
Technical Report
Number 812

Computer Laboratory

UCAM-CL-TR-812
ISSN 1476-2986

Abstracting information
on body area networks

Pedro Brandão

January 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Pedro Brandão

This technical report is based on a dissertation submitted July
2011 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Magdalene College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Healthcare is changing, correction. . . healthcare is in need of change. The population ageing, the
increase in chronic and heart diseases and just the increase in population size will overwhelm the
current hospital-centric healthcare.

There is a growing interest by individuals to monitor their own physiology. Not only for sport
activities, but also to control their own diseases. They are changing from the passive healthcare
receiver to a proactive self-healthcare taker. The focus is shifting from hospital centred treatment
to a patient-centric healthcare monitoring.

Continuous, everyday, wearable monitoring and actuating is part of this change. In this setting,
sensors that monitor the heart, blood pressure, movement, brain activity, dopamine levels, and
actuators that pump insulin, “pump” the heart, deliver drugs to specific organs, stimulate the
brain are needed as pervasive components in and on the body. They will tend for people’s need
of self-monitoring and facilitate healthcare delivery.

These components around a human body that communicate to sense and act in a coordinated
fashion make a Body Area Network (BAN). In most cases, and in our view, a central, more
powerful component will act as the coordinator of this network. These networks aim to augment
the power to monitor the human body and react to problems discovered with this observation.
One key advantage of this system is their overarching view of the whole network. That is, the
central component can have an understanding of all the monitored signals and correlate them to
better evaluate and react to problems. This is the focus of our thesis.

In this document we argue that this multi-parameter correlation of the heterogeneous sensed
information is not being handled in BANs. The current view depends exclusively on the applica-
tion that is using the network and its understanding of the parameters. This means that every
application will oversee the BAN’s heterogeneous resources managing them directly without
taking into consideration other applications, their needs and knowledge.

There are several physiological correlations already known by the medical field. Correlating
blood pressure and cross sectional area of blood vessels to calculate blood velocity, estimating
oxygen delivery from cardiac output and oxygen saturation, are such examples. This knowledge
should be available in a BAN and shared by the several applications that make use of the network.
This architecture implies a central component that manages the knowledge and the resources.
And this is, in our view, missing in BANs.

Our proposal is a middleware layer that abstracts the underlying BAN’s resources to the applica-
tion, providing instead an information model to be queried. The model describes the correlations
for producing new information that the middleware knows about. Naturally, the raw sensed data

3

4

is also part of the model. The middleware hides the specificities of the nodes that constitute the
BAN, by making available their sensed production. Applications are able to query for information
attaching requirements to these requests. The middleware is then responsible for satisfying the
requests while optimising the resource usage of the BAN.

Our architecture proposal is divided in two corresponding layers, one that abstracts the nodes’
hardware (hiding node’s particularities) and the information layer that describes information
available and how it is correlated. A prototype implementation of the architecture was done to
illustrate the concept.

Acknowledgements

First I would like to thank the reason for all (not just the thesis, really all): my family. My wife
Sara and my two kids Inês and Daniel were the ones that stood the most and supported me the
most. They make it all worthwhile. My mother bared a lot of the burden (starting by having
me) and gave me (and still gives) a lot of strength to keep going. My father also tried to put the
pressure, ringing and saying “Well, when?”. My mother and father in law were also of invaluable
help. They made things seem a lot easier than they were, with their tireless support on looking
after all of us.

A deep thanks to my supervisor Prof. Jean Bacon, first for taking me in into a rewarding
experience. Secondly for providing all the support so that I would carry through this research
trip. I am in debt also to Dr. Robert Harle, my advisor, for trying to guide me in my research path.

Words are not enough for expressing all the thanks that are due to the people from the Opera
group. First words go to Sriram Srinivasan for being a guide, a realistic-optimist, a pushing-force,
a café lover and all-knowledgeable-internet-savvy. Thank you for all the feedback and plain
café talks. Eiko Yoneki’s driving force of nature helped me through some of the doubts and
hesitations of the PhD path, with the help of teas and cookies accompanied by her insight in
the research field. Dave Eyers provided much of the call to reality and guidance through this
“devious” way, with his expertise on all things techie and most of the non-techie. David Evans’
knowledge and experience that he puts through his constructive and insightful chats were also
fundamental for getting it through. Thank you, also to Jat Singh for providing me with incentive
and feedback, using his fresh experience on the talks we had. Although it wasn’t for long enough,
Samuel Kounev contributed with his organization, good mood and well thought opinions. Salman
Taherian was a good office mate, while it lasted, providing useful and relaxing discussions.

I owe all my friends a lot of gratitude for always being there, even when I was away.
Thank you all.

5

Contents

1 Introduction 15

1.1 Where are we? . 15

1.2 Where do we want to go? . 16

1.2.1 BANs . 17

1.3 The transport to get us there . 19

1.3.1 Contributions . 21

1.4 Outline . 22

1.5 Notation . 22

1.5.1 Nomenclature . 22

2 Background 25

2.1 BANs’ nodes . 25

2.2 Applications . 26

2.2.1 Requirements . 30

2.3 WSN and BSN . 30

2.4 Network characteristics . 32

2.4.1 Wired versus wireless . 32

2.4.2 Communication using the human body . 35

2.4.3 QoS . 36

2.4.4 802.15.6 communication channels . 37

2.5 Energy . 37

2.6 Our work in BANs . 39

7

8 Contents

3 Hardware abstraction layer 41

3.1 Introduction . 41

3.2 Application needs and design decisions . 43

3.2.1 Star topology . 44

3.2.2 Dumb sensors . 45

3.3 Hardware abstraction layer . 45

3.3.1 Network . 46

3.3.2 Daemons . 48

3.3.3 Sensor services . 49

3.3.4 Active components . 49

3.4 Information abstraction layer . 50

3.5 Data structures . 50

3.5.1 Profiles . 51

3.5.2 Messages . 53

3.5.3 Final comments . 54

3.6 Service discovery . 55

3.6.1 Service discovery messages . 58

3.6.2 Other service discovery services . 58

3.6.3 Comments . 59

3.7 Adding a new node to the architecture . 59

3.8 Other middleware architectures . 60

3.9 Concluding remarks . 62

3.9.1 In-node processing . 63

3.9.2 What about actuators? . 64

3.9.3 Virtual Nodes . 64

3.9.4 Open issues . 65

4 Modelling data correlations 67

4.1 Introduction . 67

4.1.1 Problem statement . 69

4.2 Model . 69

4.2.1 Framework description . 70

4.2.2 Optimization algorithm . 71

4.2.3 Metrics . 75

4.2.4 Complexity analysis . 76

Contents 9

4.2.5 Model notes . 80

4.3 Conclusion . 80

4.3.1 Open issues . 81

5 Information flow 83

5.1 Pub/Sub system . 83

5.1.1 Modules . 84

5.1.2 Brokerage . 87

5.2 Component interactions . 87

5.2.1 Requests . 88

5.2.2 Optimization . 88

5.2.3 Producer un-registering . 90

5.2.4 Alarms . 91

5.2.5 Producer unavailable . 91

5.2.6 New information/value . 92

5.2.7 Un-subscription . 92

5.3 Related work . 93

5.3.1 Declarative languages . 95

5.4 Conclusion . 98

5.4.1 Open issues . 99

6 Implementation 101

6.1 Layer interaction . 101

6.1.1 Functionality interaction . 102

6.2 Platform . 106

6.2.1 Communication . 107

6.2.2 Library details . 109

6.2.3 Test application . 109

6.3 API . 111

6.3.1 Network Interface . 111

6.3.2 Command Daemon . 111

6.3.3 Sensor Service . 112

6.3.4 Module . 112

6.3.5 Application . 114

6.3.6 Moving the abstractions . 115

6.3.7 API Comments . 115

6.4 Final Observations . 116

10 Contents

7 Conclusions and future work 117

7.1 Conclusion . 117

7.2 Future work . 118

7.3 Lessons learned . 121

7.3.1 BSN versus WSN . 121

7.3.2 The cost of code . 121

7.3.3 Platform . 122

7.4 Publications . 123

A Bibliography 125

B Acronyms 137

C Implementation details 139

C.1 API . 139

C.2 Software Used . 140

C.2.1 Development . 140

C.2.2 Typesetting . 141

D Index 143

List of Figures

1.1 Middleware functionality . 19

2.1 Actuators and sensors in a BAN . 26

2.2 Networks involved in a BAN . 33

3.1 Proposed global architecture . 42

3.2 Middleware layers . 43

3.3 Middleware components on the BS and node . 46

3.4 Dispatching of received messages . 48

3.5 Command daemon relationships . 49

3.6 Hardware abstraction active components . 50

3.7 Profiles and types . 52

3.8 Measure data structure and data type . 52

3.9 Command message examples . 55

3.9.a Request single measurement . 55

3.9.b Request for changing data collection and sending frequencies 55

3.9.c Reply with bulk measurements . 55

3.9.d Measurements . 55

3.10 SD global state machine . 57

3.10.a In a node . 57

3.10.b In the BS . 57

3.11 Message flow and component interaction . 63

3.11.a In the BS . 63

3.11.b In a node . 63

4.1 Correlation diagram example . 68

11

12 List of Figures

4.2 Worst case scenarios . 78

4.2.a Worst case number of sons . 78

4.2.b Worst case possibilities . 78

5.1 Pub/sub architecture . 84

5.2 Module types . 85

5.3 Module sensor data flow . 85

5.4 Module sensor . 86

5.5 Request push value – subscribe . 88

5.6 Module’s capability and associated cost . 89

5.7 Get producers . 89

5.8 Producer un-registering . 90

5.9 Alarm example . 91

5.10 Producer unavailable . 92

5.11 Data new value . 92

5.12 Information layer data flow . 99

6.1 Information layer components and hardware layer components 102

6.1.a DataValue relationship with hardware layer 102

6.1.b Module relationship with hardware layer 102

6.2 New node Appears . 103

6.3 Creation of node and sensor details . 104

6.4 Data new value from Sensor . 104

6.5 Bootstrap . 105

6.6 Communication within and in/out of BS . 108

6.7 Dependency diagram for test application . 109

6.8 Prototype screen-shot . 110

6.9 Moving hardware abstraction . 115

List of Tables

2.1 Sensor examples . 27

2.2 Sensed values applications . 28

2.3 Actuator examples . 29

2.4 Applications examples from IEEE’s 802.15.6 . 30

2.5 BSN vs WSN . 31

2.6 Wireless chips energy consumptions examples . 38

3.1 Collection rate versus sending rate . 54

4.1 Metrics examples . 75

4.2 Cost examples . 76

6.1 Node’s hardware . 107

13

1
Introduction

O ur work revolves around defining a middleware for Body Area Networks that provides
multi-parameter correlations for applications monitoring the human body. Our pro-
posal enables using models that describe correlations between sensed information to

produce/infer new information. Applications are relieved from doing these correlations, needing
only to request the required information. The middleware also provides a hardware abstraction
of the underlying resources.

In this introduction we describe the current ground for health care and the direction we
propose as the way forward. Our contribution to this path is presented at the end.

1.1 – Where are we?

The motivation for our work rises from the increasing health monitoring needs for the
population and the self-awareness that people want to have of their physical activity/exercise.
These, especially the first, are the main motives for the growth of sensing around and within
our body. This need is spurred by several factors. One is the increase in chronic diseases. A
report from Partnership for Solutions National Program Office (in 2004) [3] and a World Health
Organization (WHO) report [132] show the increase in the number of affected people. Another
factor is population ageing. WHO [131] states that in 2008 the average life expectancy for the
global population was 68 years with 80+ years in some developed countries (most European
countries, Canada, Australia, Japan, New Zealand, etc.). And the last point relates to global
projections of an increase in deaths related to cancer and heart diseases [129, page 25].
Other figures from WHO [134] point to high Blood Pressure (BP) (leading cause), high blood
glucose and physical inactivity as three of the four main attributable causes of mortality; tobacco
is the second. In the same report, high BP and high blood glucose were in the top ten causes

15

16 1.2. Where do we want to go?

of an increase in Disability Adjusted Life Year (DALY)1. Another fact is the population growth
and especially the expected decrease in health-worker to patient ratio. From WHO data up to
2009 [133], the ratio is still being maintained or slightly increasing, but the ten-year work plan
from 2006 of WHO [130] includes to “sustain [a] high performing workforce”.

The current healthcare approach is based on a model where the patient, or when followed
by a physician, the doctor, first detects symptoms that then lead to a search for a diagnostic.
Treatment then follows, which may involve hospitalization. As described by Gupta [39] this is
a “manual, slow, costly and inefficient” process. As portrayed by Andy Grove’s 2003 main-frame
metaphor [98], the system is based on a centralized model: “expectation of society is that everybody
should have the right to have access to this "mainframe"”. The focus is on the central components:
the physicians and healthcare units. This model is being overloaded with demand, and costs will
become unsustainable with the current trend. The same point is also defended by Bardram [8]
where he adds that current developments (in 2008) seemed still driven by/to the centralized
model, where the research was directed to the main-frame parts (Information Technology (IT),
information processing, storage, etc.) as opposed to the patients themselves. He postulates that a
change is needed to a pervasive model. The characteristics need to evolve from the centralized
model to a pervasive model, from Bardram [8]:

Acute→ Continuous

Hospitalization→ Home & out-patient

Reactive→ Pro-active & Preventive

IT→ Assisting Technology

Centralized→ Pervasive

Sampling→ Monitoring

Doctor-centric→ Patient-centric

Which leads us to the next section.

1.2 – Where do we want to go?

The ailments from the previous section: chronic diseases, mortality and morbidity associated
diseases, ageing population and the decrease in population health coverage can all be abated by
a continuous monitoring environment, as is shown by the several studies on monitoring glucose
for diabetes and heart rate for patients with cardiovascular diseases2. One could also argue that
for sport practitioners providing wearable, unobtrusive, easy to use and more precise monitoring

1DALY is a measure used by WHO of the impact of disease in a person’s life. It measures the productive years lost
due to an illness, disability or premature death.

2Regarding cardiac monitoring there are studies dating back to 1977, where Brodsky et al. [17] evaluate portable
monitoring. A group of experts in this area as produced a document with guidelines for monitoring in Implantable
Electronic Cardiovascular Devices (IECDs) [128], in the document’s table 1 they define the objectives of monitoring
divided by patient, IECD, disease and communication objectives. A list of studies and devices can be found in Burri
and Senouf’s work [18].

Chapter 1. Introduction 17

conditions could spark exercise. This exercise motivation should range several age groups, with
especial relevance for the elderly population that would gain confidence to practice from this
uninterrupted observation. However, the more relevant argument is that there is a need to change
from a traditional healthcare, which reacts to a detected malady, to a pervasive healthcare, where
continuous monitoring enables an early detection of a disease and allows for proactive action as
defended by Gupta, Kulkarni and Öztürk [39, 61].

This need has motivated technological developments associated with healthcare and sensing
and sparked market interest. PricewaterhouseCoopers [90] made a score card of medical
innovation in nine countries to assess the USA’s position in the race for global leadership. The
report showed an expenditure increase on health in those countries. MobileHealthNews [28]
reports on investors putting in $233 M on Mobile Health. Forrester Research [15] sees that
after a struggling start the healthcare unbound3 market will sky-rocket to $34 billion by 2015.
Products are already available for monitoring several parameters like ElectroCardioGram (ECG),
BP, oxygen saturation, multi-parameter devices, defibrillators, health hubs and controlled pills.
And research is being done to enhance them in terms of sensing capabilities4.

Applications will be needed to handle a myriad of information: monitor, analyse, control, warn,
store, etc. But given all the different ailments and objectives (including sports), one application
will not necessarily fit all purposes. A simple example would be self-assessment for a jogging
activity while being monitored for diabetes. However, there can be more complex environments:
where one is being monitored for more than one disease; where the user wants to assess different
parameters in his activity (sleep patterns, calories spent, calories intake, etc.). This prompts the
need to cope with several applications accessing the data sources.

As introduced in the last section the global idea is to move from the incumbent model of the
hospital-centred treatment to a pervasive model where the patient is the focus of the healthcare.
As put by Andy Grove [98] in the mainframe metaphor, one needs to move to a “health-care
equivalent of the low-cost PC”. As Gupta [39] argues, the objective is to move to an “automated,
real-time, inexpensive and very efficient” system. The focus being on a continuous monitoring
that leads to a pro-active and preventive system. The move encompasses hospitalization only
for very serious conditions, envisioning automated diagnosis and treatment. This will naturally
lend itself to home & out-patient treatment and monitoring. As mentioned, one needs also to
“gear” the current research from focusing on the centralized medical information systems towards
assisting technology. Bardram [8] also discusses a persuasive system, that tries to “steer” people
into the correct behaviour and life-style that is best suited to their situation (the sport motivation
could also fit this). And again resorting to market studies examples, Forrester Research in
2002 [9] already states the need to have a “major shift, enabled by technology, to self-care, mobile
care, and home care”. This empowerment of the individual has the added advantage that endows
her/him5 with a self-awareness and responsibility of her own malady.

In this context we propose Body Area Networks (BANs) as an integral part.

1.2.1 BANs

Let us start with a nomenclature standpoint: BANs are also called Body Sensor Networks
(BSNs), Wireless Body Area Network (WBAN) and, to a lesser extent, Body Area Wireless Sensor

3What Forrester names personal medical monitoring.
4We describe sensors on the background section of §2.1
5We use the feminine version of the article from this point on without any loss of generality.

18 1.2. Where do we want to go?

Networks (BAWSNs). As we will discuss, we do not assume that the network needs to be wireless,
thus WBAN and BAWSN are too specific, and we accommodate actuators in our architecture,
i.e. BSN may be too specific. Although we accommodate actuators most of our thesis work is
based on sensors and the data they collect. As such we use BAN when the context refers to either
sensors or actuators, e.g. when describing hardware abstractions, and BSN when only sensors
are relevant, e.g. when describing information collection.

With the last paragraph in mind, we define a Body Area Network as a network of sensors
and actuators within the limits of the human body area (inside the body or over the body) that
communicate with each other and with a central more powerful node. These body nodes can
measure physiological data, movement, position, etc. and dispense medication, electric shocks
(pacemakers), provide imaging for poor sighted people, etc. The more powerfull node can be a
mobile device, e.g. a smart phone, Personal Digital Assistant (PDA) or a fixed house central hub.
The objectives of this network can be many-fold (which is one of the points of our thesis) where
some examples are: monitoring vital signals (disaster victims, 1st responders), health monitoring
(home-care, in hospital), self-assessment (sports), deriving user-context (moods, coordinated
group movement). The examples illustrate our focus on sensing, neglecting actuation. However
one can also picture: closed loop insulin delivery, were the inputs for assessing insulin needs are
not merely the glucose value, but also activity, stress level, etc., controlled drug release (using
“pill size” containers remotely controlled), etc.

Research on BANs can be dated back to 1961 with work from Mackay [68] on radio telemetry
within the body. The work from Zimmerman is also referred as a starting point for Personal
Area Networks (PANs), with his 1996 paper [146] and MSc thesis [145]. Zimmerman mostly
addresses the in-body communication, but also paves the way for the discussion of a network of
devices within the body area. Naturally, several advances have been made in this area, notably
developments in both the sensing/acting devices and the framework to handle/manage them.
We discuss these in chapter 2.

BANs can provide part of the needs for monitoring and actuating in the context we described
in the previous section. Especially on a front that has not seen much advance: multi-parameter
retrieval and correlation6. Being able to tap into several inputs and, especially, being able to
extrapolate new information based on them is a key functionality in BSNs. Another point is
the realization that several applications will reside in the central node and access the resources,
i.e. the BAN’s nodes. Handling all the requests and optimizing those resources is also key to
fulfilling applications’ requirements and increasing the lifetime of the resources.

We defend that there is the need to provide multi-parameter correlations to allow
correct, reliable and new (extrapolated) information for applications using the BSN.
Meeting the multiple requests by different applications using the BAN and optimizing
resource usage are the other essential capabilities of a framework for a BAN.

6From another report on future markets, we can envision that “The Global Multiparameter Patient Monitoring
Devices Market [is] to Reach $3.4 billion by 2016” [36].

Chapter 1. Introduction 19

1.3 – The transport to get us there

To achieve the aims motivated in §1.2, we propose a middleware layer that abstracts the
underlying BAN to the applications, providing instead an information model that can be queried.
The data on the model itself is derived using the raw data provided by the BSN. This middleware
should also handle applications’ requirements while optimizing resource usage.

Middleware
Node

Middleware
Node

Node
Node

Requests
Requirements

Model

Node

Control

Raw Data
Advertisement

Metadata

Node’s
Middleware

SensorSensor ...

Information
Metadata

Application

Central
Node

Middleware

Figure 1.1 – Middleware functionality

The architecture we define is portrayed in figure 1.1,
which is a typical middleware as proposed by Bern-
stein [11]. A middleware component resides on the
central node and a “thinner” middleware layer on the
devices (sensors or actuators). The main point we want
to handle is the heterogeneity of available information
and the correlation of disparate data. From Bernstein’s
definitions our work identifies itself as a framework, as
we provide an Application Program Interface (API) to
access the underlying resources, namely the nodes. We
go beyond the framework/middleware definitions from
Bernstein, as we add a service that infers new inform-
ation. Our middleware not only provides access to the
data from sensor nodes, but provides a service that cor-
relates different information to infer new information.

An example of correlation of different sensing in-
formation is determining Cardiac Output (CO) from
Heart Rate (HR) and Stroke Volume (SV). This cal-
culation uses the Windkessel model as described by
Sun et al. [111] and is a known physiological formula,
CO = SV × HR. Let us suppose we had an electro-
cardiac reader for SV, a HR reader and also an electro-
cardiac CO reader. We have an application that requires
CO. With an intermediate layer (middleware) the pro-

cess could be: (i) application requests CO information with specific requirements (maximum
delay, maximum error, etc.); (ii) middleware checks its known models for deriving CO, and the
available sensors to provide the raw data needed; (iii) after matching the possibilities with the
request requirements it gets the raw data from the sensors; (iv) data is aggregated and metadata
is added to the produced information. Examples of metadata are confidence on the value (based
on the model and the data available), error margin (taking into account statistics of the sensors
used) and time of assessment; (v) middleware provides the information and metadata to the
application; (vi) application handles the information taking into account its metadata.

One could assume that getting the direct reading from the CO reader would be the best
solution. However, there could be some factors that made using the correlation a better approach.
If another application, or even the same, requested HR it could be more “economic” to get the
SV instead of the CO. That would produce the HR requested and the CO as per SV × HR. Other
constraints could be if the CO reader had the battery nearly depleted or if it had an error greater

20 1.3. The transport to get us there

than allowed by the application’s request.

Physiological models enable the correlation of the different inputs to infer new information.
This field has seen great developments that range from the simple mentioned Windkessel model
for CO [111] to others more complex such as insulin sensitivity.

Insulin sensitivity measures the ability of insulin to lower blood glucose, i.e. how effective the
insulin is in enabling the storage of blood glucose in cells. Insulin sensitivity as derived from
Keener and Sneyd [60, pages 804–806] is:

Insulin Sensitivity =

∫ ∞
0

Gb −G(t)

G(t)
dt

p1 +
1

V

∫ ∞
0

r(t)dt∫ ∞
0

(Gb −G(t)) dt


∫ ∞

0
(I(t)− Ib) dt

In the formula, G(t), I(t) and r(t) are respectively blood glucose, blood insulin and glucose
intake as a function of time. Gb is the glucose base value, Ib is the insulin base level and V the
glucose volume per unit of body weight. p1 is a constant related to the glucose decrease rate.
This model is used in a meal tolerance test where insulin and glucose in the blood are measured
along the test and the food intake is controlled. The

∫∞
0 r(t)dt expression is the total food intake

during the test. As all values are known it is possible to calculate the insulin sensitivity.

In our middleware approach we intend to embed this knowledge in components. This allows
re-use of the component within the system by whatever other components need it. As an example
we could define the CO ← f(HR,SV) in such a component. If the system needed CO it could
use the component to produce it (as long as HR and SV were available and the requirements for
getting CO were met by this component). In chapter 4 we discuss in more detail the models and
how they are used within our proposal.

Some further points to consider:

• although we focus our examples on in-body and over-the-body devices, the work is applicable
to networks where the device is in the proximity of the user and communication is possible
(e.g. a wireless scale);
• as mentioned, “to communicate” does not imply in what medium, which could be wireless,

intra-body or wired (we discuss this in §2.4);

Within our thesis we assume the following:

• there will be a network star topology which we discuss in §3.2; where the central node acts as
the hub of the network;
• there will be several sensors in a BAN able to sense different or the same parameters (more on

this in §2.1);
• there will be several applications residing on the central node of the BAN;
• applications will need to access the sensor network to function;
• applications will have requirements on the inputs they want to receive (frequency, delay, etc.);
• there can be colliding (not necessarily conflicting) requests for sensor input from different

applications;
• correlation of different inputs to provide higher level information will be a necessity.

The last bullet point is the key point to our thesis.

Chapter 1. Introduction 21

1.3.1 Contributions

Our main contribution is presenting a framework that provides a feasible way for application
developers to correlate multi-parameter inputs in BSN using re-usable components. These correl-
ations are based on models that can be pushed to a middleware. This enables the middleware to
optimize resource usage while providing applications their requests. Namely we introduce the
following:

Models in the framework: we defined an architecture based on modules (components) that
state their information production and their input needs for that production. These modules
also have associated a cost and capabilities for that production. When a requirement (or
more) enters the system the middleware combines modules so as to produce the requested
information while meeting the requests’ requirements. The possible combinations are
defined in the correlation model. The model abstraction is detailed in chapter 4.

Optimization: the choice of the modules to use for the requests issued is not constrained just by
requirements. The middleware, apart from knowing what raw data is available, also tries
to minimize the cost of using those modules. This takes into account the inherent costs and
capabilities of the modules, as well as the requirements from the requests. Here we can see
the advantage of managing all the applications’ requests globally. This “omniscient” view
provides the opportunity for “aggregating” similar or intersecting requests. We describe the
optimization in §4.2.

In the process to achieve these goals we also defined and develop the following concepts:

• Hardware abstraction: we developed a framework that provides an abstraction for the devices
on the BAN. For this, we defined data structures that hold the data (e.g. sensed data like HR,
BP) and metadata (e.g. actuator characteristics like action, control parameters). These data
structures are then used in a protocol for conveying commands and receiving responses from
the central node to the devices. This protocol is oblivious to the underlying communication
medium where it is being transmitted. These commands and data gathering are also abstracted,
which means that only the information being requested/transmitted is relevant for using the
layer. This provides an abstraction over Operating Systems (OSs), communication layers and
nodes’ data access. We discuss this further in §3.3.

• Service Discovery (SD): a needed characteristic of a middleware for managing devices is the
ability to discover them. As such, based on current SD technologies we developed a service for
our middleware. The wireless communication standards for low power devices have defined
SD capabilities for networks with these devices. Bluetooth [14] and Zigbee [144] are the more
widely used approaches in Wireless Sensor Networks (WSNs). Our aim with developing this
service was not to necessarily improve on current work. As such, our approach borrows from
these standards, simplifying some structures for a BAN and adding pro-active advertisement by
the nodes. We discuss this in §3.6.

• pub/sub system: the inter-communication between modules in the model is done through a
Publish/Subscribe (pub/sub) system. Modules subscribe to the inputs they need and publish
their production. This is described in chapter 5.

22 1.4. Outline

To test the concepts defined, we built a middleware with most of the ideas discussed. It is
currently mostly a working implementation in Java without particular optimizations. The devices
used for the tests were SunSPOTs from Sun [113] as they have native support for Java with their
Virtual Machine (VM) named Squawk. Although we defend the notion of supporting different
types of devices we have not implemented the interface classes for other devices. We go into
more detail in chapter 6.

1.4 – Outline

We start our discussion on BANs by describing their current state, their network character-
istics, the sensors used/available and make some considerations on their hardware. After this
background review, we discuss in chapter 3 our middleware proposal and how it fits our goals,
the chapter is focused on a hardware abstraction layer. We dedicate chapter 4 to discuss the
model usage within our middleware. In chapter 5 we address the flow of information using the
model from the previous chapter. In chapter 6, we describe some details regarding our prototype
implementation. We finish with chapter 7 presenting the conclusions and discussing some future
directions. The appendices apart from the bibliography and acronyms list, present some further
details on our implementation and the software used throughout the thesis’ work.

1.5 – Notation

In some chapters we use Unified Modelling Language (UML) [83] diagrams to better illustrate
the system components and their interaction. No specific knowledge is needed for reading the
diagrams, and they only complement what is described in the text.

We use color in some figures to better distinguish some elements. This will not impose
any restriction on black and white printed versions, as those elements also have other visual
distinctions, such as stripes and vertical lines.

When we discuss component parts that have a direct reflection on the code developed, we use
fixed width fonts as NodeComm.

Acronyms used are expanded the first time they are used in a chapter. After that only the
acronym is used. For the most commonly used acronyms (e.g. IP7, IEEE) and acronyms that are
not relevant for the context (example of cellular networks UMTS) we use only the acronym. All
used acronyms are defined in appendix B.

1.5.1 Nomenclature

Some of the terms used in this thesis are described here to remove any ambiguity that may
occur.

Node is a hardware component that hosts sensors and/or actuators. It has communication
capabilities (wireless, wired, etc.). In most cases it runs an OS where there is the possibility

7Note that there is no reference to intellectual property, so this refers to Internet Protocol.

Chapter 1. Introduction 23

to deploy software developed. This is not however mandatory, as there are some nodes that
do not allow for this. In chapter 4 we may use “nodes” to refer to elements in a graph. This
is only done where it does not raise any doubt;

Base Station (BS) is a special node on the network. It is a more capable node (processing,
storage, energy, etc.) where the applications for which we aim our work run. Some
examples could be a smartphone, a PDA or a laptop.

Model is a description of correlations between different information that is collected or produced
in our system. By itself it represents only the definition of all the correlations known. In
chapter 4 we describe how we build diagrams based on the known correlations, thus on
known models.

Resource mainly refers to the nodes in the BAN. It is used in cases where nodes’ resources
themselves are relevant, such as energy, processing, communication.

2
Background

I n this chapter we provide the context to Body Area Networks (BANs), discussing nodes
for actuating and sensing, applications that use it, their network characteristics, energy
usage and what distinguishes them from Wireless Sensor Networks (WSNs). The contents of

this chapter describe work parallel to our proposal, providing the basis for discussing what we
propose. We address this at the end of the chapter.

2.1 – BANs’ nodes

We start this chapter by trying to materialize a BAN, with examples of possible nodes for it
taken from available products and research prototypes. Our objective is to illustrate the context
of our work and provide concrete instances of applicable scenarios. Figure 2.1 illustrates such a
scenario with actuators and sensors in the human body1.

Table 2.1 realizes the sensor examples from figure 2.1, with examples from commercial
available products and research prototypes. The data from the table is derived from the references.
In some cases we had to infer some information, in which case we duly noted it in the table. In
others, cardiac biomarkers, it was not possible to extract or infer parts of the table data. Examples
range from implantable sensors to wearable ones, biochemical compounds sensed to physical
ones.

Data rates for the various sensors range from very few bits per second to some kilo bits per
second. These values do not incorporate the time stamps and message headers, which impose
higher needs from the communication channels. For illustrating time stamp sizes, we have, from
the IEEE 11073 standard for health device communication [54], a definition of relative time data

1When we talk at the end of the chapter of correlations, the Vitruvian man will have more meaning.

25

26 2.2. Applications

Heart Rate
ECG
Breath. Rate
Skin Temp.

Accelerometer

Gyroscope

Galvanic Skin
 Response Oximeter

Glucometer
Insulin pump

Brain Activity

Implanted magnetic
 Sensor (myoglobin)

Implanted electrochemical
 Sensor (dopamine)

Brain Stimulation

Exoskeleton

Artificial Retina

Drug delivery

Figure 2.1 – Actuators and sensors in a BAN
(Vitruvian man from Microsoft Clip Art; royalty free)

with 32 bit size and for high resolution time a 64 bits size. This would be added for each sample,
thus increasing the data rate. For the brain sensor, the sample size is not defined, and as such we
do not have information on the data size. This would be over 640 kbps in the current design and
over 4000 kbps in the desired 100 channels resolution.

Applications that use the sensed data are exemplified in table 2.2. As expected, applications
that control diseases need to monitor several parameters. Only the parameters from table 2.1 are
portrayed in table 2.2, i.e. the applications could use more parameters than the ones mentioned.

Table 2.3 gives some examples of actuators available as commercial products or research
prototypes. Some of these actuators aim to have a closed-loop, i.e. being able to sense the
environment and actuate accordingly. The closed-loop for diabetic management is a research
topic that has seen much interest. However, it is still missing the control part of the loop. The
Minimed example in table 2.3 provides the pump and the sensor, but the autonomic connection
between both is still missing.

An important note is that these systems are currently disjunct. To the best of our knowledge,
there is currently no framework to integrate the different sensor information. The same data
could be handled differently by different applications, e.g. the relevance of Heart Rate (HR) for
monitoring arrhythmias is different from monitoring sports activity. As we discuss at the end of
the chapter, data could be correlated in different ways to produce new information. These points
are the main focus of our thesis.

2.2 – Applications

In this section we provide more information on the types of applications we can see in future
BANs.

Chapter 2. Background 27

Ta
bl

e
2.

1
–

Se
ns

or
ex

am
pl

es

D
ev

ic
e

A
va

il
ab

il
it

y
Se

n
se

d
Te

ch
n

ol
og

y
Fr

eq
u

en
cy

D
at

a
R

at
e
∝

En
er

gy
♦

B
io

H
ar

ne
ss

B
T

[1
40

]
co

m
m

er
ci

al

H
R

de
te

ct
io

n
of

Q
RS

co
m

pl
ex

in
EC

G
1

H
z

8
bp

s

21
h

tr
an

sm
it

ti
ng

B
re

at
hi

ng
ra

te
co

nd
uc

ti
ve

el
as

ti
c

m
ea

su
re

m
en

t
of

th
or

ax
ex

cu
rs

io
n

1
H

z
7

bp
s

3D
A

cc
el

er
om

et
er

va
ri

ab
ili

ty
of

a
w

ei
gh

t
re

fe
re

nc
e

50
H

z
on

50
0

bp
s

on

EC
G

po
te

nt
ia

l
di

ff
er

en
ce

ac
ro

ss
el

ec
-

tr
od

es
in

bo
dy

25
0

H
z

25
00

bp
s

G
yr

os
co

pe
an

gu
la

r
m

om
en

tu
m

1
H

z
9

bp
s

Sk
in

te
m

pe
ra

tu
re

th
er

m
is

to
r

1
H

z
9

bp
s

A
ct

ig
ra

ph
G

T3
X

+
[1

]
co

m
m

er
ci

al
3D

A
cc

el
er

om
et

er
va

ri
ab

ili
ty

of
a

w
ei

gh
t

re
fe

re
nc

e
30

-1
00

H
z

on
36

0-
12

00
bp

s
on

31
da

ys
Sh

im
m

er
R

es
ea

rc
h

G
SR

Se
ns

or
[1

01
]

co
m

m
er

ci
al

G
al

va
ni

c
sk

in
re

sp
on

se
m

ea
su

re
sk

in
co

nd
uc

ti
vi

ty
up

to
15

.9
H

z
19

1
bp

s
60

µ
A

N
on

in
O

ny
x

II
[7

8]
co

m
m

er
ci

al
O

2
sa

tu
ra

ti
on

(f
ul

lw
av

ef
or

m
)

m
ea

su
re

lig
ht

ab
so

rp
ti

on
by

bl
oo

d
ha

em
og

lo
bi

n
75

H
z

12
00

bp
s

2×
1.

5
V

A
A

A
(6

00
te

st
s)

O
2

sa
tu

ra
ti

on
(d

is
pl

ay
fo

rm
at

)
1

H
z

8
bp

s

M
ed

tr
on

ic
iP

ro
C

G
M

[7
1]

co
m

m
er

ci
al

co
nt

in
uo

us
gl

uc
os

e
m

et
er

el
ec

tr
oc

he
m

ic
al

de
te

ct
io

n
of

gl
u-

co
se

th
ro

ug
h

it
s

re
ac

ti
on

w
it

h
gl

u-
co

se
ox

id
as

e
0.

1
H

z
C

1
bp

s
B

up
to

72
h

B
ra

in
se

ns
or

by
N

ur
m

ik
ko

et
al

.[
79

]
in

re
se

ar
ch
‡

br
ai

n
ac

ti
vi

ty
m

ic
ro

el
ec

tr
od

e
ar

ra
ys

de
te

ct
ne

ur
on

“fi
ri

ng
”

40
k

sa
m

pl
es

/s
ec
×

16
ch

an
ne

ls
ℵ

12
m

W

M
ol

ec
ul

ar
bi

om
ar

ke
rs

by
Li

ng
et

al
.[

67
]

re
se

ar
ch

pr
ot

ot
yp

e
?

se
ru

m
ca

rd
ia

c
tr

op
on

in
I,

cr
ea

ti
ni

ne
ki

na
se

,m
yo

gl
ob

in
m

ag
ne

ti
c

pr
op

er
ti

es
of

se
ns

or
s

va
ry

ac
co

rd
in

g
to

pr
es

en
ce

of
bi

om
ar

ke
r

N
/A

El
ec

tr
oc

he
m

ic
al

do
pa

m
in

e
se

ns
or

by
C

ha
n

et
al

.[
19

]⊗
re

se
ar

ch
do

pa
m

in
e

In
te

rd
ig

it
at

ed
m

ic
ro

el
ec

tr
od

es
m

ea
su

re
d

el
ec

tr
oc

he
m

ic
al

re
ac

ti
on

50
H

z
–

10
pA

∝
da

ta
ra

te
s

ar
e

ba
se

d
on

th
e

fr
eq

ue
nc

y
an

d
th

e
ac

cu
ra

cy
in

bi
ts

st
at

ed
in

th
e

re
fe

re
nc

es
;t

he
y

do
no

t
in

cl
ud

e
ti

m
e

st
am

ps
or

m
es

sa
ge

he
ad

er
s.

♦
va

lu
es

ta
ke

n
fr

om
th

e
re

fe
re

nc
es

as
av

ai
la

bl
e.

on
fo

r
ea

ch
of

th
e

3
ax

is
.

C
se

ns
or

da
ta

is
co

lle
ct

ed
ev

er
y

10
s

by
co

lle
ct

or
.

B
ou

r
as

su
m

pt
io

n
of

9
bi

ts
pe

r
m

ea
su

re
(u

p
to

51
2

m
g/

dL
(U

SA
gl

uc
os

e
un

it
s)

).
‡

pr
ot

ot
yp

es
an

d
cl

in
ic

al
tr

ia
ls

ex
is

t
fo

r
de

vi
ce

s
w

it
h

16
ch

an
ne

ls
.

ℵ
m

or
e

ch
an

ne
ls

ar
e

ne
ed

ed
(e

.g
.f

or
de

co
di

ng
ar

m
jo

in
t

an
gl

es
);

10
0

ch
an

ne
ls

ar
ra

ys
ar

e
be

in
g

de
ve

lo
pe

d.
?

te
st

ed
on

m
ic

e;
m

ea
su

re
m

en
t

us
in

g
M

ag
ne

ti
c

R
es

on
an

ce
Im

ag
in

g
(M

R
I)

,b
ut

te
st

va
lu

es
w

er
e

ex
tr

ac
te

d
fr

om
ex

pl
an

te
d

se
ns

or
s.

⊗
th

e
de

ve
lo

pe
d

se
ns

or
w

as
no

t
m

ad
e

of
na

no
tu

be
s,

w
hi

ch
ac

co
rd

in
g

to
th

e
au

th
or

s,
le

d
to

po
or

se
ns

it
iv

it
y.

28 2.2. Applications

Table 2.2 – Sensed values applications

Sensed Applicability

HR
heart failure, arrhythmias, post-operative monitoring,
sports training.

Breathing rate asthma, Chronic Obstructive Pulmonary Disease (COPD).

Acceleration
fall detection, activity (Parkinson’s, Alzheimer’s, Stroke),
reduced function (rheumatoid arthritis), sports training.

ECG
heart diseases, heart failure, arrhythmias, post-operative
monitoring, sports training.

Posture (Gyroscope)
fall detection, sensory disturbance (diabetes, Parkinson’s,
Alzheimer’s), sports training.

Skin temperature arthritis rheumatoid.

Galvanic skin response
psychological arousal such as mental effort, excitement,
shock, and especially stress.

Oxygen Saturation post operative monitoring, asthma, COPD.
Glucose diabetes

Brain activity
interpret commands for assistive devices; reconnect dam-
aged neural pathways.

Cardiac biomarkers
myocardial infarction, heart diseases, heart failure, ar-
rhythmias.

Dopamine Parkinson’s, stress level.

The IEEE’s 802.15 working group for Wireless Personal Area Network (WPAN) has a task
group for BANs, group 6. The group is “developing a communication standard optimized for low
power devices and operation on, in or around the human body (but not limited to humans) to
serve a variety of applications including medical, consumer electronics/personal entertainment and
other” [49]. We will be referring to the work of this group in several places of this thesis.

When the group was starting, they did a survey of envisioned applications for BANs. This
resulted in several medical and non-medical suggestions for applications. Proposals had to
mention several characteristics of the applications, number of devices foreseen, channel used
(in, out body), duty cycle, power consumption, etc. From the summary document edited by
Lewis [25] we point out the following (see table 2.4 for some of the characteristics):

Vital signs monitor (wearable sensor): several sensors for (medical) monitoring of physiolo-
gical parameters. Sensors include ElectroCardioGram (ECG), temperature, accelerometer,
pressure, breathing, Blood Pressure (BP);

Muscle tension stimulation (wearable actuator): lacking the description, the name suggests an
electronic muscle stimulator;

Sport training (wearable sensor): aimed at professionals and amateurs, the objective is to
monitor performance, using different physiological parameters (and thus sensor nodes).
Gait length, HR, oximetry, acceleration would be required for most sports. Cycling would
require motion analysis; team sports would need team interaction capabilities. Here time
synchronization between motion sensors would be an imperative for correlations;

Glucose sensor (implanted sensor): an implanted glucose sensor, which would transmit to a
body surface repeater;

Endoscope capsule (gastrointestinal) (in body sensor): a swallowable capsule that travels
through the gastrointestinal tract transmitting video;

Deep brain stimulator (implanted actuator): used for example for epilepsy and Parkinson’s
therapy. Stimulates with electrical impulses different regions of the brain;

Chapter 2. Background 29

Gaming applications (wearable sensors): using motion and location sensor for Human Computer
Interface (HCI), in this case gaming.

Some entertainment applications for video and audio streaming were also proposed. Abiding
to the group’s objective there were also animal monitoring examples of applications, which
included physical, chemical, biological, mood and activity monitoring.

All the proposals:

• were either low or extremely low on power consumption (the entertainment audio/video related
ones were the exception);
• used a star network topology where a central component (more powerful node) acted as a

hub for the network; some applications could also use a tree, and others assumed a Peer to
Peer (P2P) topology;
• had data link rate asymmetry: as expected applications would require more bandwidth in

one direction than in the other. In most cases, the higher rate was directed to the central
component, but in some (entertainment audio/video streams to headsets, glasses, etc.) it was
originating from this central component. There were two exceptions to this trend, forgotten
things monitor and social networking using BAN. The first is an application that detects when
certain objects are out of range, which means they have been forgotten. The second application
would be related to social interaction between people. Gaming (with auto partner pairing
in the subway), exchange of personal info (business cards, match making) are some of the
examples given. This assumes a P2P relationship between communication end-points, which
leads to a symmetric need for bandwidth;
• mentioned Quality of Service (QoS) as a need, regarding latency and/or sensitivity to error.

Table 2.3 – Actuator examples

Device Availability Objective Notes
MiniMed

Paradigm Revel
Insulin Pump [73]

commercial infusion of insulin
has a sensor for continuous monitoring
glucose values.

Brain stimulation
[67] ‡

in
specialized

clinics

induce or apply electrical cur-
rent to the brain for treat-
ing epilepsy, Parkison’s phys-
ical symptoms, depressions,
obsessive compulsive disorder

in our context, vagus nerve stimula-
tion and deep brain stimulation are the
most portable; the first sends electric
impulses to the vagus nerve, the second
has electrodes implanted in brain areas
related to the disease to treat, generat-
ors are implanted in the chest for driv-
ing the pulses.

Exoskeletons
eLegs [10]

company
prototype

enable paralyzed individuals
to walk; currently aimed at re-
habilitation centres

wearable exoskeleton that allow walk-
ing in straight line, standing up, sit;
sensor enabled control.

Artificial Retina
[126]

prototype
electrical activation of nerves
to provide motion and light de-
tection for blind individuals

electrodes “fire” at 10 kHz; data rate 40
Mbps; energy up to 600 µA.

BioMEMS Drug
delivery [80]

clinical trails
implantable micro devices
with reservoirs for controlled
drug delivery

electroresistive thermal controlled re-
lease; sensors for confirming drug re-
lease; sensor for triggering release.

‡ for a gentler introduction see the National Institute of Mental Health discussion [81]

Some of the applications fall outside of our working ground, as we are more concerned with
the body area and not necessarily with the inter-body communication. Nonetheless, they present
some examples of the potential uses of BANs.

30 2.3. WSN and BSN

Table 2.4 – Applications examples from IEEE’s 802.15.6 [25]

Dev. Channel Duty Cycle Power Cons.
Vital signs Monitor < 12 On body <1% Low

Muscle tension stimulation < 12 On body <1% Low
Sport training < 12 On body <10% Low
Glucose sensor < 12 In body to on body <1% Extremely low

Endoscope capsule 2 In body to on body >50% Low
Deep brain stimulator 2 In body <50% Extremely low
Gaming applications 12 to 24 On-body to On-body,

On-Body ⇔ Out-of-
body

<30% Low

2.2.1 Requirements

From the IEEE 802.15.6 task group’s document on applications requirements [25] we can
extract the following:

QoS: applications will need assurance in the data connections to node devices. The most
prominent one will be delay, another will be losses.

Data rates were not defined at the time the draft for the standard [6] was released, non-
etheless several applications need specific data rates. From the technical requirements
document [141] the range will be from 10 Kbps to 10 Mbps. The current draft for the
standard has support up to 10 Mbps (using Ultra Wide Band (UWB));

Security will be required for the transport of sensitive data and access to it within the Base
Station (BS) (privacy issues of data access outside the communication layers is not the
group’s focus).

The group also mentions that applications in BANs can have three types of data needs:
burst: where there is a temporary need for high throughput; low rate: would be the most
common, with a continuous low rate need (table 2.1 shows several applications that have this
need); emergency: where data has to be transmitted regardless of battery life, other applications
needs, etc.

In our view, error associated to measured data is also a requirement. However, this is not
associated with the communication process and as such it is not the concern of the task group.
We come back to requirements in §3.6.

2.3 – WSN and BSN

BANs (more specifically Body Sensor Networks (BSNs)) have similarities with WSNs, starting
with having sensor nodes (albeit different) that form a network. However, we argue that there are
several differences that make BANs prone to different problems, approaches and optimizations
possibilities. Table 2.5 summarizes the aspects we regard as fundamental, stating differences and
similarities.

In our view, BANs have a central component that receives all the information from the nodes
and controls all of them. This is done as applications using it deem necessary. A Personal Digital
Assistant (PDA), smart phone or a more powerful node can be this component or can act as a

Chapter 2. Background 31

Table 2.5 – BSN versus WSN (with input from Latré et al. [63, table 2] and Guang et al. [137, page 5])

BSN WSN

D
is

tr
ib

u
ti

on

i) Existence of a BS;
ii) BS collects, maintains and processes the data;
iii) Nodes will do minimal processing, sending all
data to the BS;
iv) Centralized system where BS controls all nodes;
v) Node replacement is difficult in in-body sensor
nodes;
vi) Smaller number of nodes;
vii) Nodes need to take biocompatibility, wearabil-
ity into account.

i) A BS may or not exist or there may be several
BSs (e.g. mobile nodes collect info, clustering);
ii) As in BSN, but also on-demand querying;
iii) Nodes will do processing, aggregation to allevi-
ate communication or correlate results;
iv) Distributed system, nodes decide cooperatively;
v) Node replacement is difficult due to location,
scale, etc.;
vi) (usually) Wide areas covered by large number
of nodes.
vii) Nodes may need to be environment friendly,
indiscernible from surroundings.

C
om

m
. i) One hop to BS;

ii) Close range but attenuated by body;
iii) Data rates heterogeneous.

i) Multi hop through network of sensor nodes;
ii) Long(er) range;
iii) Data rates homogeneous.

D
at

a

i) Interest in different types of data;
ii) Correlation of different type of data;
iii) Accuracy from correlation, node accuracy;
iv) Losses may not occur in emergency procedures,
less redundancy;
v) Likely to have new types of sensors nodes added;
vi) Prone to have different applications using the
same resources;
vii) Security associated with personal/patient data.

i) Single or few different types of data;
ii) Aggregating the same type of information;
iii) Accuracy results from redundancy of inputs of
the same data type;
iv) Losses circumvented with redundancy;
v) Typically static in terms of node types (adding
new nodes of the same type);
vi) Deployed with one specific application in mind;
vii) Security level varies.

En
er

gy

i) Constrained;
ii) Lifetime years/months/days;
iii) Recharging may be possible with scavenging or
inductive coupling;
iv) Scavenging from body vibration, temperature.

i) Constrained;
ii) Lifetime years/months;
iii) Recharging may be possible in some scenarios
with natural energy or scavenging;
iv) Scavenging solar, wind, vibration (machinery,
bridges, etc.).

Gateway (GW) to the central component (e.g. a PC on a home environment). As we discuss in
§3.2.1, the network topology will be a star, where all nodes are one network hop away from this
central component, which we call a Base Station (BS).

Nodes will refrain from much processing, delivering data to the BS mostly unprocessed. This
is not to say that nodes will not produce some interpretation of its data as another source of
information, e.g. producing a HR from an ECG. What we mean is that nodes will not correlate or
aggregate data from different sensors and will not change behaviour based on readings collected.
That is, nodes will not have autonomous behaviour with decision taking. The Equivital node
from Hidalgo [46] is an example of a node that while doing some processing corresponds to our
view. The device is a strap-on with ECG, gyroscope, skin temperature and accelerometer sensors.
Among its outputs, it has HR derived from the ECG. HR is extracted from the ECG by the node
itself, and the BS would be interested in both. So, nodes will have some inference on them, but
limited to the data collected by themselves. Nodes will not take any decisions regarding actions
or change of sensing behaviour.

In BANs, the set of data treated will be very heterogeneous, with possibly complex relationships

32 2.4. Network characteristics

among the different types of data. BANs are prone to have different types of nodes added to an
already deployed network.

In WSNs the central component may or not exist and if present will have a more limited view
of the whole system. WSNs tend to process the information in a distributed approach; with nodes
treating, correlating and aggregating information, forming clusters, etc. The network in WSNs
is multi-hop as they tend to cover large areas. Sensors in WSNs are homogeneous in terms of
hardware and data acquisition. As such, the information processed will normally be of the same
type, although some frameworks do offer limited support for heterogeneity, where the proposal
from Steffan et al. [108] is such an example.

Both frameworks have similar energy constraints, with research on recharging also sharing
some commonality, as the surveys from Paradiso and Starner [88] and from Roundy et al. [96]
show (we dwell on them in §2.5).

The differences stated lead to an easier to manage network in BANs in terms of connectivity
establishment and coordination/optimization of sensor nodes, given the single-hop topology.
This opens more possibilities for optimizing the sensor network usage. However, BANs monitor
different types of information with complex interrelations between them. These interrelations
may be different from application to application. To add to this, applications will also have
different requirements on the usage of the network (delays, error, rates, etc.).

2.4 – Network characteristics

The BAN is the network comprised of the nodes surrounding the human body, similar to that
depicted in figure 2.1. This network will connect to a local network or a wide area network, either
connecting to a home hub in the first case or to a remote monitoring service for the latter. This is
what is illustrated in figure 2.2. Within this thesis we address only the BAN, but we should keep
in mind that a gateway node, most likely the BS, will need to interconnect with other networks.

Regarding the number of nodes in a BAN, Latré et al. [63] citing other sources state that 20 to
50 nodes are expected. In a Patel et al. [89] publication, the IEEE task group assumes that the
desired number should be less than 64.

In its technical requirements [141], the 802.15.6 group states that the communication layers
“should support simultaneous co-located operation of at least 10 randomly distributed multiple BANs
in a volume of 6× 6× 6 meters in crowded places such as subways, hospital wards, music concerts,
etc.” They also require bandwidth sharing between co-located BANs with a coordinated approach
to high duty cycle applications that provides a graceful degradation and no coordination for low
duty cycle applications.

For the physical communication system, the medium can be wireless, wired or use the human-
body. We will briefly discuss these options.

2.4.1 Wired versus wireless

Currently the most frequent option in commercial products and research prototypes is to use
wireless communication between nodes. Bluetooth [13] and IEEE 802.15.4 [48] are the most
prominent approaches. ZigBee [144] is a network layer that stands over 802.15.4. ZigBee is a

Chapter 2. Background 33

Wide Area
Network

Body Network

Direct Outside Access

Local Network

Node

Base Station

Database

Figure 2.2 – Networks involved in a BAN

consortium based standard that, on top of 802.15.4, defines application profiles and a network
layer module. IEEE 802.11 [50] is not considered as an option, mostly due to its high energy
consumption. If used, it is mainly for connecting the BS to the rest of the infrastructure. The
same applies for cellular technologies.

UWB [59] has been studied as an approach for communication within the BAN. As it can
provide higher data rates at short distances, it is seen as a good candidate for these environments.
The IEEE 802.15.6 group [49] uses UWB in one of the MAC/PHY options that they are defining
for BAN communication. There are several studies on the use of UWB in BANs (some from the
IEEE group). Zasowski et al. [139] provides an example of propagation studies on an anechoic
chamber to measure the channel parameters from 3 to 6 GHz UWB waves. The authors reached
the conclusion that it is possible to use UWB for small distances (15 cm), despite the strong
variability in reception quality due to the human body. They also suggest the use of multi-hop
communications for front to back communication2.

Wireless systems however have some drawbacks:

• Energy consumption: although great efforts have been made to reduce the energy necessities
of wireless communication, it still is the most power consuming component in a node. Greater
capacity currently implies bigger sized batteries and size in BANs is an extremely important
factor. The new developments in battery technology (see §2.5) can however mitigate some of
these drawbacks;

• Rates: Bluetooth in its late 4.0 incarnation [14] supports link rates of 1 to 3 Mbps. The low
power version [14, Vol. 6] has link rate of 1 Mbps. These are the over-the-air rates, while for
the application layer it amounts to “721.2 kbps for Basic Rate [and] 2.1 Mbps for Enhanced Data
Rate” [14, Vol. 1, page 17]. 802.15.4 is capable of throughputs of 250 kbps over the air. As we
mention, the 802.15.6 draft defines 10 Mbps using UWB;
2As we mentioned we discuss the topology (star versus multi-hop) in §3.2.1.

34 2.4. Network characteristics

• Propagation: signal barriers, multipath effects and the presence of dielectrics can affect the
quality of the signal received. In BANs the link path is short, however the human body can
shadow the signal (e.g. communication from the front to the back), water (50% to 65% of
the human body) absorbs 2.4 GHz waves (802.15.4 and Bluetooth’s working frequency) and
reflections in the working environment are also present;

• Interference: as most of these standards work within the 2.4 GHz frequency, we are bound to
have problems of coexistence. Bluetooth, for example, is able to cope with 802.11 (also in the
2.4 GHz) by hopping to different channels, but there is a limit to this capability. We also have
the problem of different BANs coexistence;

• Security: wireless is a shared medium by default. As such, it is easier to eavesdrop on wireless
communications;

• Health Issues: at present, international organizations provide guidelines for safe usage of
devices that use radio frequencies, where the World Health Organization (WHO) [135]’s
International Commission on Non-Ionizing Radiation Protection (ICNIRP) [58] is a reference.
This leads us to believe that current radio frequency equipment is working within safe limits,
however there are still studies and concerns about the usage of wireless devices near the human
body, where the recent report from International Agency for Research on Cancer (IARC) is
one [7] 3. Naturally, in BANs these issues are augmented, which will raise public suspicion and
resilience to embrace these technologies. The IEEE 8021.15.6 group is taking into consideration
the Specific Absorption Rate (SAR) regulations. These regulations define the maximum
exposure to electromagnetic fields a device may impose on a human body so not to cause any
health problem. Several guidelines exist for the USA, Australia, Europe and Japan. As example
the limits for the USA and Australia for head exposure are 1.6 W/kg in 1 g of tissue and for
Europe and Japan 2.0 W/kg in 10 g tissue [141, section 15].

The advantages of wireless are easily noted as they drive their current widespread use: ease
of initial deployment, easy addition of new nodes, no wires.

The issues, however, lead to the need to research the usage of wired communication paths in
BANs. In some scenarios this can be a possible solution, namely when the node lies outside the
body. As arguable advantages of this concept we could mention the opposite of the drawbacks of
wireless pointed previously, but disadvantages also exist:

• Node Placement: in wired communication there usually needs to be an already foreseen
connection point to add new nodes. As such locations to place new nodes are restricted;

• Full Mesh: being able to have connectivity between all nodes is more difficult due to the
number of connections that need to exist. And again, foreseeing future nodes may lead to
complex architectures;

• Lack of Standards: currently, to the best of our knowledge, there is no research on protocols
for this type of communication. However some serial protocols deployed in other scenarios
already exist and can be used in this environment (e.g. Inter-Integrated Circuit (I2C), Serial
Peripheral Interface (SPI), Controller Area Network (CAN)).
3Refer to the same WHO references [58, 135] for more.

Chapter 2. Background 35

Smart fabric is a technology that enables wiring textiles while making them fit for clothing.
The garment’s textile is thus conductive enabling sensing as discussed by Pacelli et al. [87] and
data transmission. Smart fabric was introduced several years ago by Post and Orth [92], but
there are few companies providing support for it [106, 119, 120]. Coupling smart fabric with
techniques such as Pushpins by Lifton et al. [66] and Networked Surfaces by Scott et al. [99]
may provide solutions to these problems. Smart fabric producers are already realizing products
capable of transporting electric signals in normal textile yarns. Thus, one can produce garments
with the capability of carrying data information and electric power to sensor nodes. It is common
to refer to these textiles as e-textile.

Pushpins [92] are sensor nodes that can be pinned to a specially crafted surface that enables
communication paths. The pins have two different length contacts that can be pushed into the
laminated surface. The surface has two layers of conductive material, at different depths. This
permits that pins inserted into the surface establish conductive paths to other pins, regardless of
their position on the surface. A software layer then handles the communication setup, neighbour
discovery, addressing, etc. Note that Pushpins do not necessarily use just these contacts for
communication, there was a radio module under development and an infrared one was already
available. However, we want to stress the part that addresses some of the problems we mentioned
for wired communications in smart-fabric, namely node placement and full mesh.

In Networked Surfaces [99], the objective is similar to that of Pushpins. The surface is aug-
mented such that special objects /qccan acquire connectivity to data and/or power infrastructure,
simply by being in physical contact with that surface. This contact could be made anywhere in
the surface. In this proposal several mini-pads for establishing contacts exist on the Surface. A
distributed architecture manages these pads, detecting connectivity with objects.

These two approaches would not be directly applicable to smart fabric, but could be used as
starting points. Note that Pushpins is from 2002 and Network Surfaces from 2000, but to our
knowledge nothing has been applied to e-textile. An all conductive t-shirt would make wired
communication a much more attractive solution for BANs.

2.4.2 Communication using the human body

Another channel of communication is the human body itself. Body Coupled Communication
(BCC) uses near field intra-body communication, with very low frequencies. 0.1 to 1 MHz carrier
frequencies were suggested in the seminal work of Zimmerman [146] on the subject. His first
prototype used a 330 kHz wave for a 2400 bps data rate. It is with Zimmerman and Gershenfeld’s
work that the term Personal Area Network (PAN) appears. The PAN area is a slightly wider than
a BAN; a weight scale could be an example of a node in a PAN, exchanging business cards by
shaking hands is another. In BANs, this last example would mean the interaction between two
different BANs4.

There have been developments in BCCs, frequencies are now around the 30 MHz where
measured gains have been higher than in the kHz region as Hachisuka et al. [41, section 2]
refer to. The work from Moon et al. [75] in the 45 MHz frequency showed high fidelity with
transmission at 30 cm distance (this indicated a capacity of 10 Mbps at this distance)5. Other
experiments by Park et al. [56] were able to transmit videos between two ultra mobile PCs using a

4In our work we do not exclude PANs, as what we propose is also applicable to them.
5The main purpose of Moon et al. was to investigate an electrode that was bio-compatible with the human skin for

long term uses.

36 2.4. Network characteristics

2 Mbps connection with 10−6 error rate, at a selective frequency between 8–40 MHz. In this case
distance was higher, as all experiments involved two devices, which the subject’s body connected.

Advantages of BCC include increased channel privacy. Since the communication is restricted to
the human body, interception is more difficult than in other wireless settings. Another advantage
is its low transmission power that makes it less troublesome with regards to SAR compliance.
Its low power also implies energy savings when compared to wireless communications. Falck
et al. [31] use this low power, limited area of reception to establish a body identifier within
devices in the same body, after which they use another channel (IEEE 802.15.4) to establish
communication. In this work, BCC is used to certify the devices in the same body and establishing
a unique body identifier. 802.15.4 is then used for higher data throughput. Their prototype
system transmitted at 125 kHz, with a throughput of 4 kbps and power consumption of 2 mA at
3 V.

We have that BCC can provide some of the advantages of wired communication, with problems
of node placement and mesh connectivity more easily addressed. There are however issues
regarding interfacing with the body (probe sizes), skin irritation (that Moon et al. [75] addressed),
communication standard and low rates (the higher rates are only now being researched).

2.4.3 QoS

As we mentioned in §2.2.1 applications will need quality assurance in some of the connections
they make. To handle this there are some proposals for QoS on BANs. We briefly mention some.

The IEEE 802.15.6 group mentions QoS in the current draft, but it does not define it. There
are some proposals from the group. Shu and Dolmans [103] propose defining two types
of communication handling in carrier sense networks: α has higher latency and reliability
guarantees than β. Latency management is achieved by controlling the back-off window so that
α connections wait less time for transmitting. Reliability uses back-off attempts, α connections
have higher back-off attempts than β. As the authors describe, this is a differentiation service.

Hernandez et al. [45] proposed to the IEEE group augmenting the correction coding for higher
priority applications. The idea is to use Forward Error Correction (FEC) and retransmission
requests for applications that require more reliability. Coding is part of the scheme for the
FEC and retransmissions. These retransmissions are based in parity bit codes instead of full
retransmissions. This diminishes overhead, decreasing latency for retransmissions. They suggest
different schemes for encoding/decoding that react to channel conditions.

Outside of the IEEE group Zhou, et al. [142] aimed at providing a framework that handles
QoS guarantees by using reserved slots for transmissions. They start by defining an abstraction of
the MAC layer so that their framework is agnostic to the underlying network6. This virtual MAC
enables collecting information regarding the network layer so that the QoS scheduler and the
admission control components can ascertain network characteristics. They assume a star topology
where the central node is the coordinator of the QoS scheme. The proposal defines specific
time intervals for reserved traffic. There is an interval for traffic from the central component
(aggregator) to the nodes and an interval for the reverse path. A best-effort slot occurs after the
reserved slots. The reservation for traffic from nodes to aggregator is polled by the aggregator
from the nodes. QoS scheduling techniques are defined for reserving time slots. Admission
control is also part of their proposal.

6This is a similar objective that we have in the hardware abstraction layer presented in chapter 3.

Chapter 2. Background 37

These two approaches, from the IEEE group and from Zhou et al., are different and at different
layers. Although, it would seem that this would allow them to be combined, the reservation
approach from Zhou et al. would not benefit from the higher quality of the IEEE group’s proposals.
Zhou et al.’s proposal manages access to the medium as they introduce time slots. Although
agnostic to the underlying layer, they circumvent the layer’s medium access control by defining
their time division approach. Even the best effort traffic that would use the regular access to the
medium, would not benefit from the IEEE proposal as this traffic would not be marked as higher
quality. Another point is that the current virtual MAC from Zhou et al. does not enable discovery
of QoS parameters from the underlying network layer. This is by design, so that the abstraction
does not depend on capabilities from specific implementation of lower layers. However, this also
undermines the possibility of using these lower layer capabilities.

2.4.4 802.15.6 communication channels

The IEEE 802.15 task group 6 will adopt BCC as a communication channel for BAN, referring
to it as Human Body Communication (HBC). Adding narrowband (from 402 - 405 MHz to 2400 –
2483.5 MHz), the 802.15.6 working group will define three physical channels for communication
in a BAN [6]:

• Narrowband: with information data rates from 57.5 kbps up to 971.4 kbps;
• UWB: with information data rates from 0.5 Mbps up to 10 Mbps;
• HBC: with information data rates from 125 kbps up to 2 Mbps.

The group’s timetable indicates circulation of the standard for approval at the end of 2011.

2.5 – Energy

Power sources pose a considerable constraint on BANs. Nodes need power mainly for com-
munication, sensing/actuating and processing7. Currently energy for these operations is mostly
drawn from batteries with research in other sources. The examples from tables 2.1 and 2.3 use
batteries, direct cable connections (brain sensor and stimulator) or induction (biomarkers, drug
delivery).

In table 2.6 we have some examples of wireless radio chips and their power consumptions.
Comparing with table 2.1 and the discussion by Hanson et al. [43], it is noticeable that com-
munication spends a good percentage of the power budget. Of course, the comparison must
also include duty-cycle, which may be lower for communication systems if data is stored locally
or processed on the node before being sent. For completeness, an example of processing con-
sumption is the 16 bit ultra low power MSP430 microcontroller from Texas Instruments [118,
section 2.3] that in active mode consumes 300 µA and in the lowest power mode 0.1 µA. This
microcontroller is used, for example, on the Shimmer platform that the galvanic skin response
sensor from table 2.1 connects to.

The use of batteries has two main problems: size of batteries and their replacement/recharging.
While in some cases replacement is easy, and so batteries can be used (e.g. glucose meter), in
others it is not a real possibility (e.g. implanted nodes). Even the first case would be considerably
more wearable if replacement or recharging was not an issue. Recharging implantable devices

7Including analogue to digital conversions.

38 2.5. Energy

usually involves induction techniques as discussed by Olivo et al. [82]. Battery size is hindered by
the power output capability that is related to the area of the electrodes as explained by Roundy
et al. [96]. Technologies to decrease thickness while increasing area are an approach and the
advent of nano-particles opened the field even more8.

Table 2.6 – Wireless chips energy consumptions examples

Device Technology Isleep Iidle ITx IRx

Texas Instruments
CC2540 [117]

Bluetooth low power 0.4 µA 0.9 µA
21 mA

(-23 dBm)
19.6 mA

Texas Instruments
CC2420 [116]

802.15.4 20 µA 426 µA
8.5 mA

(-25dBm)
18.8 mA

Amp’edRF BT22 [2]
Bluetooth
2.1+EDR [13]

0.5 mA 3.6 mA
30.5 mA (master),
33.5 mA (slave) ‡

RedPine RS9110 [94] ℵ 802.11bgn 0.52 mA 1.10 mA
200 mA

(15 dBm)
149 mA

Isleep – current drain when radio is in a connection-less state;
Iidle – current drain in standby mode (between connection/advertising);
ITx – current drain while transmitting.
IRx – current drain while receiving;
‡ – Using 921 kpbs on the serial interface for communication, only master/slave data available
ℵ – advertised as ultra low power; idle is connected to access point in power save mode (beacon
200 ms); transmission and reception at 22 Mbps

In a BAN there are some resources that can be scavenged for energy production for low power
nodes. As Paradiso and Starner [88] point out, vibration/movement and thermo gradients are
such resources. For kinetic sources we could use the body’s movement, foot steps (e.g. electrostatic
generator in boots), etc. Thermoelectric conversion takes advantage of temperature differences
and the associated heat transfer. A voltage difference is created between elements due to the
temperature difference. Paradiso and Starner [88] point out that the efficiency of these sources
runs very low (under 10%) even for high temperature differences (from 200oC to 20oC). However,
they give an example of a wristwatch powered by such a generator, which uses a battery for
“cooler” times. A factor that impacts the power generated is area size of the thermo-couples, the
pair of elements where the temperature difference is captured. Olivo et al. [82] cite experiments
of thermocouples with 1 cm2 area and a 5oK temperature difference producing 1 µW and a
commercial solution with 95 mm3 and temperature difference of 5oK producing 30 µW.

Olivo et al. [82, Table III] discuss the various sources for implantable devices and summarize
the power generated in some experiments. Inductive links are the biggest providers ranging from
0.14 mW to 150 mW from the references they collected. Kinetic sources only provide from 40 µW
to 80 µW, and thermoelectric 1 µW to 30 µW, as we saw. Another interesting source are fuel
cells. These cells have the advantage over regular batteries of maintaining production of energy
as long as the reactants that compose them are available. Olivo et al. [82] point to glucose fuel
cell experiments that led to productions of 2.2 µW to 430 µW.

Power is a field of research with several applications, one being BAN nodes. Node deployments
depend on it, as energy is a need in most of these nodes and their particularities (size, placement,
accessibility, etc.) make them demanding users.

8For some discussion on nano technology the interested reader is referred to http://www.understandingnano.com/
batteries.html as a starting point.

http://www.understandingnano.com/batteries.html
http://www.understandingnano.com/batteries.html

Chapter 2. Background 39

2.6 – Our work in BANs

In this chapter we set up the context for BANs. The issues we discussed are not directly the
focus of our work but influence it and drive some of its purposes. With this chapter we tried to
illustrate that background so that our proposals come more naturally.

Our underlying BAN scenario is that portrayed in figure 2.1. Users are manned with several
sensing devices (acceleration, blood glucose, heart rate, oxygen saturation, breathing rate,
Geographical Positioning System (GPS), etc.), actuators (drug delivery, insulin pump, etc.) and
a central component (PDA, smart phone, house hub, etc.). Several applications that process
information about the body reside in this BS. These applications can range across several fields:
exercise monitoring, post-operation surveillance, emergency triage, HCI, etc.. Several of these
may be running at the same time on the BS. Applications will need the same or different
information with stricter or looser requirements. New node devices are “plugged in” to enhance
or add capabilities to the resource pool while others lose connectivity or “die” out. This dynamic,
volatile environment poses difficulties in managing and discovering resources to accommodate
application requests.

Our proposal is a middleware layer that mediates the interaction between the application and
the resources, the network nodes. Applications will only need to issue information requests to
the middleware with a set of requirements to be met. The middleware will in turn map these
requirements to metrics that will serve as quantifiers to assess the capability of the underlying
resources to fulfil the requests.

The main objective of this middleware is enabling correlation of information to infer new in-
formation. Thus, applications can request not only what the nodes can sense but also information
inferred from the sensed data. An example of correlated information is the model we saw in
chapter 1 (based on Windkessel model as described by Sun et al. [111]):

CO = SV ×HR

that is, Cardiac Output (CO) (volume of blood outputted from the heart per unit time) is given by
the volume of blood pumped by the heart per beat (Stroke Volume (SV)) times Heart Rate (HR).
Another formula is related to oxygen delivery, i.e. the amount of oxygen that is made available to
the body per minute. This is presented by Law and Bukwirwa [64] as:

O2delivery = CO ×Hb × 1.31× SaO2

with Hb being the concentration of haemoglobin, SaO2 the oxygen saturation and 1.31 a con-
stant for unit conversion. This illustrates correlation of information from another calculated
information.

Another example, not formula-based, of inferred information, could be a heart monitor alarm
that takes into account current body movement to assess the relevance of increased HR.

Applications can request the same or different information. Shared requests should be
optimized by the middleware so as not to strain resources. Moreover, these commonalities will
occur more often when inferred information is requested. All data that is used to infer the

40 2.6. Our work in BANs

requested information is subject to commonality detection, i.e. intersection in requests will not
occur only in the requested information but in all the information tree used to correlate the
information.

In the following chapter we discuss our proposal to achieve these goals.

3
Hardware abstraction layer

T his chapter introduces the middleware we propose and its two layers. The bottom layer
is responsible for hardware abstraction and communication between the nodes and the
Base Station (BS). This is the main focus of our discussion. The upper middleware layer,

responsible for information abstraction and its management, is analysed in chapters 4 and 5.

3.1 – Introduction

The aim of middleware architectures [11] is to provide applications with an abstraction
over the underlying complexity; be it hardware (the type of node, what temperature sensor,
etc.), Operating System (OS) (TinyOS, SunSPOT Squawk, etc.), communication layers (Zig-
Bee/802.15.4, Bluetooth, etc.) or Service Discovery (SD) (Bluetooth, ZigBee, SensorML, etc.).

In our case, adding to the above mentioned responsibilities, we state that Body Area Network
(BAN) middleware should:

A) collect data from sensor nodes;
B) convert these data to relevant information in a human body model, and collect metadata

associated with these data;
C) correlate, according to the known human body models it has, the information received and

its metadata;
D) answer requests from applications based on the information in the model while providing the

related metadata;
E) optimize resource usage (turn on/off, increase/decrease frequencies of collection, etc.) while

complying with requirements set by the applications.

Note that points C and D encompass deriving new information from data sensed by the nodes,
according to applications’ requests.

41

42 3.1. Introduction

 Node

 Node

 Node

Node

Base Station Middleware

Application

Models

Data sensed

Information
Queries

Information
answers and

metadata

Resource Nodes

Control/Optimize

Node

B

C

D

E
C

Sensor

Node

? Objective

Base Station

Node’s
Middleware

Node’s
Middleware

Node’s
Middleware

Node’s
Middleware

Node’s
Middleware

Information
flow

Middleware
management and
information handling

LegendA

Figure 3.1 – Proposed global architecture

Figure 3.1 depicts the architecture where we can see several different applications assessing
the resource nodes, which are heterogeneous (different hardware, different sensors, etc.). The
figure also shows that some middleware parts run on the nodes and the main block on the central
component. As we discussed, this central component will be a more capable node such as a
Personal Digital Assistant (PDA), smart phone, home PC, etc. Nodes will be the sensor and
actuator devices. As mentioned, we are more focused on the sensing part of the BAN.

The middleware on the node is responsible for:

i) advertising nodes’ capabilities (sensing information, accuracy, rate, resources available
(energy, processing, network), etc.);

ii) receiving and processing the central component’s commands (turning sensors on/off, chan-
ging rate, etc.);

iii) answering requests from the central component.

The middleware on the BS has greater responsibilities, which are to:

1) incorporate models for correlation and representation of information;
2) receive requests from applications with requirements to be fulfilled. An example could be an

application requesting Blood Pressure (BP) with a set of requirements (delay, frequency, etc.)
and the middleware discovering which components to use for delivering that information
(data from sensors and eventual correlation of these data);

3) derive from the different models, requirements and resources available, a solution that
satisfies applications while optimizing resource usage;

4) control nodes according to the solution found, and request and receive information from
them;

Chapter 3. Hardware abstraction layer 43

5) maintain the model flow of information and associated metadata based on sensor input (data
and new sensor advertisements) so as to re-evaluate the solution found.

Point 3 for the central component incorporates the optimization process and is the most
relevant to our work.

We can split our middleware into two generic layers that separate its main responsibilities:
hardware and information abstractions, as shown in figure 3.2. The hardware abstraction
interacts directly with the nodes and provides an interface that hides all the detail regarding this
interaction. From the points stated above the hardware abstraction achieves: A, D (partially), E
(provide support for); all points from the node middleware; 4 for the middleware in the BS. The
Information abstraction layer interacts with the applications, providing an Application Program
Interface (API) to assess the information model it maintains. This amounts to points B, C, D; and
1, 2, 3, 5 for the middleware in the BS.

Application

Base Station Node

Hardware Abstraction

Application

Information Abstraction

Hardware Abstraction

M
id

d
le

w
ar

e

Figure 3.2 – Middleware layers

From figure 3.2 it is easily seen that all information processing is done in the central component,
the BS. Our approach is to consider the nodes in the BAN as dumb parts of the system that “obey”
the commands from the central component and report back to it. All the decisions and processing
are done in the central component. We discuss this further in the next section.

3.2 – Application needs and design decisions

Our proposal is based on what we assume will be applications’ needs in a BAN architecture:

• applications need to issue requests for specific information with a set of requirements to get
that information (e.g. : blood pressure every 30 secs with a 95% confidence interval);
• for being able to fulfil applications’ requests, access to more than one type of information

(possibly with different requirements) is needed or greatly enhances the information collected.

Our system approach implies that:

• models that define how different information correlate to produce other information are
available (we will expand on this in chapter 4);
• sensor nodes have several sensing capabilities (heterogeneous nodes transmitting different

types of data).

During our design process we took the following decisions:

44 3.2. Application needs and design decisions

• applications are hosted in a more capable node (in terms of processing capabilities, battery
power, network connectivity) than the regular sensor/actuator node, i.e. applications will run
on the BS;
• the middleware is deployed on the more capable node and on the resources’ network (in these

less powered nodes the middleware is a thinner layer);
• the network topology is a star where the sensor/actuator nodes connect to the BS in one-hop

communication link (see next section).

3.2.1 Star topology

We assume a star topology as the most natural option for a BAN with close distance and
centrality of the BS with regard to the human body. This assumption is not without problems,
as we have seen in §2.4.1, when we referred to interference and propagation issues of wireless
communications: signal barriers, multipath effects, presence of dielectrics can affect the quality
of the received signal, human body shadowing the signal (e.g.: communication from the front to
the back and body water composition that absorbs 2.4 GHz waves) and reflections in the working
environment.

Natarajan et al. [76] did an analysis of multi-hop versus star topology using experiments
with a TelosB node1 on a 2.4 GHz radio wave frequency. Although limited to the specific radio
hardware of the TelosB (the CC2420 from Chipcon) and to the frequency of 2.4 GHz (the one
used for Bluetooth and 802.15.4), some insight can be taken from the study.

Several aspects were tested: Packet Delivery Ratio (PDR), number of retransmissions, energy
consumption and network lifetime. These retransmissions result from packet losses and from
multi-hop traversal, i.e. routing from intermediate nodes. They used a 12 node BAN with
experiments run on 14 volunteers in 3 different environments. The environments were: a
laboratory room (with several reflective paths), a home environment with large areas, and a
roof, which exemplified an open space. The authors defined two multi-hop routing schemes. One
optimized for PDR, choosing paths that led to a higher PDR regardless of number of hops. The
other scheme optimized for the number of retransmissions. Different transmission powers were
also tested.

The multi-hop retransmission scheme topped the other options in every metric except for
PDR, where the protocol tuned for PDR proved the best. In the laboratory environment the
star topology was always very close in every metric to the retransmission scheme even for low
transmission power. In the other cases, for intermediate to high transmission power the star
topology was also close to the retransmission scheme. Even in network lifetime and energy
consumed these high power settings were the best option as they led to fewer retransmissions
and an overall gain, even for the retransmission scheme.

The article concludes that the retransmission scheme is the one with most advantages. They
note that there is no one-size-fits-all solution and that the star topology will be inherently easier
to implement with regard to routing protocols. Multi-hop will need to store state (unless on-
demand protocols are used), and have network discovery running, which adds to network and
computational overhead. Optimizing for a specific metric will be another task for the node to
process. The retransmission scheme aims for a low number of hops and, as such, complexity and
network overhead should be low.

1These programmable nodes were developed by the company CrossBow (http://www.xbow.com/). They are no
longer produced.

Chapter 3. Hardware abstraction layer 45

As only the TelosB radio was tested, the energy consumed and the network lifetime, which is
based on energy consumed, are specific to this hardware. This is duly noted in Natarajan et al.’s
paper. We would add that transmission and reception is also biased by the radio used, which
makes the PDR statistics specific to the CC2420.

The IEEE 802.15.6 group [49] that is defining the Media Access Control (MAC) and physical
layers for BANs is envisioning several different frequencies: narrowband (around 400MHz,
860MHz, 900MHz and 2.4GHz frequencies), Ultra Wide Band (UWB) (on the 4GHz and 6.5GHz
to 10GHz frequencies) and also Body Coupled Communication (BCC) or Human Body Communi-
cation (HBC) (in the 16MHz and 27MHz frequencies). This will provide more freedom on the
network topology. In the draft standard the topologies defined are a star and an extended star
with two hop limit to the BS2.

We decided to define the star as our topology so as not to incur complexity that would make
us deviate from our goals. Moreover, as Natarajan’s experiments seem to indicate, it is not clear
that multi-hop is a better approach with current technology.

3.2.2 Dumb sensors

In our architecture we are assuming that all data processing occurs in the BS, the central
component. Recall from §2.3 that nodes may do some local processing to infer information
using their sensed data (e.g. Heart Rate (HR) from ElectroCardioGram (ECG)), but do not take
decisions or use other sources apart from themselves to collect data.

BANs will, with some exceptions, be composed of nodes that are low in storage capacity,
processing power and energy supply. Moving the processing to the more powerful BS enables the
resource nodes to have more capacity for acquiring/actuating. Some energy is saved due to this
off-line processing, but it is offset by the added communication. Therefore, in scenarios where
the middleware may only need data from the node in some specific conditions, these conditions
could be interpreted by the node. Unnecessary communication could thus be avoided, leading to
an increased node life.

3.3 – Hardware abstraction layer

From this point forward, when we refer to middleware, we will be addressing both the
middleware on the BS and on the nodes. When the discussion specifically applies to just one of
those parts we will highlight this.

The hardware abstraction layer of the middleware is responsible for:

• allowing the control of the nodes, including (for sensors) their sensing services;
• allowing the discovery of the services provided by the nodes;
• hiding the details of the OS running on the nodes;
• providing a communication abstraction that hides the underlying network/link protocol (Blue-

tooth, 802.15.4, etc.);
2In the Natarajan et al. article [76] they used a variant of the PDR optimized routing that was limited to two hop

paths. This was so as to lower the path size, that was getting to 2.57 hops average length. The restriction led to an
average of 1.67 hops.

46 3.3. Hardware abstraction layer

Network ITF implementation

Base Station Node

Network ITF implementation

Dispatcher
Daemon

Service
Discovery
Daemon

BS

Network ITF abstraction

Network ITF implementation

NetPoints
DB Command

Daemon
implement.

Command
Daemon

BS

Sensor
Service
Impl.

Sensor
Service

Sensor
Service

Sensor
Service
Impl.

Dispatcher
Daemon

Service
Discovery
Daemon

Node

Network ITF abstraction

Network ITF implementation

Command
Daemon

implement.

Command
Daemon

Node

Figure 3.3 – Middleware components on the BS and node

– defining the data structures and messages that permit the communication between nodes
and the BS;

• receiving data from the nodes regarding the sensing data, handling the metadata received
(time of collection, etc.) and deriving new metadata (delay, errors, etc.);
• allow easy deployment of new nodes (i.e. enabling a new type of node to be used within the

middleware should not be a difficult job).

The components of the hardware abstraction layer are depicted in figure 3.3. Note that the BS
does not have sensing services. This does not mean that the BS is not allowed to provide sensing
services. It only illustrates the separation of concerns. These services could be instantiated if the
BS has sensing capabilities.

The blue filled components from the figure are the generic components of the framework that
are independent of the applications and the node devices. The orange striped components are
specific implementations for the devices that deal with the intrinsic details of that hardware.
Note that these implementations are per different hardware components and not necessarily
different for every node. If, for example, a network interface implementation is developed for
Bluetooth it could be re-used by every node (including the BS) that has a Bluetooth interface.
The architecture follows the bridge design pattern to provide a generic abstraction for the network
interfaces, the sensors themselves3 and for commandeering the node.

The node representation in the picture is a SunSPOT [113]. Our development was mostly
done on these devices (we discuss it in chapter 6).

3.3.1 Network

The network interface abstraction provides a generic way to use the network regardless of
the underlying hardware instance (Bluetooth, 802.15.4, etc.). This provides an API that is then
implemented for the particular network interface(s) of the node. The generic API allows sending
of messages (broadcast or unicast) and waiting for messages (listen to). Messages are seen
as data blocks from this API, and message classes provide easier access and message building
functions to higher layers.

3Remember that a node may have more than one sensing capability. Each sensor service block controls one such
instance.

Chapter 3. Hardware abstraction layer 47

An abstraction for communication with a specific node is also provided. This component uses
the network API and enables direct communication with a specific node; again transparently to
the real network interface that the node uses. This NodeComm component defines an API to send
messages to the node it represents. The NetPointsDB from the figure holds all the NodeComm
components that the BS knows about. Note that it is not a NodeComm per sensor/actuator, but
per interface in a node, which may host several sensors/actuators. This way, requesting data from
a sensor involves knowing which node it belongs to and then sending the request to the node. As
the NodeComm knows the specific network interface to use, this also hides the network interface
used to contact the node. The sensor/actuator being addressed is identified in the message sent
to the node (see §3.5.2). A node may find it useful to have such a NetPoinstDB component if a
multi-hop topology is used. In this case the node needs to know its neighbouring nodes.

The network interface component is also able to handle message fragments. This is needed
when the message to be sent exceeds the network’s maximum packet size (Maximum Transmission
Unit (MTU)). In these cases the component breaks up the message into fragments of the
allowed size, i.e. the MTU, and sends each. On the receiving site it re-orders the fragments and
reconstructs the datagram. Note that it only provides a best-effort strategy in that no control on
received fragments is done, meaning that lost fragments imply a lost datagram.

A reliable message interface is also defined. The contract for this interface is that its imple-
mentation provides ordered, reliable delivery of messages, by setting up a connection. This could
be used, for example, for instructing an actuator for medication administration where correct
delivery and avoiding duplicated messages is relevant. On the other end, monitoring a HR can
miss some measurements.

The abstracted network interface does not provide flow control for messages sent. This is
not per se an issue, as the case when this is most relevant is when receiving measurements from
sensors. As we will see, the sensor services allow us to set rates for collecting and sending these
measurements. This enables the information layer to have some control on the flow of data.

Although the network examples we have given so far (Bluetooth, etc.) point to the network
abstraction being “situated” at level 3 of the IP stack, this is not mandatory. The network
abstraction expects to have implemented: message sending (unicast and broadcast), getting
addresses of endpoints, listening to messages and setting up reliable channels. This can be done
using any layer of the IP stack (for example on top of the transport layer). However, in most
cases what is needed is an implementation for a specific link layer interface. This also implies
that in most cases the MAC layer will only be used and not changed or circumvented. But again,
it is up to the developer of the network implementation to define that.

This flexibility leaves some room for using multi-hop technologies as we discussed above. If
the network implementation either relies on a network layer that handles multi-hop or adds it in
the implementation, the middleware transparently runs on a different topology. Note however
that some of the profiles we discuss further may be affected by these intermediate nodes in the
path. Optimization will also not take into account these intermediate nodes.

As expected, for communicating between the node and the BS, the same type of network
interface must exist on both.

All the functionality defined is available for both nodes and BS.

48 3.3. Hardware abstraction layer

3.3.2 Daemons

Service
Discovery
Daemon

Network ITF abstraction

Command
Daemon

…

Dispatcher
Daemon

Message

Figure 3.4 – Dispatching of received messages

We use the term daemon to mean a compon-
ent that is able to process input as a separated
part of the main process. The usual implement-
ation would be in a different thread from the
main thread, which is supported in the JVM of
SunSPOTs. In nodes where their OS does not
support this, an implementation that allows
for different call back functions should be sup-
ported. For example, TinyOS [121] allows for
split-phase or non-blocking operations. In this
OS, there is also the possibility to use “tasks”
that enable longer running code to be “posted”
to run in parallel4.

In an effort to modularize the treatment of
different types of messages we define different components to handle different parts of the
protocol, which also allows for an easier expansion of the protocol. As such, we define daemon
components as responsible for handling messages for a specific part of the protocol. There is a
dispatcher daemon that receives all the node’s messages and (as the name implies) dispatches
them to the daemons responsible for the specific types. Currently there are two protocol daemons,
one for the controlling nodes and the other one for service discovery.

From figure 3.4 we have:

Dispatcher Daemon just inspects the message type and, according to the registered daemons it
knows about and the message types they handle, forwards the message to one of them.

Command Daemon is responsible for handling control messages. It handles and issues requests
for data, setting rates for collection and information sending and also for turning the node
on/off. As part of handling requests it also deals with the replies by interfacing with the
Sensor Service portrayed in figure 3.5. These replies carry the measurements taken by
sensors. On the BS side this daemon issues commands for the nodes. On the nodes, it
replies with measurements and sends acknowledgements to commands.

Service Discovery Daemon handles the service discovery part, as expected. As is easily per-
ceived, this an important component in a dynamic environment such as a BAN. The
SD allows for nodes to advertise their capabilities and for the BS to query nodes about
capabilities needed. We discuss it in more detail in §3.6.

From figure 3.3 we can see that daemons run on both the nodes and on the BS. The
DispatcherDaemon has the same functionality on nodes and the BS. We discuss the Ser-

viceDiscDaemon in §3.6. The CommandDaemon on the BS issues commands and receives
measurements (sent through command messages). On a node it does the reverse, receives
commands from the BS and sends out measurements. Acknowledgements are sent for commands
received and single measurements by the nodes and the BS respectively.

The daemons described, as expected, handle the defined protocols. The information abstrac-
tion layer uses them to query for data types (service discovery daemon), control the nodes
(command daemon), etc. On receiving these calls, the daemons issue the necessary messages

4From TinyOS 2.1.0 there is a TOSThreads library to enable the use of threads in TinyOS.

Chapter 3. Hardware abstraction layer 49

for the requested action. Notifications also flow to the information layer as measurements are
received, nodes are discovered, etc.

The message dispatching from the network abstraction to the specific daemons involves
sending to a queue that is managed by each daemon. As in the network abstraction no flow
control is provided and daemons quickly process the messages in the queue, posting the longer
tasks to run either separately or later.

Note also that some daemons may need specific implementations depending on what device
they are running. The command daemon is such an example, as it hosts the functionalities to turn
on/off the devices (we discuss sleep patterns and power cycles in §3.9.4). These functionalities
are specific to a particular node’s OS and as such need a particular implementation. The SD,
on the other hand, does not use any specificity of the hardware. It only resorts to the network
interface, which is already abstracted.

3.3.3 Sensor services

A sensor service is the abstraction of the sensing capabilities of a given node. In figure 3.5
its relationships are illustrated. The sensor service abstraction provides an interface to collect
sensed values. It allows setting the frequency of collection (e.g. take a sample every 5s), through
SensorCollect. The frequency at which collected data is sent (e.g. send every 22s bulk data
collected every 5s) is controlled through SensorSend. The collection is node specific and as
such needs to be implemented for the particular sensor in the node. These sensor services are
associated with a sensor profile that describes what the sensor senses, in what units, with what
limits, errors, etc. These profiles are discussed in §3.5.1. The command daemon can access the
sensor services to be able to control them.

Figure 3.5 – Command daemon relationships

3.3.4 Active components

In figure 3.6 we illustrate how the components live in the node/BS. The diagram is a Unified
Modelling Language (UML) collaboration diagram where the connections mean that information
is flowing between the components. Components that are active (able to process input in parallel
as discussed in the beginning) have extra vertical lines on the sides (e.g. SensorSend). The
figure can represent a node or a BS (where the sensor services would not be instantiated). Every
network interface is instantiated as an active NetworkItf. Messages received in these interfaces
are forwarded to the DispatcherDaemon. According to the message type, the dispatcher sends
it to the appropriate active daemon. The CommandDaemon can set the collection and sending

50 3.4. Information abstraction layer

rate using the interface from the SensorService. Note that only the SensorCollect and
SensorSend are active. The information abstraction layer accesses the daemons as needed to
request information (but not in the nodes).

Figure 3.6 – Hardware abstraction active components

3.4 – Information abstraction layer

After the data collection from the lower layer, the information layer is responsible for using
the collected data to populate the models used. This encompasses inferring new information
as described by the models. The metadata received from the hardware layer (such as errors,
delays, rate, time of collection, etc.) should also propagate through the models, and the rules for
these should be defined in the model. These models can range from tree-like structures (similar
to MiLAN [44]) or more complex ones using mathematical models of physiological processes
(similar to the Physiome project [47]).

The model to use should ultimately allow the middleware to: i) unequivocally identify the
information to be managed and its source(s), ii) infer commonalities between different models
so as to optimize resources, and iii) clearly interpret how the metadata correlates in the model.

The optimization process relies on the models to calculate how the applications’ requirements
can be fulfilled using the resources in the most efficient way possible. Point ii) is important for
optimization as it means detecting different applications using different models that need the
same information somewhere in their models. This allows information to be acquired only once
using the stricter requirements. We detail the information abstraction layer in the next chapter.

3.5 – Data structures

Several data structures were defined to allow for the abstractions described. They were based
on input from the following standards: IEEE 11073 [52], Bluetooth [13], ZigBee [144] and
SensorML [16]5. Note that this does not mean we are compliant to any of those standards.

5Example: the units (see figure 3.7) used are the ones defined in IEEE-11073.

Chapter 3. Hardware abstraction layer 51

The basic idea was to reuse already defined structures without being overwhelmed with the
complexity of fully implementing the standards. We also adapted them to what we believe are
the needs of a BAN.

3.5.1 Profiles

We defined Node Profiles that state what a regular node (following that profile) has in terms
of capabilities, namely: storage, network interface(s), and sensor(s). Sensor Profiles define
the hardware of the sensor and the data provided by the sensor. In figure 3.7 we show these
relationships. These profiles have defaults that serve as global knowledge for the BS (e.g.: stating
the profile for a SunSPOT implies the presence of a temperature sensor, light sensor, accelerometer,
512KB RAM, ARM processor, etc.). These can however be customized and advertised differently
by the sensor node, thus providing flexibility to accommodate variability. All the types and
profiles described have a wire representation that defines how they are transmitted in the protocol
messages. A code is also a part of these profiles to uniquely identify the profile being referred
to, as an example the value 2 is the code that identifies the node profile of a Mica2 (another
commercial programmable node).

The profiles are:

Data Profile defines the data that a sensor is able to produce. It defines the type of information
(blood pressure, temperature, etc.), the structure to transport its value (integer, text,
sequence of, etc.), and its units. There are attributes that are instantiated according to
the node where the profile is being run, namely a Universal Unique IDentifier (UUID) that
identifies where the data came from. UUIDs are used in Bluetooth to uniquely identify
source points. They allow us to identify what data service is provided and on what node.
This profile is also used in the information layer to describe the data produced in that layer.

Sensor hardware Profile defines the hardware of the sensor. It describes its accuracy, latency
time (delay between sampling and availability of the output), integration time (time to
assess/measure the phenomenon being sensed), maximum and minimum rate of sensing.
These parameters are part of the Detector type in the SensorML specification [16, Annex
C.].

Sensor Profile defines the sensor, with the data profile and hardware profile.
Node Profile defines the global characteristics of the node: processor, memory and storage,

power, OS, network interfaces and sensors (profiles) it has.

The accuracy of the sensor hardware profile is given by a structure that describes the sensor’s
error in readings. The error can be constant within the sensor’s range of readings, a percentage
of the reading, or given by an error curve. This error curve is not defined in this error metadata
structure, the structure only indicates the curve used as a 15 bit entry (enabling reference to
32768 curves). The curve itself should be defined elsewhere.

Measurements

Measurements are data structures that specify the time the measurement was taken, from
what node, for what data type and the reading itself. They relate to a data profile by incorporating
the UUID of the data profile, and thus defining the node and to what type of data it relates to,
figure 3.8 illustrates this. The data type specifies its encoding on messages and has an untyped
value so it can hold any data type. The time type has units for the time and if it is an absolute

52 3.5. Data structures

Figure 3.7 – Profiles and types

time or relative one, e.g. “how many milliseconds have passed since we started counting”. The
relative time can have a high or low resolution, that is indicated by timeRelHighRes.

Figure 3.8 – Measure data structure and data type

The maximum sensing rate from the sensor’s hardware profile and the maximum sending rate
from the interface types can be used to calculate the timeliness of the data. The sensing rate gives
the period at which data is available to be sent regarding the phenomenon being sensed. The
sending rate gives the amount of data that can be sent per unit of time. In most cases the nodes
are able to send the data as soon as it is available, but in higher sensing rates and with more data
to be sent this can be important. Note that measurements have a time of collection, which means
that if only historical data is relevant, and not immediate alarms, the timeliness may be irrelevant.
Note also that latency and integration time allow a finer detail on the time from phenomenon
occurrence to data being available to be sent. The sensing rate should incorporate this delay (of
both times).

Storage

As portrayed in figure 3.7 the node profile has one or more associated storage types. In some
cases it may be preferable for the BS to let the nodes store the readings and either send them

Chapter 3. Hardware abstraction layer 53

later or for the BS to poll them. The storage type describes the type of storage (flash, RAM, etc.)
and its size.

3.5.2 Messages

As an integral part of the protocol, we defined the messages for the interchange of information
between the BS and the sensor nodes. In essence, the protocol is what enables the support of
heterogeneous sensor nodes. As long as nodes comply with the protocol and use a network
interface type supported by the BS6 the communication is independent of the node’s device-
specific characteristics. The protocol mostly follows a request/response cycle and messages are
defined for service discovery, commands and queries. Data read by the sensor is sent on reply
messages. These messages are the exception to the request/response cycle. Nodes can stream
(periodically send) measurements after being instructed to do so, where all the readings result
from one request from the BS.

For SD there are query and advertisement messages. Command messages allow the setting
of rates for collection, sending, turning the node on/off, requesting and receiving readings. All
messages have a code that identifies their type and a unique identifier of the message. The latter
is used to match requests with replies and queries with advertisement answers.

We detail the SD messages in §3.6.

Command messages

As stated, the command messages are used to:

Change rates: the BS can request to change the rate (start/stop included) of collection of sensing
data for a specific sensor on a specific node. Parallel to collecting, we can set the rate of
sending. This means that the node may need to store measurements and send them in
bulk. When these rates are set the node issues, at the specified send rates, a reading reply
message (bulk or single accordingly). In table 3.1 we have the possible combinations for
both values. The specific sensor to address in the command is identified by the UUID in the
message.

Change node’s state: instruct the node to turn on/off. This implies that the node is able to
sleep, saving energy, and check for new messages periodically.

Requests: the BS issues requests for specific data identified by the UUID. The BS can also issue
a bulk request, where all the data currently held by the node for that UUID should be sent.
This allows data to be obtained not only at periodic intervals (by using the rates above),
but also when needed.

Replies: these are messages that hold the measurements collected. They can be single readings
(holding only one measurement) or bulk replies (holding several measurements). As the
sensors may be sending readings periodically, these messages only require one request from
the BS setting the collection and sending frequency.

Messages that are directed to a specific sensor within the node (change rates and requests)
carry the UUID of the sensor.

All the messages are acknowledged, either by an explicit ACK message or by a response to a
request. The exceptions are the periodically sent reply messages. These are not acknowledged

6This means that the BS must have an interface for each different interface on the BAN.

54 3.5. Data structures

Table 3.1 – Collection rate versus sending rate

Collection Sending Relation Action
1 undefined – – Do not send or collect
2 defined undefined – Send immediately after collecting.
3 defined defined col ≤ send Assume error. Proceed as 2nd row.
4 defined defined col>send Store the collected values and send them at the

stated send rate.
5 defined defined send==0 Only collect and store. Assume that a specific

request will be sent.

back to the node. The assumption is that they do not need to be resent if lost. A not-ACK message
is also defined to signify that the message was received but the request/command was not done.
A reason field is part of this message.

Replies

Reply messages are the ones that carry the measurements with sensed data. Note that if
different data is requested on the same node, each different data would be sent (even if in a bulk)
in different reply messages. There is no provision for sending different data profiles in the same
reply message. Apart from identification of the data, this would raise problems for different rates
of sending.

When the BS sends requests for the node to periodically send some data, the node sends
reply messages with the measurement at the defined period. These messages are seen as replies
to the first command and are not acknowledged, as we described earlier. This may lead to
measurements not being delivered. If it is important not to loose any data, a reliable connection
should be established for sending these data. As mentioned in §3.3.1 a reliable connection will
imply reliable and ordered message delivery 7. Note that the interface for explicitly requesting no
losses is not yet defined. This should be part of the requirements of the requests, leading to a
choice of a reliable connection if the application stated that losses were not allowed.

Reliability could also be developed within the middleware itself by providing acknowledge-
ments in the network abstraction. This would mean storing the measurements until their
reception was acknowledged by the BS. This could be used where no reliable connectivity was
offered by the underlying OS. Non-reliable connections can be used when some measurements
can be lost and minimizing delay and/or message overhead is more relevant.

3.5.3 Final comments

Figures 3.9 illustrate data types and a reply/request message. Message codes denote the
message type (single request, change of rate, query discovery, etc.). Messages also have an
identifier of 16 bits. In figure 3.9.a we have a request for a single measurement identified by the
UUID; the message should be sent to the appropriate node. Message 3.9.b, if the collection and
send rate are as row 4 from table 3.1, instructs the periodical sending of messages with bulk
measurements. These replies with measurements are illustrated by figures 3.9.c and 3.9.d. Note

7Note that in unreliable connections, messages may be delivered out-of-order. In these cases, measurements’ time
stamps may be used to re-order data.

Chapter 3. Hardware abstraction layer 55

that the UUID and the data type are the same for all the measurements and are identified in
3.9.d. The time for measurements is an absolute time (denoted by 01).

code id UUID
00011110 16 bits 24-136 bits

3.9.a: Request single measurement

code id UUID rate col rate send
00010111 16 bits 24-136 bits 32 bits 32 bits

3.9.b: Request for changing data collection and sending frequen-
cies

code id req id measurements
00100011

16 bits 16 bits variable
8 bits

3.9.c: Reply with bulk measurements

measures UUID data type value time type time value . . .

8 bits 24-136 bits 8 bits
variable 01 62 bits

. . .
per measurement

3.9.d: Measurements

Figure 3.9 – Command message examples

One should note that in none of the data structures described was there any mention of a
body/user identifier. The assumption is that the communication is to be secured/authenticated
using a side-channel. As such, only nodes within the body area or that have been instrumented
by the user may join the communication network and thus the body area. We discuss this further
at the end of the chapter (see §3.9.4).

As mentioned, some of data structures we defined follow the IEEE 11073 standard for point-
of-care medical device communication, namely we took into account the Application profile
Optimized Exchange Protocol [54] and the Domain Information Model [53].Although, IEEE
11073 uses ASN.1 for data definition and Medical Device Encoding Rules (MDER) for encoding
the data we opted to follow the encoding from the Bluetooth specification [13, Vol 3/Part B/
Section 3], as it was simpler8 and equally capable for our needs. In figure 3.9.d the value is
encoded using that specification. The encoding supports the regular types: booleans, integers
(signed and unsigned), text, UUIDs and URLs. It also supports sequences and unions of these
types. It lacks float encoding, so we added this using the IEEE 754 [51] representation.

3.6 – Service discovery

A SD service is the building point for a middleware system to be able to be aware of and
control the resources underneath it. These resources are not pre-defined and may change with
time, as new nodes may be introduced and older ones may disconnect. Knowing the resources

8The Bluetooth encoding has some similarities with MDER, but it uses a more straightforward approach to the
encoding, with a small sacrifice on encoding size.

56 3.6. Service discovery

under its control is what enables the middleware to answer the requests of the higher layers
while optimizing resources’ usage.

In our discussion most of the examples are based in a sensor world, as this was our main focus.
Nonetheless, most of the points can easily be transposed to an actuator environment.

In our view a SD system should have the following requirements:

Query capability: the query mechanism should be flexible to allow generic matching of
capabilities;

Profile flexibility: it should be relatively easy to introduce a new profile description, to be able
to advertise a new capability;

Overhead: the overhead added should be kept to a minimum;
Lower Layer Interaction: if lower layers provide functionalities that facilitate or incorporate

SD responsibilities, the SD should build on those (eg.: notification of a new node);
Energy aware: the SD should be as power efficient as possible so as not to increase exceedingly

the node’s energy consumption. This relates to processing associated with SD and message
exchange.

The aim of the proposed SD is: a) enable the advertisement of a new resource added to the
network, i.e. a new sensor node with its capabilities; and b) enable querying the system for current
available information. As mentioned, applications query the system based on their information
needs and respective requirements. The sensor nodes, on the other hand, advertise the resources
they possess. The middleware mediates this, by discovering the nodes that can provide the data
needed and transforming the requirements set by the applications to requirements for the nodes.
Note that applications can request an information that is not produced by the sensor nodes. The
middleware can collect the information available from the sensors and correlate it to produce the
requested information.

Requirements set by the applications in the context of the middleware can be regarding:
accuracy of results (information error, confidence interval), information rates, and delivery
guarantees (real-time, amount of losses, delay). This is mapped to resources in terms of: meas-
urement capability (sample rate, error), network interface (bandwidth), energy (consumption,
remaining) and the type of data sensed. The middleware is responsible for mapping the said
requirements to resources. We use capability to mean the said resources, which are mainly
measurement capabilities.

A proactive node advertisement is needed in the context of the middleware. This enables
improvement of the fulfilment of application requests, by immediately making available new
resources added to the system. An example would be a health monitoring application issuing
a request for pulse rate to be delivered every 3s. The resources available only contained
one node capable of a period of 5s. The addition of a new sensor for pulse rate (with its
proactive advertisement) would enable the middleware to automatically increase the rate of the
information provided to the application, thus fulfilling (or at least increasing the fulfilment rate
of) the requirement.

The assumptions described earlier enable the SD to be simplified as only the BS has to maintain
information regarding all the infrastructure and the sensing nodes only need to know about their
own capabilities. Furthermore, only the BS sends queries to the network and does not need to
advertise itself9.

9There might be scenarios of communication between different BANs where the connection would most likely

Chapter 3. Hardware abstraction layer 57

Idle

[node going up]

[network started]

WaitSDMessage

AdvertiseCapabilities

[SDQueryMesg received]

[network down]

HandleQuery

[node going down]

3.10.a: In a node

Idle

[bs going up]

[network started]

WaitSDMessage

[SDAdvMesg received]

[network down]

[bs going down]

HandleAdv

QueryForNodes

3.10.b: In the BS

Figure 3.10 – SD global state machine

In figure 3.10 we define the abstract global state machine of the proposed SD protocol for
the node and for the BS. The start of the network (device related) means that the node broadcasts
an advertisement of its capabilities to the network and that the BS queries for available nodes.
Using broadcasts suppresses the need for pre-configuring addresses. The node waits (with a time
limit) for an acknowledgement from the BS after issuing the advertisement. After this initial step,
the node waits for query messages and the BS for advertisement messages. If the BS misses the
advertisement from the node, it will only be able to discover the node if it actively queries for
nodes. Note that query and advertising messages are handled by the WaitSDMessage state of
the node and the BS respectively. Network down is device related and occurs when the device
turns its network interface off.

The BS issues queries if it currently does not know about a data type that is needed to fulfill
an application request with its requirements. Although advertisements are acknowledged, the
BS might not be aware of all the resources available. Advertisements not reaching the BS is one
possible cause of this. Thus, issuing queries enables quicker and more thorough responses to the
availability of data when the BS is unable to meet requirements.

Sensing nodes respond to queries and advertise their capabilities regardless of requirements.
This implies that nodes state what they can produce at what settings. The BS is thus aware of
what nodes can produce what information and with what capabilities. However, when trying to
fulfil applications, the BS may only have partial matches regarding the requirements, which it
will need to cope with. The BS can either combine partial matches or report the inability to fulfill
all the requirements to the application.

An example of this combination would be regarding error on estimates for HR. Several sources

be done through the BSs. This would mandate that BSs would at least respond to queries regarding connectivity
capabilities.

58 3.6. Service discovery

can be used to estimate HR, for example ECG, Arterial Blood Pressure (ABP), oximeters. Each
has associated errors. If the application requested a higher level of accuracy than what could be
satisfied by a single sensor, a combination of more than one should be done to accommodate the
application requirement. This approach is used by Li et al. [65] to estimate HR. In chapter 4 we
will expand on this.

3.6.1 Service discovery messages

The SD communication is governed by the following group of messages:

Queries allow data that is needed by the BS to be queried for. These queries can be for a specific
data type, or they can be generic, allowing all the capabilities the nodes have to be queried.
This is the initial query for nodes of the BS. All these queries are broadcast. They specify
the code of the data profile needed.

Advertisements may be sent spontaneously or in response to a query. They refer to the node
profiles described earlier by sending the associated code. For the nodes that stray from the
default known node profile, the messages allow the complete profile to be sent. When an
advertisement is sent in response to a query, the node could opt to just send the queried
sensor profile. It is nonetheless advantageous to send the complete node profile, because
if the sensor profile is missing from the BS’s knowledge, it indicates that the BS does not
know about the node.

Heart beats are used so that both BS and nodes know about each other’s liveness. The BS sends
heart beat requests periodically that must be replied to by the nodes. This means dead nodes
to be removed from the usable resources of the BS. It also provides reciprocal awareness.
Nodes expect these heart beat requests and as such can determine the disappearance of the
BS. The existence of these messages precludes the need to have an explicit notification of
going down by the node or BS; a message that could nonetheless be lost.

3.6.2 Other service discovery services

SD is an area that has been thoroughly researched. Some developments have focused on
pervasive ubiquitous environments [34, 143]. The most common approaches gravitate around
Service Location Protocol (SLP) [40], Universal Plug and Play (UPnP) [122], Jini [112] and
the now defunct Salutation [97]. Although these approaches offer some insight, they lack the
applicability to Sensor Networks (SNs)10. SNs have specific issues that warrant newer approaches,
namely their: low energy powered devices, lack of computational capability (processors, memory),
vast distribution, and a mainly wireless connectivity. This last point leads to two main issues.
Wireless communication is usually the main culprit in terms of energy consumption as we saw in
§2.5. The other point is that the environment in SNs is usually harsher for wireless communication
than normal office/home wireless communications. In Wireless Sensor Networks (WSNs) the
outdoor, unknown distances between nodes, terrain obstructions, terrain reflections are good
examples. In BANs, as we saw in §2.4.1, the body is an obstacle with the added problem of water
composition that absorbs 2.4GHz waves (used in 802.11, Bluetooth, 802.15.4). These problems
usually lead to to a less capable connection, with limited bandwidth. As such, these restricted
environments have lacked a fully fledged SD system. The wireless communication standards for
low power devices have tackled this necessity by providing SD capabilities. Namely, Bluetooth
[13] (with its Service Discovery Protocol (SDP)11) and ZigBee [144] (by adding service discovery

10The interested reader is referred to Ververidis and Polyzos [123] for a discussion of SD for mobile ad hoc networks.
11Bluetooth Low Power [14] uses the same SDP.

Chapter 3. Hardware abstraction layer 59

to the IEEE 802.15.4 communication standard) are the more widely used approaches in WSNs.
Our approach borrows from these standards, simplifying some structures for BAN use and adding
proactive advertisement by the nodes. The expected star topology also enables centralized control
from the BS which eases SD.

3.6.3 Comments

From the requisites we stated for a SD service in the beginning of this section we can state the
following for our framework:

Query capability: our system allows querying for the data type being sought. The advert-
isements enable the announcement of capabilities, which lead to divulging the available
resources;

Profile flexibility: the profiles described offer detailed information regarding the node. They
are easy to build on, but may be too verbose for a fresh start. When we designed them, we
chose detail availability over simplicity. However, adding a capability to a node profile is
just a matter of defining a new sensor hardware profile and a new data profile (or make
use of one already defined). The profiles’ framework also enables easy expansion of the
profiles currently available by customizing some of their parameters;

Message overhead: we mitigate overhead by using a unique code to reference profiles in
messages, as opposed to sending the full profile. Nodes only need to know about their own
codes, but BSs need to know about all the codes they might encounter. If a node needs to
send the full node profile detail, it will incur a higher overhead (from 40 bits to around
424 bits, depending on the node’s capabilities to announce). This overhead is nonetheless
small;

Lower Layer Interaction: this interaction is more intertwined with the implementation, where
the discovery of new nodes could come from the lower layer. This has not been defined in
our SD protocol and would depend on the implementation;

Energy aware: we tried to minimize the message exchange by only having messages being
transmitted on boot-up and when data is needed by the BS that it cannot accommodate.
The heart-beat messages are the exception. They are used for keeping the BS resource
knowledge accurate. The frequency of these messages can be adapted by the BS.

3.7 – Adding a new node to the architecture

To better illustrate what our middleware addresses, in this section we describe what is needed
to add a new node to the system. We describe the profiles to define and the services to implement
so that the node can interact with the architecture and be recognized by it.

Starting with the profiles, we have to (recall figure 3.7):

1. Add a new NodeProfile: this entails defining attributes that describe the processor cap-
abilities, available power source(s), available storage and network interface(s). Describing
storage space involves stipulating the type and size of the storage. The network interface(s)
involves stating the type (802.15.4, Bluetooth, serial, etc.), its maximum data rate and version.
Then we need to add the node’s SensorProfiles;

60 3.8. Other middleware architectures

2. Add a new SensorProfile: a sensor profile describes the sensor hardware and the data
profile of what is produced by the sensor, respectively the SensorHardwareProfile and
the DataProfile;

3. Add a new SensorHardwareProfile: this describes the minimum and maximum rate of
collection, the time it takes to have the data available and the error curve associated with
measurements;

4. Add a new DataProfile: the data profile is associated with a data type (what is transported
in messages) and an InformationType. The unit in which the output is given is specified
(e.g. oC (Celsius), oK (Kelvin)). It also holds the UUID, which is instantiated per node given
the code of the data profile, the code of the service profile, an access point (allowing more
than one sensor/data profile in a node) and one of the node’s address.

5. Add a new InformationType: the information type describes the data in the data profile.
It defines how to interpret the value (a count, a quantity, a category, etc.) and a possible
range, which may be an interval (e.g. [−20, 50)) or a set (e.g. {low, normal, high}). The
range is defined globally per information type, but can be specialized for a specific sensor
(e.g. a temperature sensor that only measures in the range (0, 40] oC, where the information
type for temperature sensor states [−20, 50)).

Note that adding a new node may not imply defining all these profiles as they may already
be defined (e.g. the network interface for 802.15.4 may be used in several nodes, the temper-
ature sensor ADT7411 ADC for the SunSPOT may be present in other nodes, the environment
temperature information type will be used in all the environment temperature sensors).

In terms of functionality, we would need to implement (recall figure 3.3):

1. Network Itf: this would amount to sending and receiving messages (broadcast and unicast),
retrieving network related addresses and setting up reliable connections;

2. Sensor Service: for each of the sensors in the node an implementation of the SensorSer-
vice would need to be done. This basically would be implementing the read operation for
the sensor with an output conforming to the DataProfile defined;

3. Command Daemon: the command daemon would need to build the sensor services, turn
on/off the network interfaces and change the state of the node (on/off).

As we mentioned for profiles, re-use of these implementations for the same type of components
is possible. So if an implementation for the 802.15.4 radio interface was already defined for a
SunSPOT we could re-use it in a Mica2 node.

Implementing only these three components assumes that all the abstraction already defined
(the blue-filled boxes from figure 3.3) could be used on the new node. We discuss this when we
address the implementation in chapter 6.

3.8 – Other middleware architectures

Tackling the gap between applications and sensor hardware is still not specifically addressed in
BANs. Some middleware approaches address data distribution issues with greater detail than the

Chapter 3. Hardware abstraction layer 61

abstraction of information. This is the case with CodeBlue [102], a framework that addresses the
mismatch between the available sensor networks and the information requirements of medical
care. For this purpose, it combines hardware and software to allow for discovery, communication
and dissemination of information directly from the sensor devices. In the software platform
they employ a Publish/Subscribe (pub/sub) paradigm, such that information is multicast to
interested parties that request the information. The system also allows for direct querying of
information through a simple interface, which is similar to directed diffusion [57] and permits
the specification of data rates. It considers access to individual sensors. CodeBlue is focused on
the communication infrastructure and the data dissemination process among “body nodes”. In
other words, the network within the body is not specifically addressed and applications still need
to query for the lower level data. Also, resource consumption and optimization within the BAN
itself is not considered, as, in the proposal, it is assumed that most of the nodes can easily be
recharged.

A more directly relevant approach is the work from Waluyo et al. [125] in Mobisense. It
shares similar objectives to the ones proposed in this chapter, namely data acquisition, support
for multiple sensors, plug and play functionality and resource control and management. The
target is Body Sensor Networks (BSNs) and they have a prototype for classifying position, based
on accelerometer data and Kalman filters. The prototype also handles ECG data. The system
addresses encryption in the communication between the sensor and the BS. It also handles
possible re-configuration of the system. The middleware on the sensors is a thin layer, that mostly
handles the commands from the BS and sends data. It also has a power-saving mode with a
critical issues self-awake detection. This last point works with thresholds set by the application,
that trigger the node to come out of sleep mode to resume sending data. This implies that the
sleep mode is mainly turning communications off, with data still being collected by the sensor
node. They specifically state that no buffering is done to collected data so as to ensure timeliness.
For resource management the middleware gives applications with an API to toggle the sensor
node, set it to go to sleep mode (communication off) or get the battery readings. Although an API
is provided, the applications still need to manage and control these functions. As such, operations
like optimization of resources are the responsibility of applications. There is no mention of
support for running multiple applications on top of the middleware in this article [125], although
their first work did aim at that [124].

In the WSN realm, Middleware Linking Applications and Networks (MiLAN) [44] tries to
cope with “the gap between the protocol and the application [which] is often too large to allow the
protocols to be effectively used by application developers”. The authors address this by tackling what
they define as the features of sensor applications: distribution, dynamic availability of sensors,
constraint application Quality of Service (QoS) demands, resource limitation (bandwidth and
energy), and cooperative applications. This last issue relates to different applications using the
same network to achieve different objectives; they must cooperate or at least not step on each
others’ toes. MiLAN tries to cope with different application requests using their QoS requirements
as input. It also takes into account the network information (energy and bandwidth) and the
system’s information on the relevance/precedence of the different applications. The authors also
propose a middleware component that resides on the network stack, so as to take into account
and control network properties. The main objective is to vary the network parameters over time
and maintain the QoS needs of applications. They also define a tree-like relationship for deriving
data from the sensor observations. As that is the theme of the next chapters we come back to
MiLAN there.

62 3.9. Concluding remarks

The layer we discussed in this chapter does not introduce many novelties in terms of what a
usual OS, SD system would bring. However, it makes that abstraction available as one package. SD
is provided regardless of the network used (Bluetooth, ZigBee, etc.). The hardware abstraction
for the interactions proposed is also independent of the OS. The main objective is to provide an
API/abstraction from what lies underneath as a stepping stone for the information abstraction to
work with.

3.9 – Concluding remarks

Motivated by what we understand as the mismatch between applications that want to use BAN
information and the current heterogeneity of hardware in BANs, we introduced in this chapter a
middleware to abstract these resources to applications querying for information. Based on a set
of assumptions for this type of network, we presented an architecture that gives applications the
freedom to access the information they need while complying with a set of requirements and
optimizing resource usage. We detailed the lower layer of this architecture, defining what we
called the hardware abstraction layer. We introduced the information abstraction layer that is
refined on the following chapter. This layer is responsible for the optimization and requirements
compliance using the first lower layer to achieve this.

With this first layer we are able to address the following objectives set forth in the introduction:

Data collection (A): the protocol described enables requesting and receiving measurements
from sensor nodes;

Answer applications (D): the SD service allows querying for the data needed to fulfill requests.
Measurements received by applications include metadata regarding the data collected. We
have not yet described correlation of information, so this objective is not yet accomplished
for retrieving the full application request;

Optimize resource usage (E): the described layer provides the interface to control the nodes
and a description of the node’s capabilities; the next chapter uses it for the optimization;

Advertisements (i), Commands (ii), Answering requests (iii) and node control (4): the
nodes are able to advertise their capabilities, receive and process BS commands, and
answer requests from the BS. The BS can control the nodes.

As a pictorial summary we have in figure 3.11 the flow of messages through the components
in the system. As noted the components act differently when they are in a node or on the BS.

In figure 3.11.a we have the BS where measurements and advertisements are received, and
queries and commands are sent. The BS also issues heart-beat requests and deals with the
answers, or the lack thereof. After discussion of the information abstraction layer in chapter 4
and the information flow in chapter 5 we complement this diagram with the information layer
on the BS.

In figure 3.11.b we have the node where queries and commands are received, and measure-
ments, advertisements and heart-beat answers are sent.

This layer is used by the information abstraction layer, and not necessarily directly by applica-
tions. Some particular points still to pursue follow in the next sub-sections.

Chapter 3. Hardware abstraction layer 63

advertisements
heart beat answers

acks

Service Discovery
Daemon

Dispatcher
Daemon

Network Itf

queries
acks

Command
Daemon

measurement
acks

all messages

NetPointsDB

add/remove nodes
retrieve addresses

Heart Beat
System

get known nodes

heart beat requests

commands

interaction

messages

3.11.a: In the BS

Service Discovery
Daemon

Dispatcher
Daemon

Network Itf

advertisements
acks

heart beat answers

Command
Daemon

commands
acks

queries
heart beat requests

acks

all messages

Sensor
Service

set rates
on/off

Sensor
Collect

Sensor
Send

set rates
on/off

set rates
on/offacks

measurements

Store
store measurement

retrieve measurements

send measurement

send measurements

3.11.b: In a node

Figure 3.11 – Message flow and component interaction

3.9.1 In-node processing

As we pointed out in §3.2.2, we assume dumb sensors. Other approaches propose that
processing should be done on nodes to save energy. Our framework partially allows that option.
The sensor services described in §3.3.3 can embody more functionality than just reading raw
data values. One could for example, have a service that provided a moving average of the last 10
seconds of the sensed value. For this a sensor profile and a sensor service implementation should
be defined to provide the functionality. It could rely on the abstraction for the collection, sending
and command interface. Note that the provided abstraction only allows for setting the collection
and sending rate, and to request a current sensed value. As such, it would not allow both the
average period and the sampling rate to be configured.

Another opportunity for in-node processing is when collection rates greatly exceed sending
rates. In these cases, compressing the data before sending it optimizes communication usage.
There would be two options to accomplish this using our framework. The first option would

64 3.9. Concluding remarks

be similar to the moving average example. We would implement a sensor service that would
compress the measurements still in storage. As before, a sensor profile would be needed so that
the middleware on the BS would know about the need to decompress the data. Another option
would be to define a new network interface that would compress the data before sending it.
It would then use one of the physical network interfaces of the node. Similar to all network
interfaces, it would be implemented in the BS and the node.

Our approach is to have this intelligence in the BS and for the node only to provide the raw data.
Nonetheless, in some cases, it may prove useful to spare unnecessary communication channel
usage, thus saving energy. In these cases processing on the node may prove advantageous.

3.9.2 What about actuators?

Most of the examples given were based on getting data from nodes, i.e. focusing on sensor
nodes. The framework is designed for accessing sensor nodes, but what was described can also
apply to actuators.

Profiles would apply to actuators, but some additions would be needed for full use of actuators.
Profiles would need to define what the actuator can do; they would define the degrees of
freedom of the actuator. Global actions would need to be defined such as: turn on LED,
supply medication, apply defibrillation shock, etc. Some would need finer detail, e.g. apply
0.1 units of insulin during 15 minutes.

Advertisement of capabilities are also possible. The node profiles would be advertised similarly,
and their heart-beats monitored in the same way;

Control of an actuator is mandatory. The current command messages would need to be extended
to allow finer control of the actuator. They would use the expanded profiles mentioned
above. This would assume that the actuators themselves would have the appropriate system
control loops (e.g. instructing a pump to inject 0.1 units of insulin would mean that the
device knew how to control the pump so that exactly 0.1 units would be delivered);

Optimization would apply partially to actuators. However, in actuators we would not see much
replication. Also, as we will see, one of the optimization principles would be to try to derive
the same information through less costly means. With actuators this would be less doable,
as there would only be one way of doing a specific action (e.g. for cardiac resynchronization
one would have only one Implantable Electronic Cardiovascular Device (IECD)). Even if
multiple actuators for the same purpose existed, the objective would be to actuate a precise
one. As an example, if several lights existed for warning indicator, we would want to turn
on a specific one for the warning; it would not be appropriate to light one at random.
Sensors of the same type will be more amenable to being used regardless of which specific
one is addressed.

Actuators would also provide new challenges in the model management for applications.
These application models would derive actuations based on the information received from the
middleware. They could be moved to the middleware, letting it do all the control and actuation.

3.9.3 Virtual Nodes

The architecture allows virtual nodes to be deployed on a BS to test node interaction or new
implementations. As the architecture follows a modular software abstraction approach, it is
simple to instantiate a node as software as long as it obeys the stipulated protocol. It would need
nonetheless, to have several components. It would need a network interface that is accessible

Chapter 3. Hardware abstraction layer 65

to the BS. Any Inter Process Communication (IPC) or a real network interface (e.g. loopback)
could be used as long as the BS also had the implementation. A service implementation would
be the most natural component to test, so this would be developed to run on this virtual node. It
could either fake outputs or derive them from the available hardware on the BS. The command
daemon and other daemons would run as normal using the implemented network interface. The
implementation of the command daemon should take into account that the node is running on
the BS and as such should not turn off the full BS.

3.9.4 Open issues

When we described profiles we mentioned that there is no user identifier associated with the
profiles. The assumption is that nodes use a side-channel to authenticate with the BS and only
nodes that are authenticated can interact with the BS. This makes nodes part of the BAN only if
they can authenticate, making them all from the same user.

This approach shifts the responsibility to the authentication mechanism that must accom-
modate this. Approaches could include hard-coding a credential on the device that would be
authorized by the BS, entering a PIN on the BS that relates to the nodes discovered, or just
confirming the node join of the BAN when it is detected. Other, automatic approaches, involve a
channel or knowledge sharing that can only be used/known by a node physically within the BAN.
Some approaches use BCC12 to identify nodes in the body, like the work of Falck et al. [31]. Other
approaches use biometrics to generate keys for the authentication: Hanlen et al. [42] use body
movement as a common source of randomess for key generation and Poon et al. [91] use ECG and
PhotoPlethysmoGram (PPG)13 as a source of entropy for generating a key for communication.

We have not yet studied these approaches and the protocol is still lacking a phase for identifying
nodes within the BAN. As can be perceived, this is relevant not only in terms of identification of
the correct nodes to use, but also for security and privacy.

Time stamps in measurements imply a global (within the BAN at least) time definition. As such,
sensor/actuator nodes should be clock synchronized with the BS. This synchronization is not part
of the middleware, although this should be its responsibility. Options for synchronization such
as the work from Elson et al. [29] should be incorporated into the middleware. Some network
standards, such as the current draft from Institute of Electrical and Electronics Engineers (IEEE)
802.15.6 for BAN communication, define a clock synchronization procedure between nodes and
the hub. Investigation of its usability within the middleware should be taken.

Another point not addressed, which is important for conserving power, are the sleep patterns
for nodes. When nodes are not being used, or when activity periods are very sparse, they should
go to a low power state. This would imply turning off most hardware components including
communications. For this to be able to occur and for the BS still to be able to contact them, a
duty-cycle should be defined. Regular wake-ups from the nodes should occur to check for requests.
This would imply synchronization with the BS. Different sleep patterns could be defined where
nodes keep some sensing being done to control for threshold cases, similar to the Mobisense
platform [125], discussed in §3.8.

12In BCC the body is used as the medium for communication.
13PPG uses the intensity of light to measure the blood volume of an area. A pulse oximeter is a device that uses

PPG to determine the oxygenated haemoglobin in the blood and changes in blood volume. This is what is used in the
referred paper.

4
Modelling data correlations

T he model we propose for multi-parameter monitoring and correlation is described in this
chapter. We also discuss an algorithm to discover optimal resource usage while satisfying
applications’ requests. The flow of information within this model uses a Publish/Sub-

scribe (pub/sub) system that we present in the next chapter.

4.1 – Introduction

The concept of multi-parameter patient monitoring is re-gaining momentum [36], as the
possibilities for enabling it are getting more mobile, user-friendly, and ubiquitous.

The research for digital computerized systems that are able to assess different inputs from
the human body can be tracked back a few decades. The experiment by Shubin and Weil in
1965/6 [104] of using a computer to monitor Blood Pressure (BP), ElectroCardioGram (ECG),
body temperature, etc. and produce records for seriously ill patients (in a shock unit) is one such
example. Using several different inputs to assess physiological parameters has been a developing
effort, examples are: devices that monitor several parameters as in the AMON project [4], where
oxygen saturation, acceleration, skin temperature, etc. are monitored by a single device; projects
to correlate data to clean information as Li et al. [65] do to estimate Heart Rate (HR); the use
of qualitative models of multiple parameters to derive new states as the work from Dawant et
al. [26] where an adaptive patient monitoring system reacts to the environment and to a predicted
evolution of the patient state; severity scoring systems in Intensive Care Units (ICUs) [109] use
several inputs (over 100 in some cases, some of which are diagnostic parameters) to produce a
“score of illness” for predicting outcome.

Correlation of information is a key factor in producing richer information and inferring new
information. Be it privacy invading correlations [35], mathematically oriented models [93], or

67

68 4.1. Introduction

systems physiology [60], tapping into multiple different inputs yields richer, more complete,
newer information. Although these latter correlation examples may be beyond the main focus of
our work, they serve as illustrations of the power of inference and correlation. Our intent is to
enable correlation of “bodily” measured data.

Figure 4.1 illustrates possible correlations of different types of information. In the diagram
(blue) boxes represent producers of information; they use the information from the (yellow)
circles to infer new information (another (yellow) circle). As an example we can produce Cardiac
Output (CO) from HR and Stroke Volume (SV), using our known CO formula CO = SV ×HR.
Moreover, the figure shows that CO can also be produced by the ImpCard Reader CO (impedance
cardiograph reader) or ElectCard Reader CO (electrical cardiograph reader).

METs
model 3

M0

V

Pulse
Oximeter

Temp

HR

SpO2

Optic Hb
reader

Hb

Temp

CO
FormulaV

ImpCard
Reader SV

SV

CO

ImpCard
Reader CO

ElectCard
Reader CO

ElectCard
Reader SV

V

V

O2 Del
Formula

O2 Del

V

Hip Accel
Counter

Wrist
Accel

Counter

Hip
Count

Wrist
Count

METs
model 1

METs
model 2V

METs

V

METs
model 4

Actigraph

Act
Count

Physical Act App

Physical Act App

Monitoring App

ECG

ECG

Monitoring App

Hip Accell
Wrist
Accell

Hip
Accel

Wrist
Accel

Accell1 Accell2

Accell

V

Activity
Model

Act
Index

Physical Act App +
Monitoring AppMonitoring App

Iα

Module n

Iα Information type α

Indicates that information Iα can be

produced by module mn. At least one
mn is needed (disjunction)

Indicates that module mn needs to

consume Iα to produce. All inputs Iα

are needed (conjunction)

mnIα

mn

mn

M0
Virtual Module that needs all the information
requested by apps

V

V

Figure 4.1 – Correlation diagram example

From the set of correlations and sensed data, the objective is to allow applications to access
not only raw information from the sensors, but also information combined or inferred from the
“raw” sensor information. This means accessing any (yellow) circle. The approach is to define a
middleware that hosts how the information correlates (the model) and provides abstractions to
the specificities of the hardware, communications and operating systems of the sensors.

The middleware then deals with the requests from the applications to determine how to
provide the information requested. Support for several different applications requesting different
information, where some of the correlations may be similar, is another aim of the middleware.
In figure 4.1 ellipses represent applications requesting information. There is a Monitoring App

for a post-operative surveillance and a Physical Act App for tracking exercise performance. As
examples of similarities we have that both are requesting Accell and that the Monitoring App

is requesting O2 Del that is produced from SpO2 and CO . CO is also being requested by the
Physical Act App.

The middleware holding the knowledge of what information is needed and how this informa-

Chapter 4. Modelling data correlations 69

tion is derived/collected helps in optimizing resource usage (the sensor network) while enabling
all applications’ requests. Our aim is to allow this multi-parameter correlation by using a human
model where these correlations are described. Figure 4.1 is an example of such model.

An architecture that enables applications to input the model that they want to use, stating
how information is correlated, provides a flexible approach. These models should be nonetheless
framed such that the middleware is able to: i) unequivocally identify the information and its
source, ii) infer commonalities between different models so as to optimize resources, iii) clearly
interpret how the metadata correlates in the model.

4.1.1 Problem statement

The scenario we assume is: several applications running on the Base Station (BS) that
request information in order to function (providing it to the user, for monitoring purposes, etc.).
These needs may have requirements “attached”, e.g. frequency of input, maximum error of the
information, latency on getting it. There are costs associated with this retrieval, energy spent
by a hardware node, processing power, error introduced by the sensor or correlation, etc. We
discuss these metrics in §4.2.3.

To answer this, the middleware uses a model that defines how different inputs correlate
to produce new information. There may be several ways to produce the same information.
The middleware’s objective is to optimize resource usage (the sensor system) while providing
applications with the requested information. Our approach is to try to discover commonality
between requests. To improve the chances of finding it, we seek to have correlation modules in
the middleware to enable “intersections” between requests. All requests’ requirements must be
met, so the most stringent of the intersecting requests is the one that must prevail.

From figure 4.1, if MonitoringApp requested O2 Del with a frequency of update of 5 Hz and
Physical Act App requested CO with a frequency of update of 10 Hz, the middleware should
calculate CO with a frequency of 10 Hz. This would satisfy the strictest requirement1.

We propose an approach to: (I) compartmentalize the correlation between information
in reusable software components; (II) define how components depend on other components
(information needed as input) using a graph analogy; (III) optimize component usage by
discovering intersecting needs; (IV) aggregate different requests so as to optimize according to a
defined cost; (V) define an algorithm for the optimization.

4.2 – Model

In this section we describe the model approach we took and how to optimize resource usage
using the model.

As mentioned, applications impose requirements on their requests. The middleware uses
metrics to check if the requirements are being met. These metrics are also used for calculating
the cost of using a specific configuration. This cost is the metric to optimize the system for. As we
mentioned these metrics are frequency of updates, error, delay, energy consumption, processing,
etc.

1We discuss in the final section the problems with this approach for frequencies of collection.

70 4.2. Model

The control that is available to the middleware is which modules to use (the decision variables)
for the correlations. The end result is a configuration of modules to use to meet the requests
while minimizing the cost. This general definition is enough for the following subsections; we
give further details in §4.2.3.

From figure 4.1 the middleware would need to compute which modules it should use so that
MonitoringApp and Physical Act App would get the information that they are requesting, taking
into account their requirements. MonitoringApp needs activity index (a measure of the activity
of the subject), acceleration, ECG, and oxygen delivery (describes the quantity of oxygen that is
transported to cells). The Physical Act App needs: acceleration, CO (measures the blood output
of the heart) and Metabolic Equivalent (MET)2.

4.2.1 Framework description

We represent information correlation in modules; they use information as an input to produce
different information. In figure 4.1, (blue) boxes represent these software modules. The (yellow)
circles represent information. All of a module’s inputs must be available for it to be able to
produce its “unique” output. This is represented by the arrows leading to the boxes (to a ∧
indicating the conjunction). The output produced by a module is represented by the “slash–dot”
line directed to an information circle. The same information may be produced by different
modules. This is represented by the “slash-dot” lines leading to the information circle (and to
the ∨ indicating the disjunction). The diagram is a Directed Acyclic Graph (DAG) (no cycles are
allowed by design) with two types of nodes. The direction is indicated by the arrows and the
circles at the end of the “slash–dot” lines, which is bottom to top in figure 4.1.

We use the text notation of overline to represent information nodes and underline for module
nodes. Although both information and modules are nodes in the graph we refer to information
nodes and just modules from this point forward. When we want to address both we use nodes.

As an example, the O2Del information node can be produced by the O2Del Formula module.
This module needs CO , SpO2 and Hb to produce O2Del . The top module, M0 , represents the
information requests made by the different applications to the middleware. As such it does not
produce anything, but it needs all of its inputs, as it needs to answer all applications. From
figure 4.1 M0 needs Act Index , Accell , ECG , O2Del and METs.

These correlations embedded in the modules are either defined by a particular application or
globally accepted by the community, the latter improves reuse. In figure 4.1, METs calculation
from activity counts models 1, 2 and 3 are from Swartz et al.’s approximations [114] and model
4 is from Crouter et al.’s work [24]. Moody’s [74] estimation for activity indices from HR is used
in Activity Model . CO is derived from SV and HR using the Windkessel model as described by
Sun et al. [111]. We use the oxygen delivery model discussed by Law and Bukwirwa [64].

As can be seen in the figure, some modules do not need any data input (e.g. Accell1). These
modules represent the sensors, which produce their outputs from the physical world.

Some other observations (illustrated in the figure):

• as mentioned modules only have a single output;
• there is only one information node per information type in the model;

2MET is a measure to compare the metabolic expenditure of physical activities. It is a ratio to the resting activity,
which has MET =1 [86].

Chapter 4. Modelling data correlations 71

• some modules and information present in the system might not be needed (e.g. Temp and
Temp);
• if a module lacks some (or all) of its input it is not able to produce an output, thus invalidating

the modules that depend on the information it produces (e.g. no HR producing module is
available, thus CO Formula and Activity Model cannot produce their outputs);
• the same physical sensor may have different modules associated with it (e.g. Hip Accell and

Accell1 are provided by an acceleration sensor on the hip);
• different applications may request the same information with different requirements (for

example Accell). Different requirements may also occur for information that is commonly
needed (e.g. HR);
• different modules producing the same output may have different requirements, cost and output

quality (e.g. for the METs information there are four available modules with different accuracy
on their outputs).

Application requirements mandate modules’ requirements. A maximum error of 2% for the
O2 Del Formula may impose a maximum error of 1% on CO , 2% on SpO2 and 0.5% on Hb.
The influence of the inputs on the output of a module are defined by the module based on its
correlation function.

This framework assumes that applications can let the middleware perform the correlations,
where the definition of what and how it is done can be defined by the application developer, by
deploying new modules. However there might be some applications that want/need the “raw”
data for specific control reasons. As an example we have the closed-loop insulin delivery for
diabetic treatment as discussed by Renard et al. [95]. The framework does not preclude this, as
this would mean the application requesting “raw” information as for ECG in figure 4.1. However,
the whole system would gain if this knowledge could be materialized in a module of the diagram.
Nonetheless, the framework would always be advantageous when more than one module is
available for the “raw” request, as the middleware could deal with the request on behalf of the
application (e.g. Accell with Accell1 and Accell2).

4.2.2 Optimization algorithm

The previous section defined the structure that describes the possible combinations to meet
the requests from applications. As said, modules to be used need to have all their inputs available.
Information nodes can be produced by any module capable of producing the information.
Furthermore, information nodes can use more than one module for production in order to
improve the metrics and meet the requirements. For example, Accel1 and Accel2 could be used
for lower error or greater frequency. Any combination of one to all the modules is possible.

In table 4.1 we provide examples of metrics to be satisfied by the middleware. We note that
requirements (metrics) have inter-dependencies. Some of the metrics are merely cumulative
(latency), but others may have more complex influence on the nodes that are using the lower
nodes (e.g. error propagation between input and output depends on the function utilized).

Given this, we decided to define an algorithm to search all possibilities, discarding, as we
search, the ones that do not meet the requirements. This is very close to a “brute force” search,
where we cut branches that do not satisfy requirements and use a cache for re-visited information
nodes.

72 4.2. Model

A forward note to the algorithm: it does not use directly the diagram from figure 4.1. The
algorithm progresses as if building the diagram, but as we will see, for each type of information
it needs it finds (from a registry information that we discuss in the next chapter) what modules
are available to produce it. Modules know about their required inputs, which they state as the
algorithm runs. This feeds the algorithm and makes it follow the diagram without building it. As
the diagram is not built, information nodes do not exist in the infrastructure, only modules that
correlate the information. Modules produce information that is delivered to the modules that
need it.

Algorithm 1 – OPTIMIZEPRODUCTION(infoRequestSet)
1: possibilities← CHECKPOSSIBILITIES(infoRequestSet)
2: if ISEMPTY(possibilities) then
3: return NOTPOSSIBLE

4: else
5: bestPossibility← MINCOST(possibilities)
6: return bestPossibility

The algorithm’s main goal is to discover all the possibilities for producing all the information
requested while satisfying the requirements attached to each request. This is represented in
OPTIMIZEPRODUCTION(...) (algorithm 1), where informationRequestSet is a set with
the requests. Each request holds the information requested and its requirements. After all the
possibilities are calculated, the algorithm chooses the least costly.

Algorithm 2 – CHECKPOSSIBILITIES(informationRequestSet)

possListOfSets← []

unmetRequestsSet← {}
for each infoRequest in informationRequestSet

infoPossSet← GETINFOPOSS(infoRequest.information,infoRequest.requirements)
if ISEMPTY(infoPossSet) then . unable to produce Info

ADDTO(unmetRequestsSet, info)
else ADDTO(possListOfSets,infoPossSet)

ERRORHANDLING(unmetRequestsSet)
rModule← CREATEROOTMODULE()
possResultSet← CHECKPOSSIBLESOURCES(possListOfSets, rModule, 0)
return possResultSet

For assessing the possibilities we recursively follow the diagram starting from the point of view
of M0 . The call to (CHECKPOSSIBILITIES(...) (algorithm 2)) is with a list of requests for M0 .
This part of the algorithm checks for the possibilities of building the information request within
the requirements set. If no possibility is found for some of the requests, we save the request in an
unmet requests set. This unmet set is handled after all information is checked for production
possibilities. This handling is not part of the optimization; a simple approach for handling
could be to report an error back to the application. As mentioned, for some information there
might be several possibilities of producing it within the requirements. When all the possibilities
for all the information requests are discovered (in possListOfSets) they are combined in
CHECKPOSSIBLESOURCES(...). We will see further down that CHECKPOSSIBLESOURCES(...)
(algorithm 5) checks for requirements being met. However, for this part of the algorithm

Chapter 4. Modelling data correlations 73

(CHECKPOSSIBILITIES(...) (algorithm 2)) requirements have already been checked in GETINFO-
POSS(...). The node M0 is a virtual node to combine all the requests. These two facts imply
that requirements are set to zero on the call CHECKPOSSIBLESOURCES(...).

Algorithm 3 – GETINFOPOSS(info, requirements)
possibilitiesCached← GETFROMTABLEPOSSIBILITIESFOR(info)
if not ISEMPTY(possibilitiesCached) then

return possibilitiesCached

possModulesSet← DISCOVERMODULESPRODUCERSOF(info)
if ISEMPTY(possModulesSet) then

return {}

possModListOfSets← []

for each possModule in possModulesSet
possOfModSet← GETMODULEPOSS(possModule, requirements)
if not ISEMPTY(possOfModSet) then

ADDTO(possModListOfSets, possOfModSet)
if ISEMPTY(possModListOfSets) then

return {}

possResultSet← CHECKPOSSIBLESOURCES(possModListOfSets, info, requirements)
return possResultSet

As CHECKPOSSIBILITIES(...) calls for the information nodes production possibilities, we
move down the DAG. On information nodes (GETINFOPOSS(...) (algorithm 3)), we search for
modules capable of producing the information. All the possibilities (in possInfoListOfSets)
are combined and checked for requirements.

In the process of ascertaining possibilities, every module producer of this information is
queried for its possibilities of producing it (GETMODULEPOSS(...)). Some modules might not be
able to produce the information due to unmet requirements or lack of inputs.

There is a check for cached results so as not to “re-visit” information nodes. As an example,
in figure 4.1 there are two ways to get to CO . This check, also precludes revisiting the same
modules. If we know about an information node, we visited all the module nodes that produce it.
Note that the requirements that we now need may be different from the ones that were used to
assess when the possibilities were cached. A check should be made before returning the cached
result. If requests are now stricter we can just re-evaluate the cached possibilities to filter the
result. However, if the requirements are looser we need to traverse the node’s descendants again,
as more possibilities might exist.

When modules are called to assess their production capability for the specified requirements
(GETMODULEPOSS(...) (algorithm 4)), they need to check for the production of their required
inputs. They combine the possibilities of getting them assessing the cost and influence on
requirements. Recall that modules needs all their inputs, so a single absence means a failure.

The “leaf” modules, do not require any input and the only limit is the node’s metrics against
the requirements. If no possibility meets the requirements an empty set is returned.

In CHECKPOSSIBLESOURCES(...) (algorithm 5) every set of possibilities of each node’s
descendants is combined with all others. Combinations depend on the node type. For modules,
as every input is needed, we have a Cartesian product of the possibilities. For information nodes
we can have any combination of the modules producing the information, ranging from a single

74 4.2. Model

Algorithm 4 – GETMODULEPOSS(module, requirements)
neededInfoSet← module.neededInfo

if ISEMPTY(neededInfoSet) then . leaf module node
if not SATISFIES(module.metric, requirements) then

return {}

possId← GENPOSSIBILITYID(module)
possibility ← (possId, module, module.metric, module.cost, {module})

return {possibility}

possInfoListOfSets← []

for each neededInfo in neededInfoSet
possOfInfoSet← GETINFOPOSS(neededInfo)
if ISEMPTY(possOfInfoSet) then . not possible to get the info

return {} . exit, no point in continuing

ADDTO(possInfoListOfSets,possOfInfoSet)
possResultSet← CHECKPOSSIBLESOURCES(possInfoListOfSets, module, requirements)
return possResultSet . could be empty

Algorithm 5 – CHECKPOSSIBLESOURCES(possListOfSets, node, requirements)
possComboSetOfSets← COMBINEPOSSIBILITIES(possListOfSets, typeOf(node))
possForNodeSet← {}
for each possComboSet in possComboSetOfSets

(newPossibilityId, newMetric, newCost, nodesOfPossibleTree)←
AGGREGATENODES(possComboSet, node)

if SATISFIES(newMetric, requirements) then
possibility← (newPossibilityId, node, newMetric, newCost,

nodesOfPossibleTree)

ADDTOTABLE(possibility)
ADDTO(possForNodeSet, possibility)

return possForNodeSet

one to all of them, i.e.
⋃#descendants
i=1

(
descendantsOf (infoNode)

i

)
. Each of these combinations is then

tested for requirements.

Algorithm 6 – AGGREGATENODES(possibleComboSet, node)
possibilityIdSet← GETPOSSIBILITYIDSFROM(possibleComboSet)
nodesOfPossibleTree← GETNODESFROM(possibleComboSet)
newPossibilityId← GENPOSSIBILITYID(possibilityIdSet, node.id)
metricsSet← GETMETRICSFROM(possibleComboSet)
newMetric← AGGREGATEMETRIC(metricsSet, node.metric, node)

. a module needs to know how each metric applies to each info
costSet← GETCOSTFROM(possibleComboSet)
newCost← AGGREGATECOST(costSet, node.cost, node)
ADDTO(nodesOfPossibleTree,node) . adds the node to the set, removing repetition
return (newPossibilityId, neMetric, newCost, nodesOfPossibleTree)

In AGGREGATENODES(...) (algorithm 6) metrics and cost from the combination are combined
for the new possibility. All the relevant data is retrieved from the combination and aggregated for
the new possibility. The calculation for metrics and cost depends on the node type (see §4.2.3). A
module needs to know how each metric applies to each information, as it may have a different
impact on the calculation (e.g. for error). The node set (nodesOfPossibleTree) contains all
the nodes that are part of the solution, up to the current point in the search. The possibilities that

Chapter 4. Modelling data correlations 75

meet the requirements are added to the cache table in CHECKPOSSIBLESOURCES(...).

In §3.6, we discussed Service Discovery (SD) and partially matching requirements from
applications with the capabilities of current nodes. Algorithms 5 and 6 are the basis for this
matching. In algorithm 5 the possibilities for producing a specific information are combined, by
arranging all hypotheses. In algorithm 6 the relevant part occurs, as capabilities of the same type
are combined to produce a single assessment of said capability. This result is then checked for
compliance with the requirements, in algorithm 5. Combining the capabilities is the real issue;
we will provide some insight for this in the next sub-section.

4.2.3 Metrics

The requirements that an application may use for its requests can be varied. In table 4.1 we
have examples for some of the more likely ones. Frequency is the period at which a module
can produce its output. In the case of modules representing sensors this may be limited by the
rate of collection and communication. Latency represents the time that it takes for a module to
produce its output after receiving all of its input. In a sensor it is the delay between sampling and
output availability, including processing time if any [16, Annex C]. Energy, CPU and IO usage
account for the respective spending/usage at the modules. Error represents the error associated
with every node. In sensor modules this could be the error inherent to the sensor (measuring,
integration, digitalization, etc.). On other nodes of the diagram it represents the error introduced
in calculation (for modules) or while aggregating sources (information nodes).

Table 4.1 – Metrics examples

Metric Func in Info (Iα) Func in Module (mi)

frequency
∑

i∈ĎαMetfreq
i

♦ min
(
{α ∈ Ďi : Metfreq

α } ∪ {C freq
i }

)
latency min{i ∈ Ďα : Metlat

i } max{α ∈ Ďi : Metlat
α }+ C lat

i

energy, CPU, IO
∑

i∈ĎαMetenergy
i

∑
α∈ĎiMetenergy

α + Cenergy
i

error f error
α (Ďα ∪ {Iα}) ferror

i (Ďi ∪ {mi})

♦ this would imply some form of synchronization and phase shift in the timings for the leaf
modules (thus in the sensors) (e.g. the work of Elson et al. [29]);

– Metµξ is the calculated metric µ on node ξ (an information or module);
– Cµi is the capability µ of the module node i, this is a characteristic of the module and

independent of its descendants. Information nodes (being virtual) do no have capabilities;
– Ďξ = { direct descendant nodes of node ξ part of the possibilities};
– ferrorξ () is the error function which calculates the output error based on the inputs used and

their errors, for node ξ.

The table shows that the calculation is different for the two node types. Not all metrics from
table 4.1 can accommodate duplicate accounting as per the formulae given. As an example, CO is
needed for O2 Del Formula. M0 needs CO and O2 Del . When calculating cost and requirements
the production of CO should not be accounted for twice.

In cumulative metrics (like energy) this would cause the error of counting twice the metric
from a node, when it is used only once. As such, for energy, CPU and IO it would be better to
calculate the metric at the top information nodes, the ones representing the applications’ requests,

76 4.2. Model

with
∑

i∈Šp C
energy
i , where Šp is the set of modules used for the given solution p. For the other

metrics, the use of min or max removes the duplication. For the error, the defined error function
(ferror) should take this into account when evaluating. Note that in each of these cases the Šp
would represent the set of modules that satisfy the requirements for the request, at each of the
levels of the diagram.

Table 4.2 – Cost examples

Metric Duplicates
Allowed

Cost Func

frequency‡ NA min
(
{α ∈ ĎM0 : Metfreq

α }

latency‡ NA
∑

i∈ĎM0
Metlat

i

energy, cpu, io No
∑

i∈M̌ Metenergy
i

♦

error/accuracy Yes ferror
0

(
Ď0 ∪ {M0}

)
‡ sum, min or max functions could be applied; here we have min of frequen-

cies for producing information requested and sum of all the delays to get
the information requested;

♦ M̌ represents the modules that are the solution for the current requests
from the applications. There can be more than one M̌ , depending on the
possibilities available for M0.

– ĎM0 = { information nodes descendants from M0};

In terms of cost, the same metrics may apply (see table 4.2). The cost is seen from the
M0 node as a global parameter to optimize across current requests. For frequency and latency
several functions can be used for calculating cost, minimum of frequency or latency from all
the information nodes descendant of M0, or maximum or the sum of. For energy, CPU and IO
the global formula from the previous paragraph should be applied, i.e.

∑
i∈M̌ Cenergy

i , where
M̌ is the Šp from above but from the point of view of M0. It would be the result of calling
CHECKPOSSIBLESOURCES(possListOfSets, rModule, 0), where the possibilities would be
combined without node repetitions. There will be several M̌s if there are several possibilities to
fulfil the applications requests. The least costly is the one to be chosen. Error could also be seen
as a global optimization criterion, where after calculating the error for each request one would
use ferror

0 (Ď0).

4.2.4 Complexity analysis

For analysing the proposed algorithm we used a worst-case analysis as discussed in the CLRS
book [21, chap. 2.2]. Although an average-case [21, chap. 2.2] or the Spielman and Teng’s
smoothed analysis [107] would provide more accurate and realistic (and lower complexity)
approximations, it is currently difficult, not possible even, to assess the probability of having
more or fewer modules and/or which ones.

The average or smoothed analyses for our algorithm imply having some knowledge (probabil-
istic, statistical, etc.) on the number of modules available and the requests from the applications.
We would need to be able to answer questions like: how many modules are present, how many
are repeated, how many requests are made, how many can be satisfied given the modules in the

Chapter 4. Modelling data correlations 77

system, etc. Remember that these modules are not only the sensors, but also the modules for
correlating data.

As we do not have information to make a realistic assessment, we opted for doing a worst
case analysis that is more general although leading, in our case, to bad complexity results.

In this setting, the worst case scenario is when all the current modules in the model are
requested to produce. This is the limiting factor. Even if requests from applications increase, if
there is no way to produce the information, the impact is small, as we cut off non valid branches.
Taking the number of modules (M) in the system as the input, without considering how they
correlate, we have that the limiting part of our algorithm is CHECKPOSSIBLESOURCES(...)
(algorithm 5).

As there is a dependency from the first parts of the algorithms on the latter, we start the
analysis from the last to the first.

Table operations

A table is used in GETINFOPOSS(...) (algorithm 3) as a cache for already visited nodes. We
use a table with indexes. The indexing uses re-hashing and open addressing, where the number
of elements in the hash is always smaller than the possible set of keys (the cardinality of), with
α as the table load factor [21, chapt. 11]. There are no deletions on the table (apart from a
complete clear). On the worst case, an insertion causes a re-hashing, meaning an insertion of
the current entries plus the new one (total of M entries). For the worst case every one of these
insertions causes a collision and thus we have

∑M
n=1 n insertions, i.e. MM+1

2 . As such in the
worst case, an insertion is O(M2). Note however that the average case is O(1

1−α) with double
hashing [21, p. 274]. Looking up an entry is O(M) for the worst case as every lookup implies a
collision. Again we have that the average case is O(1

1−α).

ADDTOTABLE(...) = O(M2) (4.1)

GETFROMTABLE(...) = O(M) (4.2)

aggregateNodes

AGGREGATENODES(...) (algorithm 6) is O(M) as at most it involves aggregating all modules.

AGGREGATENODES(...) = O(M) (4.3)

combinePossibilities

COMBINEPOSSIBILITIES(...) is used in CHECKPOSSIBLESOURCES(...) (algorithm 5). For
analysing it, we define Worst Case Number of Descendants (WCND) and Worst Case Possibilities
(WCP) for a node. In the case of a node module, as it needs all of its inputs, the worst case for a
combination is WCPWCND . An information node can have any combination of the modules. We
have in that case

∑WNCD
k=1

((
WCND

k

)
·WCPk

)
. The binomial series has

∑∞
k=0

((
α
k

)
xk
)

= (1 + x)α,
so we can say

WCND∑
k=1

((
WCND

k

)
·WCPk

)
< (1 + WCP)WCND (4.4)

The worst case for number of descendants of an information node is having all M modules
producing the information, as illustrated in figure 4.2.a. In this case the WCP is 1 as each module
just provides one possibility. From equation 4.4 we get 2M .

78 4.2. Model

Ia

M0=1

m1 mM

V

V

...

M elements

4.2.a: Worst case number of sons

Ia

M0=1

m1 mk

Ikb

m1k mjk

V V

V

V

V

...

...

j elements

k elements

k x j = M

4.2.b: Worst case possibilities

Figure 4.2 – Worst case scenarios

For the worst case number of possibilities we take as example a two level diagram, illustrated
in figure 4.2.b. M0 has only an information node (Ia) that in turn has k modules for producing it.
Each of these modules needs one input (Ikb for module k) that is produced by j modules. We
have that k · j = M . The modules for producing Ikb are leaves and we can combine them for
production in ((1 + 1)j − 1) ways3. At Ia we have ((1 + (2j − 1))k − 1) ways. This leads to a
complexity of O(2M).

If we had more levels equally distributed it would lead to the same O(2M) as the product of
the number of elements in each level would need to be M . We analyse the case of two levels
with k elements in the first level. This level has k − 1 leaves and the other module using one
information node with j module nodes available to produce it. This would lead to O(2M) as we
would converge to 2k−1 × 2j which results in 2M as k + j = M in this case. Thus:

COMBINEPOSSIBILITIES(...) = O(2M) (4.5)

checkPossibleSources

CHECKPOSSIBLESOURCES(...) (algorithm 5) has its worst case running time as:

COMBINEPOSSIBILITIES(...)×
(

ADDTOTABLE(...) + AGGREGATENODES(...)
)

and from the results above (equations 4.1, 4.3 and 4.5) we have

CHECKPOSSIBLESOURCES(...) = O
(
2M
)
×
(
O(M2) +O(M)

)
= O

(
M2 · 2M

)
(4.6)

3The binomial starts at k = 0, whereas we combine from k = 1.

Chapter 4. Modelling data correlations 79

getInfoPoss

GETINFOPOSS(...) (algorithm 3) has a table lookup, discovering modules and then for
the modules discovered extracting their possibilities for production. At the end, it calls CHECK-
POSSIBLESOURCES(...). Discovering modules is at most going through all M modules. Getting
all modules for production leads to O(M) and for the possible combination of all O(2M), as we
saw on combining possibilities. And from equations 4.2 and 4.6, we have:

GETINFOPOSS(...) = O(M) +O(M) +O(M)×
(
2M
)

+O
(
M2 · 2M

)
= O

(
M2 · 2M

)
(4.7)

getModulePoss

GETMODULEPOSS(...) (algorithm 4) adds to the table and then iterates through the inform-
ation needed getting all possibilities. At the end it calls CHECKPOSSIBLESOURCES(...). The
information needed is at most of size M . If it was more then some information was not being
produced and the cycle would terminate earlier. However, for this case GETINFOPOSS(...)
would only provide one result for each call. As we discussed for COMBINEPOSSIBILITIES(...), if
we needed only one information, produced by every other module we would have O(2M). Note
that the other operations in GETMODULEPOSS(...) are O(1), not dependent on M . Thus from
equation 4.1 and equation 4.6:

GETMODULEPOSS(...) = O
(
M2
)

+O(1)×
(
2M
)

+O
(
M2 · 2M

)
= O

(
M2 · 2M

)
(4.8)

checkPossibilities

CHECKPOSSIBILITIES(...) (algorithm 2) iterates through all the requests testing for the
possibilities of answering each one in each cycle. Then it calls CHECKPOSSIBLESOURCES(...).
The size of the set of requests is unrelated to M as we use a cache for getting the information.
The only problem would be requesting information that can not be produced by a lack of inputs
on the leaf nodes. If so, the cache would mean that we would quickly discover the impossibility of
production. The possibilities as discussed above are limited by the modules and thus are O(2M).
From equation 4.6 we have:

CHECKPOSSIBILITIES(...) = O(1)×O
(
2M
)

+O
(
M2 · 2M

)
= O

(
M2 · 2M

)
(4.9)

optimizeProduction

The main loop of the algorithm OPTIMIZEPRODUCTION(...) (algorithm 1) calls CHECK-
POSSIBILITIES(...) and calculates a minimum from a set. The set has WCP and as such for a
non-ordered set it leads to O(2M) for sorting. From equation 4.9:

OPTIMIZEPRODUCTION(...) = O
(
M2 · 2M

)
+O

(
2M
)

= O
(
M2 · 2M

)
(4.10)

80 4.3. Conclusion

Observations

It is easily seen that this is a very bad worst case scenario, however it is very unlikely (if at all
possible) to happen. Nonetheless, it gives an understanding of how the algorithm works.

Worst case space analysis leads us to a similar pessimistic result of O(M · 2M). In this case the
cache table is the hogging factor where we have 2M possibilities (thus table entries) each having
M modules as data (which in a real scenario would not happen for every entry).

Note that the algorithm discards possibilities that do not meet the requirements. However, in
the worst case analysis all possibilities meet the requirements.

As an anecdotal example of performance from figure 4.1, which has 22 modules, we have
282 operation calls performed to find 135 possibilities (worst case with M = 22 is 222 × 222 =

2030043136). This took an average of 0.4 ms in a laptop with an Intel 2.66 GHz CPU and 4 GB of
memory, using an implementation in Java, where the possibilities table was implemented as a
HashMap with chaining4.

4.2.5 Model notes

The middleware uses a pub/sub architecture for distributing the information, which we
describe in the next chapter. Modules subscribe to their inputs when they are called for production.
At startup they register their production so that this can be discovered by the middleware.
Required inputs are stated when searching for a configuration. The flow of information between
modules imposed by the pub/sub framework follows the diagram that arose from the modules
selected for the solution found.

The diagram does not have cycles because we mandate that modules do not use their outputs
as inputs or any other information derived from their output. This also prevents feedback loops
in the pub/sub system.

The search can be run as soon as a new request comes to the middleware. If the system was
running a configuration for previous requests, we could search for the new request and then
re-do the last step of the algorithm, i.e. combine at the M0 node with the new request. This
would imply that the previous requests’ solutions be cached.

4.3 – Conclusion

In the next chapter we provide related work for the subjects addressed here and in chapter 5.

In this chapter we defined a model for defining correlations of different inputs in the mid-
dleware. The objective is supporting a variety of applications and easing their access to the
data they need, be it a raw sensor value or a derived value. This objective must be achieved
while optimizing resource usage. This correlation and calculation is done through software
modules. Some examples of formula-based modules that calculate new information based on
known mathematical correlations of physiological data were given. The distribution of this
information through the model is based in a pub/sub system that will be described on the next
chapter.

4Confidence interval of 95% leads to a top value of 3.8ms.

Chapter 4. Modelling data correlations 81

We also described an algorithm for optimizing resource usage according to applications’
requests. The algorithm was analysed regarding its complexity, in a worst case scenario. As we
saw, this gave a bad result that however will not occur in practice as the worst case studied is
very unlikely to occur.

This flexibility of optimization algorithms/objectives gives broader options to applications and
developers. It would be possible to define a request that would drain resources in a few hours for
getting the most reliable and up to date information. An example from the opposite direction,
would be to have lower quality information being sent for years.

4.3.1 Open issues

Regarding conflicts, we described that intersection of requests is a possibility in the system,
where the strictest requirements are used so as to fulfill the strictest request. There might exist
some cases where it is not clear what the strictest requirement is. With a similar example as
from §4.1.1, if for example application A requested a frequency of 4 Hz and another B 5 Hz,
there could be several solutions. A 20 Hz frequency could be one option, where both applications
would receive more than asked for. Another option, 5 Hz frequency, would satisfy B, but would
require some adaptation from A. The module could also sample at 4 Hz and 5 Hz. The first
solution could not be possible if the module/sensor was not capable of that frequency, which
would also undermine the third for the same reason. The current implementation of the system
notifies applications that a request is not able to be met with an identification and description of
the reason why. However, it does not allow us to send extra data regarding which requirements
were not met. It would be advantageous if applications were informed of such discrepancies as
above, so as to be able to advise the middleware of their flexibility in the requirements. In the
given example, application A could decide to change its required frequency to 5 Hz after being
informed by the middleware of the conflict.

This last issue, also raises the problem of synchronization between Body Area Network (BAN)
nodes and the BS. As we mentioned in §3.9.4, the sensor/actuator nodes should be clock
synchronized with the BS, for frequency controls to work out.

A point we did not address but may lead to interesting research is the development of modules
that incorporate fuzzy logic and/or qualitative reasoning, as described by Forbus [32]. The latter
enables inferring state and state transitions using only partial knowledge, and non-numerical
descriptions of systems and their behaviour. It would allow us to define the expected evolution
of a system based on common knowledge. Fuzzy logic also enables actions to be based on
incomplete knowledge, without having total confidence in knowledge of the current state of the
system. The approach is however different in that it uses statistical models or artificial intelligence
models such as neural networks or clustering means. Sugeno and Yasukawa [110] propose the
combination of both fields to provide fuzzy logic based qualitative models.

5
Information flow

A fter describing the model for correlation and aggregation of data, in this chapter we
focus on the distribution of the information and its flow between the different modules.
This flow uses a Publish/Subscribe (pub/sub) paradigm that is based on the model from

chapter 4.

5.1 – Pub/Sub system

Recalling some of the objectives set in chapter 3, we have: (B) convert raw sensor data into
information in the human model and (C) correlate, according to the models, information and its
metadata. With the modelling approach described and the pub/sub system, we aim to address
these goals.

The previous chapter led to a better understanding of where the commonalities between
different applications can be devised. As we discussed in §4.1, (see also figure 4.1) the Physical
Activity application and the Monitoring application are both requesting acceleration. Indirectly,
both may need Cardiac Output (CO). The figure also illustrated how the same information can be
built using different inputs, e.g. Metabolic Equivalents (METs) calculation. The requirements for
acquiring and correlating that information along with the costs of doing so were also mentioned.
These factors are incorporated in a pub/sub architecture [30] to disseminate the information
through the different modules.

In a pub/sub system, publishers send events to brokers that in turn forward the events
to subscribers. That, of course, implies that subscribers need to “subscribe” to events. In
these systems, when subscribing, there are usually some selection criteria available. There are
possibilities to filter on the type of event (e.g. alarm, new price), on the topic of the event

83

84 5.1. Pub/Sub system

Application

Base Station

Hardware Abstraction

Application

Registrar
Production

Policy Information
Abstraction

M
id

d
lew

are

Module

Figure 5.1 – Pub/sub architecture

(e.g. sport news, medical information) or on the content of the event (e.g. events that mention
Body Area Network (BAN)).

In our system, modules (the Software (SW) components that correlate information) subscribe
to a type of event and publish to the system the information they produce. This is portrayed in
figure 5.1. A specific component acts as the broker (RegistrarProduction) and a Policy
component is responsible for finding the best module configuration (i.e. the set of modules that
will produce the information requested while satisfying requirements) for the current application
requests, using the models provided. The hardware abstraction layer enables requesting and
receiving the “raw” sensor data.

As such our pub/sub system has:

• software modules that correlate information by publishing their outputs and subscribing to
their required inputs;

• a framework to allow optimization of resource usage, taking into account modules’ “costs”;

• different types of modules providing different functionalities.

In the next sub-sections we describe the different modules and brokerage.

5.1.1 Modules

Modules are the components that process information. They embed the principles for
correlating inputs to produce a specific output. They may use several inputs, but only pro-
duce one output. For example, module O2DelFormula in figure 4.1 uses three inputs (CO,
SpO2 and Hb) to produce one output (O2Del). Module production is published in the central
RegistrarProduction that sends it to the modules that subscribed to that information.

This structure enables the composition of results by “chaining” modules together (connecting
their outputs with inputs) to produce complex calculations/dependencies between data. As
expected, outputs can be sent to different modules (multicast), enabling different interpretations
of the same produced value in different contexts. Associated with the data produced, there are
metadata fields that describe the accuracy and the time of production. These can be used by
modules or applications for more detail about the data.

Chapter 5. Information flow 85

Figure 5.2 – Module types

As we discussed, a restriction imposed is that the dependency graphs (e.g. figure 4.1) do not
have any loops. This is so as not to cause feedback loops in the pub/sub system and to facilitate
the optimization process. As such, the graphs are Directed Acyclic Graphs (DAGs), where the
direction is given by the information flow.

A module has some capabilities and a cost that describes how it is capable of producing a
specific output. Modules can (and should) be implemented by the application developer if a
specific correlation or functionality is not present. There are several types of modules already
developed. These are abstracted in an inheritance tree as shown in figure 5.2.

Registrar
Production

Module
Sensor

Measurement
ToRegistrar

DaemonGW
Registrar

Hardware Abstraction
Service

Discovery
Daemon

Dispatcher
Daemon

Hardware Abstraction
Sensor
Service

Base Station Node

Figure 5.3 – Module sensor data flow

Some notes:

• A module is a “dumb” component, in that it does not take any action regarding optimization.
Modules always assume that some outside component coordinates the different modules for the
production of the cascading outputs. As such they only subscribe to inputs needed, assuming
that their frequency, accuracy, etc. have been set by this other component (in §5.2.2 we provide
more detail);

• A module knows about the requests made to it that are currently active. This is used for
un-subscriptions sent to it (it changes to the most stringent requirement that it currently holds).

86 5.1. Pub/Sub system

The first module we discuss, is the one that represents the sensors from the BAN. Figure 5.3
shows the interaction of the different middleware layers for discovering a new node and receiving
data from nodes. When a new node appears in the system it advertises itself using the Service
Discovery (SD) function, as described in §3.6.1. This is received by the SD daemon on the Base
Station (BS) which notifies a DaemonGWRegistrar. This component then creates as many
sensor modules as the sensors the node advertised. The information regarding the node and
the sensor characteristics is kept in the structures pictured in figure 5.4. The location of a node
is defined as a point with set coordinates in the body. A sensor is positioned according to this
coordinate system1. A DataValue, or a measurement, is related to a sensor as we mentioned in
chapter 3.

Figure 5.4 – Module sensor

A ModuleSensor maps the requests made to
it to commands for the sensor. When the sensor
produces data it flows to the BS using the specific
communication system. The DispatcherDaemon
component is responsible for de-multiplexing the
messages received by the network, in this case a
message with a measurement. This is sent to the
MeasurementToRegistrar component that dir-
ects it to the module that is responsible for this
sensor. The module then publishes the data on the
RegistrarProduction.

The ModuleCalc abstracts a type of module
that does calculations. It can be a formula-based
module (ModuleFormula) where formula-based
calculations are done (e.g. O2DelFormula); a statistics-gathering module (ModuleStats) or a
table-based output module where the output results from a table lookup (ModuleTable).

ModuleApplication is the counterpart of the application. This is used by the application
to interact with the architecture, where it subscribes to the information requested.

The ModuleStorage is a module that enables storage of values produced outside the module
and access to that data.

ModuleAlarm checks the value of the information subscribed to and sees if it is within some
specified limits. It is a simple check of being within a range. If an average or other statistic over
time is needed, a combination with ModuleCalc could be used (discussed further in §5.2.4).

The interfaces represented in figure 5.2: ModuleSubscriber, ModuleRequesterCall-
back and ModuleCallbackSubscriber define respectively the interface for subscribers,
requesters (where a callback is defined for error information) and both subscribers and requesters.

Data structures

The relevant data structures used in the information abstraction layer are:

• DataValue: this is the structure that carries the information produced. It entails an
accuracy attribute that is updated as the modules compute the values in the modules’ chain. Part

1Although we have a data structure for this we have not yet defined the coordinate system to use. We come back to
this in §5.4.1.

Chapter 5. Information flow 87

of the metadata is also a timestamp that defines when the data was produced. For raw sensor
data, the sensor details are also included together with the location of the sensor (see figure 5.4);
in this case they contain the measurements from the sensors;

• Requests: a request contains the information needed and the requirements (delay, error,
etc.) for getting it. It is used when subscribing or asking for a specific output. A ModuleRequest

is used by the Policy class (see §5.2.2) when calculating the modules needed for producing a
specific DataValue.

Modules are in essence programmable components that take inputs and produce an output.
As another module example, they could re-order out of order measurements/data values received.
In §3.5.2, we mentioned that only if a reliable connection is established messages arrive in-order.
A module could, for the case where the channel is unreliable, check the timestamp of said
measurements and re-order them. In most cases, what is more natural is to discard out-of-order
or delayed measurements. This illustrates that a module can provide a varied set of functionalities.
However, its strength is also its ability to be re-used. As such, a module should be develop to
provide a single functionality.

Modules can be instantiated and managed by other modules, the registrar or an application.
When modules create other modules some attention is due, as this may lead to problems if, when
the owner module stops or is destroyed, it also stops/destroys its owned modules (that in the
mean time were being used by others).

5.1.2 Brokerage

The RegistrarProduction component from figure 5.1 is the central component that
controls the subscription, production and optimization. The component needs to know about
producers of DataValues, which thus need to register, and the subscribers to those values,
which need to subscribe. This enables one of its main tasks: distributing information.

For storing these two lists of producers and subscribers, the RegistrarProduction uses
RegistrarInfo. Another list stored is the pending requests list, which holds the requests that
could not be fulfilled due to a producer not being available for a needed DataValue in the
production tree. RegistrarInfo also holds the current known policies for using the resources.

The Policy component is responsible for choosing which modules are used to satisfy the
applications’ requests while optimizing for a defined cost. The Policy is an abstract class that
defines the interface that implementations of a policy need to conform to. This is so as to give
flexibility of defining different policies that optimize to different costs. The preferred algorithm
to use is the one presented in §4.2, but it is possible to define a policy that uses a different one.

5.2 – Component interactions

This section describes some of the interactions between components that are supported by the
architecture. We use Unified Modelling Language (UML) [83] sequence diagrams in some cases
to better illustrate said interactions.

88 5.2. Component interactions

5.2.1 Requests

Requests are done by modules that need information to function: application modules for the
application, other modules for storage, calculations, etc. There are two main ways of receiving
data: pull and push.

As expected, pull is a one-time query that is made as needed. The requesting component may
need to get a list of producers from which to request the information it needs. The pull can lead
to a push based request if the value is not available; e.g. the producer module does not have
the inputs needed to produce, or has not yet received them. The pull request can also have a
minimum “freshness”, where the requester can restrict the “age” of the information. This type of
request is mainly used for getting information that is already being produced for a push request,
as it does not entail any of the “information flow building” process.

The “push” request implies a subscription of the type of information requested and can have
requirements associated. As illustrated in figure 5.5, this request leads to a chain of requests
to an optimum calculated module tree. This tree is calculated by the Policy component so as
to produce the requested information. The RequestOutputSeqDiag checks the modules to
verify they are able to produce the requested values. This serves as a double check because the
Policy component should have already enquired about this (see next section, §5.2.2). It also
encompasses starting production, if not yet started, or changing the settings if this request is
stricter than the currently served one. Subscription to the needed inputs is also done by the
module at this point.

Figure 5.5 – Request push value – subscribe (using an application as example)

5.2.2 Optimization

The Policy component is responsible for calculating the modules and their requirements to
be used to comply with the subscription request. This calculation also involves optimizing the

Chapter 5. Information flow 89

cost of the solution according to the internally implemented policy. This “implementation-based”
policy enables the use of different strategies for optimization (battery life, higher accuracy, etc.).

The Policy component is thus responsible for discovering the tree of modules needed and
the settings (capabilities) they need to use. Modules are oblivious to settings of other modules,
they must however state their requirements for answering a specific request. When asked to
produce within specific requirements, they subscribe to their required inputs and assume that the
modules that produce them have been requested with (at least) the requirements the module
needs. This centralization enables the Policy component to have a wider view and control of
the whole set of requests and modules being used.

Each capability has an associated cost (see figure 5.6) that is used in the optimization problem.
Capabilities are also used to describe the requirements set by the requester. As seen in figure 5.6,
examples of parameters of these requirements/capabilities are accuracy (error), frequency of
updates and sending rate. For cost we have processing, delay, energy and Input/Output (IO).
For sensor modules some of these capabilities and costs are directly related to the underlying
characteristics of the sensor’s hardware (e.g. accuracy, energy, etc.).

Figure 5.6 – Module’s capability and associated cost

In figure 5.7 we illustrate retrieving
the producers for the inputs needed and
assessing the inputs they need for the re-
quest/requirements and their current de-
tails. When evaluating a new request the
Policy takes into account the current
settings for every module and the require-
ments set by the request. Since the new
request can only increase or maintain the
capabilities needed it only issues stricter
or the same requirements. The result of

the Policy optimization call is which modules to change settings (including starting their
production), the ones to stop and the ones with no change (they are used in the request, but do
not need to change their current settings).

Figure 5.7 – Get producers

90 5.2. Component interactions

5.2.3 Producer un-registering

A producer may decide to stop producing due to change in sensing behaviour, detected
malfunctioning2, battery draining3, etc. The module should inform the RegistrarProduc-

tion of this action. This leads to a re-assessment of the solution used. We illustrate this in
figure 5.8. The modules that were currently subscribing to the information being produced by
the stopping module are found and the strictest request that each was serving assessed. After
this, a search for another producer module (or combinations of modules) for substitution is done.
If it is not possible to find a replacement module, the requests are all re-done as if they were new
requests. This re-request is done after an un-subscription to the previous requests, so as to clear
the affected requests.

Figure 5.8 – Producer un-registering

2Note that the middleware can detect communication losses with nodes (described in §3.6.1), but hardware
malfunctioning is not part of current functionality. As such this would be implemented internally by the Operating
System (OS) on the node. The middleware provides a call to notify of this stoppage.

3This function could be implemented in a policy and lead to a re-assessment of the modules to be used.

Chapter 5. Information flow 91

5.2.4 Alarms

In figure 5.9 we show the sequence for instantiating an alarm for notification of a value going
out of specific bounds (e.g. seeing if Blood Pressure (BP) is within certain limits). The sequence
illustrates a module creating the ModuleAlarm and setting the bounds and type of value to be
watched. The ModuleAlarm subscribes to the DataValue to be monitored, with the require-
ments needed according to the request from AlarmedModule. This triggers the request for
production of this DataValue as was discussed in §5.2.1. The AlarmedModule then subscribes
to the value being produced by the ModuleAlarm, this type is returned when setting the bounds.
The ModuleAlarm receives the new inputs of the DataValue being watched. When the
value gets out-of-bounds the ModuleAlarm publishes the alarm. The RegistrarProduction
then sends it to the AlarmedModule. Removal of the ModuleAlarm is, of course, optional.
This implies that ModuleAlarm is no longer needed and thus ModuleAlarm unsubscribes to
DataValue.

Note that the ModuleAlarm did not register its production. As such it can not be quer-
ied by other modules. The rationale is that setting bounds is very specific, and polluting the
RegistrarProduction with this production type is unnecessary4.

Figure 5.9 – Alarm example

5.2.5 Producer unavailable

When the Policy tries to find the modules’ tree to fulfil a request it may be unable to find a
producer of a needed DataValue. In this case the requester should be notified that the request

4An argument could be made for the ModuleAlarm directly calling back the AlarmedModule instead of publish-
ing it. We opted for maintaining the defined flow of data per the pub/sub architecture.

92 5.2. Component interactions

was unsuccessful. The request may additionally enter a “pending-requests” list, so that when a
producer capable of producing the needed information registers, the request may be fulfilled. In
figure 5.10 we see the associated sequence.

Figure 5.10 – Producer unavailable

5.2.6 New information/value

In figure 5.11 we can see the sequence of messages when a new value is produced with the
chaining of modules shown as the loop of newinput()s. In the example sequence an application
is the final destination of the correlated data. We will see the case for when a sensor produces
the information in the next chapter.

Figure 5.11 – Data new value

5.2.7 Un-subscription

When a module unsubscribes to an input (e.g. a ModuleApp) it may trigger several un-sub-
scriptions from the tree of modules working for the unsubscribed information. Each producer
module re-assesses its requirements according to the new strictest request, which might not

Chapter 5. Information flow 93

change if the un-subscription did not pertain to it. The RegistrarProduction centralizes the
un-subscription and informs all the producers affected by this change. The modules may need to
change their subscriptions; make new and/or unsubscribe to current subscriptions. Note that the
Policy component always informs the modules of the requests they are serving even if they are
not stricter5. As such, the modules know what they are servicing. The system is always tuned to
the strictest request according to the optimization criteria used.

5.3 – Related work

As mentioned in the introduction, in 1965/6 Herbert and Weil [104] ran an experiment in a
hospital shock unit where they introduced a computer (IBM 1710) to gather and assess patient
real-time data. The objective was to increase the frequency of tests and their assessments; previous
statistics showed poor efficiency in routine manual methods. They monitored arterial and venous
blood pressure, ElectroCardioGram (ECG), body and air temperatures and urinary output. There
were also derived/calculated values such as respiratory rate, Heart Rate (HR) and pulse rate.
They did statistical analysis of the sensed data to derive mathematical relationships between the
patient data to identify physiological and biochemical relationships that are determinants of the
clinical course. The system allowed configuration of the frequency of reports. Detection of alarm
conditions, such as cardiac arrests, would trigger shorter intervals.

Freye and Eberhard in 1975 state [33, Conclusion] that “the computer [. . .] may function as
an extension of the physicians’ memory, for purposes of diagnosis, therapy and prognosis”. They
wanted to use the computer’s capability to analyse time-series of multivariate parameters and
compare them to a reference. This “distance” would then give an indication of the patient’s
evolution/recovery. The study was for post-heart surgery patients.

Severity scores for Intensive Care Units (ICUs) [109] take into account several parameters
that are, for most scores, monitored during the patients’ stay. Usually the scores are taken at
specific times (e.g. at 24h, 48h, 72h) and not constantly due to the effort involved.

Fusion of multi-sensor data is used by Li et al. [65] to estimate HR. The idea is to use different
sources for estimating HR, namely beat detection from ECG and Arterial Blood Pressure (ABP)
waveforms. The authors state that their main innovation is using signal quality assessments to
characterize both estimates. They define how to assess signal quality of ECG and ABP and use
this in a Kalman filter. This allows them to use the result of the Kalman innovation of the signal
in a weighted fusion of both estimates. The objective is to use the better signal in the estimation,
more precisely, to have a quality weighted “use” of the signals. This reduced artefacts and noise
induced estimation errors in the resulting estimation.

Some projects, seeing the need for several inputs, developed devices that are able to monitor
several parameters. AMON [4] by Anliker et al. is such an example. Apart from the sensing
capabilities of BP, oxygen saturation (SpO2), skin temperature, one lead ECG and acceleration
(two-axis), the device can also do online analysis and emergency detection. The wrist worn device
can connect to a central unit at a telemedicine centre. Locally, it does filtering and cleansing of
signals sensed and converts some data extracted from the ECG signal. The system does an initial
evaluation by comparison to reference values, taking into account patient history. Depending

5This does not conflict with the previous statement regarding the Policy not issuing less strict requests. The
Policy always informs of the requests made.

94 5.3. Related work

on the divergence from the reference, it can lead to a local reassessment or an alarm sent to
the centre. The centre can do a more detailed analysis of the data uploaded given its higher
processing capabilities. This high-level medical algorithm, as described in the paper, corrects some
of the values sensed based on others; it calculates pulse based on: SpO2, BP and ECG. Time
based averaging is also used. Although our goals are somewhat different, we share the idea of
aggregating information. The AMON FP5 project’s objective was developing a device and support
centre, whereas we aim to provide a framework to enable correlation on the BAN only.

In Middleware Linking Applications and Networks (MiLAN) [44], the work from Heinzelman
et al., although related to Wireless Sensor Networks (WSNs), has influenced what we propose.
They address requirements of applications (that they call Quality of Service (QoS) demands),
resource limitations and cooperative applications (i.e. different applications using the same
network to achieve different objectives). MiLAN uses the applications’ data requests with the
requirements as inputs. Each sensor or group of sensors has a level of QoS that it can provide
for each data requested, which is expressed in a sensor QoS graph. They define a State-based
Variable Requirement Graph (SVRG), which determines the requirements, the quality needed in
the measurement and what data to be sensed from the applications. This graph is based on the
current application’s state. The state influences the quality needed from sensed data. All the state
is calculated by the application using the raw sensor data, although the SVRG indicates some
relationship between the information [44, figure 6]. The intersection of the sensor QoS set and
the SVRG defines the sensors to use. In MiLAN the notion of information correlation is left to the
application. The metrics defined are the quality of the values, network bandwidth and energy
of the system. It is not mentioned how to re-use information for different states. Optimization
is seen from a single application’s point of view, however extrapolation for several applications
could be achieved as an extra intersection of the different application solution sets.

In Semantic Streams [127], Whitehouse et al. use a model of “composable inference” for WSN
data. They use a Constraint Language Programming (Real) (CLP(R)) framework to declare how
different streams of data can be composed to produce new streams. Constraints can be defined
for a query: confidence, relationship between streams (co-temporal, co-spatial). The “facts”, for
the streams of sensors, and “rules” for composing, including unit transformation, are defined on
a Prolog engine. Optimization is supported for the defined metrics. When a query enters the
system, the existing inference units can be composed to generate new interpretations of sensor
data. It allows multiple applications, users in their nomenclature, to share the same resources
on the network, while resolving conflicts. The easiness of expression, CLP(R) rules, mandates
that a CLP(R) engine be available (SICStus Prolog in the paper’s case) with minutes or less for a
one time (per query) composition time. From the details on the article the proposed architecture
does not seem to support composition of the same type of data streams (Accell from Accell1

and Accell2 in our example) so as to improve the quality/properties of a stream (e.g. minimize
error). Composition rules are easy to express, an advantage of the logic programming language
used, but modularity and the lack of different layers of abstraction may impair re-usability and
flexibility. Moreover, processing time may be a deterrent.

The work from Gravina et al. in SPINE [38] provides a framework to distribute Signal
Processing (SP) in Body Sensor Networks (BSNs). The idea is supporting several applications
that use SP. Each node (sensor) has the code for the SP distributed on to it and the coordinator
controls the nodes and requests output from them according to the application running. Although
some objectives are similar, supporting multiple applications, the approaches are different. They
assume that nodes will process data whereas we centralize it on the BS. There is no concept of

Chapter 5. Information flow 95

correlation as a module, although one of the points of enabling the SP is to allow the correlation of
different data from the sensors. The focus is more on allowing rapid prototyping and deployment
of fixed correlation (in SP) enabling code.

Signal Interpretation and MONitoring (SIMON) [26] by Dawant et al. bases its work on
the premise that “alarms are too numerous to be correctly interpreted by humans, however highly
trained”. To that end a system was built, capable of adapting its monitoring according to
changes in the environment and on the patient’s physiological state and its predicted evolution.
The filtering, artifact removal and, especially, fault detection is also part of the framework’s
objectives. The project developed software components for a UNIX system based on Inter Process
Communication (IPC) between modules for data acquisition from external medical devices.
Data collection is based on either data acquired from sensors, where there is the possibility
of acquiring data from several sources, or computed from different input types. These data
can have associated thresholds and clinical medical ranges, which are user-friendly interval
qualifiers. This is used as input to a model-based qualitative/quantitative reasoning framework.
This model defines a hierarchy of objects that represent different levels of data abstraction, with
defined boundaries, and artifact and fault models for data corruption detection. As such, the data
abstraction component is used to: process and abstract the data; monitor/report according to the
model; detect and react to possible errors in the data; adapt in real-time its behaviour according
to context. The framework has a scheduler component, a modified earliest deadline first heuristic,
to adjust tasks’ frequency. Clearly we share objectives, but provide different functionalities,
approaches and systems. We dwell in BANs with the central component being the BS. We
also aim to provide a hierarchical abstraction of the data, by defining software components
that process their inputs, producing new information. Our added flexibility (the hardware
abstraction and information abstraction is more modular and transparent) is counterposed with
the qualitative reasoning capability [32] of SIMON.

5.3.1 Declarative languages

Some work from WSN deals with query optimization using correlation between different
sources of information in the network. Examples are the work from Yao and Gehrke [138]
with Cougar and Madden et al. [69] with TinyDB. These approaches advocate using declarative
languages to query the sensor network that is seen as a distributed database. The reasoning
follows from the highly correlated nature of sensor networks, where values being sensed are
usually of the same type, leading to possible communication optimization approaches. The idea
is to have query proxies on the sensor nodes that are able to process queries and decrease power
consumption in nodes on two avenues: aggregation of results and selective sensing.

The fact that WSNs are multi-hop networks provides several points where aggregation can be
done in order to preclude sending all data to the sink node. Thus, queries that relate to averages,
maximum, minimum, etc. can be done locally by collecting data from other nodes before sending
the result to the sink node.

The use of a declarative query language allows for predicate re-ordering to optimize power
consumption. This means that predicates (e.g. light>0.5) that cost more to be evaluated are
only assessed first if they are very selective, i.e. if their variation is the most relevant for including
or not a reading (e.g. from the paper: using a magnetometer is more expensive than a light
sensor and it is not more selective for the example query). Sensing frequency can also be lowered
so as to save energy by not using the sensors. The optimization algorithm will then base its cost

96 5.3. Related work

function on energy spent by nodes, namely on communication and sensing. This understanding
of the energy cost of a specific query plan (where to aggregate and what frequency of sensing)
enables to estimate the network lifetime using a specific plan. This allows application requests
to stipulate the lifetime of the network they want to have and let the query planner define the
nodes to use and frequency of collection. This is done in the TinyDB6 system. One thing to note
is that, while aggregation does not lose any information (delivery is at most delayed waiting for
data to be aggregated), lowering frequency of sensing may lead to event detection loss or delay.
It is up to the application to define its minimum.

TinyDB also offers event triggering, i.e. it is possible to define actions (that may be new
queries) on event detection using the declarative language. These events are based on conditions
being monitored by the sensor network, and as such can be optimized as regular queries.

Note that the data being handled is being streamed from the sensors, i.e. it is not a fixed,
limited size set of data, but something that is being continuously produced. TinyDB allows us to
create storage “points” that enable definition of fixed, limited size “chunks” of data, which are
time windows of the data stream.

The data stream will imply that, even with collection and aggregation optimizations, data may
sometimes overwhelm the communication channel. TinyDB defines some schemes that aim to
“improve the quality of the answer”, by sending the data that will most likely improve the quality
of the data already sent.

Cougar defined the basis for moving aggregation processing to sensor nodes, whereas TinyDB
takes this and extends it with the selective sensing described ,i.e. , when and where to collect
data.

These declarative approaches do not take into account the predictability of the data being
collected, error tolerance by applications or the correlation between data (spatial, in time and
from different types of data). These points are used by Deshpande et al. in BBQ [27] and
developed further in their Ken system in Chu et al.’s work [20].

Basically these systems take advantage of the replicated information available (collection
of the same sensing information by different nodes) and assume that sensors already provide
uncertainty on the data collected7 to define approximate queries that are error bound. For
this probability distribution functions (pdfs) are used to model collected data (multivariate
Gaussian in the referenced articles). The rational is to use the probability distribution to predict
the requested value within an allowed error range with a certain confidence interval. If the
confidence is not met, the system will need to collect data samples to refine its model and
prediction.

In BBQ8 [27], the probabilistic model runs on the sink and it requests new values when the
predictions deviate. In Ken9, the model is run at both the sink and the nodes. This allows the
nodes to pro-actively push the new observations when the confidence interval is not met.

The pdf can model the spatial correlation of sensed data, however the pdf can change over
time. To account for this, both approaches use a transition model that allows us to compute the
pdf at time t+ 1 based on the pdf for time t. This is done using the previous observed data. In

6TinyDB is a database view of the sensor network built on TinyOS.
7The error inherent in sensors is already mentioned in Cougar [138].
8BBQ stands for Barbie-Q: A Tiny-Model Query System.
9As noted by the authors in the paper [20] Ken is “one’s range of knowledge or understanding”.

Chapter 5. Information flow 97

this way the observed values refine the model in time and when the confidence on the result is
not met.

One key difference between BBQ and Ken is the pull versus push approach respectively. In
Ken the sensor node has the ground truth and can compare it to the prediction so as to refine
it and communicate discrepancies. This also allows the detection of outliers, something that is
not possible with BBQ. This exchanges energy savings in sensing data for outlier detection. In
both systems, the models used are key to the performance of the prediction. However, in Ken
only energy savings are lost in worse models, as the sensor node has the ground truth. In BBQ,
worse models can lead to a worse accuracy of the prediction. As such, in both systems, it is highly
relevant to have good training data to estimate the model parameters as best as possible.

Sen and Deshpande [100] push the work further still by defining the correlation between
different sensor readings10 using probabilistic graphic models to define inference rules of feasible
solutions. This allows us to define how probable the existence of the combined readings is.
The correlation between them is described in a factorized form, where each factor is a function
that defines the pdf of correlated attributes. The product of all factors gives the joint pdf of
all attributes. Therefore the models for predictions are more detailed by correlating different
readings.

Comparison

These approaches share similar objectives with our work, namely optimization of queries
on correlated data. However some context differences exist that drive different approaches.
WSNs, as discussed in §2.3, use several similar, if not identical, sensors to collect the same data
types. This setting is of fundamental value for the declarative queries, specifically for aggregation
purposes. Even correlation is mostly done on the same data type. BSNs have different sensors
collecting different types of data, making them less viable for these optimizations. The likely
network star-topology makes them single-hop, leading to fewer (if any) places to do aggregation.

Frequency tunning can be done on our framework in the Policy component. The specific
policy could optimize for network lifetime and use the frequency of collection and sending as
a tunable parameter. Information regarding energy consumption by nodes and their sensors is
defined on the node’s profile.

Our approach of using dumb sensors precludes some of the opportunities for energy saving
based on predicate re-ordering. This means that it is more difficult, given our framework, to
conditionally sense based on another sensed measurement. Nonetheless, recall that in §3.9.1
we described some possibilities for data processing on the nodes. It would, however, break our
separation and simplicity principles to use sensed data from a different sensor service.

The Ken system [20] implies that the probabilistic models for the collected data are distributed
through all sensor nodes. This implies that either the nodes are identical in terms of the data
types they can sense or that different models will exist for different sensors. For aggregation, this
may lead to some subtleties if sensors are aggregating data from other sensors that use different
models. Recall that models can incorporate different data types, and thus different sensor nodes
may have different models. Maintaining the list of models being used at the sink, may also lead
to some problems if the variation is very big. Our approach of concentrating this on a single point
obviates these issues.

10More precisely, the different tuples in the distributed database.

98 5.4. Conclusion

Action triggering based on a condition can be part of a module in our framework, being done
on the BS. When the module detects the condition it actuates. This is part of the future work
regarding actuation.

The ability to create time windows of stream data is achieved by the ModuleStorage. The
module can store data that can be accessed for later usage.

Correlation of different inputs is a driving point for our framework. The declarative language
approach was aimed at other objectives and only with the later work of Sen and Deshpande’s
[100] was this accounted for. Another initial goal of our architecture is the possibility to optimize
for multiple queries, so to allow several applications requesting different types of information.
This is currently not done in the declarative language framework, as the optimization is done
for a single query. Again, this may be a reflex of WSNs versus BSNs, the latter are more likely
to have different applications running on top of its sensor network, as sensor information is
more varied. The former, in most cases, has a single purpose and collects less varied information.
Nonetheless, Madden et al. in TinyDB [69] raise the issue of optimizing multiple queries as
future work.

5.4 – Conclusion

In this chapter we addressed a way to distribute the information according to the model for
correlating different inputs. The model from the previous chapter and the information flow
described on this form the information abstraction layer of our middleware.

Returning to the objectives pointed out in §3.1, we now have that:

Convert data to human model, with metadata (B): the ModuleSensor provides the inform-
ation layer abstraction to allow for adding the sensor data to a model and specifically to
the pub/sub system. The SD from chapter 3 provides the ability to discover the nodes
producing these data. The metadata that accompanies the sensor and the measurements
are kept in the DataValue structure;

Correlate data according to models (C): the pub/sub and the model described allow the cor-
relation of data according to models defined in the system;

Answer applications based on information model (D, 2, 3): from the previous objective, ap-
plications can receive their answers based on correlated information with the metadata
accompanying it;

Optimize resource usage (E): based on the interface from the previous chapter to control
nodes, and the Policy component described in §5.1.2, it is possible to optimize resource
usage according to defined parameters. The architecture allows us to define different
policies and thus use different parameters to optimize for;

Maintain the model flow of information (5): as mentioned, the pub/sub system allows for the
dissemination of information through the models in the system.

Infer commonalities (III from §4.1.1): the proposed optimization algorithm takes into account
all the models as a DAG. This way all common nodes, from different models, are aggregated
and considered as one. After deciding which modules to use the Policy component issues
the requirements from the strictest request made by the applications;

Regarding the remaining objectives from §4.1.1, we can add that: compartmentalization
and components re-use (I) is inherent to the architecture of modules that encapsulate the

Chapter 5. Information flow 99

correlation between different information. Aggregation of different requests (IV) is a must in all
the framework described in this chapter. And in §4.2.2 we described an algorithm to optimize
resource usage taken as input applications requirements (V).

We follow from chapter 3 and provide a pictorial summary of the interconnection and inform-
ation flow of the different components of the information abstraction layer in figure 5.12. We can
see the flow of measurements from the hardware abstraction layer to the modules, going through
the information layer view of the sensors, the module sensor. The figure also shows access to
the Policy and RegistrarInfo from RegistrarProduction to calculate the resource tree
and access pub/sub data respectively. New nodes that were not known by the system are handled
by the DaemonGWRegistrar that creates the representation in the information abstraction
layer. The flow of information is seen in the newInput, newValue to/from the modules. The
applications can also pull values directly from the modules.

Policy

ModuleSensor

Module
Generic

Application

newValue

Policy
Registrar

Production

Measurement
ToRegistrar

Application

ModuleApp

HW Abstraction Layer

measurements

Module
Generic

ModuleSensor

reading

newValue

newInput

newInput

new Node

RegistrarInfo

find optimal solution

pull value

store/retrieve pub/sub data

request data
DaemonGW

Registrar

interaction

events

Figure 5.12 – Information layer data flow

5.4.1 Open issues

In §5.1.1 we described a structure for storing the location of nodes in the human body.
However, we do not have yet a global coordinate system for it. Further research is needed to
adopt a system that fits our framework, perhaps basing it on the work done by the International
Society of Biomechanics [136]. Moreover, there are several medical terms databases that aim
to provide a connection between the medical language and computer systems. The objective
being that the latter can understand the former. Good examples are SNOMED-CT [55] from the
International Health Terminology Standards Organisation and UMLS [72] from the USA National
Library of Medicine11. These thesauri also define anatomy terms and thus identify body parts.
Combining both systems, a coordinate accurate positioning with a recognizable body location,
would provide an interesting challenge.

Signal “cleaning” modules could pose some issues for the current middleware. These type of
modules would try to “cleanup” signals according to known noise models or similar approaches.

11UMLS combines definitions from several other databases including SNOMED-CT.

100 5.4. Conclusion

They would thus produce as output a “cleaned” version of their input, which would be the
same type of information. Given the framework we described, this could cause some problems
when subscribing to the information. Other modules could impose some requirements on the
information that would lead the Policy to choose the “cleaned” version. However, if the
information would not be clearly marked as a different type the “cleaning” module would receive
its own output from the pub/sub system. A way to mark this functionality should be defined by
the middleware so as to allow these types of modules to differentiate their own production.

The RegistrarProduction can have more than one Policy. However, when a request or
a subscription is done only one policy is used to calculate the requests. The subscriber can state
which policy to use for the request; this enables using different policies on different requests. A
default policy is used when no policy is specified. Although this approach adds the flexibility
mentioned, it also creates the problem of optimizing the different requests according to different
policies (e.g. optimizing to the least error possible could conflict with energy saving). This point
leads to the issue of application prioritization. Some applications might need a more detailed and
“energy costly” information while others want to prolong the BAN as long as possible. Currently
priorities are not handled in the framework. Priorities lead to decisions on: i) at what rate
can we sense and send, ii) given current energy level what should we sense and iii) given a
limited bandwidth what should we send. The centralization of the information about the network
and its active functionalities enables a better planning of this. However, network usage is not
easily predictable even with this centralization. Nodes, as mentioned, are dumb and will be
oblivious to application priorities and data usage or its statistical significance12. As such, all
prioritization must be done on the BS. At the optimization phase, application priority may be
used to decide when conflicts occur, informing the application of the degraded quality (lower
frequency of collection or sending, lower confidence interval, etc.) as we discussed in §4.3.1.
When requests are already being served but there is a change in circumstances (energy going low,
communication problems which lead to network congestion, etc.) the BS needs to re-evaluate
the optimization based on the new context. To detect measurement losses (due to communication
problems) some mechanism should be instantiated to monitor the frequency of measurements
arrival. Energy thresholds can be detected with ModuleAlarm.

Actuators have not been addressed in this chapter. Clearly we have been focused on acquiring
information as opposed to acting. Applications however, would want to act on the BAN according
to the information received. Although actuators would not see a direct fit onto a model as we
described, we could take the closed-loop approach mentioned in §4.2.1. In this approach, the
model could be expanded to have rules to actuate on the BAN, based on the information collected,
where the “output” of the modules would be commands to the actuators.

12In TinyDB [69], nodes prioritize data to sent based on the statistical quality improvement of sending that particular
data when compared to sending other data.

6
Implementation

H aving described the architecture, we now discuss an implementation of it. We will start
by describing how the two middleware layers interact, proceed with a description of
the platform used for development and discuss the Application Program Interface (API)

giving some code examples to better illustrate its usage. At the end of the chapter we will make
final observations on the implementation.

6.1 – Layer interaction

In §5.1.1 we saw that a DataValue is the structure that holds the information produced in
the information layer. This value will be associated with a DataProfile from the hardware
layer to describe it. The DataProfile from §3.5.1 defined the data produced. A DataType

is the structure for handling data on the hardware abstraction layer. It allows encoding data
into messages. The DataValue holds a DataType for cases where this encoding might be
needed or when the DataValue directly results from a sensor reading, which is the case for a
ModuleSensor. Figure 6.1.a shows these relationships and the DataValue attributes. Note
that the accuracy will be defined by each module that processes the information, regarding the
error it introduces. The time relates to the time of production. The size defines the size in bytes
of the data held.

Every producer module will have associated a DataProfile. As described above, when
producing information the new DataValue is associated with a DataProfile, thus the module
needs to know the data profile it produces.

A module needs inputs to produce its outputs, they may be mandatory or optional. The
optional inputs allow the module to produce outputs with different characteristics, e.g. lower

101

102 6.1. Layer interaction

6.1.a: DataValue relationship
with hardware layer

6.1.b: Module relationship with hardware layer

Figure 6.1 – Information layer components and hardware layer components

error. These “needs” are expressed in the dual relation to InformationType in figure 6.1.b.
Note that some modules may not need any input, e.g. ModuleSensor gets its data “directly” from
the sensors.

6.1.1 Functionality interaction

In this sub-section we will describe, through Unified Modelling Language (UML) sequence
diagrams, the interaction between the two layers for some key events of the framework.

The main components of the architecture will be referred to here, so recalling from previous
chapters, in the Base Station (BS):

• the CommandDaemon receives measurements (command reply messages) and acknowledge-
ments of commands;
• the ServiceDiscDaemon sends queries to discover nodes and receives nodes’ advertisements;
• the DaemonGWRegistrar receives information when a new node enters the system and

instantiates the module sensors for the node’s sensors;
• the RegistrarProduction is the broker for the Publish/Subscribe (pub/sub) system, where

modules register their production and subscribe their inputs;
• the MeasurementToRegistrar receives the measurements from the CommandDaemon and

sends them to the appropriate ModuleSensor.

In nodes:

• the CommandDaemon receives commands from the BS and sends back replies with measure-
ments;
• the ServiceDiscDaemon advertises the node’s capabilities and answers queries from the BS.

In the following sub-sections we will describe some of these actions.

New Node

When a new node “boots-up”, it sends a broadcast message notifying of its arrival. This
message is picked up by the BS and dealt with by the DaemonGWRegistrar. This is portrayed
in figure 6.2.

Chapter 6. Implementation 103

Figure 6.2 – New node Appears

In the figure we see that the ServiceDiscDaemon on the node is responsible for sending
the broadcast message as we discussed in §3.3.2. The network interface will then send the
message and deliver it to the DispatcherDaemon on the BS. The dispatcher will know that the
ServiceDiscDaemon on the BS has registered for that message type and deliver the message to
it. The Service Discovery (SD) daemon will, in turn, send a notification to DaemonGWRegistrar
regarding this new node, specifying the node profile. This will allow the DaemonGWRegistrar
to create the node representation on the information layer. We will describe this in the next
sub-section. The acknowledgement is sent from the ServiceDiscDaemon on the BS to the SD
daemon on the node.

Creation of sensor modules

After the DaemonGWRegistrar is notified of a new node it will instantiate its details and
its sensors. Each sensor will be instantiated as a ModuleSensor with sensor details. The
sensor module will register its production capability on the RegistrarProduction. These
interactions are described in figure 6.3. Note that in some cases the node may already be known,
e.g. if it restarted for some reason. So the DaemonGWRegistrar first checks this. The sensor
details are always added as they might have changed, disabled, enabled, etc. The resulting
relationship is the one depicted previously in figure 5.4.

Data from Node

Values produced by modules in the information layer have been depicted in §5.2 (figures 5.5
and 5.9). When the value is produced by a sensor it involves the interaction of the hardware
abstraction layer with the information layer. Figure 6.4 illustrates this.

After the SensorCollect on the node gets its reading from the implemented SensorSer-

vice, it will send the measurement through the command daemon. This reply message is sent
by the CommandDaemon using the network interfaces. On the BS side the dispatcher will send
the command reply message to the CommandDaemon. The MeasurementToRegistrar has

104 6.1. Layer interaction

Figure 6.3 – Creation of node and sensor details

Figure 6.4 – Data new value from Sensor

registered for these messages and will thus be informed of this new measurement. After finding
the sensor that is related to this measurement (recall the UUID on the reading) it will notify
the sensor module of this new reading. The module will then publish a DataValue on the
RegistrarProduction starting the information flow on the pub/sub system.

Chapter 6. Implementation 105

Bootstrap

To bootstrap the system on the BS a main process should start all required components.
From the hardware layer we have CommandDaemon and ServiceDiscDaemon. From the
information layer we have the DaemonGWRegistrar, the RegistrarProduction and the
MeasurementToRegistrar.

Figure 6.5 – Bootstrap

As we can see in figure 6.5, starting the daemons just involves creating and registering them on
the dispatcher. This registration will enable the DispatcherDaemon to know which daemons
are interested in which messages. The DaemonGWRegistrar, the RegistrarProduction

and the MeasurementToRegistrar are implemented as singletons1 and are instantiated by
calling getInstance(). The RegistrarProduction will create the default modules it has
configured when it starts. The modules, in turn, will register themselves on the RegistrarPro-
duction. As we mentioned previously, the measurements received by the CommandDaemon

will be forwarded to MeasurementToRegistrar. For this to happen the Measurement-

ToRegistrar is registered for a callback in the CommandDaemon. The interaction between
ServiceDiscDaemon and DaemonGWRegistrar is similar, with a callback for new nodes
discovered called on the gateway.

1There is only one instance of the class, which is usually accessed through a getInstance() method.

106 6.2. Platform

A node bootstrap is simpler as it only needs to start the hardware components. As such, only
the instantiation of the dispatcher daemon, network interface(s), SD daemon and command
daemon are needed. The callback registrations do not exist as there are no information layer
components.

6.2 – Platform

As we have been discussing, the objective of our platform is to be used in a Body Area
Network (BAN) setting. We built a prototype with most of the framework discussed implemented.
This section will discuss some details of the platform and choices made during its development.

We did some early development on Mica2 motes. These nodes, commercialized at one point
by CrossBow, can be coupled to a sensor board that adds temperature, light, magnetometer,
accelerometer and microphone sensibility. They run TinyOS [121].

TinyOS is an event driven Operating System (OS) for embedded systems. The programming
language for TinyOS is nesC. NesC resembles the C language in the structure and API. The
architecture behind the code uses components that define an interface to be used. Components
are connected to each other, so that one component can interact/use the other. Programs that
run on the BS can be developed using the Java programming language.

Another option that we worked with was SunSPOTs [113]. SunSPOTs2 are general purpose
sensor nodes developed by Sun Microsystems (now Oracle) that natively run Java code (a J2ME
based version) on a Virtual Machine (VM) called Squawk. The hardware node has already
built in temperature and light sensors, a 3-axis accelerometer and connectors for adding further
instruments (actuators or other sensors).

We did not evaluate other OSs (such as the Contiki multi-tasking OS [105]) as we considered
the SunSPOT option as a valid one for a prototype.

The SunSPOTs provide a common development for the BS and the sensor/actuator nodes.
Albeit some differences regarding the Java version (the SunSPOTs J2ME is based on Java 1.4),
the code developed can be used both in the nodes and on the BS. As we will see later, this
allowed us to develop common libraries that were used on nodes and on the BS.

Hardware availability was another consideration. Although, we could use the Mica2 motes,
their lower specifications made them a worse choice. As an illustration, we can see in table 6.1
some of the differences of available general purpose sensor nodes. The Imote2 is a second
generation platform developed by Intel, which runs an embedded version of Linux. From the
table it is clear that the Imote2 has the best characteristics. However its cost made it a less
attractive choice. SunSPOTs were already available at our research laboratory.

The choice for general purpose sensor nodes came from the purpose of being able to fake
different types of body sensors. Being able to program a node to transmit periodically glucose
values, without having a real glucometer sensor would be advantageous for testing the platform.

Using a Java platform would also mean that, in principle, it could be ported to other platforms.
Most systems for a BS are able to run Java. Laptops and personal computers easily run Java,
most mobile operating systems (such as Android, Symbian, BlackBerry, Maemo, Windows Mobile,
see [12, 37, 70, 77, 84]) are able to directly or with some adaptations run Java.

2The term SPOT stands for Small Programmable Object Technology.

http://developer.android.com/guide/topics/fundamentals.html
http://www.developer.nokia.com/Devices/Symbian/#article4
http://us.blackberry.com/developers/javaappdev/
http://wiki.maemo.org/Java
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html

Chapter 6. Implementation 107

Table 6.1 – Node’s hardware from [5, 22, 23, 62]

Mica2 SunSPOT Imote2
Processor • ATM128L

• up to 16 MIPS
• ARM920T 32 bit (180
MHz)
• 60 to 200 MIPS

• 320/416/520 MHz
PXA271 Intel XScale
Processor

Memory
• 128 kB Flash
• 512 kB SRAM
• 4 kB EEPROM

• 4 MB Flash
• 512 kB RAM

• 32 MB Flash
• 32 MB SDRAM
• 256 kB SRAM

Communication 868-870; 902-928
MHz IEEE 802.15.4 (TI
CC1000)

2.4 GHz IEEE 802.15.4
(TI CC2420)

2.4 GHz IEEE 802.15.4
(TI CC2420)

Weight (g) 18 (exc. battery) 33 12 (exc. battery)
Dimensions
(mm)

58×32×7 (exc. battery) 71× 42.4× 23.2 36×48×9 (exc. battery)

Cost ‡ US$ 515 for program-
ming board + 2 nodes
+ 1 sensor board

US$399 for SDK with 3
nodes + base

US$990 for
Imote2.Builder with
3 nodes + 2 sensor
boards

‡ – prices are not all current: Mica2 from 2004; SunSPOT are current (2011) from Oracle store;
Imote2 outdated, possibly from 2007.

As such we developed our middleware on the following system (recall figure 3.2):

Nodes: are SunSPOTs nodes able to run Java programs; they run the hardware abstraction layer
Java library of the middleware;

BS: is a laptop where the hardware and information abstraction layers run using the Java
libraries developed;

Libraries: for the hardware and information layer abstraction were developed. The hardware
libraries are the same in the nodes and the BS. Nodes do not run the information abstraction
library.

6.2.1 Communication

Inter process communication

The architecture for deployment, using the Java development environment, is illustrated in
figure 6.6. In the figure there is a process that handles the pub/sub system of the middleware,
and by extension all the BS’s middleware.

The reason for this separation is to provide a centralized knowledge base and control of
resources. If every application was “compiled” with all the middleware this knowledge and
control would not be shared. Commonalities between requests would not be discovered, models
could be different for different applications, queries would be duplicated and nodes would be
independently controlled. This implies that the information abstraction components and the SD
daemon should run separated from the applications’ processes.

The same problem would not apply to network abstractions and the command daemon, as
they do not store any knowledge, except the information regarding known nodes, which does not

108 6.2. Platform

conflict if duplicated.

The communication between applications and this central middleware component on the BS
is done through application modules. As we will describe in §6.3.5, an application instantiates
an application module (or several) that will request/subscribe to the inputs the application
needs. Figure 6.6 illustrates how the Inter Process Communication (IPC) is planned to work.
Applications will use the application module part of the middleware to communicate with the
pub/sub system. Application modules should use a form of IPC to subscribe and get new values
from the RegistrarProduction.

Ja
va

 P
ro

ce
ss

Base Station
Middleware

Java Process

Application

Java Process

Application

Module
AppModule

App

Module
App

Java Process

Node’s
Middleware

Network
Comm

IPC

Figure 6.6 – Communication within and in/out of BS
(note that IPCs are not implemented)

Note that currently the IPC between application modules and the BS middleware is not imple-
mented. The communication developed uses direct method calls, which means that applications
are compiled with all the middleware infrastructure. This, as discussed, hinders the functioning
of the central component. For testing purposes we developed an application that uses this
middleware to issue several requests, simulating several applications. We will discuss this in
§6.2.3.

Daemon message passing

Message passing between daemons on the same Java process (recall figure 3.4) is based
on queues. The NetworkItf sends the raw data to the dispatcher daemon that identifies the
daemon registered for that type of message. The dispatcher daemon then builds a message
object according to the type and enqueues it on the registered daemon’s queue. After this
the NetworkItf goes back to listen for messages. This queue system is abstracted on a Dae-
monMessaging class, which is extended by daemons implementing messaging functionality.
Currently no limit is set on the size of the queue. A timeout is defined for adding to the queue, so
as not to lock the dispatcher. Receiving messages is handled in a separate thread.

In the sequence diagrams discussed, the active (running on a separate thread) components
are delimited graphically by two extra vertical lines. The DaemonGWRegistrar and the Meas-
urementToRegistrar are not active. However, the daemons that call them spawn a thread to

Chapter 6. Implementation 109

call back all the registered components for the respective callback type.

6.2.2 Library details

In this prototype we have not optimized the libraries in terms of size and, as we mentioned,
the same code for the hardware abstraction runs on nodes and on the BS. Therefore, the blocks
from figure 3.3 on the sensor node and the BS share the same code with different instantiations
in each. This leads to a current SunSPOT library size of approx 284 KB (accounting for the
specific sensors of the SunSPOT). Being in Java (albeit the binary format for the SunSPOT’s VM)
also increases its size. The SunSPOT has 512 KB of RAM and as such the current size is not
considered a problem.

As we saw in §6.1.1, when the BS bootstraps, it starts all the active components of the system.
As expected those components will be “live” as long as the middleware is running. Modules
instantiated in the BS will also “live” as long as the middleware is running. They will not be
processing at all times as they will not be always needed. The same applies for sensor modules,
they exist as long as the sensors are on the BAN, but may be idle if the sensor is not active3. The
module alarm we discussed in §5.2.4 is an exception. As it is very specific (the thresholds are
defined for a particular purpose) it will only live as long as the component that created it needs.

Messages, DataValues and DataTypes are passed by reference and the last component to
use them will release the reference. Garbage collection is automatically handled by the Java VM.

6.2.3 Test application

Pulse
Oximeter

HR

O2 Sat

Optic Hb
reader

Hb

CO
FormulaV

SV

CO

ElectCard
Reader SV

O2 Del
Formula

O2 Del

V

Heart Rate
Reader

Figure 6.7 – Dependency diagram for test ap-
plication

For testing the general framework we developed
a test application. The application is able to request
any information produced by the available modules.
Some modules will be sensor modules others will be
formula based, which will need inputs from other
modules. The formulae known by the middleware
for this test are the ones portrayed in figure 6.7.
As we mentioned previously, they are based on cor-
relations from Law and Bukwirwa [64] for oxygen
delivery (O2Del) and the Windkessel model (see
Sun et al. [111]) for Cardiac Output (CO).

For generating sensor data we developed sensor
services for the SunSPOTs that produce fake val-
ues of: Heart Rate (HR), oxygen saturation
(O2Sat), hemoglobin (Hb), Stroke Volume (SV)
and ElectroCardioGram (ECG) readings4. There is
a SunSPOT representing itself, with its light, accel-
eration (on all axes) and temperature sensors.

There is a default policy implemented. A
Policy is the component that performs the optim-
ization, as described in §5.1.2. This default policy

3Recall that the heart-beat system from §3.6.1 informs about a node’s disappearance.
4The ECG values were based on input we collected from a wearable ECG system, Equivital from Hidalgo [46]

110 6.2. Platform

searches for the first modules that satisfy the requirements of a request, preferring the modules
that are currently already producing. This is a simple policy that, while searching, takes into
account the settings (production on or off) of the modules it needs. This is the current approach
of the middleware. Policies will perform a search for the current request being able to access
modules’ current settings, however they do not have access to the list of active requests. This
differs from the algorithm discussed in §4.2.2, which took into account all active requests. As such
the implementation we made of the §4.2.2 algorithm is not yet incorporated in the middleware
as a policy.

In figure 6.8 we can see a screen-shot of the test application that runs on the BS. Here we
can see a list of available sensors, nodes and modules. It is possible to check the metadata for
these components (the buttons Show) and request the output production of any of the available
modules. This request will “run” the default policy for discovering the modules to produce the
requested information. In the figure there are also dialogues with the values that were being
requested (O2Del , temperature and HR). Note that O2Del is currently Not yet Available. This
means that the middleware is lacking information that is needed for some module(s) that were
on the tree found to produce O2Del . When that information is made available (new nodes
appear) the system will make the requests to the modules and start the production. The formulae
for CO and O2Del are already on the modules list. At the moment of the screen-shot, only a
SunSPOT node and a (fake) Equivital node were available. This Equivital node only senses
HR and temperature, so we are still missing SV, O2Sat and haemoglobin to be able to produce
oxygen delivery.

A regular application would issue the request(s) for the required information, instantiating
ModuleApp(s) to receive the outputs. We will discuss this in §6.3.5.

Figure 6.8 – Prototype screen-shot

Chapter 6. Implementation 111

6.3 – API

In this section we will describe the interfaces that need to be implemented so as to add new
node types to the system and modules to the information layer; and also to develop an application
that plugs into the middleware.

Depending on the hardware components of the new node and the current support on the
middleware, for a new node it may necessary to develop: a new network interface, a new
command daemon and new sensor services.

Adding new modules will mainly revolve around new formula correlations. This means
extending ModuleFormula.

Last, we have the application that will have to subscribe to the information it needs using a
ModuleApplication.

6.3.1 Network Interface

� �
1 public abstract class NetworkItf extends Thread{

2 public abstract int sendMesg(String remoteAddr, byte[] bs) throws
IOException;

3 public abstract int sendBroadcast(byte [] data) throws IOException;

4 public abstract void startListen() throws IOException;

5 public abstract void closeListen();

6 protected abstract void waitMesgsImplementation() throws IOException;

7 public abstract ReliableConnection setupReliableConnection(String

remoteAddr) throws IOException;

8 public abstract String getLocalAddr();

9 // ...

10 }� �
Listing 6.1 – NetworkItf abstract methods

In listing 6.1 we have the abstract methods of the NetworkItf class. They define what needs
to be implemented by the specific network interface.

These are the functionalities described in §3.3.1: sending messages (unicast or broadcast),
receiving messages (lines 4, 5 and 6), creating reliable connections (line 7) and returning the
local address of the network interface. The local address is used to define the Universal Unique
IDentifier (UUID) of the sensors as described in §3.7. For the reliable connection the returned
interface provides an output stream to write to, which is used to send a message reliably. It also
provides an input stream to read from. These streams are backed up by the underlying reliable
connection.

6.3.2 Command Daemon

Instantiating a CommandDaemon for a node involves implementing the methods from list-
ing 6.2. The implementation should build the node’s sensor services. It should use the sensor
profile argument to instantiate a sensor service. This method is called by the CommandDaemon

112 6.3. API

� �
1 public abstract class CommandDaemon extends DaemonMessaging {

2 protected abstract SensorService buildSensorService(SensorProfile sp);

3 protected abstract void itfsOff(NodeComm node);

4 // ...

5 }� �
Listing 6.2 – CommandDaemon abstract methods for a node

abstraction that knows which node profile it is instantiating and thus which sensor profiles it
has (recall figure 3.7). In listing 6.3 we have an example of a command daemon for a SunSPOT.
Based on the service profile code we create the appropriate sensor service passing it the sensor
profile (e.g. lines 6 and 8). The LocalStoreVector is storage for readings that are not sent
immediately by the sensor service.

� �
1 public class CommandDaemonSunSpot extends CommandDaemon {

2 protected SensorService buildSensorService(SensorProfile sp) {

3 LocalStoreVector store = new LocalStoreVector();

4 switch (sp.getCode()) {

5 case SensorProfileDB.SP_CODE_SUNSPOT_LIGHT:

6 return new SensorServiceSunSpotLight(sp, store, this);
7 case SensorProfileDB.SP_CODE_SUNSPOT_TEMPERATURE:

8 return new SensorServiceSunSpotTemp(sp, store, this);
9 //...

10 }

11 return null;
12 }

13 // ...

14 }� �
Listing 6.3 – CommandDaemon.buildSensorService for a SunSPOT

The CommandDaemon also has to implement the turning on/off the node that we discuss in
appendix C, to avoid detail not relevant here. Callbacks mentioned when discussing the bootstrap
in §6.1.1, are also discussed in the appendix. The CommandDaemon extends DaemonMessaging,
which provides methods for handling messages.

6.3.3 Sensor Service

Listing 6.4 shows an example of the code needed to implement a temperature sensor on a
SunSPOT. Lines 2 and 5 are the specific parts related to the SunSPOT temperature sensor API.
This would be basically what is needed for the service: to implement the getReading(...)
method.

Note that the sensor profile is defined when building the sensor services in CommandDaemon.
In line 9 we use the data profile from that sensor profile to set the UUID and check the correctness
of the DataType.

6.3.4 Module

To see how a module receives its input we have listing 6.5, where ModuleFormula im-
plements newInput(...). This method is called by the registrar when a new input of the

Chapter 6. Implementation 113

� �
1 public MeasurementBasic getReading() {

2 ITemperatureInput sensor =

(ITemperatureInput)Resources.lookup(ITemperatureInput.class);
3 DataType dtMeas;

4 try {

5 double reading = sensor.getCelsius();

6 dtMeas = DataTypeDB.createFloat(new Double(reading));

7 }

8 /∗ e r r o r handl ing ∗/
9 return createMeasure(dtMeas, new TimeType());

10 }� �
Listing 6.4 – SensorService for temperature on a SunSPOT

� �
public abstract class ModuleFormula extends ModuleCalc {

synchronized public boolean newInput(DataValue value) {

// ...

// i f we got a DataValue we car e f o r (i s i t needed)
arrayVariable[i] = value;

// ...

if(!ArrayUtils.existNull(arrayVariables)){ //we got e v e r y t h i n g we need
DataValue calc = calculateOutput();

clearValues(); // c l e a r our a r r a y V a r i a b l e s
sendNewValue(calc); // send the va lue to the R e g i s t r a r

}

// ...

}

// ...

}� �
Listing 6.5 – ModuleFormula

information the module subscribed to is available. Remember from §5.1.1 that ModuleFormula
calculates an output based on a correlation that is described by a formula. So ModuleFormula
will collect its needed inputs and then calculate the output. As shown in listing 6.5, the inputs
received are stored until all inputs needed are available. When that occurs the output is calculated
and sent to the registrar. Note that this simple implementation does not check timestamps. It
assumes that all values are good, even if they differ in time. However, it could make use of the
time in the data value.� �
1 public class ModuleFormulaCO extends ModuleFormula {

2 synchronized protected DataValue calculateOutput() {

3 //CO = SV x HR
4 double svVal= (Double) arrayVariables[0].getValue();

5 double hrVal= (Float) arrayVariables[1].getValue();

6 double res = svVal * hrVal/1000; // from cm 3̂ to l
7 return buildValue(new Double(res));

8 }

9 // ...

10 }� �
Listing 6.6 – ModuleFormulaCO based on SV and HR

114 6.3. API

Listing 6.6 illustrates a module that implements the CO = SV × HR correlation. The
module implements the calculate functionality of the ModuleFormula. Note that there is a unit
conversion in line 6, but this is “hard coded”. However, the module could use the relationship
of DataValue with DataProfile (as in figure 6.1.a) to discover the units of the data it was
handling. In line 7 a new DataValue is constructed associating it with the DataProfile of
the module (see figure 6.1.b). This illustrates that modules need to associate the data profile with
the values they produce so that modules have access to the data profile of the values they handle.

The other modules from §5.1.1 can also be extended. For example, ModuleStorage has an
interface to store data, which should be extended for different storage types (currently there is
an extension that uses a file on the file system).

6.3.5 Application

� �
public class ModuleOutput extends ModuleApplication {

public boolean newInput(DataValue value) {

System.out.println(value.getValue().toString()+" "

+value.getDataProfile().getUnits()+"\n");

return true;
}

public void unableToProvideCallBack(int requestId, int reasonId, String

reasonString) { /∗ ... ∗/ }

// ...

}� �
Listing 6.7 – ModuleApplication callback methods

The application module will be the module that (as the name suggests) an application will
build to subscribe to needed information. Listing 6.7 shows an example for a module that simply
outputs the data it receives. The newInput(...) method is called when new input is available.
Application modules will also implement a callback method that is called if the request is unable
to be met. This allows for an asynchronous notification of the failure. What the ModuleOutput
should also implement is the request/subscription to the information.� �
1 public boolean makeRequest(Capability capabilityNeeded){

2 Request request = new Request(this.infoWanted,capabilityNeeded);
3 this.subscriptionId =

RegistrarProduction.getInstance().subscribeWithRequest(request, this);
4 if(this.subscriptionId == Request.INVALID_ID)

5 return false;
6 return true;
7 }� �

Listing 6.8 – ModuleOutput making request

Listing 6.8 gives an example of a request being made to the RegistrarProduction. The
request needs to know what is the information needed and what are the requirements/capabilities
(maximum error, delay, etc.) for getting it. In this example the information is assumed to be
an attribute of ModuleOutput and requirements are given on the method call. A subscription
identifier is returned by the subscription request, even if the request is left pending, i.e. waiting
for some unavailable producer.

Chapter 6. Implementation 115

The application should make a request for each information type needed. It could however
handle these subscriptions with the same module.

6.3.6 Moving the abstractions

The hardware abstraction used allows us to move its deployment, enabling interaction with
devices with closed OSs. For example, in cases where it is not possible to program the node, it
is possible to move the abstraction to the BS and make the device available to the framework.
Figure 6.9 illustrates this. The node’s middleware is moved to the BS and will implement the
protocol to communicate with the device on the NetworkItf. The device will likely have a
proprietary protocol. The node’s middleware will then use the same approach as the rest of the
middleware, serving as a proxy for all messages. The communication with the BS’s middleware
could use an IPC approach, if the BS has a NetworkItf for it.

Java Process

Base Station
Middleware

Proprietary
communication
protocol
Regular middleware
protocol

Node’s
Proprietary
Firmware

Java Process
Node’s

Middleware

Figure 6.9 – Moving hardware abstraction

The node in figure 6.9 is an Equivital sensor unit from Hidalgo [46]. As we mentioned, this
device is a strap-on with ECG, gyroscope, skin temperature and accelerometer sensors. It uses a
proprietary protocol that runs over Bluetooth (serial profile) to communicate.

6.3.7 API Comments

The example from §6.3.5, gave the highest level in the hierarchy that an application developer
can “plug-in” into the middleware. Nonetheless, it is possible to interact at lower layers, e.g. using
the network interface or NodeComm for sending messages, issuing commands through the
CommandDaemon. That is, by using the hardware abstraction directly. However, the objective of
the middleware is to abstract most of that complexity from the application developer. An added
bonus is centralized control and a “biasing” API that restricts applications through an interface
that controls the resources, hides them even, in a centralized and optimized view.

The optimization and control of resources can be extended in the middleware by developing
new Policy(ies) for the optimization that will imply a different usage of said resources.

The previous points imply a scenario where application developers will not have to make
specific development for the nodes in the BAN. This will, of course, not be the case. Currently, in

116 6.4. Final Observations

most cases, the developer will have specific nodes to deploy for her application. Enabling the
addition of new types of node is the other objective of the middleware. This allows adding new
nodes that directly sense/actuate on the body, are recognized by the middleware and also to
develop new modules for correlating the information sensed.

Our prototype middleware serves as a proof of concept for the need to separate both ends of
the spectrum: applications on one side and resources on the other. The idea we propose is a
centralization that allows correlation of different information and optimized management of the
resources.

6.4 – Final Observations

In this chapter we gave some insight on the implementation of the middleware and on
development using its infrastructure. Clearly several details were left untold, so we refer the
interested reader to the documentation of the implementation (see appendix C).

The framework is aimed at application developers for easing their usage of BAN resources
to access information related to the BAN. Moreover, it enables information correlations by
re-using known and proved relationships between physiological measurements. Re-use is here
a fundamental goal: re-use of the modules for correlation and re-use of the hardware related
abstractions.

The framework also provides an easy expansion for adding new re-usable components. We
gave some examples on how to do this in §6.3.

In future work, we intend to analyse performance on an optimized implementation. Tests will
compare BAN’s performance with and without the framework, namely: a number of requests
to sensors if several applications request outputs from them, a number of different types of
information available on a given model, delay for data collection the indirections introduced
(for direct sensor readings), savings in resource usage with the discovery of commonality (could
use the result from the number of requests). These tests involve defining what models would
be used in a common setting, so as to have realistic tests. Although we suggest some possible
correlations with figure 4.1, it is not completely clear what will be “a usual deployment” as
the BAN community is still at the starting point of providing wider correlation opportunities to
applications. A survey on regular patient monitoring, monitoring in Intensive Care Units (ICUs),
sport data collection, etc. could provide some better insight on what is foreseeable for the future
of applications using multi-parameter correlations on a BAN.

We will extend our prototype to cover the following points:

• when some required information is not available (e.g. for a pending request), the middleware
does not query the BAN as we discussed in SD §3.6;
• known modules are currently directly instantiated by the middleware, i.e. hard-coded on the

implementation. There is no provision to load them as demanded or adding new ones during
run time. The Java ability to load classes during run-time could be used for applications to
load new modules into the middleware without disrupting its current operation5;
• as we mentioned in §6.2.1, the middleware should have a standalone component on the BS to

enable the centralization and running applications to connect to it using some form of IPC.
5Apart from the re-evaluation of the optimality issues, this also raises some problems with security and application

trust.

7
Conclusions and future work

W e conclude the presentation of this thesis by summarizing our goals, describing what
was achieved, describing some lessons learned and presenting future research and
development work on several areas of Body Area Networks (BANs) related to our

proposal.

7.1 – Conclusion

Our driving premise is that the healthcare proposition is evolving to a patient centred paradigm.
The extant architecture will not be able to cope with the increasing costs of providing for a growing
population (in terms of raw number, people affected by diseases and senior citizens). A change
to a more preventive system instead of a reacting one is warranted.

We place BANs in the middle of this change, as they provide the user-focused monitoring and
actuating that can lead to a system that detects anomalies sooner, with the possibility even of
preventing such anomalies. Although our focus is on patient care, a BAN system is as applicable
to sport monitoring instances. Specially on high profile sports that need a very accurate account
of athletes’ performance.

A BAN’s advantage is its heterogeneous monitoring capabilities that when correlated can
provide a very rich set of information. In this thesis we addressed what in our view is currently at
fault in BANs: a centralized view for all the applications using the BAN to share resources and
information correlation approaches. The incumbent BAN systems have mainly an “application by
application” approach without considering several applications using the network in parallel. To
mitigate this we propose a middleware layer that deals with this correlation.

Our architecture assumes a star topology where a central more powerful node aggregates
the information. The middleware on this node (the Base Station (BS)) provides an information

117

118 7.2. Future work

abstraction. Applications will reside on this node, and use this information model to issue requests
for the information they need. The middleware is responsible for correlating the information so
as to respond to the applications. This involves actuating on sensor nodes to get the raw data for
correlation. Actuators are also envisioned for our middleware, although current focus has been
on sensor nodes.

From the introduction §1.3.1 we have developed:

Hardware abstraction: is our lowest middleware layer that provides an abstraction for the
different nodes’ hardware types in a BAN. This common Application Program Interface (API)
eases the usage of these resources and enables a simple addition of new types. Part of
this layer defines how to describe nodes’ profiles. This enables a common understanding
between the BS and the nodes of the resources being used. The communication protocol
defined provides the abstraction in messages for a command/reply interaction. Part of this
layer is a Service Discovery (SD) functionality to advertise and query the current pool of
resources available to the middleware.

Models in the framework: are the focus of work. Our proposed architecture enables the usage
of modules that take different inputs and correlate them to produce new information. We
presented examples of current physiological formulae that allow such inference. These
modules are able also to store data, calculate statistics, send alarms, i.e. handle and react
to information. New modules, i.e. new correlations, storage, statistics, etc., can be added
to the model with relative ease. This information abstraction layer interacts with the
first to manage BAN’s resources. Applications interact with the middleware through this
information layer by subscribing to information needed with a set of requirements. The
layer manages a Publish/Subscribe (pub/sub) system for the flow of information between
modules.

Optimization: is the responsibility of the information layer when answering applications’ re-
quests. For this, it takes into account correlations known, raw sensor data availability and
applications requirements. Based on this it chooses the best set of modules that produce the
information requested while minimizing resource usage. These policies for optimization
can be defined by the developer, and we already provide an algorithm to search the model
known while minimizing a specific cost;

Prototype implementation: was developed based on Java and tested with the programmable
SunSPOT nodes. It served as a proof of concept for the points discussed in the thesis,
namely the ease of extension of the framework.

7.2 – Future work

As we pointed out in most chapters there are interesting subjects to be pursued and others
that are needed for the completeness of the middleware. The implementation related ones
are the performance tuning and evaluation, which would include some developer trials; Inter
Process Communication (IPC) support in the BS; module loading at runtime and deployment on
a smart phone or tablet device. Live software/firmware updates of the middleware should also be
addressed, with a versioning system using the Universal Unique IDentifier (UUID) of the nodes.

Chapter 7. Conclusions and future work 119

Topics for further research encompass:

Models beyond formulae: are the next step for correlations. There are scenarios where even
with the current parameters it is not possible to ascertain an outcome. This goes beyond
the information as a quantitative value (Blood Pressure (BP) = 113/77 mmHg) to a more
qualitative reasoning (“user is having an arrhythmia with 97% probability”). In this respect
modules that handle fuzzy knowledge or qualitative reasoning are of interest. As an
example, Otero et al. [85] use a model that relates several physiological variables over
time to provide more accurate alarms in ICU. The model is defined by a network of fuzzy
constraints between a set of points that describe the temporal evolution of the measured
variables. Another noteworthy aspect of the work is that they provide a tool for clinicians
to define the network and the variables to watch. Qualitative reasoning as described by
Forbus [32] allows to define the relationships in qualitative terms and qualitative thresholds
that a system can then interpret to infer some meaning. As we mention in §4.3.1 Sugeno
and Yasukawa [110] propose the combination of both fields to provide fuzzy logic based
qualitative models.

Actuator support: was discussed in §3.9.2. The issue pertains not only to the definition of what
is the possible abstraction for an actuator, but what is the abstraction for actuating (an
actuator does not need to just deliver drugs, as the artificial retina example from table 2.3
shows). An option is having categories of actuators where some fall in the drug delivery
range, with quantity, duration, units, etc. as some of the characteristics and others require
non-abstracted controls, like brain stimulation. Incorporating more fully actuators leads to
the closed-loop control and the need to have that autonomic capability in the middleware.

Sleep patterns: influence the energy spent and the communication scheme. As we described
in §3.9.4 an approach should be studied to specify when nodes can turn off most of their
hardware to save energy. As communication eventually needs to occur, a duty-cycle should
be defined. This raises the question of how to define these patterns: should they be defined
in the node’s profile as different hardware has different gains with different duty-cycles;
should the BS control turning on/off, thus defining the duty cycle; should thresholds
be defined and interpreted/processed by nodes, that would then wake-up to notify the
occurrence, similar to the Mobisense platform [125]. Actuators do not necessarily abide
by the same rules: they might not have sensors in the node for threshold appraisal and
they are prone to be needed in emergency scenarios (e.g. defibrillators). The most flexible
and complete approach is a mix of the three options: the BS controls duty-cycles, based on
current needs and the nodes sleep patterns from their profiles. Thresholds are defined in
sensor capable nodes to allow to shut down some sensors and communication system while
“keeping an eye” on parameters.

Security and privacy: are important aspects of a BAN. BANs will in most cases carry personal
information. It is thus important to protect the information and identify the nodes in the
BAN, i.e. sensor/actuator nodes and the BS. As we talked in §3.9.4, there are approaches
to generate keys using biometrics. The idea is that these biometrics are measurable
only by a node on the body. Hanlen et al. [42] use movement and Poon et al. [91] use
ElectroCardioGram (ECG) and PhotoPlethysmoGram (PPG) as biometrics. This enables a
source of entropy to derive keys from, where a fuzzy agreement is used to guarantee that
small differences in measurements originate the same keys. Not all the nodes will have the

120 7.2. Future work

sensors needed for the scheme (e.g. the need for ECG)1. The work from Falck et al. [31] uses
the body itself to convey information, assuming that it cannot be eavesdropped. This is used
to define a key that can be used in other communication medium. This approach is used to
protect information and authenticate end-points. There are emergency situations were the
data needs to be accessed. Tan et al. [115] propose a light identity based encryption that
allows generating different keys to encrypt sensed data that can be recovered by trusted
entities. A BAN will need some or even all of these security settings to be able to protect
privacy and allow access in emergency scenarios. An added advantage of the security
setting is that enables identification of the user where the BAN is. This mitigates some of
the interference between different BANs.

Location within the body: will be another source of information for correlating data. BP in
a leg is about 10% to 20% higher than in an arm, acceleration measured in a shoulder
provides different information than when measured in a foot. As we mentioned in §5.4.1,
although we have a data structure to hold the location of a node, we do not yet have the
coordinate system to describe it. Input from the International Society of Biomechanics [136]
for the coordinate system combined with thesauri that describe and identify body anatomy
such as SNOMED-CT [55] would be a good approach.

Inter BAN communication: can provide for further parameters. Within the context described
in this thesis (multi-parameter correlations), the need for these external inputs from other
BANs does not seem natural. However there is scope for usage in other contexts. The
business card exchange from Zimmerman [146] could be a small example, and in sport
settings the exchange of performance characteristics to compare users’ achievements could
be another. For this communication to occur the BS would need to advertise itself as a
gateway to other BANs.

Synchronization: is an important part of the system, as it influences the coordination and
interpretation of collected values (timestamps). As network layers will provide some
form of synchronization (e.g. the IEEE 802.15.6 task group for BAN communication [6]),
the hardware abstraction should be extended to use this functionality. In cases were the
network does not provide such capability, a default fall back, like the reference broadcast
from Elson et al. [29] should be defined.

QoS: is needed to ensure that critical applications will be able to use the resources with higher
priority, and even precluding optimization techniques in emergency scenarios. This does not
affect only the communication layer but also other resources as energy and processing. The
middleware should be able to convey these priority levels and use them when managing
resources. Support from the communication layer is needed, which also implies extending
the network abstraction to support it.

1The work from Poon et al. uses the ECG and PPG to derive inter pulse interval, i.e. time between heart beats. This
could be accomplished with other types of sensors, like a simple heart beat sensor.

Chapter 7. Conclusions and future work 121

7.3 – Lessons learned

In this section we make some considerations about the work undertaken and some of the
decisions made.

7.3.1 BSN versus WSN

Body Sensor Networks (BSNs) (or BANs when we account for actuators) are different in
several aspects to Wireless Sensor Networks (WSNs). We addressed this issue in §2.3, but it is
worth re-stating some of the points discussed.

The difference between middleware approaches for BSNs and WSNs was one of the comments
usually received in submissions to conferences not specifically from the BAN field. In our view,
there are differences that are usually disregarded between both networks that bring advantages
and disadvantages.

In BSNs we have a centralized component, the BS, that is the center of a one hop star
network topology (with the caveat discussed in §2.4.1). Communications paths are short, albeit
attenuated by the human body. These are assets for communication when compared to WSNs,
which in most cases need to form multi-hop hierarchies (clusters) to communicate to one or more
sink nodes. This led, in our case, to the choice of having dumb nodes that send all their data raw
to the BS, taking advantage of the fact that although communication cost is expensive it is lower
than in WSN and this cost is counterbalanced by the simplicity on nodes. The centralization
and small topology also helps BSNs to have a global correct knowledge of the network (the BS
has this knowledge), which provides more informed ways of optimizing resource usage.

On the other hand, BSNs collect varied types of data, produced by a multitude of distinct
sensors with lower redundancy when compared to WSN. This data diversity brings forth a
multitude of applications that want to collect the data. Moreover, these different types of data
provide more possibilities for correlations. However, it also leads to a more difficult approach to
handle the different sensor hardware and the different data types.

Pointing these differences out so as to stress opportunities for new approaches was an issue
that should have been pursued earlier. This would have made the research clearer early on.

7.3.2 The cost of code

Development of prototypes or demos is usually a must for systems’ research. This need coupled
with, usually, perfectionist researchers can lead to an over-development of the prototype code.
There are different views on the amount of work that a prototype may involve. In a blog post Matt
Welsh2 advocates that software is not science and that these prototypes should be seen as “throw
away” programs that only serve to prove the ideas of the papers. However, in the comments
(and even in his own work) good quality code should be the foundation to yield research results.
Moreover, system publications do make it (nearly) mandatory to have an implementation of the
ideas. It comes naturally that the crux of this is the time it takes to do good implementation
code.

2See http://matt-welsh.blogspot.com/2011/11/software-is-not-science.html.

http://matt-welsh.blogspot.com/2011/11/software-is-not-science.html

122 7.3. Lessons learned

The development of this project on BANs fell into some of the “traps” mentioned. The
hardware abstraction layer is the base that the information layer uses for its models to be able
to correlate the data. The development of the hardware layer could have benefited from some
already developed abstraction layer. The problem resided on the capabilities needed for the
layer. Namely, we needed to address every sensor the same way (abstraction achieved through
the communication protocol), have service discovery announcements that used the profiles
defined for the nodes, a basic functionality of sending/collecting in the sensors and to control the
sensors. To the best of our knowledge, none of the architectures for BANs or WSNs provided the
capabilities as we needed them. As such the development of this layer to support the information
layer was pursued.

Clearly, this development had associated a time cost, but the lack of a suitable framework
mandated it. Also, the lack of such a framework implies that our complete architecture (both
layers) is more relevant.

Regarding “throw away” code, we believe that the re-usability, repeatability and expansion
are good arguments against “throw away” code. Another argument, is that “throw away” code,
as per its definition, will not be available for inspection as the code is not ready for being public.
Of course, these arguments may be debatable if the implementation merely stresses a small part
of a system.

A middle ground must be sought so that development of ideas is not undermined by the
time needed to implement them and that this implementation would not be so impaired that
it would not be useful. If for not anything else, to ease the development of other research’s
implementation.

7.3.3 Platform

The SunSPOTs option proved a good choice as the support and the development tools available
enabled a quicker development. The Java language also lends itself to easier reuse and porting as
we discussed in §6.2. The flexibility and programmability of the platform enabled programming
fake sensors using the SunSPOTs.

The last point resulted from the lack of medical sensors in our prototype platform. The
Equivital sensor we described would be a good candidate to provide a more realistic BAN.
Nonetheless, apart from the Equivital type of nodes, the sensors available for research in this
area are still few; medical sensor development is still needed to make devices more wearable and
resilient to movement.

The option to choose dumb sensors for the nodes provided an easier development of the fake
SunSPOTs, where code re-use provided a quick development to support “new” sensors. This
provides some anecdotal evidence of that choice.

Some feedback on conferences and workshops indicated that combining different types of
data collected from different devices is something that is warranted and still with few initiatives
from a framework point of view.

Chapter 7. Conclusions and future work 123

7.4 – Publications

During the course of the thesis’ work the following publications were done:

• Jatinder Singh, Pedro Brandão, Jean Bacon. “Context-aware disclosure of health sensor data”
in 4th International Conference on Pervasive Computing Technologies for Healthcare 2010
Munchen Germany, March 22-25, 2010, doi: 10.4108/ICST.PERVASIVEHEALTH2010.8788

– Pedro Brandão’s work was related to the BAN sensor data collection.

• Pedro Brandão, Jean Bacon. “Body Sensor Networks: Can we use them?” in M-MPAC 2009
International Workshop on Middleware for Pervasive Mobile and Embedded Computing, Urbana
Champaign, Illinois, USA Dec 2009, doi:10.1145/1657127.1657131
• Pedro Brandão, Jean Bacon. “BSN Middleware: Abstracting Resources to Human Models” in

HealthInf, International Conference on Health Informatics Porto, Portugal, 2009, (position
paper), Proceedings ISBN: 978-989-8111-63-0

http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8788
http://portal.acm.org/citation.cfm?id=1657131

A
Bibliography

[1] Actigraph. GT3X+ Activity Monitor. Product specification, Actigraph, 2011 [visited June
2011]. [p. 27]

[2] Amp’ed RF Technology, Co., Ltd. BT22. Product datasheet, Amp’ed RF Technology, Co.,
Ltd., March 2011 [visited June 2011]. [p. 38]

[3] Gerard Anderson, Robert Herbert, Timothy Zeffiro, and Nikia Johnson. Chronic conditions:
Making the case for ongoing care, September 2004 [visited April 2011]. [p. 15]

[4] U. Anliker, J.A. Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer, F. Keita, E.B. Schenker,
F. Catarsi, L. Coluccini, A. Belardinelli, D. Shklarski, M. Alon, E. Hirt, R. Schmid, and
M. Vuskovic. AMON: a wearable multiparameter medical monitoring and alert system.
Information Technology in Biomedicine, IEEE Transactions on, 8(4):415 –427, December
2004. ISSN 1089-7771. doi:10.1109/TITB.2004.837888. [pp. 67 and 93]

[5] ARM. ARM920T product overview. http://www.simplemachines.it/doc/DVI0024B_920t_
po.pdf, 2003 [visited June 2011]. [p. 107]

[6] Arthur Astrin (Ed.). Draft standard for body area network. Draft, IEEE P802.15 Working
Group for Wireless Personal Area Networks (WPANs), May 2010 [visited June 2011].

[pp. 30, 37, and 120]

[7] Robert Baan, Yann Grosse, Béatrice Lauby-Secretan, Fatiha El Ghissassi, Véronique Bouv-
ard, Lamia Benbrahim-Tallaa, Neela Guha, Farhad Islami, Laurent Galichet, and Kurt Straif.
Carcinogenicity of radiofrequency electromagnetic fields. The Lancet Oncology, 12(7):624
– 626, 2011. ISSN 1470-2045. doi:10.1016/S1470-2045(11)70147-4. [p. 34]

[8] J.E. Bardram. Pervasive healthcare as a scientific discipline. Methods of Information in Medi-
cine, 47(3):178–185, 2008. ISSN 0026-1270. doi:10.3414/ME9107. [pp. 16 and 17]

125

http://www.theactigraph.com/products/gt3x-plus/
http://www.ampedrf.com/datasheets/BT22_Datasheet.pdf
http://www.rwjf.org/qualityequality/product.jsp?id=14685
http://www.rwjf.org/qualityequality/product.jsp?id=14685
http://dx.doi.org/10.1109/TITB.2004.837888
http://www.simplemachines.it/doc/DVI0024B_920t_po.pdf
https://mentor.ieee.org/802.15/dcn/10/15-10-0245-06-0006-tg6-draft.doc
http://dx.doi.org/10.1016/S1470-2045(11)70147-4
http://dx.doi.org/10.3414/ME9107

126 Bibliography

[9] Michael J. Barrett, Bradford J. Holmes, and Sara E. McAulay. Healthcare unbound.
Forrester Research, December 2002. [p. 17]

[10] Berkeley Bionics. Company site. http://berkeleybionics.com/, 2010 [visited June 2011].
[p. 29]

[11] Philip A. Bernstein. Middleware: a model for distributed system services. Com-
mun. ACM, 39:86–98, February 1996. ISSN 0001-0782. doi:10.1145/230798.230809.

[pp. 19 and 41]

[12] Blackberry. Java development on Blackberry. http://us.blackberry.com/developers/
javaappdev/, 2011 [visited June 2011]. [p. 106]

[13] Bluetooth SIG. Specification of the Bluetooth System - v2.1 + EDR. Bluetooth Special
Interest Group, July 2007. [pp. 32, 38, 50, 55, and 58]

[14] Bluetooth SIG. Core System Package 4.0. Bluetooth Special Interest Group, June 2010.
[pp. 21, 33, and 58]

[15] Elizabeth Boehm, Bradford J. Holmes, Eric G. Brown, Lynne "Sam" Bishop, Sara E. McAulay,
and Jennifer Gaudet. Who pays for healthcare unbound. Forrester Research, July 2004.

[p. 17]

[16] Mike Botts and Alexandre Robin (Editors). Sensor Model Language (SensorML) imple-
mentation specification. Public Available Standard OGC 07-000, OpenGIS, July 2007.

[pp. 50, 51, and 75]

[17] Michael Brodsky, Delon Wu, Pablo Denes, Charles Kanakis, and Kenneth M. Rosen. Ar-
rhythmias documented by 24 hour continuous electrocardiographic monitoring in 50 male
medical students without apparent heart disease. The American Journal of Cardiology, 39
(3):390 – 395, 1977. ISSN 0002-9149. doi:10.1016/S0002-9149(77)80094-5. [p. 16]

[18] Haran Burri and David Senouf. Remote monitoring and follow-up of pace-
makers and implantable cardioverter defibrillators. Europace, 11(6):701–709, 2009.
doi:10.1093/europace/eup110. [p. 16]

[19] F.L. Chan, W.Y. Chang, L.M. Kuo, C.H. Lin, S.W. Wang, Y.S. Yang, and M.S.C. Lu. An
electrochemical dopamine sensor with a CMOS detection circuit. Journal of Micromech-
anics and Microengineering, 18:075028, 2008. doi:10.1088/0960-1317/18/7/075028.

[p. 27]

[20] D. Chu, A. Deshpande, J.M. Hellerstein, and Wei Hong. Approximate data col-
lection in sensor networks using probabilistic models. In Data Engineering, 2006.
ICDE ’06. Proceedings of the 22nd International Conference on, page 48, april 2006.
doi:10.1109/ICDE.2006.21. [pp. 96 and 97]

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844,
9780262033848. [pp. 76 and 77]

[22] Crossbow. Imote2 datasheet. Technical Report 6020-0117-02 Rev A, Crossbow, September
2007 [visited June 2011]. [p. 107]

http://www.forrester.com/ER/Research/Brief/Excerpt/0,1317,15452,00.html
http://berkeleybionics.com/exoskeletons-rehab-mobility/about-elegs/
http://dx.doi.org/10.1145/230798.230809
http://us.blackberry.com/developers/javaappdev/
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm
http://www.forrester.com/rb/Research/who_pays_for_healthcare_unbound/q/id/16524/t/2
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sensorml
http://dx.doi.org/10.1016/S0002-9149(77)80094-5
http://dx.doi.org/10.1016/S0002-9149(77)80094-5
http://dx.doi.org/10.1016/S0002-9149(77)80094-5
http://dx.doi.org/10.1093/europace/eup110
http://dx.doi.org/10.1093/europace/eup110
http://dx.doi.org/10.1088/0960-1317/18/7/075028
http://dx.doi.org/10.1088/0960-1317/18/7/075028
http://dx.doi.org/10.1109/ICDE.2006.21
http://dx.doi.org/10.1109/ICDE.2006.21
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=253

Bibliography 127

[23] Crossbow. Mica2 datasheet. Technical Report 6020-0042-08 Rev A, Crossbow, 2009
[visited June 2011]. [p. 107]

[24] Scott E. Crouter, Kurt G. Clowers, and David R. Bassett. A novel method for using
accelerometer data to predict energy expenditure. Applied Physiology, 100(4):1324–1331,
2006. doi:10.1152/japplphysiol.00818.2005. [p. 70]

[25] Daniel Lewis (Ed). 802.15.6 call for applications - response summary. Technical report,
IEEE, January 2009 [visited June 2011]. [pp. 28 and 30]

[26] B.M. Dawant, S. Uckun, E.J. Manders, and D.P. Lindstrom. The simon project: model-
based signal acquisition, analysis, and interpretation in intelligent patient monitoring.
Engineering in Medicine and Biology Magazine, IEEE, 12(4):82 –91, December 1993. ISSN
0739-5175. doi:10.1109/51.248170. [pp. 67 and 95]

[27] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and Wei
Hong. Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth
international conference on Very large data bases - Volume 30, VLDB ’04, pages 588–599.
VLDB Endowment, 2004. ISBN 0-12-088469-0. [p. 96]

[28] Brian Dolan. Investors pumped $233M into mobile health in 2010. Mobile Health News,
January 2011 [visited April 2011]. [p. 17]

[29] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchroniz-
ation using reference broadcasts. SIGOPS Oper. Syst. Rev., 36(SI):147–163, 2002. ISSN
0163-5980. doi:10.1145/844128.844143. [pp. 65, 75, and 120]

[30] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35:114–131, June 2003. ISSN
0360-0300. doi:10.1145/857076.857078. [p. 83]

[31] Thomas Falck, Heribert Baldus, Javier Espina, and Karin Klabunde. Plug’n play simplicity
for wireless medical body sensors. Mobile Networks and Applications, 12(2–3):143–153,
June 2007. doi:10.1007/s11036-007-0016-2. [pp. 36, 65, and 120]

[32] K.D. Forbus. Qualitative reasoning. In Allen B . Tucker, editor, Intelligent Systems, Com-
puter Science Handbook, chapter VII. Chapman and Hall/CRC, 2nd edition, June 2004.
doi:10.1201/9780203494455.sec7. [pp. 81, 95, and 119]

[33] E. Freye and R. Eberhard. Multivariate data analysis based on a computerized pa-
tient monitoring system. Intensive Care Medicine, 1:193–197, 1975. ISSN 0342-4642.
doi:10.1007/BF00624438. [p. 93]

[34] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catterall, and Stephen Pink. Supporting
service discovery, querying and interaction in ubiquitous computing environments. Wirel.
Netw., 10:631–641, 2004. ISSN 1022-0038. doi:10.1023/B:WINE.0000044024.54833.cb.

[p. 58]

[35] Simson Garfinkel. Database nation: the death of privacy in the 21st century. O’Reilly &
Associates, Inc. Sebastopol, CA, USA, 2001. ISBN 0596001053. [p. 67]

[36] Global Business Intelligence Research. Multiparameter patient monitoring market to 2016,
December 2010. PRLog news [visited January 2011]. [pp. 18 and 67]

http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://dx.doi.org/10.1152/japplphysiol.00818.2005
http://dx.doi.org/10.1152/japplphysiol.00818.2005
https://mentor.ieee.org/802.15/file/08/15-08-0407-06-0006-tg6-applications-summary.doc
http://dx.doi.org/10.1109/51.248170
http://dx.doi.org/10.1109/51.248170
http://dl.acm.org/citation.cfm?id=1316689.1316741
http://mobihealthnews.com/10087/investors-pumped-233-million-into-mobile-health-in-2010/
http://dx.doi.org/10.1145/844128.844143
http://dx.doi.org/10.1145/844128.844143
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1007/s11036-007-0016-2
http://dx.doi.org/10.1007/s11036-007-0016-2
http://dx.doi.org/10.1201/9780203494455.sec7
http://dx.doi.org/10.1007/BF00624438
http://dx.doi.org/10.1007/BF00624438
http://dx.doi.org/10.1023/B:WINE.0000044024.54833.cb
http://dx.doi.org/10.1023/B:WINE.0000044024.54833.cb
http://www.databasenation.com/
http://www.prlog.org/11179728-multiparameter-patient-monitoring-market-to-2016.html

128 Bibliography

[37] Google. Java on Android. http://developer.android.com/guide/topics/fundamentals.html,
2011 [visited June 2011]. [p. 106]

[38] R. Gravina, A. Alessandro, A. Salmeri, L. Buondonno, N. Raveendranathan, V. Loseu,
R. Giannantonio, E. Seto, and G. Fortino. Enabling multiple BSN applications using the
SPINE framework. In Body Sensor Networks (BSN), 2010 International Conference on,
pages 228 –233, June 2010. doi:10.1109/BSN.2010.34. [p. 94]

[39] Sandeep K. S. Gupta. Safe and dependable bio-sensor networking for pervasive healthcare.
ASU Biomedical Informatics Colloquium Seminar, January 2008. Talk. [pp. 16 and 17]

[40] E. Guttman, C. Perkins, J. Veizades, and M. Day. RFC2608 - Service Location Protocol,
version 2. Technical report, IETF, June 1999. Published: IETF RFC. [p. 58]

[41] Keisuke Hachisuka, Teruhito Takeda, Yusuke Terauchi, Ken Sasaki, Hiroshi Hosaka, and
Kiyoshi Itao. Intra-body data transmission for the personal area network. Microsystem
Technologies, 11:1020–1027, 2005. ISSN 0946-7076. doi:10.1007/s00542-005-0500-1.

[p. 35]

[42] Leif W. Hanlen, David Smith, Jian Andrew Zhang, and Daniel Lewis. Key-sharing via
channel randomness in narrowband body area networks: is everyday movement sufficient?
In Proceedings of the Fourth International Conference on Body Area Networks, BodyNets
’09, pages 17:1–17:6. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009. ISBN 978-963-9799-41-7. [pp. 65 and 119]

[43] M.A. Hanson, H.C. Powell, A.T. Barth, K. Ringgenberg, B.H. Calhoun, J.H. Aylor, and
J. Lach. Body area sensor networks: Challenges and opportunities. Computer, 42(1):
58–65, January 2009. ISSN 0018-9162. doi:10.1109/MC.2009.5. [p. 37]

[44] W. B Heinzelman, A. L Murphy, H. S Carvalho, and M. A Perillo. Middleware
to support sensor network applications. Network, IEEE, 18:6–14, February 2004.
doi:10.1109/MNET.2004.1265828. [pp. 50, 61, and 94]

[45] Marco Hernandez, Haruka Suzuki, and Ryuji Kohno. HARQ for High QoS Applications of
BANs. Presentation, IEEE P802.15 Working Group for Wireless Personal Area Networks
(WPANs), November 2009 [visited June 2011]. [p. 36]

[46] Hidalgo. Equivital life monitoring. http://equivital.co.uk/, 2011 [visited May 2011].
[pp. 31, 109, and 115]

[47] Peter Hunter, Peter Robbins, and Denis Noble. The IUPS human physiome project. Pflugers
Arch, 445:1–9, 2002. doi:10.1007/s00424-002-0890-1. [p. 50]

[48] IEEE. IEEE Standard for Information Technology- Telecommunications and Information
Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements
Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions for Low-Rate Wireless Personal Area Networks (WPANs). Standard 802.15.4-2006,
IEEE, 2006. (Revision of IEEE Std 802.15.4-2003). doi:10.1109/IEEESTD.2006.232110.

[p. 32]

[49] IEEE. IEEE 802.15 TG-6 Body Area Networks (BAN), 2011 [visited May 2011].
[pp. 28, 33, and 45]

http://developer.android.com/guide/topics/fundamentals.html
http://dx.doi.org/10.1109/BSN.2010.34
http://dx.doi.org/10.1109/BSN.2010.34
http://impact.asu.edu/~mcn/Presentations/AYUSHMAN_BIOMED_ASU_Jan_2008_FINAL.ppt
http://dx.doi.org/10.1007/s00542-005-0500-1
http://portal.acm.org/citation.cfm?id=1658500.1658523
http://portal.acm.org/citation.cfm?id=1658500.1658523
http://dx.doi.org/10.1109/MC.2009.5
http://dx.doi.org/10.1109/MNET.2004.1265828
http://dx.doi.org/10.1109/MNET.2004.1265828
https://mentor.ieee.org/802.15/dcn/09/15-09-0774-00-0006-harq-for-high-qos-applications-of-bans.pdf
https://mentor.ieee.org/802.15/dcn/09/15-09-0774-00-0006-harq-for-high-qos-applications-of-bans.pdf
http://equivital.co.uk/
http://dx.doi.org/10.1007/s00424-002-0890-1
http://dx.doi.org/10.1109/IEEESTD.2006.232110
http://dx.doi.org/10.1109/IEEESTD.2006.232110
http://dx.doi.org/10.1109/IEEESTD.2006.232110
http://dx.doi.org/10.1109/IEEESTD.2006.232110
http://www.ieee802.org/15/pub/TG6.html

Bibliography 129

[50] IEEE Computer Society. IEEE standard for information technology— telecommunications
and information exchange between systems— local and metropolitan area networks—
specific requirements. Standard, IEEE, 2007. [p. 33]

[51] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard
754-2008, IEEE, August 2008. doi:10.1109/IEEESTD.2008.4610935. [p. 55]

[52] IEEE/ISO. IEEE 11073 - Personal Health Device Communication. Standard 11073,
IEEE/ISO, 2004. [p. 50]

[53] IEEE/ISO. IEEE 11073 - Personal Health Device Communication - Part 10201: Domain
information model. Standard 11073-10201:2004(E), IEEE/ISO, 2008. [p. 55]

[54] IEEE/ISO. IEEE 11073 - Personal Health Device Communication Part 20601: Application
profile- Optimized Exchange Protocol. Standard 11073-20601-2008, IEEE/ISO, 2008.

[pp. 25 and 55]

[55] IHTSDO. SNOMED Clinical terms user guide. User guide, International Health Ter-
minology Standards Development Organisation, January 2010 [visited June 2011].

[pp. 99 and 120]

[56] Hyung il Park, In gi Lim, Sungweon Kang, and Whan woo Kim. Human body commu-
nication system with fsbt. In Consumer Electronics (ISCE), 2010 IEEE 14th International
Symposium on, pages 1 –5, June 2010. doi:10.1109/ISCE.2010.5523268. [p. 35]

[57] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffusion
for wireless sensor networking. IEEE/ACM Transactions on Networking, 11:2–16, February
2003. doi:10.1109/TNET.2002.808417. [p. 61]

[58] International Commission on Non-ionizing Radiation Protection. Publications. http:
//www.icnirp.org/PubEMF.htm, 2011 [visited June 2011]. [p. 34]

[59] ISO/IEC. Information technology – Telecommunications and information exchange
between systems – High-rate ultra-wideband PHY and MAC standard. Standard ISO/IEC
26907:2009, ISO/IEC, November 2009. Revision of ISO/IEC 26907:2007. [p. 33]

[60] James Keener and James Sneyd. Mathematical physiology II: Systems physiology, volume
8/2 of Interdisciplinary Applied Mathematics. Springer Verlag, 2nd edition, 2009. ISBN
978-0-387-79387-0. [pp. 20 and 68]

[61] Prajakta Kulkarni and Yusuf Öztürk. Requirements and design spaces of mobile medical
care. SIGMOBILE Mob. Comput. Commun. Rev., 11:12–30, July 2007. ISSN 1559-1662.
doi:10.1145/1317425.1317427. [p. 17]

[62] Sun Labs. Sun SPOT Theory of Operation. Manual Red release 5.0, Sun Microsystems,
2009 [visited June 2011]. [p. 107]

[63] Benoît Latré, Bart Braem, Ingrid Moerman, Chris Blondia, and Piet Demeester. A survey
on wireless body area networks. Wireless Networks, 17:1–18, 2011. ISSN 1022-0038.
doi:10.1007/s11276-010-0252-4. [pp. 31 and 32]

[64] R. Law and H. Bukwirwa. The physiology of oxygen delivery. Update Anaesthesia, 10:1–2,
1999. [pp. 39, 70, and 109]

http://standards.ieee.org/about/get/802/802.11.html
http://standards.ieee.org/about/get/802/802.11.html
http://standards.ieee.org/about/get/802/802.11.html
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://www.11073.org/
http://www.11073.org/
http://www.11073.org/
http://www.11073.org/
http://www.11073.org/
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/doc_UserGuide_Current-en-US_INT_20100131.pdf
http://dx.doi.org/10.1109/ISCE.2010.5523268
http://dx.doi.org/10.1109/ISCE.2010.5523268
http://dx.doi.org/10.1109/TNET.2002.808417
http://dx.doi.org/10.1109/TNET.2002.808417
http://www.icnirp.org/PubEMF.htm
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=53426
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=53426
http://www.springer.com/mathematics/mathematical+biology/book/978-0-387-79387-0
http://dx.doi.org/10.1145/1317425.1317427
http://dx.doi.org/10.1145/1317425.1317427
https://www.sunspotworld.com/docs/Yellow/SunSPOT-TheoryOfOperation.pdf
http://dx.doi.org/10.1007/s11276-010-0252-4
http://dx.doi.org/10.1007/s11276-010-0252-4
http://update.anaesthesiologists.org/2008/12/01/the-physiology-of-oxygen-delivery/

130 Bibliography

[65] Q Li, R G Mark, and G D Clifford. Robust heart rate estimation from multiple asynchronous
noisy sources using signal quality indices and a Kalman filter. Physiological Measurement,
29(1):15, 2008. [pp. 58, 67, and 93]

[66] Joshua Lifton, Deva Seetharam, Michael Broxton, and Joseph Paradiso. Pushpin computing
system overview: A platform for distributed, embedded, ubiquitous sensor networks.
Pervasive Computing, 2414:605–614, 2002. doi:10.1007/3-540-45866-2_12. [p. 35]

[67] Yibo Ling, Terrence Pong, Christophoros C Vassiliou, Paul L Huang, and Michael J Cima. Im-
plantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers.
Nat Biotechnol, 29(3):273–277, Mar 2011. doi:10.1038/nbt.1780. [pp. 27 and 29]

[68] R. Stuart Mackay. Radio telemetering from within the body. Science, 134:1410, 1961.
doi:10.1126/science.134.3488.1410-a. [p. 18]

[69] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM Trans. Database
Syst., 30:122–173, March 2005. ISSN 0362-5915. doi:10.1145/1061318.1061322.

[pp. 95, 98, and 100]

[70] Maemo Community. Java on Maemo. http://wiki.maemo.org/Java, 2011 [visited June
2011]. [p. 106]

[71] J.J. Mastrototaro. The minimed continuous glucose monitoring system. Diabetes technology
& therapeutics, 2(1, Supplement 1):13–18, 2000. doi:10.1089/15209150050214078.

[p. 27]

[72] Bethesda (MD). UMLS Reference Guide. Technical report, National Library of Medicine
(US), September 2009. [p. 99]

[73] Medtronic Minimed. Product site. http://www.minimed.com/products/insulinpumps/
features/index.html, 2011 [visited June 2011]. [p. 29]

[74] George B. Moody. ECG-based Indices of Physical Activity. Computers in Cardiology, 19:
403–406, 1992. doi:10.1109/CIC.1992.269499. [p. 70]

[75] Jin-Hee Moon, Dong Hyun Baek, Yoon Young Choi, Kwang Ho Lee, Hee Chan Kim, and
Sang-Hoon Lee. Wearable polyimide–pdms electrodes for intrabody communication.
Journal of Micromechanics and Microengineering, 20(2):025032, 2010. doi:10.1088/0960-
1317/20/2/025032. [pp. 35 and 36]

[76] A. Natarajan, B. de Silva, Kok-Kiong Yap, and M. Motani. To hop or not to hop: Network
architecture for body sensor networks. In Sensor, Mesh and Ad Hoc Communications and
Networks, 2009. SECON ’09. 6th Annual IEEE Communications Society Conference on, pages
1 –9, June 2009. doi:10.1109/SAHCN.2009.5168978. [pp. 44 and 45]

[77] Nokia. Java on Symbian. http://www.developer.nokia.com/Devices/Symbian/#article4,
2011 [visited June 2011]. [p. 106]

[78] Nonin Medical Inc. Onyx II R© Model 9560 Bluetooth R© Fingertip Oximeter. OEM Spe-
cification and Technical Information 6470-000-01, Nonin Medical Inc, 2008 [visited June
2011]. [p. 27]

http://stacks.iop.org/0967-3334/29/i=1/a=002
http://stacks.iop.org/0967-3334/29/i=1/a=002
http://dx.doi.org/10.1007/3-540-45866-2_12
http://dx.doi.org/10.1007/3-540-45866-2_12
http://dx.doi.org/10.1038/nbt.1780
http://dx.doi.org/10.1038/nbt.1780
http://dx.doi.org/10.1126/science.134.3488.1410-a
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/1061318.1061322
http://wiki.maemo.org/Java
http://dx.doi.org/10.1089/15209150050214078
http://www.ncbi.nlm.nih.gov/books/NBK9676/
http://www.minimed.com/products/insulinpumps/features/index.html
http://dx.doi.org/10.1109/CIC.1992.269499
http://dx.doi.org/10.1088/0960-1317/20/2/025032
http://dx.doi.org/10.1109/SAHCN.2009.5168978
http://dx.doi.org/10.1109/SAHCN.2009.5168978
http://www.developer.nokia.com/Devices/Symbian/#article4
http://www.nonin.com/documents/Onyx-II-Model-9560-Bluetooth-Fingertip-Oximeter-OEM-Specification-and-Technical-Information-6470-000-01-ENG.pdf

Bibliography 131

[79] A.V. Nurmikko, J.P. Donoghue, L.R. Hochberg, W.R. Patterson, Yoon-Kyu Song, C.W.
Bull, D.A. Borton, F. Laiwalla, Sunmee Park, Yin Ming, and J. Aceros. Listening to
brain microcircuits for interfacing with external world–progress in wireless implantable
microelectronic neuroengineering devices. Proceedings of the IEEE, 98(3):375 – 388, March
2010. ISSN 0018-9219. doi:10.1109/JPROC.2009.2038949. [p. 27]

[80] E. Nuxoll and R. Siegel. Biomems devices for drug delivery. Engineering in Medicine
and Biology Magazine, IEEE, 28(1):31 –39, January-February 2009. ISSN 0739-5175.
doi:10.1109/MEMB.2008.931014. [p. 29]

[81] National Institute of Mental Health. Brain stimulation therapies. http://www.nimh.nih.
gov/health/topics/brain-stimulation-therapies/brain-stimulation-therapies.shtml, Novem-
ber 2009 [visited June 2011]. [p. 29]

[82] J. Olivo, S. Carrara, and G. De Micheli. Energy harvesting and remote powering for
implantable biosensors. Sensors Journal, IEEE, 11(7):1573 –1586, July 2011. ISSN
1530-437X. doi:10.1109/JSEN.2010.2085042. [p. 38]

[83] OMG. OMG Unified Modeling Language (OMG UML), Infrastructure, February 2009.
[pp. 22 and 87]

[84] Oracle. Java on Windows ME devices. http://www.oracle.com/technetwork/java/javame/
javamobile/download/sdk/, 2009 [visited June 2011]. [p. 106]

[85] Abraham Otero, Paulo Félix, Senén Barro, and Francisco Palacios. Addressing the
flaws of current critical alarms: a fuzzy constraint satisfaction approach. Artifi-
cial Intelligence in Medicine, 47(3):219 – 238, 2009. ISSN 0933-3657. doi:DOI:
10.1016/j.artmed.2009.08.002. [p. 119]

[86] Oxford University Press. The Oxford Dictionary of Sports Science & Medicine. Oxford
Reference Online, 2007. [p. 70]

[87] M. Pacelli, G. Loriga, N. Taccini, and R. Paradiso. Sensing fabrics for monitoring physiolo-
gical and biomechanical variables: E-textile solutions. In Medical Devices and Biosensors,
2006. 3rd IEEE/EMBS International Summer School on, pages 1–4, September 2006.
doi:10.1109/ISSMDBS.2006.360082. [p. 35]

[88] J.A. Paradiso and T Starner. Energy scavenging for mobile and wireless elec-
tronics. IEEE Pervasive Computing, 4(1):18–27, Jan-Mar 2005. ISSN 1536-1268.
doi:10.1109/MPRV.2005.9. [pp. 32 and 38]

[89] M. Patel and Jianfeng Wang. Applications, challenges, and prospective in emerging body
area networking technologies. IEEE Wireless Communications Magazine, 17(1):80–88,
2010. doi:10.1109/MWC.2010.5416354. [p. 32]

[90] PwC Pharmaceuticals. Medical technology innovation scorecard. Technical report, Price-
WaterhouseCoopers, January 2011. [p. 17]

[91] C.C.Y. Poon, Yuan-Ting Zhang, and Shu-Di Bao. A novel biometrics method to secure wire-
less body area sensor networks for telemedicine and m-health. Communications Magazine,
IEEE, 44(4):73 – 81, April 2006. ISSN 0163-6804. doi:10.1109/MCOM.2006.1632652.

[pp. 65 and 119]

http://dx.doi.org/10.1109/JPROC.2009.2038949
http://dx.doi.org/10.1109/JPROC.2009.2038949
http://dx.doi.org/10.1109/JPROC.2009.2038949
http://dx.doi.org/10.1109/MEMB.2008.931014
http://www.nimh.nih.gov/health/topics/brain-stimulation-therapies/brain-stimulation-therapies.shtml
http://dx.doi.org/10.1109/JSEN.2010.2085042
http://dx.doi.org/10.1109/JSEN.2010.2085042
http://www.omg.org/spec/UML/2.2/
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html
http://dx.doi.org/DOI: 10.1016/j.artmed.2009.08.002
http://dx.doi.org/DOI: 10.1016/j.artmed.2009.08.002
http://www.oxfordreference.com/views/ENTRY.html?entry=t161.e4314
http://dx.doi.org/10.1109/ISSMDBS.2006.360082
http://dx.doi.org/10.1109/ISSMDBS.2006.360082
http://dx.doi.org/10.1109/MPRV.2005.9
http://dx.doi.org/10.1109/MPRV.2005.9
http://dx.doi.org/10.1109/MWC.2010.5416354
http://dx.doi.org/10.1109/MWC.2010.5416354
http://www.pwc.com/us/en/health-industries/health-research-institute/innovation-scorecard/index.jhtml
http://dx.doi.org/10.1109/MCOM.2006.1632652
http://dx.doi.org/10.1109/MCOM.2006.1632652

132 Bibliography

[92] E.R. Post and M. Orth. Smart fabric, or "wearable clothing". Wearable Computers,
1997. Digest of Papers., First International Symposium on, pages 167–168, October 1997.
doi:10.1109/ISWC.1997.629937. [p. 35]

[93] L. Rabiner and B. Juang. An introduction to hidden Markov models. ASSP Magazine,
IEEE, 3(1):4 – 16, January 1986. ISSN 0740-7467. doi:10.1109/MASSP.1986.1165342.

[p. 67]

[94] Redpine Signals, Inc. RS9110-N-11-02 802.11bgn WLAN Module. Product Datasheet
Versiion 1.46.1, Redpine Signals, Inc., February 2011 [visited June 2011]. [p. 38]

[95] Eric Renard, Guy Costalat, Hugues Chevassus, and Jacques Bringer. Closed loop insulin
delivery using implanted insulin pumps and sensors in type 1 diabetic patients. Diabetes Res
Clin Pract, 74 Suppl 2:S173–S177, December 2006. doi:10.1016/S0168-8227(06)70026-2.

[p. 71]

[96] Shad Roundy, Dan Steingart, Luc Frechette, Paul Wright, and Jan Rabaey. Power sources
for wireless sensor networks. In Holger Karl, Adam Wolisz, and Andreas Willig, editors,
Wireless Sensor Networks, volume 2920 of Lecture Notes in Computer Science, pages 1–17.
Springer Berlin / Heidelberg, 2004. doi:10.1007/978-3-540-24606-0_1. [pp. 32 and 38]

[97] Salutation Consortium. Salutation architecture specification (part 1), version 2.0c. Tech-
nical Report 2.0, The Salutation Consortium, June 1999. [p. 58]

[98] Brent Schlender. Intel’s Andy Grove On The Next Battles In Tech. Fortune, May 2003
[visited April 2011]. [pp. 16 and 17]

[99] J. Scott, F. Hoffmann, M. Addlesee, G. Mapp, and A. Hopper. Networked surfaces: a new
concept in mobile networking. In Mobile Computing Systems and Applications, 2000 Third
IEEE Workshop on., pages 11–18, 2000. doi:10.1109/MCSA.2000.895377. [p. 35]

[100] Prithviraj Sen and A. Deshpande. Representing and querying correlated tuples in probabil-
istic databases. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pages 596 –605, april 2007. doi:10.1109/ICDE.2007.367905. [pp. 97 and 98]

[101] Shimmer-Research. Wireless GSR Sensor. Product specification, Shimmer-Research, 2011
[visited June 2011]. [p. 27]

[102] Victor Shnayder, Borrong Chen, Konrad Lorincz, Thaddeus R. F. Fulford-Jones, and Matt
Welsh. Sensor networks for medical care. Technical report, Division of Engineering and
Applied Sciences Harvard University, 2005. [p. 61]

[103] Feng Shu and Guido Dolmans. Qos support in wireless bans. Presentation, IEEE P802.15
Working Group for Wireless Personal Area Networks (WPANs), November 2008 [visited
June 2011]. [p. 36]

[104] Herbert Shubin and Max Harry Weil. Efficient Monitoring with a Digital Computer of
Cardiovascular Function in Seriously Ill Patients. Annals of Internal Medicine, 65(3):
453–460, 1966. doi:10.1059/0003-4819-65-3-453. [pp. 67 and 93]

[105] SICS. Contiki OS. http://www.sics.se/contiki/, 2001 [visited June 2011]. [p. 106]

[106] Smartex. Company site. http://smartex.it/, 2011 [visited June 2011]. [p. 35]

http://dx.doi.org/10.1109/ISWC.1997.629937
http://dx.doi.org/10.1109/MASSP.1986.1165342
http://www.redpinesignals.com/pdfs/datasheets/RS9110-N-11-02_Module_DataSheet.pdf
http://dx.doi.org/10.1016/S0168-8227(06)70026-2
http://dx.doi.org/10.1016/S0168-8227(06)70026-2
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://dx.doi.org/10.1007/978-3-540-24606-0_1
http://systems.cs.colorado.edu/grunwald/MobileComputing/Papers/Salutation/
http://money.cnn.com/magazines/fortune/fortune_archive/2003/05/12/342331/index.htm
http://dx.doi.org/10.1109/MCSA.2000.895377
http://dx.doi.org/10.1109/MCSA.2000.895377
http://dx.doi.org/10.1109/ICDE.2007.367905
http://dx.doi.org/10.1109/ICDE.2007.367905
http://www.shimmer-research.com/p/products/sensor-units-and-modules/wireless-gsr-sensor
http://www.eecs.harvard.edu/~mdw/papers/codeblue-techrept05.pdf
https://mentor.ieee.org/802.15/dcn/08/15-08-0772-00-0006-qos-support-in-wireless-bans.ppt
http://dx.doi.org/10.1059/0003-4819-65-3-453
http://dx.doi.org/10.1059/0003-4819-65-3-453
http://www.sics.se/contiki/
http://smartex.it/

Bibliography 133

[107] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, STOC ’01, pages 296–305, New York, NY, USA, 2001.
ACM. ISBN 1-58113-349-9. doi:10.1145/380752.380813. [p. 76]

[108] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Towards multi-purpose wireless sensor net-
works. In Proc. Systems Communications, pages 336–341, 2005. doi:10.1109/ICW.2005.77.

[p. 32]

[109] K. Strand and H. Flaatten. Severity scoring in the ICU: a review. Acta Anaesthesi-
ologica Scandinavica, 52(4):467–478, 2008. ISSN 1399-6576. doi:10.1111/j.1399-
6576.2008.01586.x. [pp. 67 and 93]

[110] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative model-
ing. Fuzzy Systems, IEEE Transactions on, 1(1):7, Feb 1993. ISSN 1063-6706.
doi:10.1109/TFUZZ.1993.390281. [pp. 81 and 119]

[111] J.X. Sun, A.T. Reisner, M. Saeed, and R.G. Mark. Estimating cardiac output from arterial
blood pressure waveforms: a critical evaluation using the MIMIC II database. In Computers
in Cardiology, 2005, pages 295 –298, September 2005. doi:10.1109/CIC.2005.1588095.

[pp. 19, 20, 39, 70, and 109]

[112] Sun Microsystems. Jini specifications, v. 2.1,. Technical report, Sun Microsystems, 2005.
[p. 58]

[113] SUN/Oracle. SunSPOT. http://www.sunspotworld.com/, 2004 [visited June 2011].
[pp. 22, 46, and 106]

[114] A.N.N.M. Swartz, S.J. Strath, D.R. Bassett, W.L. O’Brien, G.A. King, and B.E. Ainsworth.
Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Medicine
& Science in Sports & Exercise, 32(9):S450–S456, 2000. ISSN 0195-9131. [p. 70]

[115] Chiu C. Tan, Haodong Wang, Sheng Zhong, and Qun Li. Body sensor network security: an
identity-based cryptography approach. In Proceedings of the first ACM conference on Wireless
network security, WiSec ’08, pages 148–153. ACM, ACM, 2008. ISBN 978-1-59593-814-5.
doi:10.1145/1352533.1352557. [p. 120]

[116] Texas Instruments. CC2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
Product specification, Texas Instruments, March 2007 [visited June 2011]. [p. 38]

[117] Texas Instruments. CC2540 2.4-GHz Bluetooth R© low energy System-on-Chip. Product
specification, Texas Instruments, May 2011 [visited June 2011]. [p. 38]

[118] Texas Instruments. MSP430x2xx Family. User guide, Texas Instruments, April 2011
[visited June 2011]. [p. 37]

[119] Textile Wire. Technical brochure. http://www.textile-wire.ch/fileadmin/download/Techn_
Brosch_TW_en_def_may2011.pdf, 2011 [visited June 2011]. [p. 35]

[120] Textronics. Energy-activated fabrics. http://www.textronicsinc.com/products/, 2011
[visited June 2011]. [p. 35]

http://dx.doi.org/10.1145/380752.380813
http://dx.doi.org/10.1145/380752.380813
http://dx.doi.org/10.1109/ICW.2005.77
http://dx.doi.org/10.1109/ICW.2005.77
http://dx.doi.org/10.1111/j.1399-6576.2008.01586.x
http://dx.doi.org/10.1109/TFUZZ.1993.390281
http://dx.doi.org/10.1109/TFUZZ.1993.390281
http://dx.doi.org/10.1109/CIC.2005.1588095
http://dx.doi.org/10.1109/CIC.2005.1588095
http://java.sun.com/products/jini/2_1index.html
http://www.sunspotworld.com
http://journals.lww.com/acsm-msse/Abstract/2000/09001/Estimation_of_energy_expenditure_using_CSA.3.aspx
http://dx.doi.org/10.1145/1352533.1352557
http://dx.doi.org/10.1145/1352533.1352557
http://focus.ti.com/docs/prod/folders/print/cc2420.html
http://focus.ti.com/lit/ds/swrs084a/swrs084a.pdf
http://focus.ti.com/lit/ug/slau144h/slau144h.pdf
http://www.textile-wire.ch/fileadmin/download/Techn_Brosch_TW_en_def_may2011.pdf
http://www.textronicsinc.com/products/

134 Bibliography

[121] TinyOS team. TinyOS. http://www.tinyos.net/, 2000 [visited June 2011].
[pp. 48 and 106]

[122] UPnP Forum. UPnP device architecture. version 1.0. Technical report, UPnP Forum, July
2006. [p. 58]

[123] C.N. Ververidis and G.C. Polyzos. Service discovery for mobile ad hoc networks: a survey
of issues and techniques. Communications Surveys Tutorials, IEEE, 10(3):30 –45, quarter
2008. ISSN 1553-877X. doi:10.1109/COMST.2008.4625803. [p. 58]

[124] Agustinus Borgy Waluyo, Isaac Pek, Song Ying, Jiankang Wu, Xiang Chen, and Wee-
Soon Yeoh. LiteMWBAN: a lightweight middleware for wireless body area network. In
Medical Devices and Biosensors, 2008. ISSS-MDBS 2008. 5th International Summer School
and Symposium on, pages 141–144, June 2008. doi:10.1109/ISSMDBS.2008.4575038.

[p. 61]

[125] Agustinus Borgy Waluyo, Wee-Soon Yeoh, Isaac Pek, Yihan Yong, and Xiang Chen. Mobis-
ense: Mobile body sensor network for ambulatory monitoring. ACM Trans. Embed. Comput.
Syst., 10:13:1–13:30, August 2010. ISSN 1539-9087. doi:10.1145/1814539.1814552.

[pp. 61, 65, and 119]

[126] J.D. Weiland, W. Liu, and M.S. Humayun. Retinal prosthesis. Annu. Rev. Biomed. Eng., 7:
361–401, 2005. doi:10.1146/annurev.bioeng.7.060804.100435. [p. 29]

[127] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: A framework for compos-
able semantic interpretation of sensor data. In Kay Römer, Holger Karl, and Friedemann
Mattern, editors, Wireless Sensor Networks, volume 3868 of Lecture Notes in Computer
Science, pages 5–20. Springer Berlin / Heidelberg, 2006. doi:10.1007/11669463_4.

[p. 94]

[128] Bruce L. Wilkoff, Angelo Auricchio, Josep Brugada, Martin Cowie, Kenneth A. Ellenbo-
gen, Anne M. Gillis, David L. Hayes, Jonathan G. Howlett, Josef Kautzner, Charles J.
Love, John M. Morgan, Silvia G. Priori, Dwight W. Reynolds, Mark H. Schoenfeld,
and Panos E. Vardas. HRS/EHRA Expert Consensus on the Monitoring of Cardiovas-
cular Implantable Electronic Devices (CIEDs): Description of Techniques, Indications,
Personnel, Frequency and Ethical Considerations. Europace, 10(6):707–725, 2008.
doi:10.1093/europace/eun122. [p. 16]

[129] World Health Organization. The global burden of disease: 2004 update, 2004 [visited
April 2011]. [p. 15]

[130] World Health Organization. Working together for health, the world health report 2006,
2006. Overview. [p. 16]

[131] World Health Organization. Life expectancy at birth, 2008 [visited April 2011]. [p. 15]

[132] World Health Organization. Fact sheets: chronic diseases, 2008-2011 [visited April 2011].
[p. 15]

[133] World Health Organization. Global health atlas, 2009. Data Statistics of Global Health
[visited April 2011]. [p. 16]

http://www.tinyos.net/
http://dx.doi.org/10.1109/COMST.2008.4625803
http://dx.doi.org/10.1109/COMST.2008.4625803
http://dx.doi.org/10.1109/ISSMDBS.2008.4575038
http://dx.doi.org/10.1145/1814539.1814552
http://dx.doi.org/10.1145/1814539.1814552
http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100435
http://dx.doi.org/10.1007/11669463_4
http://dx.doi.org/10.1007/11669463_4
http://dx.doi.org/10.1093/europace/eun122
http://dx.doi.org/10.1093/europace/eun122
http://dx.doi.org/10.1093/europace/eun122
http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html
http://www.who.int/whr/2006/en/index.html
http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/index.html
http://www.who.int/topics/chronic_diseases/factsheets/en/index.html
http://apps.who.int/globalatlas/dataQuery/default.asp

Bibliography 135

[134] World Health Organization. Global health risks, mortality and burden of disease attribut-
able to selected major risks, 2009 [visited April 2011]. [p. 15]

[135] World Health Organization. Electromagnetic fields. http://www.who.int/peh-emf/en/,
2011 [visited June 2011]. [p. 34]

[136] Ge Wu and Peter R. Cavanagh. ISB recommendations for standardization in the reporting
of kinematic data. Journal of Biomechanics, 28(10):1257–1261, 1995. ISSN 0021-9290.
doi:10.1016/0021-9290(95)00017-C. [pp. 99 and 120]

[137] Guang-Zhong Yang, Omer Aziz, Benny Lo, Ara Darzi, Bhavik A. Patel, Costas A. Anastassiou,
Danny O’Hare, Anna Radomska, Suket Singhal, Tony Cass, and Heny Higgins. Body Sensor
Networks, volume XXVIII of User Interfaces, HCI and Ergonomics. Springer, 1st edition,
2006. ISBN 978-1-84996-569-9. [p. 31]

[138] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing
in sensor networks. SIGMOD Rec., 31:9–18, September 2002. ISSN 0163-5808.
doi:10.1145/601858.601861. [pp. 95 and 96]

[139] T. Zasowski, F. Althaus, M. Stager, A. Wittneben, and G. Troster. Uwb for noninvasive
wireless body area networks: channel measurements and results. In Ultra Wideband
Systems and Technologies, 2003 IEEE Conference on, pages 285 – 289, November 2003.
doi:10.1109/UWBST.2003.1267849. [p. 33]

[140] Zephyr Technologies. Company site. http://www.zephyr-technology.com/, 2011 [visited
June 2011]. [p. 27]

[141] Bin Zhen, Maulin Patel, SungHyup Lee, EunTae Won, and Arthur Astrin. TG6 technical
requirements document. Trd, IEEE P802.15 Working Group for Wireless Personal Area
Networks (WPANs), September 2008. [pp. 30, 32, and 34]

[142] Gang Zhou, Jian Lu, Chieh-Yih Wan, M.D. Yarvis, and J.A. Stankovic. BodyQoS: Ad-
aptive and Radio-Agnostic QoS for Body Sensor Networks. In INFOCOM 2008. The
27th Conference on Computer Communications. IEEE, pages 565 –573, April 2008.
doi:10.1109/INFOCOM.2008.105. [p. 36]

[143] F. Zhu, M. W Mutka, and L. M Ni. Service discovery in pervasive computing environ-
ments. Pervasive Computing, IEEE, 4:81–90, December 2005. doi:10.1109/MPRV.2005.87.

[p. 58]

[144] ZigBee Alliance. Zigbee specification version 1.0. Technical Report 1.0, ZigBee Alliance,
June 2005. [pp. 21, 32, 50, and 58]

[145] T.G. Zimmerman. Personal area networks: near-field intrabody communication. Master’s
thesis, Massachusetts Institute of Technology, September 1995. [p. 18]

[146] T.G. Zimmerman. Personal area networks: near-field intrabody communication. IBM
Systems Journal, 35(3.4):609–617, 1996. ISSN 0018-8670. [pp. 18, 35, and 120]

http://www.who.int/healthinfo/global_burden_disease/global_health_risks/en/index.html
http://www.who.int/healthinfo/global_burden_disease/global_health_risks/en/index.html
http://www.who.int/peh-emf/en/
http://dx.doi.org/10.1016/0021-9290(95)00017-C
http://dx.doi.org/10.1016/0021-9290(95)00017-C
http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1109/UWBST.2003.1267849
http://dx.doi.org/10.1109/UWBST.2003.1267849
http://www.zephyr-technology.com/
https://mentor.ieee.org/802.15/dcn/08/15-08-0644-09-0006-tg6-technical-requirements-document.doc
https://mentor.ieee.org/802.15/dcn/08/15-08-0644-09-0006-tg6-technical-requirements-document.doc
http://dx.doi.org/10.1109/INFOCOM.2008.105
http://dx.doi.org/10.1109/INFOCOM.2008.105
http://dx.doi.org/10.1109/MPRV.2005.87
http://dx.doi.org/10.1109/MPRV.2005.87
http://www.zigbee.org/en/spec_download/download_request.asp
http://pubs.media.mit.edu/?section=docdetail&id=209112&collection=Media+Lab&filtercollection=Media+Lab

B
Acronyms

ABP Arterial Blood Pressure

API Application Program Interface

BAN Body Area Network

BAWSN Body Area Wireless Sensor Network

BCC Body Coupled Communication

BP Blood Pressure

BS Base Station

BSN Body Sensor Network

CAN Controller Area Network

CLRS Cormen Leiserson Rivest Stein

DAG Directed Acyclic Graph

DALY Disability Adjusted Life Year

CLP(R) Constraint Language Programming
(Real)

CO Cardiac Output

COPD Chronic Obstructive Pulmonary
Disease

CPU Central Processing Unit

ECG ElectroCardioGram

FEC Forward Error Correction

GPS Geographical Positioning System

GW Gateway

HBC Human Body Communication

HCI Human Computer Interface

HR Heart Rate

I2C Inter-Integrated Circuit

IARC International Agency for Research on
Cancer

ICNIRP International Commission on
Non-Ionizing Radiation Protection

ICU Intensive Care Unit

IDE Integrated Development
Environment

IECD Implantable Electronic
Cardiovascular Device

137

138 Acronyms

IEEE Institute of Electrical and Electronics
Engineers

IO Input/Output

IP Internet Protocol

IPC Inter Process Communication

IT Information Technology

J2ME Java 2 platform Micro Edition

JVM Java Virtual Machine

LED Light Emitting Diode

MAC Media Access Control

MET Metabolic Equivalent

MiLAN Middleware Linking Applications and
Networks

MDER Medical Device Encoding Rules

MRI Magnetic Resonance Imaging

MTU Maximum Transmission Unit

OS Operating System

P2P Peer to Peer

PAN Personal Area Network

PC Personal Computer

PDA Personal Digital Assistant

PHY Physical

PPG PhotoPlethysmoGram

pub/sub Publish/Subscribe

QoS Quality of Service

RAM Random Access Memory

SAR Specific Absorption Rate

SD Service Discovery

SDK Software Development Kit

SDP Service Discovery Protocol

SIMON Signal Interpretation and
MONitoring

SLP Service Location Protocol

SN Sensor Network

SNOMED-CT Systematized Nomenclature of
Medicine Clinical Terms

SP Signal Processing

SPI Serial Peripheral Interface

SPOT Small Programmable Object
Technology

SVRG State-based Variable Requirement
Graph

SV Stroke Volume

SW Software

pdf probability distribution function

PDR Packet Delivery Ratio

PIN Personal Identification Number

USA United States of America

UML Unified Modelling Language

UMLS Uniform Medical Language System

UMTS Universal Mobile
Telecommunications System

UPnP Universal Plug and Play

URL Uniforme Resource Location

UUID Universal Unique IDentifier

UWB Ultra Wide Band

VM Virtual Machine

WBAN Wireless Body Area Network

WHO World Health Organization

WCND Worst Case Number of Descendants

WCP Worst Case Possibilities

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

C
Implementation details

T his appendix describes some of the implementation specifics that, although relevant, fell
outside of the level of detail for the main part. We describe some aspects of the Application
Program Interface (API) and then mention the software used in the development of this

thesis, including typesetting this document.

JavaDoc documentation for the code can be seen at http://www.cl.cam.ac.uk/~pb405/
implementation/doc/.

C.1 – API

This section discusses some details that were not addressed in §6.3 for the API.

When in §6.3 we discussed the CommandDaemon abstract interface we did not address the
details for turning the node on/off. This functionality is done by implementing the method
cmdStateCh_impl(...) (listing C.1, line 2). The parameter on defines if it is to set it on
(true) or off (false). The parameter for NodeComm identifies the communication component
used for sending the acknowledgement after the on/off, so the interface associated with this
NodeComm should stay on for the acknowledgement. After the acknowledgement is sent, the
last interface should be turned off. For this itfsOff(...) is used; the NodeComm’s inter-
face is now turned off. This is not a two phase approach; this separation is just so that the
cmdStateCh(...) on the CommandDaemon abstraction can control the off process acknow-
ledging it or not depending on the result and only then turning the last part off.

Although not needed for implementing a CommandDaemon, it may be relevant to know the
interface for callbacks we mentioned when discussing the bootstrap in §6.1.1. In listing C.1,

139

http://www.cl.cam.ac.uk/~pb405/implementation/doc/
http://www.cl.cam.ac.uk/~pb405/implementation/doc/

140 C.2. Software Used

� �
1 public abstract class CommandDaemon extends DaemonMessaging {

2 protected abstract void cmdStateCh_impl(boolean on, NodeComm nodeComm)

throws IllegalStateException;

3 protected abstract SensorService buildSensorService(SensorProfile sp);

4 protected abstract void itfsOff(NodeComm node);

5 // ...

6 public void addCallbackMeasurements(CallBackCmdMeasurements toCall) { /∗ ...

∗/}
7 protected void cmdStateCh(boolean on, MessageStream mesg) { /∗ ... ∗/}
8 // ...

9 }� �
Listing C.1 – CommandDaemon abstract methods for a node

line 6 we show a method for adding a callback for getting measurements when they are received;
note that it is not filtered by information type, all measurements received are notified.

Listing C.2 shows the interfaces to implement to register for these callbacks. The Call-

BackCmdMeasurements allows aggregated (bulk) measurements and single measurements to
be received. The command daemon also allows for command replies to be received, namely
acknowledgements.

� �
public interface CallBackCmdMeasurements {

public abstract void newMeasure(MeasurementBasic measure, int reqId);

public abstract void newMeasuresAggSimp(MeasurementBasic[] measuresAggSimp,

int reqId);

}� �
Listing C.2 – CommandDaemon callback interfaces

As expected, the ServiceDiscDaemon implements the same procedure, where a Call-

BackSD interface allows for notification on node discovery and removal. The daemons maintain
a list of the registered callbacks and call them on a separated thread.

C.2 – Software Used

The work of this thesis relied on several packages of software. A word of thanks is due to the
people involved in their development, as most were developed in open source and without any
company backing.

We list the software used for the development and for typesetting the thesis.

C.2.1 Development

Development was mostly done in Windows 7 64 bits and Java SunSPOTs with some excursions
to Linux. Software used was

• Eclipse IDE
• Tortoise SVN client for windows and Eclipse plug-in

Appendix C. Implementation details 141

• Tigris SVN server for Linux
• BOUML UML software
• Sun’s Java 64 bits
• SunSPOT’s SDK
• Serial port classes for Java 64 bits
• Google’s Window Builder Pro for Eclipse
• Doxygen documentation generation tool
• Foswiki (Twiki at first) for wiki documentation

C.2.2 Typesetting

The following programs were used for typesetting the thesis document:

• Vim as text editor
– Latex-Suite for vim
– tags plugin for vim
• JabRef for bibtex reference managing
• SumatraPDF and Acrobat Reader
• Microsoft Office suite: MS Word, MS Visio, MS Excel
• ctags program for windows
• Perl 2.10 for scripting help
• Tex configuration/style from Markus Kuhn, Sriram Srinivasan and also from tex.ac.uk and

eng.cam.ac.uk/help/tpl/textprocessing/

The thesis was typeset in MS Windows using the MikTex 2.9 latex distribution. The following
packages were used:

• acronym
• algorithm
• algorithmicx
• algpseudocode
• amsbsy
• amsfonts
• amsgen
• amsmath
• amsopn
• amstext
• array
• atbegshi
• atveryend
• babel
• backref
• bigintcalc
• bitset
• caption
• caption3
• charter
• color
• colortbl

• courier
• etexcmds
• fancyhdr
• filecontents
• fix-cm
• float
• fontenc
• gettitlestring
• graphics
• graphicx
• hobsub
• hobsub-generic
• hobsub-hyperref
• hopatch
• hycolor
• hyperref
• ifluatex
• ifpdf
• ifthen
• ifvtex
• ifxetex
• imakeidx

• infwarerr
• inputenc
• intcalc
• keyval
• kvdefinekeys
• kvoptions
• kvsetkeys
• letltxmacro
• lettrine
• lipsum
• listings
• lstlang1
• lstmisc
• ltxcmds
• microtype
• multicol
• multirow
• nameref
• natbib
• needspace
• paralist
• pdfescape

• pdftexcmds
• refcount
• rerunfilecheck
• rotating
• snapshot
• soul
• subfig
• subfiles
• suffix
• tabularx
• threeparttable
• titlesec
• trig
• uniquecounter
• url
• verbatim
• wrapfig
• xcolor-patch
• xkeyval
• xspace

http://www.tex.ac.uk/cgi-bin/texfaq2html
http://www.eng.cam.ac.uk/help/tpl/textprocessing/

D
Index

— A —
aggregateNodes, see Algorithm
Algorithm

aggregateNodes, 74
checkPossibilities, 72
checkPossibleSources, 73
getInfoPoss, 73
getModulePoss, 73

— B —
Bootstrap, 105

— C —
checkPossibilities, see Algorithm
checkPossibleSources, see Algorithm
CodeBlue, see Middleware
CommandDaemon, 48
Cost, 76

— D —
DaemonGWRegistrar, 86, 99
Daemons

Command D., see CommandDaemon
Dispatcher D., see DispatcherDaemon
Service Discovery D., see

ServiceDiscDaemon

DataValue, 86
DispatcherDaemon, 48, 49

— G —
getInfoPoss, see Algorithm
getModulePoss, see Algorithm

— I —
Identifier

Body, 55
Body, 65

IPC, 107

— L —
Location, see Node location

— M —
Measurements, 51
Messages

ACK, 53
Command, 53
Service Discovery, 58

Middleware
CodeBlue, 61
MiLAN, 61
Mobisense, 61

MiLAN, see Middleware

143

144 Index

Mobisense, see Middleware
Module, 84–87

Creation of ModuleSensor, 103
Instantiation, 87

— N —
NetPointsDB, 47
New Node, 102
Node location, 86, 99
NodeComm, 47

— P —
Policy, 87–89, 91, 93, 99, 100

— R —
RegistrarInfo, 87, 99
RegistrarProduction, 84, 86, 87, 91, 93, 99,

100

Requirements, 56

— S —
SensorCollect, 50
SensorSend, 50
SensorService, 50
Service Discovery, 55–59

Daemon, see ServiceDiscDaemon
ServiceDiscDaemon, 48
Storage, 51, 52

— T —
TinyOS

Threads, 48

— U —
UUID, 60

	812.pdf
	1 Introduction
	1.1 Where are we?
	1.2 Where do we want to go?
	1.2.1 BANs

	1.3 The transport to get us there
	1.3.1 Contributions

	1.4 Outline
	1.5 Notation
	1.5.1 Nomenclature

	2 Background
	2.1 BANs' nodes
	2.2 Applications
	2.2.1 Requirements

	2.3 WSN and BSN
	2.4 Network characteristics
	2.4.1 Wired versus wireless
	2.4.2 Communication using the human body
	2.4.3 QoS
	2.4.4 802.15.6 communication channels

	2.5 Energy
	2.6 Our work in BANs

	3 Hardware abstraction layer
	3.1 Introduction
	3.2 Application needs and design decisions
	3.2.1 Star topology
	3.2.2 Dumb sensors

	3.3 Hardware abstraction layer
	3.3.1 Network
	3.3.2 Daemons
	3.3.3 Sensor services
	3.3.4 Active components

	3.4 Information abstraction layer
	3.5 Data structures
	3.5.1 Profiles
	3.5.2 Messages
	3.5.3 Final comments

	3.6 Service discovery
	3.6.1 Service discovery messages
	3.6.2 Other service discovery services
	3.6.3 Comments

	3.7 Adding a new node to the architecture
	3.8 Other middleware architectures
	3.9 Concluding remarks
	3.9.1 In-node processing
	3.9.2 What about actuators?
	3.9.3 Virtual Nodes
	3.9.4 Open issues

	4 Modelling data correlations
	4.1 Introduction
	4.1.1 Problem statement

	4.2 Model
	4.2.1 Framework description
	4.2.2 Optimization algorithm
	4.2.3 Metrics
	4.2.4 Complexity analysis
	4.2.5 Model notes

	4.3 Conclusion
	4.3.1 Open issues

	5 Information flow
	5.1 Pub/Sub system
	5.1.1 Modules
	5.1.2 Brokerage

	5.2 Component interactions
	5.2.1 Requests
	5.2.2 Optimization
	5.2.3 Producer un-registering
	5.2.4 Alarms
	5.2.5 Producer unavailable
	5.2.6 New information/value
	5.2.7 Un-subscription

	5.3 Related work
	5.3.1 Declarative languages

	5.4 Conclusion
	5.4.1 Open issues

	6 Implementation
	6.1 Layer interaction
	6.1.1 Functionality interaction

	6.2 Platform
	6.2.1 Communication
	6.2.2 Library details
	6.2.3 Test application

	6.3 API
	6.3.1 Network Interface
	6.3.2 Command Daemon
	6.3.3 Sensor Service
	6.3.4 Module
	6.3.5 Application
	6.3.6 Moving the abstractions
	6.3.7 API Comments

	6.4 Final Observations

	7 Conclusions and future work
	7.1 Conclusion
	7.2 Future work
	7.3 Lessons learned
	7.3.1 BSN versus WSN
	7.3.2 The cost of code
	7.3.3 Platform

	7.4 Publications

	A Bibliography
	B Acronyms
	C Implementation details
	C.1 API
	C.2 Software Used
	C.2.1 Development
	C.2.2 Typesetting

	D Index

