
Technical Report
Number 804

Computer Laboratory

UCAM-CL-TR-804
ISSN 1476-2986

The HasGP user manual

Sean B. Holden

September 2011

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2011 Sean B. Holden

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

HasGP is an experimental library implementing methods for supervised learning using

Gaussian process (GP) inference, in both the regression and classification settings. It has

been developed in the functional language Haskell as an investigation into whether the well-

known advantages of the functional paradigm can be exploited in the field of machine learn-

ing, which traditionally has been dominated by the procedural/object-oriented approach,

particularly involving C/C++ and Matlab. HasGP is open-source software released under the

GPL3 license. This manual provides a short introduction on how install the library, and how

to apply it to supervised learning problems. It also provides some more in-depth informa-

tion on the implementation of the library, which is aimed at developers. In the latter, we also

show how some of the specific functional features of Haskell, in particular the ability to treat

functions as first-class objects, and the use of typeclasses and monads, have informed the

design of the library. This manual applies to HasGP version 0.1, which is the initial release of

the library.

3

4

Contents

1 Introduction 7

2 Installation 7

2.1 Install LAPACK, BLAS and GSL . 7

2.2 Install the Glasgow Haskell Compiler (GHC) . 7

2.3 Quick installation . 8

2.4 Install hmatrix and hmatrix-special . 8

2.5 Install HasGP . 8

2.6 Detailed documentation . 8

2.7 Quick test . 8

3 Demonstration programs: how to learn using HasGP 9

3.1 Define a stopping function . 9

3.2 Define a covariance . 10

3.3 Construct a classifier . 10

3.4 Optimise the hyperparameters . 11

3.5 Learn and predict . 11

4 Advanced use 11

4.1 What’s in the folders and modules? . 11

4.2 Likelihoods . 13

4.3 Covariance . 13

4.4 Monads for state . 14

4.4.1 Ordering of EP sites . 15

4.4.2 Arbitrary stopping conditions . 15

A Listing of ClassificationDemo2.hs 17

5

6

1 Introduction

This user manual provides a straightforward description of how to use the HasGP library to

address supervised learning problems, and explains some of the ideas underlying its imple-

mentation to the interested reader in more detail. HasGP implements several techniques for

supervised machine learning using Gaussian process (GP) inference. It is being developed

as an ongoing investigation into how machine learning might benefit from the advantages

associated with the functional programming paradigm; a more detailed description of this

background can be found in (Holden [1]). HasGP implements methods corresponding ap-

proximately to chapters 1 to 5 of (Rasmussen and Williams [2]), as a library in the functional

programming language Haskell; the user manual assumes some degree of familiarity with the

language and its associated infrastructure for handling packages, generating documentation

and so on.

2 Installation

HasGP uses several existing libraries which need to be installed before it can be used. The

installation sequence is as follows.

2.1 Install LAPACK, BLAS and GSL

An implementation of Gaussian processes for classification and regression inevitably rests

on a considerable quantity of numerical linear algebra. In HasGP the required linear algebra,

along with optimisation algorithms and certain special functions, are implemented using the

hmatrix and hmatrix-special packages [3], which are in turn an interface to the now stan-

dard LAPACK [4], BLAS [5] and GSL libraries [6]. Consequently you will need to install these

first. The details of how to install the libraries are somewhat dependent on your operating

system, although in many cases they are available as pre-compiled libraries, so for example

under Mac OS X with MacPorts1 and Xcode installed all that should be needed is

port install gsl-devel +universal

and under Fedora Linux

yum install lapack-devel.i686 blas-devel.i686 gsl-devel.i686

or similar. For systems where such an installation method is not supported refer to the above

references and to the respective projects’ home pages for detailed instructions.

2.2 Install the Glasgow Haskell Compiler (GHC)

The Glasgow Haskell Compiler (GHC) can be obtained from www.haskell.org/ghc/. However

in most cases it may well be preferable to obtain it as part of the Haskell Platform available at

hackage.haskell.org/platform/. Haskell has a mature infrastructure for obtaining and in-

stalling libraries using cabal and either method should include this in the installation. Unless

you have a specific reason to customize your installation then cabal is likely to be the most

straightforward method for installing further libraries.

1http://www.macports.org/

7

2.3 Quick installation

At this point it should be possible to finish the installation with the command

cabal install HasGP

The cabal installer should locate and download HasGP and the relevant dependencies from

the Hackage site at hackage.haskell.orgafter which the installation is complete. If you want

to install things separately then proceed as follows.

2.4 Install hmatrix and hmatrix-special

The hmatrix and hmatrix-special libraries provide Haskell wrappers for the required parts

of LAPACK, BLAS and GSL. The former provides common matrix operations and algorithms,

and the latter supplies certain necessary special functions. They can be found at the Hackage

site, and further information and the user manual can be found at

perception.inf.um.es/hmatrix/

However cabal installation is the most straightforward method:

cabal install hmatrix

and similar for hmatrix-special, as it will first install any dependencies and as it will also

automatically obtain the most recent versions.

2.5 Install HasGP

There are two options for using HasGP . One is to download the source tarball from the project

web site at

http://www.cl.cam.ac.uk/~sbh11/HasGP/

or from Hackage, then incorporate it into your project and compile as usual. The alternative

is again to use

cabal install HasGP

2.6 Detailed documentation

Haskell is accompanied by the haddock system for automatically producing documentation

from commented code. If you have used cabal to install HasGP then this will have been done

by default; if not then you can run haddock independently or ask for documentation to be

generated if installing using another method. A current copy of this part of the documenta-

tion is maintained at the project web site.

2.7 Quick test

To make sure all is well, place the following in a file Main.hs

module Main where

import HasGP . Demos. ClassificationDemo1

main = demo

8

and compile it

ghc --make Main

If you are working under Mac OS X you might need to use

ghc -L/usr/lib --make Main

due to a known library-naming issue unrelated to HasGP . This will produce an executable

which when run should do some learning on a simple data set, printing some results and

producing some related .txt files.

The code ClassificationDemo1 that you’ve just run learns using data generated in the

same manner as that used in generating figure 3.6 on page 62 of [2]. HasGP includes a short

piece of Matlab code

HasGP-0.1/src/HasGP/Demos/matlab/ClassificationDemo1.m

that turns the .txt files into a plot for comparison.

3 Demonstration programs: how to learn using HasGP

If you want to quickly run a GP on some data, you can use the demonstration programs as

templates; if you are interested in extending HasGP or you need more detailed information

about how the library is implemented, see the detailed information in the next section in

conjunction with the library’s haddock documentation.

We’ll use ClassificationDemo2.hs to illustrate the process; its listing is in appendix A and

it can be found in the directory

HasGP-0.1/src/HasGP/Demos/

The three files containing the training and test data required can be found in

HasGP-0.1/src/HasGP/Data/Files/

and the necessary Main.hs file is as above, with ClassificationDemo2 inserted in place of

ClassificationDemo1. The problem used is as described in the classification demonstration

at www.gaussianprocess.org. Figure 1 shows the training data.

3.1 Define a stopping function

We first encounter the stopEP function.

stopEP : : EPConvergenceTest
stopEP s1 s2 = ((count s2) == 100) | |

((eValue s1) > (eValue s2)) | |
(abs ((eValue s1) − (eValue s2)) < 0 . 0 0 1)

The library is implemented in a manner allowing us to define arbitrary stopping conditions

when computing an approximation using the Laplace or expectation propagation (EP) meth-

ods. Stopping tests are functions taking two values, describing a pair of consecutive states. In

this case stopEP will stop the approximation process when we reach 100 iterations, when the

evidence falls or when the change in evidence is small.

9

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Training data

Input x1

I
n
p
u
t

x
2

Figure 1: Training examples for the demonstration program ClassificationDemo2.hs.

3.2 Define a covariance

After loading the training and test data, the code sets up a covariance function and computes

the corresponding covariance matrix:

l e t cov = SquaredExponentialARD (log 1 . 0) (constant (log 1 . 0) 2)
l e t c = covarianceMatrix cov inputs

Here, the covariance function is the standard squared exponential function incorporating

variance hyperparameters for automatically determining the relevance of the two inputs

cov(x,y) = c exp

(

−
1

2
|x− y|TM−1|x− y|

)

where M = diag(v)2, and c and v are the parameters. All three parameters are given initial

values of log 1.

3.3 Construct a classifier

The code then constructs a classifier, to be training using the EP approximation

l e t f = (\ v −> gpClassifierEPLogEvidenceVec inputs t a r g e t s cov
generateRandomSiteOrder stopEP v)

This function takes as its input v the current hyperparameter values for the covariance, and it

returns in a pair the resulting values for the evidence and its gradient.

The parameter generateRandomSiteOrder requires some further explanation. The EP ap-

proximation updates sites incrementally according to some predefined ordering. HasGP is

implemented in such a way that this ordering can be completely arbitrary, and can be spec-

ified when constructing the classifier; generateRandomSiteOrder simply specifies that sites

should be visited according to a random permutation that changes at each iteration, but the

10

user is free to define any ordering at all. The required parameter is in fact a state transformer

and its implementation is via the State monad. This is an example of how the abstractions

made available by the functional approach can be of benefit in the implementation of such

techniques. Details of how this mechanism works can be found in the next section.

3.4 Optimise the hyperparameters

We want to optimise the hyperparameters in the usual way, by maximising the evidence. At

present this is achieved using the hmatrix interface to a suitable GSL minimisation algorithm,

and this requires us to convert the function f into two functions—one computing the evi-

dence and the other its gradient—in order to call the optimisation code using the required

format:

l e t ev = f s t . f
l e t gev = snd . f
l e t (solut ion , path) =

minimizeVD ConjugatePR 0.0001 50 1 0.0001 ev gev
(constant (log 1) 3)

Here, minimizeVD specifies the use of an optimisation method using both vectors and deriva-

tives, ConjugatePR specifies the use of the Polak-Ribiere conjugate gradient algorithm, and

the four numerical parameters specify tolerance, precision and so on—see the hmatrix doc-

umentation for details.

3.5 Learn and predict

Having optimised the hyperparameters we set up the covariance to use the optimum values:

l e t cov ’ = SquaredExponentialARD (s o l u t i o n @> 0)
(from List [(s o l u t i o n @> 1) , (s o l u t i o n @> 2)])

l e t c ’ = covarianceMatrix cov ’ inputs

and learn and classify accordingly:

l e t (epValue , epState) =
g p C l a s s i f i e r E P L e a r n c ’ t a r g e t s generateRandomSiteOrder stopEP

l e t c l a s s i f y =
g p C l a s s i f i e r E P P r e d i c t (s t a t e epValue) inputs t a r g e t s c ’ cov ’

l e t newOuts = c l a s s i f y point s

Figure 2 shows the output produced by ClassificationDemo2.hs.

4 Advanced use

The following material is aimed at those wishing to understand how specifically functional

features of the Haskell language have been employed in developing the library, or who want

to develop the library further.

4.1 What’s in the folders and modules?

The source folders and modules for HasGP are structured as follows.

• The folder Types contains a short module MainTypes.hs employed purely to make the

remainder of the code more readable.

11

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Output from HasGP

Input x1

I
n
p
u
t

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Result produced by the demonstration program ClassificationDemo2.hs.

• The folder Support contains six modules:

1. Functions implements some simple functions that appear regularly in machine

learning applications, such as the sigmoid and delta functions. More importantly,

it provides implementations of several functions for which numerical problems

quickly produce overwhelming numerical inaccuracy if they are not implemented

correctly.

2. Iterate As Haskell is a pure functional language, programs have no state. In im-

plementing GPs we often need to maintain state within an iterative algorithm. The

solution is to use the Statemonad to implement state in a functional manner. This

module implements a selection of functions supporting this abstraction.

3. Linear implements some simple functions on vectors and matrices. It also imple-

ments some specific functions where efficiency can be improved by avoiding the

straightforward approach; for example, if we need only the diagonal of a product

of two matrices.

4. MatrixFunctions implements some functions performing GP-specific computa-

tions on matrices.

5. Random implements functions for producing commonly-required random matrices

and vectors.

6. Solve implements functions related to the solution of specifically structured sets

of linear equations.

• The folder Parsers contains a single module SvmLight that can be used to read files of

data structured in the commonly used format described at svmlight.joachims.org.

• The folder Likelihood contains the module Basic defining the LogLikelihood type-

class, and two further modules implementing the logistic and probit likelihoods.

• The folder Covariance contains the module Basic defining the CovarianceFunction

typeclass and some functions for dealing with covariances, such as generating a co-

12

variance matrix. It also contains two further modules implementing the squared ex-

ponential covariance, and its extension incorporating hyperparameters for automatic

relevance determination.

• The folder Data contains modules for generating common, simple data sets, and a fur-

ther folder containing training and test data for one of the demonstration programs. It

also contains the module Normalise implementing common functions for normalising

data.

• The folder Demos contains three modules providing examples of how to use HasGP in

practice.

• The folders Classification and Regression contain the algorithms for performing in-

ference. The former is further divided into two subfolders containing the algorithms for

the Laplace and Expectation Propagation (EP) approximations.

4.2 Likelihoods

Likelihood functions are implemented as instances of the LogLikelihood typeclass.

c l a s s LogLikelihood b where
l i k e l i h o o d : : b −> Double −> Double −> Double
dLikelihood : : b −> Double −> Double −> Double
ddLikelihood : : b −> Double −> Double −> Double
dddLikelihood : : b −> Double −> Double −> Double

where the likelihoodmethod computes the value of the log likelihood itself and the remain-

ing methods compute the first three derivatives with respect to the latent variable. So for

example, in the case of the included LogLogistic likelihood we have

data L o g L o g i s t i c = L o g L o g i s t i c

inst ance LogLikelihood L o g L o g i s t i c where
l i k e l i h o o d L o g L o g i s t i c y f = log (1 / (1 + (exp (−(f ∗ y)))))
dLikelihood L o g L o g i s t i c y f = . . .

and to compute the first derivative we would use the function

d l i k e l i h o o d L o g L o g i s t i c

having type

Double −> Double −> Double .

At present the likelihoods implemented are LogLogistic and LogPhi, which implements

the probit likelihood. In order to add further likelihoods it is only necessary to implement

them as an instance of LogLikelihood.

4.3 Covariance

Covariance functions are implemented as instances of the CovarianceFunction typeclass.

c l a s s CovarianceFunction a where
trueHyper : : a −> DVector
covariance : : a −> DVector −> DVector −> Double
dCovarianceDParameters : : a −> DVector −> DVector −> DVector
makeCovarianceFromList : : a −> [Double] −> a
makeListFromCovariance : : a −> [Double]

13

Parameters are stored as logs. The trueHypermethod returns the actual parameter values, the

covariance method computes the covariance, the dCovarianceDParameters method com-

putes the first derivative of a covariance with respect to its parameters, and the final two

methods convert between lists of log parameters and CovarianceFunctions.

For example, the included SquaredExponential covariance function is defined as

cov(x,y) = c exp

(

−
1

2σ2
|x− y|2

)

and implemented as

data SquaredExponential = SquaredExponential
{

f : : Double , −− ˆ l o g \ sigma f ˆ2
l : : Double −− ˆ l o g l

}

inst ance CovarianceFunction SquaredExponential where
trueHyper se = . . .
covariance se in1 in2 =

f 2 ∗ exp (−(1/(2 ∗ (l 2 ˆ 2))) ∗ (d i f f <.> d i f f))
where

d i f f = in1 − in2
f 2 = exp (f se)
l 2 = exp (l se)

dCovarianceDParameters se in1 in2 = . . .

and so the function

covariance (SquaredExponential (log a) (log b))

having type

DVector −> DVector −> Double

takes two vectors and computes their covariance using the squared exponential function with

parameters a and b.

At present the covariance functions implemented are SquaredExponential and its more

general form SquaredExponentialARD allowing automatic relevance determination and de-

fined as

cov(x,y) = c exp

(

−
1

2
(x− y)TM−1(x− y)

)

where M = diag(v)2, and c and v are the parameters.

In order to add further covariance functions it is only necessary to implement them as an

instance of CovarianceFunction.

4.4 Monads for state

Both the Laplace and EP approximations for GP classification involve iterative algorithms for

which stopping conditions need to be specified. In addition the EP version involves updating

sites in a specified order, often either fixed or random. The State monad allows these aspects

of the algorithms to be implemented in a particularly general, straightforward and extendable

manner in Haskell. In the following it is assumed the reader is familiar with the use of monads

in functional programming; details can be found in, for example O’Sullivan et al. [7].

14

4.4.1 Ordering of EP sites

When computing the EP approximation, the state of the computation includes EP-specific

information, a random number generator and the number of iterations. A SiteOrder is a

state transformer that produces a site ordering as a list of integers while updating the relevant

part of the state, namely the random number generator.

type EPState = (EPSit eSt at e , StdGen , I n t)

type Sit eOrd er = S t a t e EPState [I n t]

So for a fixed site ordering we have

generat eFixed Sit eOrd er : : S i t eOrd er
generat eFixed Sit eOrd er = do

(s t a t e , g , n) <− get
ret urn [1 . . (dim $ t auT ild e s t a t e)]

whereas for a random ordering we have

generateRandomSiteOrder : : S i t eOrd er
generateRandomSiteOrder = do

(s t a t e , g , n) <− get
l e t (newG, p) = randomPermutation g (dim $ t auT ild e s t a t e)
put (s t a t e , newG, n)
ret urn p

The function doOneUpdate takes such a state transformer as one of its parameters.

4.4.2 Arbitrary stopping conditions

We outline the mechanism for the case of the EP approximation; for details of the equivalent

approach for the Laplace approximation see the haddock documentation.

Information regarding the current state of the EP approximation is encapsulated by the

type EPValue, and general stopping tests have type EPConvergenceTest

type EPConvergenceTest = (EPValue −> EPValue −> Bool)

data EPValue = EPValue {
eValue : : Double ,
s i t e S t a t e : : EPSit eSt at e ,
count : : I n t

}

Stopping tests take two values, describing a pair of consecutive states, and produce a boolean.

The type EPSiteState encapsulates several more detailed parameters used in the approxi-

mation, and can be used to compute when to stop if desired. A stopping test is used when

constructing an iteration as follows.

The function for learning using the EP approximation is

g p C l a s s i f i e r E P L ea r n : : CovarianceMatrix
−> T arget s
−> Sit eOrd er
−> EPConvergenceTest
−> (EPValue , EPState)

g p C l a s s i f i e r E P L ea r n k t s i t e O r d e r converged =
runState (iterateToConvergence ’ ’ doOnce converged) s t a r t

15

where
doOnce = doOneUpdate k t s i t e O r d e r
s t a r t = ((g e n e r a t e I n i t i a l S i t e S t a t e k (dim t)) , mkStdGen 0 , 0)

Here, k is the covariance matrix and t is the targets for the training data. The important

section of this code for the purposes of the current discussion is

iterateToConvergence’’ doOnce converged

as converged is an arbitrary convergence test as described. The function iterateToConvergence’’

is implemented as a small modification to the function iterateToConvergence

iterateToConvergence doOnce converged currentValue =
do newValue <− doOnce

i f (converged currentValue newValue)
then ret urn newValue
e l s e iterateToConvergence doOnce converged newValue

where the use of the arbitrary convergence test should be clear. The critical issue here how-

ever is that iterateToConvergencehas type

iterateToConvergence::State s a -> (a -> a -> Bool) -> a -> State s a

Consequently, we can apply it to any descriptions of state and data that are appropriate.

16

A Listing of ClassificationDemo2.hs

−− | This func tio n d e f i n e s when i t e r a t i o n s t o p s .
stopEP : : EPConvergenceTest
stopEP s1 s2 = ((count s2) == 100) | |

((eValue s1) > (eValue s2)) | |
(abs ((eValue s1) − (eValue s2)) < 0 . 0 0 1)

demo = do
putStrLn ” Loading the t r a i n i n g data . . . ”

inputs <− loadMatrix ”gpml−c l a s s i f i e r −x . t x t ”
t a r g e t s <− f s c a n f V e c t o r ”gpml−c l a s s i f i e r −y . t x t ” 120
point s <− loadMatrix ”gpml−c l a s s i f i e r −t e s t . t x t ”

putStrLn ” Learning and p r e d i c t i n g : EP + hyperparameter opt im izat ion . . . ”

l e t cov = SquaredExponentialARD (log 1 . 0) (constant (log 1 . 0) 2)
l e t c = covarianceMatrix cov inputs

l e t f = (\ v −> gpClassifierEPLogEvidenceVec inputs t a r g e t s cov
generateRandomSiteOrder stopEP v)

l e t ev = f s t . f
l e t gev = snd . f
l e t (solut ion , path) =

minimizeVD ConjugatePR 0.0001 50 1 0.0001 ev gev
(constant (log 1) 3)

putStrLn $ ” Solut ion : ” ++ (show $ mapVector exp s o l u t i o n)
putStrLn $ ” Path : ”
putStrLn $ show path

l e t cov ’ = SquaredExponentialARD (s o l u t i o n @> 0)
(from List [(s o l u t i o n @> 1) , (s o l u t i o n @> 2)])

l e t c ’ = covarianceMatrix cov ’ inputs
l e t (epValue , epState) =

g p C l a s s i f i e r E P L e a r n c ’ t a r g e t s generateRandomSiteOrder stopEP
l e t c l a s s i f y =

g p C l a s s i f i e r E P P r e d i c t (s i t e S t a t e epValue) inputs t a r g e t s c ’ cov ’
l e t newOuts = c l a s s i f y point s

f p r i n t f V e c t o r ”gpml−hasgp−outputs . t x t ” ”%g” newOuts

putStrLn $ ”Done”

ret urn ()

17

References

[1] Sean B. Holden. HasGP: a Haskell library for gaussian process inference. Journal of Ma-

chine Learning Research, 2011. Submitted.

[2] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, 2006.

[3] Alberto Ruiz. Introduction to hmatrix, 2011. Available at

perception.inf.um.es/hmatrix/.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongara, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for

Industrial and Applied Mathematics, 1999.

[5] J. Dongara, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra

subprograms. ACM Transactions on Mathematical Software, 16:1–17, 1990.

[6] Mark Galassi, James Theiler, Jim Davies, Brian Gough, Gerard Jungman, Patrick Alken,

Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference Manual. Network

Theory Ltd, third edition, January 2009.

[7] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly Media,

Inc., 2009.

18

