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Abstract
We describe a reduction from temporal property verification to a program
analysis problem. Our reduction is an encoding which, with the use of proce-
dures and nondeterminism, enables existing interprocedural program analy-
sis tools to naturally perform the reasoning necessary for proving temporal
properties (e.g. backtracking, eventuality checking, tree counterexamples
for branching-time properties, abstraction refinement, etc.). Our reduction
is state-based in nature but also forms the basis of an efficient algorithm for
verifying trace-based properties, when combined with an iterative symbolic
determinization technique, due to Cook and Koskinen [15].

In this extended version of [17], we formalize our encoding as a guarded
transition system G parameterized by a finite set of ranking functions and the
temporal logic property. We establish soundness between a safety property
of G and the validity of a branching-time temporal logic property ∀CTL.
∀CTL is a sufficient logic for proving properties written in the trace-based
Linear Temporal Logic via the iterative algorithm [15].

Finally, using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical viability
of our work.

1Microsoft Research and Queen Mary University of London
2University of Cambridge
3Rice University
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Chapter 1

Introduction

In this report we elaborate on our previous results [17]. We describe a novel method
of proving temporal properties of (possibly infinite-state) transition systems. We ob-
serve that, with subtle use of procedures and nondeterminism, temporal reasoning can
be encoded as a program analysis problem. All of the tasks necessary for reasoning
about temporal properties (e.g. abstraction search, backtracking, eventuality checking,
tree counterexamples for branching-time, etc.) are then naturally performed by off-the-
shelf program analysis tools. Using known interprocedural safety analysis tools (e.g.
[2, 5, 8, 25, 34]) together with techniques for discovering termination arguments (e.g.
[3, 6, 18]), we can implement temporal logic provers whose power is effectively limited
only by the power of the underlying tools.

Based on our method, we have developed a prototype tool for proving temporal prop-
erties of C programs and applied it to methods drawn from the PostgreSQL database
server, the Apache web server, and the Windows OS kernel. Our technique yields speeds
ups by multiple orders of magnitude for ∀CTL. Similar performance improvements result
when proving LTL with our technique in combination with a recently described iterative
symbolic determinization procedure [15].

Limitations. While in principle our technique works for all classes of transition systems,
our approach is currently geared to support only sequential non-recursive infinite-state
programs as its input. Furthermore, we currently only support the universal fragments
of temporal logics (i.e. ∀CTL rather than CTL). Existential reasoning would also be
possible, but care is required to ensure that the underlying program analysis tools appro-
priately use universal abstractions (“may” transitions) as well as existential abstractions
(“must” transitions). Finally, our method works best when properties do not involve
complex nesting of temporal operators. In order to better support these more complex
properties our implementation would need to mix the construction of the program analysis
problem with the analysis itself in the spirit of Impact [29], as invariants proved during
a lazy unrolling could be used to prune away much of the work. As presented here, our
approach instead creates a single encoding up front before performing program analysis.
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1.1 Related work

There is a relationship between temporal logic verification and the problem of finding
winning strategies in finite-state games or game-like structures such as alternating au-
tomata [4, 26, 36]. The technique presented in this paper can be viewed as a generalization
of prior work to games over infinite state spaces.

Other previous tools and techniques are known for proving temporal properties of
finite-state systems (e.g. [7, 11, 26]) or classes of infinite-state systems with specific
structure (e.g. pushdown systems [38, 39] or parameterized systems [20]). Our proposal
works for arbitrary transition systems, including programs.

A previous tool proves only trace-based (i.e. linear-time) properties of programs [14]
using an adaptation of the traditional automata-theoretic approach [37]. By contrast, the
reduction to program analysis given here promotes a state-based (e.g. branching-time)
approach. Trace-based properties can be proved with our tool using a recently described
iterative symbolic determinization technique [15]. In most cases our new approach is
faster for LTL verification than [14] by several orders of magnitude.

When applying traditional bottom-up based methods for state-based logics (e.g. [12,
19, 21]) to infinite-state transition systems, one important challenge is to track reachability
when considering relevant subformulae from the property. In contrast to the standard
method of directly tracking the valuations of subformulae in the property with additional
variables, we instead use procedure calls to encode the checking of subformulae as a
program analysis problem. As an interprocedural analysis computes procedure summaries
it is in effect symbolically tracking the valuations of these subformulae depending on the
context of the encoded system’s state. Thus, in contrast to bottom-up techniques, ours
only considers reachable states (via the underlying program analysis). A safety analysis
for infinite-state systems will of course over-approximate this set of states, but it will never
need to find approximations for unreachable states. By contrast, bottom-up algorithms
require that concrete unreachable states be considered. Furthermore, in our technique,
only relevant state/subformula pairs are considered. Our encoding will only consider a
pair s,ϕ where R,s ⊧ ϕ is needed to either prove the outermost property, or is part
of a valid counterexample. For example, let us say the state space is {s0, s1, s2} and the
transition relation is {(s0, s1), (s1, s2), (s2, s2)} and we want to know whether the property
p∧ q holds, where p, q are atomic propositions. Our encoding explores the cases s0 ⊧ p∧ q,
s0 ⊧ p, s0 ⊧ q, but not the cases s1 ⊧ p ∧ q, s2 ⊧ p ∧ q, s1 ⊧ p, s1 ⊧ q, s2 ⊧ p, s2 ⊧ q. A
bottom-up algorithm will explore these superfluous cases.

Chaki et al. [9] attempt to address the same problem of subformulae and reachability
for infinite-state transition systems by first computing a finite abstraction of the system
a priori that is never refined again. Standard finite-state techniques are then applied.
In our approach we reverse the order: rather than applying abstraction first, we let the
underlying program analysis tools perform abstraction after we have encoded the search
for a proof as a new program. This strategy facilitates abstraction refinement: after our
encoding has been generated, the underlying program analysis tool can iteratively perform
abstraction and refinement. Schmidt and Steffen [35] take a similar tack.

The tool Yasm [24] takes an alternative approach: it implements a refinement mech-
anism that examines paths which represent abstractions of tree counterexamples (using
multi-valued logic). This abstraction loses information that limits the properties that
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Yasm can prove (e.g. the tool will usually fail to prove AFAGp). With our encoding the
underlying tools are performing abstraction-refinement over tree counterexamples. More-
over, Yasm is primarily designed to work for unnested existential properties [23] (e.g. EFp
or EGp), whereas our focus is on precise support for arbitrary (possibly nested) universal
properties.

Our encoding shares some similarities with the finite-state model checking procedure
CEX from Figure 6 in Clarke et al. [13]. The difference is that a symbolic model checking
tool is used as a sub-procedure within CEX, making CEX a recursively defined model
checking procedure. The finiteness of the state-space is crucial to CEX, as in the infinite-
state case it would be difficult to find a finite partitioning a priori from which to make a
finite number of model checking calls when treating temporal operators such as AG and
AF. Our encoding, by contrast, is not a recursively defined algorithm that calls a model
checker at each recursion level, but rather a transformation that produces a procedural
program that encodes the proof search-space. This program is constructed such that it can
later be symbolically analyzed using (infinite-state) program analysis techniques. When
applied to the encoding, the underlying analysis tool is then given the task of finding the
necessary finite abstractions and possibly procedure summaries.

1.2 Preliminaries

We begin with some definitions and terminology. Our results apply to state transition
systems. For convenience however, we will begin by defining an imperative while language
(used in all of our examples) and give its operation semantics in the form of a transition
system. Our results can then be directly applied.

Programs. We assume that programs are written (or can be compiled to) the standard
simple programming language (SPL [28]) given as follows:

C ∶∶= C ; C Sequential composition
∣ C +C Nondeterministic choice
∣ C∗ Looping
∣ assume(b) Assume
∣ c Basic command
∣ skip Skip

SPL is parameterized by the set of basic commands c. In general, programs could involve
a memory and commands could be operations on that memory. This would allow us to,
for example, model heap manipulating programs. For this report, however, we will assume
we are working with states that map (stack) variables V ars to integers (and expressions
from the domain of linear arithmetic). Hence the following definitions:

c ∶∶= x := e

e ∶∶= z ∈ Z ∣ v ∈ V ars ∣ e + e ∣ e − e ∣ e × e ∣ e ÷ e ∣ *e
b ∶∶= true ∣ ¬b ∣ *b ∣ b && b ∣ e == e ∣ e > e ∣ e ≥ e
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(skip ; C), sÐ→ C, s
Skip

C1, sÐ→ C ′
1, s

′

(C1 ; C2), sÐ→ (C ′
1 ; C2), s′

Seq

(C1 +C2), sÐ→ C1, s
Nd1 (C1 +C2), sÐ→ C2, s

Nd1

C∗, sÐ→ (skip + (C ; C∗)), s Loop
JbK

assume(b), sÐ→ skip, s
Asm

s′ ∈ JcKs
c, sÐ→ skip, s′ Cmd

Figure 1.1: Operational semantics of SPL

We typically we drop the e and b subscripts on *, as the type is given by the context.
Standard programming language idioms can be derived as follows:

while (b) { C } ≡ (assume(b) ; C)∗ ; assume(¬b)
if (b) { C1 } else {C2 } ≡ (assume(b) ; C1) + (assume(¬b) ; C2)

if (b) { C1 } ≡ (assume(b) ; C1) + (assume(¬b) ; skip)

Standard expressions (e.g. false,<,≤,≠,||) can also be derived. The above language
is sufficient to model many C, C++, and Java programs (after some compilation and
transformation).

Operational semantics. The small-step operational semantics for SPL are given in
Figure 1.1. Configurations consist of the program text C and the current state s from the
set of states SC and the initial states IC ⊆ SC . We will assume the state s is a mapping
from (typed) variables V ars to values. We assume that state equality is decidable:

Axiom 1.1 (Distinguishability). For all s, s′ ∈ S either s = s′ or s ≠ s′, and this can be
determined in finite time.

Program counter. A program text C is finite. We assume a special variable denoted
pc which maps each subcommand of C to a unique element in a finite domain L. The
operational semantics in Figure 1.1 can be easily modified to explicitly show that the
value of pc is updated accordingly in each step.

Definition 1.1 (Transition system). A transition system M = (S,R, I) is a set of states
S, a transition relation R ⊆ S × S, and a set of initial states I ⊆ S.

The transition system for a program text C and set of variables V ars, MC = (SC ,RC , IC)
(usually written simply M) requires that we define the transition relation:

RC ≡ {(s, t) ∣ s ∈ S ∧ ∃C ′ ∈ sub(C). ∃C ′′. C ′, sÐ→ C ′′, t}

where sub(C) is defined inductively on C in the natural way.
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Executions (Streams). For convenience, we do not allow finite traces—the transition
relation must be such that every state s has at least one successor state:

Axiom 1.2. ∀s.s ∈ S ⇒ ∃t. (s, t) ∈ R.

The above axiom is without a loss of generality, as final states in systems with finite
traces can be encoded as states that loop back to themselves in the transition relation.
Note that we assume S does not include unreachable states, so we do not need to define
a successor for them to ensure Axiom 1.2 holds.
We define a trace to be a stream (an infinite sequence) of states:

Definition 1.2 (Trace). For a transition relation R, we say that π ∶ Stream S is a trace
provided that isTrace π holds, defined coinductively as follows:

isTrace π′ (s,hd π′) ∈ R
isTrace s ∶∶ π′

where ∶∶ and hd are the standard stream operations. In the remainder of this report, when
we use the notation π, we assume that isTrace π holds. We use the notation πi to mean
the ith tail of π, and the notation π0 to mean the head of π. Note that tail binds tighter
than head, i.e. πi0 = (πi)0. With coinductive reasoning we can show that there exists an
execution from every state.

Lemma 1.3 (Trace existence). For all M = (S,R, I), ∀s. s ∈ S ⇒ ∃π. isTrace π.

Proof. First construct a cofixedpoint, using Axiom 1.2 to witness a next state, denoted
(next s)1, to obtain an execution π as follows:

traceFrom s ≡ s ∶∶ (traceFrom (next s))

Then, via coinduction, unfold π and show that isTrace π holds.

Definition 1.3 (Execution). For all M = (S,R, I), π is an execution of M , if π0 ∈ I.

Definition 1.4 (Executions). For all M = (S,R, I), ΠM ≡ {π ∣ π is an execution of M}.

Ranking functions. For a state space S, a ranking function f is a total map from S to
a well ordered set with ordering relation ≺. A relation R ⊆ S×S is well-founded if and only
if there exists a ranking function f such that ∀(s, s′) ∈ R. f(s′) ≺ f(s). We denote a finite
set of ranking functions (or measures) as M. Note that the existence of a finite set of
ranking functions for a relation R is equivalent to containment of R within a finite union
of well-founded relations [32]. In other words, a set of ranking functions {f1, ..., fn} can
denote the disjunctively well-founded relation {(s, s′) ∣ f1(s′) ≺ f1(s)∨ ...∨fn(s′) ≺ fn(s)}.

Theorem 1.4. For all R, I, if R is well-founded, then from every state s ∈ I there are no
infinite traces in R. Proof. Trivial. ◻

1To construct this in Coq, we used the sigma operator proj1 sig, which is an existential operator
that yields a whitness.
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α(s)
R,s ⊧ α

R, s ⊧ ϕ1 R,s ⊧ ϕ2

R,s ⊧ ϕ1 ∧ ϕ2

R,s ⊧ ϕ1 ∨ R,s ⊧ ϕ2

R,s ⊧ ϕ1 ∨ ϕ2

∀(s0, s1, ...). s0 = s⇒ ∃i ≥ 0. R, si ⊧ ϕ
R, s ⊧ AFϕ

∀(s0, s1, ...). s = s0⇒ (∀i ≥ 0. R, si ⊧ ϕ1)∨
(∃j ≥ 0. R, sj ⊧ ϕ2 ∧ ∀i ∈ [0, j). R, si ⊧ ϕ1)

R,s ⊧ A[ϕ1Wϕ2]

Figure 1.2: Semantics of ∀CTL: ⊧

1.3 Temporal logic

We are concerned with verifying temporal properties that may be written either as trace-
based properties in LTL or as state-based properties in the existential-free fragment of
computation tree logic (∀CTL). The encoding we describe in this paper is state-based in
nature and, as such, is readily suitable to ∀CTL properties. To prove LTL properties we
combine a recently described iterative symbolic determinization technique [15] with the
∀CTL proving technique described here.

The syntax of a ∀CTL formula is

ϕ ∶∶= α ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ AFϕ ∣ A[ϕWϕ]

The standard semantics of ∀CTL are given in Fig. 1.2. α is an atomic proposition.
∀CTL’s temporal operators are state-based in structure. The operator AFϕ specifies
that, across all computation sequences from the current state, a state in which ϕ holds
must be reached. The A[ϕ1Wϕ2] operator specifies that ϕ1 holds in every state where ϕ2

does not yet hold. Notice that the operator AGϕ, which specifies that ϕ globally holds in
all reachable future states, can be derived: A[ϕ W false]. We include the AG operator in
Chapter 2 for illustrative purposes, but omit this redundancy in Chapter 3.

We use AF and AW as our base operators (as opposed to the more standard U and R),
as each corresponds to a distinct form of proof: AF to termination and AW to safety. We
omit the next state operator AX. Formulae with U and R can be expressed in ∀CTL. We
assume that formulae are written in negation normal form, in which negation only occurs
next to atomic propositions (we also assume that the domain of atomic propositions is
closed under negation). A formula that is not in negation normal form can be easily
normalized.

Definition 1.5 (∀CTL-lifting). For all M = (S,R, I) and ∀CTL property ϕ,

M ⊧ ϕ ≡ ∀s ∈ I. R, s ⊧ ϕ.

Subformulae. We will need to enumerate subformulae, taking care to uniquely identify
each one. To this end, our definition of subformulae mantains a context path:

κ ≡ � ∣ L κ ∣ R κ
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which indicates the path from the root � (the outermost property ϕ), to the particular
subproperty ϕ of interest, at each step taking either the left or right subformula (L κ or
R κ). Consequently, the set of subformulae is a set of (ϕ,κ) pairs, and begins with the
root context element sub(ϕ,�):

Definition 1.6 (Subformulae). For an ∀CTL property ϕ,

sub(α,κ) ≡ {(α,κ)}
sub(ϕ ∨ ϕ′, κ) ≡ {(ϕ ∨ ϕ′, κ)} ∪ sub(ϕ,L κ) ∪ sub(ϕ′,R κ)
sub(ϕ ∧ ϕ′, κ) ≡ {(ϕ ∧ ϕ′, κ)} ∪ sub(ϕ,L κ) ∪ sub(ϕ′,R κ)
sub(AFϕ,κ) ≡ {(AFϕ,κ)} ∪ sub(ϕ,L κ)

sub(A[ϕWϕ′], κ) ≡ {(A[ϕWϕ′], κ)} ∪ sub(ϕ,L κ) ∪ sub(ϕ′,R κ)

Definition 1.7 (Immediate subformulae). For an ∀CTL property ϕ,

isub(α) ≡ ∅
isub(ϕ ∨ ϕ′) ≡ {ϕ,ϕ′}
isub(ϕ ∧ ϕ′) ≡ {ϕ,ϕ′}
isub(AFϕ) ≡ {ϕ}

isub(A[ϕWϕ′]) ≡ {ϕ,ϕ′}
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Chapter 2

From temporal logic
to program analysis

In this section we introduce a reduction which, when given a transition system M and
a temporal logic property ϕ, generates a program that encodes the search for the proof
that ϕ holds of M . Existing program analysis tools can then be used to reason about
the validity of the property. The encoding is state-based in nature but can be used
in combination with an iterative symbolic determinization procedure, due to Cook and
Koskinen [15], to obtain an efficient algorithm for verifying trace-based properties.

Example 2.1 (Acquire/release). We will use this example (written in the while language
from Section 1.2) throughout this chapter. It is a typical lock acquire/release-style program,
where we are interested in proving the ∀CTL property ϕ = AG[(x = 1) ⇒ AF(x = 0)].
Assume that initially x = 0.

1 while(*) {
2 x := 1;

3 n := *;

4 while(n>0) {
5 n := n - 1;

6 }
7 x := 0;

8 }
9 while(true) { skip }

2.1 Encoding

Our encoding E is given in Fig. 2.1. When given a transition relation system M = (S,R, I),
a finite set of ranking functionsM, and ∀CTL property ϕ, E returns a set of procedures.
There is a procedure denoted encκψ ∶ s → B for every (ψ,κ)-subformula of ϕ, including a
root procedure denoted enc�ϕ. For Example 2.1, E returns the following set of procedures:

{ enc�AG[(x≠1)∨AF(x=0)], encL �[(x≠1)∨AF(x=0)], encL L �
(x≠1), encR L �

AF(x=0), encL R L �
(x=0) }

Together, these procedures encode the search for the proof that ϕ holds of M .
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Executions of the procedures explore the S×sub(ϕ) state space in a depth-first manner,
passing the current state s ∈ S on the stack, starting with the root procedure enc�ϕ and an
initial state s0 ∈ I. At each successive procedure call encκψ(s), the encoding is attempting
to determine whether subformula ψ holds of a particular state s. Rather than explicitly
tracking this information, however, encκψ(s) returns false whenever ψ does not hold of s.
Consequently if, at the root level, enc�ϕ can be proved to never return false, it must be the
case that the overall property ϕ holds of the initial state s (we discuss the termination of
E below). This is the intution behind the following main theorem:

Theorem 2.1 (Soundness). For a machine M = (S,R, I) and ∀CTL property ϕ,

∃ finite M. E(M,M, ϕ) cannot return false ⇒ M ⊧ ϕ

Proof. See Chapter 3.

where M is, as described earlier, a finite set of ranking functions. We abuse notation
slightly here, using E(M,M, ϕ) to mean ∀s ∈ I. enc�ϕ(s). We formally define “cannot
return false” by giving E as a guarded transition system in Section 3.3, but informally it
means there is no execution of E where false is returned.

When a program analysis is applied to the procedures generated by E , it is implement-
ing what is needed to prove branching-time behaviors of the original transition system
(e.g. backtracking, eventuality checking, tree counterexamples, abstraction, abstraction-
refinement, etc).

Notice that, in contrast to bottom-up techniques for proving state-based properties,
this depth-first traversal boasts several improvements. First, only reachable states are
considered. A safety analysis may over-approximate this set of states, but it will never
need to find approximations for unreachable states. By contrast, bottom-up algorithms
require that concrete unreachable states be considered. Second, as discussed in Section 1.1,
only relevant state/subformula pairs are considered. Our technique is more amenable to
infinite-state transition systems because often solutions can be found where bottom-up
techniques would diverge.

2.2 Proof search

What remains is to understand how a given encκψ ∈ E(M,M, ϕ) determines whether a
subformula (ψ,κ) holds of a state s. By passing the state on the stack, we can consider
multiple branching scenarios. When a particular ψ is a ∧ or AW subformula, then encκψ(s)
ensures that all possibilities are considered by establishing feasible execution paths of
encκψ(s) to all of them. When a particular ψ is a ∨ or AF subformula, encκψ(s) enables
executions to consider all of the possible cases that might cause ψ to hold of s. If one is
found, true is returned. Otherwise, false will be returned if none are found. This is the
intuition behind the first invariant maintained by E :

INV1 ∶ ∀s,ψ, κ. R, s /⊧ ψ implies encκψ(s) can return false

Consider the encκψ∨ψ′ case from the definition of E . Imagine that ψ ≡ x ≠ 1, and ψ′ ≡
AG(x = 0). In this case we want to know that one of the subformulae (i.e. x ≠ 1 or
AG(x = 0)) holds. A procedure call encL κx≠1(s) is made to explore whether x ≠ 1 as well as a
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E(M,M, ϕ) ≡ E(M,M, ϕ,�) where

E(M,M, α, κ) ≡ {encκα}
E(M,M, ψ ∧ ψ′, κ) ≡ {encκAψ∧ψ′} ∪ E(M,M, ψ,L κ) ∪ E(M,M, ψ′,R κ)
E(M,M, ψ ∨ ψ′, κ) ≡ {encκψ∨ψ′} ∪ E(M,M, ψ,L κ) ∪ E(M,M, ψ′,R κ)
E(M,M,AFψ,κ) ≡ {encκAFψ} ∪ E(M,M, ψ,L κ)
E(M,M,AGψ,κ) ≡ {encκAGψ} ∪ E(M,M, ψ,L κ)

E(M,M,A[ψWψ′], κ) ≡ {encκA[ψWψ′]} ∪ E(M,M, ψ,L κ) ∪ E(M,M, ψ′,R κ)

where M = (S,R, I), and ∀ψ,κ. encκψ is defined as follows:

bool encκα(state s) { return α(s); }

bool encκψ∧ψ′(state s) {
if (*) return encL κψ (s);

else return encR κψ′ (s);

}

bool encκψ∨ψ′(state s) {
if (encL κψ (s)) return true;

else return encR κψ′ (s);

}

bool encκA[ψWψ′](state s) {
while (true) {
if (*) return true;

if (¬ encL κψ (s)) return encR κψ′ (s);

s := choose({s′ ∣ R(s, s′)});
}

}

bool encκAFψ(state s) {
bool dup = false; state ′s ;

while (true) {
if (*) return true;

if (encL κψ (s)) return true;

if (dup && ¬(∃f ∈M. f(s) ≺ f(′s)))
return false;

if (¬ dup && *)

{ dup := true; ′s := s; }
s := choose({s′ ∣ R(s, s′)});

}
}
// Included for illustrative purposes.

// AGϕ can be treated as A[ϕW false].
bool encκAGψ(state s) {
while (true) {

if (*) return true;

if (¬ encL κψ (s)) return false;

s := choose({s′ ∣ R(s, s′)});
}

}

Figure 2.1: The encoding E is a function which takes a machine M = (S,R, I), a finite
set of ranking functionsM, and an ∀CTL property ϕ, and returns a set of procedures. If
a sufficient M is found such that assert(enc�ϕ(s)) can be proved safe for all s ∈ I, then
ϕ holds of M (i.e. M ⊧ ϕ). choose() nondeterministically selects an element from the
set given by its argument. * ≡ choose({true,false})

13



separate procedure call encR κ
AG(x=0)(s) with the same current state s to explore AG(x = 0).

During a symbolic execution of this program, all executions will be considered in a search
for a way to cause the program to fail. If it is possible for both procedure calls to return
false (i.e. they abide INV1), then there will be an execution in which encκψ∨ψ′(s) can
return false (also abiding INV1). A standard program analysis tool (e.g. SLAM [2] or
Blast [25]) will find this case. By maintaining this invariant in each procedure, a proof
that the outermost procedure enc�ϕ cannot return false implies that the property ϕ holds
of the machine M .

Because we want to consider every state that is reachable from a finite prefix of an
infinite path, it must be possible for the procedure calls to return from every state. If
it were possible for the checking of a subformula like AG(x = 0) to diverge (thus never
returning false) then the above code fragment would never return false, and thus the
top-level procedure enc�ϕ would never return false. To this end, E maintains a second
invariant:

INV2 ∶ ∀s,ψ, κ. encκψ(s) can return true

It is this requirement that necessitates the additional nondeterministic “if (*) return

true” commands found within the loops in encκ
A[ψWψ′], enc

κ
AFψ, and encκAGψ. One can

think of “if (*) return true” as a form of backtracking. In our encoding, a nondeter-
ministic return of true is not declaring that the property holds (we must always return
true to do that). Instead, a nondeterministic return of true in the encoding means that
a program analysis can freely backtrack and switch to other possible scenarios during its
search for a proof.

In the AF case, our encoding must allow a program analysis to demonstrate that all
paths must eventually reach a state where the subformula holds. While exploring the
reachable states in R the encoding may, at every point, nondeterministically decide to
capture the current state (setting dup to true and saving s as ′s). When each subsequent
state s is considered, a check is performed that there is some rank function f ∈M that
witnesses the well-foundedness of this particular subset of the transitive closure of the
transition system (we will precisely say which subset in Chapter 3)1.

When M is a program. In practice, if the input transition system is implemented as a
program, then we can perform a number of additional static optimizations from abstract
interpretation that facilitates the application of current program analysis tools. These
optimizations are implemented in PEval ∶ (s → B) → (s → B). We describe some of
these optimizations below and the remainder can be found in Section 4.1.

First, consider the näıve implementation of AG given in Fig. 2.1 which, in essence, is
interpreting the cross product of R together with the following program:

while true do

if (∗) return true;

if (¬ encκψ(s)) return false;

done

1This is an adaptation of a known technique [18]. However, rather than using assert to check that one
of the ranking functions inM holds, our encoding instead returns false, allowing other possibilities to be
considered (if any exist) in outer disjunctive or AF formulae.
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Since we are considering programs as our input systems, we can build an encoding where
the following fragment is instrumented in each line of a procedure based on the original
input program:

if (¬ encκψ(s)) return false;

if (*) return true;

Second, because the program state is passed on the stack, a procedure call encκψ for a
subformula ψ will not modify variables in the outer scope, and thus can be treated as skip
statements when analyzing the iterations of R. Invariants within a given subprocedure
can be vital to the pruning, simplification, and partial evaluation required to prepare the
output of E for program analysis. Some additional details about PEval are discussed in
Section 4.1.

void main {
bool x; nat n;

{ x := 0; n := *; }
assert( enc�

AG((x≠1)∨AF(x=0))
0(x,n) );

}

bool enc�
AG((x≠1)∨AF(x=0))

0(bool x, nat n) {
while(*) {

x := 1;

if (¬encL �
(x≠1)∨AF(x=0)

3(x,n))

{ return false; }
if (*) return true;

n := *;

while(n>0) {
if (*) return true;

n--;

}
x := 0;

}
while(1) { if (*) return true; }

}

bool encL �
(x≠1)∨AF(x=0)

3(bool x, nat n) {
if (x ≠ 1) return true;

return encR L �
AF(x=0)

3(x,n);

}

bool encR L �
AF(x=0)

3(bool x, nat n) {
dup2 := dup5 := dup9 := false;

goto lab 3;

while(*) {
if(*) return true;

if(x==0) return true;

if(dup2 && ∄f ∈M.f(x2,n2) > f(x,n))
{ return false; }
if(¬dup2∧*){dup2:=1;x2:=x;n2:=n;}
x := 1;

lab 3:
if (x==0) return true;

n := *;

while(n>0) {
lab 5:

if(*) return true;

if(x==0) return true;

if(dup5 && ∄f ∈M.f(x5,n5) > f(x,n))
{ return false; }
if(¬dup5∧*){dup5:=1;x5:=x;n5:=n;}
n--;

}
x := 0;
if (x==0) return true;

}
while(1) {

if(*) return true;

if(x==0) return true;

if(dup9 && ∄f ∈M.f(x9,n9) > f(x,n))
{ return false; }
if(¬dup9∧*){dup9:=1;x9:=x;n9:=n;}

}
}

Figure 2.2: The procedures given by E(M,M, ϕ) where ϕ = AG[(x = 1) ⇒ AF(x = 0)]
and M is the program from Example 2.1. PEval has been applied to these procedures,
and irrelevent procedures have been omitted.
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Example. We now return to Example 2.1. The output of E(M,M, ϕ), after performing
several optimizations (discussed above and in Section 4.1) is given in Figure 2.2. Notice
that rather than passing the program counter on the stack, we instead specialize each
procedure with respect to the program counter (e.g. we have encR L �

AF(x=0) 3 where 3 indicates

that execution will begin where pc = 3). For every (ψ,κ) ∈ sub(ϕ) and pc valuation, there
is a corresponding method encκψ pc. We have omitted many of the procedures which are
unneeded. Since we are working with a linear arithmetic program where ranking functions
can be given as linear inequalities, integer < is a sufficient ordering for ≺. The main

procedure in the encoding initializes the program state (i.e. x,n) and then asserts that
enc�

AG((x≠1)∨AF(x=0)) 0 cannot return false.

An execution of this program consists of a cascade of calls down the hierarchy of
sub-procedures. Each procedure for a subformula maintains invariants INV1 and INV2.
This encoding allows us to ask questions of the form “starting now (i.e. from this state)
does there exist an execution that violates my property,” and answer them using standard
analysis tools.

For example, procedure enc�
AG((x≠1)∨AF(x=0)) corresponds to the property AG((x ≠ 1) ∨

AF(x = 0)) and returns false if there is a reachable state where ((x ≠ 1) ∨AF(x = 0)) does
not hold. It accomplishes this by calling encL �((x≠1)∨AF(x=0)) on each line and passing the
current state.

If ((x ≠ 1) ∨ AF(x = 0)) does not hold from the current state, then there will be a
way for encL κ((x≠1)∨AF(x=0)) to return false, in which case enc�

AG((x≠1)∨AF(x=0)) immediately

returns false (leading to an assertion failure in main). The procedures for disjunction
(encL �((x≠1)∨AF(x=0))) and atomic propositions (encL L �

x≠1 and encL R L �
x=0 ) are straight-forward

following Fig. 2.1, and also maintain INV1. We have inlined atomic propositions.

The procedure encR L �
AF(x=0) is, in some sense, the complement of AG. It is designed to

return true whenever there is a path to a state where x = 0 holds, and will return false
if there is an infinite execution that never reaches such a state. This is accomplished by
checking at each state (i.e. on each line of the program) whether encL R L �

x=0 (which as been
inlined) returns true, and returning false if a location is reached multiple times and there
is no ranking function in M that is decreasing.

A program analysis tool will return a counterexample if applied to the program given in
Figure 2.2, as we have not found a sufficient finite set of ranking functions M. We now
describe a method for discovering such an M.

2.3 Looking for M

Recall that we must ultimately find a finite set of ranking functions M such that a
program analysis can prove for every s ∈ I that enc�ϕ(s) does not return false. Our
top-level algorithm adapts a known method [18] in order to iteratively find a sufficient
M:
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Algorithm 2.2 (Main algorithm). let prove(M,ϕ) =
M = ∅;
(enc�ϕ,...) = map PEval E(M,M, ϕ);
while (∃s ∈ I. enc�ϕ(s) can return false) do

let χ be a counterexample in
if ∃ lasso path fragment χ′ from χ then
if ∃ witness f showing χ′ w.f. then
M :=M ∪ {f};
(enc�ϕ,...) := map PEval E(M,M, ϕ);

else return χ
else return χ

done
return Success

This algorithm begins with the empty set for M, and constructs the set of procedures,
partially evaluating them with PEval (see Section 4.1). Then, in our implementation,
new ranking functions are automatically synthesized by examining counterexamples. A
counterexample in ∀CTL is tree-like as follows:

χ ∶∶= CEXκα of s ∣ CEXκ∧ of χ ∣ CEXκ∨ of χ × χ
∣ CEXκAG of π × χ ∣ CEXκAF of π × π × χ ∣ CEXκW of π × χ × χ

where the parameter κ denotes the path through the formula, and π is a trace through the
encoding E(M,M, ϕ). Note that often tools will not report a concrete trace but rather a
path, i.e. a sequence of program counter values corresponding to a class of traces (in rare
instances paths may be reported that are spurious). The counterexample structure for an
atomic proposition CEXκα is simply a state in which α does not hold. Counterexamples
for conjunction and disjunction are as expected. A counterexample to an AG property is
a path to a place where there is a counterexample to the sub-property. A counterexample
to an AF property is a “lasso”—a stem path to a particular program location, then a cycle
which returns to the same program location, and a sub-counterexample along that cycle in
which the sub-property does not hold. Finally, an AW counterexample is a path to a place
where there is a sub-counterexample to the first property as well as a sub-counterexample
to the second property.

In our encoding we obtain these tree-shaped counterexamples effectively for free with
program analysis tools (e.g. SLAM or Blast) that report stack-based traces for assertion
failures. Information about the stack depth available in the counterexamples allows us to
re-construct the tree counterexamples. That is, by walking backward over the stack trace,
we can determine the tree-shape of the counterexample. Consider, for example, the case
of AF. The counterexample found by the underlying tool will visit commands through the
encoding of E(M,M, ϕ), including points where dup is set to true. The commands from
the input program can be used to populate an instance of χ.

When a counterexample is reported that contains an instance of CEXκAF (i.e. a “lasso
fragment”) it is possible that the property still holds, but that we have simply not found
a sufficient ranking function to witness the termination of the lasso. In this case our
algorithm finds the lasso fragments and attempts to enlarge the set of ranking functions
M. One source of incompleteness of our implementation comes from our reliance on

17



lassos: some non-terminating programs have only well-founded lassos, meaning that in
these cases our refinement algorithm will fail to find useful refinements. The same problem
occurs elsewhere [18], but in industrial examples these programs are rare.

Example. We return again to Example 2.1, and apply Algorithm 2.2. Initially we let
M ≡ ∅. Running a refinement-based safety prover will yield a counterexample pertaining

to line lab 5 of encR L �
AF(x=0), where we denote a state as [

x
n
pc

] and we denote transition

relations as [[ ’x=x
’n=n

’pc=pc. ]]:

(CEXκAG ([ 0
n
1
] ∶∶ [ 1

n
2
] ∶∶ [ 1

n
3
] ∶∶ [ 1

n
4
] ∶∶ [ 1

n
5
]),

(CEXκ
∨

(CEXκα [ 1
n
5
])

(CEXκAF [ 1
n
5
], [[

x5=x
n5=n+1
pc5=pc

]], (CEXκα [ 1
n
5
]))))

This counterexample appears because we have not found a finiteM such that in encR L �
AF(x=0)

the check that ∃f ∈M. f(x5,n5) > f(x,n) always holds.
In our implementation we then use a rank function synthesis tool on this counterex-

ample (as described by Cook et al. [18]), find that ranking can be done on n, and obtain a
new M ≡ {λs. s(n)}. With this new M in place, enc�

AG((x≠1)∨AF(x=0)) always returns true,
and consequently, by Theorem 2.1, ϕ holds of the original program.
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Chapter 3

Correctness

In this section we will formalize our result, Theorem 2.1, which states that for a machine
M = (S,R, I) and ∀CTL property ϕ,

∃ finite M. E(M,M, ϕ) cannot return false ⇒ M ⊧ ϕ

For convenience, we introduce an alternative relational formulation of ∀CTL, ⊢. This
formulation more closely matches our definition of E in that it is given over sets of states,
AW is defined in terms of reachability, and AF is defined in terms of well-foundedness. In
effect the encoding E is characterizing these sets as a symbolic characteristic function (from
states to {true, false}). Our proof starts by showing that ⊢ is equivalent to ⊧. We then
formally define E as a function from a program and property to a guarded transition system
GM parameterized by M, for which a notion of “cannot return false” can be given. We
show that for this guarded transition system, ∃M. GM cannot return false ⇒ ⟨R, I⟩ ⊢ ϕ,
Finally, Theorem 2.1 directly follows, given the equivalence between ⊢ and ⊧.

3.1 Relational formulation of ∀CTL semantics

Our relational formulation of ∀CTL is displayed in Fig. 3.1. Unlike the standard formula-
tion given in Figure 1.2, ours is more amenable to reasoning about infinite-state systems.
In our formulation proof trees are based on partitioning the state space rather than enu-
merating the state space. We use the notation ⟨R, I⟩ ⊢ ϕ to denote that a property ϕ
is valid for a transition system M = (S,R, I). This entailment relation is then defined
inductively.

An atomic proposition α involves a simple check to see if I is contained within the set
of states in which α holds. The conjunction rule requires that both ϕ1 and ϕ2 hold of all
states in I and the disjunction rule partitions the states into two sets, one in which ϕ1

holds and one in which ϕ2 holds.

Frontiers. The property AFϕ depends on the existence of a set of states which we will
call a frontier F . Intuitively, the frontier F of a set of initial states I, is a set of states
through which every trace originating at a state in I must pass.

We use frontiers in our formulation of AFϕ to characterize the places where ϕ holds,
requiring that all paths from I eventually reach a frontier. The inductive relation walkFI ,
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I ⊆ {s ∣ α(s)}
⟨R, I⟩ ⊢ α

⟨R, I⟩ ⊢ ϕ1 ⟨R, I⟩ ⊢ ϕ2

⟨R, I⟩ ⊢ ϕ1 ∧ ϕ2

∃I1, I2. I = I1 ∪ I2 ∧ ⟨R, I1⟩ ⊢ ϕ1 ∧ ⟨R, I2⟩ ⊢ ϕ2

⟨R, I⟩ ⊢ ϕ1 ∨ ϕ2

∃F .walkFI is w.f. ∧ ⟨R,F⟩ ⊢ ϕ
⟨R, I⟩ ⊢ AFϕ

∃F .∀(s, s′) ∈ walkFI .⟨R,{s}⟩ ⊢ ϕ1 ∧ ⟨R,F⟩ ⊢ ϕ2

⟨R, I⟩ ⊢ A[ϕ1Wϕ2]

R(s, s′) ∧ s ∉ F ∧ s ∈ I
walkFI (s, s′)

R(s′, s′′) ∧ s′ ∉ F ∧walkFI (s, s′)
walkFI (s′, s′′)

Figure 3.1: Relational formulation of ∀CTL: ⊢

given on the right in Fig. 3.1, is a subset of R and allows us to characterize the region
that includes every possible transition along every trace from I up to, but not including,
F . When F = ∅, walkFI is equivalent to the portion of the transition relation accessible
from I. In our characterization of AF we require that walkFI be well-founded. In this way,
we recast the ∀CTL semantics of AF in terms of the well-foundedness of a relation, rather
than the existence of an i-th state in every trace. This formulation allows us to more
efficiently prove AF properties because we can discover well-founded relations that are
over-approximations of walkFI rather than searching for per-trace ranking functions. The
final rule in the left of Fig. 3.1 is for the AW operator, which also uses a frontier and the
relation walkFI representing the arcs along the way to the frontier F . To prove A[ϕ1Wϕ2],
all states along the path to the frontier must satisfy ϕ1 and states at the frontier—should
one ever get there—all must satisfy ϕ2. Notice that no rule is needed for AG (used in the
previous section) since AGϕ = A[ϕ W false].

3.2 Equivalence between ⊢ and ⊧
We now describe the equivalence result between our relational formulation of ∀CTL given
in Figure 3.1 and the standard semantics of ∀CTL given in Figure 1.2.

3.2.1 The ⇒ direction

Lemma 3.1 (Avoiding F). For all R, I,F , π ∈ traces(I,R),

∀n ≥ 0. πn0 ∉ F ⇒ ∀n ≥ 0. walkFI (πn0 , πn+10 )

Lemma 3.2 (Reach F choice). For all R, I,F , π ∈ traces(I,R),

{∀n. πn0 ∉ F} + {∃n. πn0 ∈ F ∧ ∀m < n. πm0 ∉ F}

Proof. Coinduction and the axiom of choice.

Theorem 3.3 (⇒ direction). For all ϕ, I,R,

⟨R, I⟩ ⊢ ϕ ⇒ M ⊧ ϕ
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Proof. By structural induction on ϕ. The α,∧,∨, cases are straight-forward. The AF
case requires that Theorem 1.4 be applied to the relation walkFI , and then proceeds by
contradiction. In the A[ϕ1Wϕ2] case, for every trace π, Lemma 3.2 says that there are
two possibilities. The possibilities then align with those in the semantics of ⊧.

3.2.2 The ⇐ direction

We now show the opposite direction, which says that if a property holds in the standard
semantics of ∀CTL, then it also holds in our relational semantics. We begin with some
useful lemmas.

We use the notation (X ↦ FO(X)) to denote the set such that the first order formula
FO holds of X. We say that a given p ∈ FO is monotone provided that ∀X,Y. X ⊆ Y ⇒
p(X) ⊆ p(Y ). If p is monotone, then a least fixed point lfp(X ↦ FO(X)) exists.

Lemma 3.4 (Reachable set). For all I,F , there exists a set S such that s′ ∈ S if and
only if ∃s ∈ I such that (s, s′) ∈ (walkFI )∗.

Proof. Let S ≡ lfp(X ↦ I ∪ {s′ ∣ s ∈ X ∧ (s, s′) ∈ walkFI }). This fixedpoint exists because
the expression is monotone.

Lemma 3.5 (Traces escape walk). For all π, I,F , n, πn0 ∈ F ⇒ (πn0 , πn+10 ) ∉ walkFI .
Proof. By induction. ◻

Lemma 3.6. For every I,F traces(I,walkFI ) ⊆ traces(I,R).
Proof. Follows from the fact that walkFI ⊆ R. ◻

Lemma 3.7 (Traces reach frontier). For a frontier F and state s,

∀π ∈ traces({s},R). ∃i. πi0 ∈ F ⇒ walkF{s} is well-founded

Proof. Using Theorem 1.4 letting I = {s}. Then using the law of excluded middle and
Lemmas 3.5 and 3.6.

Definition 3.1 (Frontier of S). If S ⊢ AFϕ, then we denote by front(S) the corresponding
frontier needed to satisfy S ⊢ AFϕ. That is, the greatest fixedpoint: νs. ⟨R,{s}⟩ ⊢ ϕ.

The following two Lemmas are used extensively in Theorem 3.10, allowing us to decompose
I into individual states s, and compose individual states s into a set I.

Lemma 3.8 (Decomposability of ⊢). For all ϕ,M, s ∈ I, ⟨R, I⟩ ⊢ ϕ ⇒ ⟨R,{s}⟩ ⊢ ϕ.

Proof. By induction on ϕ. The AF case requires the fact that if R is well-founded, then
every subset of R is also well-founded. The other cases are straight-forward.

Lemma 3.9 (Composability of ⊢). For all ϕ, I, (∀s ∈ I. ⟨R,{s}⟩ ⊢ ϕ) ⇒ ⟨R, I⟩ ⊢ ϕ.

Proof. By induction on ϕ.

Cases α,∧: Trivial.
Case ϕ′ ∨ ϕ′′: By the axiom of choice, we can choose a partitioning I ′, I ′′ of I (i.e. I ⊆

I ′ ∪ I ′′) such that for all s, if ⟨R,{s}⟩ ⊢ ϕ′ that s ∈ I ′ and otherwise (⟨R,{s}⟩ ⊢ ϕ′′)
s ∈ I ′′. Reasoning is then straight-forward, using Lemma 3.8 and ind. hyp.
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Case AFϕ′: We use the axiom of choice to define a combined frontier (to show ⟨R, I⟩ ⊢
AFϕ′) from a collection of frontiers (each ⟨R,{s}⟩ ⊢ AFϕ′):

F ≡ {t ∣ ∃s. s ∈ I ∧ t ∈ front({s})}

Now walkFI is well-founded (by Theorem 1.4) and F ⊢ ϕ′ (Lemma 3.8).
Case A(ϕ′Wϕ′′): Once again, we use the axiom of choice to define a combined frontier:

F ≡ {s ∣ ∃s0. s0 ∈ I.s ∈ front({s0}) ∧ ∀t, t′. walkfront({s0}){s0} (t, t′)⇒ ⟨R,{t}⟩ ⊢ ϕ′)}

Now, following the AW semantics, we must show two things:

• ∀t, t′. walkFI (t, t′)⇒ ⟨R,{t}⟩ ⊢ ϕ′. By induction we show ∃s ∈ I. walkF ′{s} (t, t′).
We know that ∀s′, s′′. walkF ′{s} (s′, s′′)⇒ ⟨R,{s′}⟩ ⊢ ϕ′, so ⟨R,{t}⟩ ⊢ ϕ′.

• ⟨R,F⟩ ⊢ ϕ′′. Follows from the definition of F above, and Lemma 3.8.

Theorem 3.10 (⇐ direction). For all ϕ, I,R, for all s ∈ I

⟨R,{s}⟩ ⊢ ϕ ⇐ s ⊧ ϕ

Proof. By structural induction on ϕ. The ∧,∨, α case splits are trivial. To prove the AF
case, using classical reasoning, we define a frontier F to be the set of all states such that
the subformula ϕ′ holds. We then have two obligations:

1. Show walkF{s} is well-founded. This holds by using Lemma 3.7: since every π in

walkF{s} starting from s has an index n where πn0 ∈ F , walkF{s} is well-founded.
2. Show that ⟨R,F⟩ ⊢ ϕ′. We use Lemma 3.9 to show that

∀s ∈ F . ⟨R,{s}⟩ ⊢ ϕ′ ⇒ ⟨R,F⟩ ⊢ ϕ′

For the A[ϕ′ W ϕ′′] case, we first define a frontier by the axiom of choice:

F ≡ {t ∣ ∃π. ∃n.πn0 = t ∧ ⟨R,{t}⟩ ⊢ ϕ′′}

Now, the semantics of AW gives us two cases:

• ∀s1, s2. walkF{s} (s1, s2)⇒ ⟨R,{s1}⟩ ⊢ ϕ′
We use an equivalent definition of walkF{s} which is parameterized by m, the number
of steps taken from s. We can then show inductively (over m) that there exists a
trace π such that πm0 = s1 and ⟨R,{s1}⟩ ⊬ ϕ′′ (because if ϕ′′ held, s1 would be in
frontier F and walkF{s} would not hold).
Now, for this π, it must be the case (because s ⊧ A[ϕ′ W ϕ′′]) that either:

1. ∀i. πi0 ⊧ ϕ′.
With the inductive hypothesis, we can easily conclude that ⟨R,{s1}⟩ ⊢ ϕ′.

2. ∃j. πj0 ⊧ ϕ′′ ∧ ∀i < j. πi0 ⊧ ϕ′.
It must be the case that j >m because recall that ϕ′′ does not hold up to m.

• ⟨R,F⟩ ⊢ ϕ′′
Follows from Lemma 3.9, the definition of F and the inductive hypothesis.
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3.3 Guarded transition systems

Now that we have shown our relational formulation ⊢ to be equivalent to the standard
∀CTL semantics ⊧, we show the correctness of our encoding E using ⊢. In previous sections
E was given informally as procedures in an imperative language. We now formalize E as
a function E ∶ M ×M × ϕ → GMM,ϕ from the original transition system M , set of rank
functions M and ∀CTL property ϕ to a guarded transition system G defined below. In
G we track procedure call arguments and return values as part of the configuration.

Definition 3.2. A guarded transition system G = (N,V,C0,Θ) is a finite set of control
points N , a finite set of typed variables V , an initial configuration predicate C0 and a
transition predicate Θ over unprimed (V ) and primed (V̂ ≡ {x̂ ∣ x ∈ V }) variables. The
set of variables includes one special variable nd ∶ N denoting the current control point. A
configuration c ∈ C is a valuation (i.e. a mapping) for the variables.

A primed configuration ĉ is defined similar to primed variables. For configurations c1, c2
we say c1 ↝ c2 if and only if Θϕ(c1)(ĉ2). Propositions in Θ over unprimed variables can
be thought of as “guards” and propositions over primed variables can be thought of as
“actions.” Accordingly, we use the notation n1{g} aÐ→ n2 to mean

λc1. λc2. c1(nd) = n1 ∧ g(c1) ∧ a(c1 ∪ ĉ2) ∧ c2(nd) = n2

3.3.1 Encoding

We now formally define the encoding of the task of verifying whether an ∀CTL property
ϕ holds of a machine M = (S,R, I) as a particular property (“returning false”—defined
later) of a guarded transition system. For ϕ and M , the encoding as a guarded transition
system GMM,ϕ = (Nϕ, Vϕ,C0

ϕ,Θϕ), is parameterized by a finite set of measures M, and
defined as follows:

Nϕ ≡ {en, ex} × κ × sub(ϕ)
Vϕ ≡ {nd ∶ Nϕ} ∪ ⋃

( ,κ,ψ)∈Nϕ
{rvκψ ∶ bool, σκψ ∶ S, dupκψ ∶ bool, ‘σκψ ∶ S}

C0
ϕ ≡ nd = (en,�, ϕ) ∧ σ�ϕ ∈ I ∧ ⋀

( ,κ,ψ)∈Nϕ
dupκψ = false

Θϕ ≡ (see Figure 3.2)

(Recall the discussion of subformula contexts in Section 1.3.)
We use en and ex to distinguish the entry point of a procedure call from the exit point of
a procedure call.

Lemma 3.11 (n decidability). For every n1, n2 ∈ Nϕ, n1 = n2 is decidable.

Proof. Follows from the fact that both κ1 = κ2 and ϕ1 = ϕ2 are decidable, and we assume
that atomic proposition equality is decidable.

The transition predicate Θϕ (Figure 3.2) is parameterized by M (but we will write Θϕ

instead of Θϕ(M) for notational convenience), defined inductively over the structure of ϕ

and κ, and given over an alphabet of unprimed variables Vϕ and primed variables V̂ϕ. We
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Θκ
α ≡ (en, κ,α){α(σκα)}

r̂vκα=trueÐÐÐÐ→ (ex, κ,α)
∨ (en, κ,α){¬α(σκα)}

r̂vκα=falseÐÐÐÐ→ (ex, κ,α)

Θκ
ψ1∧ψ2

≡ ΘL κ
ψ1

∨ΘR κ
ψ2

∨ (en, κ,ψ1 ∧ ψ2){true}
σ̂L κ
ψ1

=σκψ1∧ψ2ÐÐÐÐÐÐÐ→ (en,L κ,ψ1)

∨ (en, κ,ψ1 ∧ ψ2){true}
σ̂R κ
ψ2

=σκψ1∧ψ2ÐÐÐÐÐÐÐ→ (en,R κ,ψ2)

∨ (ex,L κ,ψ1){true}
r̂vκψ1∧ψ2

=rvL κψ1ÐÐÐÐÐÐÐ→ (ex, κ,ψ1 ∧ ψ2)

∨ (ex,R κ,ψ2){true}
r̂vκψ1∧ψ2

=rvR κψ2ÐÐÐÐÐÐÐ→ (ex, κ,ψ1 ∧ ψ2)

Θκ
ψ1∨ψ2

≡ ΘL κ
ψ1

∨ΘR κ
ψ2

∨ (en, κ,ψ1 ∨ ψ2){true}
σ̂L κ
ψ1

=σκψ1∨ψ2ÐÐÐÐÐÐÐ→ (en,L κ,ψ1)

∨ (ex,L κ,ψ1){rvL κψ1
}

r̂vκψ1∨ψ2
=true

ÐÐÐÐÐÐÐ→ (ex, κ,ψ1 ∨ ψ2)

∨ (ex,L κ,ψ1){¬rvL κψ1
}
σ̂L κ
ψ2

=σκψ1∨ψ2ÐÐÐÐÐÐÐ→ (en,R κ,ψ2)

∨ (ex,R κ,ψ2){true}
r̂vκψ1∨ψ2

=rvR κψ2ÐÐÐÐÐÐÐ→ (ex, κ,ψ1 ∨ ψ2)

Θκ
AFψ1

≡ ΘL κ
ψ1

∨ (en, κ,AFψ1){true}
r̂vκAFψ1

=true

ÐÐÐÐÐÐ→ (ex, κ,AFψ1)

∨ (en, κ,AFψ1){true}
σ̂L κ
ψ1

=σκAFψ1ÐÐÐÐÐÐ→ (en,L κ,ψ1)

∨ (ex,L κ,ψ1){rvL κψ1
}

r̂vκAFψ1
=true

ÐÐÐÐÐÐ→ (ex, κ,AFψ1)

⋁s,s′∈R (en, κ,AFψ1){¬rvL κψ1
∧ σκAFψ1

= s}
σ̂κAFψ1

=s′

ÐÐÐÐÐ→ (en, κ,AFψ1)
⋁s,s′∈R (en, κ,AFψ1){¬rvL κψ1

∧ ¬dupκAFψ1
∧ σκAFψ1

= s}
ˆdup
κ

AFψ1
=true ∧ ‘̂σ

κ

AFψ1
=σκAFψ1

∧ σ̂κAFψ1
=s′

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (en, κ,AFψ1)
∨ (en, κ,AFψ1){¬rvL κψ1

∧ dupκAFψ1
∧ ∄f ∈M. f(σκAFψ1

) ≺ f(‘σκAFψ1
)}

r̂vκAFψ1
=false

ÐÐÐÐÐÐ→ (ex, κ,AFψ1)

Θκ
A[ψ1Wψ2]

≡ ΘL κ
ψ1

∨ΘR κ
ψ2

∨ (en, κ,A[ψ1Wψ2]){true}
σ̂L κ
ψ1

=σκA[ψ1Wψ2]ÐÐÐÐÐÐÐÐÐ→ (en,L κ,ψ1)

⋁s,s′∈R (ex,L κ,ψ1){rvL κψ1
∧ σκA[ψ1Wψ2]

= s}
σ̂κA[ψ1Wψ2]=s

′

ÐÐÐÐÐÐÐ→ (en, κ,A[ψ1Wψ2])

∨ (ex,L κ,ψ1){¬rvL κψ1
}
σ̂R κ
ψ2

=σκA[ψ1Wψ2]ÐÐÐÐÐÐÐÐÐ→ (en,R κ,ψ2)

∨ (ex,R κ,ψ2){true}
r̂vκA[ψ1Wψ2]=rv

R κ
ψ2ÐÐÐÐÐÐÐÐÐ→ (ex, κ,A[ψ1Wψ2])

∨ (en, κ,A[ψ1Wψ2]){true}
r̂vκA[ψ1Wψ2]=trueÐÐÐÐÐÐÐÐ→ (ex, κ,A[ψ1Wψ2])

Figure 3.2: The transition predicate Θϕ for a guarded transition system GMM,ϕ encoding
for an ∀CTL property ϕ.
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en, ⊥, AG ex, ⊥, AG

en, L ⊥,

AF \/ x=0

ex, L ⊥,

AF \/ x=0

en, L L ⊥,

AF

ex, L L ⊥,

AF

en, R L ⊥,

x=0

ex, R L ⊥,

x=0

{¬x = 0}rvR L ⊥
x=0 := false

{x = 0}rvR L ⊥
x=0 := true

{true}rv⊥AG := true

{¬rv L L ⊥
AF }

σR L ⊥
x=0 := σL ⊥

∨{true}
σL L ⊥
AF := σL ⊥

∨

{true}
σL ⊥
∨ := σ⊥

AG

{true}
rvL L ⊥

AF := true

{rv L L ⊥
AF }

rvL ⊥
∨ := true

en, L L L ⊥,

x=0

ex, L L L ⊥,

x=0

{x = 0}rvL L L ⊥
x=0 := true

{¬x = 0}rvL L L ⊥
x=0 := false

{true}
σL L L ⊥
x=0 := σL L ⊥

AF

{rvL L L ⊥
x=0 }

rvL L ⊥
AF := true

{¬rvL L L ⊥
x=0 ∧ dup ∧ ∄f ∈ M.f(σL L ⊥

AF ) ≺ f(‘σL L ⊥
AF )}

rvL L ⊥
AF := false

{true}
rv⊥AG := rvL ⊥

∨

{true}
rvL ⊥

∨ := rvR L ⊥
x=0

{¬rvL L L ⊥
x=0 }

σL L ⊥
AF ∈ R(σL L ⊥

AF )

{¬rvL L L ⊥
x=0 ∧ ¬dup}
dup := true;

‘σL L ⊥
AF := σL L ⊥

AF ;
σL L ⊥
AF := R(σL L ⊥

AF )

{true} σ⊥
AG := R(σ⊥

AG)

Figure 3.3: Encoding of Example 2.1.

often will refer to the guarded transition system in which M has not yet been specified.
We use the notation GM(⋅),ϕ ≡ λx. GMx,ϕ.

Example. For Example 2.1, we replace implication with disjunction in the formula to
obtain ϕ ≡ AG[AF(x = 0) ∨ x = 0]. Furthermore, we use the following abbreviations:

AG ≡ AG[AF(x = 0) ∨ x = 0]
∨ ≡ AF(x = 0) ∨ x = 0

AF ≡ AF(x = 0)

The encoding we obtain is as follows:

Nϕ ≡ {(en,�,AG[AF(x = 0) ∨ x = 0]), (ex,�,AG[AF(x = 0) ∨ x = 0]),
(en,L �,AF(x = 0) ∨ x = 0), (ex,L �,AF(x = 0) ∨ x = 0),
(en,L L �,AF(x = 0)), (ex,L L �,AF(x = 0)),
(en,L L L �, x = 0), (ex,L L L �, x = 0),
(en,R L �, x = 0), (ex,R L �, x = 0)}

C0
ϕ ≡ nd = (en,�,AG) ∧ σ�AG ∈ I ∧ dup = false

Θϕ ≡ (see Figure 3.3)

Since there is only one AF case, we assume only one dup variable. The transition predicate
Θϕ is given in Figure 3.3. Recall that AGϕ = A[ϕ W false]. Consequently, some arcs
given by ΘAW in Figure 3.2 are unneeded, and ommitted in Figure 3.3. In two cases
we use the notation “σ�AG ∶= R(σ�AG),” which is to say that a successor in R is chosen
nondeterministically.
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3.3.2 Soundness of the encoding

Definition 3.3 (Execution, complete execution). An execution c0, c1, c2, ... is such that
c0 ∈ C0 and ∀i ∈ N. ci ↝ ci+1. For GMM,ϕ we say that a finite execution c0, ..., cn is a
complete execution if cn(nd) = (ex,�, ϕ), and that the complete execution returns true if
cn(rv�ϕ) = true.

Definition 3.4 (“Cannot return false”). We say that GMM,ϕ cannot return false if every
complete execution returns true.

Before proceeding to the main Lemma 3.15, we first must prove the following lemmas.
First, a formal version of INV2:

Lemma 3.12 (INV2). For all ϕ,M,R, s, G(S,R,{s})
M,ϕ can return true.

Proof. By induction on ϕ.

The next two lemmas are needed to make our inductive argument in the main Lemma 3.15.
For a given guarded transition system G we will need to be able to argue about the behavior
of subsystems (specifically, whether they can return false). This requires us to establish a
homomorphic mapping between the two, which is not surprising given that G is defined
inductively.

Lemma 3.13 (Homomorphic mapping). For every M = (S,R, I),M, ∀CTL property ϕ
and ψ ∈ isub(ϕ) with path κ, there exists a homomorphic mapping H between GMM,ψ and

GMM,ϕ such that for every pair of configurations c, c′,

c(nd), c′(nd) ∈ ({en, ex}×κ×sub(ψ)) ∧ Θϕ(c)(ĉ′) ⇒ ∃d, d′. Θκ
ψ(d)(d̂′)∧H(c) = d∧H(c′) = d′

H projects out variables in Vϕ ∖ Vψ and replaces L κ (or R κ) with κ.

Lemma 3.14 (G induction). For every M = (S,R, I), M, ∀CTL property ϕ and ψ ∈
isub(ϕ) with path κ, if a configuration c where c(nd) = (en, κ,ψ) is reachable in GMM,ϕ,

then a complete set of executions for G(S,R,{σκψ})
M,ψ can be obtained from the set of executions

of GMM,ϕ. Proof. By using the homomorphic mapping in Lemma 3.13 and Lemma 3.12.
◻
Lemma 3.15. For a transition system M = (S,R, I) and ∀CTL property ϕ, and guarded
transition system GM(⋅),ϕ

∃M. GMM,ϕ cannot return false ⇒ ⟨R, I⟩ ⊢ ϕ.
Proof. By induction on ϕ and Θϕ, using Lemma 3.14 in the induction. In the base case
we have that

∃M. GMM,α cannot return false⇒ ⟨R, I⟩ ⊢ α
Here nd ∈ ({en, ex} × {�} × {α}), i.e. there are only two control points. Every execution
begins with some c0 ∈ C0

α, so c0(nd) = (en,�, α). By the definition of Θ�
α, there are only

two classes of transitions from (en,�, α), both leading to (ex,�, α). So every complete
execution must be of length 2. Consider an execution c1, c2. C0

α(c1) implies that c1(σ�α) ∈ I.
The LHS above indicates that for every execution, c2(rv�α) = true. This must mean that
α(c1(σ�α)). Consequently, α holds of every initial state, and so ⟨R, I⟩ ⊢ α.

The proof proceeds by induction:
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∀ψi ∈ isub(ψ). (∃M. GMM,ψi
cannot return false⇒ ⟨R, I⟩ ⊢ ψi)
⇒

∃M. GMM,ψ cannot return false⇒ ⟨R, I⟩ ⊢ ψ

Notice that the hypothesis holds for all initial context path κ. This lets us use a proof of
each GMM,ψi

using �, at the next step in the induction where either (L �) or (R �) is used.
The cases are as follows:

Case ψ = ψ1 ∧ ψ2: By the semantics of ⊢, we must show that ⟨R, I⟩ ⊢ ψ1 and ⟨R, I⟩ ⊢ ψ2.
W.l.o.g. let us consider ψ1. By the definition of GMM,ψ1∧ψ2

, every complete execution
c0, ..., cn is such that C0

ψ1∧ψ2
(c0) and that cn(rv�ψ1∧ψ2

) = true. Moreover, c0(nd) =
(en,�, ψ1 ∧ ψ2) and cn(nd) = (ex,�, ψ1 ∧ ψ2).
Consider the subset of all complete executions of GMM,ψ1∧ψ2

:

E ≡ {c0, c1, ..., cn−1, cn ∣ c1(nd) = (en,L κ,ψ1) ∧ cn−1(nd) = (ex,L κ,ψ1) ∧
Θ�
ψ1∧ψ2

(c0, c1) ∧ Θ�
ψ1∧ψ2

(cn−1, cn) ∧
∀i ∈ [1, n − 2]. ΘL �

ψ1
(ci, ci+1)}

By Lemma 3.14 there is a homomorphic mapping between the complete set of ex-
ecutions of GMM,ψ1

and GMM,ψ1∧ψ2
. The same holds for GMM,ψ2

. Since GMM,ψ1∧ψ2
cannot

return false, and rv�ψ1∧ψ2
is given by rvL �ψ1

in every execution in E, it must be the

case that rvL �ψ1
= true in each cn−1 of an execution in E. So every complete execution

of GMM,ψ1
cannot return false and thus (ind. hyp.) ⟨R, I⟩ ⊢ ψ1.

Case ψ = ψ1 ∨ ψ2: Consider an initial state s0 ∈ I. By the definition of Θ�
ψ1∨ψ2

, we can
partition the complete executions based on the initial value of σκψ1∨ψ2

, and then into
two classes:

Es0
L ≡ {c0, c1, ..., cn−1, cn ∣ c0(σκψ1∨ψ2

) = s0 ∧
c1(nd) = (en, ψ1,L κ) ∧ cn−1(nd) = (ex, ψ1,L κ) ∧ cn(nd) = (ex, ψ1 ∨ ψ2, κ)}

Es0
R ≡ {c0, c1, ..., cn−1, cn, ..., cn+m−1, cn+m ∣ c0(σκψ1∨ψ2

) = s0 ∧
c1(nd) = (en, ψ1,L κ) ∧ cn−1(nd) = (ex, ψ1,L κ) ∧ cn(nd) = (en, ψ2,R κ) ∧
cn+m−1(nd) = (ex, ψ2,R κ) ∧ cn+m(nd) = (ex, ψ1 ∨ ψ2, κ)}

Claim 1: ∀εL ∈ Es0
L . cn−1(rvL κψ1

) = true ⋁ ∀εR ∈ Es0
R . cn+m−1(rvR κψ2

) = true

Pf: Asm not. ∃εL ∈ Es0
L . cn−1(rvL κψ1

) = false ⋀ ∃εR ∈ Es0
R . cn+m−1(rvR κψ2

) = false.
Given the RHS, there exists ε ∈ Es0

R such that cn+m(rv�ψ1∨ψ2
) = false (def. of Θ�

ψ1∨ψ2
).

Contradiction (GMM,ψ1∨ψ2
cannot return false).

By Claim 1 there are two cases. From the LHS we can show that G(S,R,{s0})
M,ψ1

cannot

return false, and from the RHS we can show that G(S,R,{s0})
M,ψ2

cannot return false(using
Lemma 3.14 in each case). Hence either ⟨R,{s0}⟩ ⊢ ψ1 or ⟨R,{s0}⟩ ⊢ ψ2 (ind. hyp.)
so ⟨R,{s0}⟩ ⊢ ψ1 ∨ ψ2. We can use this reasoning for every s0 ∈ I to obtain a
partitioning of I to satisfy ⟨R, I⟩ ⊢ ψ1 ∨ ψ2.
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Case ψ = AFψ1: We must show that there exists a set F such that walkFI is well-founded
and ⟨R,F⟩ ⊢ ψ1. First we define the following:

F ≡ {s ∣ G(S,R,{s})
M,ψ1

cannot return false}

• Claim: walkFI is well-founded.
Pf. By showing there are no infinite sequences induced by walkFI . Assume not.
Then there is an infinite sequence s0, s1, ... such that ∀i ≥ 0. (si, si+1) ∈ walkFI .
By definition of F and an inductive argument over walkFI , we can show that

∀i ≥ 0. G(S,R,{si})
M,ψ1

can possibly return false. Given that walkFI ⊆ R, we also know
that ∀i ≥ 0. (si, si+1) ∈ R. So by the definition of Θϕ, we can show that there
is an infinite execution of GMM,AFψ1

,

c0, c
′
0, c

′′
0 , c1, c

′
1, c

′′
1 , ... s.t. ∀i ≥ 0. ci(σ) = si

∧ ci(nd) = (en, κ,AFψ1)
∧ c′i(nd) = (en,L κ,ψ1)
∧ c′′i (nd) = (ex,L κ,ψ1)

Note that for every consecutive pair of states (si, si+1), there is also an execution
in which ci+1(‘σ) = si and ci+1(σ) = si+1. Since GMM,AFψ1

cannot return false, it
must be the case that ∀i ≥ 0. ∃f ∈M. f(si+1) ≺ f(s). Contradiction.

• Claim: ⟨R,F⟩ ⊢ ψ1.
Pf. Trivial, given the definition of F and the inductive hypothesis.

Case ψ = A(ψ1Wψ2): We must show that there exists a frontier F that satisfies the
conditions in the AW case in Figure 3.1. First, a Lemma:

Lemma 3.16. For every (sn, t) ∈ walkFI (sn, t) there is a sequence s0, s1, ... such that
s0 ∈ I and ∀i ∈ [0, n). (si, si+1) ∈ R. Proof. By induction. ◻

Now we define F ≡ {s ∣ G(S,R,{s})
M,ψ2

cannot return false}. What remains is to show that
F satisfies the conditions in Figure 3.1:

• Claim 1: ∀(sn, t) ∈ walkFI . ⟨R,{sn}⟩ ⊢ ψ1.
Pf. Pick some (sn, t) ∈ walkFI . By Lemma 3.16, there is some sequence of states
s0, ..., sn such that s0 ∈ I and (si, si+1) ∈ R.

Claim 1.1: ∀i ∈ [0, n].⟨R,{si}⟩ ⊢ ψ1.
Pf: Follows trivially from the following Claim 1.2. (Claim 1.1 cannot
be proved directly by induction because the inductive hypothesis is
not strong enough.)

Claim 1.2: ∀i ∈ [0, n].G(S,R,{si})
M,ψ1

cannot return false.
Pf: By induction on the list s0, ..., sn, also maintaining the invariant
that (si, si+1) ∈ R and so

Θϕ = ... ∨ (ex, ψ1,L κ){rvL κψ1
∧ σκA[ψ1Wψ2] = si}

σ̂κ
A[ψ1Wψ2]

=si+1
ÐÐÐÐÐÐÐÐ→ (en,A[ψ1Wψ2], κ)
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Base case: G(S,R,{s0})
M,ψ1

c.r. false. Define

Es0 ≡ {c0, ..., cn−2, cn−1, cn ∣ c0(σ) = cn−2(σ) = s0 ∧ cn−2(nd) = (ex, ψ1,L κ) ∧
cn−1(nd) = (en,A[ψ1Wψ2], κ) ∧
cn(nd) = (ex,A[ψ1Wψ2], κ)}

By definition of F and walkFI , there cannot be an execution in which
cn−2(rvL κψ1

) = false So from Es0 , we can obtain a complete set of traces

for G(S,R,{s0})
M,ψ1

(Lemma 3.14), none of which return false.

Induction: For s0, ..., si, G(S,R,{si})
M,ψ1

c.r.f ⇒ G(S,R,{si+1})
M,ψ1

c.r.f. Consider

the following set of executions:

Esi+1 ≡ {c0, ..., c1, c2, c3, ..., c4, c5 ∣ c0(σ) = s0 ∧
c1(nd) = (ex, ψ1,L κ) ∧ c1(σ) = si ∧
c2(nd) = (en,A[ψ1Wψ2], κ) ∧ c2(σ) = si+1 ∧
c3(nd) = (en, ψ1,L κ) ∧ c3(σ) = si+1 ∧
c4(nd) = (ex, ψ1,L κ) ∧ c4(σ) = si+1}

This set is nonempty. c3 is reachable because the ind. hyp. says that
each G(S,R,{si})

M,ψ1
c.r.f. and there is a transition in Θϕ for each (si, si+1).

By definition of F and walkFI , there cannot be an execution in which
c3(rvL κψ1

) = false. So from Esi+1 , we can obtain a complete set of traces

for G(S,R,{si+1})
M,ψ1

(Lemma 3.14), none of which return false.

• Claim 2: ⟨R,F⟩ ⊢ ψ2.
Pf. Consider the following definition:

E ≡ {c0, ..., cn−1, cn ∣ c0(nd) = (en,A[ψ1Wψ2], κ) ∧
cn−1(nd) = (ex, ψ2,R κ) ∧
cn(nd) = (ex,A[ψ1Wψ2], κ)}

The executions in E cannot return false because GMM,A[ψ1Wψ2] c.r. false. For

every s ∈ F , we can obtain a complete set of traces for G(S,R,{s})
M,ψ2

(Lemma 3.14)
from E. So by the ind. hyp. and Lemma 3.9, we find that ⟨R,F⟩ ⊢ ψ2.

From these lemmas we can prove Theorem 2.1.
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Chapter 4

Evaluation

4.1 Implementation

In this section, we describe several optimizations implemented in the partial evaluation
procedure PEval mentioned in Chapter 2. We will demonstrate each optimization as
it pertains to Example 2.1, transforming the encoding in Figure 4.1 into the optimized
encoding in Figure 2.2.

pc-Specialization. For even modest-sized programs, encoding the program counter
in the state s leads to a transformed program which requires an enormous amount of
disjunction to reason about each procedure. Since pc is taken from a finite domain L,
we can specialize with respect to the program counter similar to the ϕ-specialization
discussed in Chapter 2. Consider the following example:

bool encκϕ(pc, s) {
switch(pc) {

case 0: goto lab encκϕ 0;

case 1: goto lab encκϕ 1;

...

case n: goto lab encκϕ n;

}
pc = 0;

lab encκϕ 0: ...;

pc = 1;

lab encκϕ 1: ...;

...

pc = n;

lab encκϕ n: ...;

}

bool encκϕ 0(s) {
goto lab encκϕ 0;

lab encκϕ 0: ...;

}
bool encκϕ 1(s) {

goto lab encκϕ 1;

...

lab encκϕ 1: ...;

}
...

bool encκϕ n(s) {
goto lab encκϕ n;

...

lab encκϕ n: ...;

}

Where we previously had the procedure on the left involving a case-split over pc, we can
instead specialize the procedure for each value of pc as shown to the right. Call sites are
modified to call the appropriate procedure depending on their program location.

This specialization shifts the onus from elaborate procedure summaries for a few pro-
cedures to compact per-procedure summaries for many more procedures. In practice
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void main {
x := 0; n := *;

assert(enc�
AG((x≠1)∨AF(x=0))

(`1,x,n)

≠ false);

}

bool enc�
AG((x≠1)∨AF(x=0))

(int pc, x, n) {
if (pc == `1) goto lab 1;

...

lab 1:

if (¬ encL �
(x≠1)∨AF(x=0)

(`1,x,n))

{ return false; }
if (*) return true;

while(*) {
if (¬ encL �

(x≠1)∨AF(x=0)
(`2,x,n))

{ return false; }
if (*) return true;

x := 1;

if (¬ encL �
(x≠1)∨AF(x=0)

(`3,x,n))

{ return false; }
if (*) return true;

n := *;

if (¬ encL �
(x≠1)∨AF(x=0)

(`4,x,n))

{ return false; }
if (*) return true;

while(n>0) {
if (¬ encL �

(x≠1)∨AF(x=0)
(`5,x,n))

{ return false; }
if (*) return true;

n--;

}
if (¬ encL �

(x≠1)∨AF(x=0)
(`7,x,n))

{ return false; }
if (*) return true;

x := 0;

if (¬ encL �
(x≠1)∨AF(x=0)

(`8,x,n))

{ return false; }
if (*) return true;

}
while(1) {

if (¬ encL �
(x≠1)∨AF(x=0)

(`9,x,n))

{ return false; }
if (*) return true;

}
}

bool encL �
(x≠1)∨AF(x=0)

(int pc, x, n) {
if (encL L �

x≠1 (pc,x,n)) return true;

return encR L �
AF(x=0)

(pc,x,n);

}

bool encL L �
x≠1 (int pc, x, n) {

return (x ≠ 1 ? true : false);

}

bool encL R L �
x=0 (int pc, x, n) {

return (x==0 ? true : false);

}

bool encR L �
AF(x=0)

(int pc, x, n) {
...
if (pc == `3) goto lab 3;

...
dup := false;

if (encL R L �
x=0 (`1,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

while(*) {
if (encL R L �

x=0 (`2,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

x := 1;

lab 3:

if (encL R L �
x=0 (`3,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

n := *;

if (encL R L �
x=0 (`4,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

while(n>0) {
lab 5:

if (encL R L �
x=0 (`5,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

n--;

}
if (encL R L �

x=0 (`7,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

x := 0;

if (encL R L �
x=0 (`8,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

}
while(1) {

if (encL R L �
x=0 (`9,x,n)) return true;

if (dup && ((old x,old n), (x,n)) ∉M)

{ return false; }
if (¬ dup && *)

{ dup := true; old x := x; old n := n; }
if (*) return true;

}
}

Figure 4.1: The encoding E of Example 2.1 (before the partial evaluation has been applied
to obtain the output in Fig. 2.2). Recall that the property of interest was AG[(x = 1)⇒
AF(x = 0)].
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(as discussed below) this is far preferable. Note that as future work we hope to imple-
ment a more lazy expansion and partial evaluation á la Impact [29]. This specializa-
tion can be seen when comparing, for example, encR L �

AF(x=0)(pc,x,n) in Figure 4.1 with

encR L �
AF(x=0) 3(x,n) in Figure 2.2.

Inlining. Sub-procedures of E for non-temporal formulae can be inlined. For example,
rather than the following procedures for the property AG(x = 1 ∨ (y > 0 ∧ z < 0)):
bool encL R L κ

(y>0) (int a, x, y, z) { return (y > 0); }
bool encR R L κ

(z<0) (int a, x, y, z) { return (z < 0); }
bool encL L κ

(x=1)(int a, x, y, z) { return (x==1); }
bool encR L κ

(y>0∧z<0)(int a, x, y, z) { ... }
bool encL κ(x=1∨(y>0∧z<0))(int a, x, y, z) { ... }
bool encκ

AG(x=1∨(y>0∧z<0))(int a, x, y, z) { ... }
We can instead inline the non-temporal procedures and obtain:

bool encκ
AG(x=1∨(y>0∧z<0))(int a, x, y, z) {

...

if (x == 1) return true;

if (¬ y<0) return false;

return (z<0 ? true : false);

...

}
For example, in Figure 2.2 we have inlined encL R L �

x=0 within the body of encR L �
AF(x=0).

Ordering disjunction. For a disjunctive property ϕ∨ψ, our encoding in E has a choice
as to the order in which the sub-procedures are invoked. For example, let us say that the
property is (AGAF y = 1) ∨ (x = 1). Clearly in most cases it is easier to show that the
sub-procedure corresponding to the atomic proposition (x = 1) cannot return false rather
than showing that the (AGAF y = 1) cannot return false. We use a simple cost metric to
order sub-procedure calls in disjunctive instances of E based on depth of nesting in each
subformula. We have already done this optimization in encL �(x≠1)∨AF(x=0) in Figure 4.1.

Intra-procedural analysis. In our treatment of AF and AW, E injects a call to the
sub-procedure on each line. This can be costly and unnecessary when a statement does not
impact the truth value of the subformula. Consider the property AG(x = 1∨(y > 0∧z < 0))
and the following fragment of encκ

AG(x=1∨(y>0∧z<0)):
1 bool encκAG(x=1∨(y>0∧z<0))(int a, int x, int y, int z):

2 ...

3 if (¬ encL κ
(x=1∨(y>0∧z<0))(a,x,y,z)) return false;

4 a := 56;

5 if (¬ encL κ
(x=1∨(y>0∧z<0))(a,x,y,z)) return false;

6 ...

7 }
Clearly, the assignment a:=56 does not impact the truth value of (x = 1∨ (y > 0∧ z < 0)),
so if false can be returned on Line 3, then false can also be returned on Line 5. Also, if

32



false cannot be returned on Line 3, then false cannot be returned on Line 5. We apply
a simple intraprocedural analysis to remove superfluous calls such as the one on Line 5.
This optimization can be seen in enc�

AG[(x≠1)∨AF(x=0)] and in encR L �
AF(x=0) in Figure 2.2.

Prev. tool [14] Our tool (Chap. 2)
Program LOC Property Time Result Time Result

Acq/rel 14 AG(a⇒ AFb) 103.48 ✓ 14.18 ✓
Ex from Fig. 8 of [14] 34 AG(p⇒ AFq) 209.64 ✓ 27.94 ✓
Toy linear arith. 1 13 p⇒ AFq 126.86 ✓ 34.51 ✓
Toy linear arith. 2 13 p⇒ AFq >14400.00 ??? 6.74 ✓
PostgreSQL smsrv 259 AG(p⇒ AFAGq) >14400.00 ??? 9.56 ✓
PostgreSQL smsrv+bug 259 AG(p⇒ AFAGq) 87.31 χ 47.16 χ
PostgreSQL pgarch 61 AFAGp 31.50 ✓ 15.20 ✓
Apache progress 314 AG(p⇒(AF∨AF)) 685.34 ✓ 684.24 ✓
Windows OS 1 180 AG(p⇒ AFq) 901.81 ✓ 539.00 ✓
Windows OS 4 327 AG(p⇒ AFq) >14400.00 ??? 1,114.18 ✓
Windows OS 4 327 (AFa) ∨ (AFb) 1,223.96 ✓ 100.68 ✓
Windows OS 5 648 AG(p⇒ AFq) >14400.00 ??? >14400.00 ???
Windows OS 7 13 AGAFp >14400.00 ??? 55.77 ✓

Figure 4.2: Comparison between our tool and Cook et al. [14] on ∀CTL verification bench-
marks. All of the above ∀CTL properties have equivalent corresponding LTL properties
so they are suitable for direct comparison with the LTL tool [14].

Prev. tool [14] Our tool (Chap. 2)
Program LOC Property Time Result Time # Result

Ex. from [15] 5 FGp 2.32 ✓ 1.98 2 ✓
PostgreSQL dropbuf 152 G(p⇒ Fq) 53.99 ✓ 27.54 3 ✓
Apache accept liveness 314 Gp⇒ GFq >14400.00 ??? 197.41 3 ✓
Windows OS 2 158 FGp 16.47 ✓ 52.10 4 ✓
Windows OS 2+bug 158 FGp 26.15 χ 30.37 1 χ
Windows OS 3 14 FGp 4.21 ✓ 15.75 2 ✓
Windows OS 6 13 FGp 149.41 ✓ 59.56 1 ✓
Windows OS 6+bug 13 FGp 6.06 χ 22.12 1 χ
Windows OS 8 181 FGp >14400.00 ??? 5.24 1 ✓

Figure 4.3: Comparison between our tool and Cook et al. [14] on LTL benchmarks. For
our tool, we use a recently described iterative symbolic determinization strategy [15] to
prove LTL properties by using Alg. 2.2 as the underlying ∀CTL proof technique. The
number of iterations is reported in the # column.

4.2 Experiments

In this section we report on experiments with a prototype tool that implements E from
Fig. 2.1 as well as the refinement procedure from Algorithm 2.2. In our tool we have
implemented E as a source-to-source translation using the CIL compiler infrastructure.
We use SLAM [2] as our implementation of the safety prover, and RankFinder [31] as
the rank function synthesis tool.
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Figure 4.4: Comparison of the times (logarithmic scale) required to prove the property
of each benchmark with the previous technique [14] versus our technique. The diagonal
line indicates where the tools would have the same performance. The data points in the
circle on the right are cases where the previous technique timed out after 4 hours.

We have drawn out a set of both ∀CTL and LTL liveness property challenge problems
from industrial code bases. Examples were taken from the I/O subsystem of the Windows
OS kernel, the back-end infrastructure of the PostgreSQL database server, and the Apache
web server. In order to make these examples self-contained we have, by hand, abstracted
away the unnecessary functions and struct definitions. We also include a few toy examples,
as well as the example from Fig. 8 in [14]. Sources of examples can be found in our
technical report [16]. Heap commands from the original sources have been abstracted away
using the approach due to Magill et al. [27]. This abstraction introduces new arithmetic
variables that track the sizes of recursive predicates found as a byproduct of a successful
memory safety analysis using an abstract domain based on separation logic [30]. Support
for variables that range over the natural numbers is crucial for this abstraction.

As previous mentioned in Section 1.1, there are several available tools for verifying
state-based properties of general purpose (infinite-state) programs. Neither the authors
of this paper, nor the developer of Yasm [24] were able to apply Yasm to the challenge
problems in a meaningful way, due to bugs in the tool. Note that we expect Yasm would
have failed in many cases [23], as it is primarily designed to work for unnested existential
properties (e.g. EGp or EFp). We have also implemented the approach due to Chaki et
al. [9]. The difficulty with applying this approach to the challenge problems is that the
programs must first be abstracted to finite-state before branching-time proof methods
are applied. Because the challenge problems focus on liveness, we have used transition
predicate abstraction [33] as the abstraction method. However, because abstraction must
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happen first, predicates must be chosen ahead of time either by hand or using heuristics.
In practice we found that our heuristics for choosing an abstraction a priori could not be
easily tuned to lead to useful results.

Because the examples are infinite-state systems, popular CTL-proving tools such as
Cadence SMV [1] or NuSMV [10] are not directly applicable. When applied to finite
instantiations of the programs these tools run out of memory.

The tool described in Cook et al. [14] can be used to prove LTL properties if used in
combination with an LTL to Büchi automata conversion tool (e.g. [22]). To compare our
approach to this tool we have used two sets of experiments: Fig. 4.2 displays the results
on challenge problems in ∀CTL verification; Fig. 4.3 contains results on LTL verification.
Experiments were run using Windows Vista and an Intel 2.66GHz processor.

In both figures, the code example is given in the first column, and a note as to whether
it contains a bug. We also give a count of the lines of code and the shape of the temporal
property where p and q are atomic propositions specific to the program. For both the
tools we report the total time (in seconds) and the result for each of the benchmarks. A
✓ indicates that a tool proved the property, and χ is used to denote cases where bugs
were found (and a counterexample returned). In the case that a tool exceeded the timeout
threshold of 4 hours, “>14400.00” is used to represent the time, and the result is listed as
“???”.

When comparing approaches on ∀CTL properties (Fig. 4.2) we have chosen proper-
ties that are equivalent in ∀CTL and LTL and then directly compared our procedure
(Algorithm 2.2) to the tool in Cook et al. [14]. When comparing approaches on LTL
verification problems (Fig. 4.3) we have used an iterative symbolic determinization strat-
egy [15] which calls our Algorithm 2.2 on successively refined ∀CTL verification problems.
The number of such iterations is given as column “#.” in Fig. 4.3. For example, in the
case of benchmark Windows OS 3, our procedure was called twice while attempting to
prove a property of the form FGp.

A visual comparison is given in Figure 4.4. Using a logarithmic scale, we compare the
times required to prove the property of each benchmark with the previous technique [14]
(on the x-axis) versus our technique (on the y-axis). Our tool is superior whenever
a benchmark falls in the bottom-right half of the plot. Timeouts are plotted at 10,000s
(seen in the circled area to the right) though they may have run much longer if we had not
stopped them. Our technique was able to prove or disprove all but one example, usually
in a fraction of a minute. The competing tool fails on over 25% of the benchmarks.
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Chapter 5

Conclusions

We have introduced a novel temporal reasoning technique for (potentially infinite-state)
transition systems, with an implementation designed for systems described as programs.
Our approach shifts the task of temporal reasoning to a program analysis problem. When
an analysis is performed on the output of our encoding, it is effectively reasoning about
the temporal and possibly branching behaviors of the original system. Consequently,
we can use the wide variety of efficient program analysis tools to prove properties of
programs. We have demonstrated the practical viability of the approach using industrial
code fragments drawn from the PostgreSQL database server, the Apache web server, and
the Windows OS kernel.
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