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Summary

Authenticating humans to computers remains a notable weak point in computer security

despite decades of effort. Although the security research community has explored dozens of

proposals for replacing or strengthening passwords, they appear likely to remain entrenched as

the standard mechanism of human-computer authentication on the Internet for years to come.

Even in the optimistic scenario of eliminating passwords from most of today’s authentication

protocols using trusted hardware devices or trusted servers to perform federated authenti-

cation, passwords will persist as a means of “last-mile” authentication between humans and

these trusted single sign-on deputies.

This dissertation studies the difficulty of guessing human-chosen secrets, introducing a sound

mathematical framework modeling human choice as a skewed probability distribution. We

introduce a new metric, α-guesswork, which can accurately models the resistance of a dis-

tribution against all possible guessing attacks. We also study the statistical challenges of

estimating this metric using empirical data sets which can be modeled as a large random

sample from the underlying probability distribution.

This framework is then used to evaluate several representative data sets from the most im-

portant categories of human-chosen secrets to provide reliable estimates of security against

guessing attacks. This includes collecting the largest-ever corpus of user-chosen passwords,

with nearly 70 million, the largest list of human names ever assembled for research, the largest

data sets of real answers to personal knowledge questions and the first data published about

human choice of banking PINs. This data provides reliable numbers for designing security

systems and highlights universal limitations of human-chosen secrets.
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Computers are useless. They can only give you answers.

—Pablo Picasso, 1968

Chapter 1

Introduction

Secret knowledge stored in human memory remains the most widely deployed means of human-

computer authentication. Most notably, text passwords dominate authentication over the

Internet and numeric PINs dominate authentication for payment card transactions. Most

security engineers believe both are weak points whose security continues to decline with the

increasing number of third parties seeking to authenticate users [121, 244].

Reliable data on damages caused by weak human-chosen secrets is hard to come by [141], but

a recent study of corporate data breaches commissioned by Verizon [12] suggested that nearly

a third are due to stolen login credentials. This surpasses classic technical exploits such as

SQL injection or buffer overflows. Of attacks using stolen login credentials, over a quarter were

estimated to be stolen by some form of a guessing attack. Guessing attacks have had major

business implications, such as a 2009 incident in which a vandal guessed a Twitter executive’s

password and was able to leak all of the company’s internal documents [75].

There also exists a significant threat to individuals’ private online accounts. A 2008 study by

Symantec [7] of online black markets found a vibrant economy trading in stolen passwords.

Due to the widespread re-use of passwords across sites [152], an emerging attack model is

to compromise accounts by a guessing attack against a low-security website and attempt to

re-use the credentials at critical websites [240].

At the same time as attacks on passwords are becoming an industrial-scale threat, the past

few years have seen massive data sets of passwords available for study for the first time. While

passwords and PINs have long been considered weak secrets, computer security researchers

have lacked a standard way for analysing how resistant these credentials actually are to guess-

ing. The literature lacks sound methodology to answer simple questions such as “Do passwords

provide better security against guessing than PINs?” or “Do users of website A pick more

secure passwords than users of website B?”.
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1.1. Model of authentication and guessing attacks

This dissertation aims both to rigorously define an appropriate framework for answering these

questions and to introduce the largest data sets of human-chosen secrets yet published to

provide standard benchmarks for security engineers to use when designing systems which

incorporate human choice.

1.1 Model of authentication and guessing attacks

The first step in any security analysis is defining what we are trying to protect and what at-

tackers are capable of [22]. We introduce an abstract model of authentication with just enough

formalism to capture all of the important practical cases of human-computer authentication.

Many of the concepts we introduce will be described in detail later, which we indicate by

including the section number, i.e. (§1.1).

1.1.1 Basic authentication protocol

In cryptographic terms, authentication is a protocol between a principal claiming a certain

identity, called the prover or claimant, and a sceptical principal called the verifier requesting

proof. In remote human-computer authentication, the prover is often called the user and the

verifier called the server. Software operating on behalf of the user is called the user agent or

browser. The term client may refer to either the user, the user agent, or their combination.

In static authentication protocols, the prover sends a password x,1 also called a secret or

token, to the verifier along with a claimed identity2 i. We will often use the term password

in a generic sense to refer to any fixed secret knowledge, which may be a PIN (§4), graphical

password (§2.3.2), or some other item. When clarity is needed, we will use the term text

password to mean a traditional short, human-chosen character string.

Upon receipt of an authentication request (i,x) the verifier checks it against a database,

ideally in hashed format (§2.2.1), and makes an authentication decision. Because the prover

must be granted or denied access the verifier acts as an oracle to test whether arbitrary pairs

(i,x) are valid. Together, a valid pair (i,x) is referred to as a credential. An attacker’s goal is

typically to obtain one or more valid credentials (i,x) from a target verifier.3

1We use x to denote a password instead of p to avoid confusion with probabilities.
2The term identity is complicated and no universal definition exists. For our purposes, we’ll broadly say

that an identity is any string such as a name, email address or username which links actions taken at two

different points in time to the same principal.
3Note that verifiers need not grant access in all cases given a valid credential. They may limit a credential

to certain machines or IP addresses, for example, as part of an intrusion detection system designed to mitigate

credential theft [82]. We consider this out of scope.
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1.1. Model of authentication and guessing attacks

Challenge-response authentication

Some knowledge-based authentication schemes require the verifier to send a specific challenge

c to the prover prior to receiving the password. In some schemes c is fixed for each prover, such

as a personal knowledge question (§7) or an image on which to click secret points (§2.3.2). A

fixed challenge is usually called a prompt.

In other schemes, referred to as challenge-response protocols, c is unique for each authen-

tication attempt and is called a nonce, timestamp or counter. Varying challenges must be

incorporated by responding with some function f(x, c) instead of simply x. The computed

value f(x, c) is often called a one-time password. The function f might be executed by a com-

puter, in which case it can provide cryptographic security (§2.3.1), or designed to be simple

enough for humans to compute with sub-cryptographic security (§2.3.2).

1.1.2 Guessing attacks

Any attacker attempting to find credentials by guessing likely passwords can be considered a

guessing attacker. An online guessing attack consists of submitting guessed credentials (i,x) to

the verifier to test their validity. A well-designed verifier will employ rate-limiting techniques

(§2.2.3) to limit the number of guesses which can be made, for example by limiting the number

of authentication attempts in a given time period, forcing a user to reset his or her password

after too many failed attempts, or requiring the prover to solve puzzles such as CAPTCHAs.

In an offline guessing attack, the attacker has obtained some value cryptographically derived

from x which can be used to verify guesses. Often this is the password hash H(x) obtained

through a database compromise, but it may also be the value f(x, c) for a known challenge

c obtained by eavesdropping. No rate-limiting is possible in this scenario so the attacker is

only throttled by available computational resources. Offline attacks are also called brute-force

attacks or password cracking (§2.4).

We may also classify guessing attacks by the attacker’s goals. In a targeted or vertical attack,

the attacker only seeks to determine x for a fixed value of i. Targeted attackers can research

the targeted user i to enhance their guessing strategy or attempt to steal x outside of the

authentication protocol completely.

In a trawling or horizontal attack, an attacker has a large list of identities i1, . . . , ik and is

interested in discovering the correct x for as many as possible. A trawling attacker typically

won’t have user-specific information for any of the available identities and will instead guess

the most likely population-wide passwords. Security economics suggests that on the Internet,

trawling attacks scale more efficiently than targeted attacks [139].

Preventing the attacker from assembling a large list of valid identities is one defence against

a trawling attack. An adversary may attempt to test if an identity i is valid without knowing
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1.2. Outline of this dissertation

the correct password x to prevent wasted guessing effort. This is referred to as user probing.

A securely implemented verifier should return a generic error if either the identity i does not

exist or the wrong x is supplied to prevent user probing.4

While all combinations of offline/online and targeted/trawling attack are possible, some lit-

erature assumes that online attacks are always trawling attacks and offline attacks are always

targeted which are the most common cases.

1.1.3 Other attacks

An attacker may steal credentials without guessing them. One approach is to masquerade

as a valid verifier and attempt to collect credentials when provers attempt to authenticate.

This is called phishing.5 Alternately, an attacker may try to observe authentication between

a valid prover and verifier. The most common mechanism is by running malicious software

(or malware) on a victim’s computer which silently records credentials as they are entered,

often called a keylogging attack. Credentials can also be observed during transmission if they

are not encrypted in an eavesdropping attack (§2.2.2), also referred to as password sniffing

or password snooping. Finally, an attacker may physically observe a user entering credentials

in a physical observation attack. This is often referred to as shoulder-surfing if the attacker

personally observes the entry of credentials, but a physical observation attack may also involve

video cameras or other automated equipment.

This dissertation will focus exclusively on guessing and not consider these attacks any further.

1.2 Outline of this dissertation

We’ll begin in §2 with an overview of the history of passwords, PINs and other secret-

knowledge based authentication systems. This chapter will focus particularly on why efforts

to replace these schemes have historically failed and why past analysis of guessing difficulty

has been ad hoc and unsatisfactory.

In §3 we’ll explore mathematical metrics of guessing difficulty, quickly surveying previously

proposed measures and introducing new partial guessing metrics which accurately model an

attacker willing to give up on difficult values. The chapter builds towards a new metric,

α-guesswork, which is a generalisation of the traditional guesswork metric which can be pa-

rameterised to capture realistic attack scenarios. Several properties of the new metric are

proved which demonstrate why old metrics can be arbitrarily inaccurate. The concept of a

guessing curve is introduced to visualise a continuum of guessing attacks and their difficulty.

4In [47] we found that 96% of websites enable user probing by simple means.
5Dhamija et al. provide a good overview of phishing [88].
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1.3. Prerequisites

The new partial guessing metrics are applied in §4 to analyse numeric PINs, a relatively

easy application since banking PINs are chosen from a small finite domain of possibilities.

This section utilises some leaked data sets and a large user survey to introduce the first-ever

estimates of how difficult real banking PINs are to guess.

In §5 we’ll tackle the difficulty of estimating guessing metrics without perfect knowledge of the

distribution but instead with a large set of random samples. Even at massive sample sizes it

can be impossible to accurately compute many guessing metrics for some distributions of inter-

est, particularly passwords. We’ll then introduce methodology for estimating which guessing

metrics can be approximated without assuming anything about the underlying distribution of

secrets, as well as a parametric method for fitting observations to a model distribution which

shows promise in the case of password distributions.

This allows studying the guessing difficulty of passwords empirically in §6. First, a novel

experimental setup is described for collecting a large password data set in a privacy-preserving

manner, enabling the calculation of mathematical guessing metrics which only depend on

the probability distribution of passwords and not their semantic content. This approach was

applied in a large experiment at Yahoo!, collecting data representing almost 70 million users’

passwords. Demographic subpopulations within the Yahoo! data can be compared to one

another and the entire data set is compared to other sources of password data and distributions

of words in English text.

In §7, the guessing difficulty of personal knowledge questions is studied, again using a large

data set collected at Yahoo! of dozens of questions in different languages. This data is also

compared to published statistics about the distribution of human names, as well as a large

data set crawled from the online social network Facebook, to evaluate how real users often do

not answer questions as they were intended.

Finally, two related guessing problems are studied. §8 introduces metrics for the loss of effi-

ciency when an attacker chooses values to guess based on a different distribution instead of

perfect knowledge of the actual distribution under attack. §9 introduces some simple metrics

for analysing the guessing difficulty of a single item drawn from a distribution, instead of

analysing the complete distribution. Some concluding perspectives are provided in §10 which

discuss implications for future research on human authentication.

1.3 Prerequisites

This dissertation is written for readers with a basic background in probability theory for under-

standing concepts such as discrete and continuous probability distributions, the expectation,

variance, and standard deviation of a random variable, and elementary probability distribu-

tions such as the uniform, binomial and Poisson. We recommend the following textbook, now

freely available online, for an introduction to these topics:

13



1.4. Mathematical notation

• Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American Math-

ematical Society, Providence, 2nd edition, 1997

This dissertation requires no specific background in information theory, computer security or

cryptography and will aim to introduce and define all concepts from these fields as they arise.

Still, we can recommend the following two textbooks, both also freely available online, for

readers with no background in these subjects:

• David J.C. Mackay. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, Cambridge, 2003

• Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley, New York, 2nd edition, 2008

1.4 Mathematical notation

Notation for probability varies significantly in the literature. While we aim to follow standard

notation, this dissertation will analyse categorical distributions (or finite discrete probability

distributions) as mathematical objects subject to guessing attack.6 We summarise notation

here to make this as concise as possible; a glossary of symbols is provided in §A.

Probability distributions

We denote a categorical distribution with a calligraphic letter X . We use lower-case x to refer

to a specific event, for example an individual password. The probability of x is denoted as px.

Formally, X is a set of events x ∈ X , each with an associated probability 0 < px ≤ 1, such

that
∑
px = 1. We assume all events are disjoint and have non-zero probability. We denote

the total number of events in X with non-zero probability as N or |X |.
We often refer to events by their index, usually written i, with the most-probable event having

index 1 and the least probable having index N . We refer to the ith most common event as

xi and call its probability pi. Thus, the probabilities of the events in X form a monotonically

decreasing sequence p1 ≥ p2 ≥ . . . ≥ pN .

We denote an unknown variable as X, denoting X
R← X if it is drawn at random from X .

A discrete uniform distribution UN is one in which all N events are equally probable, that is

∀1≤i≤N pi = 1
N .

A mixture distribution Z is a distribution composed of two or more constituent probability

distributions Zi, each with an associated probability qi. To draw an event Z
R← Z, one first

randomly chooses one of the constituent distributions Zi according to qi and then chooses

Z
R← Zi. We can denote a mixture distribution’s decomposition as Z = q1 · Z1 + q2 · Z2 + . . ..

6Grinstead and Snell’s text [130] doesn’t introduce notation for a probability distribution as an object.
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1.5. Previous publications and collaboration

Logarithms

We frequently use logarithms when defining guessing metrics. In all cases we use lg x to denote

the base-2 logarithm of x, which is the preferred base for security engineering. In §3.2.4 we

discuss the possibility of using a different base when computing guessing metrics.

Passwords and data sets

An example text password is denoted as password. Similarly, we will refer to a specific 4-digit

PIN as 2012. When we refer to a specific real-world data set, such as the list of passwords

leaked from the website RockYou, we denote the data set as RockYou. A list of password

data sets, with details about their provenance, is provided in §D.

1.5 Previous publications and collaboration

This dissertation incorporates text and concepts directly from several of my previous publi-

cations. Significant parts of the guessing model introduced in §3, statistical model in §5 and

password data presented in §6 and §8 were packaged as a conference publication, written by

myself alone with assistance from Yahoo! staff for data collection:

• Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million

passwords. In SP ’12: Proceedings of the 2012 IEEE Symposium on Security and Privacy,

2012

The data on PINs in §4 was published in collaboration with Sören Preibusch, who took the

lead on survey design and deployment, and Ross Anderson who assisted with survey design

and historical background (§2.1.2):

• Joseph Bonneau, Sören Preibusch, and Ross Anderson. A birthday present every eleven

wallets? The security of customer-chosen banking PINs. In FC ’12: The 16th Interna-

tional Conference on Financial Cryptography and Data Security. Springer-Verlag, 2012

Some data on personal knowledge questions analysed in §7 was published in collaboration

with Mike Just and Greg Matthews, who assisted in gathering government census records

from around the world:

• Joseph Bonneau, Mike Just, and Greg Matthews. What’s in a name? Evaluating statis-

tical attacks against personal knowledge questions. In FC ’10: The 14th International

Conference on Financial Cryptography and Data Security. Springer-Verlag, 2010
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1.6. Statement on research ethics

The model for evaluating the strength of individual elements from a distribution presented in

§9 was previously published, written by myself alone:

• Joseph Bonneau. Statistical metrics for individual password strength. In 20th Interna-

tional Workshop on Security Protocols, 2012

Some data presented in §6.4 on distributions of words and phrases in English was published

in collaboration with Ekaterina Shutova, who introduced me to the linguistic data sets and

suggested their application to modeling passphrases:

• Joseph Bonneau and Ekaterina Shutova. Linguistic properties of multi-word passphrases.

In USEC ’12: Workshop on Usable Security, 2012

Finally, the background material in §2 adapts material and concepts from all of the above

publications, in addition to the following other publications on password security written

during the course of my doctoral research. All of the text here is my own, though I am

indebted to Ross Anderson, Cormac Herley, Paul van Oorschot, Sören Preibusch and Frank

Stajano for general collaboration and conversation about the password security field.

• Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The Quest

to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication

Schemes. In SP ’12: Proceedings of the 2012 IEEE Symposium on Security and Privacy,

2012

• Joseph Bonneau. Getting web authentication right: a best-case protocol for the remain-

ing life of passwords. In 19th International Workshop on Security Protocols, 2011

• Joseph Bonneau and Sören Preibusch. The password thicket: technical and market

failures in human authentication on the web. In WEIS ’10: Proceedings of the 9th

Workshop on the Economics of Information Security, 2010

1.6 Statement on research ethics

This dissertation uses data about secrets chosen by millions of real people using deployed

systems. Using such data carries valid ethical concerns [96] and care was taken to ensure

that no activities undertaken for research made any user data public which wasn’t previously.

This data was obtained, as noted throughout the text, by a mixture of privacy-preserving

experiments, surveys with informed consent, and analysis of data leaked publicly by security

breaches. Oversight was provided by the Ethics Committee of the University of Cambridge

Computer Laboratory as well as the Yahoo! legal team for data collected there.
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It takes continued ingenuity to keep up with prevailing silly practices in

choosing passwords.

—Fred Grampp and Robert H. Morris, 1984 [128]

Chapter 2

Background

Authentication has been studied by cryptographers, security engineers, human-computer in-

terface designers, linguists, ethnographers, and others. This chapter will survey the diverse

academic literature with particular focus on the security research motivating this dissertation.

2.1 History

The use of secret words to authenticate humans has ancient origins. The concept dates at

least as far back as the military of ancient Rome, which developed a careful procedure for

circulating daily signa or “watchwords” to prevent infiltration as documented by the historian

Polybius in 118 BCE [237]. It also appears in folklore, famously in the tale of Ali Baba and

the forty thieves (first translated into English in 1785 [296]), with the protagonist using the

phrase “open sesame” to unseal a magical cave. Ominously, Ali Baba’s greedy older brother

Qasim forgets this password during the course of the story with disastrous consequences.

2.1.1 History of computer passwords

With the development of the first multi-user computer operating systems in the early 1960s,

human-computer authentication was needed for the first time to prevent unauthorised access

to other users’ files. The Compatible Time-Sharing System at MIT [266] is often considered

the first computer system to deploy passwords, storing a password for each account in an

unencrypted master file. The primary security threat was users stealing scarce computing time

rather than secret data [270]. Indeed, Alan Scherr admitted to committing the likely first-ever

password compromise as a doctoral student in 1962 to increase the computing time available

for his own jobs [303]. The CTSS implementation also saw the first-ever password database
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2.1. History

leak in 1965 when a bug sent the password file to a public printer, requiring administrators

to reset every users’ password by hand [303].

Multics brought the first commercial deployment of a secure time-sharing operating sys-

tem in 1968, though by 1974 designers concluded that passwords were “surprisingly easy

to guess” [257]. Based on the Multics experience, Morris and Thompson improved password

hashing and introduced per-user salts during the development of UNIX. They also cracked

over 80% of accounts in the first published dictionary attack in 1979, warning that user-chosen

passwords were a major vulnerability. A password-cracking club, the ‘Computer Freaks,’ arose

as early as 1981 [70]. Password insecurity first gained widespread notoriety in 1988 with the

launch of the infamous Morris worm,1 which guessed passwords on every reachable host using

a 431-word dictionary.

The publicity surrounding the worm and the onset of the World Wide Web in the early

1990s motivated a surge of research into replacing or improving passwords for remote human-

computer authentication. Proposals for cryptographic password verification protocols [31, 32,

318] and proactive password-checking systems [36, 77, 33] saw little adoption though and text

passwords quickly proliferated as the dominant means of authentication on the web. Neither

Microsoft’s propriety Passport system [177] nor the community-driven open-source OpenID

project [246] succeeded in bringing federated authentication to the web, while graphical and

cognitive authentication schemes have failed to gain significant adoption. Passwords have gar-

nered publicity again in the past few years with the first massive leaks of password databases.

2.1.2 History of banking PINs

Contemporaneous with the development of passwords, numeric PINs (personal identification

numbers) first appeared in the 1960s in automated dispensing systems at petrol filling sta-

tions [29]. Two competing British cash machines deployed in 1967 represent the first use of

PINs for banking, with 6-digit PINs in the Barclays-De La Rue system rolled out in June

and 4-digit PINs in the National-Chubb system in September. According to John Shepherd-

Barron, leader of the De La Rue engineering team, after his wife was unable to remember six

random digits he reduced the length to four. Interestingly, cash machines deployed in Japan

and Sweden in 1967 used no PINs and absorbed losses from lost or stolen cards. As late as

1977, Spain’s La Caixa issued cards without PINs.

PINs were initially bank assigned by necessity as they were hard-coded onto cards using

steganographic schemes such as dots of carbon-14. Soon a variety of schemes for storing a

cryptographic transformation of the PIN developed.2 The IBM 3624 ATM controller [41]

1The Morris worm was written by Robert T. Morris, the son of Robert H. Morris who first studied dictionary

attacks.
2James Goodfellow patented a cryptographic PIN derivation scheme in 1966 [151]. Amongst others, he has

been called the inventor of PINs and ATMs.
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introduced an influential scheme in 1977 which first allowed easy changes to customers’ PINs.

Banks gradually began allowing customer-chosen PINs in the 1980s as a marketing tactic.

Most modern cards use the Visa PVV scheme, which stores a DES-based encryption of the

account number and PIN [41].

The interconnection of ATM networks globally in the 1990s cemented the use of PINs for

payment card authentication with the 1993 ISO 9564 standard [9] and 1995 EMV standard [6].

The EMV protocol has given PINs the further role of authorising payments at merchant tills,

with chipped cards verifying the customer’s PIN internally,3 requiring PINs to be entered more

often and in a plethora of terminals. This use of PINs remains technically distinct from ATM

authentication, though all practical deployments have used a single PIN for both purposes.

Chipped cards have also enabled the deployment of hand-held Chip Authentication Program

(CAP) readers since 2008 for verifying Internet transactions [93]. CAP readers allow muggers

to verify a PIN demanded from a victim during an attack; they can also be used to guess

offline the PIN on a found or stolen card.

Curiously, while 4-digit human-chosen PINs predominate in English-speaking countries, in

other locales card issuers still require longer PINs. For example, banks in Switzerland assign

6–8 digit PINs and banks in Italy typically use 5-digit PINs. Canadian banks use a mixture

of 4-digit and 6-digit PINs. Most banks now allow user-chosen PINs, with a few regional

exceptions such as Germany.4

2.2 Practical aspects of password authentication

2.2.1 Password hashing

Roger Needham and Michael Guy are credited with first proposing the one-way scrambling

of stored passwords in the 1963 Titan system [314]. By storing the result of a one-way func-

tion H(x), instead of simply x, and recomputing H(x′) for any submitted password x′, theft

of the password file does not reveal plaintext passwords. In the absence of standard crypto-

graphic hash functions, several ad hoc algorithms were proposed [161, 242]. The proprietary

scheme deployed by Multics was broken by Downey in 1974 [91]. This motivated Morris and

Thompson’s development of the UNIX crypt() function [212], consisting of 25 iterations of

a tweaked DES cipher5 and 12-bit random values for each user called salts, with passwords

limited to 8 ASCII characters. This has influenced most designs since6 and is still occasionally

used on the web; it was ultimately proved cryptographically secure in 2000 [302].

3EMV was deployed in the UK from 2003 under the branding “Chip and PIN.” It is now deployed in most

of Europe but notably not in the United States.
4As of 2012, several German banks have begun to allow human-chosen PINs.
5DES, the Data Encryption Standard, was first published in 1977 [2].
6A notable exception is Microsoft’s LM hash algorithm, deployed through the 1990s and still occasionally

used for compatibility, which uses no salting or iteration and hashes two halves of the password separately [72].
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Feldmeier and Karn noted in 1989 [99] that increasingly fast implementations of crypt()

would soon allow brute-forcing the entire input space. Manber proposed increasing the cost

of brute-force by using secret salt values in 1996 [197] which must be brute-forced during

verification. Kelsey et al. formally studied the key strengthening problem in 1997 and advo-

cated increased iterations and mixing the salt into every round [170]. Provos and Mazières

implemented Kelsey et al.’s approach with bcrypt() in 1999 using a parameterised iteration

count [241]; this approach has been widely adopted and was standardised as the Password-

Based Key Derivation Function (PBKDF2) in 2000 [164].

Despite this broad literature, Falk et al.’s 2008 study observed over 31% of banking websites

failing to hash passwords [98]. We estimated a rate of 29–50% in our survey [47].

2.2.2 Password entry and session management

Authentication on the web requires implementing a session management layer on top of

HTTP.7 Fu et al. surveyed the format of cookies used by common websites in 2001 [113]

and found a number of cryptographic flaws which allowed forging session cookies. Using TLS8

to encrypt passwords during transmission is also critical, though Falk et al. found 30% of

financial websites failing to do so properly [98]; we found an even higher rate of 41% for

general websites [47]. Both practices enable attackers to bypass password authentication by

session highjacking (or sidejacking), a risk which gained prominence in 2011 through the

Firesheep tool [59]. Murdoch defined a secure cookie format resistant even to leaks of the

server’s database in 2008 [215]. Adida proposed a protocol to prevent cookie theft without

TLS using JavaScript and HTML5 in 2008 [17]. We defined an improved cookie protocol

incorporating both proposals and other practical tweaks in 2011 [45].

2.2.3 Rate limiting

Servers can mitigate online guessing attacks by limiting the rate at which authentication

can be attempted. Practical difficulties include ensuring valid users have enough chances

to authenticate if they forget their password or mistype it [54] and preventing denial-of-

service attacks against legitimate users. Dehnad suggested making login success probabilistic

in order to slow down guessing attacks [80], but frustration for legitimate users likely prohibits

this approach. Pinkas and Sander instead suggest deploying CAPTCHAs to slow guessing

attacks [235]. Alsaleh et al. refined this into a probabilistic protocol [19]. An alternate approach

is to deploy a large number of honeypot accounts to trace guessing attackers [140].

7Most web browsers automatically support password sessions via the HTTP Basic and Digest Authentica-

tion mechanisms [111] though these are rarely used in practice.
8Transtport Layer Security (TLS) is the standard link-level encryption protocol for the Internet [89]. It

still frequently called SSL after its very similar predecessor, the Secure Sockets Layer protocol.
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2.2.4 Password requirements, proactive checking and blacklisting

Assisting users in creating strong and memorable passwords can be a useful part of any pass-

word implementation. The 1985 FIPS standard on password usage [3], developed from earlier

military security documents, enumerated many aspects of password security policy including

requirements for password length and composition, regular password updates and prohibitions

against writing down passwords, sharing them, or entering them at untrusted terminals. These

recommendations appear to have been adapted directly to civilian, corporate environments

with little evaluation of human factors; for example Jobusch and Oldehoeft’s large 1989 survey

recommended requiring password changes and complex password requirements if user-chosen

passwords were allowed at all [159, 160].

An influential series of studies by Adams and Sasse in the 1990s [15, 14, 259] found that many

of these policies were causing significant frustration for users and were often circumvented

in practice when they got in the way of users’ primary tasks. Forced password changes in

particular were cited as a needless cause of frustration to which many users responded by

choosing trivial modifications of old passwords [14]. Zhang et al. demonstrated the ease of

cracking passwords given a user’s previous choices in 2010 [326]. Password ageing is now very

rare in web authentication [47].

Only recently have large-scale studies [273, 169, 168] been conducted examining the effect

of password composition policies, such as a minimum length or requiring certain types of

characters, suggesting that length requirements are the most effective and least burdensome

policy. In practice, there is little consensus among websites deploying passwords. Furnell ex-

amined the password policies of ten major websites in 2007 and found every one was unique,

with only a 6-character minimum being common to the majority of sites [115]. Florêncio and

Herley completed a larger study in 2010 [105], examining the password requirements of 75

commercial, government, and education websites. They found similar wide variation, which

was not correlated with security requirements, and concluded that strict password policies

resulted at sites with no competition such as government or university services.

Orthogonal to explicit composition policies, weak passwords can be prevented at registration

by a proactive password-checking system. Several approaches were implemented in the late

1980s for UNIX. Bishop provides an early survey [37]. A large number of more complicated

schemes have been proposed since [36, 77, 33, 321, 68], modeling the structure of user pass-

words to detect weak ones automatically (§2.5.2). In practice few websites block passwords

based on proactive checks, though some websites do use persuasion policies that do not restrict

users’ choices but encourage stronger passwords through graphical or other feedback [311, 71].

The effectiveness of these methods remains unproven.

Finally, blacklisting known-weak passwords is an idea dating at least to Spafford’s 1992 OPUS

prototype [279], which stored a Bloom filter of passwords already registered in the system in

order to ban popular choices. This concept was developed by Schechter and Herley in 2010
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using a counting Bloom filter to limit the maximum frequency of any single password without

outright bans [263]. This method is more flexible than model-based proactive checkers but

struggles to prevent weak passwords until a large body of data exists.

2.2.5 Backup authentication for password reset

Because passwords are frequently forgotten, any practical deployment on the web must provide

a mechanism to reset passwords when needed. Florêncio and Herley’s study estimated that

over 1% of users of a typical website forget their password and reset it each month [103].

Backup authentication is a challenging security problem requiring high reliability with failures

independent of forgotten passwords. It must also be easy to use despite being rarely practised.

Ideally it will also be more secure than passwords as any security weaknesses can be used

to undermine security of the entire authentication system. Relative to passwords, the only

sacrificed requirement is efficiency since backup authentication is used less often.

Reeder and Schechter provide a survey of backup authentication [247]. We found in our sur-

vey [47] that nearly all websites use one of two methods that we focus on: email as a secondary

channel (92% of sites) and personal knowledge questions (17% of sites, including some requir-

ing both). Jin et al. estimated these frequencies at 98% and 12%, respectively [158]. Since all

known schemes have security weaknesses, it has been suggested to offer multiple schemes with

user control over which combination of schemes is sufficient to re-gain access [264].

Email-based authentication

The dominant method of password reset is sending one-time passwords to a user’s registered

email (SMTP) address. Garfinkel argued that the practice is a weak form of PKI [119], with

email addresses serving as public identifiers and email providers acting like certificate author-

ities. Email-based authentication can also be considered a form of single sign-on (§2.3.4), as

it effectively delegates authentication to the user’s email provider.

This practice arose organically with the web and was already widespread at the time of

Garfinkel’s 2003 survey. It has received little security research since. Van der Horst and Sea-

mons proposed a standardised protocol for achieving this which would enable browser au-

tomation of the process [300]. Karlof et al. examined email-based authentication in a user

study but in the context of user registration instead of password reset. They were able to

steal secret codes sent out by email from over 40% of users via social engineering [165]. Jin

et al. conducted an empirical study specifically of email-based reset and highlighted several

practical weaknesses, such as users backing up passwords using email accounts relying on the

same passwords [158] or relying on expired email accounts.
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Personal knowledge questions

Questions based on personal knowledge (classically, “What is your mother’s maiden name?”)

are considerably more memorable than passwords remembered specifically for authentica-

tion [328, 57, 238]. They remain widely used in banking [162] as well as for web authentication;

they have also been proposed for cryptographically backing up passwords by deriving strong

keys from a large number of questions [97, 112].

Security research has highlighted many weaknesses. An empirical study by Rabkin of questions

used in practice found that 40% had trivially small answer spaces and 16% had answers

routinely listed publicly in online social-networking profiles [243]. Even if users keep data

private on social networks, inference attacks enable approximating sensitive information from

a user’s friends [193]. Other questions can be found in publicly available records. For example,

at least 30% of Texas residents’ mothers’ maiden names can be deduced from birth and

marriage records [129]. Social engineering attacks can be very successful in extracting users’

answers. Karlof et al. were able to extract answers to personal knowledge questions from

92% of users via email phishing in a 2009 study [165]. User-chosen questions appear to be

less secure than system-chosen questions; Just and Aspinall found that the majority of users

choose questions with trivially few plausible answers [163].

Guessing attacks, particularly by acquaintances and family members, are also problematic.

Schechter et al. found in a laboratory study that acquaintances could guess 17% of answers

correctly in five tries or fewer [261], confirming similar results from earlier user studies [132,

238]. Schechter et al. also achieved success against 10% of accounts with a simple statistical

guessing attack. We’ll analyse guessing attacks against personal knowledge questions in §7.

Jakobsson et al. proposed querying a large number of binary preferences for items like “rap mu-

sic” with some error tolerance to improve security [155, 156]. Nosseir et al. suggested querying

users’ browsing history or location history to generate harder-to-guess questions [223], though

such an approach appears to inevitably leak private data. A related proposal specifically for

social networks is to require users to identify friends in tagged photographs [324], though the

preponderance of publicly available data from social networks and face recognition software

seriously harm the security of this scheme [171].

Social re-authentication

An alternative academic proposal which has yet to gain large-scale deployment is requiring

users to select a set of trusted friends to ask as delegates. In the event of a forgotten pass-

word, the user must contact a designated threshold of these delegates to receive one-time

tokens from the server. Brainard et al. first proposed this idea in 2006 as “vouching-based”

authentication [51]. A follow-up usability study by Schechter et al. found that only about

71% of participants could execute this scheme correctly and social-engineering attacks worked
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against about 10% of users [262]. It has been suggested that in place of an explicit user-

conducted protocol, authentication could be performed automatically by communicating with

the mobile devices of nearby users to establish a user’s social context [110].

2.2.6 User password management and behaviour

The difficulty for users of managing passwords was first studied at length by Adams and

Sasse in 1999 [14], who observed many employees writing passwords on post-it notes on their

workstations and yielding their passwords to simple social engineering attacks. They concluded

that users were overwhelmed by security requirements and were placing a significant strain on

IT help desks [259]. A number of follow-up studies have found users similarly unable to manage

passwords for their personal computing needs [90, 252, 121, 224, 306]. Most surveyed users do

state a concern for password security and attempt to use better passwords for more security-

critical sites but almost universally cite the increasing number of accounts they maintain as

preventing them from choosing stronger passwords and not re-using them.

Gaw and Felten sought to quantify this proliferation in a 2006 user study in which users

were instructed to log into all web accounts for which they had registered a password. They

reported that users had forgotten 25–50% of the accounts for which they had registered and

had forgotten passwords to 30% of those accounts they remembered [121]. The best empirical

estimates come from a landmark study in 2007 by Flôrencio and Herley that collected large-

scale data in situ using a browser toolbar [103]. They found the average web user to maintain

25 separate password accounts, with just 6.5 passwords.

2.3 Improvements to passwords

Extensive research has gone into replacing text passwords, perhaps to the detriment of research

on passwords themselves [142]. In surveying replacement proposals we find little evidence for

any scheme replacing text passwords in the near future, a conclusion reached by several surveys

of replacement schemes [227, 249, 45] and essays by senior researchers in the field [114, 143,

142]. Furthermore, most longer-run proposals still rely on secret knowledge at some level.

2.3.1 Cryptographic password-exchange protocols

Cryptography can eliminate the need for passwords to be sent in cleartext from client to

server. More broadly, zero-knowledge proofs of knowledge allow the prover to conclusively

prove knowledge of a password without revealing any information about it. Singh proposed

using public-key cryptography to protect password transmission in 1985 [275]. Bellovin and

Merrit’s 1992 Encrypted Key Exchange (EKE) protocol was the first practical proposal [31],

though it required the prover to know the plaintext password. Augmented EKE, a refinement
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developed 1993, enables one-way authentication from a client to a server without ever revealing

the password to the server [32]. A large number of variants have since been proposed, including

protocols provably secure outside the random oracle model [166, 123]. The most practical

protocol for the web is the Secure Remote Password (SRP) protocol [318], which is efficient

and provides optimal resistance to guessing attacks. Despite being standardised by an RFC

for use with TLS [292], SRP has seen little usage at common websites.

2.3.2 Alternate knowledge-based authentication schemes

Random passwords

Assigning randomly generated passwords can provide guaranteed resistance to guessing at-

tacks, though human memory is ill-suited to remembering random strings [38]. Gasser pro-

posed making random strings easier to remember in 1975, developing an algorithm for Multics

to generate easy-to-pronounce (and type) strings with a pseudo-natural distributions of vow-

els and consonants [120]. A close variant was eventually standardised by NIST in 1993 [4],

though it was demonstrated to produce a significantly non-uniform distribution [118]. Other

proposals for random passwords include Reinhold’s Diceware proposal which generates ran-

dom sequences of dictionary words [248], Spector’s Pass-sentence scheme which generates

random English sentences [280], King’s rebus password scheme which generates images to re-

member random character strings [172] and Brown’s PassMaze protocol which requires users

to identify secret words from several lists [56]. None of these proposals has seen significant

adoption or large user studies,9 making them hard to evaluate for practical use.

Passphrases

Requiring multiple words in a password, often called a passphrase, may improve security with

a similar user experience. Initially, long passwords were not possible because early password

hashing routines like crypt() had a fixed input space; Porter proposed cipher block-chaining

to overcome this problem and allow longer passphrases in 1982 [239]. Passphrases are already

deployed in widely used PGP software to protect private keys in case of theft [327]. Usability

studies of passphrases [167] have found them to be just as memorable as passwords, subject

to an increased rate of typographical errors.10 Several proposals have been made to reduce

the rate of errors for longer passwords, either by storing multiple hashes of a passphrase to

recognise entry of nearly correct strings [208, 27] or by providing visual feedback to allow a

user to notice typos when they are made [233].

9Two separate user studies have found random pronounceable passwords have comparable memorability

to self-chosen passwords [328, 57], albeit in a laboratory setting that may not reflect real use.
10Passphrases may in fact be easier to type on mobile phones, which have input interfaces optimised for

natural language but not for pseudorandom character strings [154].
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Mnemonic phrases

In place of complete passphrases, users can condense a sentence like “George Michael and

Ann went to the protest on Friday” into a password like GM&Aw2tpoF. The original phrase

is a mnemonic aid to remember the shorter password. This approach allows faster typing

and may offer security similar to the longer phrase if the number of feasible phrases that

produce a given password is low. Barton was perhaps the first to propose this idea in 1984,

suggesting a variety of mnemonic mappings [28]. Yan et al. found in a study in 2000 that this

advice significantly reduced guessability without affecting recall [322]. Kuo et al. performed a

dictionary attack on mnemonic-phrase passwords in 2006 [183], finding that many users chose

publicly known phrases from quotations, song lyrics etc., though security was significantly

better than with text passwords.

Word-association schemes

Given that human recall is greatly enhanced by prompting [38], Smith proposed using pairs

of words with a memorable relation in 1987 [277]. In a pilot study, users chose twenty random

word pairs and were able to recall the second word correctly 94% of the time when prompted

with the first, even after six months of inactivity. Several independent follow-up studies [328,

57, 238] found significantly higher memory rates for such associative passwords than with text

passwords [328, 57]. However, 8–25% of spouses were able to guess enough word associations

to authenticate. Non-targeted guessing attacks do not appear to have been evaluated formally.

Graphical passwords

Because human memory evolved to remember experiences and emotions and not random

strings [38], graphical passwords have been proposed to improve memorability of secrets. User

studies suggest graphical schemes are more memorable [55], particularly when multiple secrets

must be remembered [66], but can take longer to execute. Biddle et al. provide a good survey

of the past decade of research [35], dividing schemes into recall-based, recognition-based, and

click-based families.

Recall-based schemes involve a user actively drawing a shape or image from memory. Jermyn

et al. introduced the first such scheme, Draw-a-Secret, in 1999 [157]. Among many follow-

up proposals, Tao’s Pass-Go scheme [290], which limits users to selecting points on a grid,

is perhaps the best known due to its eventual adaptation for the Android mobile operating

system. Van Oorschot and Thorpe performed successful dictionary-style attacks against recall-

based schemes in 2008 [301], exploiting users’ tendency to draw simple, symmetrical shapes.

Recognition-based schemes involve a user recognising secret images from a large set of dis-

played images. Passfaces, proposed by Valentine in 1998, requires users to select pictures of
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human faces from a grid of nine possibilities [297]. Dhamija and Perrig’s Déjà Vu scheme,

proposed in 2000, requires memorising a small random set of images gathered from a large

database [87]. A variety of related schemes have been proposed with alternate visual objects

to recognise, such as randomly generated inkblots [285]. While the combinatorics of these

schemes provides theoretically strong security, human choice appears to greatly limit this.

Davis et al. found that user choice in the Passfaces scheme was predictable enough to render

it completely insecure [78].

Finally, click-based schemes require memorising a set of points in a prompt image. For exam-

ple, a user might see a picture of a cat and remember to click on the cat’s right ear. In 2005

Wiedenbeck et al. proposed PassPoints, the first scheme based on this principle [312]. Thorpe

and van Oorschot found that many users select the same “hot-spots” in a given image, greatly

reducing security [294]. To address this problem, in 2008 Chiasson et al. proposed Persuasive

Cued ClickPoints [65] which forces users to choose points within a small, random window.

Shoulder-surfing resistant entry

Text and graphical passwords are both vulnerable to physical observation: Tari et al. found

that humans can sometimes reconstruct text passwords with a single observation and can

usually do so for click-based graphical schemes [291], while Balzarotti et al. demonstrated

that text passwords can be deduced with high probability given a video recording of the

keyboard [26]. Proposals to resist observation typically require special hardware. Sasamoto et

al.’s Undercover scheme [258] uses a special entry box, for example, while Kobara and Imai’s

LVSVSS method uses physical transparencies to limit the optical angle on which a one-time

code can be read [175]. The most promising approach appears to be Kumar et al.’s gaze-based

password entry [181], which is backwards-compatible with text passwords and requires only

a video camera, which many laptops now have built-in.

Cognitive schemes

Nearly all graphical and multi-word schemes involving static submission of a secret are vul-

nerable to observation attacks in which an attacker can learn the user’s long-term secret.

Cryptographically, this problem is easily solved by a challenge-response protocol with the

user computing a one-way function f(x, c) of the long-term secret x and a random chal-

lenge c. However, unless f is simple enough to compute mentally, users remain vulnerable to

malware which can observe x upon entry prior to the computation of f .

Cognitive authentication schemes11 involve a function f designed to be mentally computable.

A simple approach is for the user to hide x within a sequence of random keystrokes to

11The literature is hopelessly inconsistent on terminology for this concept, with alternate terms in use as

varied as Leakage-Resilient Passwords and SecHCI.
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frustrate naive keyloggers. This was proposed separately by Florêncio and Herley [102] and

Cheswick [64] in 2006. Both schemes are easily defeated by more sophisticated malware.

Designing a usable and cryptographically secure scheme has remained an open problem since

its formal posing in 1996 by Matsumoto [203]. The most secure schemes, proposed by Hopper

and Blum in 2001 [144], can provide cryptographic security by reduction to a known NP-

hard problem (learning parity in the presence of noise), but are very difficult to execute and

require over three minutes even for skilled users.12 More intuitive schemes, such as Weinshall’s

2006 scheme that involves tracing a path through a two-dimensional grid [308], have usually

been quickly cryptanalysed; Weinshall’s scheme succumbs to a generic attack using a SAT-

solver with only a few observed authentications [124]. GrIDsure [307], another simple scheme

requiring only addition, was similarly found to have major security flaws [40]. Coskun and

Herley argued from an information theoretic-perspective that the limits of human processing

power will prevent cognitive schemes from ever being both usable and secure [73], an argument

supported by Yan et al.’s recent meta-study of cognitive proposals and attacks [323].

2.3.3 Non-memory based authentication mechanisms

Physical objects or biometrics enable authentication without memorised secrets. However,

the risk of loss or theft typically requires deployment in conjunction with a memory-based

scheme in two-factor authentication. It is important to study any combination holistically,

as Wimberly et al. found that the presence of a second factor can cause humans to pick

significantly weaker passwords [315].

Biometrics

Biometrics are any means for identifying humans by difficult-to-forge physiological traits,

which may be physical traits such as iris patterns [76], fingerprints [253], or facial struc-

ture [192], or behavioural traits such as a user’s voice [18], handwriting [25], or typing

style [210]. This is a deep research area; Jain et al. provide a good survey of physical biomet-

rics [153] and Yampolskiy et al. of behavioural ones [320]. Most research focuses on supervised

authentication and is of limited application to the “unsupervised” environment of web au-

thentication where biometrics are vulnerable to replay attacks such as a high-resolution iris

photograph or a replica fingerprint made of gelatin [202]. Preventing replay without super-

vision is an open problem. Behavioural biometrics can potentially do so through challenge-

response protocols, though typically with false-accept rates of at least 10% [320]. Privacy is

also a concern when collecting users’ inherent physical traits, though privacy-preserving bio-

metric key-generation schemes (analogous to password hashing) exist to prevent verifiers from

needing to store biometric signals in intelligible form [24].

12Hopper and Blum reported that even after attaching a terminal to a vending machine and offering free

soda to colleagues for completing authentications successfully, people preferred to pay for their drinks.
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Hardware tokens

Token-based authentication verifies the user’s possession of a physical object instead of a

memorised secret. The earliest examples are paper-based schemes, first suggested by Lamport

in 1981 [184]. Lamport’s scheme printed repeated hashes of a master secret onto a paper

token, allowing their use as one-time passwords with the verifier storing only the final hash

and updating after each authentication. Lamport’s protocol was developed by Haller into

S/KEY [135] which was eventually standardised as the OTP protocol [134]. Rubin [255] and

Kuhn [179] developed later variants which eliminate the risk of theft of the initial secret in

Lamport’s scheme by generating independent one-time passwords. Paper-based schemes have

seen limited use by general-purpose websites, though some banks have deployed a variant

called TAN codes with paper sent out via physical mail [313].

Marginally more expensive tokens printed onto transparencies enable visual cryptography. In

1995 Naor and Shamir demonstrated provably secure encryption using transparencies [217],

which they later developed into a challenge-response protocol to authenticate humans [216].

The PassWindow scheme [11], a commercial offering using visual cryptography, claims to

withstand 20–30 observed authentications [221].

Greater security can be achieved with more expensive electronic tokens. The RSA SecurID

product family [148], which uses a tamper-proof module to generate time-varying crypto-

graphic codes, has dominated the market since the 1990s with tens of millions of devices

deployed. This scheme requires an expensive token for each verifier, however, which does not

scale for the web.13 Recently, USB tokens have emerged as a competitive approach, such as

YubiKey [325], a low-cost device with only one button, or IronKey, a higher-end device capable

of launching its own trusted web browser [146]. Future tokens, such as Stajano’s recent Pico

proposal [282], may be powerful enough to run public-key authentication protocols continually

to assert their presence to the verifier. Still, verifying the presence of the token’s owner to

mitigate theft remains a major challenge.

Personal computer authentication

In place of a separate token, secrets stored on the user’s PC can be used as a second factor, al-

though these inherently limit roaming. The TLS protocol enables mutual authentication using

public-key client certificates [89], which are supported by all major browsers. The difficulty of

generating and installing client certificates has prevented widespread use of TLS for mutual

authentication; it is almost exclusively used only to authenticate the server to the client. Pro-

posals for more usable management of secrets include Mannan et al.’s ObjPwd [198], which

generates a secret from a file selected by the user, and Adida’s BeamAuth [16], which stores

secrets in a browser bookmark using the fragment tag.

13The security of the RSA SecurID system has also been undermined by a major server compromise in

2011 [53] which may have exposed millions of tokens’ keys.
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These methods are all vulnerable to malware. Stronger authentication is possible using the

trusted platform module (TPM) now present in most personal computers [131]. The TPM, a

tamper-resistant cryptographic co-processor with its own key storage, can be used to securely

identify a user’s machine as a second factor for authentication [186, 188]. The use of built-in

hardware for authentication has been criticised for facilitating vendor lock-in [21]. It also may

be unworkable for privacy reasons, as witnessed in the legal battles ensuing from Intel’s 1993

proposal to allow remote querying of processor serial numbers [189].

Mobile device authentication

Using mobile phones as a trusted14 second factor was suggested at least as early as 2004

by Wu et al. [317]. This is more convenient than dedicated tokens, as users already carry

mobile phones everywhere. Of many proposed protocols, the simplest might be Mannan and

van Oorschot’s MP-auth protocol [199] which only trusts the phone to securely encrypt the

user’s password and requires no storage. Parno et al.’s Phoolproof protocol [230], by contrast,

stores a secret key on the phone that is verified during TLS negotiation prior to entering

a password. Configuring communication between the mobile device and computer can be a

usability challenge; an elegant solution is to use the visual channel [205] as deployed by the

commercial Cronto protocol which uses the phone’s camera to receive a cryptogram displayed

on screen [194].

Mobile devices often have separate communication channels which can reach the verifier,

enabling multi-channel protocols [316]. An early example is the 2002 RSAMobile scheme

using the SMS channel to send one-time login codes to the user’s phone [147]. Google 2-step

verification [126] is a recent deployment allowing users to either receive SMS codes or install

an application with a secret key.

2.3.4 Single sign-on schemes

Single sign-on (SSO) schemes enable users to use a single password with multiple verifiers

via a trusted intermediary. This limits the number of points of failure in the case of re-used

passwords. It is also more convenient for users as only one password needs to be remembered,

which may also enable users to remember stronger password. Pashalidis and Mitchell provide

a survey and taxonomy of different proposals [231]. The key design decisions are using a local

or remote proxy and assuming verifier support (true SSO) or not (pseudo-SSO).

Automated password managers

Automated password managers store a user’s passwords after the first time they are typed.

Typically built in to web browsers or operating systems, this is a local, pseudo-SSO approach.

14Smartphones may be decreasingly trustworthy as malware is increasingly targeted at them [100].
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The concept dates at least to Apple’s KeyChain software for MacOS 8.6 in 1999 and is

now implemented on most web browsers. Riley et al.’s 2006 survey found about two-thirds

of users employing a browser with automatic password entry [252]. Recent versions of the

Mozilla Firefox and Google Chrome browsers support synchronising saved passwords between

different machines using a master password [108, 127].

However, mainstream password managers still rely on user-generated passwords and allow

password re-use, undermining potential security gains.15 In light of this problem, in 2005

Halderman et al. proposed automatically deriving domain-specific passwords by hashing a

master password with the verifier’s domain [133]. A similar approach was developed by Ross

et al. in the PwdHash browser extension which also supports roaming access to domain-specific

passwords and has been installed by about 100,000 Mozilla Firefox users [254], though this

is a tiny fraction of the total user base. Chiasson et al. conducted a usability study of these

password managers in 2006 and found the majority of users were unable to use them as

intended to generate strong passwords [67].

Proxy login schemes

Password managers typically require per-machine enrolment and software installation. Gabber

et al. proposed a scheme called Janus in 1997 to avoid this using a trusted proxy to automat-

ically insert strong passwords into web forms [116]. This remote, pseudo-SSO approach also

requires no changes to verifying servers but entrusts all passwords to a third party. Several

proposals have enabled authentication to the trusted proxy through an untrusted terminal:

the Impostor [232] scheme using cognitive authentication (§2.3.2), KLASSP [102] using obfus-

cated password entry (§2.3.2) and URSSA [104] using paper-based one-time passwords(§2.3.3).

None have seen practical deployment.

Federated authentication

Federated authentication schemes use a trusted server, often called an identity provider, to

prove a user’s identity to verifiers (called relying parties) willing to trust the identity provider.

In 1978, Needham and Schroeder first proposed a delegated, symmetric-key authentication

protocol [220], which developed at MIT in the 1980s into the well-known Kerberos proto-

col [283] and was eventually standardised in 1993 [176]. Kerberos has been widely deployed

for system login within single corporations or universities.

A variety of schemes have arisen for deploying Kerberos on the web using HTTP cookies and

redirection, mostly developed for federated authentication within universities [204, 265, 305,

74, 5].16 The Shibboleth protocol [211] is designed to facilitate interoperation between such

systems but has similarly mostly seen deployment only between universities.

15LastPass, a commercial offering, generates passwords automatically [185].
16Kerberos has been standardised as a cipher suite for use with TLS [207], but this approach is rarely used.
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Microsoft Passport [10], launched in 1999, was an early attempt to deploy Kerberos-style

authentication to the web with Microsoft acting as a trusted identity provider. Passport

received criticism for its centralised nature and several security problems were found with the

protocol [177, 228]. After receiving little uptake, it was subsumed by the Windows CardSpace

project [34] before being cancelled in 2011. A more successful proprietary protocol is Facebook

Connect [145], which has been deployed on hundreds of relying websites since its 2008 launch.

Verified by Visa [8], a single sign-on designed to authenticate online payment card transactions,

has also seen widespread adoption despite criticism for security shortcomings [214].

In response to the proprietary protocols, several attempts have been made to design open

protocols which allow users to choose from multiple identity providers. The best-known ef-

forts are OpenID, launched in 2006 [246], and the related OAuth protocols [136, 245] which

have since been merged into the OpenID Connect draft standard [256]. OpenID has been

criticised for leaving users vulnerable to phishing [187] and offering poor usability [86] as well

as for poor economic incentives that encourage many identity providers but few relying par-

ties or users [286]. Proposed improvements include building privacy-preserving cryptographic

protocols on top of OpenID [85] and improving usability through browser support [287].

BrowserID, a competing protocol based on extended email address verification, was launched

by Mozilla in 2011 [107]. BrowserID enables supporting browsers to cache signed certificates

from identity providers asserting ownership of a claimed email address, thus enabling users to

authenticate without revealing the relying party to their identity provider.

2.4 Password cracking

Morris and Thompson published the first password cracking results in 1979 [212], literally

trying every entry in the 250,000 word system dictionary in what was probably the first

dictionary attack (though they did not use this term directly). Password cracking appears to

have emerged as a hobbyist activity through the 1980s [70], leading to the famous 1988 Morris

worm, which propagated in part by guessing passwords using a 431-word password dictionary

and several rules to modify passwords [268]. The worm’s dictionary was not carefully optimised

(§8.2.3), with large numbers of musical terms, relatively uncommon names like hiawatha

and several inexplicable entries like williamsburwillie. Still, the worm demonstrated the

utility of guessing non-dictionary words. Klein published detailed results on dictionary attack

experiments against 14,000 accounts taken from university systems in 1990 [173], using 24

small dictionaries of a few thousand words each from disparate sources like sports team names

and movie titles.

Password cracking evolved rapidly in the years after these studies. Freely available cracking

tools emerged like Alec Muffett’s Crack [213], which introduced mangling rules to turn a single

dictionary password like joe into variants like Joe, J0E and eoj. Today John the Ripper [1]

is the dominant open-source cracking tool in addition to several commercial offerings.
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year study hash platform speed (MHz) cost ( US$
MHz)

1991 Leong & Tham [190] DES PC 0.02 —

1991 Leong & Tham [190] DES hardware 4.2 $786.42

1998 Gilmore et al. [122] DES hardware 92,666 $3.75

2006 Mentens et al. [209] DES FPGA 10,000 $0.84

2011 Sprengers [281] MD5 GPU 880 $0.39

Table 2.1: Password cracking speed through the years. Speed results are reported in millions

of base hashes per second (MHz). The rate of a real password attack will be slower due to

the use of iterated hashing (§2.2.1). Cost figures are converted from authors’ contemporary

estimates into 2012 US dollars using US Bureau of Labor Statistics inflation figures [226] and

the XE Universal Currency Converter [149]. Note that costs only reflect capital. Energy costs

are typically not reported making it difficult to compare the total cost of brute-force attacks.

Narayanan and Shamitkov were perhaps the first to formalise mangling rules in 2005 [218],

modeling password construction as a Markov process in which each character is a probabilistic

function of the previous n characters. Weir et al. proposed using a probabilistic context-free

grammar to generate mangling rules automatically from a training set in 2009 [310]. Both

efforts can be viewed as attempts to approximate the distribution of passwords using a model

distribution, a concept we will return to in §5.6. Weir’s probabilistic context-free grammar

approach has out-performed the Markov model approach in head-to-head comparisons and is

now favoured by the password-cracking community [200, 168].

2.4.1 Optimising brute-force performance

Since password-cracking libraries with mangling rules can generate an effectively infinite se-

quence of possible passwords, their effectiveness depends on the rate at which guessed pass-

words can be evaluated, measured in guesses per second (Hz). Morris and Thompson con-

sidered the 800 Hz rate that was possible to achieve in software against the original UNIX

hashing algorithm17 unacceptable and aimed to increase computational cost when designing

crypt() by tweaking the DES algorithm to prevent hardware-accelerated search [212].

A decade later, Feldmeir and Karn were able to top 1 kHz against crypt() with an optimised

software implementation [99]. They warned that the “crypt()/sec/dollar” ratio had increased

by five orders of magnitude since crypt() was introduced and that within a decade it might

be feasible to exhaust the entire 56-bit input space. A year later, Leong and Tham proposed a

theoretical 160 kHz hardware design able to build a precomputed dictionary of all passwords

in one year for just US$2,000 [190]. Feldmeir and Karn’s ten-year prediction proved highly

17The original UNIX hash was based on the US Army’s World War II-era M-209 mechanical cipher machine.
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accurate, as DES was publicly brute-forced in 1998 [122].18

Recent work has utilised reconfigurable hardware for lower-cost password cracking. The 2006

COPACABANA project demonstrated the cost-effectiveness of using FPGAs for crypto-

graphic brute-force [182]. Mentens et al. studied password cracking specifically on FPGAs [209].

Password cracking has also been implemented on cheaper general-purpose hardware like the

Sony Playstation gaming console [174] and high-end graphics processors [281]. Table 2.1 enu-

merates the efficiency and cost of various password cracking platforms; Sprengers’ recent

results on graphical processors are the most cost-effective currently known.

2.4.2 Precomputed dictionaries and rainbow tables

Brute-force attacks are significantly more useful if precomputed values can be shared by

cooperating attackers.19 Morris and Thompson warned of the possibility of storing the hashes

of common passwords in an encrypted dictionary attack [212]. This approach is far more

appealing using the time-memory trade-off pioneered for cryptographic key search by Hellman

in 1980 [138] in which only the end-points of long chains of password hashes are stored, greatly

reducing storage requirements.

Oechslin introduced a refinement of this approach in 2003 called rainbow tables [225] which

again greatly improve efficiency. Rainbow tables can be computed for a subset of possible

passwords such as all 8-character strings or can use a probabilistic reduction function to focus

on likely passwords [218]. The RainbowCrack project has collaboratively constructed rainbow

tables of all 9-character strings for the MD5 and LM hash algorithms, which each took ≈ 256

computation to construct and enable nearly any 9-character password to be broken with ≈ 237

hash iterations using a ≈ 900 GB lookup table.

2.5 Evaluating guessing difficulty

It has long been of interest to analyse how secure a given data set of passwords is against

guessing attacks, dating at least to Morris and Thompson’s seminal 1979 analysis of 3,000

passwords [212]. They recovered 84% of available passwords by trying all 6-character ASCII

strings, variations of available usernames and every entry in the 250,000-word system dictio-

nary. Unfortunately, they reported the results of all approaches mixed together, while noting

that the dictionary approach was more efficient. They also reported some basic statistics such

as password lengths (71% were six characters or fewer) and frequency of non-alphanumeric

characters (14% of passwords). These two approaches, password cracking and semantic eval-

uation, have been the basis for many studies in the thirty years since.

18While crypt() uses 25 ≈ 24.6 iterations of DES, only 958 ≈ 252.5 strings of 8 printable characters are

usually searched, meaning an exhaustive search of crypt() requires ≈ 257.1 work, twice as much as basic DES.
19Note that precomputed attacks are only possible if passwords are hashed without salting (§2.2.1).

34



2.5. Evaluating guessing difficulty

2.5.1 Cracking evaluation

Many researchers have simulated password cracking attacks against available password data

sets to evaluate password strength. Klein published the first detailed results on the effective-

ness of 24 small dictionaries composed of different types of words in 1990 [173]. Significant

variation in efficiency was observed, although Klein noted a trade-off between efficiency and

dictionary size with the most efficient lists like surnames and sports teams typically being

very short. Spafford performed a similar experiment in 1992 [279] using a larger dictionary

and found similar crack times, as seen in in Figure 2.1a.

Subsequent research has typically utilised pre-existing password cracking libraries and re-

ported much less detail on cracking strategy. For example, Wu studied password cracking

against Kerberos tickets in 1999 and was able to crack 8.8% using a dictionary of over 100

M words [319]. Kuo et al. studied mnemonic passwords in 2006 and, as a by-product, broke

11% of passwords collected from volunteer subjects with a dictionary of 1.1 M words (also

breaking 4% of mnemonic passwords) [183].

Recently, large-scale password leaks from compromised websites have provided a new source of

data on cracking difficulty. For example, Schneier analysed about 50,000 passwords obtained

via phishing from the social network MySpace in 2006 [267]. A more in-depth study was

conducted by Dell’Amico et al., who studied the MySpace passwords as well as those of two

other websites using a large variety of different dictionaries [81]. Weir et al. used the 2009

leak of 32 million RockYou passwords to examine the effect of password-composition rules

on cracking efficiency [309]. Suprisingly, these studies all found lower cracking efficiency than

previous studies of system passwords, which users were presumably more motivated to choose

securely.

Overall, reported numbers on password cracking efficiency vary substantially between different

studies, as shown in Figure 2.1. All password-cracking studies have found strongly diminishing

efficiency as more passwords are guessed, as shown in Figure 2.1b, which is likely a fundamental

property of the underlying distribution. There is plentiful data on dictionaries needed to break

25–50% of accounts, which usually requires a dictionary size of 220–230 passwords. There is

less data on the efficiency of very small dictionaries, which usually are not reported separately.

There is even less data for much larger dictionaries—only20 Morris and Thompson were able

to break more than 50% of available passwords, and their results cannot be assumed to apply

directly to modern password choices.

20A 2007 study by Cazier and Medlin claimed to break 99% of passwords taken from a real e-commerce

website, but few details were provided [63].
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Figure 2.1: Historical results in password cracking efficiency. Circles and solid lines represent

system passwords, squares and dashed lines represent web passwords. In Figure 2.1a, the

increasing size of dictionaries is plotted logarithmically against the success rate achieved. In

Figure 2.1b, the dictionary sizes are adjusted to incorporate the inherent need for more guesses

to crack more passwords. This concept will be important for developing statistical metrics of

guessing difficulty in §3.2.4.
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Figure 2.2: Comparison of attacks on graphical and mnemonic password schemes against

traditional password cracking. Except for the badly broken Faces scheme, the attacks are less

efficient against alternative schemes than against traditional password schemes, although this

may represent relative lack of research on guessing against graphical schemes.

Guessing attacks on other authentication systems

A small number of academic studies have performed cracking-style attacks on other schemes

using human-chosen secrets (§2.3.2). Kuo et al. used a dictionary of 400k likely phrases to

recover 3% of user-created mnemonic-phrase passwords [183]. Davis et al. attacked a Passfaces-

style scheme which they called “Faces” in 2004 [78] and found that user preference for attrac-

tive faces was prevalent enough that they could break 10% of accounts with just two guesses.

Thorpe et al. attacked the click-based PassPoints scheme in 2007 [294] and found that users

exhibited a strong tendency to select a small number of prominent points, enough to break

nearly 20% of accounts with 223 guesses. In 2008 van Oorschot and Thorpe developed dictio-

nary attacks against human-drawn passwords [301], though these were not nearly as efficient,

requiring around 236 guesses to break 19% of accounts.

These guessing results are compared to those achieved for passwords in Figure 2.2. While

graphical schemes appear comparatively better against guessing attacks, caution is needed as

considerably fewer attacks have been developed. For each scheme proposed, there has only

been a single academic proof-of-concept attack, whereas password cracking has seen dozens

of publications as well as considerable interest from outside the academic community.
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year study length % digits % special

1989 Riddle et al. [251] 4.4 3.5 —

1990 Sawyer et al. [260] 5.7 19.2 0.7

1992 Spafford [279] 6.8 31.7 14.8

1999 Wu [319] 7.5 25.7 4.1

2004 Campbell and Bryant [61] 8.0 78.0 3.0

2006 Cazier and Medlin [63] 7.4 35.0 1.3

2009 RockYou leak [84] 7.9 54.0 3.7

Table 2.2: Commonly estimated attributes of passwords: length, percentage containing digits,

and percentage containing special (non-alphanumeric) characters.

2.5.2 Semantic evaluation

There have been many studies on the semantics of passwords, a topic which has interested

psychologists and linguists as well as computer security researchers. Riddle et al. performed

linguistic analysis of 6,226 passwords in 1989, classifying them into categories such as names,

dictionary words, or seemingly random strings [251]. Cazier et al. repeated this process in

2006 and found that hard-to-classify passwords were also the hardest to crack [63].

Many studies have reported simpler data points like average length and types of characters

used, as summarized in Table 2.2. The estimates vary so widely that it is difficult to infer much

of use for security engineers. The main trends are a tendency towards six to eight characters

of length and a strong dislike of non-alphanumeric characters in passwords.21

More formal attempts to study password structure have been conducted to develop proactive

password checking algorithms (§2.2.4), such as Bergadano et al.’s use of a decision tree to

classify different types of passwords [33]. This research can be seen as the the dual of creating

mangling rules for cracking (§2.4). For example, Markov models were used as early as 1993

for proactive password checking [77] before being adapted for password cracking [218, 200]

and have since been re-adapted for password checking [62].

Estimating entropy from password structure

Many studies attempt to assess the strength of an individual password by examining its struc-

ture. Typically this requires modeling the process by which the password was generated, for

example “five letters followed by two digits and a punctuation character” and then calculating

the total space of passwords which this process could produce. This approach was used as

21It is often suggested that users avoid characters which require multiple keys to type, but this has not been

formally established.

38



2.5. Evaluating guessing difficulty

early as 1972 by Anderson [20]. The size of this space can be used to estimate the strength of

a password, often referred to imprecisely as “entropy” after taking a logarithm.22

It is unclear when the term entropy caught on in relation to password analysis. It is absent from

most early literature and the earliest identifiable usage seems to be 1999 [319]. The term was

cemented by the 2006 FIPS Electronic Authentication Guideline [58], which provided a “rough

rule of thumb” formula for estimating entropy from password characteristics. This standard

has since been used in several password studies with too few samples to compute statistics

on the entire distribution [103, 273, 169, 168]. While the FIPS algorithm is somewhat ad hoc,

more systematic formulas have been proposed, such as that of Yan [321] or Shay et al. [273],

which add the apparent entropy from many different elements of a password’s structure.

2.5.3 Problems with previous approaches

Three decades of work on password guessing has produced sophisticated cracking tools and

many disparate data points, but several methodological problems remain:

Comparability

Authors rarely report cracking results in a format which is straightforward to compare with

previous benchmarks. To our knowledge, Figure 2.1 is the first comparison of different data

points of dictionary size and success rate, though direct comparison is difficult since authors

all report efficiency rates for different dictionary sizes. Password cracking tools only loosely

attempt to guess passwords in decreasing order of likeliness, introducing imprecision into

reported dictionary sizes. Worse, some studies report the running time of cracking software

instead of dictionary size [63, 322, 284], making comparison difficult.

Repeatability

Precisely reproducing password cracking results is difficult. Early password-cracking studies

relied on custom dictionaries which are presumably lost to history. Modern password-cracking

software relies not only on large dictionaries but the precise configuration of code to modify

them. John the Ripper [1], used in most publications of the past decade, has been released in

21 different versions since 2001 and makes available for use 20 separate word lists, along with

proprietary word lists and many configuration options. Other studies have used proprietary

password-cracking software which isn’t available to the research community [63, 267]. Thus

nearly all studies use dictionaries varying in both content and ordering, making it difficult

22This terminology is mathematically incorrect because entropy (§§3.1.1–3.1.2) measures a complete prob-

ability distribution, not a single event (one password). The correct metric for a single event is self-information

(or surprisal). This is perhaps disfavoured because it is counter-intuitive: passwords should avoid including

information like names or addresses, so high-information passwords sound weak.
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to compare the resistance of a new data set to the exact cracking attack used in previously

published results.

Lack of research precision in password cracking software

Password-cracking programs produce poor output for evaluating their own efficiency. For

comparative purposes, it is most interesting to see the total number of passwords attempted

and the fraction of available accounts broken. Most password cracking software does not

output this or strictly attempt to guess passwords in increasing likelihood, which may be

inefficient or even impossible when complicated mangling rules are being applied. Kelley et

al., for example, needed to reverse-engineer large parts of the cracking library they used in

order to identify the order in which individual passwords would be guessed [168]. This is a

particular problem when evaluating very small dictionaries for which cracking libraries are

usually not optimised.

Evaluator dependency

Password-cracking results are inherently dependent on the appropriateness of the dictionary

and mangling rules for the data set under study. Thus it is difficult to separate the effects

of more-carefully chosen passwords from the use of a less-appropriate dictionary. This is

particularly challenging in data-slicing experiments [309, 168], which require simulating an

equally good dictionary attack against each subpopulation.

Unsoundness of entropy

Entropy is not mathematically appropriate as a measure of guessing resistance, as we will

demonstrate in §3.2. It is also very difficult to estimate from a sample (§5.2). Approximation

formulas can be used with small sample sizes but inherently make many assumptions about

password selection. In practice, entropy estimates have performed poorly as predictors of

empirical cracking difficulty [309, 168], leading to password cracking being favoured despite

being less precise and harder to repeat.
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Don’t keep a man guessing too long—

he’s sure to find the answer somewhere else.

—Mae West, 1933

Chapter 3

Metrics for guessing difficulty

We now turn our attention to the problem of measuring the guessing difficulty of a distribution

of human-chosen secrets, the core technical contribution of this dissertation. To overcome

the practical problems of password cracking and semantic evaluation, we model password

selection1 as a random draw X
R← X from an underlying distribution X . For now, we assume

that X is completely known to the attacker.2 For an adversary given a (possibly singleton)

set of unknown values {X1, X2, . . . Xk} and access to an oracle for queries of the form3 “is

Xi = x?” we consider several metrics to evaluate how efficiently our adversary can correctly

identify some proportion of the unknown Xi. Our goal in this chapter is to develop sound

metrics; we will analyse real data in subsequent chapters.

3.1 Traditional metrics

3.1.1 Shannon entropy

Shannon entropy H1 (or simply H), introduced by Claude Shannon in 1948 [271], is the

best-known measure of the “uncertainty” of a value drawn from X :

H1(X ) =

N∑
i=1

−pi lg pi (3.1)

Shannon developed the metric while studying information loss on analogue phone lines. He

proved it is the only definition which is continuous (small changes to the probability distribu-

tion lead to small changes in measured uncertainty), maximised by a uniform distribution and

1Our mathematical notation is introduced and defined in §1.4.
2We will address problems due to incomplete knowledge of X in §5, and due to training on a distinct

distribution Y 6= X in §8.
3Note that this formulation assumes password hashes, if available, are salted. Otherwise an attacker could

efficiently ask “is any X = x?”
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additive for joint distributions. Perhaps the most important application is Shannon’s source

coding theorem [271], which states that a random variable X
R← X can be encoded using a

Huffman code with average bit length ≤ H1(X ) + 1.

An easy corollary is that the average number of guesses needed to identify X if an attacker

can ask “Is X ∈ S?” for arbitrary subsets S ⊆ X is ≤ H1(X ) + 1 because the attacker can

query one bit of the optimal encoding at a time. For an attacker who must guess possible

values individually, Shannon entropy has no direct correlation to guessing difficulty.4

3.1.2 Rényi entropy and its variants

Rényi entropy Hn is a generalisation of Shannon entropy developed by Alfred Rényi in

1961 [250]. It is parameterised5 by a real number n ≥ 0:

Hn(X ) =
1

1− n lg

(
N∑
i=1

pni

)
(3.2)

Rényi proved that this formula defines all possible uncertainty measures which meet Shannon’s

axioms if the additivity property is relaxed.6 In the limit as n→ 1, Rényi can be shown using

l’Hôpital’s rule to converge to the classic definition of Shannon entropy, hence Shannon entropy

is denoted H1. Hn is a monotonically decreasing function of n; it is equal to lgN for all n for

a uniform distribution and is weakly decreasing with n for all non-uniform distributions.

Three special cases are of particular interest:

Hartley entropy H0

For n = 0, Rényi entropy becomes:

H0 = lgN (3.3)

First used by Ralph Hartley two decades prior to Shannon entropy [137], H0 measures only

the size of a distribution and ignores the probabilities.

Collision entropy H2

For n = 2, Rényi entropy becomes:

H2 = − lg

(
N∑
i=1

pi
2

)
(3.4)

4H1 has further been claimed to poorly predict actual password-cracking times [309, 168], though these

studies used naive estimates of H1 which aren’t accurate (§5.1).
5Rényi entropy is usually denoted Hα; we write Hn to avoid confusion with α as a desired success rate.
6The weaker additivity property of Rényi entropy requires only that Hn(XY) = Hn(X ) +Hn(Y) if X and

Y are independent. H1 further admits a definition of conditional entropy where Hn(XY) = H1(X ) +Hn(Y|X ).
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3.1. Traditional metrics

This value is called the collision entropy because it is equal to − lgP (X = Y ), the probability

that two independently chosen values X
R← X , Y

R← X will be equal.

This models the success of an adversary who, instead of guessing in decreasing order of

probability, randomly selects guesses x
R← X . This strategy could arise if an attacker is trying

evade an intrusion detection system which detects if the pattern of guesses is skewed compared

to the underlying password distribution.

Min-entropy H∞

As n→∞, Rényi entropy becomes:

H∞ = − lg p1 (3.5)

This metric is only influenced by the probability of the most likely event in the distribution.

Min-entropy is important as an asymptotic limit on the number of uniformly random bits

which can be deterministically extracted from a distribution [222].7 In this sense it can be

interpreted as the minimum amount of randomness contained in a distribution.

It similarly functions as a worst-case security metric for guessing attacks, measuring security

against an attacker who only guesses the most likely item before giving up. Min-entropy is a

lower bound not only for all other Rényi entropies, but for all of the guessing metrics we will

define, making it useful for conservative security analysis.

3.1.3 Guesswork

If an adversary must guess only one value at a time, none of the above uncertainty metrics

directly relate to guessing difficulty. A more applicable metric is the expected number of

guesses required to find X if the attacker proceeds in optimal order:

G1(X ) = E
[
#guesses(X

R← X )
]

=
N∑
i=1

pi · i (3.6)

This measure was studied as simply G by Massey [201], it was later independently named

“guessing entropy” by Cachin [60] and “guesswork” by Pliam [236]. We prefer the latter term

to stress that this measure is not closely related to the Rényi family of entropy measures and

not logarithmically scaled.

While G1 soundly measures security against an adversary willing to exhaustively guess all

values from X , this formulation is overly conservative and can produce absurd results. For

example, in the RockYou data set (§D) at least twenty users (more than 1 in 221) use

7Cachin [60] proved that in a relaxed model, the number of almost-uniform bits which can be probabilis-

tically extracted is the Rényi entropy Hn for some 1 < n < 2, a value called smooth entropy.
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3.2. Partial guessing metrics

apparently pseudorandom 32-character hexadecimal strings as passwords. These ensure a

lower bound on the overall guesswork using the following lemma, proved in §B.1:

G1(p · X + q · Y) ≥ p ·G1(X ) + q ·G1(Y) (3.7)

Assuming the random-looking passwords are drawn from U2128 , for which G1(U2128) > 2127,

we can thus conclude that G1(RockYou) ≥ 2−21 · 2127 = 2106, no matter how the other

passwords are chosen! Thus G1 provides little insight into practical attacks and we will later

show it is difficult to estimate from sampled data (§5.2).

3.2 Partial guessing metrics

Traditional metrics fail to model the ability of real-world attackers to cease guessing against

the most difficult accounts. As discussed in §2.5.1, cracking evaluations explicitly look for weak

subspaces of passwords to attack and typically report the fraction of accounts broken. Having

many available accounts enables a partial guessing attack which trades a lower proportion of

accounts broken for increased guessing efficiency.

Formally, if Eve must sequentially guess each of k values drawn from X , she will need ∼
k ·G1(X ) guesses on average. However, a second guesser Mallory needing to break only ` < k

of the values can guess the most likely password for all k accounts, then the second-most

likely value and so on until ` have been broken. As ` decreases, Mallory’s efficiency increases

as the attack can omit progressively more low-probability values. For large values of k and

`, Mallory will only need to guess the most popular β values such that
∑β

i=1 pi ≥ α, where

α = `
k . There are several metrics for partial guessing attacks:

3.2.1 β-success-rate

A very simple metric, first formally defined by Boztaş [50], measures the expected success for

an attacker limited to β guesses per account:

λβ(X ) =

β∑
i=1

pi (3.8)

3.2.2 α-work-factor

A related metric, first formalised by Pliam [236], evaluates the fixed number of guesses per

account needed to break a desired proportion α of accounts.

µα(X ) = min

{
µ

∣∣∣∣∣
µ∑
i=1

pi ≥ α
}

(3.9)

If µα(X ) = n, an attacker must use a dictionary of size µ ≥ n to break an individual account

with probability α, or equivalently to break an expected fraction α of many accounts.
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3.2. Partial guessing metrics

3.2.3 α-guesswork

While λβ and µα are closer to measuring real guessing attacks, both ignore the fact that a

real attacker can stop early after successful guesses. While breaking a fraction α of accounts

requires up to µα guesses per account, some will require fewer guesses. We introduce a new

metric to reflect the expected number of guesses per account to achieve a success rate α.

A partial guessing attack will require only 1 guess at a proportion p1 of values which take on

the most likely value, 2 guesses for the proportion p2 which take on the second most likely

value and so on, leading to a summation similar to Equation 3.6. Against all values not in the

dictionary the attacker will make µα guesses, giving a total expected number of guesses:

Gα(X ) = (1− VαW) · µα(X ) +

µα(X )∑
i=1

pi · i (3.10)

The traditional guesswork metric G1 (or just G) is a special case of this metric with α = 1,

representing an attacker determined to break all accounts. We could equivalently define Gβ

for an attacker limited to β guesses, but this is less useful as for small β the effect of stopping

early is negligible.

Note that our definition uses the expression (1− VαW) to round down the proportion of un-

successfully guessed values and not (1− α). This is because an attacker making µα guesses

may actually succeed with probability greater than α. For example, for any 0 < α ≤ p1, an

attacker making µα = 1 guess will succeed with probability VαW = p1. We can define this

rounding operation succinctly using our β-success-rate definition as:

VαW = λµα(X )(X ) =

µα(X )∑
i=1

pi (3.11)

3.2.4 Effective key-length conversion

While λβ, µα and Gα are not measures of entropy, it is convenient to convert them into

units of bits. This enables direct comparison of all metrics as a logarithmically scaled attacker

workload which is intuitive to programmers and cryptographers. This can be thought of as an

“effective key-length” as it represents the size of a randomly chosen cryptographic key which

would give equivalent security.8

A metric’s effective key-length is the (logarithmic) size of a uniform distribution UN which has

the same value of the guessing metric. This approach is often used implicitly in cryptography,

where skewed human-chosen distributions are abstracted as a uniform distribution of size

H∞ [112, 123]. This approach extends easily to partial guessing metrics.

8Boztaş used the term effective key-length specifically to refer to µ̃0.5 [50]. O’Gorman also used the term

to denote the equivalent false positive and false negative rates in biometrics [227].
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Figure 3.1: This figure shows the importance of using VαW in place of α in the definition

of µ̃α in Equation 3.13. This plot shows µ̃α for the distribution of surnames in South Korea

(§7.2.1), which is highly skewed with p1 ≈ 0.22 for the surname ‘Kim’. If α is used, a misleading

sawtooth pattern emerges represented by the dashed line where security appears to increase

for lower α, with µ̃α →∞ as α→ 0.

For β-success-rate, since we have λβ (UN ) = β
N we say that any distribution X is equivalent

with respect to λβ to a uniform distribution of size N = β
λβ(X ) . We take a logarithm to produce

an effective key-length metric λ̃β, using a tilde to denote the conversion to bits:

λ̃β(X ) = lg

(
β

λβ(X )

)
(3.12)

The conversion formula for α-work-factor is very similar:

µ̃α(X ) = lg

(
µα(X )

VαW

)
(3.13)

We again use VαW (as defined in Equation 3.11) in place of α in the denominator because µα

increases as a step function as α increases. Without this correction, µ̃α would decrease over

each interval of α where µα is constant, giving a misleading over-estimate of security as seen in

Figure 3.1. Using VαW ensures that µ̃α is monotonically increasing and avoids the undesirable

possibility that limα→0+ µ̃α(X ) =∞.

To convert Gα, we consider that an attacker desiring to break a proportion α of accounts will

average Gα guesses per account and break a proportion VαW of them, giving an overall rate
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3.2. Partial guessing metrics

of one successful guess per Gα
VαW guesses. Against the uniform distribution UN , an attacker will

break an account every N+1
2 guesses, giving us the possible formula:

G̃?
α(X ) = lg

[
2 ·Gα(X )

VαW
− 1

]
(3.14)

This definition, however, isn’t constant for a uniform distribution UN :

G̃?
α(UN ) = lg

[
2 ·Gα(UN )

VαW
− 1

]

= lg

 2

VαW
·

(1− VαW) · µα(UN ) +

µα(UN )∑
i=1

pi · i

− 1


= lg

 2

VαW
·

(1− VαW) · VαWN +
1

N

VαWN∑
i=1

i

− 1


= lg

[
2

VαW
·
(

VαWN − VαW2N +
VαW2N + VαW

2

)
− 1

]
= lg [(2− VαW)N ]

(3.15)

Note that we have G̃?
1(UN ) = lgN , as desired, but G̃?

α(UN )→ lg 2N = lgN+1 as α→ 0. This

reflects a subtle property of guessing: for a uniform distribution, repeatedly trying guesses for

the same unknown value will require an expected N+1
2 guesses per success. Trying a single

value for each account requires N guesses per success. This occurs because each unsuccessful

guess decreases uncertainty and makes future guessing more efficient.

Still, it is best to define the property to make G̃α(UN ) = lgN for all α and thus make it easier

to compare to our other metrics. We can see from the last line of Equation 3.15 that this can

be done by subtracting a simple correction factor:

G̃α(X ) = lg

[
2 ·Gα(X )

VαW
− 1

]
− lg(2− VαW) (3.16)

This correction factor is a continuous, monotonically decreasing function of α, ranging from

lg 2 = 1 as α → 0 to lg 1 = 0 as α → 1. The usefulness of this correction is seen visibly in

Figure 3.2, where it ensures that µ̃α ∼ G̃α for low α, which matches our intuition that the

benefit of being able to stop early is negligible for attacks with a low desired success rate α.

Unit conversion by change of logarithm base

Shannon entropy can be converted into alternative units by changing the base of the logarithm

used from the traditional base of 2. Standard alternatives include base 10, giving units called

dits (also called hartleys or bans), and the natural logarithm (using Euler’s constant e as the

base), giving units of nats (also called nits or nepits). We can achieve the same unit conversion

simply by changing the logarithm base in Equations 3.12, 3.13 and 3.16.
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3.2. Partial guessing metrics

Converting to dits can be useful if we are studying PINs, which are canonically represented

as decimal digits. In Figure 3.2, the right y-axis displays units of dits. With the conversion,

it is easy to see that U103 , equivalent to a random 3-digit PIN, provides exactly 3 dits of

security. Simple re-labeling of the axis is possible because the conversion from base 2 to base

b is equivalent to a multiplication by 1
log2(b) ; 1 dit is equal to 1

log2(10) = 3.32 bits.

A larger base could be used to measure text passwords in units of equivalent random “charac-

ters”. Unlike digits, however, there are many ways to count the number of possible characters:

26 English letters, 52 letters including case, 62 alphanumeric characters, 96 printable ASCII

characters, or 110,181 characters in the recent Unicode 6.1 standard [13].

3.2.5 Guessing curves

A visual example of the utility of our metrics is shown in Figure 3.2. By plotting over the

full interval 0 < α ≤ 1, a large amount of information about the difficulty of guessing attacks

is compactly displayed. We call this plot a guessing curve. The plot of the non-bit-converted

metrics µα and Gα in Figure 3.2a is more difficult to interpret as the scale hides information

for α ≤ 1
2 and the difference between U104 and U103 (represented in their slopes) is difficult

to evaluate. Plotting the converted metrics µ̃α and G̃α (Figure 3.2b) solves both problems,

allowing visualisation of the difficulty of guessing a human-chosen PIN over all possible suc-

cess rates and providing simple comparison with different sizes uniform distributions, whose

guessing curves are horizontal lines.

3.2.6 Example calculation

To exercise our metrics, we can compute them for a toy distribution Z with probabilities PZ =

{1
4 ,

1
10 ,

1
10 ,

1
20 ,

1
20 . . . }. Regardless of the tail probabilities, an attacker will have a probability

1
2 of success after making four guesses, giving λ4(Z) = 1

2 . The uniform distribution U8 also

has λ4(U8) = 1
2 , so these two distributions are equivalent with respect to λ4. Since lg |U8| =

lg 8 = 3, we expect λ̃4(Z) = 3, which we can verify with our formula:

λ̃4(Z) = lg

(
4

λ4(Z)

)
= lg

(
4
1
2

)
= lg 8 = 3

An attacker seeking an minimum success rate α = 1
2 will similarly need to make four guesses,

giving a value of µ 1
2

= 4. This is equivalent to a uniform distribution U8 which would have

µ 1
2
(U8) = 4, so we expect that µ̃ 1

2
= lg |U8| = 3, which we can again verify by our formula:

µ̃ 1
2
(Z) = lg

 µ 1
2
(Z)

λµ 1
2

(Z)(Z)

 = lg

(
4

λ4(Z)

)
= lg

(
4
1
2

)
= lg 8 = 3

48



3.2. Partial guessing metrics

0.0 0.2 0.4 0.6 0.8 1.0
success rate α

0

2000

4000

6000

8000

10000

d
ic

ti
on

ar
y

si
ze

/n
u

m
b

er
of

gu
es

se
s

µα(U104)

µα(U103)

µα(PIN)

Gα(PIN)

(a) µα, Gα (number of guesses)

0.0 0.2 0.4 0.6 0.8 1.0
success rate α

0

2

4

6

8

10

12

14

b
it

s

↖ H∞

G̃1 ↘

H0 ↘

H1 →

H2 →

µ̃α(U104)/G̃α(U104)

µ̃α(U103)/G̃α(U103)

µ̃α(PIN)

G̃α(PIN)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
it

s

(b) µα, Gα (effective key-length)

Figure 3.2: Two ways of comparing the guessing difficulty of user-chosen 4-digit PINs from

the iPhone data set (§4.1) against uniform distributions of size 10,000 and 1,000 (U104 and

U103 , respectively). Fig. 3.2a plots the dictionary size µα needed to have a chance of success

α as well as the expected number of guesses per account Gα. Fig. 3.2b converts both metrics

into an effective key-length, enabling visual comparison across the entire interval 0 ≤ α ≤ 1.

Traditional single-point metrics H0, H1, H2, H∞ and G̃1 are also marked for comparison. Note

that µ̃α and G̃α are horizontal lines for uniform distributions; an attacker gains no efficiency

advantage at a lower desired success rate α.
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3.3. Relationship between metrics

Note that in this case, four guesses yields a success rate of exactly α = 1
2 . However, if we want

a success rate of α = 1
2 + ε for any 0 < ε ≤ 1

20 , we need 5 guesses. The effect of our smoothed

formula is to give the same value for µ̃α for any 1
2 < α ≤ 1

2 + 1
20 , specifically:

µ̃ 1
2

+ε(Z) = lg

 µ 1
2

+ε(Z)

λµ 1
2+ε

(Z)(Z)

 = lg

(
5

λ5(Z)

)
= lg

(
5
11
20

)
= lg

100

11
≈ 3.18

Computing G 1
2

is slightly more complicated:

G 1
2
(Z) = (1− VαW) · µα(Z) +

µα(Z)∑
i=1

pi · i

=
1

2
· 4 +

(
1

4
· 1 +

1

10
· 2 +

1

10
· 3 +

1

20
· 4
)

=
59

20

= 2.95

Converting to bits, we get:

G̃ 1
2
(Z) = lg

[
2 ·Gα(Z)

VαW
− 1

]
− lg(2− VαW)

= lg

[
2 · 2.95

1
2

− 1

]
− lg 1.5

= lg
(

108
15

)
≈ 2.848

Note that the result is only slightly lower than µ̃ 1
2
(Z) = 3; for this small distribution the

ability to stop early doesn’t significantly speed up a guessing attack with α = 1
2 .

3.3 Relationship between metrics

3.3.1 Equivalences and simple bounds

We enumerate a few useful relationships between different metrics in Table 3.1. Note that for

a discrete uniform distribution UN , all of the metrics Hn, G̃α, λ̃β and µ̃α are equivalent. This

explains why partial guessing metrics haven’t been needed in cryptographic literature, as they

provide no additional information for uniform distributions.

3.3.2 Relationship between H1 and G̃1

Several works have developed bounds between H1 and G1. Massey was perhaps the first to

study the relationship [201], proving a result which is very easy to express in our notation:

G̃1 ≥ H1 − 1 (3.17)
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3.3. Relationship between metrics

equivalences

∀n Hn(UN ) = lgN all metrics equal for U
∀β λ̃β(UN ) = lgN all metrics equal for U
∀α µ̃α(UN ) = lgN all metrics equal for U
∀α G̃α(UN ) = lgN all metrics equal for U
H0 = µ̃1 = λ̃N = lgN metrics depending only on N

H∞ = µ̃α≤p1 = λ̃1 = − lg p1 metrics depending only on p1

bounds

H∞ ≤ G̃α, µ̃α, λ̃β H∞ is absolute lower bound

G̃α, µ̃α, λ̃β ≤ H0 H0 is absolute upper bound

G̃α ≤ µ̃α proved in §B.2

G̃α − µ̃α ≤ lg(1− VαW) proved in §B.2

monotonicity

H∞ ≤ . . . ≤ H1 ≤ H0 Hn decreasing with n

λ̃β ≤ λ̃β+ε λ̃β increasing with β

µ̃α ≤ µ̃α+ε µ̃α increasing with α

G̃α ≤ G̃α+ε G̃α increasing with α

Table 3.1: Relations between guessing metrics

Coupled with the trivial upper bound, Massey’s bound gives us H0 ≥ G̃1 ≥ H1 − 1. A loose

bound9 in the other direction was developed by McEliece and Yu [206]:

H1 ≥ lgN · 2G̃1 − 1

N − 1
(3.18)

This bound is satisfied with equality when G̃1 = lgN (such as a uniform distribution) because

H1 ≤ lgN . For lower values of G̃1 the bound provides a non-trivial lower bound on H1.

Massey’s bound demonstrates an apparently useful relationship between H1 and G: it is not

possible for a high-entropy distribution to have low guesswork. This has been used to justify

H1 as a guessing metric [168]. As demonstrated in §3.1.3 though, G̃1 can be skewed beyond

utility by outliers. In the next section we’ll prove that no useful bound exists between H1 and

G̃α for α < 1.

3.3.3 Incomparability of µ̃α with H1 or G̃1

The following theorem demonstrates the fundamental incomparability of Shannon entropy and

guesswork to partial guessing metrics. Special cases of these results were demonstrated previ-

9This bound was later tightened by de Santis et al. [79] in a much more complicated form.
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3.3. Relationship between metrics

ously [236, 50] but we can use an enhanced proof technique to prove both results generically.

We can also trivially extend to G̃α using the bound that G̃α ≤ µ̃α.

Theorem 3.3.1. Given any δ > 0, α > 0, there exists a distribution X such that G̃α(X ) ≤
µ̃α(X ) < H1(X )− δ and G̃α(X ) ≤ µ̃α(X ) < G̃1(X )− δ.

Proof. The central proof technique is to construct a pathological distribution X = α · U1 +

(1− α) · Uγ with one likely event and many very-unlikely events, giving:

H1(X ) =

N∑
i=1

−pi lg pi

≥ γ · 1− α
γ
· − lg

1− α
γ

≥ (1− α) lg γ − (1− α) lg(1− α)

Because we have µ̃α(X ) = 1 by design, if we set γ such that H1(X ) ≥ δ+ 2, then we will also

have G̃1(X ) > δ + 1, following from Massey’s bound on G̃1 (Equation 3.17), completing the

proof. Thus, we must solve for γ:

δ + 2 ≤ (1− α) lg γ − (1− α) lg(1− α)

(1− α) lg γ ≤ δ + 2 + (1− α) lg(1− α)

lg γ ≤ δ + 2

1− α + lg(1− α)

γ ≥ 2
δ+2
1−α+lg(1−α)

γ ≥ (1− α) · 2
δ+2
1−α

This inequality proves that such a pathological distribution is always possible.

Note that this construction requires |X | ∈ Θ(2δ), the result does not hold if we impose sub-

exponential limits on |X |. This is a trivial requirement though because H1, G̃1 ≤ H0 = lgN ,

therefore having a δ-bit gap inherently requires |X | ≥ 2δ.

We prove analogous results for λ̃β for any β in §B.3.

3.3.4 Inadequacy of a single partial guessing metric

For highly skewed distributions, as are typical for human-chosen data, there may be several

very common items which make secret values easy to guess despite the presence of many

unlikely events which inflate its apparent security if measured by H1 or G̃1. We may wish

to settle on some single value of α to use with µ̃α or G̃α instead. However, we can prove an

arbitrary gap is possible between µ̃α1 and µ̃α2 or G̃α1 and G̃α2 for any α2 > α1:
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Theorem 3.3.2. Given any δ > 0, α1 > 0, and α2 > 0 with 0 < α1 < α2 < 1, there exists a

distribution X such that µ̃α1(X ) ≤ µ̃α1(X )− δ.

Proof. This theorem is proved similarly to Theorem 3.3.1 by constructing a pathological

mixture distribution:

X = α1 · U1 + (1− α1) · U[α2
α1
· 1−α1
α2−α1

·2δ
]

This gives µ̃α1(X ) = lg
(

1
α1

)
= − lgα1. A cumulative success probability of α2 will require

1 +
α2 − α1

(1− α1)
(
α2
α1
· 1−α1
α2−α1

· 2δ
)−1

guesses, which simplifys to just α2
α1

2δ + 1. This gives an α-work-factor of:

µ̃α2(X ) = lg

(
α2
α1
· 2δ + 1

α2

)
= lg

(
2δ + 1

)
− lgα1

> δ − lgα1

This gives the desired gap δ with |X | ∈ Θ(2δ).

Theorem 3.3.3. Given any δ > 0, α1 > 0, and α2 > 0 with 0 < α1 < α2 < 1, there exists a

distribution X such that G̃α1(X ) ≤ G̃α2(X )− δ.

Proof. Using our general bounds between G̃α and µ̃α, we know that G̃α1(X ) ≤ µ̃α1(X ) and

G̃α2(X ) ≥ µ̃α2(X ) + lg(1− Vα2W). Therefore, if we set δ′ = δ− lg(1− Vα2W) we can construct

a distribution X such that µ̃α1(X ) ≤ µ̃α1(X )− δ′ by Theorem 3.3.2. By transitivity:

G̃α1(X ) ≤ µ̃α1(X )

≤ µ̃α2(X )− δ′

≤ G̃α2(X )− lg(1− Vα2W)− δ′

= G̃α2(X )− lg(1− Vα2W)− (δ − lg(1− Vα2W))

= G̃α2(X )− δ

The desired gap is now δ with |X | ∈ Θ
(
2δ−lg(1−Vα2W).

These theorems demonstrate that on top of the inadequacy of H1 and G̃1, there is no single

measure value of α which is adequate for all security purposes and that α should be chosen

to reflect a realistic attacker in a specific environment. Plotting the guessing curve is useful

in demonstrating security across all possible α.
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3.3.5 Non-additivity of partial guessing metrics

Finally, a major drawback is that none of the partial guessing metrics λ̃β, µ̃α or G̃α are

additive like H1. It would be convenient if an attacker needing to guess both X
R← X and

Y
R← Y at the same time would have λ̃β(X,Y ) ≈ λ̃β(X ) + λ̃β(Y). Unfortunately, this does

not hold:

Theorem 3.3.4. For any k ≥ 1, β ≥ 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that λ̃β(X1, . . . ,Xk) ≤ max
1≤i≤k

{
λ̃β(Xi)

}
+ ε.

Theorem 3.3.5. For any k ≥ 1, 0 < α < 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that µ̃α(X1, . . . ,Xk) ≤ max
1≤i≤k

{µ̃α(Xi)}+ ε.

Theorem 3.3.6. For any k ≥ 1, 0 < α < 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that G̃α(X1, . . . ,Xk) ≤ max
1≤i≤k

{
G̃α(Xi)

}
+ ε.

We present proofs for these theorems in §B.4. As a result, guessing two values may be only

negligibly more difficult than guessing one even if the values are drawn independently. This

problem is worse for correlated variables, which is likely if the same person has chosen both.

3.4 Application in practical security evaluation

For an online attacker we can use λ̃β with β equal to the guessing limits imposed by the

system. There is no standard for β, with 10 guesses recommended by usability studies [54], 3

by FIPS guidelines [58], and a variety of values (often ∞) seen in practice [47]. Sophisticated

rate-limiting schemes may allow a probabilistic number of guesses [19]. We consider λ̃10 a

reasonable benchmark for resistance to online guessing, though λ̃1 = H∞ is a conservative

choice as a lower bound for all metrics proposed.

The separation results of §3.3 mean that for brute-force attacks where an adversary is limited

only by time and computing power we can’t rely on any single value of α; each value provides

information about a fundamentally different attack scenario. For a complete picture, we can

compare µ̃α or G̃α across all values of α using the guessing curve, as plotted in Figure 3.2.

We might consider µ̃α or G̃α for a standard value such as 0.5 as a benchmark (µ̃0.5 was

originally suggested by [50]). While G̃α more directly measures the efficiency of a guessing

attack, µ̃α can be advantageous in practice because it is simpler to compute. In particular, it

can be computed using previously published cracking results reported as “a dictionary of size

µ compromised a fraction α of available accounts,” as plotted in Figure 2.1b. Furthermore,

the difference between the metrics is only significant for higher values of α; for α ≤ 0.5 the

two will never differ by more than 1 bit (from the bound in Table 3.1).
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12345? That’s amazing! I have the same combination on my luggage.

—Mel Brooks as President Skroob, Spaceballs, 1987

Chapter 4

Guessing difficulty of PINs

We now turn our attention to 4-digit Personal Identification Numbers, or PINs, which are

used to authenticate trillions of pounds in payment card transactions annually. They are also

used in a variety of other security applications where the lack of a full keyboard prevents the

use of text passwords such as electronic door lock codes, smartphone unlock codes and voice-

mail access codes. Despite their importance, to date no research has examined the difficulty

of guessing human-chosen PINs.1

PINs are an easy first application for our guessing metrics because the distribution is limited to

the set {0000, . . . , 9999}, with the total number of events limited to N = 10, 000. This makes

sample size less problematic than it is for distributions like passwords which are drawn from a

theoretically infinite domain. However, we don’t have direct data on the distribution of human-

chosen banking PINs. Instead, we will study two other distributions of 4-digit sequences and

use a large survey to estimate the distribution of banking PINs.

Because it is computationally trivial to search the entire space PINs, modeling offline attacks

using metrics like G̃0.5 is mainly of theoretical interest. We are more interested in λ3 and λ6,

given that attackers can typically try 3 PIN guesses at an ATM machine and 3 at a CAP

reader (§2.1.2).

4.1 Human choice of other 4-digit sequences

We begin with two non-banking sources of human-chosen, secret 4-digit sequences:

Sequences occurring in text passwords

Many users include a consecutive sequence of exactly 4 digits within a text password. We

extracted all such sequences from the RockYou password distribution and call the resulting

1Bias in the distribution of bank-chosen PINs has been show due to skewed decimalisation tables [178, 41].
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4.1. Human choice of other 4-digit sequences
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Figure 4.1: Guessing curves for the 4-digit sequences found in RockYou passwords and iPhone

unlock codes, as well as the best-fit model distributions produced by linear regression on 25

variables (see Table 4.2).

distribution RockYou-4. The 1,778,095 observed sequences include every 4-digit sequence,

from 1234 with 66,193 occurrences (3.7%) to 8439 with just 10 occurrences (0.0006%).

Though these sequences occurred as part of longer strings, a manual inspection of 100 random

passwords containing a 4-digit sequence identified only 3 with an obvious connection between

the digits and text (feb1687, classof2007 and 2003chevy), suggesting that digits and letters

are often semantically independent. Users also show a particular affinity for 4-digit sequences,

using them significantly more often than 3-digit sequences (1,599,959) or 5-digit sequences

(497,791).

Smartphone unlock codes

Our second data set was published (in aggregate form) in June 2011 by Daniel Amitay, an

iPhone application developer who deployed a screen locking mechanism which requires a 4-

digit sequence to unlock. This data set, which we’ll call iPhone, was much smaller with only

204,508 PINs. It doesn’t support reliable estimates of low-frequency PINs, as 46 possible PINs
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4.1. Human choice of other 4-digit sequences

distribution H1 G̃1 G̃0.5 λ3 λ6

RockYou-4 10.74 11.50 8.78 8.04% 12.29%

RockYou-4 (modeled) 11.01 11.79 9.06 5.06% 7.24%

iPhone 11.42 11.83 10.08 9.23% 12.39%

iPhone (modeled) 11.70 12.06 10.48 9.21% 11.74%

U104 (random PIN) 13.29 13.29 13.29 0.03% 0.06%

Table 4.1: Guessing metrics for the 4-digit sequences in RockYou passwords and iPhone unlock

codes. Values are also shown for the regression-model approximation for each distribution and

for a uniform distribution of 4-digit PINs.

weren’t observed at all. 1234 was again the most common, representing 4.3% of all PINs. The

screen unlock codes were entered using a square number pad very similar to standard PIN-

entry pads. Geometric patterns, such as PINs consisting of digits which are adjacent on the

keypad, were far more common than in the RockYou-4 set.

The guessing curves for the two distributions are plotted in Figure 4.1; other metrics are

listed in Table 4.1. The security of both distributions drops below 2 dits against attackers

that require only a 20% success rate, meaning that in some situations these PINs are easier

to guess than random 2-digit numbers.

4.1.1 Estimating factors influencing user choice

Plotting the RockYou-4 distribution in a 2-dimensional grid (Figure 4.2) highlights some

basic factors influencing user choice. The most prominent features are the stripe of recent

years and the set of calendar dates in MMDD and DDMM format, which trace the variation in

lengths of each month. Many other features can be clearly seen, such as a diagonal line of

PINs with the same first and last two digits and a horizontal line of PINs ending in 69.

To quantitatively study factors affecting PIN selection, we model the PIN distribution as a

mixture of simpler distributions arising from human-level PIN selection strategies. For exam-

ple, the strategy “repeat the same digit four times” assigns probability 1
10 to each of {0000,

. . . , 9999} and probability 0 to all other PINs. Each observed PIN frequency is:

fi = εi +
∑

1≤j≤N
pji · wj (4.1)

where pji is the observed popularity of PIN i in distribution j (expressed as a proportion of

all PINs observed), wj is the weight of distribution j in the mixture and εi is a residual error

term for each observed PIN. Given this model and mathematical definitions of common pin-

selection strategies, we can estimate the weights wj using multiple regression [195], solving

for the weights which minimizes the sum of squared residuals
∑
ε2
i .
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4.1. Human choice of other 4-digit sequences

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

First two PIN digits

00

05

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

S
ec

on
d

tw
o

P
IN

d
ig

it
s

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

−
lo

g
2
p(

P
IN

)

Figure 4.2: The distribution of 4-digit sequences within RockYou passwords (RockYou-4).

Each cell shows the frequency of an individual PIN.

Assuming our PIN selection strategies are mutually exclusive, the weights can be interpreted as

the proportion of the population employing each strategy. Our process for identifying relevant

input functions was iterative: we began with a single strategy representing random selection

in which each PIN is equally likely and progressively added functions which could explain the

PINs which were the most poorly fit. We measured the fit of our model using the adjusted

coefficient of determination R̄2 [293], which corrects for the number of input variables in the

model so that adding random input variables will not increase the indicated fit of the model.

We stopped when we could no longer identify intuitive functions which increased R̄2 [293].

We further tested our final set of input functions for redundancy by removing each one and

confirming that R̄2 decreased.

We were cautious to avoid over-fitting the training data sets, particularly for PINs which

represent recent years, shown in Figure 4.3. The popularity of recent years has peaks between

the current year and the year 1990. This interval probably represents recent events like grad-
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4.1. Human choice of other 4-digit sequences
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Figure 4.3: Frequency of PINs in the interval from 1900–2025 and a simplified model to reduce

over-fitting. Some outliers demonstrate known confounding factors: 1937 and 1973 represent

the four-corners of a numeric keypad, 1919 and 2020 are repeated digit pairs.

uations or marriages (or perhaps registration). There is steady decline for older years, likely

due to the drop-off in frequency of birthdays and events which are still memorable. Due to

the large fluctuations for recent years in both data sets and a possibly younger demographic

for both data sets compared to the general population, we used an intentionally biased model

for the popularity of different years in PIN selection: constant popularity for all years in the

past 20 years and linear drop-offs for years from 20–65 years in the past and for 5 years into

the future. This model, plotted in Figure 4.3, was used for PINs representing 4-digit years

directly as well as DMYY and MMYY PINs.

After fixing the year model, we removed the interval of years from the regression model to avoid

skewing the model’s estimation of other parameters to correct for the intentionally weakened

model of the year distribution. We similarly added singleton input functions for 1234, 0000,

1111, and 2580 to avoid omitted-variable bias caused by these significant outliers.

The complete results of our final model with 25 input functions are shown in Table 4.2. All

of the input functions were binary, except for years, calendar dates (in which Feb. 29th was
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4.1. Human choice of other 4-digit sequences

factor example RockYou-4 iPhone surveyed

date

DDMM 2311 5.26 1.38 3.07

DMYY 3876 9.26 6.46 5.54

MMDD 1123 10.00 9.35 3.66

MMYY 0683 0.67 0.20 0.94

YYYY 1984 33.39 7.12 4.95

total 58.57 24.51 22.76

keypad

adjacent 6351 1.52 4.99 —

box 1425 0.01 0.58 —

corners 9713 0.19 1.06 —

cross 8246 0.17 0.88 —

diagonal swipe 1590 0.10 1.36 —

horizontal swipe 5987 0.34 1.42 —

vertical swipe 8520 0.06 4.28 —

spelled word 5683 0.70 8.39 —

total 3.09 22.97 8.96

numeric

ending in 69 6869 0.35 0.57 —

digits 0-3 only 2000 3.49 2.72 —

digits 0-6 only 5155 4.66 5.96 —

repeated pair 2525 2.31 4.11 —

repeated quad 6666 0.40 6.67 —

sequential down 3210 0.13 0.29 —

sequential up 4567 3.83 4.52 —

total 15.16 24.85 4.60

random selection 3271 23.17 27.67 63.68

Table 4.2: Results of linear regression. The percentage of the variance explained by each

input function is shown for the RockYou-4 and iPhone data sets. The final column shows

estimates for the prevalence of each category from our user survey.

discounted), and words spelled on a keypad.2 All of the input functions we chose contributed

positively to the probability of a PIN being selected, making it plausible to interpret the

weight assigned to each input function as the proportion of the population choosing a PIN

2We used the distribution of four-letter passwords in the RockYou data set to approximate words used in

spelled-out PINs. love was the most common 4-letter password by a large margin and its corresponding PIN

5683 was a significant outlier.
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4.2. Surveying banking PIN choices

by each method. This simple model was able to fit both distributions quite accurately: the

coefficient of determination R̄2 was 0.79 for RockYou-4 and 0.93 for iPhone. Under the

conventional interpretation, this means the model explained 79% and 93% of the variance.

Additional confirmation of our model comes from its accurate approximation of guessing met-

rics in the underlying distributions, as seen in Figure 4.1 and Table 4.1. The model consistently

provides an over-approximation by about 0.2–0.3 bits (< 0.1 dit) indicating that the inaccu-

racy is mainly due to missing some additional biases in user selection. This is acceptable for

estimating an upper bound on the guessing difficulty of banking PINs.

4.2 Surveying banking PIN choices

Lacking empirical data on real banking PINs, we use a survey to assess user behaviour. The

low frequency of many PINs means a survey of hundreds of thousands of users would be

needed to observe all PINs and some users might feel uncomfortable disclosing their PINs.

We addressed both problems by asking users only if their PINs fall into the generic categories

identified by our regression model.

We deployed our survey online using the Amazon Mechanical Turk platform, a crowd-sourcing

marketplace for short tasks. The survey was advertised as “Short research survey about bank-

ing security” intended to take five minutes. We deliberately displayed the University of Cam-

bridge as the responsible body to create a trust effect.

About half of Mechanical Turk “workers” are US residents with a valid bank account registered

for payment and tax purposes; the remainder (predominantly residents of India) can only be

paid in Amazon gift cards [150]. We limited participation to only US residents with bank

details registered in order to make repeat participation difficult.3 The survey was piloted

on 20 respondents. We removed demographic questions4 after pilot respondents indicated

this made them feel less comfortable discussing their PINs. We then administered the final

survey to 1,351 respondents and kept 1,337 responses.5 Respondents were paid US$0.10–0.44

including bonuses for complete submission and thoughtful feedback.

4.2.1 PIN usage characteristics

A total of 1,177 respondents reported using numeric banking PINs and were asked a series

of questions about their PIN usage. A summary of the question phrasing and responses is

3Repeat participation is still possible through fraudulently-obtained banking accounts or if a valid account

is created and the credentials given to another person. We relied on Amazon’s policing of such fraud.
4Demographics of American Mechanical Turk workers are close to those of the general Internet-using public,

though slightly younger, more female, and lower-income [150].
5It is common practice on Mechanical Turk to include careful test questions to eliminate respondents who

have not diligently read the instructions. Our test question involved using PINs to unlock a unicorn shed (§C).
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4.2. Surveying banking PIN choices

provided in §C. A surprising number (about 19%) of users rarely or never use their PIN,

relying on cash or cheques and in-person interaction with bank tellers. Several participants

reported in feedback that they distrust ATM security to the point that they don’t even know

their own PINs. Many others stated that they prefer signature verification to typing in their

PIN. However, 41% of participants indicated that PINs were their primary authentication

method for in-store payments, with another 16% using PINs or signatures equally often. Of

these users, nearly all (93%) used their PINs on at least a weekly basis.

Over half of users (53%) reported sharing their PIN with another person, though this was

almost exclusively a spouse, partner, or family member. This is consistent with a 2007 study

which found that about half of online banking users share their passwords with a family

member [276]. Of the 40% of users with more than one payment card, over a third (34%)

reported using the same PIN for all cards. This rate is lower than that for online passwords,

where the average password is reused across six different sites [103]. The rate of forgotten PINs

was high, at 16%, although this is again broadly consistent with estimates for online passwords,

where about 5% of users forget their passwords every 3 months at large websites [103]. Finally,

over a third of users (34%) re-purpose their banking PIN in another authentication system.

Of these, the most common were voice-mail codes (21%) and Internet passwords (15%).

4.2.2 PIN selection strategies

We invited the 1,108 respondents with a PIN of exactly 4 digits to identify their PIN selection

method. This was the most sensitive part of the survey and users were able to not provide

this information without penalty, removing a further 27% of respondents and leaving us with

603 responses from which to estimate PIN strength. We presented users with detailed descrip-

tions and examples for each of the selection strategies identified in our regression model. Users

were also able to provide free-form feedback on how they chose their PIN. The aggregated

results of our survey are shown alongside our regression model in Table 4.2.

The largest difference between our survey results and the regression models was a huge increase

in the number of random and pseudo-random PINs: almost 64% of respondents in our survey,

compared to 23% and 27% estimated for our example data sets. Of these users, 63% reported

that they either used the PIN initially assigned by their bank or a PIN assigned by a previous

bank.6 Another 21% reported the use of random digits from another number assigned to

them, usually either a phone number or an ID number from the government, an employer, or

a university (about 30% for each source).7

6Active PIN selection isn’t strongly correlated with card usage: 17.2% of respondents who rarely or never

used their card kept their initial PIN while 16.0% of those using their PIN at least once per week kept their

assigned PIN, a statistically indistinguishable difference.
7While reusing identification numbers and phone numbers in PINs may open a user to targeted attacks,

they should appear random to an untargeted guessing attacker.
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4.3. Approximating banking PIN strength

guessing scenario H1 G̃1 G̃0.5 λ3 λ6

BankingPIN 12.90 12.83 12.38 1.44% 1.94%

BankingPIN-BL 13.13 12.95 12.67 0.12% 0.24%

BankingPIN-DOB 12.57 12.80 12.28 5.53% 8.25%

BankingPIN-DOB-BL 12.85 12.92 12.60 5.13% 5.65%

U104 (random PIN) 13.29 13.29 13.29 0.03% 0.06%

Table 4.3: Guessing metrics for our estimated banking PIN distribution using the model

computed from our survey. The BL and DOB variants model the use of a blacklist by banks

and knowledge of the user’s birth date by the attacker.

Of users with non-random PINs, dates were by far the largest category, representing about 23%

of users, comparable to the iPhone distribution and about half the rate of the RockYou-4

distribution. The choice of date formats was similar to the other data sets with the exception of

4-digit years, which were less common in our survey. We also asked users about the significance

of the dates in their PINs: 29% used their own birth date, 26% the birth date of a partner or

family member and 25% an important life event like an anniversary or graduation.

Finally, about 9% of users chose a pattern on the keypad and 5% a numeric pattern such as re-

peated or sequential digits. Our sample size was insufficient to provide an accurate breakdown

of users within these categories.

4.3 Approximating banking PIN strength

Using our survey data and regression model we produced an estimated distribution Bank-

ingPIN.8 We list key statistics in Table 4.3. Interestingly, security against offline attacks as

measured by any of the metrics G̃0.5, G̃1, or H1 is between 12.4 and 12.9 bits (3.7–3.9 dits),

close to the maximum possible 13.3 bits/4 dits.

4.3.1 Partial guessing

Banking PINs appear considerably more vulnerable against partial guessing attacks, as seen

in the guessing curve in Figure 4.4. As noted in Table 4.3, an attacker with 3 guesses will

have a λ3 = 1.4% chance of success and an attacker with 6 guesses a λ6 = 1.9% chance of

success, equivalent to λ̃6 = 8.3 bits of security (2.5 dits). This is significantly better than

the estimates based on the RockYou-4 or iPhone distributions (Table 4.1), for which λ6 >

10%. The optimal guessing order is 1234 followed by 1990–1986.

8Within the categories of numeric patterns and keypad patterns, we used the sub-distribution from the

iPhone data set due to lack of sufficient sample size.
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Figure 4.4: Estimated guessing curves for banking PINs based on our survey data and regres-

sion model (see Table 4.2). We also model the effective distribution if the adversary knows

the user’s birth date and if a blacklist of weak PINs is utilised.

4.3.2 Known birth date guessing

Given the large number of users basing their PIN on their birth date (nearly 7%), we evaluated

the success of an attacker who can leverage a known birth date, for example if a card is stolen

in a wallet along with an identification card. The effects vary slightly with the actual birth

date: if variants of the date also correspond to common PINs such as 1212, the attacker’s

success rate will be higher. We calculated guessing probabilities for all dates from 1960–1990

and list guessing metrics for the median-difficulty birth date of June 3, 1983 as BankingPIN-

DOB. In this scenario, the attacker’s optimal strategy shifts to guessing, in order, 1983, 6383,

0306, 0603, 1234, and 0683. As seen in Table 4.3, the attacker improves considerably in this

scenario: λ6 increases to 8.2%, providing only λ̃6 = 6.2 bits (1.9 dits) of security.

4.3.3 Effectiveness of blacklisting

We can model the effects of a modest blacklist of 100 weak PINs. We assume that users

attempting to use a blacklisted PIN will be re-distributed randomly according to the prob-
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4.4. Security implications

number of stolen cards

guessing scenario 1 2 3 4 Ewallet

BankingPIN 1.4% 1.9% 2.4% 2.9% 1.7%

BankingPIN-BL 0.1% 0.2% 0.4% 0.5% 0.2%

BankingPIN-DOB 5.5% 8.2% 9.3% 9.7% 6.7%

BankingPIN-DOB-BL 5.1% 5.6% 5.9% 6.0% 5.4%

U104 (random PIN) 0.0% 0.1% 0.1% 0.1% 0.0%

Table 4.4: Probability of a successful attack given multiple cards from one person. The final

column is an expected value given the observed rate of card ownership.

ability of non-blacklisted PINs being originally chosen, producing a modified distribution

BankingPIN-BL. The optimal blacklist is:

0000, 0101–0103, 0110, 0111, 0123, 0202, 0303, 0404, 0505, 0606, 0707, 0808, 0909, 1010,

1101–1103, 1110–1112, 1123, 1201–1203, 1210–1212, 1234, 1956–2015, 2222, 2229, 2580,

3333, 4444, 5252, 5683, 6666, 7465, 7667.

The effects are substantial—λ6 drops to 0.2%, equivalent to λ̃6 = 11.6 bits (3.9 dits) of

security, indicating that a very small blacklist nearly eliminates insecurity due to human

choice. Unfortunately, as seen in Table 4.3 and Table 4.4, blacklisting is much less effective

against known birth date attacks, only reducing λ6 to 5.1% (λ̃6 = 6.9 bits/2.1 dits). With a

small blacklist, it is only possible to block the YYYY format, leaving an attacker to try DDMM,

MMDD, etc. Preventing this would require user-specific blacklists.

4.4 Security implications

We are most concerned with the scenario of a thief guessing PINs after stealing a wallet, which

may contain multiple cards. We calculate the guessing probability of a thief with multiple

stolen cards, for example from an entire wallet or purse, in Table 4.4. Though most of our

surveyed users own only one card with a PIN, on expectation stealing a wallet instead of a

single card raises a thief’s guessing chances by over a third. Because our survey results suggest

that virtually all payment card users (99%) carry documentation of their birth date alongside

their card,9 we estimate that a competent thief will gain use of a payment card once every

11–18 stolen wallets, depending on the use of a PIN blacklist.

For randomly assigned PINs (U104), this rate would be less than 1 in 1,200 wallets. We thus

conclude that in the case of PINs, user selection makes a significant impact on security.

9The prevalence of carrying ID varies by locale. In 24 US states carrying ID is legally required. In the UK,

carrying ID is not required and fewer citizens carry it.
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Young scamels from the rock. Wilt thou go with me?

—Caliban in The Tempest, William Shakespeare circa 1611

Chapter 5

Estimation using sampled data

In our initial treatment of guessing difficulty in §3, we assumed complete information is avail-

able about the distribution of interest X . In practice, we will typically need to approximate X
using empirical data. In this chapter we explore the challenge of estimating guessing metrics

using a finite set of M independent random samples X1
R← X , . . . , XM

R← X . For a given sam-

ple, we’ll write V (M) for the number of distinct events observed1 and V (m,M) for the total

number of events observed m times. It turns out that for distributions with a theoretically

infinite space of events, such as passwords which may be arbitrarily long strings, even with

tens of millions of samples we will not be able to compute some properties of the distribution

at all and must take care in computing others.

5.1 Naive estimation

The simplest approach is to compute metrics directly on the distribution of samples, which

we denote X̂ .2 We call this approach, which we used to evaluate PINs in §4 without ex-

planation, naive estimation3. Unfortunately this approach produces substantial, systematic

underestimates for many guessing metrics of interest.

The easiest way to see this is to take a large data set and compare naive estimates for guessing

metrics computed using all available samples with those computed using a random subset,

a statistical technique known as cross-validation. For some calculations, such as the average

length of a password in a data set, cross-validation on a random subsample will produce the

correct value on expectation over all possible random samples. Of course, the estimate will

have increasing variance in any single random sample as the sample size decreases.

1In statistical linguistics, this is called the vocabulary size for the sample.
2We use the hat symbolˆfor any metric estimated from sampled data.
3Note that this approach is not maximum-likelihood estimation. As we will see §5.4, better maximum-

likelihood techniques exist for some properties like individual event probabilities.
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Figure 5.1: Naive estimates of guessing metrics for the Yahoo data set as sample size M

increases. Estimates for λ̃1 and λ̃10 converge quickly; µ̃0.25 converges around M = 222 (marked

×) as predicted in §5.5. H0, H1, and G̃1 do not converge.

For most guessing metrics, however, cross-validation shows that naive estimates are biased:

on expectation naive estimates are lower for a random subsample than the complete data set

and the problem is worse for lower M . To demonstrate this visually, we can take a series of

subsamples from a large data set and plot our naive estimates for guessing metrics as the size

of the subsamples increases. For most of this chapter, we will use the Yahoo data set of 69

M passwords. We will discuss the provenance of this data set further in §6, for now we use it

as a canonical large data set of user-chosen passwords.

In Figure 5.1 we plot naive estimates for random subsamples of the Yahoo set. Estimates

for Ĥ0, Ĥ1, and Ĝ1 increase continuously with increasing sample size. This demonstrates that

naive estimation is inherently biased for metrics which rely on the complete distribution. The

essential problem is that many rare events will not be observed in a random subsample. Since

the sum of estimated probabilities remains 1, the cumulative probability of all observed events

must be an overestimate.
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5.2 Known negative results

5.2.1 Estimating H0 = lgN

Estimating H0, the upper bound for all guessing metrics, is equivalent to estimating the total

number of possible events N . This problem was famously studied by Ronald Fisher, often

called the founder of modern statistics, to estimate the total number of species of butterfly in

the Malaysian rain forest given a sample of captured butterflies of various species in 1943 [101].

Fisher produced a heuristic formula which implicitly assumed a Zipfian distribution of species

abundance. To date, there are no known techniques for estimating N which are both non-

parametric (don’t assume anything about the underlying distribution) and non-biased.

The problem was also famously studied by Alan Turing, considered the founder of computer

science, and his colleague Irving Good during their wartime cryptanalytic work at Bletchley

Park. Published after the war 1953 [125], the so-called Good-Turing method (which we will

return to in §5.4) can produce non-biased estimates for the cumulative probability of all events

not observed in a sample, the so-called “missing mass.” This problem can also be cast as the

growth rate dV (M)
dM of new events as more samples are taken.

Interestingly, the maximum-likelihood estimation of dV (M)
dM is simply V (1,M)

M , the proportion of

events in the sample observed only once. An informal proof of this result is that, of all possible

orders in which the random sample could have been taken, exactly V (1,M)
M of them would have

the last observation be a new event, meaning this is the marginal rate at which new events are

still likely to be seen. For the complete Yahoo data set, we have V (1,M)
M = 42.5%, indicating

that even at very large M the observed number of events N̂ is still growing rapidly.

Regardless of these results, as discussed in §3.1.3 we have N ≥ 2128 as a lower bound for real

passwords given the existence of some machine-chosen pseudorandom strings. Thus, estimating

N appears to have no practical security consequence.

5.2.2 Estimating H1

Estimating the Shannon entropy H1 from a sample has also been extensively studied. Beir-

lant et al. provide a good survey of estimation approaches [30]. In 2011 Valiant and Valiant

proved an optimal algorithm for determining H1 to within an additive constant requiring

O
(
N

lnN

)
samples [298]. Given the unbounded value for N for text passwords, this near-linear

requirement of samples means estimating H1 in a non-parametric manner is impossible.

Earlier, Valiant proved [299] that to simply distinguish between distributions Xa and Xb
with H1(Xa) = a and H1(Xb) = b > a with probability non-negligibly greater than 1

2 requires

o
(
N

2a
3b

)
samples. Even determining if H1(X ) is less than a bits or more than b = 2a bits would

require more than 3
√
N samples, which would be intractable for real password distributions.
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5.2.3 Generic limits on estimating symmetric properties

The proof techniques developed by Valiant to derive the bounds on estimating H1 above are

generic and can be extended to any property of a distribution which is symmetric (constant

after a re-labeling of all events in the distribution) as are all guessing metrics in our model.

Valiant’s Low-Frequency Blindness Theorem [299] states that for any symmetric property

P , if there exist distributions Xa and Xb such that P (Xa) = a and P (Xb) = b > a but the

probabilities of X and Y are only different for events with probability ≤ 1
n , then no estimation

algorithm can decide if P (X ) ≤ a or P (X ) ≥ b with fewer than O(n) samples.

Essentially, this means that events with an expected frequency of observation f . 1 in a

sample are useless to any approximation algorithm. The difficulty of reasoning about events

observed only once in a sample is well-known in linguistics, where such events are called hapax

legomena (singular legomenon),4 Greek for “said only once.”

Thus, there are fundamental reasons why H0, H1 and G1, which depend on every event in the

distribution, cannot be estimated with fewer than M = O(N) samples, which is required to

ensure all events are expected to be observed. Fortunately, our partial guessing metrics explic-

itly don’t depend on low-frequency events, meaning that they can be estimated with a much

smaller sample using the very simple approach proved asymptotically optimal in Valiant’s

Canonical Testing Theorem [299]: ignore all low-frequency events, use the naive probability

estimates for all more-frequent events, and compute the property of interest directly.

5.3 Sampling error for frequent events

We now focus on partial guessing metrics which can be reliably estimated, beginning with λ̃1

which depends only on p1. For a given password xi, each observation is a random Bernoulli

variable with mean µ = pi and standard deviation σ =
√
pi(1− pi). AfterM samples, the total

number of observations fi of event xi is a binomial-distributed random variable with µ = pi ·M
and σ =

√
pi · (1− pi) ·M . The estimated probability p̂i = fi

M will have µ = pi·M
M = pi (the

true value) and σ =

√
pi(1−pi)

M . This gives a relative standard error of σ
µ =

√
pi(1−pi)

M · 1
pi

,

which if we assume
√

1− pi ≈ 1 can be approximated as
√

fi
M2 · Mfi = 1√

fi
.

We can alternately derive this by approximating our entire sample as a Poisson process with

an expected rate λ = fi of observations of xi per M samples. Because the standard deviation

of a Poisson random variable is
√
λ, this gives the same relative standard error in p̂i:

rse (p̂i) =

√
fi
fi

=
1√
fi

(5.1)

4The word “scamels” in the Shakespeare quote introducing this chapter is a classic hapax legomenon.

Shakespeare only used it once and there are no other recorded uses by contemporary writers. Its meaning and

etymology are completely unknown, making it debatable whether or not it is a valid English word.
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The relative standard error for
ˆ̃
λ1 is lg

(
1− 1√

f1

)
bits. The most common password in the

Yahoo data set has p̂1 ≈ 1.08% in our data set, giving the following estimates for rse
(

ˆ̃
λ1

)
:

M 69M 10M 1M 100k 10k 1k

rse
(

ˆ̃
λ1

)
0.0016 0.0044 0.139 0.0446 0.1460 0.5234

Thus naive estimates for λ̃1 are acceptably accurate even for very low M , as observed in

Figure 5.1 where λ̃1 was consistently estimated for small subsamples of the Yahoo data set.

This argument can be extended for
ˆ̃
λβ for small values of β by summing the relative standard

error for the first β observations. In practice, we’ll use naive estimates
ˆ̃
λβ without further

mention when M is large enough to ensure expected errors of less than 0.1 bits, which will

hold for most of our sampled password data sets.

5.4 Good-Turing estimation of probabilities

The analysis of Good and Turing [125] produces an improved estimate for pi:

pGT
i =

fi + 1

M
· V (fi + 1,M)

V (fi,M)
(5.2)

A technical derivation is given by Baayen [23]. The naive estimate p̂i is consistent in that,

across all random subsamples including those in which xi is not observed, the mean value of p̂i

is the true value pi. This necessarily means over-estimating the probability of observed events

since all events unobserved in a sample have p̂i = 0. In contrast, pGT
i is consistent across all

random subsamples conditioned on xi being observed. This means that the sum
∑

i p
GT
i < 1

since pGT
i = 0 for all unobserved events as well.

In effect, this formula leaves the estimates largely intact for higher-frequency events but

heavily discounts the estimated probability for low-frequency events. We’ll explore this using

the RockYou data set, which provides a more colourful example as plaintext passwords are

available. The hapax legomena in this set would have their probability scaled by a factor of
2·V (2,M)
V (1,M) ≈ 0.22 using the Good-Turing estimator.

A major challenge to using Good-Turing estimates is that Equation 5.2 fails for higher-

frequency events because the estimates for V (fi,M) are not smooth. For example, 123456

is the most common password in the RockYou data set, occurring 290,729 times. Since

V (290730,M) = 0, the basic Good-Turing estimator will produce an estimated probability 0

for 123456.

Gale and Sampson introduced a modification [117] dubbed Simple Good-Turing which replaces

the raw V (m,M) values with smoothed values Z(m). First, we scale down low values of
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(a) Complete RockYou distribution (M = 32, 603, 388)
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(b) Sub-sampled RockYou distribution (M = 100, 000)

Figure 5.2: The plot of V (m,M) vs. m for the full RockYou distribution and a subsample

with M = 100, 000. The unsmoothed plot (triangles) shows the raw counts, which cannot fall

below 1. The smoothed plot, using the formula provided in [117], enables a plausible linear fit

in both cases. However, the slope of the linear fit changes drastically in the sampled version.
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5.4. Good-Turing estimation of probabilities

x fx fSGT
x 100 · p̂x 100 · pSGT

x

123456 290729 290727.89 0.89171408 0.89171068

12345 79076 290727.89 0.24253921 0.89171068

password 59462 76787.89 0.18237982 0.23552121

rockyou 20901 21723.89 0.06410683 0.06663079

jessica 14103 14329.89 0.04325624 0.04395216

butterfly 10560 10729.89 0.03238927 0.03291037

charlie 7735 7764.89 0.02372453 0.02381622

diamond 5167 5173.89 0.01584805 0.01586919

freedom 3505 3512.89 0.01075042 0.01077463

letmein 2134 2136.89 0.00654533 0.00655421

bethany 1321 1320.90 0.00405173 0.00405140

lovers1 739 737.90 0.00226664 0.00226325

samanta 389 388.90 0.00119313 0.00119281

123456p 207 205.90 0.00063490 0.00063153

diving 111 109.90 0.00034046 0.00033710

flower23 63 61.91 0.00019323 0.00018990

scotty2hotty 34 32.93 0.00010428 0.00010099

lilballa 18 16.96 0.00005521 0.00005201

robbies 9 8.01 0.00002760 0.00002457

DANELLE 5 4.01 0.00001534 0.00001230

antanddeck06 3 1.88 0.00000920 0.00000577

babies8 2 0.88 0.00000613 0.00000271

sapo26 1 0.22 0.00000307 0.00000068

Table 5.1: Probability estimates for observed passwords in the RockYou distribution using

maximum-likelihood estimation and Simple Good-Turing probability estimation.

V (m,M), as all observed values of V (m,M) are greater than 1 but the expected values

E[V (m,M)] for high m are much less than 1. Gale’s smoothing formula is as follows, with m+

and m− representing the next-largest and next-smallest values of m for which V (m,M) > 0:

Vr(m,M) =


V (1,M) if m = 1

2·V (m,M)
m+−m− if 1 < m < max(m)

2·V (m,M)
2m−m− if m = max(m)

(5.3)

This is a simple heuristic formula which effectively spreads observed values of V (m,M) across

adjacent values of m for which V (m,M) = 0. We then fit the values Vr(m,M) to a Zipf

distribution Z(m), as shown in Figure 5.2 for the RockYou distribution. We then replace the
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5.5. The region of stability for aggregate metrics

raw counts V (m,M) from Equation 5.2 with Z(m), giving the Simple Good-Turing formula:

pSGT
i =

fi + 1

M
· Z(fi + 1)

Z(fi)
(5.4)

Gale and Sampson recommend using pGT
i for low-frequency events (since V (m,M) will be

close to E[V (m,M)] for low m) and switching to pSGT
i for higher-frequency events, using an

automated test of the expected error in V (m,M) to determine when to switch [117]. Example

values of pSGT
i and p̂i for the RockYou distribution are provided in Table 5.1. In general,

the estimates are nearly identical for high-frequency events and the Good-Turing estimates

are much lower for low-frequency events.

5.5 The region of stability for aggregate metrics

We now turn to estimating µ̃α and G̃α. As discussed in §5.2, this will be impossible as α→ 1

with sample size M < O(N) due to the Low-Frequency Blindness Theorem. The Canonical

Testing Theorem does inform us that we can accurately approximate µ̃α and G̃α for some

α < 1 simply by ignoring low-frequency events in the sample, but the results are asymptotic

and don’t answer the practical question of which events occur frequently enough for us to

use in producing an estimate. We’ll consider the problem with respect to µ̃α in this section,

since for the same value of α it is harder to estimate than G̃α which relies strictly less on

lower-frequency events.

Returning to the Yahoo data set, we plot the naive estimate ˆ̃µα in Figure 5.3 at several

sample sizes. We observe two important facts. First, estimates are very consistent at low α

even for dramatically smaller subsamples, giving us hope that we can estimate µ̃α accurately

in some useful cases. Second, by computing ˆ̃µα for many random subsamples we see that the

estimates don’t vary significantly in different random subsamples. Thus, we lose very little

precision in estimating µ̃α using a random subsample, it is only the underestimation bias for

higher α that is of practical concern.

The reason for the consistency of naive estimates is that, for large enough sample size M ,

the frequency counts V (m,M) will be based on a large number of events for low m. Even

though the observed frequency of individual events vary considerably, the aggregate V (m,M)

are very consistent for a fixed M . However, each count V (m,M) will consistently tend to be

too large. For our naive estimation ˆ̃µα to be accurate, we would need to have each V (m,M)

be an unbiased estimate of the number of events with probability ≈ m
M :

V ∗(m,M) = M ·
∑

pi :
m− 1

2

M
≤ pi ≤

m+ 1
2

M
(5.5)

Of the events observed m times, many more will have a true probability pi <
m
M than pi >

m
M

simply because there are more lower-frequency events to be over-represented than the inverse.

Yet naive estimation considers all events with fi = m to have p̂i = m
M when computing ˆ̃µα.
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Figure 5.3: Estimated guessing curves with reduced sample sizeM . Subsamples were computed

randomly without replacement, to simulate having stopped collecting samples earlier. Each

line is broken after the calculated maximum confidence interval α∗ for an accuracy of 0.5

bits; the subsamples agree very closely below this point. Each subsample is actually plotted

twice, representing the 1st and 99th percentiles from 1,000 random samples. These are almost

imperceptible, indicating that randomness in sampling is not a major factor compared to

underestimation bias.

With perfect knowledge of the underlying distribution X , we could approximate5 the expected

value E[V (m,M)] of each count quite accurately by modeling the number of observations of

each event as an independent binomial variable and summing the expected probability of each

event being observed m times:

E [V (m,M)] =
∑

1≤i≤N

(
M

m

)
pmi (1− pi)(M−m) (5.6)

We could then use this to calculate the expected ratio by which our estimates for the low-

frequency counts V (m,M) are too high:

bias(V (m,M)) =
E [V (m,M)]

V ∗(m,M)
(5.7)

5Computing the expected value precisely would require calculating the multinomial probabilities of all

possible outcomes of M draws from X , which is computationally intractable.
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In practice, we don’t have perfect knowledge of the underlying distribution, making it impos-

sible for us to apply Equation 5.7 directly. We can instead obtain an upper-bound through

a statistical technique called bootstrapping [95]. The general idea of bootstrapping is to take

many resamples of size M , with replacement, from our sampled distribution X̂ in order to

examine the distribution of values for the statistic of interest, in our case V (m,M). In each

bootstrap resample, we expect V bs(m,M) to be an overestimate of V (m,M) from the orig-

inal sample, just as V (m,M) was itself an overestimate of V ∗(m,M). Because the sampled

distribution X̂ will be more skewed than the underlying distribution X , this gives us an

approximation for the error bound from Equation 5.7:

E [V (m,M)]

V ∗(m,M)
/

E
[
V bs(m,M)

]
E [V (m,M)]

(5.8)

We compare results provided by this technique to actual counts in Table 5.2. We use the full

Yahoo data set as an approximation for the underlying distribution, take random samples

of size M = 1M and then take bootstrap resamples to estimate the error in each of the

subsamples. Note that this breaks down for m = 1, because the number of events V ∗(m,M)

which have probability≤ 1.5
M which would appear in an ideal sample is many times greater than

M itself.6 For m > 1, the simple estimates V (m,M) very quickly become good approximations

for V ∗(m,M), and hence can be used to estimate guessing statistics. Equation 5.8 provides a

loose bound on the true bias for low m and become progressively tighter.

The naive estimate ˆ̃µα will underestimate the true value of µ̃α because the counts V (m,M)

tend to be slight overestimates, meaning we underestimate the number of events µ needed to

have a cumulative probability of success α. Denoting αm for the value of α which only requires

guessing events of frequency ≥ m in our sample, we can estimate the total overestimation bias

in ˆ̃µαm by taking a weighted sum of the bias in each of the components V (m,M):

biasbs
(

ˆ̃µαm

)
/

1

αm ·M
∑
m′≥m

m′ ·
¯V bs(m′,M)

V (m′,M)
(5.9)

In Table 5.2 we demonstrate the usefulness of Equation 5.9 as an upper bound on the true

bias of ˆ̃µα. As m increases, ˆ̃µαm quickly becomes a very good estimate. Not listed in Table 5.2

is the standard error of ˆ̃µα across random subsamples, because this is extremely low (< 0.01

bits) and is dwarfed by the systematic bias.

We’ll choose 0.5 bits as a desired accuracy level for ˆ̃µα and use our bootstrapping method to

estimate m∗ for which the bias will be less than 0.5 bits. We then call α∗ = αm∗ the limit

below which we’ll accept ˆ̃µα as a reasonable estimate. As seen in Figure 5.1 and 5.3, this

method accurately predicts the point at which ˆ̃µα begins to diverge from the true value. For

our full Yahoo data set, we have α∗ ≈ 0.44.

6This problem is yet another consequence of the fact that many events go unobserved in random subsamples.
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m V ∗(m,M) V̄ (m,M) ¯V bs(m,M) V̄ (m,M)
V ∗(m,M)

¯V bs(m,M)
V (m,M) ᾱm biasbs

(
ˆ̃µαm

)
µ̃αm (X )

µ̃αm (X̂ )

2 18392 34384.3 142020.6 1.87 4.13 0.30 3.77 1.88

3 6244 10795.9 53275.0 1.73 4.94 0.23 3.29 1.41

4 3096 4894.4 17512.3 1.58 3.58 0.20 2.18 1.26

5 1870 2644.0 6265.6 1.41 2.37 0.18 1.56 1.18

6 1330 1663.9 2861.5 1.25 1.72 0.16 1.31 1.13

7 926 1098.6 1646.0 1.19 1.50 0.15 1.21 1.11

8 668 815.3 1087.8 1.22 1.33 0.15 1.15 1.09

9 506 616.3 778.1 1.22 1.27 0.14 1.12 1.08

10 424 463.3 586.4 1.09 1.27 0.13 1.10 1.07

11 349 387.7 459.4 1.11 1.19 0.13 1.08 1.07

12 308 326.1 370.9 1.06 1.14 0.12 1.07 1.06

13 255 274.8 306.6 1.08 1.12 0.12 1.06 1.06

14 226 239.8 258.2 1.06 1.08 0.12 1.05 1.05

15 185 198.3 220.7 1.07 1.12 0.11 1.05 1.05

16 151 178.8 191.0 1.18 1.07 0.11 1.05 1.05

17 144 154.3 166.8 1.07 1.09 0.11 1.04 1.04

18 147 135.8 146.9 0.92 1.09 0.11 1.04 1.04

19 98 119.5 130.3 1.22 1.10 0.10 1.04 1.04

20 109 116.2 116.2 1.07 1.00 0.10 1.04 1.04

Table 5.2: Ideal and observed frequency counts for low m in the Yahoo data set for 1,000 random samples with M = 1M. The “ideal”

value V ∗(m,M) value is approximated using Equation 5.5 for the full data set (M = 69M), while the bootstrap prediction V̄ bs(m,M) is

computed by randomly resampling M times from each subsampled distribution. The bias predicted by the bootstrap method as described

in Equation 5.9, denoted biasbs, is compared to the actual overestimation of µ̃αm using sampled data for αm, the cumulative probability

of events observed at least m times.
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5.6 Parametric extension of our approximations

Estimating µ̃α for α > α∗ requires making assumptions about the structure of the underlying

distribution. We’ll assume the distribution of human-memorable secrets might be related to

the distribution of words in natural language, for which many probabilistic models have been

proposed [23]. Perhaps the most-frequently conjectured model is a power-law distribution:7

Pr[px > y] ∝ y1−a (5.10)

Unfortunately, using a power-law distribution to estimate µ̃α is problematic for two reasons.

First, estimates for the parameter a are known to decrease significantly with sample size [23].

Using maximum-likelihood fitting techniques [69] for the observed counts in the Yahoo data

set we get the following estimates for a at different sample sizes:

M 69M 10M 1M 100k

â 2.99 3.23 3.70 4.21

The second problem is this model fits our observed counts, which are integers greater than 1.

To correctly estimate µ̃α from a sample, we need to model the presence of events for which

px ·M < 1. Fitting a power law distribution to observed counts requires implicitly assuming

a non-zero minimum password probability [69], which there is no meaningful way of doing.

Instead we must choose a continuous distribution Ψ to model the distribution of events’

probabilities and not their observed counts, which is the approach taken by Font et al. [106]

for word frequencies. We model the probability of observing an event k times using a mixture

model: first we draw a probability p randomly according to the probability density function

ψ(p), then we draw from a Poisson distribution with expectation p ·M to model the number

of times we observe this event in the sample:

Pr[k observations] =

∫ 1
0

(p·M)k·e−p·M
k! ψ(p)dp

1−
∫ 1

0 e
−p·Mψ(p)dp

(5.11)

The numerator integrates the possibility of seeing an event with probability p exactly k times

in a sample, weighted by the probability ψ(p) of seeing an event with probability p. The

denominator corrects for the probability of not seeing some passwords in a sample. This

formulation allows us to take a set of counts from a sample {f1, f2, . . .} and find the parameters

for ψ(p) which maximise the likelihood of our observed sample:

Likelihood =

N̂∏
i=1

Pr[fi observations] (5.12)

7Power-law distributions are also called Pareto or Zipfian distributions, which can all be shown to be

equivalent formulations [23].
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Figure 5.4: Extrapolated estimates for µ̃α using the zero-truncated Sichel/Poisson distribution,

as proposed for word frequency modeling [106]. Compared to naive estimates (Figure 5.3) we

are able to mitigate much of the bias due to sample size. Each plot shows the 99% confidence

interval from 1,000 random subsamples. Error from lack of fit of the model is much greater

than the standard deviation of each sample.

This model has been effectively applied to word frequencies using the generalised inverse-

Gaussian or Sichel distribution:8

ψ(p|b, c, g) =
2g−1pg−1e

p
c
− b2c

4p

(bc)g ·Kg(b)
(5.13)

where Kg is the modified Bessel function of the second kind [274].

The Sichel distribution is useful because it blends power-law
(
pg−1

)
and exponential

(
e
p
c
− b2c

4p

)
behaviour and produces a well-formed probability distribution. As proved by Font et al. [106],

by plugging Equation 5.13 into Equation 5.11 for ψ and solving the integral, we obtain:

Pr[k|b, c, g] =
(1

2 · bcn√
1+cn

)r ·Kr+g(b
√

1 + cn)

r!
(

(1 + cn)
g
2Kg(b)−Kg(b

√
1 + cn)

) (5.14)

8The generalised inverse Gaussian distribution is often called the Sichel distribution after its initial use by

Herbert Sichel in 1975 to model word frequencies [274].
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5.6. Parametric extension of our approximations

69M 10M 1M 500k

ˆ̃µ0.25 17.74 17.67–17.67 17.24–17.25 17.07–17.17

ˆ̃µ0.5 22.01 22.09–22.11 22.06–22.11 22.28–22.48

ˆ̃µ0.75 27.07 26.98-27.01 27.25–27.35 27.02–27.89

Table 5.3: 99% confidence intervals for extrapolated estimates of µ̃α for the Yahoo data set.

We can compute Equation 5.12 using Equation 5.13 for different parameters of b, c, g. Fortu-

nately, for b > 0, c > 0, g < 0 there is only one maximum of this function [106], which enables

approximation of the maximum-likelihood fit efficiently by gradient descent.

This combined model is called the zero-truncated generalised inverse-Gaussian/Poisson dis-

tribution [106]. We can combine this model with our observed data in the well-approximated

region to produced an “extrapolated distribution” which will better approximate µ̃α.

We remove all observed events with fi < m∗ to leave the well-approximated region of the

distribution unchanged and add synthetic events according to our estimated model ψ(p). This

is achieved by dividing the region
(
0, m∗M

)
into discrete bins, with increasingly small bins near

the value p+ which maximises ψ(p+). Into each bin (pj , pj+1) we insert N̂ ·
∫ pj+1

pj
ψ(p)dp events

of observed frequency
pj+pj+1

2·M . We then normalise the probability of all synthetic events by

multiplying the correction factor 1
α∗
·
∫ 1
m∗
M
ψ(p)dp to leave the head of the distribution intact.

We cannot conclude that this model fully explains password selection; using a Kolmogorov-

Smirnov test we can reject with very high confidence (p > 0.99) the hypothesis that the

Yahoo sample was drawn from the modeled distribution. However, this model enables prac-

tical estimation of µ̃α from subsampled distributions for a much larger interval of α, as shown

in Figure 5.4. For the Yahoo data set we can establish confidence intervals by taking many

random subsamples and using the 1st and 99th percentile estimates, as listed in Table 5.3.

We can conclude that any demographic subsample which produces estimates outside of this

interval is significantly different from the general population of users with confidence p > 0.99.

In §6, we will use this projection technique to estimate µ̃α for demographic subsamples of the

Yahoo data set, noting our empirical confidence interval where appropriate.

We note several points of caution for using extrapolated estimates. We can see in Table 5.3 that

the extrapolated estimates are biased towards under-correction for lower values of α and over-

correction for higher values of α. The model also fails to capture the observed phenomenon of

strong pseudorandom passwords in the tail of the distribution, which would produce estimates

well over 100 bits as α → 1 and have no analogue in natural language. In general, we have

little understanding of the password distribution for α > 0.5, for which cracking data (§2.5.1)

is sparse. When we must use extrapolated estimates it is prudent to only do so for α / 0.5.
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There is a strong tendency for people to choose relatively short and simple

passwords that they can remember.

—Robert H. Morris and Ken Thompson, 1979 [212]

Chapter 6

Guessing difficulty of passwords

We are now ready to analyse the guessing difficulty of text passwords. Our primary data

source is a corpus of almost 70 M passwords collected at Yahoo!; we’ll first discuss the privacy-

preserving experimental set-up which produced this data set and then analyse this data and

compare it to other available password data.

6.1 Anonymised data collection

In small-scale studies, users may be willing to share passwords with researchers under ethics

oversight [173, 169]. This approach will never be practical for large-scale databases with mil-

lions of passwords, as are required for statistical analysis to be useful. Because purely statistical

password metrics can be computed without access to passwords in plaintext form, it is possible

to collect a large sample from real users.

6.1.1 Cleartext passwords and the Domesday attack

Collecting only passwords, with no additional identifying information, can superficially ame-

liorate privacy concerns. An example is the RockYou data set (§D), which was released as

a list only of passwords with no corresponding account information.1 Unfortunately, there

remains an unacceptable risk from releasing such a data set: every released password can be

included in password dictionaries and used in future password cracking attacks with priority

over passwords purely generated by mangling rules.

Suppose Alice has taken the time to memorise a truly random 12-character alphanumeric

password. Since the space of such passwords is 271.5, initially her password can be considered

1The anonymous individual who released the data stated that he or she stripped user accounts from the

database to limit the potential for abuse.
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6.1. Anonymised data collection

safe even against offline cracking attacks. If Alice’s password is inadvertently leaked within a

large list of passwords, it may now be prioritised by password cracking software on the basis

that it has been used by at least one human once. We propose calling this a Domesday attack

after the historical attempt to record all property ownership in England in one book. The

utility of this attack depends on the total number of passwords ever used by humans (Nglobal)

being considerably less than the space searchable by offline password cracking tools. We can

make a rough estimate of the Domesday password space as:

Nglobal ≈ population · #passwords

person
· (1− re-use rate)

The estimated human population of the Earth surpassed 7 billion ≈ 232.7 in 2012, which serves

as an upper bound on the population of people who have ever used a password. The most

reliable large-scale user study, of Flôrencio and Herley [103] in 2007, found the average web

user maintains 6.5 different passwords. Finally, in the RockYou data set, 56% of observed

passwords were repeats, likely an under-estimate of the global rate.

Thus, we can estimate that Nglobal / 234.3. This quantity is already cheap to store and is

far smaller than what can be produced dynamically by modern password-cracking tools in

an offline search. This suggests that a Domesday dictionary of passwords would significantly

increase efficiency over brute-force password cracking.

Thus, leaking Alice’s password only once may make it vulnerable in perpetuity to a Domesday

attack where it was previously safe against brute force. We expect such attacks to be increas-

ingly practical as more large-scale password leaks occur, especially as the world population

and human memory constraints are growing much more slowly than storage and processing

capability. We therefore reject the appropriateness of ever collecting cleartext user passwords,

with or without additional identifying information.

6.1.2 Isomorphic distributions

When estimating from a random sample (§5), the only requirement when a password x is

observed is that we can tell if x was observed before. This can be done equally well if we

relabel every password x→ f(x) using any deterministic, collision-free function f , producing

an isomorphic distribution with the same values for guessing metrics.

Because passwords are typically2 sent in plaintext form to a website’s login server, we can

set up a collection experiment in which all submitted passwords are masked using f before

being added to our data set. Our goal is to design a collection experiment enabling data to

be collected and shared with independent researchers with minimal security risk.

2It is possible for a site to request the user’s browser hash passwords prior to submitting them [42], though

this is very rare in practice [47].

81



6.1. Anonymised data collection

Masking with a cryptographic hash function

To preserve privacy, we want to use a masking function f which is one-way, that is, for

which there is no known method for calculating f−1 or computing any information about

x given f(x). A function which is one-way, deterministic and collision-resistant3 is called a

cryptographic hash function [22], often denoted H. The best-known algorithms (though not

the most secure4) are MD5 and SHA-1, which are frequently used to hash stored passwords

to mitigate database compromises (§2.2.1).

Collecting passwords which are masked with a cryptographic hash does not appreciably con-

tribute to a Domesday attack because any passwords revealed to be in the data set must have

already been within the range searchable by password-cracking tools. Thus, adding them to

a Domesday dictionary will not make any previously-invulnerable passwords vulnerable.

However, it is still possible to carry out an offline brute-force attack to try to discover pass-

words in the data set. Therefore it would not be acceptable to collect such a data set along

with any identifying information attached to individual passwords. This is particularly impor-

tant because statistical analysis will not work if passwords are salted prior to hashing (§2.2.1),

which would undermine the requirement of f being deterministic and occlude frequency counts

of repeated passwords. Without salting, the collected data set would be vulnerable to a parallel

dictionary attack or a precomputed rainbow table if a common hash function were used.

Masking with a secret one-way function

The core problem with a deterministic one-way function is that a malicious party can evaluate

f on trial passwords and test for their membership in a published data set. This can be

prevented if f is a secret function which cannot be publicly computed. One example5 is a

keyed hash function, f(x) = H (x||r) for some cryptographic hash function H and secret

nonce6 r. The inclusion of the secret value r means that a malicious party can’t evaluate f ,

so access to the data set masked with f will not enable brute-force attacks.

To use a secret one-way function in this manner, our collection server must generate a random

nonce r at the beginning of the experiment which is so large it can never be found through

brute force. 128 bits is a conservative choice. Every time the server sees a user i log in with

a password x, it computes f(x) = H (x||r) and adds the resulting value to the data set. The

3We assumed in our definition that f was a collision-free function. Hash functions cannot be collision-free

due to their infinite input space and finite output space, but finding collisions is a computationally intractable

problem. Thus, the risk of hash collisions between actually used passwords is negligible.
4Both MD5 and SHA-1 are vulnerable to collision-finding attacks [304] though the one-wayness of neither

algorithm has been compromised.
5There are many other possible secret one-way functions, notably any cryptographic MAC function [22].
6The secret value can be thought of as a cryptographic key in terms of the security it provides by resisting

a brute-force attack, but since it will never be used for encryption or decryption nonce is a more accurate term.
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6.1. Anonymised data collection

collection server must then delete r from its memory prior to releasing the data for research,

preventing any possible brute-force attacks.

6.1.3 Preventing duplicates from returning users

In collecting a masked distribution, we want to study the distribution of passwords across

users and not individual login attempts. This requires that during the collection experiment

when our server sees the login credential (i,x) it can check to see if i has already logged

in during the experiment. One solution is to simply add the value (i, f(x)) to the data set,

enabling filtering of duplicate items later.

This approach would enable linking attacks, however, in which the data set reveals if two users

i1, i2 use the same password (without revealing what that password is). Linking two accounts

means that compromising either one can compromise the other as well7. If a large portion of

accounts are de-anonymised, this potentially allows an attacker to leverage a small number of

known passwords into a large number of compromised accounts.

There is also the possibility of active attacks, in which an attacker creates a large number of

accounts prior to the experiment, all with different known passwords. If an attacker can create

many more accounts than the online guessing limit imposed by the normal login server, then

this may be a better attack vector than online guessing.

To prevent linking attacks, our server must not write user identifiers i directly but f(i) =

H (i||r) instead, which will prevent inference of i just as it prevents inferring passwords. A

more efficient solution to prevent writing duplicate values to the data set is to maintain a

Bloom filter of seen identities f(i), a special data structure which allows identifying repeated

values in a stream with very compact storage [39].

6.1.4 Collecting demographic data

It is desirable to collect demographic data along with passwords during our experiment to

enable more detailed analysis of password choices. A simplistic solution would be to store a

tuple containing demographic details of interest along with masked passwords:

{f(x), age = 27, language = en, location = UK . . . }

This approach carries the risk that the user i can be re-identified by the uniqueness of his or her

demographic information [83], enabling linking attacks as described above. Re-identification

attacks can be surprisingly effective. An investigation by Sweeney in 2000 demonstrated that

the combination of postcode, gender, and date of birth is unique for 87% of the US popula-

tion [288]. Narayanan et al. demonstrated a practical re-identification attack against a data

7There are many ways an attacker can compromise a user’s password, especially if it can be attacked at

other sites where it is registered [152].
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6.2. Analysis of Yahoo! data

set of movie reviews superficially anonymised for research purposes in 2006 [219]. It would al-

most certainly be possible to re-identify most users given the number and detail of predicates

we would like to study.

One approach is to prevent re-identification by perturbing the demographic details stored

to prevent direct inference. The recent field of research on differential privacy, introduced by

Dwork [94], studies how much modification must be made to each individual demographic item

to ensure that it is computationally infeasible to detect the presence of any known individual

in the data set. These techniques can significantly affect the utility of data, however, by

requiring a large amount of perturbation to achieve guaranteed security.

A simpler approach in our case is de-aggregation by not storing large tuples of demographic

details together. For each of ` demographic predicate functions d1, d2, . . . , d` our collection

server maintains separate histograms H1,H2, . . . ,H`. When the credential (i,x) is observed,

if f(i) has not yet been observed the collection server adds f(x) to every histogram Hn for

which dn(i) is true.

At the end of the experiment, the server can delete any histograms for which fewer than

k passwords were observed. This will preserve k-anonymity in the published data set, as

originally defined by Sweeney [289], meaning that no data will be released identifying any

group of users smaller than k. For our purposes, small histograms (k . 10, 000) will not

enable computation of interesting guessing metrics, so we lose very little by removing them

from consideration. Pseudocode for our complete collection set-up is provided in Figure 6.1.

6.1.5 Deployment

We implemented the experimental collection server described above in cooperation with Ya-

hoo!, a large online website which provides email, news, social networking, and many other

services. Yahoo! maintains a single login system for all of its web properties and has hundreds

of millions of active users. The audited collection code consisted of a few dozens lines of Perl.

The secret r was generated by combining a secret seed provided by a Yahoo! manager and

locally generated entropy. The server monitored login traffic in front of a random subset of

Yahoo! login servers for a 48-hour period from May 23–25, 2011, observing 69,301,337 unique

users and constructing separate histograms for 328 different predicate functions. Of these,

those which saw fewer than k = 10, 000 samples were discarded.

6.2 Analysis of Yahoo! data

We now analyse the collected Yahoo data. Of the 328 subpopulations for which we compiled

separate distributions, we summarise the most interesting in Table 6.1. Estimates in italics

are not significantly different from the aggregate population of users, as discussed in §5.
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6.2. Analysis of Yahoo! data

function password collection experiment(d, k)

r ← generate random bits(128)

B ← bloom filter()

for 1 ≤ j ≤ len(d) do

H[j]← histogram()

while (i, x)← read next credential() do

if hash(r, i) /∈ B then

B.add(hash(r, i))

for 1 ≤ j ≤ len(d) do

if d[j](i) then

H[i].add(hash(r, x))

for 1 ≤ j ≤ len(d) do

if len(H[i]) < k then

delete H[j]

delete r

delete B

return H

Figure 6.1: Pseudocode for a privacy-preserving password collection proxy server.

All sub-distributions had similar guessing metrics: the range of λ̃1 was 5.0–9.1 bits and λ̃10

from 7.5–10.9 bits, just over one decimal order of magnitude in variation. Variation in G̃0.5

was substantially larger, with the weakest population having an estimated 17.0 bits and the

strongest 26.6 (nearly three decimal orders of magnitude). While the absolute differences

are relatively small and there is no notably “good” population of users which isn’t generally

vulnerable to guessing attacks, we can identify many groups which are statistically different

from the overall population (§5).

Demographically, users’ reported gender had a small but split effect, with male-chosen pass-

words being slightly more vulnerable to online attack and slightly stronger against offline

attack. There is a general trend towards better password selection with users’ age, particu-

larly against online attacks, where password strength increases smoothly across different age

groups by about 1 bit between the youngest users and the oldest users. Far more substantial

were the effects of language: passwords chosen by Indonesian-speaking users were amongst

the weakest subpopulations identified with λ̃1 ≈ 5.5 bits. In contrast, German- and Korean-

speaking users provided relatively strong passwords with λ̃1 ≈ 7.5 bits.
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6.2. Analysis of Yahoo! data

Table 6.1: Key guessing statistics for passwords of various populations of Yahoo! users.

Estimates in italics are not different from the overall population to a statistically significant

degree, using the methodology discussed in §5.

M
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

all passwords 69301337 6.5 9.1 11.4 17.6 21.6

gender (self-reported)

female 30545765 6.9 9.3 11.5 17.2 21.1

male 38624554 6.3 8.8 11.3 17.7 21.8

age (self-reported)

13–24 18199547 6.3 8.7 11.1 16.7 20.9

25–34 22380694 6.2 8.8 11.2 17.1 21.2

35–44 12983954 6.8 9.4 11.7 17.4 21.3

45–54 8075887 7.3 9.8 11.8 17.3 21.3

≥ 55 7110689 7.5 9.8 11.8 17.3 21.4

language preference

Chinese 1564364 6.5 8.6 11.1 17.3 22.0

German 1127474 7.4 9.7 11.3 15.8 19.7

English 55805764 6.5 9.0 11.3 17.4 21.5

French 2084219 6.9 9.0 10.9 14.8 18.6

Indonesian 1061540 5.5 7.9 10.2 14.3 17.0

Italian 811133 6.8 9.0 10.7 14.5 18.0

Korean 530759 7.5 9.5 11.7 18.1 22.7

Portuguese 2060256 6.5 9.0 11.0 15.6 18.8

Spanish 3065901 6.6 9.1 11.0 15.6 19.7

tenure of account

≤ 1 year 5182527 6.9 9.1 11.7 18.0 22.5

1–2 years 5182527 6.9 9.1 11.7 18.0 22.5

2–3 years 12261556 6.2 8.6 11.2 17.7 21.8

3–4 years 10332348 6.2 8.8 11.3 17.5 21.6

4–5 years 9290840 6.1 8.8 11.2 17.2 21.2

≥ 5 years 29104856 6.8 9.3 11.5 17.2 21.2

password requirements at registration

none 20434875 6.6 9.2 11.4 16.8 20.7

6 char. minimum 13332334 6.5 9.0 11.4 17.6 21.6

last recorded login

< 30 days 32627777 6.5 9.0 11.4 17.5 21.5

< 90 days 55777259 6.5 9.0 11.4 17.5 21.5

continued on next page . . .

86



6.2. Analysis of Yahoo! data

Table 6.1 — continued from previous page

M
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

all passwords 69301337 6.5 9.1 11.4 17.6 21.6

> 90 days 8212643 7.0 9.5 11.7 17.7 21.9

number of login locations

1 16447906 6.0 8.6 11.2 17.1 21.1

≥2 52853431 6.7 9.2 11.5 17.7 21.7

≥ 10 17146723 7.3 9.7 11.8 18.3 22.6

number of password changes

none 52117133 6.2 8.8 11.2 17.1 20.9

1 9608164 8.3 10.4 12.3 18.8 23.2

>1 7576040 8.6 10.7 12.5 19.5 24.2

≥5 930035 9.1 10.9 12.7 19.7 25.9

number of password resets (forgotten password)

none 61805038 6.4 8.9 11.3 17.3 21.3

1 4378667 8.2 10.5 12.5 19.2 23.8

>1 3117632 8.7 10.8 12.8 19.7 24.6

≥5 387469 8.7 10.6 12.8 19.9 26.6

amount of data stored with Yahoo!

1st quartile 9830792 5.6 8.2 10.8 17.3 21.5

2nd quartile 20702119 6.3 8.8 11.3 17.5 21.5

3rd quartile 21307618 6.8 9.3 11.5 17.5 21.4

4th quartile 17447029 7.6 10.0 11.9 17.8 22.0

usage of different Yahoo! features

media sharing 5976663 7.7 10.1 12.0 18.0 22.3

retail 2139160 8.8 10.5 11.9 16.8 21.4

webmail 15965774 6.3 8.8 11.3 17.4 21.2

chat 37337890 6.2 8.7 11.2 17.1 21.2

social networking 14204900 7.1 9.6 11.7 17.7 21.8

mobile access 20676566 6.7 9.3 11.4 17.1 21.1

Android client 1359713 8.3 10.3 12.0 17.3 21.5

iPhone client 6222547 8.1 10.1 11.9 17.6 21.6

RIM client 3843404 7.6 10.0 11.8 17.2 21.1
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6.3. Comparison with other password data sets

Users’ account history also illustrates several interesting trends. There is a clear trend towards

stronger passwords amongst users who actively change their password, with users who have

changed passwords 5 or more times being one of the strongest groups.8 There is a weaker

trend towards stronger passwords amongst users who have completed an email-based password

recovery. However, users who have had their password reset manually after reporting their

account compromised do not choose better passwords than average users.9 Users who log

in infrequently, judging by the last recorded login time before observation in our experiment,

choose slightly better passwords. A much stronger trend is that users who have recently logged

in from multiple locations choose relatively strong passwords.10

There is a weak trend towards improvement over time, with more recent accounts having

slightly stronger passwords. Of particular interest to the security usability research community,

however, a change in the default login form at Yahoo! appears to have had little effect. While

Yahoo! has employed many slightly different login forms across different services, we can

compare users who initially enrolled using two standard forms: one with no minimum length

requirement or guidance on password selection, the other with a 6-character minimum and a

graphical indicator of password strength. This change made no significant difference in security

against online guessing and increased the offline metrics by only 1 bit.

Finally, we can observe variation between users who have actively used different Yahoo! ser-

vices. Users who have used Yahoo!’s online retail platform (which means they have stored a

payment card) do choose very weak passwords with lower frequency, with λ̃10 increasing by

about 2 bits. However, the distribution is indistinguishable from average users against offline

attack. A similar phenomenon occurs for users of some other features, such as media sharing

or dedicated smartphone clients for Android, RIM, or iOS, which achieve slightly better secu-

rity against online attacks but are indistinguishable otherwise. Other popular features, such

as webmail, chat, and social networking, saw slightly fewer weak passwords than normal, but

again were indistinguishable against offline attacks.

One other interesting categorisation is the amount of data that users have stored with Yahoo!.

While this is a very rough proxy for how active user accounts have been, there is a clear trend

that users with a large amount of stored data choose better passwords.

6.3 Comparison with other password data sets

We now compare our collected data to several other leaked data sets (§D):

• RockYou (www.rockyou.com) is a social media and games website. It was compromised

8As these were voluntary changes, this trend does not support mandatory password change policies (§2.2.4).
9A tempting interpretation is that password choice does not play a significant role in the risk of account

compromise, though this is not clearly supported since we can only observe the post-compromise strength.
10Yahoo! maintains a list of recent login locations for each user for abuse detection purposes.
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6.3. Comparison with other password data sets

data set year M
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

Yahoo 2011 69301337 6.5 9.1 11.4 17.6 21.6

RockYou 2009 32603388 6.8 8.9 11.1 15.9 19.8

Gawker 2010 748559 7.5 9.2 11.4 16.1 20.3

BHeroes 2011 548774 7.7 9.8 11.6 16.5 20.0

Table 6.2: Comparison of collected Yahoo data with leaked data sets.

in December 2009 via SQL injection. Passwords were stored in plaintext and were leaked

without associated identities. No password restrictions were in place.

• Gawker (www.gawker.com) is an online gossip blog. It was hacked in December 2010

and its complete database leaked. Passwords were hashed with traditional crypt()

(§2.2.1), which incorporates 12 bits of salt. Thus, analysis of the distribution directly

is not possible; the reported numbers are based on the best publicly available cracking

efforts against the database. Also of note, crypt() limited all passwords to an effective

length of 8 characters. No minimum length appears to have been in place.

• BHeroes (www.battlefieldheroes.com) is a multiplayer online game. It was com-

promised in June 2011 by the LulzSec hacking group. Passwords were hashed using a

single iteration of MD5 without any salt, making the distribution of hashes isomorphic

to the distribution of underlying passwords. The site appears to have implemented a

six-character minimum length for passwords; no passwords which have been cracked

from the data set are less than six characters long.

Guessing metrics for all of these data sets as well as our aggregate Yahoo population are

listed in Table 6.2. What is most striking is how consistent the estimated guessing metrics are.

The distributions vary by less than 1 bit for
ˆ̃
λβ for all β ≤ 100, meaning they are very similar

against online attack. Even against offline attack, extrapolated estimates for ˆ̃G0.5 vary by less

than 2 bits. Some caution is in order as we have little evidence that the smaller distributions are

well-approximated by our extrapolation method (§5.6) since the sample sizes are too small

for cross-validation, though our model provides an equally good fit for subsamples of the

RockYou data set. Guessing curves for all of these distributions are plotted in Figure 6.2a,

demonstrating the relatively close estimates of G̃ for these data sets.

In Figure 6.2b we add data points from previous empirical estimates based on cracking (§2.5.1).

In general, the cracking results produce higher estimated security than do statistical metrics.

This is to be expected as the cracking tools used are not optimal. The 1990 cracking study by

Klein provided estimates very close to the optimal attack for our observed data, suggesting

either that this cracking approach was very well-tuned or that the underlying distribution was

considerably weaker then.
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(b) Comparison of large password data sets to historical cracking results

Figure 6.2: Guessing curves for several large data sets of passwords. In Figure 6.2a, the guessing

curve of G̃α is plotted for the complete interval 0 ≤ α ≤ 1. The change to a dotted line indicates

the point at which an extrapolated estimate is being used (§5.6). In Figure 6.2b, data points

from historical cracking evaluations (§2.5.1) are added, necessitating a plot of µ̃α instead of

G̃α.
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Figure 6.3: Comparison of Yahoo password data to sequences of English words.

6.4 Comparison with natural language patterns

A final question we can answer relatively easily is how password distributions compare to the

distribution of words in natural language. This has long been of interest in password research,

inspired by Shannon’s 1951 experiment to calculate the entropy of individual characters in

English text [272] which was used as a lower bound for the NIST password entropy formula [58].

We are interested in the distribution of English words and phrases. We can estimate this using

data from the Google n-gram corpus which consists of over 1015 words of English-language

text harvested from the World Wide Web in 2006 [52]. This corpus contains frequency counts

for n-grams (sequences of n consecutive words) of up to 5 words. In Figure 6.3 we plot our

password data sets against n-grams of 1–4 words. We also plot the head of the distribution of

2 words chosen individually according to the frequency of words in English.

Passwords appear to be between 2- and 3-word phrases in guessing difficulty, with a higher

slope indicating that passwords are more skewed than English phrases (though drawn from

a much larger space of possible values, since spelling and grammar aren’t restrictions). Two

English words chosen independently appear more difficult to guess than a text password.
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Did you really name your son Robert’) DROP TABLE Students;--?

—xkcd by Randall Munroe, 2007

Chapter 7

Guessing difficulty of personal

knowledge questions

In this chapter we explore the difficulty of guessing answers to personal knowledge questions

traditionally used for backup authentication. Most websites now prefer email-based password

reset (§2.2.5), but personal knowledge questions are still used when email-based reset is not

possible (for example, email accounts themselves) or as part of a multi-factor protocol [247].

An interesting aspect of personal knowledge questions is that there is often a population-wide

distribution of answers which would be expected if all users answered accurately. For example,

for the classic “What is your mother’s maiden name?” question, a security engineer might

expect the distribution of answers to be very similar to the population-wide distribution of

surnames.1 However, Rabkin found in a 2008 survey that 62% of users don’t always answer

personal knowledge questions accurately [243], either because a question wasn’t applicable or

because they wanted to provide a harder-to-guess answer.

This chapter will analyse data from large empirical distributions of answers to personal knowl-

edge questions collected at Yahoo!, as well as several estimates for population-wide distribu-

tions to analyse the security impact of users not complying with intended question semantics.

1We’ll discuss measuring the effect on an attacker using an approximation for the target distribution in §8.

In this chapter we’ll only focus on the difference in security caused by the user-chosen distribution differing

from the population-wide distribution, assuming the attacker is optimal.
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7.1 Sources of data

7.1.1 Questions of interest

It is difficult to quantitatively assess which questions are the most important in practice,

which would require considering not only the varying popularity of different websites but

which questions users prefer when given a choice. Two recent studies have surveyed questions

with no data on user preference. Rabkin collected and classified 215 questions from 11 financial

websites in 2008 [243].2 Schechter et al. classified 29 questions from 4 large webmail providers

(Microsoft, Google, AOL, and Yahoo!) in 2009 [261]. A third study, by Just and Aspinall in

2009 [163], allowed over 500 users to choose their own questions in a laboratory setting. We

consider this data to be perhaps the most indicative of user preference, though all of these

numbers are only meant as a rough guide for which questions are worthy of analysis.

While the variety of questions is large, many are asking for answers which have similar,

well-defined population-wide distributions. For example, the population-wide distribution of

answers to the question “What is your mother’s maiden name” should be effectively equivalent

to the question “What was your first school teacher’s last name?” Thus we are most interested

in classifying questions according to the distribution of answers they might induce and not the

specific wording of the question. From the available empirical studies, we can divide questions

into several important classes:

• Surnames, also called last names or family names. The distribution of surnames has been

studied by historians and population geneticists [109] and statistics are well-known.

• Forenames, also called first names or given names. We also include middle names in

this category; the distribution is similarly well-known.

• Other names, such as nicknames or terms of endearment.

• Pet names, sometimes specifically limited to dogs or cats.

• Place names, such as one’s childhood address, hospital of birth, high school, or honey-

moon destination. This is a much broader category than those above but population-wide

distributions can be approximated by the populations of cities, schools, etc.

• Favourites, such as one’s favourite sports team, hobby, television show, etc. It is much

harder to find population-wide distributions for these questions.

Table 7.1 lists statistics estimated by the three empirical surveys for the frequency of these

question types. None of the counts are complete because some questions don’t fit into any of

2Of Rabkin’s data set, roughly 50% (107 questions) came from a single website, Amtrust Direct. Thus it

is far from a representative sample of banking practice.
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category Rabkin [243] Schechter [261] Just [163]

surname 4.7% 10.3% >
forename 21.8% 10.3% 34%

other name 4.7% 3.4% ⊥
pet name 3.3% 6.9% 15%

place — 27.5% 20%

favourite 16.7% 41.4% 22%

Table 7.1: Common answer categories

these categories. We consider the estimates by Just and Aspinall to be the most accurate as

they reflect what users actually choose; thus we consider names to be particularly important.

7.1.2 Yahoo! data

Our primary source of data are distributions collected from Yahoo! at the same time as the

password experiment described in §6.1.5 was conducted. Unlike passwords, users’ answers to

personal knowledge questions are typically not stored hashed, but encrypted with a key avail-

able to customer service representatives who may use the plaintext answers to authenticate

users over the telephone in order to help them to gain access to a lost account. Thus compil-

ing the distribution of answers was relatively straightforward, unlike collecting password data

which required a special experimental proxy to observe raw password data on submission.

A database crawl was executed which, for each (question, answer) pair, emitted the pair

(question, H (answer||r)), where r is a 128-bit random nonce used to ensure anonymity of

the data as was used in the password collection experiment (§6.1). Questions chosen by fewer

than 100,000 users were discarded. Including variants in different languages, this produced

distributions of answers to 124 separate questions.

Separately, answers chosen by more than 1,000 users were emitted in plaintext. This value was

chosen to allow limited analysis of semantic content while ensuring strong k-anonymity for

any emitted data. All of the answers were stored in a canonical lower-case form with spacing

and punctuation removed to prevent errors due to typos, but the full UTF-8 character set

was allowed.

7.1.3 Population data

Population data was collected from government-collected census statistics where possible. A

list of census sources is provided in §E. In addition, a large dataset of 269 million names

was crawled from the online social network Facebook in 2010, which maintains a publicly-

searchable (opt-out) list of registered users. This data set is perhaps the largest ever collected
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for research and is more diverse than government statistics for any one country, though at the

time of crawling just under half of Facebook’s users were estimated to live in the USA.

7.2 Analysis of answers

We now analyse the empirical data from Yahoo!.There are many fewer hapax legomena ob-

served in most distributions for personal knowledge questions than for passwords, meaning the

interval of α for which we can compute guessing statistics with confidence using the methods

introduced in §5 is much greater; for every distribution we studied we have confidence that

the naive estimates for µ̃α and G̃α are accurate to within 0.5 bits for all α ≤ 0.5.

7.2.1 Surnames

The distribution of surnames, listed in Table 7.2, varies significantly between countries, from

South Korea where only three surnames (Kim, Park and Lee) are used by over half of the

population to the USA, which has the greatest diversity at ˆ̃G0.5 = 12.0 bits. Effects are not

solely due to language, as there is significant variation between Chile and Spain, or between

the USA, England and Australia. Ethnic diversity may be a major cause of these differences,

with the USA as a nation of immigrants effectively having a mixture distribution of many

different ethnic groups’ surname distributions. Similarly, ethnic Russians make up over one-

quarter of the population of Estonia which helps to explain Estonian surnames’ relatively high

guessing metrics (and the prominence of the surname Ivanov). The distribution of surnames

on Facebook, which is likely to be even more diverse as a population of users from around the

world, is the most difficult to guess by every measure.

Unlike for passwords, the shape of the guessing curves varies significantly for different dis-

tributions. For example, Finland’s most common surname Virtanen is relatively uncommon

compared to the most common surnames in other distributions, yet the distribution of Finnish

surnames is much flatter and ˆ̃G0.5 is lower than other populations with individually more-

common names.

Surnames were requested in two questions in the data collected from Yahoo!: “What is your

mother’s maiden name?” in English and “What is your father’s second surname?” in Spanish.3

Interestingly, the distribution of answers to the English question is weaker against guessing

than either the US or Facebook population-wide distributions. Inspecting the top elements

reveals unknown, dontknow, notknown and none as common answers.

The opposite effect occurred with Spanish-language second surnames, as the distribution of

answers was stronger than population-wide distribution in Spain by about a bit and by an even

3In most Spanish-speaking countries people use two surnames, one from their father and one from their

mother. Either parent’s second surname can be used as a personal knowledge question, since neither is passed

on to children. Women typically do not change names after marriage, preventing the maiden name formulation.
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x1 lgM
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

census records

Australia Smith 23.6 6.8 8.0 9.2 9.8 11.5

Chile González 24.0 4.5 5.5 6.7 5.5 5.9

England Smith 25.7 6.4 7.4 8.9 9.1 10.7

Estonia Ivanov 20.4 7.6 8.4 9.7 10.8 11.5

Finland Virtanen 22.3 7.8 8.1 9.0 9.2 10.3

Japan Satō 24.8 6.0 6.7 8.3 7.7 9.0

Norway Hansen 22.2 6.4 7.0 8.8 9.1 11.5

South Korea Kim 25.5 2.2 3.9 6.6 2.4 3.0

Spain Garcia 25.5 5.0 5.8 8.0 6.3 8.5

USA Smith 28.1 6.9 7.7 9.3 10.0 12.0

crawled

Facebook Smith 28.0 8.0 8.6 9.9 11.5 13.7

Yahoo! personal knowledge question answers

mother’s maiden (en) unknown 20.2 6.2 7.3 8.9 9.3 11.2

father’s second surname (es) garcia 18.2 5.9 6.5 8.3 7.6 9.5

Table 7.2: Guessing metrics for distributions of surnames.

larger margin compared to Chile. This may be partially a diversity effect, as Spanish-speakers

from many countries use Yahoo!. Another difference is that the most common non-compliant

response notiene (“he doesn’t have one”) was the 56th most common, compared to unknown

which was the most common response in English for mother’s maiden name. Finally many

users drop stress accents when recording their answer. For example, the most common response

garcia also appeared in the proper form garcı́a (though only one-sixth as often). Variation

in entry can only increase guessing difficulty.

7.2.2 Forenames

Many of the observations for population-wide distributions of surnames carry over to fore-

names, as listed in Table 7.3, though fewer national governments publish statistics on forename

distributions so fewer countries are included. There are again differences between different

countries, though we could not identify an outlier as significant as South Korea was for sur-

names. Ethnic diversity may again play a role with the USA and Belgium (which contains

both large Dutch- and French-speaking populations) having more variation than Spain, and

the distribution found on Facebook again being the hardest to guess. It is also possible to ex-

plore the difference between male and female naming patterns; for all three countries examined

there is more variation in female names than male names.
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x1 lgM
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

census records (overall)

Belgium Maria 23.2 5.7 6.9 8.2 7.8 8.5

Spain Maŕıa 25.5 3.5 5.3 7.5 5.2 7.0

USA Michael 27.8 5.9 6.6 8.0 7.5 8.4

crawled (overall)

Facebook David 28.0 7.5 8.0 9.1 9.3 10.5

census records (female)

Belgium Maria 22.3 4.9 6.4 7.9 7.2 8.1

Spain Maŕıa 24.5 2.5 5.0 7.3 4.4 6.3

USA Jennifer 26.7 6.3 6.8 7.9 7.3 8.2

census records (male)

Belgium Jean 22.3 5.7 6.5 7.7 6.9 7.6

Spain José 24.4 3.4 4.9 7.3 4.4 5.8

USA Michael 26.8 5.0 5.7 7.4 5.9 6.7

Yahoo! personal knowledge question answers

father’s name (es) jose 17.5 5.1 5.8 7.7 6.2 7.5

father’s name (it) giuseppe 17.1 4.8 5.5 7.4 5.6 6.7

father’s middle name (en) edward 22.7 6.0 6.5 8.2 7.4 9.7

father’s middle name (pt) antonio 17.1 5.6 6.3 8.0 7.0 8.6

your middle name (fr) marie 17.8 4.5 6.4 8.1 7.5 8.6

Table 7.3: Guessing metrics for distributions of forenames.

All of the empirical distributions of responses to questions requesting a forename appear

slightly more difficult-to-guess than population-wide baselines might suggest (though lower

than the overall distribution of forenames on Facebook.) There is no evidence for any expla-

nation except strong non-compliant answers. Amongst the answers for which plaintext was

available, only none as the sixth most common response in English for one’s father’s middle

name and aucun (none) as the eighth most common response in French for one’s own middle

name appeared to be weak defaults. All other common answers appeared legitimate.

7.2.3 Pet names

Guessing metrics for names of pets are listed in Table 7.4. This question was asked with a

generic “what is your pet’s name” phrasing in many different languages. The only population-

wide statistics available are those kept by city pet-registration departments, of which we found

three, all in the USA.

The population-wide distribution of pet names has higher guessing metrics than do human
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x1 lgM
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

city registration records

Des Moines buddy 14.9 6.2 7.0 8.4 8.0 9.4

Los Angeles lucky 19.0 6.4 6.9 8.3 7.8 9.2

San Francisco buddy 15.7 6.7 7.2 8.5 8.2 9.5

Yahoo! personal knowledge question answers

Chinese mimi 19.9 7.1 7.9 9.1 9.7 12.6

English lucky 24.3 7.5 8.0 9.2 9.7 11.5

French chat 17.1 4.0 6.1 8.4 7.8 9.9

German hund 17.6 6.0 7.0 8.5 8.3 9.8

Italian cane 17.5 5.4 6.8 8.5 8.2 9.8

Portuguese cachorro 19.1 3.8 6.1 8.4 7.8 9.7

Spanish perro 20.1 6.2 7.4 9.0 9.3 10.7

Table 7.4: Guessing metrics for distributions of pet names.

forenames. Similarly, empirical responses appear slightly better than forenames when mea-

sured by ˆ̃G0.25 or ˆ̃G0.5, but much lower when measured by
ˆ̃
λ1 due to a large number of users

simply stating the species of their pet—the words for “dog” and “cat” were the most popular

responses in French, German, Italian, Portuguese, and Spanish. In Portuguese over 7% of

users simply answered cachorro (“dog”). This pattern did not hold in English, where dog

and cat were the 23rd and 51st most common responses, behind ahmed at 20th. Finally, the

distribution of Chinese responses is even more difficult to guess. It contains a mixture of re-

sponses in English, Pinyin,4 and Chinese characters, as well as many non-compliant responses

such as 123456, which was the tenth most common response.

7.2.4 Place names

Table 7.5 lists guessing metrics for several questions requesting place names. These questions

don’t have nearly as well-defined of a population-wide distribution as do human names, but

the empirical answers appear generally harder to guess than do names. In particular, the name

of a person’s first school is amongst the strongest of any questions asked, consistent across

languages. School names may gain resistance to guessing from the fact there are limits as to

how large primary schools can grow (though some schools do share common names), unlike

cities whose populations are conjectured to follow a power-law distribution [69].

4Pinyin is the standard system to transliterate Chinese characters into the Latin alphabet. For example,

the most common response mimi for a pet name is the Pinyin transliteration for “meow.”
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x1 lgM
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

first school

Chinese — 19.3 7.5 8.5 10.0 11.5 13.6

English stmarys 22.6 8.9 9.5 10.8 13.2 15.3

Portuguese sesi 17.4 6.6 8.5 9.9 11.4 13.3

Spanish lasalle 18.3 7.5 8.4 9.7 11.0 12.9

place of meeting partner/spouse

Chinese — 17.9 4.4 6.4 8.6 8.5 13.4

English school 21.6 4.8 6.2 8.6 8.3 11.7

Spanish trabajo 18.3 5.6 6.4 8.4 7.7 10.7

other places (all English)

city of birth chicago 20.2 6.7 7.4 8.7 8.7 10.3

childhood summer home home 18.6 4.4 6.3 8.5 8.0 10.7

childhood street main 19.8 9.1 9.8 11.0 12.3 13.8

hospital of birth home 19.5 7.0 7.8 9.6 11.0 11.8

Table 7.5: Guessing metrics for distributions of places.

7.2.5 Favourites

Table 7.6 lists guessing metrics for questions requesting a user’s favourite item. Again, there is

no natural source for a population-wide distribution for these items. Several are surprisingly

strong by ˆ̃G0.5, for example the distribution of favourite restaurants is better than most

distributions of surnames. All of the favourite questions have several very common answers

though, with one’s favourite colour or sports team being the weakest distributions observed.

7.3 Security implications

None of the personal knowledge questions examined in this chapter provides useful resistance

to offline guessing. The security provided is roughly comparable to PINs against online attacks,

equivalent to a 5–10 bit uniform distribution for most questions, and generally much weaker

against offline attack than passwords, equivalent to less than 15 bits by ˆ̃G0.5. Unlike for

passwords, in our large Facebook distributions for forenames and surnames we are confident

in our partial guessing metrics for α = 0.9 without relying on any assumptions about the

distribution of names.

Still, personal knowledge questions may be difficult enough to guess to play a role in a broader

account recovery process given firm rate-limiting. Unlike with passwords there is large vari-

ation in distributions between different language speakers and even larger variation between
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x1 lgM
ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

favourite hero

Chinese leifeng 17.0 5.5 6.5 8.5 8.1 12.0

English superman 21.6 3.7 5.7 8.2 6.6 10.2

French jesus 16.9 4.8 6.2 8.3 7.5 10.2

Portuguese meupai 16.7 4.1 5.5 7.9 5.8 8.6

Spanish superman 17.3 3.3 5.3 7.8 5.3 8.2

favourite hobby

English reading 21.4 4.2 5.6 7.8 5.8 8.0

French football 16.7 3.9 5.4 7.6 5.4 7.3

Portuguese musica 17.6 5.3 5.8 7.8 6.3 8.1

Spanish leer 17.9 3.6 5.2 7.6 4.9 7.0

favourite sports team

English india 21.4 4.8 5.8 7.5 6.0 7.0

Portuguese flamengo 19.3 3.0 4.3 7.1 3.7 4.2

Spanish realmadrid 18.1 4.0 4.7 7.1 4.2 5.2

favourite sport

Chinese (basketball) 16.9 4.5 5.6 7.8 5.7 8.0

French football 17.5 1.7 4.0 6.9 1.7 2.8

other favourite items (all English)

author eminescu 19.0 6.3 7.2 9.0 9.7 10.9

book bible 19.2 4.4 5.7 8.4 7.2 10.4

car honda 20.8 4.3 5.4 7.7 5.5 7.4

colour blue 17.2 1.3 3.5 6.7 1.3 1.8

restaurant mcdonalds 17.6 5.7 6.6 8.8 9.1 12.3

musician arrahman 20.3 6.9 7.4 8.9 9.2 11.2

Table 7.6: Guessing metrics for distributions of favourite items.

different questions, meaning that careful study is necessary to pick the best questions possi-

ble. The most promising approach may be to avoid human-chosen distributions of names and

instead ask for items like primary schools for which there are fewer very-popular items.
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You go to war with the army you have—

not the army you might want or wish to have at a later time.

—Donald Rumsfeld, 2004

Chapter 8

Sub-optimal guessing attacks

In this chapter, we consider a sub-optimal guessing attack against values drawn from X based

on an assumed distribution Y 6= X . In practice, an attacker is unlikely to have perfect knowl-

edge of X , as we assumed when calculating guessing metrics in §4 and §§6–7. We introduce

simple extensions to our guessing metrics to capture the expected loss of efficiency for a

guessing attack based on an incorrect dictionary and compute values for data sets seen so far.

8.1 Divergence metrics

We’ll introduce divergence metrics for an attack against X (unknown to the attacker) using

Y as an assumed distribution; we’ll denote this scenario as X ‖ Y. We’ll write pXj for the

probability in X of the jth most common event in Y, and pYj for the probability in Y of the

same event.

Note that we are now using subscript j (instead of i) to indicate that it always refers to the

index from the distribution Y. It is critical that pXj and pYj refer to different probabilities for

the same event; we choose the indices from Y to retain the convention that values are guessed

by the attacker in order of increasing j.

8.1.1 Kullback-Leibler divergence and cross entropy

A related problem first studied by Solomon Kullback and Richard Leibler in 1951 [180] is

the loss of efficiency when compressing data using a code designed for a different distribution

of values. Recalling that the Shannon entropy H1(X ) indicates the expected number of bits

needed to encode an event drawn from X using an optimal code (§3.1.1), the cross entropy of

X ‖ Y measures the expected number of bits needed to encode an event drawn from X using
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an optimal coding scheme based on Y:

H1 (X ‖ Y) =

|Y|∑
j=1

pXj lg pYj (8.1)

This equation is very similar to the basic definition of Shannon Entropy (Equation 3.1).

Because the optimal coding scheme will encode the jth event (in Y) using lg pYj bits, this is

simply an expectation of the number of bits to encode an event drawn from X .

An alternative metric is the number of extra bits needed to encode events from X using a

code from Y. This value is called the Kullback-Leibler divergence:

DKL (X ‖ Y) =

|Y|∑
j=1

pXj lg
pYj
pXj

(8.2)

When X = Y, we will trivially have H1 (X ‖ Y) = H1(X ) and DKL (X ‖ Y) = 0. In general:

DKL (X ‖ Y) = H1 (X ‖ Y)−H1(X ) (8.3)

It is also important to note that both H1 (X ‖ Y) and DKL (X ‖ Y) are undefined in our

notation if there are events in X which don’t exist in Y. This occurs because if pYj is 0 for

some j ≤ |Y|, then both values will be ∞ because they include lg 0.

This appropriately reflects that it is impossible to encode an event which wasn’t incorporated

into the design of an optimal code. This is another reason why H1 is inappropriate as a

guessing attacks as it indicates that guessing is infinitely difficult without perfect knowledge

of the underlying distribution. Similarly, by the bound in Equation 3.17, G1 will indicate that

such a guessing attack is infinitely difficult.

8.1.2 Divergence for partial guessing metrics

It is straightforward to define cross variants for all of the partial guessing metrics introduced

in §3.2. We begin with β-success-rate (§3.2.1), which is the simplest:

λβ (X ‖ Y) =

β∑
j=1

pXj (8.4)

Similarly for α-work-factor (§3.2.2):

µα (X ‖ Y) = min

µ
∣∣∣∣∣∣
µ∑
j=1

pXj ≥ α

 (8.5)

Recall that for α-guesswork (§3.2.3), the definition includes the rounded-up VαW (Equa-

tion 3.11). In defining a cross version of Gα, we’ll need to define VαW in terms of Y:

VαW = λµα(X‖Y) (X ‖ Y) =

µα(X )∑
j=1

pXj (8.6)
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Using this, the cross α-guesswork is very similar to the original definition (Equation 3.10):

Gα (X ‖ Y) = (1− VαW) · µα (X ‖ Y) +

µα(X‖Y)∑
j=1

pXj · j (8.7)

Bit-converted metrics λ̃β (X ‖ Y), µ̃α (X ‖ Y) and G̃α (X ‖ Y) can be computed using the

definitions in §3.2.4 exactly, using Equation 8.6 for VαW where needed.

Defining divergence concisely like in Equation 8.2 for DKL is difficult for partial metrics

because the logarithm in the bit-conversion formulas is taken after a summation. It is simpler

to use the equivalence that:

DP (X ‖ Y) = P (X ‖ Y)− P(X ) (8.8)

where P is any of the properties we have introduced.

8.1.3 Sample size

The effects of sample size are similar to those we explored in §5 for optimal guessing metrics.

In Figure 8.1 we plot the cross α-guesswork for the full Yahoo data set, using a random

subsample Yahoo1M with one million samples as both the assumed distribution and target

distribution. Sample size makes no significant impact for α < α∗, the interval for which we

are confident in our estimates of µ̃α (§5.5).

For α > α∗, observe that ˆ̃µα (Yahoo1M ‖ Yahoo69M) ≈ ˆ̃µα (Yahoo69M). Using the larger,

more-accurate data set to conduct a guessing attack against the less-accurate one causes no

loss of efficiency compared to attacking the complete distribution with perfect knowledge.

However, conducting an attack on the full data set using the smaller data set does cause

a loss of efficiency, that is ˆ̃µα (Yahoo69M ‖ Yahoo1M) > ˆ̃µα (Yahoo69M) for some α < α∗
Specifically, the sampled data set will be missing many items which occurred more than once

in the full data sets, forcing less-probable values to be guessed earlier. Furthermore, we can’t

estimate ˆ̃µα (Yahoo69M ‖ Yahoo1M) at all for higher values of α because our model doesn’t

allow the attacker to guess any values not seen in Yahoo1M.

When analysing a sub-optimal attack for two sampled distributions X̂ ‖ Ŷ, we are thus con-

cerned mainly with the inaccuracy in Ŷ and not X̂ . In the next section we’ll take a conservative

approach and only take estimates for events with frequency f ≥ m∗, the calculated minimum

frequency for which we expect our estimates of ˆ̃µα to be biased by less than 0.5 bits (§5.5).
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Figure 8.1: Effect of sample size on estimating the cross α-work-factor using the original

Yahoo data set (69 M samples) and subsamples taken with 1M samples.

8.2 Applications

8.2.1 Sub-optimal attacks on 4-digit PINs

As a first example, the cross α-guesswork is plotted in Figure 8.2 for the RockYou-4 and

iPhone distributions of numeric PINs introduced in §4.1. Both distributions had 1234 as the

most common element, so there is no loss of efficiency for attacks with only β = 1 guesses.

The next few items vary greatly though between the two distributions: 0000 is the second

most-common PIN in the iPhone set with piPhone0000 = 2.56% but only pRockYou
0000 = 0.11%,

while the second most-common PIN in the RockYou set is 2007 with pRockYou
2007 = 2.22%

but only piPhone2007 = 0.04%. Using either distribution to guess values against the other there is

an increase in difficulty of Dλ̃α
> 3 bits for α = 0.1, roughly a decimal order of magnitude

loss of efficiency. Thus, training on the wrong data set can make a significant difference in

efficiency for the most important type of guessing attack against PINs. It is also evident in

Figure 8.2 that the cross α-guesswork is no longer a monotonically increasing function with

α as the attacker is no longer guessing in optimal order.
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Figure 8.2: Effect of a sub-optimal dictionary when guessing PINs. The cross α-guesswork is

plotted for both the RockYou-4 and iPhone data sets using the other as an approximate

distribution.

8.2.2 Demographic differences at Yahoo!

Returning to the Yahoo data set of passwords, we are interested in the efficiency of an attack

trained on the wrong demographic subset of Yahoo! users. For consistency in this section,

we will consider λ1000(X ‖ Y) which is within the well-approximated region for all of our

demographic subsets. A simple example is male and female-chosen passwords:

dictionary

♀ ♂

ta
rg

et ♀ 7.8% 6.8%

♂ 6.3% 7.1%

There is a 10–15% loss in efficiency if an attacker uses the optimal male dictionary against

female-chosen passwords, or vice-versa, a divergence of only 0.1 bits. This is small enough that

we may conclude real-world attackers are unlikely to tailor their guessing approach based on

the gender distribution of their target users.
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dictionary

C
h

in
ese

G
erm

an

G
reek

E
n

glish

F
ren

ch

In
d

on
esian

Italian

K
orean

P
ortu

gu
ese

S
p

a
n

ish

V
ietn

a
m

ese

g
lo

b
a
l

m
in

im
a
x

target

Chinese 4.4% 1.9% 2.7% 2.4% 1.7% 2.0% 2.0% 2.9% 1.8% 1.7% 2.0% 2.9% 2.7%

German 2.0% 6.5% 2.1% 3.3% 2.9% 2.2% 2.8% 1.6% 2.1% 2.6% 1.6% 3.5% 3.4%

Greek 9.3% 7.7% 13.4% 8.4% 7.4% 8.1% 8.0% 8.0% 7.7% 7.8% 7.7% 8.6% 8.9%

English 4.4% 4.6% 3.9% 8.0% 4.3% 4.5% 4.3% 3.4% 3.5% 4.2% 3.5% 7.9% 7.7%

French 2.7% 4.0% 2.9% 4.2% 10.0% 2.9% 3.2% 2.2% 3.1% 3.4% 2.1% 5.0% 4.9%

Indonesian 6.7% 6.3% 6.5% 8.7% 6.3% 14.9% 6.2% 5.8% 6.0% 6.2% 5.9% 9.3% 9.6%

Italian 4.0% 6.0% 4.6% 6.3% 5.3% 4.6% 14.6% 3.3% 5.7% 6.8% 3.2% 7.2% 7.1%

Korean 3.7% 2.0% 3.0% 2.6% 1.8% 2.3% 2.0% 5.8% 2.4% 1.9% 2.2% 2.8% 3.0%

Portuguese 3.9% 3.9% 4.0% 4.3% 3.8% 3.9% 4.4% 3.5% 11.1% 5.8% 2.9% 5.1% 5.3%

Spanish 3.6% 5.0% 4.0% 5.6% 4.6% 4.1% 6.1% 3.1% 6.3% 12.1% 2.9% 6.9% 7.0%

Vietnamese 7.0% 5.7% 6.2% 7.7% 5.8% 6.3% 5.7% 6.0% 5.8% 5.5% 14.3% 7.8% 8.3%

Table 8.1: Language dependency of password guessing. Each cell indicates the success rate λ1000(target ‖ dictionary) of a guessing attack

with 1000 attempts. The greatest efficiency loss, when attacking French passwords using a Vietnamese dictionary, is only a factor of 4.8,

or Dλ̃1000
= 2.26 bits.
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Different language communities would seem to be the most likely to diverge significantly,

though in Table 8.1 we see surprisingly little loss of efficiency for an attack trained on pass-

words chosen by speakers of a different language. The worst divergence observed is only 2.26

bits, when using an optimal Vietnamese-language password dictionary against French speak-

ers’ passwords.

We also observe in Table 8.1 that simply using the global list of most popular passwords

performs very well against most subsets. The greatest divergence when using the global list is

only 1.12 bits, against Portuguese-language passwords. We can improve this slightly further by

constructing a special dictionary to be effective against all subsets. We do this by repeatedly

choosing the password for which the lowest popularity in any subset is maximal and call it

the minimax dictionary, also seen in Table 8.1. This dictionary performs very similarly to the

global dictionary, though is slightly worse for some subsets but better for those which the

global list is worst for. The worst-case divergence for the minimax dictionary is just 1.06 bits,

also for Portuguese-language passwords.

Digging into our data, we can identify some “global passwords” which are popular across

all subgroups. The single most popular password we observed, for example, occurred with

probability at least 0.14% in every sub-population. Some overall popular passwords were

very rare in certain sub-populations. For example, the third most common password, with

overall probability 0.1%, occurred nearly 100 times less frequently in some sub-populations.

However, there were eight passwords which occurred with probability at least 0.01% in every

sub-population. Without access to the raw passwords, we can only speculate that these are

numeric passwords as these are popular and internationalise well.1

Despite the existence of globally popular passwords, however, we still consistently find small

divergences between seemingly similar lists of passwords. For example, efficiency losses of up to

25% can occur using dictionaries tailored to people from different English-speaking countries:

dictionary

u
s

u
k

ca a
u

g
lo

b
al

ta
rg

et

us 8.2% 6.6% 7.4% 7.2% 8.1%

uk 5.4% 6.9% 5.5% 5.6% 5.5%

ca 8.8% 7.9% 9.9% 8.7% 8.8%

au 7.4% 7.2% 7.6% 8.8% 7.5%

1Within the RockYou data set, 123456 is the most popular password and 5 other numeric-only passwords

are amongst the top ten.
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We can observe similar efficiency losses based on age:

dictionary

1
3–

2
0

2
1–

3
4

3
5–

5
4

5
5+

g
lo

b
a
l

ta
rg

et
13–20 8.4% 7.8% 7.1% 6.5% 7.9%

21–34 7.3% 7.9% 7.3% 6.7% 7.8%

35–54 5.4% 5.8% 6.4% 6.1% 6.2%

55+ 5.4% 5.8% 6.8% 7.3% 6.5%

Finally, we observe efficiency losses up to 25% based on service usage:

dictionary

re
ta

il

ch
a
t

m
ed

ia

m
ai

l

gl
o
b

a
l

ta
rg

et

retail 7.0% 5.6% 6.6% 5.6% 6.0%

chat 6.9% 8.4% 7.8% 8.3% 8.3%

media 5.7% 5.6% 6.0% 5.6% 5.8%

mail 6.7% 8.0% 7.5% 8.2% 8.1%

8.2.3 Real password guessing attacks

Ideally, we could measure the efficiency of realistic guessing attacks against a large data set

like RockYou.2 It is difficult to do so in a canonical way though because password cracking

tools are highly tunable. Furthermore, most have now been modified based on the RockYou

data set and other large leaks, spoiling the experiment.

We use several independent proxies for guessing attacks instead. Two studies, by Seifert [269]

and Owens [229] have collected failed login attempts on SSH servers and reported the most

likely passwords attempted in guessing attacks. We can also extract password lists from promi-

nent samples of malware, for example the Morris worm [278] or Conficker [284], both of which

contain small dictionaries of passwords. Finally we can consider the list of passwords banned

by the microblogging website Twitter, which checks passwords in client-side JavaScript in an

unusual arrangement that makes it possible to study the exact blacklist.

We report on the efficiency of an attack against the RockYou passwords using all of these

data sets in Table 8.2. We also include, as a baseline for comparison, the 1000 most popular

passwords in the BHeroes data set and the 1000 most popular passwords from the 70yx

data set, which was leaked from a Chinese-language website (§D).

2We can’t use the Yahoo data set for this experiment since, by design, there is no way to test for the

existence of specific passwords.
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year list M λ̃1 min
(
λ̃1

)
λ̃10 min

(
λ̃10

)
Dλ̃M

SSH guessing attacks

2006 Seifert [269] (campus) 20 6.81 6.81 9.46 9.33 0.68

2006 Seifert [269] (business) 20 6.81 6.81 9.86 9.51 0.86

2006 Seifert [269] (residence) 20 6.81 6.81 9.56 9.45 0.81

2008 Owens [229] 28 6.81 6.81 10.06 9.72 1.24

passwords dictionaries in malware

1989 Morris worm [278] 431 — 9.10 — 11.00 2.66

2009 Conficker [284] 181 — 6.81 — 9.07 1.21

password blacklists

2010 Twitter 396 — 6.81 — 9.43 2.37

2011 Twitter 396 — 6.81 — 9.08 0.58

baselines

2011 BHeroes 1000 6.81 6.81 9.40 9.13 0.74

2012 70yx 1000 6.81 6.81 9.96 9.27 2.36

optimal

2010 RockYou 1000 6.81 6.81 8.93 8.93 0

Table 8.2: Efficiency for several proxies for real guessing attacks. Because many of these lists

are not sorted, we assume an optimal ordering of the dictionary.

Unfortunately, the blacklists and the lists in malware are unordered. Thus, we can only com-

pute λ̃β for an attack using these lists assuming the attacker uses an optimal order, denoted

min
(
λ̃β

)
. Table 8.2 lists values for β = 1, 10 and as well as Dλ̃M

, the divergence for an attack

using the whole list. For an attacker using the whole list, the order of guesses won’t affect λ̃β.

The password 123456 was included in every set except that carried by the 1989 Morris worm

(which included no numeric passwords) and was listed first in every ordered set, giving the

optimal value of λ̃1 = 6.81 bits. Efficiency for 10 guesses, measured by λ̃10, was never more

than a bit higher than optimal. Thus, it appears that very limited online guessing attacks are

well-understood and near-optimally executed.

For a few of the larger lists, the divergence from optimal became greater when the whole list

was taken into account. For example, Twitter’s 2010 blacklist was 2.37 bits away from ideal,

more than a factor of 5, and included several bizarre passwords not seen in the RockYou

data set at all. The 2011 update was a considerable improvement. The Morris worm’s list

is inadequate because it only included lower-case letters in its passwords, whereas numeric

passwords represent many of the most common. Finally, the top 1000 passwords in the 70yx

diverged by about 2.36 bits for β = 1000, similar to the worst-case numbers in Table 8.1 for

the gap between passwords chosen in different languages.
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Always remember that you are absolutely unique—

just like everybody else.

—Margaret Mead, 1970s (apocryphal)

Chapter 9

Individual-item strength metrics

As discussed in §2.5.2, it can be useful to estimate the resistance to guessing provided by a

specific password x instead of analysing the guessing resistance of an entire distribution X
from which x was drawn. This can be used for research to compare password choices between

two groups with insufficient data to construct full distributions [163, 169, 273, 168]. It can

also be used to build a proactive password-checker which indicates to a user the strength of

a particular password during enrolment [37].

Current approaches1 to estimating the strength of an individual password include using en-

tropy estimation formulas [58, 321, 273], estimating the probability of the password in an

model distribution [77, 310, 62] or estimating order in which the password would be guessed

by cracking software [168].

In this chapter we formalise these approaches assuming we have complete knowledge of the

underlying distribution X . Our goal is to produce a strength metric, denoted SX (x). Any

strength metric is inherently dependent on our approximation X for the underlying distribu-

tion. Although we found that language difference did not make a major difference in guessing

attacks on aggregate (§§8.2.2–8.2.3), it can make huge differences for individual passwords.

For example, the password tequiero (which roughly translates from Spanish to English as

iloveyou) is one of the top 100 passwords within the RockYou data set, but is over 25 times

less common in the otherwise very similar BHeroes data set.

There are two key properties any useful strength metric S should have:

1. Consistency for uniform distributions: Similar to our preferred unit conversion for

distribution-wide guessing metrics (§3.2.4), for a discrete uniform distribution UN we

1One possible approach which does not appear to have been tried is to evaluate the Kolmogorov complex-

ity [191] of a password, defined as the length of the shortest algorithm which can produce it. This approach is

challenging because most passwords are so short they don’t have a more compact algorithmic description.
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9.1. Strength metrics

want any strength metric to assign lgN bits to all events:

∀x∈UN SUN (x) = lgN (9.1)

2. Monotonicity: A strength metric should rate any event more weakly than events which

are less common in the underlying distribution X :

∀x,x′∈X px ≥ px′ ⇐⇒ SX (x) ≤ SX (x′) (9.2)

9.1 Strength metrics

We now formalise three sensible strength metrics which satisfy the above properties.

9.1.1 Probability metric

The simplest approach is to take the estimated probability px from X and estimate the size

of a uniform distribution in which all elements have probability px:

SP
X (x) = − lg px (9.3)

This is, in fact, the classic definition of the self-information of x (also called the surprisal),

which is the underlying basis for Shannon entropy H1 (§3.1.1). It is easy to see that for a

randomly drawn value x
R← X , the expected value of this metric is:

E
[
SP
X (x)

∣∣x R← X ] =

|X |∑
i=1

px · − lg px = H1(X ) (9.4)

Previous metrics which attempt to measure the probability of a password, for example using

Markov models [77, 218, 62] or probabilistic context-free grammars [310], can be seen as

attempts to approximate SP
X (x).

Applied to guessing, this model measures the (logarithmic) expected number of guesses before

x is tried by an attacker who is guessing random values x
R← X with no memory. As discussed

in the case of collision-entropy H2 (§3.1.2), this attack model might apply if an attacker is

guessing randomly according to the distribution to evade an intrusion detection system. For

optimal sequential guessing attacks however, this metric has no direct relation.

9.1.2 Index metric

To estimate the strength of an individual event against an optimal guessing attack, the only

relevant fact is the index ix of x, that is, the number of items in X of greater probability than

px. Using similar techniques to those in §3.2.4, we can convert this to an effective key-length
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by considering the size of a uniform distribution which would, on average, require ix guesses.

This gives us a strength metric of:

SI
X (x) = lg (2 · ix − 1) (9.5)

Intuitively, this metric is related to real-world attempts to measure the strength of an indi-

vidual password by estimating when it would be guessed by password-cracking software [168].

A practical problem with this metric is that many events may have the same estimated

probability. If we break ties arbitrarily, then in the case of the uniform distribution UN the

formula won’t give lgN for all events. In fact, it won’t even give lgN on average for all events,

but instead ≈ lgN − (lg e− 1) (proved in §B.5).

A better approach for a sequence of j equiprobable events xi · · ·xi+j where pi = . . . = pi+j is

to assign index i+j
2 to all events when computing the index strength metric. This is equivalent

to assuming an attacker will choose randomly given a set of remaining candidates with similar

probabilities and it does give a value of lgN to all events in the uniform distribution.

This is slightly unsatisfactory however, as it means for a distribution X ≈ UN which is “close”

to uniform but with a definable ordering of the events, the average strength will appear to

jump down by (lg e− 1) ≈ 0.44 bits.

A second problem is that the most probable event in X is assigned a strength of lg 1 = 0. To

satisfy our consistency requirement is a necessary limitation, since for U1 we must assign the

single possible event a strength of lg 1 = 0.

9.1.3 Partial guessing metric

The probability metric doesn’t model a sequential guessing attack, while the index approach

has a number of peculiarities. A better approach is to consider the minimum amount of work

done per account by an optimal partial guessing attack which will compromise accounts using

x. For example, if a user chooses the password encryption, an optimal attacker performing

a sequential attack against the RockYou distribution will have broken 51.8% of accounts

before guessing encryption. Thus, a user choosing the password encryption can expect to

be safe from attackers who aren’t aiming to compromise at least this many accounts, which

takes G̃0.518 work on average per account. We can turn this into a strength metric as follows:

SG
X (x′) = G̃αx(X ) : αx =

ix∑
i=1

pi (9.6)

Because G̃α (UN ) = lgN for all α, the consistency property is trivially satisfied. Moreover, for

“close” distributions X ≈ UN where |pi − 1
N | < ε for all i, we’ll have SG

X (xi) → lgN for all i

as ε→ 0, unlike for SI where strength will vary as long as there is any defined ordering.
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As with SI
X though, we encounter the problem of of ordering for events with statistically

indistinguishable probabilities. We’ll apply the same tweak and give each event in a sequence

of equiprobable events xi · · ·xi+j the index i+j
2 .

9.2 Estimation from a sample

Just like for distribution-wide metrics (§5), there are several issues when estimating strength

metrics using an approximation for X obtained from a sample.

9.2.1 Estimation for unseen events

All of the above metrics are undefined for a previously unobserved event x′ /∈ X . This is a

result of our assumption that we have perfect information about X . If not, we inherently need

to rely on some approximation. As a consequence of the monotonicity requirement, S(x′ /∈ X )

must be ≥ max (S(x ∈ X )). The naive formula for SP
X (x′) assigns a strength estimate of ∞

though, which is not desirable.

We should therefore smooth our calculation of strength metrics by using some estimate p(x′) >

0 even when x′ /∈ X . Good-Turing techniques (§5.4) do not address this problem as they

provide an estimate for the total probability of seeing a new event, but not the probability of

a specific new event. A conservative approach is to add x′ to X with a probability 1
N+1 , on the

basis that if it is seen in practice in a distribution we’re assuming is close to our reference X ,

then we can treat x′ as one additional observation about X . This is analogous to the common

heuristic of “add-one smoothing” in word frequency estimation [117]. This correction gives an

estimate of SP
X (x) = lg(N + 1) for unobserved events.

For the index metric, this correction produces the smoothed estimate SI
X (x′) = lg 2N + 1, an

increase of roughly 1 bit, due to the aforementioned instability for a distribution X ≈ UN .

For the partial guessing strength metric we have SG
X (x′) ≈ G̃1(X ), representing that guessing

an unseen value requires at least an attacker willing to guess all known values.

All of these estimates are somewhat unsatisfactory because they don’t allow us to distinguish

between the estimated security of a new observation encryption1 compared to e5703572ae3c,

the latter of which intuitively seems much more difficult to guess. Solving this problem inher-

ently relies on semantic evaluation of the newly-seen event, which is out of scope.

9.2.2 Stability of metrics

All of the proposed metrics will produce variable results for low-frequency events in a sample.

The logarithmic nature of the estimators damps this problem to a large extent: if the hapax

legomenon password sapo26 occurred two more times in the RockYou data set, tripling its
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observed frequency, its strength estimate would decrease by only 1.59, 2.22 and 2.55 bits for

SP
RY, SI

RY, and SG
RY, respectively.

It is straightforward to establish bounds on the worst case error when changing an event’s

observed probability from p→ p′ = p+∆p. For SP, the estimate can change from lg p to lg p′,

a difference of at most abs
(

lg p′

p

)
bits.

For the index metric the worst-case scenario is that changing from p→ p′ = p+∆p changes the

index by N if all other events have probability p ≤ p∗ ≤ p + ∆p. In this case, the maximum

number of events in the distribution is N = 1
min(p,p′) . This gives a worst-case change of

lg(2N − 1)− lg 0 ≈ lg 2
min(p,p′) .

The worst-case change for SG occurs in the same situation but is just lgN−lg 1
p′ = lg 1

p−lg 1
p′ =

abs
(

lg p′

p

)
, exactly as the case was for SP. This is an attractive property of SG: it offers worst-

case stability equivalent to SP while having a better connection to real guessing attacks.

However, in the special case where X is a Zipf distribution For a Zipf distribution each event’s

probability is roughly proportional to the inverse of its index in the distribution raised to a

constant s:

px ∝
(

1

ix

)s
Thus, if an event’s probability increases by a constant factor k, its index should decrease by

a factor of k
−1
s . This will decrease SP by lg k bits and decrease SI by lg k

s bits. For the classic

Zipf distribution with s ≈ 1, this means that changing an event’s probability by k will affect

SI
X and SP

X by exactly the same amount. While we reject the hypothesis that passwords are

produced by a simple Zipfian distribution (§5.6), this is a rough justification for why we don’t

expect SI
X to be highly unstable in practice.

9.3 Application to individual passwords

Example values for the proposed strength metrics are given in Table 9.1 for passwords in the

RockYou data set. Overall, the differences between SP, SI, and SG are moderate with the

exception of very common passwords, which receive significantly lower strength estimates by

SI. For much of the distribution, SG provides estimates in between those of SP and SI, until

the region of less-common passwords for which SG is lower as it incorporates an attacker’s

ability to stop early upon success.

The fact that SI < SP holds in every row is not a coincidence. Because the elements are

ordered by probability, an event’s index will always be lower in a skewed distribution than in

a uniform distribution with identical events, so we will always have SI ≤ SP.

The entropy estimation formula proposed by NIST [58] is shown for comparison as SNIST

(though note that SNIST doesn’t meet either of our desired mathematical criteria for a strength
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x lg(ix) fx SP
RY SI

RY SG
RY SNIST

123456 0 290729 6.81 0.00 6.81 14.0

12345 1 79076 8.69 1.58 7.46 12.0

password 2 59462 9.10 2.81 8.01 18.0

rockyou 3 20901 10.61 3.91 8.68 16.0

jessica 4 14103 11.17 4.95 9.42 16.0

butterfly 5 10560 11.59 5.98 10.08 19.5

charlie 6 7735 12.04 6.99 10.71 16.0

diamond 7 5167 12.62 7.99 11.30 16.0

freedom 8 3505 13.18 9.00 11.88 16.0

letmein 9 2134 13.90 10.00 12.48 16.0

bethany 10 1321 14.59 11.00 13.09 16.0

lovers1 11 739 15.43 12.00 13.74 22.0

samanta 12 389 16.35 13.00 14.42 16.0

123456p 13 207 17.27 14.00 15.13 22.0

diving 14 111 18.16 15.00 15.87 14.0

flower23 15 63 18.98 16.00 16.62 24.0

scotty2hotty 16 34 19.87 17.02 17.38 30.0

lilballa 17 18 20.79 18.01 18.13 18.0

robbies 18 9 21.79 19.06 18.93 16.0

DANELLE 19 5 22.64 19.96 19.62 22.0

antanddeck06 20 3 23.37 20.84 20.30 30.0

babies8 21 2 23.96 21.78 21.00 22.0

sapo26 22 1 24.96 24.00 22.44 20.0

jcb82 23 0 23.77 24.00 22.65 18.0

Table 9.1: Example strength estimates for a selection of passwords from the RockYou data

set. The estimator SNIST is calculated using the NIST entropy estimation formula [58].

metric). It fails for a few passwords which demonstrate the challenges of semantic evaluation:

both scotty2hotty and antanddeck06 score highly by SNIST for being long and including

digits. Neither is particularly strong, however: scotty2hotty is a professional wrestler, while

antanddeck06 is based on the name of a British comedy show. In contrast sapo26 is much

shorter and rated 10 bits lower by SNIST, but doesn’t have a well-known real-world meaning.

Because we listed passwords in order of exponentially increasing index, we can test the Zipfian

relationship on the difference between SP and SI using the data by comparing the ratio of

differences for successive passwords x2, x1 in Table 9.1:

s ≈ SP
RY(xi+1)− SP

RY(xi)

SI
RY(xi+1)− SI

RY(xi)
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9.4. Application to small data sets

For successive rows of the table, we get estimates for s ranging from 0.34 to 1.37. The average

estimate, however, is s = 0.76, almost identical to the estimate we would get by computing s

using only the first and last row of the table. In Figure 5.2, we computed a power-law fit to

the rank data with exponent 2.11 ≤ a ≤ 2.66. Using the equivalence between the power-law

and Zipf formulation that a = 1 + 1
s , we would estimate a = 2.31 given s = 0.76. This is

not a sound way of computing a Zipfian fit for the data set s in general, but the fact that it

is roughly consistent supports our hypothesis that SI will be stable for realistic distributions

which follow a (very rough) power-law approximation.

9.4 Application to small data sets

A second application of strength metrics is to estimate the average strength given only a very

small sample for which distribution-wide statistics (§3) can’t be computed. This method can

only be accurate for data sets which are approximately drawn from the same population as

the base distribution, though this limitation is equally true of password cracking (§2.5.1) or

semantic evaluation (§2.5.2).

If we interpret the small set of passwords as a sample from some larger distribution, we need to

reason about the expected value of each strength metric. We’ve already shown in Equation 9.4

that E
[
SP
X (x)

∣∣x R← X ] = H1(X ). The expected value of SI was too complicated to compute

directly even for a uniform distribution. Similarly, the expected value of SG is:

E
[
SG
X (x)

∣∣x R← X ] =

∫ 1

0
G̃α(X )dα (9.7)

which doesn’t appear to admit a simple analytic formula. Instead, we can only compute

E
[
SI
X (x)

∣∣x R← X ] and E
[
SG
X (x)

∣∣x R← X ] directly for our reference distribution X and use

this as a benchmark for comparison against a smaller distribution.

In Table 9.2 a variety of small password data sets for which cleartext passwords are available

are evaluated using the RockYou data set as a baseline. None of the statistical metrics are

obviously superior, though SG is typically in between the values produced by the other two.

The NIST formula produces more plausible results when averaged than for individual pass-

words (as in §9.3), correctly ranking the 2011 Twitter blacklist as much weaker than the

other lists (though not as weak as the statistical estimates). The NIST formula also plausibly

rates the foreign-language Hebrew data set lower than the statistical estimates, as it doesn’t

assume the passwords are in English like using RockYou as a baseline implicitly does.

In the myBart data set about two-thirds of users retained site-assigned random passwords.

This set was rated highly by all of the metrics, being recognised inadvertently by the NIST

formula because the site-assigned passwords always contained a number.

The largest difference in the rankings occurred for the Hotmail and MySpace data sets,

which produced indistinguishable statistical estimates but differed by over 4 bits by the NIST
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9.4. Application to small data sets

Dataset M % seen SP
RY SI

RY SG
RY SNIST

RockYou (baseline) — 100.0% 21.15 18.79 18.75 19.82

small password sets

70yx (sampled) 1000 34.0% 22.28 21.24 21.52 20.21

Fox 369 68.8% 20.95 18.99 19.33 19.28

Hebrew 1307 50.3% 21.25 19.63 20.14 17.46

Hotmail 11576 57.6% 21.82 20.29 20.43 18.21

myBart 2007 19.0% 22.93 22.37 22.54 23.53

MySpace 50546 59.5% 21.64 20.02 20.19 22.53

NATO-Books 11822 50.9% 21.66 20.17 20.47 19.35

Sony-BMG 41024 61.3% 20.93 19.10 19.53 19.87

malware dictionaries

Conficker 190 96.8% 16.99 13.60 15.07 16.51

Morris 445 94.4% 18.62 15.68 16.56 15.27

blacklists

Twitter-2010 404 7.9% 23.16 22.86 23.02 15.30

Twitter-2011 429 99.8% 15.11 11.31 13.46 15.27

Table 9.2: Average strength estimates for small lists of leaked passwords. Details of the data

sets are provided in §D. The NIST entropy estimation formula [58] is listed as SNIST.

formula. Examining the passwords, it appears that a good portion of the MySpace data was

collected under a policy (§2.2.4) mandating non-alphabetic characters: password1 is the most

popular password, over twice as popular as password, and most of the other top passwords

include a number. Popular numeric passwords such as 123456 appear to have been banned

under some of the collection rules, as they are less common than variants like 123456a. The

Hotmail data set, on the other hand, appears to have had no restrictions. Because the NIST

formula awards a constant 6 points to passwords with a mix of numbers and letters, the

MySpace complexity policy significantly raises SNIST. However, the statistical estimators

suggest these passwords may not actually be much stronger by this policy as a large number

of users simply append a digit (usually a 1 or 0) to a weak password. In this case, statistical

strength metrics are less influenced by the effects of complexity requirements.

The NIST formula also struggled to recognise datasets of explicitly weak passwords. For

example, it considers the Conficker password dictionary to contain stronger passwords

than the the Morris password dictionary, though our analysis in Table 8.2 suggested that the

Conficker list is a better attack dictionary (containing much weaker passwords). Similarly,

the two versions of the Twitter blacklist are rated similarly by the NIST formula, but the

statistical metrics identify the 2011 version as a vast improvement (again in that it contains

weaker passwords).

117



It’s quite possible the correct conclusion is that typed-in passwords are fun-

damentally hopeless as a means of authenticating users.

—Barry Shein via Usenet, 1989 [160]

Chapter 10

Conclusions and perspectives

The goals of this dissertation were to introduce a sound framework for analysing guessing

attacks and apply it to large real-world data sets to accurately estimate guessing difficulty.

To the first goal, our partial guessing metrics are a significant improvement over Shannon

entropy or guesswork, both of which are difficult to estimate from a sample and don’t provide

meaningful information for practical distributions. It is also easy to find examples where

entropy estimation formulas misinterpret password semantics and produce misleading results.

The primary difficulty with using statistical guessing metrics is collecting a sample of suffi-

cient size. Even our largest-ever data set of nearly 70 million passwords proved inadequate

for evaluating brute-force attacks expending a significant amount of effort to break a high

proportion α > 50% of accounts. It remains an open question exactly how difficult it is to

guess passwords from the long tail of the distribution.

Larger-scale cracking evaluations might help to answer this question approximately, though

designers of password cracking tools face essentially the same problem: when guessing very

rare passwords for which statistical metrics break down, it is difficult to properly tune the

order of candidate passwords due to the lack of data. Thus, even when cracking tools can break

a larger proportion of passwords, the divergence from an optimal attack will be unknown and

increasing with α.

Another approach would be to find a better model distribution for passwords. The zero-

truncated Sichel/Poisson distribution produces empirically accurate estimations of guessing

metrics for α / 0.5, but we have no way of knowing how good the fit is for less likely passwords

and there is insufficient a priori justification that this is an appropriate model.

Further research on the neurophysiology of generating and remembering secrets might give

us more confidence in a model distribution, but we doubt that any simple mathematical

model can fully explain password selection. In the case of PINs (§4) we identified a mixture
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distribution with individuals choosing very different strategies, including random selection

for a significant proportion of the population. For passwords, as well, at least some observed

values are machine-chosen pseudorandom strings (§3.1.3). Other users may choose smaller

random strings for passwords or pseudorandom values such as old phone numbers. Because

passwords have few limitations compared to PINs, adapting our regression model to estimate

the mixture of password selection strategies would be challenging.

Most proposals to mathematically model passwords adapt linguistic approaches like power-

law distributions or context-free grammars [310]. Yet the extent to which natural language

grammar is modeled by context-free grammars remains controversial after decades of linguistic

research [234], as does the extent to which natural language distributions of words can be

modeled by power-law distributions [23, 69]. We conjecture that the distribution of human-

chosen secrets is at least as complex as natural language, making it very difficult to find a

complete model.

As to our second goal, we have endeavoured to compare the guessing difficulty of all commonly

used distributions of human-chosen secrets in a universal framework, as plotted in Figure 10.1.

There appears to be a natural ordering with passwords ranging from 10–20 bits of security,

personal knowledge questions being about equivalent against online guessing and significantly

weaker against brute-force attacks, and PINs providing some security against very limited

online attacks but inevitably very little against brute force. Graphical and mnemonic pass-

words appear stronger based on limited cracking attempts, though not significantly better

than early password cracking estimates. This figure should serve as a reference for security

engineers when designing new systems that incorporate human-chosen distributions.

The numbers on passwords, when converted to bits, appear hopelessly weak to trained cryp-

tographers who advocate a minimum of 80 bits of security and employ 128 bits for mundane

applications. Our results are consistent with decades of research suggesting passwords are

wholly inadequate for high-security applications. Clearly though, passwords have survived

and probably thwarted millions of opportunistic guessing attacks. There is no magic number

of bits which would make passwords or any other distribution “secure.” Even numeric PINs

can be a useful component in larger security systems. It is essential though that, when human-

chosen secrets must be used, security engineers understand the cost of guessing attacks and

design layers of resilience to survive them.

What’s more discouraging about available password data is how little security varies between

sites, between different demographics of users, or even between users with seemingly different

security requirements. It’s possible that users’ energy to choose passwords successfully has

been eroded by the huge number of passwords they are asked to create [121] and some of the

insecurity observed is an artifact of this higher-level usability failure. It’s also possible that

humans are inherently unable to collectively produce a strong distribution of secrets even

when strongly motivated.
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Figure 10.1: Meta-comparison of different human-chosen distributions.

Future designers of authentication schemes must plan for human choice to introduce a skewed

distribution and never assume user behaviour can be approximated as a random choice from a

fixed set of possibilities. While it is difficult to collect significant statistics for newly proposed

schemes to compute the preferred metric G̃α, the work of Thorpe and van Oorschot [294, 301]

provides a good example of actively seeking to measure weak subspaces within new human-

chosen distributions. Estimated guessing difficulty should be reported in a standard format

of (α, µ) to represent the proportion α of users falling into a subspace of size µ.

Finally, it appears from Figure 10.1 and all of the other empirical estimates presented in this

dissertation that the level of security provided by current systems is so low that it might be

worth returning to machine-chosen secrets for security-critical applications (§2.3.2). Providing

H∞ = 30 bits of security against all attacks would be a vast improvement for the majority of

users and can be represented by a 9-digit number or a sequence of 3 common English words.

Perhaps previous proposals have failed by attempting to provide much higher-cryptographic

levels of security at which point memorisation is too difficult. Accepting the security limits of

user-chosen secrets and striving to gradually improve on them may be the best approach to

finally begin moving human-computer authentication forward.
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[103] Dinei Florêncio and Cormac Herley. A Large-Scale Study of Web Password abits. In

WWW ’07: Proceedings of the 16th International Conference on the World Wide Web,

pages 657–666. ACM, 2007.
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Appendix A

Glossary of symbols

The following is a summary of all notation used throughout the text:

symbol meaning introduced

α the proportion of accounts an attacker is seeking to compro-

mise in a guessing attack

§3.2.3

α∗ the estimated upper limit for which naive estimates for µ̃α

and G̃α will be accurate

§5.5

αm the cumulative probability of all events which occurred at

least m times in a sample

§5.5

β the number of attempts per account an attacker is willing

to make in a guessing attack

§3.2.1

λβ β-success-rate, the cumulative probability of success after β

guesses

§3.2.1

µα α-work-factor, the minimum number of events with cumu-

lative probability α

§3.2.2

a the scaling exponent in a power-law distribution 5.6

c a challenge sent by the verifier during an authentication pro-

tocol

§1.1.1

d a demographic predicate function evaluated during an

anonymised password collection experiment

§6.1.4

f the observed frequency of an event in a sample §5
fx the observed frequency of event x in a sample §5
fi the observed frequency of the ith most frequent event in a

sample

§5

fGT
i the Good-Turing adjusted frequency of the ith most frequent

event in a sample

§5.4
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symbol meaning introduced

fSGT
i the Simple Good-Turing adjusted frequency of the ith most

frequent event in a sample

§5.4

i a user’s identity transmitted in an authentication protocol §1.1.1

i the index of an item in a distribution, ranked by decreasing

probability

§1.4

j the index of an item in an approximate distribution, when

performing a sub-optimal guessing attack

§8.1

k the minimum size of a group for which results are reported

in an anonymised data collection experiment

§6.1.4

m the number of times an event was observed in a sample §5
m∗ the estimated lower limit for the number of times an event

was observed in a sample which can be used in naive esti-

mates for µ̃α and G̃α which will be accurate

§5.5

p the probability of an individual event in a distribution §1.4

px the probability of event x in a distribution §1.4

pi the probability of the ith most probable event in a distribu-

tion

§1.4

pGT
i the Good-Turing estimated probability of the ith most fre-

quent event in a sample

§5.4

pSGT
i the Simple Good-Turing estimated probability of the ith

most frequent event in a sample

§5.4

r a strong random nonce used to anonymise collected data §6.1.2

s the scaling exponent in a Zipf distribution §9.2.2

x an individual password transmitted in an authentication

protocol

§1.1.1

x an individual event in a distribution §1.4

xi the ith most probable event in a distribution §1.4

G guesswork or guessing entropy §3.1.3

Gα α-guesswork (guesswork for an attacker with desired success

rate α)

§3.2.3

H a cryptographic hash function used to anonymise data §6.1.4

H a histogram used in a password collection experiment §3.1.2

Hn Rényi entropy of order n §3.1.2

H0 Hartley entropy §3.1.2

H1 Shannon entropy §3.1.1

H2 collision entropy §3.1.2

H∞ min-entropy §3.1.2

M the total number of observations in a sample distribution §5
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symbol meaning introduced

N the total number of items in a discrete probability distribu-

tion

§1.4

P an arbitrary property of a distribution 8.1.2

SG the partial guessing strength metric for a single event §9.1.3

SI the index strength metric for a single event §9.1.2

SNIST the NIST entropy estimation formula [58] for an individual

password

§9.3

SP the probability strength metric for a single event §9.1.1

V (M) the number of distinct items observed in a sample of size M §5
V (m,M) the number of distinct items observed exactly m times each

in a sample of size M

§5

V ∗(m,M) the ideal number of distinct items observed exactly m times

each in a sample of size M which would make all naive esti-

mates accurate

§5.5

V bs(m,M) the average number of distinct items observed exactly m

times in a bootstrap resample from a sample of size M

§5.5

X
R← X a random variable (unknown event) drawn at random from

X
§1.4

UN a discrete uniform distribution with N equiprobable events §1.4

X a discrete probability distribution §1.4

X̂ an empirical distribution of random samples from the dis-

tribution X
§5.1

X ‖ Y a partial guessing attack on X using Y as an approximate

distribution to choose guesses

§8.1.1

Y the approximate distribution used to perform a sub-optimal

guessing attack on a separate distribution X
§1.4

Z the Zipfian approximation for frequency counts used during

Simple Good-Turing approximation

§5.4

modifiers

P̃ a bit-converted equivalent (effective key-length) of the prop-

erty P
§3.2.4

P̂ a naive estimate of the property P based on a randomly

sampled distribution

§5.1

P̄ the mean value of P across many random subsamples §5.5

DP the divergence, or difference in the value of P in a sub-

optimal attack compared to an optimal one

§8.1.1
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Appendix B

Additional proofs of theorems

B.1 Lower bound on G1 for mixture distributions

We prove a lower bound on G1 for mixture distributions as claimed in §3.3.5:

Theorem B.1.1. For a mixture distribution Z = qX · X + qY · Y, we have G1(Z) ≥ qX ·
G1(X ) + qY ·G1(Y).

Proof. We can prove this result by reduction to a simpler problem. Suppose that an adversary

must guess a value Z
R← Z but she will be told if Z was actually drawn from X or Y. By

definition, she will require G1(X ) guesses in the first case and G1(Y) in the second. Because

expectation is linear, this means she requires an expected qX ·G1(X ) + qY ·G1(Y) guesses for

random Z. An adversary who is not told which underlying distribution Z was drawn from has

strictly less information and hence can do no better than this limit, proving the result.

B.2 Bounds between G̃α and µ̃α

We prove the close bounds between G̃α and µ̃α claimed in Table 3.1.

Theorem B.2.1. For any X , α, it holds that µ̃α(X ) + lg(1− α) ≤ G̃α(X ) ≤ µ̃α(X ).
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B.2. Bounds between G̃α and µ̃α

Proof. To prove this bound, we first re-write the definition of Gα from Equation 3.10:

Gα(X ) = (1− VαW) · µα(X ) +

µα(X )∑
i=1

pi · i

= (1− VαW) · µα(X ) +

µα(X )∑
i=1

pi · µα(X )− pi · (µα(X )− i)

= µα(X )−
µα(X )∑
i=1

pi · (µα(X )− i)

The term
∑µα(X )

i=1 pi · (µα(X )− i), which represents the difference between G̃α and µ̃α, will be

maximised as p1 → α when it is α · (µα(X )− 1). It will take on its minimal value in the case

when the benefit of stopping early is lowest, which occurs if X has uniform probability over

the first µα elements. In this case, it will be:

µα(X )∑
i=1

pi · (µα(X )− i) =

µα(X )∑
i=1

VαW
µα(X )

· (µα(X )− i)

=
VαW
µα(X )

·
µα(X )∑
i=1

(µα(X )− i)

=
VαW
µα(X )

· µα(X ) (µα(X )− 1)

2

=
VαW

2
· (µα(X )− 1)

Note that the upper and lower bound case differ only by a factor of 2, we can generalise to

say that for some 1
2 ≤ γ ≤ 1, we have:

Gα(X ) = µα(X )− γVαW · (µα(X )− 1)

= (1− γVαW)µα(X ) + γVαW

Now we can plug this value into the definition of G̃α from Equation 3.16:

G̃α(X ) = lg

[
2 ·Gα(X )

VαW
− 1

]
− lg(2− VαW)

= lg

[
2 · ((1− γVαW)µα(X ) + γVαW)

VαW
− 1

]
− lg(2− VαW)

= lg

[
2 · (1− γVαW)µα(X )

VαW
− 1 + 2γ

]
− lg(2− VαW)
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B.3. Non-comparability of λ̃β with G̃1 and H1

Returning to our limit that 1
2 ≤ γ ≤ 1, we now have bounds of:

lg

[
2 · (1− VαW)µα(X )

VαW
+ 1

]
− lg(2− VαW) ≤ G̃α(X ) ≤ lg

[
2 · (1− VαW

2 )µα(X )

VαW

]
− lg(2− VαW)

lg

[
2 · (1− VαW)µα(X )

VαW

]
− lg(2) ≤ G̃α(X ) ≤ lg

[
(2− VαW)µα(X )

VαW

]
− lg(2− VαW)

lg

[
µα(X )

VαW

]
+ lg(1− VαW) ≤ G̃α(X ) ≤ lg

[
µα(X )

VαW

]
µ̃α(X ) + lg(1− VαW) ≤ G̃α(X ) ≤ µ̃α(X )

B.3 Non-comparability of λ̃β with G̃1 and H1

Theorem B.3.1. Given any δ > 0, β > 0, there exists a distribution X such that λ̃β(X ) <

H1(X )− δ and λ̃β(X ) < G̃1(X )− δ.

Proof. We prove this result, similar to Theorem 3.3.1, by constructing a pathological distribu-

tion with constant λ̃β and H1 ≥ λ̃β + δ+ 1. The distribution must then also have G̃ ≥ λ̃β + δ

by Massey’s bound (§3.3.2).

We’ll create a mixture distribution X = 1
2 · Uβ + 1

2 · Uγ . That is, X has β common items and

γ uncommon ones.1 The β-success-rate is trivially λβ = 1
2 . The converted β-success-rate will

then be:

λ̃β(X ) = lg

(
β

λβ(X )

)
= lg

(
β
1
2

)
= lg β + 1

The Shannon entropy will be:

1This proof can be done with tighter bounds by selecting from Uβ with probability > 1
2
, but we choose the

algebraically simpler approach here.
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B.4. Non-additivity of partial guessing metrics

H1(X ) =
N∑
i=1

−pi lg pi

= β · 1

2β
· − lg

1

2β
+ γ · 1

2γ
· − lg

1

2γ

=
1

2
· (lg β + 1) +

1

2
· (lg γ + 1)

=
lg β

2
+

lg γ

2
+ 1

To complete the proof we solve for γ to ensure that our separation δ is met:

H1(X ) ≥ λ̃β(X ) + δ + 1

lg β

2
+

lg γ

2
+ 1 ≥ lg β + 1 + δ + 1

lg γ

2
≥ lg β

2
+ δ + 1

lg γ ≥ lg β + 2δ + 2

γ ≥ 2lg β+2δ+2

γ ≥ β · 4δ+1

This completes the proof.

Note that once again we are left with an exponential size requirement that |X | ∈ Θ
(
β · 4δ

)
.

B.4 Non-additivity of partial guessing metrics

We prove the non-additivity of λ̃β, µ̃α and G̃α, as claimed in §3.3.5, in three separate theorems:

Theorem B.4.1. For any k ≥ 1, β ≥ 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that λ̃β(X1, . . . ,Xk) ≤ max
1≤i≤k

{
λ̃β(Xi)

}
+ ε.

Proof. Let all the distributions be identical, ∀iXi = X , and let X contain one event with very

high probability 1− υ and an arbitrary number of events of probability ≤ υ. We can see that

λ1, the probability of success with one guess, is λ1(X ) = 1 − υ and thus λβ(X ) ≥ 1 − υ for

any β ≥ 1. When guessing k variables λ1 is equal to the probability that the most likely event

occurs for all, which is λ1(X k) = (1− υ)k, and again λβ(X k) ≥ (1− υ)k for any β ≥ 1. Given
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B.4. Non-additivity of partial guessing metrics

that λ̃β(X ) ≥ lg
(

β
1−υ

)
and λ̃β(X k) ≥ lg

(
β

(1−υ)k

)
, we can find the required value of υ for a

given ε:

lg

(
β

(1− υ)k

)
≤ lg

(
β

1− υ

)
+ ε

lg β − k · lg(1− υ) ≤ lg β − lg(1− υ) + ε

lg(1− υ) ≥ ε

1− k
υ ≤ 1− 2

ε
1−k

Note that as ε→ 0, we have υ → 0 and the distribution contains only a single event.

Theorem B.4.2. For any k ≥ 1, 0 < α < 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that µ̃α(X1, . . . ,Xm) ≤ max
1≤i≤k

{µ̃α(Xi)}+ ε.

Proof. Again we choose all the distributions to be identical, ∀iXi = X , with X containing

one event of probability 1− υ and an arbitrary number of events of probability ≤ υ. We can

choose 1 − υ ≥ α which sets µα = 1, because the first guess will have probability ≥ α. The

probability of guessing all k variables correctly in one guess is (1−υ)k, so we’ll set (1−υ)k ≥ α
to give us µα(X ) = µα(X k) = 1. Solving for this, we get that υ ≤ 1− k

√
α.

Recalling that µ̃α(X ) = lg
(
µα(X )
VαW

)
, we have µα(X ) = µα(X k) = 1 by choice and VαW = 1− υ

and (1− υ)k for X and X k, respectively. Therefore, we need to satisfy:

lg

(
1

(1− υ)k

)
≤ lg

(
1

1− υ

)
+ ε

−k lg (1− υ) ≤ − lg (1− υ) + ε

(1− k) lg (1− υ) ≤ ε
lg (1− υ) ≥ ε

1− k
υ ≤ 1− 2

ε
1−k

Interestingly, this is the same condition as in the proof for Theorem B.4.1 despite the slightly

more complicated formula for µ̃α(X ).

Theorem B.4.3. For any k ≥ 1, 0 < α < 1 and ε > 0, there exists a sequence of distributions

X1, . . . ,Xk such that G̃α(X1, . . . ,Xk) ≤ max
1≤i≤k

{
G̃α(Xi)

}
+ ε.

Proof. By the definition of Gα in Equation 3.10, for α ≤ p1 it will hold that Gα = µα.

Therefore this theorem can be proved identically to the proof of Theorem B.4.2 above, which

constructed a distribution with one event of probability p1 > α.
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B.5. Expected value of index strength metric SI(x) for a uniform distribution

B.5 Expected value of index strength metric SI(x) for a uni-

form distribution

As claimed in §9.1.2, using the definition from Equation 9.5 that SI
X (x) = lg (2 · ix − 1) and

randomly assigning an ordering to the uniform distribution does not produce an expected

value of lgN , but ≈ lgN − (lg e− 1).

Proof. We first take the expectation:

E
[
SI
X (x)

∣∣x R← UN ] =
N∑
i=1

1

N
· lg (2 · i− 1)

=
1

N
· (lg 1 + lg 3 + lg 5 + . . .+ lg(2N − 1))

=
1

N
· lg(1 · 3 · 5 · . . . · (2N − 1))

=
1

N
· lg
(

(2N)!

2 · 4 · 6 · . . . · 2N

)
=

1

N
· lg
(

(2N)!

2N ·N !

)

We can use Stirling’s approximation lnN ! ∼ N lnN − N [130], converting the base to get

lgN ! ∼ N lgN −N lg e:

E
[
SI
X (x)

∣∣x R← UN ] =
1

N
· lg
(

(2N)!

2N ·N !

)
=

1

N
·
(
lg(2N)!− lgN !− lg 2N

)
≈ 1

N
· (2N lg 2N − 2N lg e−N lgN +N lg e−N)

=
1

N
· (2N lgN + 2N − 2N lg e−N lgN +N lg e−N)

=
1

N
· (N lgN +N −N lg e)

= lgN − (lg e− 1)
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Appendix C

PIN survey detail

The following is a summary of the presentation and responses in our PIN survey.

Do you regularly use a PIN number with your payment cards? (N = 1337)

yes, a 4-digit PIN yes, a PIN of 5+ digits no

1108 (82.9%) 69 (5.2%) 160 (12.0%)

When making purchases in a shop, how do you typically pay? (N = 1177)

I use my payment card and key in my PIN 477 (40.5%)

I use my payment card and sign a receipt 357 (30.3%)

I use my payment card with my PIN or my signature

equally often

184 (15.6%)

I normally use cash or cheque payments and rarely

use payment cards

159 (13.5%)

Overall, how often do you type your PIN when making a purchase in a shop? And how often do

you type your PIN at an ATM/cash machine? (N = 1177)

shop ATM

Multiple times per day 81 (6.9%) 14 (1.2%)

About once per day 117 (9.9%) 19 (1.6%)

Several times a week 342 (29.1%) 118 (10.0%)

About once per week 241 (20.5%) 384 (32.6%)

About once per month 113 (9.6%) 418 (35.5%)

Rarely or never 283 (24.0%) 224 (19.0%)

How often do you use your PIN to unlock a unicorn shed? Since this doesn’t make sense, please

select ‘several times a week’ to show that you have been reading carefully.(N = 1351)

several times a week other (further responses discarded)

1337 (99.0%) 14 (1.0%)
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How many payment cards with a PIN do you use? (N = 1177)

1 2 3 4 5 6

708 (60.2%) 344 (29.2%) 89 (7.6%) 23 (2.0%) 11 (0.9%) 2 (0.2%)

Median: 1, Mean: 1.5

If you have more than one payment card which requires a PIN, do you use the same PIN for

several cards? (N = 469)

yes no

161 (34.3%) 308 (65.7%)

Have you ever changed the PIN associated with a payment card? (N = 1177)

Never Yes, when I initially received the card Yes, I change periodically

591 (50.2%) 376 (31.9%) 210 (17.8%)

Have you ever forgotten your PIN and had to have your financial institution remind you or reset

your card? (N = 1177)

yes no

186 (15.8%) 991 (84.2%)

Have you ever shared your PIN with another person so that they could borrow your payment

card? (N = 1177)

spouse or significant other 475 (40.4%)

child, parent, sibling, or other family member 204 (17.3%)

friend or acquaintance 40 (3.4%)

secretary or personal assistant 1 (0.1%)

any 621 (52.8%)

Have you ever used a PIN from a payment card for something other than making a payment or

retrieving money? (N = 1177)

password for an Internet account 180 (15.3%)

password for my computer 94 (8.0%)

code for my voice-mail 242 (20.6%)

to unlock the screen for mobile phone 104 (8.8%)

to unlock my SIM card 29 (2.5%)

entry code for a building 74 (6.3%)

any 399 (33.9%)

Do you carry any of the following in your wallet or purse? (N = 415)1

driver’s license 377 (90.8%)

passport or government ID card 68 (16.4%)

social security or other insurance card 155 (37.3%)

school or employer ID listing date of birth 23 (5.5%)

other document listing date of birth 78 (18.7%)

any item with date of birth 411 (99.0%)

1This question was sent to a random subset of respondents after the main survey.
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Did you choose your main PIN number yourself? (N=603)

Yes, I chose the number which I use as my main PIN. 433 (71.8%)

No, my main PIN was assigned by my bank. 160 (26.5%)

No, my main PIN was assigned by a previous bank. 10 (1.7%)

When choosing your PIN, what did you have in mind? (N=433)

My PIN represents a date and/or year. 115 (26.6%)

My PIN represents a pattern on the keypad. 44 (10.2%)

I chose my PIN randomly or used a number I already memorised. 274 (63.9%)

Does your PIN represent... (N=115)

a 4-digit year (for example, 1952 or 2006) 24 (20.9%)

a day of the year (for example, 0305 for March 5th 36 (31.3%)

a complete calendar date (for example, 3596 for March 5th, 1996) 38 (33.0%)

some other type of date 17 (14.8%)

Does your PIN... (N=44)

include a straight horizontal line on the keypad 3 (7.0%)

include a straight vertical line on the keypad 3 (7.0%)

include a diagonal line on the keypad 5 (11.6%)

use the 4 corners of the keypad 1 (2.3%)

use the 4 points of the cross on the keypad 2 (4.7%)

use 4 numbers which make a 2 by 2 box on the keypad 0 (0.0%)

represent some other contiguous path on the keypad 7 (16.3%)

spell a memorable word using the letters on the keypad 9 (20.9%)

represent another pattern on the keypad 13 (30.2%)

Did you... (N=271)

repeat a two-digit number twice (for example 4545)? 12 (4.4%)

repeat the same digit four times (for example 8888)? 1 (0.4%)

count a sequence of consecutive numbers (for example 1234)? 1 (0.4%)

begin or end with 69 (for example 6920 or 4369)? 4 (1.5%)

choose your PIN randomly yourself, for example by rolling dice? 38 (14.0%)

keep a random PIN assigned to from a previous payment card? 5 (1.8%)

choose a PIN based on your lucky numbers or lottery numbers? 14 (5.2%)

choose your PIN based on another number assigned to you at

some point, such as a phone number or ID number?

60 (22.1%)

use some other method to choose your PIN? 136 (50.2%)

Respondents provided free-form feedback on their PIN selection strategies which was often

more detailed than their survey responses. For example, many users indicated they used

“some other method” then wrote they used a method we had specified. We manually classified

approximately 150 users based on their text feedback, which is why the numbers presented

in §4 are different for some strategies than the numbers listed here.
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Appendix D

List of password data sets

The following data sets are referenced by name in the text. All except the Yahoo set were obtained

after a database compromise led to the public disclosure of password records. For each data set, M

is the total number of observed passwords in the sample, V (M) is the number of distinct passwords

observed and V (1,M)/M is the proportion of observations which were unique in the sample (§5).

70yx www.70yx.com

year hash M V (M) V (1,M)/M

2011 none 9072966 3462284 31.3%

70yx is a gaming website based in China. This data set is one of several large leaks from Chinese

websites at the end of 2011. No password restrictions appear to have been in place, but the vast

majority of passwords were entered using only ASCII characters and not Chinese characters in UTF-8.

The source of leak is unknown, but it is assumed to be the result of a SQL injection attack.

BHeroes www.battlefieldheroes.com

year hash M V (M) V (1,M)/M

2011 MD5 548774 423711 69.4%

Battlefield Heroes is an online multiplayer shooting game. This data set represents users who signed

up to participate as beta testers. It appears that a six-character minimum length requirement was in

place for all passwords. It was released as part of the “50 Days of Lulz” bundle in 2011.
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Gawker www.gawker.com

year hash M V (M) V (1,M)/M

2010 crypt() 748559 620790 78.5%

Gawker is an online blog network which maintains accounts for users to comment on posted stories. This

data set was hacked by a group calling itself Gnosis in 2010. There were no restrictions on passwords,

though the use of crypt() means only the first 8 characters of each password were necessary for login.

Fox

year hash M V (M) V (1,M)/M

2011 none 364 348 92.9%

This small data set represents corporate employee accounts at Twentieth Century Fox, a media com-

pany. It was released by LulzSec in 2011 as part of the “50 days of Lulz” release. No password restric-

tions appear to have been in place.

Hebrew www.wonder-tree.com

year hash M V (M) V (1,M)/M

2011 none 1252 1110 84.5%

Wondertree is an Israeli, Hebrew-language religious website. This data set was accidentally posted

online by site administrators. There do not appear to have been any password restrictions in place.

Though most passwords were entered in the ASCII subset of UTF-8, a small number (≈ 2.5%) were

entered using characters from the Hebrew alphabet.

hotmail www.hotmail.com

year hash M V (M) V (1,M)/M

2009 none 9536 8504 83.5%

Hotmail is a webmail platform owned and operated by Microsoft. This data set appears to be part

of of a larger set, as all email addresses start with the letters ‘a’ or ‘b’. According to Microsoft the

passwords were obtained by phishing. A 6-character minimum length appears to have been enforced.

myBart www.mybart.org

year hash M V (M) V (1,M)/M

2011 none 2002 2002 100.0%

MyBart is the customer relations website for the BART mass transit system in the San Francisco Bay

Area. It was hacked by Anonymous in 2011. Of note, many passwords were randomly generated by

MyBart in the original system design and about two-thirds of users appear to have kept their random

passwords. For the users who changed, no restrictions appear to have been in place.
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MySpace www.myspace.com

year hash M V (M) V (1,M)/M

2006 none 49711 41543 75.4%

MySpace is an online social network. These accounts were apparently compromised by a phishing

attack. A password policy appears to have been in place prohibiting passwords which only contain

numbers or only contain letters. This data set was an early leak and has been studied in several

published works [267, 81].

NATO-Books www.nato.int/cps/en/natolive/e-bookshop.htm

year hash M V (M) V (1,M)/M

2011 none 11524 10411 85.5%

This data set represents users of an online bookshop run by NATO, the North Atlantic Treaty Organi-

zation. Accounts were used to access publications created by NATO. No password restrictions appear

to have been in place. It was released as part of the “50 Days of Lulz” bundle in 2011.

RockYou www.rockyou.com

year hash M V (M) V (1,M)/M

2009 none 32575653 14316979 36.4%

RockYou is a large social media company specialising in application development for social networks.

Its servers were hacked via SQL injection and a list of passwords was leaked in plaintext. The company

is based in the USA and only offers its content in English At the time of the leak, RockYou claimed to

have 65 M registered users, meaning over half were not included in the leak. No password restrictions

appear to have been in place. All UTF-8 characters were allowed and the data set does include many

passwords in foreign languages.

Sony-BMG

year hash M V (M) V (1,M)/M

2011 none 40459 30245 63.0%

This data set represents users of several internal systems for Sony BMG, a large media corporation.

No password restrictions appear to have been in place. It was released as part of the “50 Days of Lulz”

bundle in 2011.

Yahoo www.yahoo.com

year hash M V (M) V (1,M)/M

2011 see §6.1 69301337 33895873 42.5%

Yahoo! is a large and diversified international web services company offering email, chat, news, social

networking, gaming and many other features. This data set was collected from Yahoo! with explicit

cooperation (§6.1.5). Each password in this set was hashed with a strong random value which was

discarded after collection, preventing analysis of the plaintext passwords. Some of the users registered

passwords with a six-character minimum length enforced (§6.2).
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Appendix E

Sources of census data

In §7, we made use of data from many government census agencies around the world:

Chile Civil Identification and Registration Service (http://www.registrocivil.cl/)

Des Moines Register (http://data.desmoinesregister.com/petnames/)

Eeski Ekspress (http://paber.ekspress.ee/viewdoc/104BE2FD5331F393C225743300602476)

Euromonitor International (http://www.euromonitor.com/Top_150_City_Destinations_London_Leads_the_Way)

Finland Population Register Center (http://www.vaestorekisterikeskus.fi/vrk/home.nsf/pages/index_eng)

Intellectual Property Australia (http://pericles.ipaustralia.gov.au/atmoss/falcon_search_tools.Main?pSearch=

Surname)

Japanese Surname Dictionary (http://park14.wakwak.com/~myj/)

Los Angeles Department of Animal Licensing (http://projects.latimes.com/dogs)

San Francisco Animal Licensing Department (http://www.sfgate.com/webdb/petnames/)

Scottish Government School Education Statistics (http://www.scotland.gov.uk/Topics/Statistics/Browse/

School-Education/pupnum2008/)

Statistics Belgium (http://statbel.fgov.be/)

Statistics Faroe Islands (http://www.hagstova.fo)

Statistics Iceland (http://www.statice.is/Pages/847)

Statistics Korea (http://kostat.go.kr)

Statistics Norway (http://www.ssb.no/navn_en/)

United Kingdom Department for Children, Schools, and Families (http://www.edubase.gov.uk/home.xhtml)

United Kingdom Office for National Statistics (http://www.statistics.gov.uk)

United States Census Bureau (http://www.census.gov)

United States Social Security Administration(http://www.ssa.gov/)
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