohort normal 3959960.00 +2.67% 394522.74
Cohort underthreaded 4041776.06 +4.72% 281313.69
Color normal 4060666.00 +5.18% 303924.71
Color underthreaded 4184585.75 +8.18% 400842.21
MG1 normal 4363840.44 +12.37% 1438273.43
SRPT underthreaded 4584919.09 +17.28% 234690.90
SRPT normal 4813122.33 +22.09% 785334.52
SEDA normal 5086518.40 +27.53% 494204.05
SEDA overthreaded 5649068.13 +37.74% 797723.57
SEDA underthreaded 5868888.73 +41.41% 842568.92
DBR normal 6113364.00 +45.30% 2925928.88
DBR underthreaded 11081368.00 +96.75% 7825220.05
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Figure 4.23: Site search engine: L1 data cache misses (top)
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Figure 4.24: Site search engine: L1 data cache misses (bottom)
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Table 4.13: Site search engine: L2 instruction cache misses

Policy Configuration Mean Difference in mean Standard deviation
SEDA overthreaded 328659.13 80170.52
DBR normal 464740.90 +34.30% 144208.02
Cohort normal 517747.13 +44.68% 18749.74
Cohort underthreaded 520804.75 +45.24% 17437.02
MG1 underthreaded 549000.91 +50.21% 26979.93
SRPT underthreaded 575649.55 +54.63% 24975.58
SRPT normal 579839.50 +55.30% 19301.56
MG1 normal 604776.44 +59.16% 173539.03
Color underthreaded 613794.58 +60.51% 28990.39
Color normal 616964.15 +60.98% 22263.77
DBR underthreaded 641884.30 +64.55% 435059.30
SEDA normal 703228.87 +72.60% 26534.99
SEDA underthreaded 807288.27 +84.27% 31984.25

Figure 4.25: Site search engine: L2 instruction cache misses (top)
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The results of this experiment are more equivocal than those of the image processing server
experiment: they still suggest that the thread-per-core scheduling policies are superior to
SEDA thread pool-per-stage policies, but by a much smaller margin (1%) on the primary
metric, response rates (tables 4.9 and 4.10 and figures 4.17, 4.18, 4.19, and 4.20). The
difference between these results and those of the previous experiment can be attributed
to the presence of a single, extremely CPU-intensive bottleneck stage, the multi-term
set combiner, among a large number of less intensive stages. This combination exposed
some of the weaknesses of thread-per-core policies, the most significant of these being
the general inability of existing thread-per-core policies to limit the CPU proportions
dedicated to specific stages. The thread-per-core policies spend most of their time visiting
the bottleneck stages, which allows queues to build up elsewhere. (This pattern of queue
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Figure 4.26: Site search engine: L2 instruction cache misses (bottom)
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lengths was observable in per-stage statistics, not shown.) Thread pool-per-stage policies,
in contrast, have the advantage of imposing automatic time limits on stage visits, i.e.
thread quanta enforced by the operating system. The latter point suggests a solution to
the issue for thread-per-core policies, namely limiting the number of events processed on
each visit (a gated service regime) and/or interrupting visits when another stage’s queue
length that exceeds a threshold, as in [LP02]. However, previous research and my own
testing indicates that these techniques are difficult to implement in a general way, due to
the difficulty of fixing static gate and/or queue length thresholds for any given application.
When thresholds are set too high the gated service regime is reduced to the exhaustive
service regime tested here. When thresholds are set too low events must wait longer to
be processed, and performance is sacrificed for fairness and guaranteed progress.

Table 4.11 and figures 4.21 and 4.22 show mean response times of the different servers.
Thread-per-core policies perform well here, with response times in the second range. The
notable exception to this rule is the DBR policy, which is clearly a non-starter by any
metric. Constantly switching to the bottleneck stage (the multi-term set combiner) results
in extremely high response times.

Generally speaking, thread-per-core policies such as MG1 tend to suffer when there are
many stages that are mostly idle, as in the benchmark server. The non-negligible setup
cost of visiting idle stages means that busy stages must wait longer for service. Experience
with other servers has indicated that polling thread-per-core policies have visit success
rates on the order of 5-10% in a hot system, which implies they are spending a non-
negligible amount of cycles visiting mostly-idle stages. Here the Color policy and all thread
pool-per-stage policies clearly benefit from being “demand-driven” and never visiting idle
stages, and this is reflected in the observed response times.

The thread-per-core policies (excepting DBR) were more data cache-friendly than SEDA
configurations (figures 4.23 and 4.24). The policies with the poorest throughput (DBR
and SEDA overthreaded) exhibited the best L2 instruction cache locality (figures 4.25
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and 4.26), but this is obviously a red herring. Of the servers with good throughput the
ones with thread-per-core policies had fewer L2 instruction cache misses, as expected.

4.4 Experiment: comparing load balancing strategies

in a site search engine

The final experiment evaluates the efficacy of the two load balancing strategies described in
chapter 3 in terms of the throughput of thread-per-core-scheduled servers. The workload,
client and server software, metrics, and environment are the same as in the previous
experiment. One thread-per-core scheduling policy (Cohort/wavefront) with “normal”
stages is evaluated with different load balancing strategies: no load balancing, i.e. the
setup of the previous experiment; replicating the stage graph 2, 4, and 8 times; and
partitioning the stage graph into 2 and 4 partitions.

Besides throughput (mean and max response rates) the primary metrics of interest here are
the number of data and instruction cache misses of the servers employing the various load
balancing configurations. The hypothesis is that load balancing can reduce cache misses
by limiting the number of cores that participate in all (replication) or part (partitioning)
of a request’s processing cycle, thus increasing per-core locality while decreasing inter-
core cache traffic. From this perspective replicating the stage graph on each core may be
considered an ideal load balancing strategy, since it imitates the ideal Cohort scheduling
scenario of a single core “moving” a batch of requests through the stage graph. However,
on a multiprocessor system the advantages of this or any other load balancing strategy
must be weighed against the real danger of load imbalance between processors, where
one replica (processor(s)) is heavily loaded while others are mostly idle, resulting in lower
throughput despite better cache behavior.

The best load balancing strategy, then, is one that strikes the right balance between good
per-core performance and the performance of the system as a whole. Partitioning makes
this tradeoff explicit by assigning stages to partitions according to their projected load,
at the expense of more cores touching every request. Replication, on the other hand,
relies on the implicit assumption that simple, non-clairvoyant distribution of requests to
replicas (e.g. via round-robin) will not induce significant load imbalances between replicas
of any granularity. Both types of load balancing assume that arrival rate and service time
distributions for requests do not change drastically on short notice.

4.4.1 Results

The results of the load balancing experiment are shown in tables 4.14, 4.15, 4.16, 4.17,
and 4.18 as well as boxplot figures (one per metric, with each box representing ten runs)
with the same data.

Figures 4.27 and 4.28 plot the response rates for the different server configurations. They
indicate that there is a significant advantage to replicating a stage group, particularly in
having one replica for each of the 8 available cores. The latter configuration produced
mean response rates more than 8% higher than the baseline server without load balancing.
Somewhat surprisingly, the same configurations also had lower response times (table 4.16
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Table 4.14: Site search engine with load balancing: mean response rate (responses/s)

Policy Configuration Mean Difference in mean Standard deviation
Cohort 8 replicas 922.60 1.89
Cohort 4 replicas 911.62 -1.20% 3.67
Cohort 2 replicas 892.93 -3.27% 3.74
Cohort 2 partitions 873.73 -5.44% 4.29
Cohort 846.46 -8.61% 12.49
Cohort 4 partitions 656.20 -33.75% 55.36

Figure 4.27: Site search engine with load balancing: mean response rate
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Table 4.15: Site search engine with load balancing: max response rate (responses/s)

Policy Configuration Mean Difference in mean Standard deviation
Cohort 8 replicas 1433.53 27.12
Cohort 4 replicas 1423.26 -0.72% 15.89
Cohort 2 replicas 1418.20 -1.08% 9.58
Cohort 4 partitions 1415.46 -1.27% 187.50
Cohort 2 partitions 1383.28 -3.57% 21.21
Cohort 1381.92 -3.67% 20.17

and 4.29). This is likely due to smaller batch sizes in the individual replicas/partitions,
which resulted in lower queueing times.

Of the two load balancing strategies proposed in chapter 3, replicating the stage graph
fared decidedly better as a general strategy than partitioning. The potential problem of
load imbalances between cores was a non-issue for the benchmark server, where a simple
round-robin distribution of requests to replicas sufficed to keep all cores active. The
partitioning strategy, which is designed to explicitly address this problem at the expense
of some performance, thus proved to be unnecessarily pessimistic.
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Figure 4.28: Site search engine with load balancing: max response rate
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Table 4.16: Site search engine with load balancing: response time (ms)

Policy Configuration Mean Difference in mean Standard deviation
Cohort 8 replicas 111.57 6.01
Cohort 4 replicas 241.18 +73.49% 15.10
Cohort 2 replicas 541.13 +131.63% 31.93
Cohort 2 partitions 991.70 +159.55% 88.66
Cohort 1351.58 +169.50% 251.16
Cohort 4 partitions 4761.27 +190.84% 884.03

Table 4.17: Site search engine with load balancing: L1 data cache misses

Policy Configuration Mean Difference in mean Standard deviation
Cohort 4 partitions 2424127.00 403818.14
Cohort 8 replicas 3308136.78 +30.84% 338371.36
Cohort 2 partitions 3507673.00 +36.53% 567201.65
Cohort 4 replicas 3800302.40 +44.22% 499706.90
Cohort 2 replicas 3829168.60 +44.94% 330109.05
Cohort 3959960.00 +48.11% 394522.74

The majority of the load-balanced servers also exhibited greater data cache (table 4.17
and figure 4.30) and instruction cache (table 4.18 and figure 4.31) locality than the server
without load balancing, albeit to varying degrees. This is evidence that load balancing
does have the intended effect of improving cache behavior. On the other hand, it also
is clear from the results that the improvement does not automatically translate to bet-
ter throughput, since poor load balancing can still leave some cores more idle than they
would be with no load balancing (table 4.14 and figure 4.27). Although the 2-way parti-
tioned servers fared slightly better in terms of throughput than the server without load
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Figure 4.29: Site search engine with load balancing: response time
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Figure 4.30: Site search engine with load balancing: L1 data cache misses
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balancing, the 4-way partitioned servers were noticeably worse off. This was due to an
imbalanced partition that occupied two cores while leaving the others mostly idle. The
risk of imbalances between partitions increases with the number of partitions; a server
with an 8-way stage graph partition was not included in the experiment, since it was clear
from the outset that CPU-intensive stages such as the multi-term set combiner would not
be able to keep up with the total load of the server if they were limited to running on
very few cores.
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Table 4.18: Site search engine with load balancing: L2 instruction cache misses

Policy Configuration Mean Difference in mean Standard deviation
Cohort 4 partitions 133624.00 13428.51
Cohort 2 partitions 145412.33 +8.45% 8021.85
Cohort 8 replicas 318811.00 +81.86% 13184.99
Cohort 4 replicas 433259.10 +105.71% 24562.92
Cohort 2 replicas 497039.40 +115.25% 31200.64
Cohort 517747.13 +117.94% 18749.74

Figure 4.31: Site search engine with load balancing: L2 instruction cache misses

●

●●

8 replicas 4 replicas 2 replicas 2 partitions None 4 partitions1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05
N

um
be

r 
of

 m
is

se
s

4.5 Summary

Over the course of my PhD studies I have implemented a number of servers in C++,
all of which rely on a common code base called Yield. In this chapter I evaluated the
performance of two of these servers in three experiments: the first experiment comparing
the performance of staged concurrency and thread-per-connection concurrency as well as
various stage scheduling policies in the context of an image processing application; the
second comparing the throughput of stage scheduling policies in a site search engine; and
the third comparing the effectiveness of load balancing strategies for the same server. The
results of the experiments support a number of conclusions:

• Staged concurrency outperforms thread-per-connection concurrency on throughput-
related metrics, though because of its fairness properties thread-per-connection con-
currency often exhibits lower response times.

• Thread-per-core stage scheduling policies as a whole are superior to thread pool-
per-stage policies in terms of throughput on CPU-intensive benchmarks.
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• The thread-per-core policies as a class are comparable to each other in terms of the
same metrics.

• Load balancing stages in a server with thread-per-core scheduling can increase the
throughput of the server.

• Of the two load balancing strategies proposed in chapter 3, replicating the stage
graph is the more effective in increasing server throughput.

The next chapter will outline some of the qualitative lessons I have learned in developing
these and other servers.





Chapter 5

Experiences with staged servers

Over the last six years I have implemented and experimented with many different types of
staged servers, attempting to find suitable benchmarks for Yield. Most of these attempts
were unsuccessful, though they were all instructive. The failed benchmark servers fell into
two main categories: those implemented written primarily in Python for the Python back
end of Yield and those implemented entirely in C++.

5.1 Python-based servers

Dynamically-typed languages such as Python, Ruby1, and Perl2 have become the tool of
choice for increasing numbers of server developers. This choice is often motivated by the
need to develop, deploy, and alter server applications rapidly with minimal knowledge of
the language. Like other programmers I was initially attracted to dynamic languages –
in my case Python – by the ease with which I could write and test simple servers.

In order to bring the strengths of Python to Yield I embedded a Python interpreter as
a Yield event handler. The main task of this event handler is to translate events sent
to it in C++ into a form that can be processed by Python, and to translate responses
and other events coming out of Python back into C++ for consumption by other event
handlers. Handling events from C++ on the Python side also called for some adaptation,
in order to take advantage of Python’s built-in type introspection, provide convenience
methods for programmers, and other niceties.

The major disadvantage of embedding Python in a environment that is designed for
high performance is the fact that the reference Python interpreter relies on a process-
wide Global Interpreter Lock (GIL) to serialize access to the interpreter’s state, which
makes it effectively single-threaded. The same limitation applies to several other dynamic
language interpreters, including those for Ruby and PHP. Multiple threads can enter the
Python interpreter, but only one can execute normal Python operations (such as string
manipulation or regular expressions) at a time. This obviously limits the amount of
parallelism a multi-threaded Python program can exploit. For this reason as well as the
general difficulty of writing multithreaded programs the vast majority of Python code is
single-threaded. The exceptions are multithreaded servers that block on socket operations

1http://www.ruby-lang.org/
2http://www.perl.org/
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such as send and recv. In these servers the C interface between Python and the associated
C functions (called a Python “extension”) voluntarily releases the GIL before going into
a blocking operation, so that another thread can run in the interpreter while the first
thread is blocked on network I/O.

The serialization of most Python operations implies that the Python interpreter cannot
block waiting for a response to an event it has sent into C++. Instead it must save the
relevant Python state before an event is sent and then restore the state after the response
has been received. The reference Python implementation provided no means for doing this
automatically, which means that event-driven servers using the reference implementation
must employ manual stack management.

Fortunately, there is an alternative implementation of the Python interpreter, called Stack-
less Python3, that allows programmers to create many automatically-managed stack con-
texts within a single-threaded Python program. It accomplishes this by storing all Python
runtime state on the C heap instead of the stack. This allows the Stackless interpreter to
simply switch C stack pointers to restore a given Python stack. The developers of Stack-
less Python have also created an extension to the standard CPython interpreter that does
the same job, albeit in a less efficient manner. Yield’s embedded Python interpreter will
link to Stackless Python if it is present and emulate the Stackless API with the exten-
sion if not. The automatic stack management provided by Stackless allows Yield/Python
servers to be completely agnostic of any and all event passing “under the hood”. The
program simply makes an interface-defined call and receives the return value, as if there
were no event passing. The machinery below the call creates an event with the parameters
of the call, sends it through the Python to C++ gateway, then switches the Python stack
back to another that might be runnable (because of a received response, a long-running
computation, etc.).

5.1.1 Web-based chat server (2006)

My initial foray into Python servers was a web-based chat server, which was inspired by
the chat server deployed at wie-ich.de. The original implementation on wie-ich.de was
written with Java servlets and streamed chat messages to web browsers via a neverending
HTTP chunked response. My Python implementation was based on a design by Felix
Hupfeld in which web browsers poll the HTTP server for updates to a chat channel. The
poll request was a Remote Procedure Call from the browser that specified the last update
the browser had seen in the channel, as a logical timestamp, with the ability to specify
multiple channels per call (e.g. multiple group and private chats and a channel for control
messages). The set of logical timestamps, one for each channel, was treated as a version
vector [DSPPR+86].

The polling design has the advantage over the more conventional streaming design of
allowing clients to easily recover the state (messages) of a channel after a voluntary or
involuntary disconnect. The major disadvantage of this approach is that polling puts more
load on the server. Another problem with this implementation was that the server had to
check the data structures for each channel each time a client polled and serialize all chat
operations into a form the web browser can understand, in this case the JavaScript Object
Notation (JSON). Since the server was mostly implemented in Python, this meant that

3http://www.stackless.com/
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the single-threaded Python stage was a major bottleneck. This proved to be a recurring
(if not entirely unexpected) problem with Python servers. The solution was to rewrite
performance-critical and thread-safe parts of the code such as e.g. JSON serialization in
C++, wrap it in a separate event handler with a separate stage, and drive this stage
via event-passing from the Python interpreter. Unfortunately, alleviating one bottleneck
in Python tends to expose another in the same code, which hides another, and so on,
until the programmer has spent more time exporting code into C++ than he would have
simply writing the server in thread-safe C++ from the beginning.

5.1.2 HTTP file server (2007)

Serving static content from disk or memory is still one of the primary functions of HTTP
servers, and static file benchmarks are still a touchstone for HTTP server performance.
I have benchmarked HTTP file servers several times in the course of developing Yield,
notably in my Master’s thesis [Gor05], where I compared Yield’s static file serving per-
formance (in C++ only) to that of the original SEDA implementation (in Java) on a
SPECweb99-like workload. As a follow-on experiment for this dissertation I decided to
write a hybrid Python/C++ HTTP server and benchmark it against some real-world
servers implemented in C, as well as a few implemented in pure Python. The purpose of
this experiment was twofold:

1. to demonstrate that adding C++ stages to a Python server (one in which all unique
code for the server is written in Python) can compensate for some of the performance
limitations of Python, such as frequent memory copying

2. to show that the same hybrid server can be competitive with C servers, at least
until the single-threaded Python interpreter occupies an entire core

Workload

The workload for this benchmark was derived from the static file part of SPECweb99
[Sta99]. The data set consisted of 13 gigabytes of files with file sizes ranging from less than
1 kilobyte to around 9 megabytes. File accesses assumed a Zipf distribution, with small
files requested much more frequently than large files. No part of the official SPECweb99
distribution (file set generator, client, etc.) was employed in this benchmark. Most of the
implementation of the benchmark client and workload were reworked from my previous
benchmarks of Yield vs. the Java implementation of SEDA for my Master’s thesis. That
setup was in turn adapted from the SPECweb99-like benchmark client written by the
author of SEDA [Wel02].

Client software

For this experiment I used httperf session logs to describe the SPECweb99-like workload.
During a benchmark run four instances of httperf on the same client machine replayed
unique (per-instance) 1000-session logs against the server. The logs were generated offline
according to the SPECweb99 rules. For this experiment I also used the inter-request
think times of Pariag et al. [PBH+07], who derived the following times based on previous
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analyses of user behavior: 3.0 seconds for the “inactive” think time that users spend
deciding on which link to follow and 0.343 seconds for the network and client-side latency
between “active” requests. The latter time represents, for example, the latency between
a web browser’s reception of a site’s index page and the time the server receives the first
request for an element of the index page, such as an image.

Server software

The server software for this experiment included three production-grade servers in C
(lighttpd 1.4.18, nginx 0.6.25, and Apache 2.2.8), two pure Python servers (Medusa
0.5.4 and Twisted 8.0.0), and a C++/Python Yield hybrid. The servers vary in complexity
and robustness, but they are comparable in terms of their basic operation. In order to
ensure that this was the case I disabled many non-essential features of all the servers,
including logging and bookkeeping facilities. I also disabled user-level file caching on
servers that supported it, since not all servers were capable of caching files in userspace.
Because primary storage was large enough to fit the most frequently-requested files clever
user-level caching would not have bought much, in any case, and the operating system
caching was sufficient.

The following sections describe the HTTP file servers in detail:

• lighttpd4 and nginx5 are classic single-threaded, non-blocking event loop servers
with optional Flash-style worker pools for offsetting blocking system calls when
asynchronous disk I/O primitives are not available. Both servers go to great lengths
to avoid blocking by e.g. advising the kernel on which memory pages the server will
send to the network next so that the kernel can pre-fetch them from disk if necessary.
As of this writing approximately 0.89 percent of web servers on the Internet run
lighttpd, according to a recent Netcraft survey6. Both servers were used in their
default configurations.

• Apache7 is a classic kernel thread-per-connection web server and the most widely
deployed web server on the Internet, with 49.1 percent market share, according to
the same Netcraft survey. Apache offers a variety of knobs and dials for tuning
the maximum and minimum number of threads, keep-alive timeouts, etc. as well as
allowing administrators to choose at compile time whether threads or heavyweight
processes should be used. For this experiment I measured the performance of an
Apache server configured to use a maximum of 640 threads, a parameter that I
copied from a site that serves many static files.

• Medusa8 is a pure Python server with a single-threaded event loop. The server
is started programatically from a Python script rather than bootstrapped from a
configuration file. A startup script for a basic HTTP file server is included in the
Medusa distribution. For the experiment I modified the script to disable logging
but left it otherwise unchanged.

4http://www.lighttpd.net/
5http://nginx.net/
6http://news.netcraft.com/archives/web_server_survey.html
7http://httpd.apache.org/
8http://www.nightmare.com/medusa/
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• Twisted9 is a high-level networking framework in pure Python. Like Medusa it
also relies on a non-blocking event loop, though unlike Medusa, which uses select

exclusively, Twisted can take advantage of efficient event notification primitives such
as epoll on Linux. To the best of my knowledge Twisted has never been subjected
to a rigorous evaluation of any kind, which is noteworthy in light of the fact that the
entire design of the framework, with event loops and continuations, was motivated
by the desire to avoid blocking, ostensibly as a means of achieving high performance.
Like Medusa, Twisted is driven by a Python script rather than a configuration file.
The script for this benchmark was adapted from an HTTP file server example in
the Twisted documentation.

• Yield hosted an HTTP file server that consisted of three stages in a thread pool-per-
stage group: a single-threaded I/O stage that accepted connections and read and
wrote data from and to the network; a single-threaded Python stage that received
requests from the I/O stage, serialized them into Python, translated request URLs
to file paths (in Python), and sent requests to the disk I/O stage for the files to be
read; and a multithreaded disk I/O stage that read the files from the file system and
sent the contents back to Python, where they were attached to an HTTP response
and sent on to the I/O stage.

Metrics

Response rates with response timeouts are the most widely-accepted metric of HTTP
file server performance [MJ98, PBH+07, WCB01, vBCZ+03]. httperf measures response
rates by sampling the number of on-time responses over five second periods. At the end
of an experiment run httperf displays the average, minimum, and maximum of these
per-period response rates. The average was taken as the primary metric for a given
experiment run.

For this experiment the time limit for valid responses was set to five seconds, as measured
from the the point at which the client sent the entire request to the server (i.e. when the
writev system call completed) and the point at which the client received the first byte
of the response (from the recv system call). Five seconds is a lower bound suggested by
the httperf man page10. Other authors have used response time limits as high as fifteen
seconds [PBH+07], though intuition suggests that few users with fast connections would
be willing to wait fifteen seconds for a nine megabyte file when network proximity should
allow a server to deliver the file much faster than that.

The exact choice of a response time limit becomes relevant only when a server is under
heavy load or overload and is unable to write responses to the network on time. The C
servers (lighttpd, nginx) were never overloaded in this experiment and always delivered
responses in well under five seconds; this can be inferred from the near-linear curve of
request vs. response rates in the figure below. The pure Python servers, in contrast, were
overloaded fairly early in the set of experiment runs. Increasing the response timeout to
15 seconds or more would have shifted the peaks in the Python server curves slightly, but
the overall pattern of the graph would have remained the same.

9http://twistedmatrix.com/
10http://www.hpl.hp.com/research/linux/httperf/httperf-man.txt
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Environment

The operating environment for this experiment was the Alibaba cluster described in sec-
tion 4.3.5. Both the client and server were run on cluster nodes, with one node for each.
The client worker node hosted four instances of httperf (corresponding to the four cores
of the machine), each with a unique session log.

Results

Figure 5.1 is a graph of the mean response rates of the different servers, with increasing
session/connection initiation rates on the x-axis and the rate of on-time responses on
the y-axis. (The rate at which new sessions are initiated is the same as that for new
connections, since only one session was replayed per connection in this experiment.)

Figure 5.1: HTTP file servers: mean response rates
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The session rates delimited on the x-axis are target rates rather than actual rates, which
differed between servers; since httperf works in an open loop it cannot consistently
guarantee a specific connection rate across all experiment runs. Furthermore, httperf
will close a session/connection if any request in the session times out, so that new ses-
sions/connections will still be initiated for overloaded servers. This is necessary to continue
increasing the session rate in an open loop even when the server is overloaded. Each point
in the data series represents a single experiment run, with each of the four client instances
replaying its entire 1000-session log at a given session initiation rate.

Note that figure 5.1 does not include the extremes of low and high session rates. At low
session rates all of the servers performed equally well. At high request rates the curve
of the Python servers and Apache continued in the same zig-zag pattern of peak and
sub-peak, while the response rates of the C servers continued to increase (albeit at a less
dramatic rate) until the clients were overloaded (i.e. unable to initiate enough sessions
quickly enough without saturating the client machine’s CPU and/or running out of file
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descriptors). With more client machines the latter servers could have been pushed into
overload, but doing so was not necessary to demonstrate the differences between the pure
Python, C++/Python hybrid, and pure C HTTP file servers.

As expected, the C++/Python Yield hybrid is competitive with the pure C servers un-
til the single-threaded Python stage becomes CPU-bound. The CPU consumption of
the Python stage dwarfed that of the other stages (for network and disk I/O). The
performance of the pure Python servers was even more severely limited by the single-
threaded Python interpreter. Somewhat surprisingly, Twisted fared significantly worse
than Medusa, despite the former’s use of epoll in preference to select and its reputa-
tion as the Python networking framework of choice for high-performance servers.

5.1.3 RUBiS server (2007)

The Rice University Bidding System (RUBiS)11 is a benchmark for database-backed web
applications. The benchmark setup is modeled after popular online auction sites such
as eBay, where users browse, buy, and sell items. Information on items, item categories,
users, and bids is stored in a database, which is also covered by the benchmark. RUBiS
was designed for the purpose of comparing application servers in combination with rela-
tional databases [CCE+03]. In the reference implementation of RUBiS only one database
(MySQL12) is supported, while the application server is varied in order to measure the per-
formance of different implementations of the auction prototype: J2EE, servlets, servlets
and J2EE, and PHP.

The primary purpose of this experiment was to demonstrate that a Yield-based implemen-
tation of the benchmark server can achieve higher throughput than other implementations
of the same server, even when the web server is not CPU-bound. Many real-world web
applications rely on databases to store frequently-updated application data such as user
histories, product stocks, etc. These applications are typically bound to the performance
of the database on the back end, and the performance of the web application server on
the front end is much less critical to the throughput of the application as a whole. Nev-
ertheless, having an efficient front end can still be important when an application has to
scale to multiple machines. Better single node performance means that fewer front end
machines are needed, which reduces initial hardware costs as well as the running costs of
power, maintenance, and administrator time. The performance of the front end was the
focus in this experiment.

The secondary purpose of the experiment was to show that a Python implementation
of the benchmark application that is hosted in Yield can outperform the multithreaded
reference Java implementation of the application, despite having significantly fewer lines
of code and running on a far less optimized virtual machine. The Java servlets imple-
mentation of RUBiS was the starting point for my implementation for Yield, which was
transliterated and adapted servlet-by-servlet into Python code that could run in Yield’s
back end Python interpreter. All unique code for the Yield implementation was in Python,
though like the HTTP file server the Python implementation of RUBiS also exported some
non-unique code into C++ in order to achieve greater efficiency and concurrency. In this
case the C++ code consisted of an asynchronous database client interface I had developed

11http://rubis.objectweb.org/
12http://www.mysql.com/
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previously and a generic wrapper for the ctemplate13 template library that formatted ob-
jects from Python as HTML. The database client interface created one stage per database
connection, with each stage’s event handler executing SQL statements and fetching re-
sults on/from that connection. This allowed the Python interpreter to avoid blocking on
database client API calls, which are typically implemented in a blocking manner. Ex-
porting HTML formatting code into C++ mitigated a serialization/copying bottleneck in
Python.

The resulting Python implementation of the RUBiS web application consisted of only 890
lines of Python code and 634 lines of HTML templates = 1,524 lines of code specific to
this application, while the functionally equivalent Java servlets implementation of RUBiS
weighed in at 4,797 lines (including inline HTML), as measured by SLOCCount14. The
smaller code base and separation of application logic from presentation made the Python
implementation easy to develop and the resulting code remarkably clean.

Unfortunately, experiments comparing the two implementations of RUBiS were largely
unsuccessful. The throughput of the staged Python/C++ hybrid implementation was in
fact higher than that of its thread-per-connection competitor in Java, but the differences
could be explained by the extremely poor quality of the design and code of the Java
implementation rather than any essential advantage of the Python/C++ version. In
particular, the Java servlets used far too many database connections, which resulted
in unnecessary database lock contention that artifically limited throughput when the
database became CPU-bound. The Java thread-per-connection server quickly expended
its threads blocking on the database so that there were no threads available to process
new connections, which in turn led to client connection timeouts.

5.1.4 WebDAV server (2007)

As a complement to the Python HTTP file server described in section 5.1.2 I also designed
and implemented a Python-based Web Distributed Authoring And Versioning (WebDAV)
[Dus07] server. Like many other types of servers on the Internet and unlike read-only
HTTP file servers, WebDAV servers are widely deployed but rarely benchmarked. In fact,
I was unable to find any benchmarks for WebDAV whatsoever, although the protocol has
been in production use for almost a decade. This is likely due to the fact that WebDAV
servers are seldom placed under much stress: as the name suggests, they are primarily
used for authoring web sites, as a practical read/write extension to the read-only HTTP
used by browsers. This means that the majority of installations do not need to scale to
more than a dozen users. However, WebDAV interfaces are also provided by a number of
large online file storage and sharing services, such as Apple’s MobileMe15 and box.net16.

In its essence WebDAV is similar to NFS and other mostly-stateless network file systems
in that it uses Remote Procedure Calls as stand-ins for POSIX-like local file operations
(read, write, lock, et al.). The main difference is that WebDAV uses HTTP verbs (GET,
PUT, et al.), URLs, and XML request bodies to indicate operations and their parameters
rather than binary RPCs. Although a network file system would seem an unlikely candi-
date for evaluating CPU-bound scheduling algorithms, the inclusion of XML changes the

13http://code.google.com/p/google-ctemplate/
14http://www.dwheeler.com/sloccount/
15http://www.apple.com/mobileme/
16http://www.box.net/
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situation. XML parsers and generators are quite CPU-intensive, thanks to the excessive
string copying that is required to build a DOM with decoded, null-terminated tag names
and string concatenation in outputting validated XML.

In the absence of any known workloads I had to design and implement one of my own,
starting from representative traces. After a long search for such traces a system admin-
istrator at the University Library in Cambridge volunteered to share WebDAV logs from
one of the library’s servers. The logs were from a server that librarians across the Uni-
versity and Colleges use to edit the metadata for small collections17. The metadata for
a collection is stored in a single XML file, with the size per file ranging from 63 bytes to
23 megabytes with a mean of 170K and a median of 12K, as measured at the time of a
request. The logs spanned the period from August, 2003 to March, 2008, approximately
70,000 requests from a few dozen users. The server is typical of WebDAV deployments in
that it sees very low demand, but atypical in having so many different users editing only
one or a few files each.

In order to generate a benchmark workload from the logs I first constructed a Markov
model of user sessions, which described the probable sequences of request types (PROPFIND,
GET, PUT, etc.) for a session while accounting for certain nuances of the WebDAV pro-
tocol and idiosyncrasies of the most common client, the one included in Windows. I then
used this description to generate synthetic session logs for httperf.

Unfortunately, the choice of httperf was to be my undoing: the client was simply not
designed for read-write benchmarking. It could not handle uploading large bodies or
most of the WebDAV-specific HTTP request methods. After numerous modifications and
attempts to cajole httperf into producing enough traffic quickly enough to put significant
load on the server, I had to give up on this benchmark and move on.

5.1.5 SMTP server (2007)

My next attempt at a CPU-intensive benchmark was an SMTP server with a built-in
spam filter. This project was inspired by two papers that analyzed server logs of a large
ISP [Cla04, Cla05]. In his analysis Clayton noted that the the majority of the SMTP
deliveries received by the ISP were eventually marked as spam, and the combined size of
spam messages far outweighed that of legitimate email. Due to this imbalance most large
mail server setups are bound to the speed of their spam filters rather than the speed of
disk I/O. The spam filters in turn are bound to the CPU of the hardware on which they
are running.

Some of the most popular spam filters are written in dynamic languages such as Perl
and Python, though not because the languages are dynamic, per se, but because they
tend to have well-integrated and extensive string processing facilities. Tighter integration
between mail servers and spam filters has been advocated for several years [PRH07],
and an SMTP server with a built-in, CPU-intensive spam filter sounded like an ideal
benchmark for Yield.

There were a number of stumbling blocks in this plan. SMTP servers are critical to the
Internet infrastructure, yet they are rarely benchmarked publicly with realistic workloads.
There is a SPEC-endorsed benchmark for combined POP3/IMAP/SMTP mail servers,

17janus.lib.cam.ac.uk
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SPECmail2001 [Sta01], which is similar in spirit to SPECweb96 [Sta96]. The SPEC-
mail2001 benchmark workload was based on a statistical analysis of mail server logs by
Bertolotti and Calzarossa [BC01]. Unfortunately, the benchmark was designed with only
legitimate emails in mind, and the patterns observed by Calzarossa in the late 1990s and
early 2000s are no longer representative of today’s mail server traffic. In the absence of any
other serious mail server benchmarks I had to write my own. This was relatively straight-
forward: I used a portion of the TREC spam corpus18 as a data set and wrote an SMTP
client in Python that initiated new SMTP connections to the server with an exponential
arrival rate, taking guidance from a paper on spam-infected mail workloads [GCA+07].
The benchmark client worked well, kept accurate statistics, and was not CPU-bound.

Rather than implement the entire server in Python and hitting another bottleneck, I chose
to embed another language, Lua19, for the sole purpose of spam filtering in a multithreaded
Lua stage. Lua is well-regarded for its simplicity – it only has one data structure, an
associative array – and the ease in which it can be embedded. More importantly, there is
a thread-safe C extension to Lua that implements the Orthogonal Sparse Bigrams with
confidence Factor (OSBF) [SACY04] spam classification algorithm, which won the TREC
spam track in 2006. After porting the Unix-specific parts of the OSBF back end (i.e.
the routines used to store classifier rules in files) to Yield’s platform library I trained
the algorithm using part of the TREC spam corpus. Then I wrapped the extension in
machinery to translate classification requests and responses to and from Lua. The main
SMTP server state machine was implemented in Python, with raw data buffers shuttled
between the C++ I/O front end and Python on the back end.

Despite the extra effort the mail server, like its predecessor the chat server, was also bound
to Python – a single line in Python, in fact. The single line concatenated two buffers that
had been read separately from the network. After various attempts to circumvent this line
and others like it, I finally gave up on the idea of implementing performance-critical code
in Python, its aptitude for string processing notwithstanding. In subsequent projects I
restricted Python to the tasks of bootstrapping and coordinating CPU-intensive activities
and left the latter to thread-safe C++.

One positive outcome of this attempt was a lesson in small optimizations. SMTP is a
conversational protocol, with around 10 exchanges in a normal transaction, assuming
connections are not re-used. This design makes it relatively easy for the server to sched-
ule requests in Shortest Remaining Processing Time (SRPT) order, so that requests in
the later exchanges are processed before initial handshakes, recipient specification, etc.
Using this technique in Python I was able to increase the throughput of the server by
approximately 30% in testing runs.

5.2 C++-based servers

5.2.1 C++ HTTP file server (2005)

For my Master’s thesis in 2005 [Gor05] I explored some of the advantages and pitfalls of
stage architectures for highly concurrent web servers and compared the performance of a

18http://plg.uwaterloo.ca/~gvcormac/treccorpus/
19http://www.lua.org/
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staged HTTP file server using SEDA thread pool-per-stage concurrency to a thread-per-
connection HTTP file server that utilized the same code base. I also benchmarked a C++
thread pool-per-stage HTTP file server against Welsh’s Java HTTP file server, Haboob,
from the original implementation of SEDA. For both benchmarks I used a SPECweb99-like
workload and a setup similar to that used in the Python HTTP file server benchmark in
section 5.1.2, except that I allowed file caching within the server since both the Java server
and my own supported it. The performance of my thread pool-per-stage server was com-
parable to that of its Java counterpart and clearly superior to the thread-per-connection
server. As in Welsh’s work on SEDA, the crux of the benchmarks was admission and
overload control rather than scheduling.

In my analysis of the benchmark results I pointed out several optimizations for staged
servers, including aggressive object and buffer re-use; enforcing admission controls on
new connections only rather than on every stage (vs. Haboob’s per-stage controllers);
responding to requests for smaller files before requests for larger files, similar to [CFHB99];
and minimizing the total number of stages in the system in order to decrease the number
of runnable threads.

5.2.2 Cantag server (2007)

Cantag [RBH06] is a heavily-templated C++ library of algorithms for recognizing and
deciphering black-and-white tags from images supplied by camera feeds in real-time. The
tags encode some numeric identifier of an object, much like a bar code. They are used
to identify features of an image, such as a person wearing one of the tags. Cantag was
designed to allow application developers who need this recognition ability to compose
pipelines of image processing algorithms that best suit the application. For example, there
are specific algorithms for picking out the squares in an image, while other algorithms
measure the circumferences of concentric circles in a tag. Like many image processing
algorithms, the main recognition algorithms in Cantag are CPU- and memory-intensive.
The Cantag algorithms are also highly modular, so they can be composed and work in
parallel. This made Cantag seem like an ideal benchmarking apparatus.

I spent several days fitting the Cantag algorithms to Yield stages and adding a simple
HTTP front end, which would be the target of e.g. cameras uploading images. Unfor-
tunately, after benchmarking the server on a dual-core 3 GHz workstation and profiling
and tweaking Cantag extensively it could barely process more than 1-2 highly artificial
test images per second, far less than the 25 images per second required to keep up with
camera feeds.

5.3 Lessons learned

Through the process of designing and implementing the staged servers described above
I’ve reached a number of conclusions:

• Single-threaded code usually costs more than its worth. The single-threaded
Python interpreter is a prime example of this. Python makes it easy to prototype a
working server quickly. Moving beyond that is painful. It is better to simply discard
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the prototype and rewrite the entire server in a thread-safe setting than to try to
retain parts of the single-threaded code. These will inevitably become bottlenecks.
Caches are the main exceptions to this rule. Caches are usually single-threaded by
necessity, the alternative being fine-grained locking, which would violate the design
of stages as units of concurrency.

• The more potential stages, the better. The stage scheduler can combine two
stages into a single scheduling unit by e.g. making one of the stages “pass-through”.
Stage boundaries should be delimited as early as possible rather than separated as
needed. The latter approach usually takes more time than careful design does.

• Stages should only have one function / process one type of event. Lim-
iting a stage to one function allows the stage machinery to accurately model the
cost of processing events at a given stage, which in turn makes the stage graph
more amenable to queueing theoretic analysis and optimization. The resulting stage
graphs are usually acyclic.

• Attach session state to events rather than having per-stage lookups. Keep-
ing session state (socket connections, open files, etc.) at the stage where it is used
is a common beginner’s mistake. This state is prone to memory/reference leaks.
Looking up the session state at each stage is also unnecessary work.

• Thread pool-per-stage is often good enough. There is no real benefit to using
a thread-per-core stage scheduler when the server is not CPU-intensive. SEDA
thread pool-per-stage concurrency performs well enough for most servers and it is
more tolerant of programmer laziness (e.g. unforeseen blocking that would have to
be offloaded in a thread-per-core system) than other policies. Because threads are
always associated with a specific stage it is also easier to profile.



Chapter 6

Related work

Multiplexing hardware resources such as processors and disks is one of the fundamental
problems of Computer Science. The problem arises in many forms, from real-time schedul-
ing for mission critical devices to scientific computing on huge clusters of machines. The
range of algorithms and heuristics for solving computer scheduling problems is wider still,
with techniques inspired by operations research, traffic engineering, production systems,
and other fields. This chapter surveys some precedents for the research presented in this
dissertation as well as related work in theory and practice.

6.1 Scheduling theory

As is often the case in Computer Science, there is a distinct divide between theory and
practice of CPU scheduling. On one side there is a plethora of theoretical results on
the stability, expected throughput, mean delay, and other performance characteristics of
scheduling policies under certain system conditions. On the other side there is a mass
of implementations that ignore theory entirely. That notwithstanding, for the discerning
implementer scheduling theory can serve as a useful guide, though it can also obscure
problems by introducing high-level abstractions to low-level implementations.

In addition to the queueing theoretic models described in section 3.1.1 on the MG1
scheduling policy, I considered several other types of models in my research on CPU
scheduling in staged servers. Most of these models fall under the rubric of production
systems.

Production systems

One of the most obvious physical analogies to staged servers such as the image processing
server is that of a factory production line. Although production lines are conceptually
equivalent to queueing systems [SZ92], researchers investigating production systems tend
to focus on analyzing real-world systems rather than exploring the theoretical space.
There are many different models for these real-world systems:

• Push and pull production are the classic modes of production lines [SZ92]. In a
push production line work is admitted to the system and processed at the various
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stations according to a preset schedule. A pull production line, in contrast, only
admits work to each station when the station explicitly signals its readiness for more
work.

• Goldratt’s Theory of Constraints is a well-known theory of production line man-
agement [Gol90]. In essence, the theory states that every production line has a
bottleneck, called the drum or constraint, and the goal of production line opti-
mizations is to ensure the drum is always supplied with work via a buffer. A rope
mechanism signals the rest of the production line that the drum needs more work
to do or has too much work.

• Maximum pressure policies are, practically speaking, a more mathematically rig-
orous formulation of the Theory of Constraints for general stochastic processing
networks (e.g. multiclass queueing networks). To cite one example, Dai et al. de-
scribe some maximum pressure policy heuristics for server allocation that ensure
there is always work for the bottleneck station [DL05]. These heuristics have the
advantage of not requiring information on arrival rates, which is often difficult to
gather in a real system. Instead they rely solely on the length of queues at a station
and its successors in the network.

• A job shop is a more specialized model of a production system in which jobs can
take alternative routes through the stations of the system. The counterpart of a
job shop is a flow shop, where all jobs take the same route. A job shop is akin to
a patient visiting multiple doctors at a hospital, where the the job “chooses” which
stations it visits, while a flow shop more closely resembles a classic production
line. A schedule for the job shop determines when specific jobs are dispatched to
a station for processing, given some constraints such as setup times for switching a
station from one job type to another. Various techniques have been applied to the
problem of finding optimal schedules for different classes of job shops, where optimal
is defined by criteria such as minimizing the total number of jobs, minimizing the
number of late jobs, etc. The authors of [JR98] survey many of these techniques,
from dynamic programming to expert systems to genetic algorithms.

General production system models are quite conceptually elegant, perhaps too elegant:
their generality (and, in the case of the Theory of Constraints, vagueness) make them
difficult to apply to computer scheduling problems without massive improvisation, which
would negate much of the purpose of having a theory in the first place. The job shop
model is slightly more precise, but also suffers from a mismatch in time and control
granularity viz. the scheduling policies considered here. In a typical real-world job shop
processing a single job may take minutes or hours, so an optimal schedule may be fixed for
hours or days at a time. The cost of global synchronization within such a system is also
relatively low compared to the gains of an efficient schedule. The sub-second granularity
of multiprocessor scheduling, in contrast, makes global synchronization and global control
prohibitively expensive.

Traffic models

Traffic systems are another conceptually attractive physical analog to scheduling in staged
servers, and are similar to production systems in many respects [Hel05]. However, unlike
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most of the techniques for scheduling production systems, traffic control algorithms are of-
ten designed for decentralized operation. Systems for controlling traffic lights to optimize
throughput [LH08] bear an obvious resemblance to polling systems, though controlling
traffic lights usually involves timing constraints and optimizations that basic polling sys-
tems do not consider. For example, a traffic light may offer a green light to a direction
when cars are either approaching or have left the intersection from that direction, while a
polling system is usually work conserving in the sense that it will always switch away from
an empty queue rather than spinning on it. Spinning may actually be a useful behavior in
a large multiprocessor system, however, where waiting on a heavily-active, just-emptied
queue instead of switching to another may increase throughput and decrease latency for
the system as a whole. Unfortunately, in the absence of the precise timing information
(on vehicle speed, frequency, etc.) provided to a traffic control algorithm spinning may
cause system instability, which is why it is usually avoided in polling systems. These and
other divergences between traffic control and CPU scheduling algorithms make the former
difficult to apply directly to scheduling problems.

6.2 Scheduling practice

CPU scheduling algorithms used in practice can be roughly divided into those that are
derived directly from theory and those that embody the systems approach, i.e. find out
what works through educated guessing and trial-and-error and validate it after the fact.

6.2.1 Theory in practice

Until recently there was little crossover between the scheduling theory and systems com-
munities. In published papers theoreticians would pay lip service to real-world applica-
tions before shifting to analytical results, while systems researchers focused largely on
performance results, with little or no theoretical justification for the means of attaining
them. In the last decade a number of leading authorities from the scheduling theory
community have attempted to rectify this situation by applying a few simple analytical
results to scheduling practice, in the hope of attracting system implementers with the lure
of better performance.

These efforts were spearheaded by Harchol-Balter, whose papers on incorporating Shortest
Remaining Processing Time-inspired heuristics into web servers [CFHB99, HBBSA01]
have been heavily cited by the scheduling theory community. In [HBBSA01] Harchol-
Balter et al. modified the Linux kernel to give priority to server threads that write less
response data to the network over threads that write more data. In subsequent work
Harchol-Balter and her collaborators investigated load balancing between web servers
in a server farm [GHBSW07], limiting lock interference within databases by selectively
admitting transactions [SWHB06], and scheduling in routers [BSUK07]. Harchol-Balter’s
research, particularly [HBBSA01], have been well received by the theory community, and
have inspired third-party systems work in a similar vein [RK03], though the status quo
in the systems community remains largely unaffected.
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6.2.2 Systems approaches

Systems approaches to CPU scheduling typically focus on the robustness of implementa-
tions in actual use rather than the guarantees of theoretical models. The following sections
briefly survey some alternative approaches to conventional priority-based thread sched-
ulers (i.e. those descended from the BSD scheduler [MNN04]) that share some features in
common with the present work.

Proportional share scheduling

The “excessive fairness” of the process schedulers found in many commodity operating
systems has been the focus of extensive research over the last two decades. There have
been many numerous attempts to develop schedulers that give developers more control
over the kernel’s scheduling decisions, though these proposals usually stop far short of
abdicating control entirely (as in scheduler activations [ABLL91]). Notable among these
efforts is lottery scheduling [WW94], which belongs to the class of proportional share
schedulers. A proportional share scheduler divides available CPU time among processes
according to fixed proportions (e.g. some percentage of available time), which are deter-
mined by some static [WW94] or dynamic [MP89, SGG+99] weighting scheme.

For high-performance servers the major advantage of proportional share scheduling in the
kernel over conventional priority-based scheduling is that it allows servers to accurately
and fairly divide CPU time among different threads/processes according to e.g. service
classes. For this reason, among others, the default Linux kernel scheduler was recently re-
designed as a proportional share scheduler, called the Completely Fair Scheduler [Mol07].
The default inputs to the scheduler are still nice values, past running and sleeping times,
interactivity metrics, etc. rather than the proportions themselves, but instead of simply
using these inputs as hints to decide which process to run at a switching point (as in
BSD-derived schedulers), the inputs are translated into a target proportion and enforced
over long periods.

In the absence of a proportional share scheduler in the kernel an application can approx-
imate proportional share policies in userspace between the multiple threads or processes
of the application [Reg01]. Although it was never explicitly presented as such, the SEDA
technique of adding and removing kernel threads to/from a stage may also be viewed as
a crude proportional share scheduler: adding a thread increases the amount of CPU time
a stage receives over time, in effect increasing the stage’s proportion. The technique is
crude because it does not allow proportions smaller than a quantum, which is also not
constant over time. From this perspective the thread-per-core stage scheduling policies
come closer to real proportional share scheduling: over long periods of steady state execu-
tion the proportion of CPU time given to each stage should stabilize and remain almost
constant. The MG1 algorithm makes these proportions explicit in its calculation of visit
frequencies for each stage, though the actual observed percentage of CPU time spent pro-
cessing events cannot be guaranteed on the scale of milliseconds or even seconds, since
the scheduler is non-preemptive.
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Adaptive real-time scheduling

CPU schedulers for hard and soft real-time systems [AB90] often share the basic mech-
anisms of kernel scheduling (processes, preemption, etc.) while diverging significantly in
their scheduling policies. Real-time processes are usually associated with deadlines and
target service rates, which transforms the scheduling problem into a constraint system.

Despite this fundamental difference, some recent work on so-called “real-rate” systems
is of some interest to the present discussion, insofar as it indicates the extent to which
additional information on process/stage CPU requirements could simplify scheduling al-
gorithms and make them more predictable. In the late 1990s Steere and collaborators
published a series of papers on real-rate schedulers, where “rate” refers to a target rate
of a soft real-time process such as video streaming. With this target rate (e.g. the frame
rate) in hand the CPU scheduler can dynamically adapt the proportion of CPU time given
to each process in the application, giving a process more time on the CPU if it is not
encoding frames fast enough to meet the target rate or deducting from a process’s CPU
proportion when the process has ample CPU time already. The general model is that
of a producer (the video streaming process) and a consumer (a network user receiving
frames) with a synchronized rate between the producer and consumer. The target rate
may not always be specified explicitly as in the video streaming application: it might also
be implicit in e.g. observing the level of a shared buffer or queue between the producer
and consumer, in which case the scheduler would attempt to keep the buffer or queue half
full by giving or taking CPU time to/from the producer or consumer.

Abeni et al. proposed a similar idea in their work on adaptive reservations in the Linux ker-
nel [CPM+04]. Reservation-based scheduling is similar to proportional share scheduling in
that it allows users and developers to assign a fraction of available CPU time to a process.
Proportional share scheduling is slightly less conservative than reservation-based schedul-
ing, however, in that the former only attempts to guarantee a given CPU proportion over
relatively long periods of time and will compensate processes that do not use their entire
quanta. Reservation-based scheduling more closely resembles a circuit-switched network,
where every circuit is guaranteed a proportion of the available bandwidth even if this
results in inefficient use of the available resources. In a reservation scheduling system
short-term shortages (e.g. a dropped connection, missed scheduling deadlines) are only
occasionally tolerated, unlike in a proportional share system, where it is assumed that
processes can simply be compensated over time. Abeni’s algorithm uses techniques from
control theory to dynamically adjust process reservations in the kernel based on observed
progress. It is based on the notion of a virtual finishing time, which is the deadline a
process would finish at if it kept up its target rate. This is obviously quite similar to
Steere’s rate feedback, except that the constraints on deadlines/rates are tighter.

Other kernel modifications

While many researchers have recognized the importance of CPU scheduling to server per-
formance, most research into improving CPU scheduling efficiency has focused on exploit-
ing unmodified operating system kernels in unconventional ways or making minimally-
invasive changes to these kernels (see section 2.1). However, a number of researchers have
gone well beyond both points in pursuit of more extreme optimizations.
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Bhatia et al. [BCL06] designed both a user-space memory manager and a kernel process
scheduler specifically for event-driven servers. In order to identify regions of code that
could benefit from increased L2 instruction and data cache re-use Bhatia introduced a
limited notion of stages to describe the operations of a server. Here a stage is simply the
code that processes events of a certain type(s) and produces events of another type(s);
the concurrency model is still a single-threaded event loop. In Bhatia’s architecture
the memory allocator attempts to minimize the overlap between the working sets of two
stages, while the scheduler (i.e. an event loop) receives feedback from the memory allocator
regarding which objects are currently in cache. The authors incorporated their memory
allocator and scheduling feedback mechanisms into several event-driven servers, including
the TUX in-kernel web server. The resulting performance improvements are impressive,
though it is unclear how generally applicable this approach is and how well it would work
with servers that block frequently or are bound to a hardware resource other than the
CPU.

As part of his PhD research in the mid-1990s Engler and his collaborators developed the
Exokernel, “an operating system architecture that multiplexes machine resources while
permitting an unprecedented degree of application-specific customization of traditional
operating system abstractions” [EKO95]. The impetus behind the Exokernel is the same
as that cited by Welsh in “Virtualization Considered Harmful” [WC01], namely that op-
erating system abstractions such as processes and virtual memory that are designed to
fairly multiplex underlying hardware resources severely hinder the performance of de-
manding applications such as servers. While Welsh’s response to this problem was simply
to repurpose the same abstractions, the Exokernel eliminated them entirely, reducing the
kernel to its most basic hardware protection mechanisms. Application developers that
needed higher-level abstractions such as network protocols or virtual memory could mix
and match from a selection of application-level “modules” in which the same facilities
were optimized for different purposes, much as developers of scientific computing appli-
cations can select from different linear algebra kernels. Less extreme and more practical
versions of this approach were implemented in other operating systems, such as SPIN
[BSP+95] and Nemesis [LMB+96], which allowed applications to heavily and directly in-
fluence scheduling and other kernel policies without the kernel abdicating its traditional
functions.

6.3 Stage architectures

The principles of stage architectures have been applied to several software domains, from
software routers to single node and distributed databases. Factoring code into event-
passing stages offers numerous advantages over more traditional layered architectures,
both in terms of design considerations (modularity, encapsulation) and runtime behavior
(reconfigurability, data and instruction locality). The following sections survey the evo-
lution of stage architectures for server-like systems from the late 1990s until the present.

JAWS

The advent of the World Wide Web in the early 1990s and subsequent research into the
dynamics of highly concurrent web servers coincided with the then-current fascination
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with design patterns for software development. The JAWS web server framework was
an embodiment of both trends [HS99], and one of the first widely-recognized attempts
at building a high-performance web server. Unlike Flash and other highly-specialized
servers, JAWS was a framework of frameworks that allowed developers to selectively re-
implement parts of a server. It included frameworks for operating system I/O, protocol
handling, concurrency/threading, and file caching [SH98]. Some of these frameworks may
be viewed as stages, while others (such as the concurrency framework) approximate the
function of SEDA’s stage infrastructure.

The Click modular router

The Click modular router [KMC+00] is often cited as one of the first high-profile examples
of a stage architecture like the ones described in this dissertation. Click was used to imple-
ment and benchmark routers for Ethernet, IP, BGP, DiffServ, and other protocols. The
Click architecture allowed software developers to configure fine-grained packet processing
elements in a directed graph. Unlike later event-driven architectures such as SEDA, Click
packets could be pulled from one element to another or pushed from a producer to a con-
sumer. Packets could also dynamically alter their path through the element graph based
on information about the flow to which a packet belonged. A packet processing element
in the Click architecture is not exactly equivalent to a stage, however, since some elements
could be passive, such as e.g. queues that simply performed some operation whenever a
packet was enqueued.

Click was initially targeted toward single processor commodity machines, and was only
later adapted to SMP architectures [CM01b]. Scheduling in the Click router was straight-
forward compared to scheduling for servers: packet processing operations almost always
have short and predictable execution times, which largely obviates the need for com-
plex scheduling algorithms. The authors of [CM01b] did not attempt to optimize CPU
scheduling on multiprocessors beyond basic load balancing between processors and allow-
ing developers to statically assign packet processing elements to specific cores.

SEDA

The Staged Event Driven Architecture (SEDA) was originally designed as a refinement
to the classic single-threaded event loop [WGBC00]. In SEDA the event loop was bro-
ken down into a series of stages separated by queues. The first SEDA technical report
[WGBC00] describes several patterns for decomposing reactive event processing logic into
pipelines of stages and replicating stages across multiple processors. Only later was the ar-
chitecture associated with thread pool-per-stage concurrency ([WCB01] and section 2.4.1
of this dissertation).

After 2000, SEDA publications such as [WC03] and a culminating PhD thesis [Wel02]
emphasized the “overload control” aspect of the architecture: by limiting the number
of threads assigned to each stage, enforcing admission controls at each stage, allowing
backpressure on queues, and selectively degrading service by e.g. decreasing the quality
of images in a static file web server, the performance of a staged system could grace-
fully degrade under overload, staying at or near peak throughput. The resulting “load-
conditioned services” were contrasted to thread-per-connection servers whose performance
degraded severely when the servers were overloaded [WC01]. For his PhD thesis [Wel02]
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Welsh benchmarked several SEDA-based servers, including a SPECweb99-like HTTP file
server, a Gnutella router, and a webmail server with a database back end, in an effort
to show that SEDA is well suited to many high-performance servers, in contrast to the
HTTP-specific optimizations of Flash [PDZ99].

The main shortcoming of SEDA was its close association with thread pool-per-stage con-
currency; increasing and decreasing the number of threads in a stage’s thread pool was
the primary mechanism of Welsh’s per-stage controllers. In his thesis Welsh suggested
that other concurrency strategies such as Cohort scheduling [LP02] could be substituted
in order to e.g. emphasize cache re-use instead of overload control, but he did not pursue
this course further.

StagedServer

The designers of the StagedServer architecture [LP02] emphasized a different aspect of
stage architectures, namely increasing data and instruction cache re-use in staged servers
through greater spatial and temporal locality. The StagedServer architecture was associ-
ated with a specific scheduling policy, Cohort scheduling (see section 2.4.2), which was de-
signed to increase cache hit rates by batching similar computations (events). The Staged-
Server architecture also made several allowances for multiprocessor execution. Stages
were classified as exclusive (e.g. single-threaded), partitioned (multithreaded but with
per-processor data structures), and shared (multithreaded with global data structures).
Events associated with the same request were processed on the same processor by default,
though they could also be load-balanced between processors at programmer-defined junc-
tures. The shared data structures of stages in a benchmark server were also partitioned
across different processors in order to increase per-processor data cache locality.

Staged databases

A recent project at Carnegie Mellon [HA05] combined aspects of both SEDA and the
Cohort scheduling/StagedServer paradigm in the design of a staged Database Manage-
ment System (DBMS). Harizopoulos and his collaborators observed that the existing
thread-per-connection concurrency of conventional DBMSs adversely affected the hard-
ware efficiency of these servers, due in large part to the effects of thread context switching
on both data and instruction cache utilization. The authors of [HA05] separated the op-
erations of a monolithic DBMS (I/O, query parsing, optimization, execution of different
relational operators) into a sequence of stages in order to increase instruction cache re-use
by shortening code paths and increase the data cache hit rate by batch processing requests
of the same type. Harizopoulos et al. chose a variation of the SEDA thread pool-per-stage
scheduling policy for their architecture, with non-preemptive, user-level threads substi-
tuted for the the original SEDA’s kernel threads (see section 2.4.2 for a discussion of this
hybrid policy). The number of threads in a given stage’s thread pool could be adapted
according to client demand, similar to SEDA’s controllers.
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6.4 Programming language support for stage concur-

rency

Concurrent programming has long been a primary concern of the programming language
research community. Most of the research in this area has focused on providing new
high-level abstractions for concurrent programming to supplement or replace the current
status quo of low-level threads and locks. These improvements are primarily targeted at
mainstream procedural and object-oriented languages such as C or Java; in a functional
language such as Haskell the type system can ensure that the segments of a threaded
computation (between blocking operations) can safely be executed in parallel, in effect
creating very fine-grained stages [LZ07].

Active objects

The favored contenders for these new procedural language abstractions are variants of ac-
tive objects [SRSS00] and actors [Agh86], both of which bear some conceptual similarity
to stages. In an active object system, method execution is decoupled from method invoca-
tion: rather than calling methods directly, code that invokes a method on an active object
enqueues a request to the active object, which executes the method asynchronously. A
scheduler within the active object decides which requests to execute next, and the results
of a method execution are returned to the caller asynchronously. The model does not
dictate a particular scheduling policy, though in practice active objects are often imple-
mented with one user-level thread per object and a FCFS queue discipline, which has a
clear analog in SEDA-like stages. An active object is not equivalent to a stage by the the
definition of chapter 1, however, since there is no guarantee that methods on two active
objects with different classes can run concurrently. In this respect an active object more
closely resembles a monitor [Hoa74] than a stage.

Actors

Actors [Agh86] are similar to active objects in that they execute code asynchronously in
reaction to messages. However, actors need not be objects with formal interfaces, but can
dynamically route and process messages. As with active objects, different actors are not
guaranteed to be concurrently executable, although like active objects, each actor is usu-
ally associated with a [user-level] thread, and sending a message from one actor to another
crosses a thread boundary. Recent optimizations of actor-based systems have focused on
reducing the overhead of message passing [FAH+06, SM08] by eliminating copies and en-
forcing isolation between threads. Although scheduling the lightweight threads associated
with actors has been less of a concern than correctness and other non-performance-related
issues, the same techniques used to avoid copies between threads may also allow compil-
ers to delimit stages [Sri07], which would make actor-based programs amenable to the
scheduling optimizations described in this dissertation.

Both actors and active objects are general-purpose abstractions for concurrency that can
be and have been adapted to mainstream programming languages such as C or Java
without changing the languages themselves. An alternative approach is to extend these
languages with new primitives for concurrent programming.



100 6.4. PROGRAMMING LANGUAGE SUPPORT FOR STAGE CONCURRENCY

Cilk

Cilk is a C-based language and runtime for multithreaded programming [Blu95]. Cilk
threads differ from the conventional kernel and user-level threads discussed in this disser-
tation in that they cannot block, but always run to completion. A thread can spawn off
other threads, which return their results by invoking a continuation. This is similar to
two stages communicating with events, although Cilk threads are not guaranteed to be
concurrently executable. CPU scheduling optimizations for the Cilk runtime have cen-
tered on its work stealing thread scheduler [BL94]. Work stealing algorithms typically put
precedence on balancing the load among processors in a multiprocessor machine ahead of
other concerns, though later theoretical work on the Cilk algorithm included analysis of
the data locality of work stealing [ABB00].

Flux

Flux is a domain-specific language for high-performance servers [BGK+06]. A Flux pro-
gram describes an acyclic graph for request processing logic, where nodes in the graph
are C or C++ functions implementing some operation of the server (listening for con-
nections, parsing HTTP requests, etc.) Given such a program, the Flux compiler can
generate runnable server code with one of several different concurrency models, including
thread-per-connection and single-threaded event-driven servers in C and SEDA servers
in Java. The compiler also uses per-node mutual exclusion requirements specified by the
programmer to check safety guarantees and to generate fine-grained reader/writer locking
code for multithreaded runtimes. With sufficiently granular mutual exclusion constraints
such an approach should be orthogonal to the explicitly-delimited stages considered here,
and the server runtimes generated by the Flux compiler could likewise incorporate the
stage scheduling policies investigated in this dissertation.

Identifying parallelism in event-driven servers

In the past proponents of the single-threaded event loop concurrently model have often
boasted that the model eliminates the need for error-prone locking on shared resources
by only relying on a single thread. With the advent of multicore processors the model’s
explicit limitation of parallelism has become a serious liability. A number of solutions to
this problem have been proposed in the literature. These include simply replicating the
single-threaded process multiple times [KKK07]; manually “coloring” event handlers to
indicate concurrently-executable code [ZYD+03]; and using compile-time static analysis
to identify regions of safely-parallelizable code in existing event-driven servers [JP06]. The
latter approach seems particularly promising as a means of reconciling legacy event-driven
code with today’s processor architectures, though it is unclear how useful this will be in
the future, when programmers who set out to write new event-driven servers are more
likely than their predecessors to consider multiprocessor issues from the outset.
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Conclusion

Stage architectures and their associated concurrency model have proved to be a superior
alternative to conventional kernel thread-per-connection and single-threaded event-driven
concurrency for high-performance servers. This proof was established by first generation
research into stage architectures, which focused on comparing stage concurrency to other
models in terms of overload handling behavior, data and instruction cache re-use, and
raw throughput.

The research reported in this dissertation belongs to a second generation that builds on
the basic premise that stages are a fundamentally superior way of handling concurrency
compared to naive kernel thread-per-connection approaches. Rather than concentrating
on the advantages of the staged concurrency model over other models, I have focused
on variations within the same model, particularly scheduling policies for staged servers.
The main positive results of this research came from a series of experiments that demon-
strated that (1) thread-per-core policies outperform thread pool-per-stage policies in terms
of throughput on realistic CPU-intensive workloads and (2) explicit load balancing can
improve the throughput of thread-per-core-scheduled servers. The same experiments also
produced a negative result, namely that the thread-per-core policies as a class are com-
petitive with each other on current hardware. More generally, these results ratified the
known performance advantages of staged concurrency over other concurrency models and
confirmed that stage architectures are a worthwhile subject for future research.

7.1 Future work

Inter-stage queues

With only a few cores per machine the queues and stacks of current stage architectures
are usually not a major factor in staged server performance, because the cost of passing
events between stages is far outweighed by the cost of processing the events. The number
of cores in commodity machines is set to rise dramatically in the future, however, and
this will increase the relevance of inter-stage communications mechanisms. In particular, I
expect to see non-blocking data structures replace the current standard of locked, blocked
queues and stacks in userspace servers.

In addition to the benefits of non-blocking operation itself, there are a number of opti-
mizations that decrease the cost of inter-stage communication via these mechanisms. For
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example, by making some assumptions about the number of producer stages or the num-
ber of consumer stages – usually assuming the number of producers or consumers is one
– some signaling between producers and consumers can be avoided [Hup02]. More gener-
ally, non-blocking data structures can be optimized for specific use cases by e.g. attaching
the list of consumers waiting for events to the sentinel element of the non-blocking queue
rather than having a separate semaphore for the wait list, as in the current event queue
implementation in Yield. For stages that can tolerate event reordering, substituting an
efficient non-blocking stack [Boe04] for a current non-blocking queue could also increase
the data cache hit rate of a server. For applications such as the image processing server a
lock-free priority queue [ST05] could also impose an SRPT queue discipline on individual
stages, so that smaller images would always have precedent and could clear the system
quickly.

Models

In the last decade a range of models and heuristics from queuing theory to control engi-
neering have been applied to web server admission control and scheduling, yet no approach
has emerged as demonstratively more accurate and effective in comparison to the others.
Although many of these techniques were inherited from the study of network congestion,
the variable cost of web server connections and requests (vs. the constant cost of rout-
ing packets), the more complex nature of web server code (vs. relatively simple routing
algorithms), and the general unpredictability of the web environment (vs. the statistical
characterization of networks) has made web server performance hard to pin down. Simi-
larities between staged servers and queueing networks can simplify performance analysis
for these servers in particular, though relatively few researchers have attempted to do so
[Wel02, LLCZ06].

Benchmarks

There is a real need for more rigorous benchmarks for HTTP, SMTP, and other servers
that isolate the performance of the server independently of the larger system while still
being realistic. Designing and implementing rigorous independent benchmarks is a no-
toriously difficult task with very few tangible rewards, which discourages many qualified
and unbiased participants. Nevertheless, this is a necessary condition for future research
in high-performance servers, which must move beyond the status quo of HTTP file server
benchmarks.

Optimizing CPU scheduling for other targets

Rising energy costs and environmental concerns have spurred many companies and re-
searchers to consider power consumption as a fundamental design parameter of computing
systems. Modern processors decrease power consumption in hardware by switching to low
power states when peak performance is not required. Moreover, running one of today’s
multiprocessor machines at peak performance can actually slow them down: the cooling
devices in many commodity machines are not able to dissipate enough heat over prolonged
periods of time, so the processor(s) must decrease their clock speeds preventatively in or-
der to avoid overheating.
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The majority of software CPU schedulers, in contrast, are designed to raise throughput or
meet response times even if this also induces unnecessary power consumption. Recently
a number of researchers have reconsidered these basic goals of CPU scheduling. To cite
one example, Merkel and his collaborator have designed and implemented a Linux kernel
process scheduler that selects processes to run and/or migrates them between cores with
the explicit goal of reducing power consumption [MB08]. The scheduler accomplishes this
by tracking and observing the way processes access the functional units of a processor and
ensuring that no unit is used excessively. For instance, a process that uses the floating
point units much more than the integer units might be scheduled between two integer-
heavy processes, so that the integer units can cool down while the floating point-heavy
process is running. Allowing the units to cool down means that the clock speed of a
given core can remain high without causing overheating, which usually means that more
instructions can be executed. This in turn implies that fewer cores are required to handle
the same load. Cores that are not needed can run in low power states, so less power is
consumed.

Unfortunately, the fine-grained, system-wide observation and control in Merkel’s sched-
uler is difficult to replicate accurately outside the kernel. A user-level scheduler such as
those described in this dissertation would have to rely on user input to indicate which
functional units were being accessed, and even then there would be no guarantee that
some other process outside the user-level scheduler’s control (but within the kernel’s) was
not perturbing the system. A more promising approach would be to run the server on a
single core by default, and have a strategy for including and decommissioning more cores
as the need arose, as indicated by some Quality of Service metric such as response times.



104 7.2. ACKNOWLEDGMENTS

7.2 Acknowledgments

David Eyers, a post-doctoral researcher at the University of Cambridge Computer Lab-
oratory, assisted me in setting up and running the RUBiS benchmark by installing and
configuring the RUBiS MySQL database and benchmarking the Java servlets implemen-
tation of RUBiS.

Thomas Lange, proprietor of wie-ich.de, provided the data set for the image processing
server benchmark and the original batch script upon which the server was based.

Oiestein Andersen, Ted Briscoe, and the Natural Language Processing Group at the Com-
puter Laboratory kindly provided the source to the Robust Accurate Statistical Parsing
(RASP) library for use in the site search benchmark.

The system administrators at the Computer Laboratory and at the Darwin Computer
resolved many technical issues I encountered in the last three years. Darwin is run by the
University of Cambridge High Performance Computing Service and was provided by Dell
Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding
Council for England.

I would like to personally thank my supervisor, Jean Bacon, for making things easier when
I insisted on making them difficult; David Eyers, for his patience, persistence, and shell
scripting fu; Sriram Srinivasan, for sharing his perspective; David Evans, for not taking
me too seriously; Felix Hupfeld, for showing me much more than the debugger; and my
family, for reminding me where I came from and why I’m here.



Appendix A

Appendix: implementation notes

A.1 Cohort scheduling: per-core stacks

In addition to SEDA-like synchronized event queues, stages in a StagedServer-based appli-
cation also incorporated per-core event stacks as a means of increasing data cache re-use.
From [LP02]:

A stage maintains a stack and queue for each [core] in the system. In general,
[events] originating on the local [core] are pushed on the stack and [events]
from other [cores] are enqueued on the queue. When a stage starts processing
a cohort [of events], it first empties its stack in LIFO order, before turning
to the queue. This scheme has two rationales. Processing the [most recent
events] first increases the likelihood that an [event’s] data will reside in the
cache. In addition, the stack does not require synchronization, since it is only
accessed by one [core], which reduces the common-case cost of [sending an
event].

Unfortunately, from the above description it is not entirely clear when an event for a given
stage should be put on a core’s stack at that stage and when it should be directed to the
stage’s single event queue. Consider a system with two processors, P1 and P2, and three
stages, S1, S2, and S3. When P1 is visiting S1 and P2 is visiting S2, and S1 generates an
event for S2, where does the event go?

1. To P1’s per-core stack on S2? If that is the case, then there is very little use for the
queues.

2. To the queue on S2, on the (worst-case) assumption that S2 will be visited by an
“other processor” before P1 can visit it (and process its stack)? If this worst-case
assumption holds then the stacks are not very useful, since they could only hold
events that were generated for S1 by S1. If P1 happened to be processing events
from S1’s queue when the event for S1 was generated, then the latter event would
not be processed until P1 visited S1 again (since stacks are visited before queues),
which would lessen its chances of staying in cache. Furthermore, in real servers
stages rarely send events to themselves, so the stacks would go unused most of the
time.
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For the experiments in chapter 4 I implemented per-core stacks for Cohort scheduling
according to interpretation 1, where events for a stage always go to its per-core stacks,
except when

1. an event is enqueued by some outside thread that is not part of the thread-per-core
set (such as a set of threads for offloading blocking disk operations); or

2. a stage is single-threaded and must be locked. Upon encountering a single-threaded
stage a thread/core does not block waiting for the lock, but moves on to the next
stage if the lock cannot be acquired immediately. This means that the inter-visit
times for a particular stage/core combination can be very long, which in turn implies
that an event on a per-core stack could wait a long time to be processed.

In both cases the stage’s synchronized queue is the more appropriate destination for an
event.

Note that the use of a per-core stack implies the possibility of event reordering. This is not
acceptable for many applications, which do not account for arbitrary event arrival orders
in single threaded code, such as, for example, buffers for an HTTP request body arriving
before the HTTP headers. For this reason as well as the unclear delineation of queues
and stacks my use of per-core stacks was limited to benchmarking Cohort scheduling.
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