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Abstract

As hardware designs grow exponentially larger, there is an incredséaligiege to use transistor budgets
effectively. Without higher-level synthesis tools, so much effort magg®Ent on low-level details that it
becomes impractical to efficiently design circuits of the size that can be &bdicThis possibility of a
design gaphas been documented for some time now.

One solution is the use of domain-specific languages. This thesis coversaloésoftware-likelan-
guages to describe algorithms that are to be implemented in hardware. Haevgineers can use the
tools to improve their productivity and effectiveness in this particular dom@oftware engineers can
also use this approach to benefit from the parallelism available in modetwéa (such as reconfig-
urable systems and FPGAS), while retaining the convenience of a soffescaption.

In this thesis a statically-allocated pure functional language, SASL, is intextl Static allocation
makes the language suited to implementation in fixed hardware resourceOTinedel is based on
streams (linear lazy lists), and implicit parallelism is used in order to maintain a seftika approach.
The thesis contributes constraints which allow the language to be staticallgtalipand synthesis tech-
niques for SASL targeting both basic CSP and a graph-based targetdlidie compiled to a register-
transfer level (RTL) description.

Further chapters examine the optimisation of the language, including the Useieit evaluation
to increase parallelism, the introduction of closures and general lazyatiespand the use of non-
determinism in the language. The extensions are examined in terms of thdicgstniequired to ensure
static allocation, and the techniques required to synthesise them.
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CHAPTER 1

Introduction and Related Work

Higher-level hardware synthesis tools are becoming increasingly segesThe drive of exponential
growth in design complexity requires that hardware designers improve gtrauctivity similarly if
they are to make efficient use of the available transistors. Increasingvitleofeabstraction through
higher-level languages is one step towards this goal. The question is naich whether higher-level
languages will be needed, as to what they should be like.

Useful parallels may be drawn with software languages. Low-level gesimay remain useful for
some tasks, but an increasing workload may be taketoyain-specifitanguages, roughly equivalent
to software’s scripting languages. The domain we have chosen to intestigéde hardware imple-
mentation of software-like programs. In this domain, exact signal timing reagints are unimportant,
although high throughput is desired.

The aim of this thesis igot to provide a concrete language for real-world synthesis, but to explore
language features that could be used to increase abstraction. | diecies my work upon SAFL [128],
a functional language used for behavioural synthesis. SAFL is a simmgadge which explores the use
of software-like descriptions for hardware. However, its weaknebststs only I/O model is call/return
based, with no pipelining and no state held between calls. The work of my themisestension of
SAFL, improving the 1/0O model and extending the language with common functieaalres:

The thesis of this work is that statically-allocated pure functional languagdended to u
streams (linear lazy lists), are suitable languages for behavioural hardwynthesis of r
active systems. Furthermore, higher-level functional features sucloasres and lazy eval
uation may be usefully incorporated in a statically-allocated form to producemimising
synthesis tool with a high level of abstraction.

This thesis introduces a Statically-Allocated Stream Language, SASL,énwrdxplore static alloca-
tion requirements, synthesis techniques and evaluation models. Furtheadgnfgatures are examined,
and optimisation techniques discussed. Static allocation is the main feature d&tinguBASL from
software languages, this being a requirement for producing hardveemea SASL description without
the need for external memory, which may introduce von Neumann bottler®ti allocation strongly
shapes the way a number of features are incorporated into the language.

The work presented in this thesis could be used directly in a functional systhgstem, or as an
internal model in an imperative system, allowing functional-style progransfioamations to be applied.
This functional approach to I/0O may provide a useful means to formalisehigiel hardware synthesis.

15



16 Chapter 1Introduction and Related Work

Section 1.1 provides a background to hardware description langudfes), and motivates the use
of software language features in the design of higher-level HDLdidpet.2 sketches the HDL language
space, discussing some of the more popular and interesting languaggsn $63 then introduces SASL
itself. As a background, it refers to related work on functional langaamd static allocation. Finally,
Section 1.4 provides a list of contributions and an overview of the resioftiasis.

1.1 The Need for High-Level HDLs

Moore’s Law famously states that the number of transistors that can kedpbaca die doubles every 18
months! The “law”, originally an off-hand prediction, has been remarkably aateyperhaps becoming
self-fulfilling, as integrated circuit design road-maps come to depend on it.

While this growth is often seen from the point of computer users and progeas, providing faster
computers and allowing increasingly feature-rich software, the effgmioisably most strongly felt by
hardware designers. These are the people who must translate thegyt@misistor budgets into higher
performance and new features. Furthermore, the growth createslly i@dmnging market where time-
to-market is key, and delay is a disaster.

The effort of designers alone cannot keep up with this exponentialtlyiio project size; increasingly
powerful design tools are needed. As growth in productivity from thésttams behind the growth in
available die space,d@esign gappens up, and new approaches are required.

Modern System on a Chip (SoC) designs can require a complex desagm-dhaking large pre-
designed IP cores (much like software libraries) from a number of ssuend integrating them with
custom circuitry. Powerful embedded processors are common, anévedment of the associated
software must be integrated with the hardware design, giving the chadlefderdware/software co-
design. HDLs may focus on a particular level of the design, or work avarmber of levels, but they
are a vital part of the modern design process. To close the design gapeitéssary to increase the
productivity of HDL users by introducing higher-level HDLSs.

In the following sections we will cover the genesis of hardware descrifginguages, and similarities
with the development of software programming languages. We briefly dishascurrent state of hard-
ware design, and then look at reconfigurable computing. We assumeetbédigital design throughout;
analogue circuits are not in the scope of this thesis.

1.1.1 A Brief History of HDLs

HDLs arose from the need to manage complex designs, and have haly aifaict descent from the

draughtsman’s schematics. Computers have been used in the design(@idBss Fairchild’s Micro-

mosaic) and PCBs (such as those used in Cambridge’s Titan computerjtsrage 1960s, creating a
feedback loop in the complexity of designs that can be handled. As more dégign process switched
to CAD, the importance of these HDLs has increased. Note that these oyt generally do not
dictate layout—separate graphical tools are used to deal with the layo@Rg Bnd ICs, although a
few languages, such as Sheeran’s Ruby [59], deal explicitly with tsiqdl relationship between the
hardware elements.

Manual Circuit Design Pen-and-paper drawings were used to represent the connectiociscfin A
variety of shapes represent circuit components, and lines betweeronentp represent wires between
terminals on the components. The construction and operation of the des@raffected by the location
of the symbols, which are instead arranged for intelligibility [112]. The sddte is only interpreted by
humans. Adjusting the design may involve a large amount of tedious redraaviddf the design is to

1The paper [105] actually gives a yearly doubling, a result which helédme time, but 18 months has provided a better
long-term fit.
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be processed on a computer (for simulation or PCB layout, for examplejlegign must be entered
separately, perhaps by manually entering a netlist.

Schematic Capture Schematic capture is the creation of a schematic design using an interagpifie gra
ical program. It brings with it the advantages normally conferred by mogiftym of document editing

to computer—editing data becomes much simpler, tasks automated, and more ceagla@auments
can be handled. However, there is another major change, in that the data given semantics. De-
sign errors can be flagged, simulations and analysis can be perforreetlydirom the design, and the
resulting circuit can be fed directly into a toolchain for PCB layout, for examp

However, the method of design is still fundamentally the same as beforee BHétle in the way of
abstraction, as the design process hides the physical nature of thereamtgoand their connections, but
little else. The design may be hierarchical, representing whole sub-cirsusingle components, but
parameterisable designs are unlikely to be supported. Moreover, tigmelesmust keep track of many
details of the timing and signalling protocols used by components. As the sizsigind grow, these
considerations become increasingly important. For laiigdintellectual Property) Corestandardised
buses may be provided, so that the designer need only wire them todpetiters shifts the responsibility
for timing details onto the core designers.

Despite these shortcomings, schematic capture is still a popular design mettsachite circuits,
where the medium helps provide an intuitive understanding of the desigmarger projects, structural
HDLs may be preferred for parameterisation and complexity management,behideioural HDLs can
help to abstract away the signalling details (both of which are describedbelo

Netlists A netlistis a textual description of the connections in a circuit—it lists the components that a
circuit contains, and which pins are connected to which other pins. Atimagecan supply other infor-
mation, such as physical layout hints and static timing analysis results. Taeffactively schematics
with the human-usable position information removed. Netlists may be hierarcriflattened. Hier-
archical netlists define modules, which are sub-netlists abstracted tor @spaaingle component, so
that instances may be created. By substituting module bodies in place of theircesta flattened
netlist is produced. As with other structural entry methods, the componkatsatlist may be physical

(for a PCB-based design), or virtual (e.g. logic gates in a design thabevitlaced and routed onto an
FPGA). EDIF (Electronic Design Interchange Format) is a standard fass®a to transfer netlist-style
information between applications.

Structural Design Netlist descriptions are not particularly readable, as they lose the visuetising
of schematics, but they pave the way fitructural design(also known as “Register Transfer Level”
(RTL) design). Structural HDLs still express the connections betwestponents, but do so in a higher-
level way.

The improvements are based on the observation that most digital systemani@ivectional signals
with a single source (there are, of course, exceptions such as tri-g&s, bbut these may be dealt with
specially). As such, components can often be syntactically represenfedciions, taking signals as
inputs and returning signals as outputs. By composing functions, conmgctém be expressed without
explicit wires. Continuous assignmelig used to represent combinatorial hardware. For example, in
Verilog, the following assigns the exclusive-oroandb to ¢, calculated usingnd, or andnot gates:

assignc = (a & b) ( b&a);

The description of sequential functions is simplified by representing latniesegisters as assignment
triggered by clock events.
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The level of abstraction can be raised slightly in this way, as new langeat)i@és are included. For
example, memories may be represented using an array-like notation. Corldtiprassions (such as
“if ...then ... else...” and “switch”) may be used, which simply become multiplexers selecting the
source of values for wires. These additions may not seriously complicatetiesis system, but vastly
improve its usability.

As well as simplifying the description of complicated control signals, finite stathinas and so on,
describing circuits textually can make it much simpler to automatically manipulate thes&sirand
include these transformations into the circuit “source”. Circuit descriptinay be made parameteris-
able, so that an arithmetic unit may not only be reused, but its bit-width carlbestato the current
application. More generally, macros can be used to automate the constmictomplex but regular
circuits.

Verilog and VHDL are the most common structural languages, although émegiso be used as netlist
or behavioural languages. There are IEEE standards for the Rithesisable subsets of Verilog and
VHDL (these are 1364.1 and 1076.6, respectively). Various otheutges, such as Hydra [115, 116,
117] and Ruby [59], work exclusively at the structural level, oftemggparameterisation and macros
extensively.

Behavioural Design Behavioural descriptions focus on what the design must do, rather thetruits
ture. Synthesis tools then create some form of structural design to matckhbeidural description.
The behavioural design approach can be reached in a number of Faysxample:

Structural design languages are extended until synthesis requireshaoiest expanding out con-
structs.

Constructs originally not intended for synthesis (e.g. simulation-only pess for creating test
harnesses) start to be synthesised.

Explicit behavioural features are retrofitted to existing HDLSs.
Tools are created to synthesise existing software languages.
New software-like languages are created with the intention that they beesysed.

The first two approaches are taken by both Verilog and VHDL. Thesdexible languages, and have
grown into the area of behavioural synthesis while retaining compatibility witicttral design, al-
though it is quite possible to write behavioural descriptions that go beyandyththesisable subsets,
and which the available synthesis tools cannot convert into hardwaiiat(bgucing impossible timing
constraints, for example). The third approach is taken by System Verilog.

The fourth approach is often taken with C, using tools such as CTOV [T412$ approach provides a
path to hardware/software co-design, as both sides of the design spediéied in the same language.
Again, there are generally limitations as to what the synthesis tools will be abkntgldte. The source
language may be restricted in order to make it synthesisable, but there iartgerdhat what will be
produced is a new language sharing only some syntax with the original.

The final approach is that taken by languages like Handel-C, Lustr8ARH. The translation process
itself may be quite simple, but generally any program that meets the languagaisements will be
synthesisable (subject to resource constraints). Synthesis complexiiadeeaoff: a simple translation
process allows the user to understand the synthesis process, atedticeadesigns with that in mind,
but can limit both the level of abstraction and the amount of optimisation that mpgrfemed on the
design. Our language, SASL, is a behavioural language that tries oth&idevel of abstraction, and
attempts a relatively complex synthesis approach. It tries to move hardesigndo a more software-
like model, and does not expect the programmer to keep a detailed mental ofidHel translation
process.
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1.1.2 A Comparison to Software Languages

The users of HDLs have traditionally been a group quite distinct from softyerogrammers, and the
origins of the languages are similarly distinct. Whereas circuit design wakothain of electrical engi-
neers, the early uses of computers were mathematical, working on prohlemasssolving differential
equations and breaking cryptography. This distinction can still be satnsitwations such as separate
CS and EE departments in universities. However, some of these difésrane starting to be eroded as
HDLs pick up software-like features, and the previously distinct gronpsge.

Schematic entry and low-level structural languages can be thoughttbEasssembly language of
hardware design. While almost diametrically opposite in approach, with asseméipential instruc-
tions contrasting with the parallelism of a netlist, they both represent the Idexeds of abstraction,
with minimal levels of compilation and optimisation being applied.

The higher-level structural languages have some correspondéhdewer-level software languages.
High-level structural Verilog and VHDL are the workhorses of handwvdesign, much as C is used
in software development. Just as C is “high-level assembly”, an expedeunser can have a good
knowledge of how these HDLs will be synthesised to hardware, andaranot low-level details using
simple changes to the source. However, this same low-level approagireamnt the synthesis tools
from providing optimisations, as well as forcing the designer into “earlyibgid dealing with details
that may prevent effective exploration of the design space.

Behavioural languages have similarities to high-level software languagéslanguage styles move
away from relatively explicit instructions on how to construct the resultirgg@am or circuit, instead
trying to describe a more abstract solution to the problem. Details are lefiefaothpilation tool to deal
with, and there is a large scope for optimisation.

As with the extension of C to C++, behavioural synthesis is being addedilog/and VHDL, since
backwards-compatibility is an important issue. At the same time, new and differeguages are in-
troduced which are explicitly high-level, making different assumptions. Dosgecific hardware lan-
guages can act like scripting languages, reducing development timeeftabkged tasks. Throughout,
hardware languages have lagged behind software-based onéleg @d VHDL were introduced in
the 1980s, while C was a product of the early 1970s. Despite this lag, lHreggages do not seem to
have taken advantage of the lessons learnt in language design, aatharénelegant in places. At the
same time, perhaps due to a comparatively small user base combined withlihg tecaxponentially
larger designs, the tools seem expensive and immature compared to safomgilers. The lag makes
it possible to apply software language knowledge to hardware problentaio movel solutions.

1.1.3 Modern Hardware Development

Increasing transistor counts allow ever greater integration, so that resgind consist of only a few
chips. The design complexity is therefore in the design of the silicon, cre&tdg(System on a Chip)
circuits. Increasingly complex microprocessors may be embedded withsigngdatroducing elements
of hardware/software co-design. However, embedded processyrsiot provide the required perfor-
mance, in which case a direct hardware implementation is necessary.hlisitugtions, it is useful to
have a language that can describe algorithms in a software-like manhées,dasigned with hardware
synthesis in mind. This is the aim of SASL. The software-like structure shdlad @nterfacing to
software systems for code that is control-flow bound or less perforenenitical, although that topic is
not covered in this thesis.

The threat of the design gap encourages the use of increasingly cotoplexthe ever-growing re-
sources available to hardware designers should make the use of higlakdsign tools acceptable, de-
spite the overhead that is introduced, just as has occurred with softavayeages. Domain-specific
tools and languages ease the path towards higher-levels of abstractcamdsntrating on particular
situations. As complexity increases further, optimising synthesis tools maidprbetter performance



20 Chapter 1Introduction and Related Work

than designs that can be economically produced by a human, just asuprogrs today avoid using
assembly language.

The cost of starting new designs is also increasing, with the price fof sesks now on the order of
a million dollars. A large volume is needed to break even, so there may be a maresplatform chips
which act as a standard design containing a set of IP modules suited ticalpatask, such as a mobile
phone handset. Some higher-level languages may be suitable to “glu€ tleenponents together.

A very different approach to fabricating chips in bulk is the use of FPRG#sch consist of pro-
grammable logic blocks and interconnect. By suitably programming the logic kot connections
between them at power-on, any circuit may be produced. The adesdd§PGAs compared to ASICs
are that for small volumes they are very inexpensive compared to cudtoomsand that they are in-
circuit reprogrammable, providing a great amount of flexibility. The disathges are that they will
have inferior performance, area and power consumption characterestid be more expensive at large
volumes.

This reprogrammability makes FPGAs uniquely suited to a number of tasks. FEP&sA could be
added to platform chips to allow the implementation of glue logic, add “missing fesituor even correct
bugs after shipping. On-the-fly reconfiguration, where suitably#amgned FPGAs may be used as co-
processors for algorithmic tasks, is an active research area, andusshsl in the next section.

1.1.4 Runtime Reconfigurable Systems

Runtime reconfigurable systems [48] are based on architectures skdhG#ss, and use the parallel
execution of hardware-style designs, in place of traditional procgstmperform algorithms. Such
systems may not be implemented using the fine-grained logic blocks of FP@#suld use coarser-
grained components such as ALUs, as with the Xputer [62], PACT XPPdi@ MIT Matrix [104].
Similar synthesis techniques should apply, which may even be applicable tortleelsgor arrays, like
MIT's RAW project [149].

Such systems can provide a very large amount of parallelism, and may tavgeaspeed-up over
conventional processors for algorithms which are not control-flow limifeslfficient memory band-
width is available. Poor suitability for programs with complex control-flow mear$ seconfigurable
arrays are often suggested as co-processors for conventicteisy These co-processors are generally
well-suited to applications such as streamed media processing [57], aacdhbax successfully used
to accelerate tasks such as performing Photoshop filters [135], DTerieg [91] and video process-
ing [63, 86]. Reconfigurability also provides an advantage over a pkidware implementation in
that the implementation can be specialised for a particular run, for exampleggthomnstant propaga-
tion [155] and partial evaluation [134], although such an optimised FPGAstillbe slower than a
native silicon implementation.

General approaches to reconfigurable systems are discussed imsvaaioers [71, 87, 25, 24]. The
idea of an “operating system” for reconfigurable hardware has beseassed [29, 22], while Breb-
ner [23] and Donlin [49] have looked at approaches for modifying §ystesn at runtime. The re-
configuration of hardware while it is running has a strong parallel in tieeafioverlays in software
systems, providing another example of where hardware systems caofivgare experience. The tem-
poral granularity at which systems are reconfigured provides onedbclassification. For example, the
DPGA [21, 47, 141, 46] (intended to be a cross between SIMD and Fiiproaches) caches configura-
tions, so that it can switch between FPGA-like configurations with an extrelmelgverhead. Carnegie
Mellon University’s PipeRench project [126, 34, 27, 33] relies onenwentally reconfiguring a phys-
ical pipeline to simulate a larger virtual FPGA. Pipelined reconfiguration tsskaeen explored by
Luk [88]. More conservative designs treat reconfiguration as paresive overhead, like task switching,
to be performed at a much larger granularity than the underlying progestsips.

Another major design decision for reconfigurable systems is how they dre ittegrated with the
processing elements. Tightly-bound reconfigurable systems place th&-BHGlement as part of the
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CPU (or, in the case of DISC [154], replace more or less the entirety o€CEid). This approach is
taken by the Garp [36] and PRISC [124], while HARP [120] looks at tightlyding a DPGA to the
CPU. Loosely-bound reconfigurable systems keep the reconfiguekdients separate from the main
CPU, allowing them to be triggered by the CPU but run separately. Martptgpe systems take this
approach, for example placing the reconfigurable elements on a PChlbdus,igh this is unlikely to
have sufficient bandwidth for all but a few computation-bound taskseSeconfigurable systems may
implement small processors, such as the Nano processor [156] or Nitesd4] in the reconfigurable
fabric, to deal with control-flow bound computation. The processors mgyabameterised [118] to fit
the task.

Reconfigurable systems rely on producing hardware that implementspesafied algorithms. A
number of these projects have synthesis tools, including co-design systesity based on extracting
suitable operations from C programs), but these are often relatively simpldow-level. SASL is
intended to be an appropriate language for programming these kindg@fsyat a higher level.

The synthesis presented in this thesis is for a fine-grain architectureygithioshould be possible
to port to a coarse-grained architecture by introducing relevant primitveéhe language, as long as
the underlying architecture is able to support the necessary backupeesnd control signalling. The
language has no concept of reconfiguration, but its higher level sifaadtion may make it a suitable
language to add this feature to. Similarly, SASL could form part of a higbtes-design system based
on functional languages, since it is not a hardware-specific langjagieas Handel/Occam has been
used for a CSP-based co-design system [119].

Another approach that lends itself to reconfigurable computing is the additiocomputational ele-
ments to memories. The overhead of moving data to and from the processmoiwibg increasingly
large, and a number of projects [97, 92, 83, 84] are investigating thedatimgeof processing elements
in individual RAM chips in order to accelerate computation in a distributed nta®ueh processing el-
ements need to be simple and efficient at dataflow processing on streamsofyniems. They should
be able to be programmed in a software-like way. An appropriate implementatonssto be to use
reconfigurable processing elements programmed with a language suéBlkas S

1.2 The Hardware Description Language Space

Having discussed HDLs in general, this section will examine specific existibigsH As with soft-
ware languages, the HDLs vary considerably in their approach. 8eforering the languages, we will
consider the design assumptions that lead to such variety.

1.2.1 Language Assumptions

A wide range of assumptions has lead to a spectrum of solutions. Desigrestawe made on factors
including:

Interfacing Requirements At the simplest level, this may require that the produced circuit runs at a
specific frequency to integrate with other circuitry. Interfacing protoowy be used, ranging from
complex bus interfaces such as PCI down to simple two-phase signallinguage assumptions
can make certain types of I/O very difficult; languages that assume symals circuit design
may need low-level glue to work with asynchronous 1/O, while high-levettssgis systems may
not easily interface with low-level, time-constrained systems. Languagegdharm low-level
interfacing will lose some abstraction at the signalling level.

Circuit Performance Circuit performance generally brings to mind the ability to synthesise a system to
match a required clock frequency, effectively part of the interfacatgirements. However, there
can be more; pipelined systems can vary in latency and throughput, asdtelien may allow a



22 Chapter 1Introduction and Related Work

circuit to be unfolded or duplicated to increase performance. Languag® provide such high-
level optimisations, while at the other end of the scale low-level features alluwg for maximum
performance.

Resource Constraints As well as meeting the requirements for interfacing and performance, design
have to stay within budget for area, power, and other factors. Toosufps, languages could
specify constraints, and the synthesis systems could compile the project gitemconstraints.
More common, however, are frameworks that expect the user to adpirstiéisigns in order to meet
the constraints. For such systems, transformations that allow the user ty eapicsimply explore
the design space are useful.

Rapid Development Transformations in order to meet constraints are part of a more gepéddllan-
guage features suited to rapid development. Rapid development systeaisstraetion to acceler-
ate design, trading control of details (and associated low-level optimispt@rspeed of design. As
designs can be made to work more quickly, rapid development encoutesjga space exploration.

Target Domain Languages specialised to a particular domain can make developing cepboatpns
much faster, and produce very efficient designs. There are systeyasdoate state machines, DSP
systems, and so on, as well as parameterised block generators to pexifie slevices, such as
memories. Some languages may trade off their special advantages agamstigy.

Target Architecture Although the high-level and low-level synthesis stages may be split, allowiieg pla
ing and routing to be separated from other stages, the target architewyrestrongly affect the
assumptions that can be made. Asynchronous designs may be venjtdifficiap onto an FPGA,
while runtime-reconfigurable systems would not work with fixed hardware.

Backwards Compatibility As with software languages, compatibility with existing languages, notably
Verilog and VHDL, is important. These languages have a great deakdfiftgy, but work at a low
level, and sufficiently different assumptions may make it impossible to embed th&eatures in
existing languages. This introduces the next factor:

Toolchain integration Even if a language strongly differs from existing HDLs, it will need to intégra
with existing tools if it is to be used. New software languages generally ndsldble to be linked
with existing languages and libraries, but for hardware languages thisésem more important
issue. There is heavy investment in the current tool-chains, and theayvarid complexity of
targets makes reimplementing entire tool-chains unreasonable. Vendaslieshtanguages may
be integrated directly into their toolchain, while for other high-level langsages often simplest
just to synthesise to Verilog or VHDL netlists.

The choices in how to approach each issue are inter-related, althouglafgs can give some flex-
ibility. For example, Handel-C provides high-level channels that simplify lsyordsation for rapid
development, but the user can eliminate these in favour of cycle-by-ayciarttics if they later wish to
optimise for performance. One of the common themes is the level of abstraétibough working at
a high level of abstraction can make low-level interfacing and optimisation diffieult, it also allows
for better design space exploration, enables higher-level optimisatimthfiogefully gives the compiler
more flexibility to perform low-level optimisations automatically.

SASL aims to give a high level of abstraction, to be used in application arbaseviow-level in-
terfacing constraints are unimportant, such as reconfigurable systsigeet&for computation. In such
systems automated wrappers can be generated to connect the computatiaitef to underlying mem-
ories or buses.
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Imperative Functional
Structural Low-level VHDL/Verilog, HML, Lava, uFP,
Netlist formats. . . Ruby, Hawk. . .
Behavioural High-level VHDL/Verilog, | SAFL, SAFL+, Lustre,
Handel-C, SystemC.. SASL

Figure 1.1: A selection of HDLs

1.2.2 Example Languages

Figure 1.1 shows an example set of HDLs, divided up along structuraVimiral and impera-
tive/functional lines. While the structural/behavioural divide is quite wetivkn, the division between
functional and behavioural languages may seem less relevant. Fausatdanguages, imperative lan-
guages generally represent backwards compatibility and mainstreantrialduse, while the functional
languages are more experimental, using higher-level features to iadreasevel of abstraction. We
argue that the functional approach may have similar advantages in thadghdomain for enabling
the creation of higher-level languages.

The behavioural-functional languages are also the most unexplorgdage style, as well as being
an area with some of the greatest flexibility, providing the highest levels d¢faaiion, and allowing
various functional ideas to be brought to bear on hardware synthesither motivation for this kind
of language is given in Section 1.3.1. SAFL and SAFL+ are simple softlikerdunctional languages,
where programs are compiled into hardware that performs that task. Adngeelges are closely related to
SASL, and are discussed in Section 2.1. The rest of this section discssgsus other HDLs:

Verilog and VHDL  The two main industrial HDLs, Verilog and VHDL, are both IEEE standardi w
rather different roots. Verilog was a simulation language, designed bgw@y Design Automation.
It was patterned on C, and made into an open standard when Cadergte G@aieway. In contrast,
VHDL (VHSIC Hardware Description Language) was supported by tBeDépartment of Defense as
part of its Very High Speed IC (VHSIC) program. It has some similarities titaer DoD project, Ada.
To an extent these HDLs are now unified, in that they are now both beirgjageed by the Accellera
Organisation.

The languages are now used almost universally in industry for destgn simulationand synthesis.
For synthesis, they can be used for both netlist-level description, arsdstal design. High- and low-
level code may be mixed together, in a way that is reminiscent of the usearfibslanguage inserts in
languages such as C. Behavioural features are available to creatertiebes, but are also increasingly
used for behavioural synthesis purposes. This over-generalitysiieatrit is quite possible to write code
that cannot be synthesised, or may only be synthesised very inefficiently

Despite behavioural features, the languages provide little abstractioridve-level timing and wires,
instead allowing detailed control over interfacing and circuit performarit¢gs comes at the expense
of rapid development and design-space exploration, since design detatsde bound early, and the
manipulation of high-level features is impeded by the need to manage lowdietegls.

Ruby Ruby [59, 133] is a relational language—a structural language thaimyptdescribes the con-
nections between modules, but also their relative placement. This apgrasdfeen seen in a number
of systems; such as Pebble [100], andmMa [35], which does not explicitly allow the user to control
layout, but is nonetheless designed for the generation of regular tlea@imple relative placement
control allows systolic arrays to be efficiently floor-planned, quicklytlgaising efficient circuits. This
is especially useful for FPGAs, where placement and routing is oftgntwvee-consuming (preventing
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software-like compile-debug-edit cycles), and results in rather subddéytauts.

The language’s syntax is quite mathematical, being based on the notatiortiohielés the language
connects together primitive blocks, the interfacing and timing assumptiongngply shose of the un-
derlying primitives. For regular structures, the language can provigeceenpact and efficient designs,
but it provides little support for other structures, making it an example ofhaaih-specific language.

Handel-C Handel-C [39] is a commercial product formed by giving the Handel laggua C-like
syntax. Handel, in turn, is a CSP-based language, similar to Occam [CE®. [67] (Communicat-
ing Sequential Processes) models parallelism with processes that comtmuhicagh synchronising
channels, providing blocking communication. Commands in a process caetged in sequential or
parallel blocks.

In Handel-C the “;” statement separator denotes sequential operatide,ngtv syntax is introduced
for parallel operation (which will then run the processes in lock-stegsighiments take a single clock
cycle, while combinatorial functions are simply synthesised to combinator@litsr This makes com-
pilation relatively simple, although synchronisation across differentqases at the end of a parallel fork
may require the production of synchronisation circuitry.

Channel-based communication is used to provide higher-level syncationiprimitives, so that par-
allel processes can communicate without being coded in lock-step orinepioiv-level synchronisation
primitives. Various features of C are omitted, to keep synthesis simple. Bargg, function calls are
macro-expanded, and pointers are disallowed. However, it creatdati@ely simple synthesis system
that is usable by software programmers with little training.

The language is effectively a structural HDL (with rather more syntacgassthan Verilog or VHDL),
extended with channels for rapid development (which can later be renfovetdtreased performance).
Optimisation is performed by the user, who has cycle-level control over timing

Lustre Lustre takes a very different “synchronous dataflow” approadhs based on Lucid [8], a
stream-based language. Streams are sequences of scalar valugsvdsimtended for use as a formal
system, and describes streams using the primitifiest“ ” and “next ”. Stream items are defined
in terms of items from other streams, or earlier items from the same stream. L@gdssaribed us-
ing streams to represent the intermediate results of each iteration, from pdrigtular values can be
extracted into another stream using ttas ‘soon as ” primitive. The stream-based paradigm is also
used in languages such as Esterel [16, 17] (which takes a more impegipfivoach) and Signal [6].
Synchronous dataflow is also the idea behind the DSP-specific langilage [54].

Lustre [60] is a declarative-style language which brings these conteptrdware synthesis. Vari-
ables represent streams (or flows, or signals) of values over disicneteThese streams can take values
on different clocks derived from a basic clock, with language restristioreventing unsynchronised
streams from being combined. Streams may be defined in terms of combinatod@bhs on elements
taken with a fixed delay from the same and other streams.

The design of Lustre is specialised towards stream-like processing withotrol-flow (for example,
implementing loops in the language can be painful). The language providegpk synthesis path,
expecting the user to perform optimisations, and the performance is largeddon the underlying
primitives. Lustre assumes a simple synchronous /O interface. Sectioncdmains a comparison
between SASL and signal-based languages.

Functional Lustre [37] is an extension to the language which adds sorctédioal-like features. How-
ever, the approach is still very different to SASL's; it is still a syncluesdataflow language, except that
as well as having streams of values, it is now possible to create streanretidfs.

Miscellaneous Hydra [115, 116, 117], like Lustre, treats all variables as streamsloésaHowever,
it takes a structural approach, by treating circuits as compositions didas®n these streams. Higher-
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order functions act like macros on the functional blocks, automaticallyrgéng the structure of systolic
arrays and similar circuits. Hawk [43] also takes this approach.

Hydra is a structural HDL embedded in a higher-order functional laggud his approach is also
taken by HML [85] and Lava [18] (which are based on Standard ML ldadkell, respectively). Lava
builds on the work of Ruby angFP [131] (another language where higher-order functions are used
to describe and manipulate structural designs). By embedding the harthvauage in a software
language, multiple interpretations can be used, allowing the framework to sinaulaigthesise the
embedded design, for example. Features of the embedding languades used to construct complex
circuits, but the approach is still fundamentally structural.

The CSP communication model of channels, as used by Handel-C, is adkio $#%FL+ [130] and the
C++-embedded HDL SystemC [139]. SystemC is aimed at system-level dagigmaching it by em-
bedding hardware description into a full software language. Systemyeakes the opposite approach,
extending Verilog into a systems language. These languages are alsnibgdmbring function-call
style communications to HDLs. SAFL+ extends SAFL with CSP channels, cgeatiite a different
language. These languages use channels to allow communication betaeessps with back-pressure,
so that later elements can delay earlier stages if they are not ready. S&Sback-pressure on all data
transfers, effectively treating all data paths as channels, but hidekdhisthe user, and restricts the
channels so that deadlock is no longer possible.

CSP is not only used to provide a communications model for HDLs, but canra&e a useful inter-
mediate target language itself. CSP programs are statically allocated anchdzih@arallelism. They
may be synthesised to hardware relatively simply (this being effectively thieaHandel-C compiler
does). Chapter 3 covers the translation of SASL to CSP. Abdallah [la22flbne work on streaming
data through functional programs, with synthesis to CSP, but he has dalether different approach,
where the stream processing functions are built up from scalar fusaiging pre-defined higher-order
operators.

Various other systems [150, 28, 10, 142] create hardware fromsesabC, mostly targeting recon-
figurable hardware. These systems often either have traditional povsesmbedded in them, or restrict
the use of C to make compilation more convenient.

Johnson has done work on using software compilation technology to ¢raaeare [74], and more
recently on digital design derivation [73], where the designer formalhveg a circuit from a func-
tional style specification. General high-level synthesis from softWkedanguages is described in De
Micheli's book [102]: the programs are converted into a data-path plosaldogic, and performance
trade-offs are made throudtinding and schedulingoperations. Binding selects which functional unit
performs which operation, thus limiting parallelism, and static scheduling selbatk wperation is per-
formed on which unit during which clock cycle. This approach concégran processing scalar data,
in a mostly non-pipelined fashion, in contrast to SASL.

Researchers such as Weinhardt [151, 153, 152], and MarinescRiaard [94, 95, 96] have worked
on the automatic generation of pipelines for imperative high-level synthesterss, but the pipelining of
functional behavioural systems has not been explored in the same maAittheugh similar techniques
may be applied, we believe that the referential transparency providpdrbyfunctional languages may
make the pipelining of such systems simpler.

1.3 The Statically-Allocated Stream Language

SASL is a behavioural HDL that tries to raise the bar on the level of altistrathat is available. The
emphasis is on performing real high-level synthesis of constructs pisdyionly used in software lan-
guages. To do this, it takes a pure functional approach, relying on aligibation to make the language
synthesisable.

In the following section, the assumptions and motivation for the languageamved. Subsequent
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sections cover the functional and statically-allocated aspects of the @qswell as briefly discussing
SASL's I/0 model. A final section compares SASL to SAFL+ and Lustre.

1.3.1 SASLs Niche

Most of the behavioural HDLs described above are designed to facistimightforward translation to
structural form. Low-level signalling and timing issues are still exposed;iwheans module interfacing
may be complicated, and design exploration slowed. Some of the languagetefeatures like CSP-
style channels, but such abstractions must still work with the underlyindgdeg-assumptions, and thus
the optimisations that may be performed are limited.

SASL is a software-like language intended for compilation to hardware,rrdtae a hardware lan-
guage made to include software-like features. It is domain-specific, uii@bproblems which are
complex enough that a simple systolic array is unsuitable, but are not Efiatvantensive enough that
a software solution is preferable. For example, many graphics operapierisrming structured tasks
with some limited control flow, may be suitably implemented in SASL.

The language attempts to hide all details of the hardware implementation. Forlexdmepe is no
explicit parallelism in the language, instead relying on the compiler to extractatadigdism from the
functional descriptions. The compiler is allowed, and indeed expectectrform a large amount of
transformation and optimisation.

In an industrial language, this “black box approach” would most likely dresiered impractical, as
designers would wish to have a clearer view of the synthesis proceksiar access to low-level details
and timing. However, SASL is intended to be an experimental languagesanati is aiming at as high
a level of abstraction as possible. By removing the need for backwardpatibility, new features can
be experimented with, and if they turn out to be useful, they may be “bartkgido more conventional
languages. In the longer term, increasingly high levels of abstraction wignogrammer-level access
to the internals may become acceptable, as has occurred in the softwaiia.doma

SASL is modelled on functional languages (as discussed below), anambpoften used for exper-
imental and research languages. This provides a useful frameworkial W reason about language
features and transformations. Functional languages often have a lagbleof abstraction than similar
imperative languages. They also seem more suited to hardware implemenitagpenative languages
impose an order on instructions, and although code analysis may removeoétilese dependencies,
there is generally a reliance on global state which may restrict parallelisnmoniparison, pure func-
tional languages (those that do not allow side-effects) allow any twdaiimscto run in parallel—the
lack of side-effects simplifies the extraction of parallelism. The use of fumetdso allows the creation
of pipelines through function composition.

Approaching SASL from a software point of view, it is a statically-allocgisamramming language.
Relatively little work seems to have been done in this area, perhaps due to thé¢haiestatically-
allocated languages are simple, and thus thought to be of little practical ogever, this dissertation
will show that the static allocation of complex language features (that is, #adi@n of O(1) storage
requirements) has some subtleties, and that various useful functiorte Garplemented statically. In
many cases, it simply suffices to synthesise a system that is large enoggi witth the expected data;
the resources required for a fixed problem size are often bounded.

SASL is designed for the core implementation of stream-processing algoriithsipelining and
parallelism limited only by the dataflow of the given program. It allows the effictescription of
algorithms that would otherwise be implemented in VHDL or Verilog, where adiveg] signalling and
control logic would have to be explicitly constructed.

It should be clarified that the term “streams” has traditionally had differezenings in the functional
programming and hardware communities. The meaning used here comesftroatianal background,
where it means a lazily-evaluated (demand-driven) sequence of iteneseaghin hardware it means
a synchronous producer-driven sequence. While the differemcebe partially abstracted away at a
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programming level, the distinction is important when talking about, for exampé¢tiree streams of
video data.

SASL is a language primarily targeted at FPGA-based systems, or, mogeatignsystems based
on reconfigurable hardware (although there are also situations whees ibe appropriate to use it for
custom silicon designs). Such reconfigurable systems are generalbjedsd with languages intended
for rapid, high-level development. In particular, SASL should be dsefla way of writing programs
that would traditionally be executed on a general-purpose CPU, but eatdelerated by hardware
implementation. By using a language like SASL, a software programmer showdtlédo develop
a hardware implementation without requiring any detailed knowledge of therlyinty hardware, or
hardware design techniques.

1.3.2 Functional Languages

SASL is a functional language, for the reasons described abovectitnal languages are descended
from LISP [99, 136], although the underlying formalism, Church’s lamb&alaulus [42], predates gen-
eral purpose computers. Standard ML [103] and Haskell [81] gmesentative of modern functional
languages; ML is an eager and impure functional language, while HasKelty and pure. Both are
strongly typed with polymorphic type systems. Compared to imperative languagetional languages
are convenient to reason about as they provide a form well-suited &idramation and analysis. Higher-
order operators allow a high level of abstraction to be achieved.

In a pure functional language, computation is performed by calling furgteomd functions are side-
effect free, with the result depending purely on the arguments pravidebles may be bound, but not
updated. Recursion is used to perform looping operations. Pure foattimguages make 1/O difficult.
In the simplest case, a function’s parameters form its input, and the vailueed its output. For more
complex and interactive I/O, some form of I/O state-holding object may teedesround. Haskell uses
monadg80] to deal with state and I/O, effectively allowing imperative-like seqesraf commands to
be embedded within Haskell.

Other languages, such as ML, allow side effects. Reference types alows to be updated, and
I/0 may be performed without resort to structures such as monads. ldgvilels comes at some cost.
Referential transparency is lost, and with it goes many of the advantagesnperative languages:

Pure functional languages are easier to reason about, as a functisalsdepends solely on its
arguments (so that a function can be known to only have localised effsar&bles are never
updated, and recursion may be reasoned about inductively.

Optimisation may be simplified, as all that matters is the result of the function; if a isahat used,
the call can be eliminated, without worrying about side effécts.

The order of evaluation for subexpressions does not matter (a yseperty for hardware imple-
mentations, where we wish to perform parallel evaluation).

Functional languages are generally either eager or lazy. Eager &valigclose to the imperative
view—when a variable is bound, the expression representing the valualisid, and only when that
completes is the body evaluated. Lazy evaluation, in comparison, storegpifesson, but does not
evaluate it until the value is needed, so that it performs the minimal amountngfwtation, at the
expense of a possibly very large administrative overhead.

The evaluation model can affect the type of I/O structure that is apptepfager evaluation, being
close to imperative ordering, is well-suited to 1/0 based on side-effectsgaxpressions are evaluated
in an intuitive order. In comparison, Haskell’s monads work well with its lazgl@ation. Lenient

2This is the case under lazy evaluation, at least. The removal of such whem using eager evaluation may change
termination. The effect of evaluation models and optimisations on protgamination is a recurring theme of this thesis.
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evaluation [144] is a hybrid model which maps well to hardware, and is esgblior Section 5.2 as a
basic for SASL’s streamed 1/O.

SASL uses eager evaluation combined with lazy (later, lenient) lists. Lazy lists @ager language
is a relatively old idea [53], used in languages such as Daisy [75] ame &D], and even seems to
predate full laziness. LiMP, the processing architecture for Daisy, alfonthe possibility of speculative
execution, an effect similar to SASL'’s lenient evaluation.

Both ML and Haskell (as well as SASL) provide Hindley-Milner polymorptyige systems: the type
systems provide strong typing, so that type errors cannot occurtaheyrbut at the same time a function
may work over a range of types (a useful feature for generic ancehigiuler functions). Higher-order
functions are those that take or return other functions, allowing the cneatitunctions like themap
function, which, given a functiogi, will return a function that applieg to each element of a list. Higher-
order functions are discussed in Chapter 6.

1.3.3 Static Allocation

For a design to be converted to hardware with fixed storage requirerttents;ginal program must be
statically-allocatable—that is, if it were a computer program it would be able twib with only a pre-
determined, fixed amount of memory, and as hardware it only needs ankaroount of storage. SASL
must meet this requiremeit.

With a statically-allocated language the hardware design can have all estoemgssary included
within the circuit, reducing the bottlenecks to the input and output stages.fféet ef static alloca-
tion is that the language is no longer Turing-powerful. The programs @refimite state machines,
although this is of little practical effect, as the state space may be too large lfoRP¥ analysis (if
static allocation sounds like an excessive limitation, it should be rememberedl {hvatctical computers
are also FSMs, albeit with a huge state space, due to their finite addrgs$.ran

Modern mainstream languages are not static allocated. Some earlier laagsiach as Fortran 77 [7],
do not support dynamic memory allocation or recursion, but these restsdi® now viewed as unac-
ceptable. Itis generally possible to write statically-allocated programs in méeteguages, by avoiding
recursion and heap allocation, but as abstraction increases it becamressingly difficult to statically
allocate programs. Features such as linear types (see below) in tetsagyoages show how some
control may be returned to the programmer.

1.3.4 Static Allocation of Functional Languages

Programming languages have traditionally expected unbounded storagsef@as a stack and heap.
The stack is used to record local variables and return addresseasnfdioh calls, while the heap is
generally used to store data structures allocated at runtime that may bedeyra function, and thus
cannot be allocated on the stack. Functional languages seem to relyponnaled memory more than
imperative ones: statically-allocated loops and explicit calls to allocate menerglaced by recursion
and implicit memory allocation.

Many existing functional languages attempt to control memory allocation, to a limiit, in the
name of efficiency. For example, a purely functional array would betgathby taking an array, an index
and the new value to be placed at that index, and returning the new &toswever, there may still be
references to the old array, and so the entire array may need to be.cSpiedons include wrapping
the object in a monad, to prevent direct access to the object, uniquepesg3y and linear types [148]
which prevent the same object from being reused. These systems g@oement the creation of new
objects, but prevent unbounded copies of existing objects being dreatear types play an important

3Such bounds are noecessarysince a program which is not statically-allocated may be converted to @ pi¢rdware
connected to a large piece of memory. However, this approach maydele sorts of von Neumann bottlenecks that destroy
any advantage a parallel hardware implementation has over a gengrakp CPU.
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role in SASL.

To create a statically-allocated language, we must eliminate both the heap@nckstarements. To
eliminate the heap, it is sufficient to eliminate recursive data structures. taltygees will then be of a
bounded size, and can be stored in the stack frame of the approprietiefucall. Values returned from
functions will be of a bounded size, and need not be stored on the Heapreturned.

The stack may then be eliminated by preventing non-tail recursive calldl récarsive calls were
eliminated each call path would be of a bounded size, and the overall staggirements would be
bounded. Recursive tail calls require no extra storage, since thenafion associated with the calling
function does not need to be preserved across the call, and the staragd can be reused. Although
these recursive calls allow unbounded call chains, the amount of lteeatiany point is bounded.

A similar set of restrictions is achieved by eliminating the stack first and theflialigag recursive
data structures in the heap. The stack is eliminated by converting the prtgmtinuation-passing
form, where all function calls become tail calls, and the remainder of the functjmasised as a closure.
Non-tail recursive calls become recursive data structures in contindadissing form, and are thus not
permitted.

Even if internal storage is bounded, a program may still use unlimited ressun the form of 1/0.
For example, it may perform an operation on each element of an unbdwhadam of data. This is
acceptable, as the I/O is a necessary part of the program’s operatit,ig unreasonable to limit the
program to reading finite input and producing finite output. Hofmann pesvalmodel where space is
bounded and in-place updates are used [68], but this does not sui¢eds as the entire data structure
to be modified must be loaded simultaneously. In effect, it only bounds “exiganory beyond the size
of the input. SASL further restricts programs to allow unbounded inputamgut only when the state
required to manage that I/0 is bounded.

The need for I/O should prove less of a bottleneck than the need for meanoegs in processor-based
systems. As data access patterns for stream processing are much edactapte than those for general
memory access (the data will be written and read in a fixed order, all intertaadwults will be held
internally in fixed registers), the caches may be replaced by FIFOs,anglex technologies such as
out-of-order execution, normally needed to hide memory latency, candidealy and the area made
available for computation.

Statically-allocated closures are discussed in Chapter 6, and furthealbyagitocated extensions to
the type system, such as sized types, are discussed in Chapter 8.

1.3.5 SASLs I/0O Model

SASL's 1/0 model relies on treating input and output as lazily evaluated listst(feam$. The lists
are unbounded recursive data structures. More specifically, imgub@tput “channels” are represented
as lists. These lists are not synchronised to each other, so the languegevisll-suited to interactive
systems (where there is some form of direct feedback loop betweert angbinput) unless the programs
are carefully written to read from and write to the lists in a fashion that matchéstdrfacing hardwaré.
SASL, like Lustre, is intended for reactive I/O, where there is no extdesalback between the input
and output data.

Reads are implemented by performing a match on a list. The matched head mepegsigem from
the input stream, and the tail represents following items. Linear typing is usgav¥ent unbounded
buffers from being needed, since there may only be one “pointer” irtio si@eam. Output is performed
by cons expressions, combining a head expression, representing the valuentdttea, with a tail
expression that will generate the rest of the output stream.

These lists are not limited to 1/0, but may also be used for intermediate result$ garisrated by one
function may be returned as a top-level result, or fed as input into anfthetion, as if the hardware

4For interactive /0, constraints between the ordering of input and oofriations may be required. These can be created
using linear state objects or monads, but the extra ordering constraiptechece performance.
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representing the functions were connected in a pipeline. Lists are nat fjscial 1/0 feature, but can
be used throughout SASL programs, encouraging the composition efyseins.

Unbounded data structures, such as lists, cannot be dealt with directiy atgtically-allocated lan-
guages, so SASL usémzy lists (that is, rather than storing an unbounded, potentially infinite list, only
the information required to generate the list is actually held, in bounded sjorbgterms of I/O, this
means that the items in a list returned by a function are not generated un@rthesquested, and items
from argument streams are not read in until they are needed. Inteisd(i ks, others than those used
for 1/0) are also generated in this demand-driven fashion. This lazgrstraodel fits well with a re-
gquest/acknowledge signalling model. It contrasts with the synchronous I2Ilmeed in languages
like Lustre, where items are consumed and produced at a regular cletkedndeed, SASL may be
an appropriate language for asynchronous synthesis, although this ¢bacentrates on a synchronous
approach, with signalling.

The calling convention for a SASL program allows for a combination of soadlues and lists as
parameters. The scalar arguments are read eagerly, but input listslaread as values are needed.
Functions may return both scalar values and lists. The scalar valuesnapeiteal eagerly and returned,
along with “list-ready” signals. The list elements are then produced byessely requesting elements.
In hardware, the arguments and results become fixed buses. Fomueatbri invocation, buses repre-
senting scalar values send a single item, while those associated with lists maydépte items, each
representing a list element. Calling conventions are explained further finS8c2.

1.3.6 A Comparison to Other Languages

Although SASL shares much with SAFL and SAFL+, there are some distifferelifces. At the lan-
guage level, SAFL enforces static allocation through the use of veryctestitypes, and limiting pro-
grams to tail recursion only. SASL also disallows general recursionextends the type of data that
may be manipulated to non-recursive algebraic datatypes, and addssstrea

In synthesis, SAFL aims for some transparency in the translation pragk#s,SASL is an attempt
to explore higher levels of abstraction. SASL tries to pipeline hardwarie \BAFL shares resources,
saving space but reducing the ability to pipeline. The distinction between tgadgas is strongest in
the area of 1/0. SAFL is restricted to a simple function call/return model, whegtate is held between
calls. SAFL+ introduces CSP-style channels, producing a much moressipe HDL, at the cost of
losing the pure functional approach. SASL remains a pure functiongi&age, performing reactive 1/0
through lazy lists. Both function calls and stream item production may be pipghn®8ASL. SASL is
intended to produce efficient and highly parallel circuits.

Lustre is another language created for hardware synthesis, with sttd&thand a programming
model abstracted from the hardware. However, it is not a conventwoglamming language. There
are no scalar values, so that all processing must be done on streaens.ig'ho iteration construct, but
instead loops must be generated by filtering streams. SASL is much closeotwentional language.
A more detailed comparison of SASL to both SAFL+ and Lustre, along with areddibg of Lustre in
SASL is given in Section 2.7.

1.4 Thesis Contributions and Organisation

The main contributions of this thesis are as follows:

The creation of a statically-allocated functional language (SASL) thaiges the ability to process
unbounded data sets through linear lazy lists (streams), boulddayity andstability constraints
(Chapter 2).

The use of this language to algorithmically describe circuits that processrsiref data in a
demand-driven manner (as demonstrated in a number of example progterngs those featured
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in Appendix B).

Compilation techniques to convert this language to a form suitable for lowHavdware synthesis
(Chapters 3 and 4).

The use of statically-allocated lenient evaluation to improve performangamtiiesised hardware
(discussed mainly in Section 5.2).

The addition of closures and non-deterministic operators to this functi@heaMvioural hardware
description language (Chapters 6 and 7).

The thesis consists of the following chapters:

Chapter 2 introduces basic SASL, motivated by the limitations of SAFL. The demanegvaluation
model is compared to SAFL+ and the synchronous dataflow model of Lustre

Chapter 3 provides a translation of SASL to CSP. While rather sub-optimal, this transiattsides a
basis for further synthesis techniques, and motivates some of the teebnisgd in graph synthesis.

Chapter 4 shows a translation of SASL to a format based on dataflow graphs. Thesmody be
implemented with a structural HDL, and an example Verilog implementation of a felesns
given in Appendix A.Linear SASLis introduced as an intermediate form.

Chapter 5 covers a range of optimisations that may be applied to SASL programs. Thisesdtatic
scheduling, lenient evaluation and dataflow graph optimisation.

Chapter 6 deals with the possibilities introduced by other evaluation models. Statically-alibciate
sures, promises and laziness are introduced.

Chapter 7 moves on to non-deterministic processing. We cover non-deterministic rfaciing set of
streams, and the processing of bags (multisets).

Chapter 8 concludes the thesis. Further language extensions are briefly exgokthe work is eval-
uated. Conclusions are given.
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CHAPTER 2

The SASL Language

This chapter introduces the syntax and semantics of SASL [52, 51], &ic@ha Allocated Stream
Language”. Only the language itself is discussed in this chapter—synthetii®ds are discussed in
Chapters 3 and 4. SASL, like Sharp’s SAFL [128], is statically allocatethat the resources required to
run a SASL program are fixed and bounded. SASL can be viewedagbpment of SAFL, introducing
streamed 1/O through linear lazy lists (SASL also takes a different apiptoazmmpilation, as discussed
later).

Section 2.1 reviews SAFL and SAFL+, setting the scene for SASL. It alsmslses functional 1/0
techniques. Section 2.2 discusses related work. Section 2.3 demonstredgs atream processing
language, which is not statically allocated. Section 2.4 adds restrictions tothealge in order to make
it statically allocated, and Section 2.5 provides semantics for the languag@arsSz6 discusses another
static allocation techniqualeforestation The penultimate section in this chapter compares SASL to
SAFL+ and the synchronous dataflow language Lustre. The final squtiwides a summary.

2.1 The Motivation: SAFL and SAFL+

SAFL stands for “Statically Allocated Functional Language”. It is a fingte, strict functional language
for hardware synthesis. However, it is a simple language, with poor Ifpatt SAFL+ attempts to
rectify the 1/O situation, at the expense of creating an impure language.

2.1.1 The SAFL Language

Sharp’s language, SAFL, is the basis for his PhD thesis [128], as wallrmmber of papers [129, 108,
109, 130, 110, 111]. A rather minimal language, its abstract syntaxeés givMFigure 2.1 It is statically-
typed, with the data types representimgpit buses, so that all values in the language can be statically
allocated. To ensure SAFL is statically allocated, it is sufficient to requiteatheecursive calls are tail
recursive, preventing the need for a stack.

SAFL's main weakness comes from its pure functional approach. Tligevay to interact with a piece
of hardware generated by SAFL is through a call/return mechanism thalsedoftware function call.
Parameters are provided on a bus, the hardware triggered, and ifitt@futerminates a result will be
provided on another bus. Calls are not pipelined, and no state is helddvetwection calls. By adding
external storage, output can be fed back, as shown in Figure 2.2s wak, a SAFL program may work

Throughout this thesis, the notatigtis used as shorthand for a sequence of items, . . , 2.
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p:= dy ... dy Program definition
d:= fun f(Z)=e Function definition
e:= c Constant
T Variable
if ¢ thene; elsees  Conditional expression
letZ¥ =€in g Variable binding
al@,...,en) Primitive function call
fle, ... en) Function call

Figure 2.1 The abstract grammar of Sharp’s SAFL

i[ SAFL Program
(i

Intermediate Stat

Figure 2.2 A SAFL program embedded in a system with state

as a stream processor, but this approach is rather inelegant anébiefl€s&AFL+ attempts to improve
on this 1/0 model.

2.1.2 SAFL+: An Attempt to Improve I/O

SAFL+ adds CSP-like channels to basic SAFL. These channels allowasepeocesses to communi-
cate by having one process write to a channel, and another read. SA¢Hannel model allows for
multiple readers and writers, which can lead to non-determinism. As functiopsava have side ef-
fects, sequential and parallel composition operators are introducedisehof channels can also lead to
deadlock.

Using channels, it is possible to create explicit pipelines: a set of presess created in parallel that
feed a stream of elements between them via channels. However, thisasmotls greatly complicates
such programs compared to a pipeline created through the compositioncabfmn(which is the way
pipelines are created in SASL).

Compared to SASL, the SAFL+ channels are less restricted. Data items magsegl@round a loop
of channels, while SASL stream dependencies are acyclic (prevergawjatk). Since both languages
are statically allocated, this difference will not lead to a difference in esgdre power, but only in con-
venience for the programmer. We argue that the restrictions of SASL atg tikimprove productivity,
as the advantages of making SASL programs easier to reason about endatwal to write outweigh
any limitations on the programmer’s flexibility.

2.1.3 Functional I/O

An introduction to I/O in functional languages is given in Section 1.3.2 anderspecifically, an intro-
duction to SASL's I/O model is in Section 1.3.5. This section covers the 1/0 modigisre functional
languages in more detail.

The 1/O facilities of a system may be categorised into one of three types t@msén of the categori-
sation of [61]):

Transformational Systentake an input value, perform a calculation and return a result. A typical
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example would be a mathematical function.

Reactive Systemmead inputs and produce outputs during processing. Reactive systeipocass

data continuously. However, no direct dependencies are expedisddrethe input and output,
outside of the system. This allows unbounded buffering or delays bettheeinput and output
stages. For example, reactive systems are suitable for DSP applicatibnst buited to controlling

an interactive user interface.

Interactive Systemgrovide the generalised 1/O one might expect of a general-purpose campute
system. There can be arbitrary external dependencies between t¢ anudpinput, such as with
interactive user interfaces.

This list is intended as a categorisation of the I/O model at a computational [Ewelunderlying 1/O
signals could be anything from demand-driven streams with complex signailistgictly synchronous
buses.

The differences between these categories are based on how the systémith synchronisation. A
transformational system is like a function with eagerly evaluated argumetht®aults. Activation and
return are synchronised with the complete evaluation of the appropriate Mafinite input and output
are impossible.

A reactive system is like a function with lazily evaluated parameters and reSulksstart and return
of the function are not necessarily synchronised with the productiofOotéms. A value representing
the input may be implemented as a lazily-evaluated recursive data structicie, wien evaluated,
returns some input along with an object to access the rest of the inpugthréiternatively, it could be
represented as an opaque state object, with an input function that tetkeéxs, asd returns an input item
and a new state. Output can be achieved by returning a lazy data stmagtesenting the output, or by
using a state-holding object.

An important point with reactive systems is that the input and output areymcheonised. Input
streams may be read ahead of time or output delayed, without affectingstiisra reactive system that
reads one stream and produces another may buffer as many items as Thilsagading of items ahead
of time is the focus of the lenient evaluation optimisation of Section 5.2.

Interactive systems create dependencies between the inputs and osiptitaf a direct temporal
relationship can be given between reads and writes. Interactive syatentiserefore more restrictive
than reactive systems. To create an interactive system, an orderingerlatbkd on all the 1/0 events,
for example by passing around a single state-holding object that is useddorp all input and output,
enforcing serialisation.

SASL is based on the reactive model. Its main aim is to implement algorithms, rathepetfarm
in an interactive environment. Transformational systems are too restriasvstatic allocation would
limit the size of processable data sets (hence SAFL's extension to SAFhe)interactive model would
restrain SASL too much, causing unnecessary serialisation.

Other restrictions, ignored by the above categorisation, are those to daegdndencies between
sets of similar streams—how a set of writes to different streams are intetléave similarly for reads).
SASL takes the least restricting approach, assuming that all streams epetnint of each other, in the
hope that this provides the most flexibility in synthesis.

An alternative way to view a functional language’s 1/0 capacities are in tefntise way they are
implemented. The rest of this section describes some pure functional if@virarks:

Call and Return  The call-and-return model is the model used by SAFL, and matches up wigtidra

mational systems. A finite argument is passed in, and a finite result retuBmext all a pure functional
language may do in terms of I/O is to take an argument and return a result, &rd/Gttmodels rely on
what is basically a call-and-return model, where the values hold some |/Qrdtatmation.
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State-holding Objects /O may be performed by passing in or returning values that representt®. pa
The possibilities are:

Argument used for inputhis provides a simple way to receive input. A parameter contains the
input state, and a function can extract items, returning a new state to rfee ihput object is

not linear (see below), all the input data must be kept, in case a refetetive original input state
object is kept in the program, which would allow the program to re-read aHpist.

Result used for outpuh order to write data, an object is returned that contains data to be written,
and a closure to perform further computation. The closure is necessatlye program can only
produce finite output before returning.

Result used for inpuRerhaps surprisingly, returning a value can be used as a mechanismufor inp
The return value contains a closure which takes a parameter represéetivejue to be read, and
the runtime executes the closure, supplying the appropriate argument.

Argument used for outptor completeness sake, there is also this possibility. A value is passed in,
and an output function takes the value, and an item to be written, returnieg state value. Linear
typing is necessary to prevent an output state from being reused. Unékather systems men-
tioned, this makes it possible to have a function that produces output \ert regurns, providing
rather odd semantics.

Linear typing[148] requires a linear value be used exactly once. This is usefutdte-kolding values
representing input or output, in that it mirrors the state—when an operatpanfsrmed, the old state is
used up, and a new one created, which in turn may only be used oncar typig is a major feature of
the restrictions SASL uses to ensure static allocation, and is discussed idenaildater in this chapter.
A similar approach is used in thaiqueness typinfg] of Clean.

Lazy lists are natural representations of input and output streams afideyuments for input, results
for output” model. The function to read from the input-state object becorsgeam matching, while the
function to write to the output isaoNsexpression. A separate lazy list is used for each input and output
stream. This is the approach taken by SASL, which seems well-suited toveeH€lj and provides an
I/0 model that will be familiar to functional programmers.

If returning a value is used for both input and output, the input and oofperations can be performed
on the same object, allowing the creation of ordering dependencies asetefpr interactive systems.
This is effectively how monad-based I/O works:

Monads Monads are the I1/0 mechanism of Haskell [80]. Monads can be thofigstwrapping up an
object so that it may only be accessed in a restricted manner. Once a g&albedm placed in a monad,
it cannot be extracted. Monads can be sequenced together, with tlefr@iuthe first monad passed
into the second. The resulting monad cannot then be split up. This allonesviaéld in monads to be
passed around and used in a controlled fashion, but the values may essegpe” from the monad.

I/0 is achieved by creating a monad that performs the program by seggewogether input and
output functions. The runtime system then performs the sequenced p#resraonad, evaluating the
contained closures as necessary. The monad is effectively a “list gbttordo” returned by the program
and evaluated by the runtime, except that since the list contains closumsattteoperations performed
can be data dependenthe evaluation of I/O outside the program body allows the state information to
be held externally to the function (preventing the need for linear state opjects

2A real implementation performs the 1/O as the associated monad is evalaategtlies on lazy evaluation to only evaluate
the monad that is returned.
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Synchronous Streams An alternative to creating a function that processes a stream of valuigs by
erating over the elements is to make all the I/O values on a stream of data intdeavahg that is
manipulated in its entirety. This is the approach used in languages such idg&Juand Lustre [60].
The stream is the primitive datatype, and basic arithmetic and logic functiortseated as mapping
functions over the entire streams. A comparison between SASL and Lugiveisin Section 2.7.

2.2 Other Related Work

A number of related languages, and the hardware background foc,S#e8e discussed in Chapter 1.
The most strongly-related languages, SAFL and SAFL+, were dista$dbe start of this chapter.

There are a number of formalisms suitable for dealing with statically-allocatedigddanguages.
CSP [67] is an imperative-style language with explicit parallelism, where conwaiion occurs through
channels. Data is passed when a read on a channel in one procesesmgdckith a write in another
process.

Concurrent Functional Processes (CFP) [20] provides a funttidteanative to CSP, and might form
the basis for a functional hardware synthesis system. However, indbesem well-suited to generating
statically-allocated systems, and the parallelism model is explicit, taking the opapgieach to SASL.
Functional nets [113, 114] are another approach based on the joulusa[82], providing a way to
merge petri-net style processing with functional languages. This and apipeoaches based around
petri nets [89] depend on explicit parallelism.

Another approach is that taken by Kahn-MacQueen networks [90drevbomputation is achieved
through a set of communicating processes which send data items to eaclalotigethe edges of a
graph. The edges effectively represent streams of data, and SA§tams can be represented as fixed-
topology Kahn-MacQueen networks where the processes are statit@tigted. Fixed-topology Kahn-
MacQueen networks are allowed unbounded queues, and so notlalhstworks can be translated to
SASL. Fixed-topology Kahn-MacQueen networks with bounded quanddinite state processes have
equivalent power to SASL programs.

Neil Jones’ work on the power @foNsless languages [77] provides a theoretical viewpoint on the
expressiveness of languages with restrictions similar to static allocatiome@h8ASL allows the lazy
creation of streams, Jones considers languages without the ability tounéatended structures. Jones’s
“read-only tail recursive” functions are statically allocated, but allow-finear access to their input, so
that it can be “rewound” and re-read. As such, the language hasthgutational power of OGSPACE
rather than just that of a finite state machine (which SASL is limited to), since therbBences into
the input list can act as unbounded values.

Due to issues like these, Jones’ model is of limited use for our purposeg, dues raise a point
of some relevance: adding higher-order functions can increase wer o some restricted languages,
as data can be stored in nested closures. For example, closures caadb® wonvert programs to
continuation-passing form, eliminating non-tail recursion, but producipgbgram that still cannot be
statically allocated. Rather than attempt to limit a higher-order language toapnsdghat are statically
allocatable, we initially use a first-order language (although closuressmesded further in Chapter 6).
SASL streams can be viewed as data structures containing closuresetigataaanteed to be statically
allocatable.

Linear typing allows data to be processed once and only once, whicteaasel for destructive array
updates and so on, providing an efficient way to keep large state variatdepure functional language.
In SASL, affine linear typing is used to ensure that each stream item igteadstonce. Linear typing
means that we can ensure that unbounded buffering is not requirstidams.

Wadler’s listless transformation [146] allows programs with intermediate lists¢omeerted to a form
where the intermediate lists are never fully generdtedsoftware, this can convert some programs to a

SDeforestation performs a similar operation to the listlessness transformitibontree-likedata structures, although the
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form that does not need more than a statically-allocated amount of stbmega&SL, the demand-driven
nature of stream production means that programs may be statically allocatedtvpigntorming listless
or deforestation transformations. This transformation is discussed fimtBection 2.6.

Pareto’s PhD thesis [121] describes “Synchronous Haskell”, a &ggthat uses sized types [70] to
guarantee that well-typed programs are free from busy loops antbdkadand are of bounded memory
size. However, this language has a complex typing scheme that providesirdtrenation beyond
static-allocatability, such as productivity. At the same time, some useful lgedaatures are restricted.
For example, filtering of a stream is only possible by creating a stream withlkminothingelements
(known ashiatonsin Lucid), which are used to replace elements which would have been filbetetb
maintain the original stream size. The use of sized types in SASL is discusSedtion 8.2.

2.3 A Naive Stream Processing Language

In this section a simple first-order statically-allocated language similar to SAFlbwithtroduced, and
then néavely extended with stream processing constructs. Examples are tharofihe problems raised
by adding unconstrained stream processing to the language.

2.3.1 The Stream-less Language

We start with a strict first-order statically-allocated language. To achimiie sllocation, general re-
cursion is disallowed (as in SAFL), as are recursive datatypes. dlmursive algebraic datatypes and
tail recursion are provided (although we have not included datatypeititafs in the abstract grammar
presented here). Tuples can be implemented using datatypes (we takeskedl-tkee approach that a
constructor takes zero or more arguments, rather than ML's apprdaakirng either no arguments or a
single tupled argument). A Hindley-Milner type system is used to type the lgegaad polymorphic
functions arespecialisedo concrete types during synthesis.

SASL’s algebraic datatypes and tuples provide much more flexibility than SAfises, and attempt
to bring the types expected of a high-level language to HDLs. SASL isvelativeak at expressing
plain n-bit buses, as they need to be expressed as tuples of binary valuesciisB&L (although buses
could be added through simple language extensions).

An abstract grammar for the language is shown in Figuré Z8bexpressions marked with the suffix
“tr” are those that are in il contextif the enclosing expression is in a tail context. The top level
expression of a function is in a tail context. Recursive calls may only dodail contexts.

Only direct tail recursion and non-recursive datatypes are allowdthugh the language could be
extended to allow mutual tail-recursion and sized recursive datatyppsifiQupper size limits, without
changing the language’s expressiveness or ability to be synthestsesk &ind other extensions, such as
lexically scoped functions, are discussed later in the thesis.

The language’s semantics are strict, since lazy evaluation, in the abdemedert strictness infor-
mation (which is uncomputable in the general case), may pass closuresivelyuso that they build up
without bound.

2.3.2 Stream-processing extensions

To add streams to the language, the ability to construct and read valueth&onis required. The added
language features are shown in Figure ZdNsnodes are evaluated lazily. Whercansis evaluated,

both the head and tail parts are evaluated, and evaluation of both must t@ftipéetail evaluating to
another lazily-evaluatedonsnode) before values are returned. This allows streams containing no items,

transformed program may still require unbounded storage.
4Example code may have some extensions beyond this basic gramméeinaaid readability, but conversion to this basic
form is simple.



2.3. A Nave Stream Processing Language 39

p:= dy ... dy Program definition
d:= funfx=e'" Function definition
e:= fe Function application
cle,...,er) Constructor
casee of my ... m, Case expression
letz=q in el Let expression
T Variable access
m:= c(r1,...,7;) x " Match

Figure 2.3 Streamless-SASL's abstract grammar

ael CONSexpression
caseq of z1: 29 xg” Stream-matching

Figure 2.4 Grammar extensions for stream processing

by creating an infinite loop in either the head or tail expression. The tail agittkam is a tail context for
the purposes of tail recursion.

The semantics of the stream-processing constructs can be defined intersysitactic conversion to
normal ML. The correspondingtreamdatatype is given by:

datatype o stream= consof unit (« (« strean))

Translation can then be performed at a syntactic levgl: e becomesconsgfn() (e 1,e2)) and
casee; of z;::2p becomescasee; of congf) let (z 1,22) = f() in ez end, wheref is a fresh
temporary variable.

Only infinite streams are implemented in SASL. Finite streams can be simulated byingatream
elements up in anptiondatatype, and treating the fildbneelement as the end of the stream. Similarly,
non-terminating streams can be simulated by streams with end markers by malanatuthe end
markers never crop up in practice, and adding never-executed pitcede to match on end-of-stream
cases.

An alternative datatype could have been used:

datatype o stream’= cons’of & (unit (« stream))

This definition seems inferior, as it would be impossible to represent a totglpductive stream, and
so the other was used.

2.3.3 Problems raised

Before introducing constraints to make the language statically allocated, itenasetful to look at what
can go wrong if no extra limitations are applied. Unbounded storage reaggiirts can occur if old parts
of a stream need to be buffered, and the amount of data required éseepa stream can also accumulate
if it is not generated carefully:

Streams that produce data at different rates could be merged, requitioginded buffering (case
1).

A stream may be recursively built up by repeatsoiNs operations in non-tail contexts, or more
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(* 1. Streams that may require unlimited buffering *)
fun oddsz;::xeiixs) = x1::oddgxs)

fun zip(z::xs, yiiys) = (x,y)::zip(xs, ys)

fun needs-buffdistrean) = zip((oddgstrean)), streamn)

(* 2. A stream recursively consd upon *)
fun build(item, stream) = build(item (iten: strean))

(* 3. Streams that can recursively increase storage requiremes *)
(* (fis some function such as fre:  x + 1) *)
fun mapf_(x::a:s) = f(x)::mapy(xs)
fun map-iter; (stream) = !et stream’= mapy (stream) '

in casestream’of z:izs  z::map-iter ;(xs)

Figure 2.5. Programs that cause problems for static allocation

subtly have mappings recursively applied, so that the amount of informttainrmust be held
about the stream will grow unbounded (cases 2 and 3).

The next section introduces a type system amehrity andstability restrictions that make the language
statically allocatable.

2.4 Restrictions for Static Allocation

In order to simplify analysis, a stratified type system is introduced. Two datermtraints are then
applied to make the language statically allocatdittearity prevents stream elements from being reused,
andstability prevents the description of a stream from “blowing up”, with the streamiriegumore and
more space to represent it on each recursive call.

2.4.1 The stratified type system

To simplify the analysis, we wish to avoid situations involving streams of stredreanss held in alge-
braic datatypes, and so on. At the same time, it is useful to express thef fymetions without making
the language higher-order. To this end, we create a stratified type sy&ddymorphic types are handled
in the usual manner.

The lowest layer, represented by the type variahleonsists obasic typeswhich are the types of
expressions that can occur in the simple stream-less language. All vedugeated using non-recursive
constructors with zero or more arguments, and tuples are implemented usstgictors. For example,
statically-sized integers can be represented using tuples of bootaamar(dfalsebeing zero-argument
constructors) mirroring the binary representation. The unit datatypey éformation” value normally
represented as “()”, and used for synchronisation/triggering pegds implemented as an algebraic
datatype with a single constructor which has no parameters. Values ofcatygaes+ have bounded
storage requirements that are a functiornr of

The next layer consists eflue typesrepresented by the type varialble

o:=T TStream; o6 ... O p

Value types are the types associated with expressions and variabletyp&hmay be a basic type, a
stream of basic type;, stream;, or a tuple of value typesey ... o ,.
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e = ...
(@,...,ex) Tupling
caseq Of (z1,...,7,) e & Untupling

Figure 2.6. Grammar extensions for handling tuples

Each stream is given an identifiethat is used to identify the stream during stability analysis. The
identifier is either a symbol from an infinite alphakigtrepresenting a parameter stream, 6, ‘rep-
resenting a newly created stream. We uSe™to represent the sef  x . The functionSI(o) is
defined to return the set of stream identifiers (includihgsed in the typingr. Stream type values can
produce an infinite stream of items, but the amount of state required abaryt@represent the stream
is bounded, and so value types can be stored in a fixed amount of space.

The tuple type constructor allows the creation of tuples of value types (@ssegd to basic types,
which are tupled using constructors). A new tupling operator and its iassdcaseexpression are also
added to the language, using the grammar extensions shown in Figure 2.6.

The type system’s top level extends the type system to cover the typesctibfusnand constructors,
by addingarrow types Functions have the type, o 2, while constructors have the type ... 7,

7 (n  0). These typings only apply to functions and constructors, and do neapp the types of
expressions or the typing environment, which only contain value types.

The language’s typing rules are shown in Figure 2.7. The typing envimore is a mapping of
variables to value types, and the types of functions and constructon®ated as side-conditions. The
typing of stream identifiers in functions is very similar to that used for polymicryping. For example,
if an expression has the typing:

z) : 71 stream,, 2o : T2 Streany e : T Stream, T, Stream
then the typing of the functiofi given byfun f (1, z2) = e can be written as:
a,f i stream, 7o sStreany T i Stream, 7 Stream

in a way analogous to polymorphic typing. As functions cannot have fireara identifiers in this
language, we omit the qualifiers, as is done in ML with type variables.

In general, the type of a functidan f x =eisf : 01 o 2, whereos; ando, are given by the typing
rules, usinge : o e : o9. Fresh stream identifiers are created for all streams jrthe stream
identifiers ino; must be distinct, witt67(o1) S. Since the type system does not otherwise introduce
new stream identifiersyI (o2) SI(o1) « . Due to linearity (explained below), each neidentifier
may occur at most once .

The (APPLY) typing rule includes a substitution on stream identifiers, in order to match upréaars
identifiers of the formal and actual parameters. The same substitution ispideo the return typé.
The substitution is similar to those done in calls to polymorphic functions. Thefuke @PPLY) rule
across recursive calls is discussed later in this chapter.

The rule ¢AR) relies on ax-substitution This is a substitution that replaces zero or more stream
identifiers with “<”. This substitution allows a stream derived from a parameter stream tatdiaiginal
stream identifier, in order to pass theQNSTRELIM) and CONSINTRO) typing rules. Converting a
stream identifier te is safe, as this just throws away information.

SExternally provided input streams could provide an oracle supplyingttatacould not be generated internally, but the
only internal state required would be a reference to the external datsesou

®As mutual recursion is disallowed, a total ordering of the functions casrdmeed so that no function requires the type of
a function that has not yet been processed.
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e : 01 f 09 03

APPLY
( )A fe : 9(0’3) 9(0’2)20'1
A e| : T1 A € Te
(CONSTRINTRO) A o) T C:TL...TR T
e : o1 A oy

(TUPLE-INTRO)

A (e1,...,ek) : 01 ... Ok

el : 7 A eg : T streamy
(CONSINTRO)

A e1:iley i T stream,

141,9ﬂ11:7'11,...,x,§1:T,%1 e1 : o
A e T L L
Al crf,oal o ep o | T TR
(CONSTRELIM) i T
A caseeofcl(xl,...,xkl) e 1 )
Gz’ .., 3l) en o
A : Az : :
(TUPLE'ELlM) €1 01 O k y X1 1 01, y Ukt Ok €2 g
A casee; Of (z1,...,2,) e2 : 0
(CONS—ELIM) e1 : T stream; A,x1:T, 12 : T stream; ey O
A caseeiofziam e9 o
(LET) e1 : 01 Az :. o1 €9 : 09
A letz=-ejine : o9
VAR 0 is ax-substitution
( )A,x oz 6(o)
Figure 2.7: Typing rules
lin(f er) = lin(er)
lin(c(er,...,ex)) = lin(e) . lin(e k)
lin((er,...,ex)) = lin(e) . lin(e k)
lin(epiiea) = lin(er) lin(eg)
lin(caseeof my ... m) = lin(e) (linp(my) ... ling(my))
lin(casee; of (x1,...,2,) e 2) = lin(er) (lin(e2) @1,...,2% )
lin(casee; of z1:iap e 2) = lin(er) (lin(ea) 1,22 )
lin(letx = e inex) = lin(er) (lin(eg) 1z )
. x : ifthe type ofz contains a stream
lin(z) = .
otherwise
ling(c(z,...,2x) €) = lin(e) x1,...,7%

Figure 2.8 Linearity rules
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2.4.2 Linearity

The linearity constraint prevents a reference into a stream being rexséuat once an item has been
read it cannot be read from the stream again. This is achieved by all@aicty stream variable to be
used at most once, for example being passed to only one subroutinenotifu Not using a stream
variable is also permitted.

To generate a statically unbounded number of elements of a stream, a funcsbgenerate it using
aCoONsin a tail-call position (the alternative, using an accumulator argument to ddanes disallowed
by the stability constraint below). In this case, the function’s return typéd baua single stream, because
of this consin the tail-call position.

Due to linearity, one stream cannot be passed to multiple functions in paraliekiace functions
that generate an unbounded amount of a stream can only return cena,sé&ch stream can only have
one other stream that directly depends on it for an unbounded numbe&moénts. Therefore, it is not
possible to generate multiple distinct streams that depend on an unbountied pb same original
stream (one stream may be used to generate another which generates buthiinearity means the
first two streams are then “used up”). Linearity similarly prevents a streginglpassed to a function
along with a stream it depends upon, since the original stream will have‘bsed up”. Linearity thus
prevents the synchronisation problems of Example 1 in Figure 2.5, as weteasnting “rewinding”
through back-references into the stream.

Linearity can be ensured by labelling each expression with the set of liagables it uses. The sets
of variables are built in a bottom-up manner using the functiarshown in Figure 2.8. A linear value
cannot be held inside a non-linear value, so any type containing a streattbenlinear. The operators

and are defined as follows:

error : ifs=error t=error s t =
s t = .

s t : otherwise

error : if s=error t=error
s t .

s t : otherwise

Merging sets that both contain the same linear variable means the value is usadtipie sub-
expressions, and produces an error. A program has the requieaditinproperty if none of its function
bodies yielderror whenlin is applied.

2.4.3 Stability

In this language, stream processing is achieved using recursivi@iusicTo produce non-stream results
tail-recursion may be used, while to generate an entire new stream a tagliveatall must be performed
in thetail part of aconsnode.

These two forms of recursion have some anti-symmetry in the forms of allawediéns, as shown
in the examples of Figure 2.9. In plain tail recursive functions, expressitay be evaluated before the
tail call, but not afterwards, as this would require extra storage. Fordailrsion on stream&ONS
operations may occur on the result of tail calls, because they will be implechastgide effectbefore
the function call, but tail calls on@aoNsd version of the input could, in general, create a stream requiring
unbounded space.

To forbid streams that require unbounded amounts of space to reptesen we must forbid the
streams from being recursively processed in a way that increasdsithgesrequirements each iteration.
We introduce the concept stability, where streams passed to a tail call mussblestructuresf the
corresponding streams in the function’s formal parameter. The substa®f a stream are the stream
itself, and those streams reached by repeatedly taking the tail of that stfélaerstreams that are passed
recursively are limited to substructures of the original parameters, tite spquirements of the streams
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(* Plain tail recursion. *)

fun fi(z) =... 1+ fi(x) ... (* Disallowed. *)
fun fao(x) =... folx+1) ... (* Allowed. *)
(* Stream tail recursion. *)

fun gy (zizs) =... 1 gi(xs) ... (* Allowed. *)
fun ga(zs) =... ga2(1:12s) ... (* Disallowed. *)

The displayed parts of the function bodies are assumed to be in tail cohteldrger expression.

Figure 2.9 Examples of recursive functions

cannot build up.

In the typing system of Section 2.4.1, only a stream that is guaranteed toubstausture of a par-
ticular parameter stream may have that stream identifier. Otherwise the stittdnave the identifier
“x”

Hence, the stability restriction is simply that for a tail recursive call the stidamtifiers in the formal
and actual parameters of the function must match. A modifie@((y) rule to achieve this constraint is
as follows:

f o0 03
e: o1 0(o2) = 01
A fe : 0(o3) If feisarecursive tail call
thend must be the identity

(APPLY)

2.4.4 Static Allocation

Viewing CONS expressions as closures, witonsmatching forcing the evaluation, the programs can
be statically allocated if the closures are guaranteed to be statically allocatialcke the language with-
out streams is statically allocatable). An informal argument to this effect islbmsvk: when using
non-recursive datatypes, a closure may only take an unbounded aofospace if the environment
of the closure contains another closure which may then recursivelyiooottzer closures in an un-
bounded manner. However, this is not possible, as closures areitiatgacross recursive calls—the
recursively-passed streams can only be substructures of the oaginehents. The language provides
no opportunity to create such a closure.

2.4.5 Example Programs

Common operations to generate, map, filter and fold lists are simple to write in SASihoavn in
Figure 2.107 Streams may be merged together (subject to linearity), but streams may nqilloaikd,
or multiple streams created that depend on unbounded sections of the seane, since the resulting
streams may require unbounded buffering if merged together. Example medgluplication functions
are shown in Figure 2.11. This difference to synchronous streamdgegus discussed in Section 2.7.

2.5 SASL Semantics

This section presents a Structured Operational Semantics [123] for thealg®. The semantics, shown

in Figure 2.12, are those of simple eager evaluation, except for the lazylliesules show how the pair

of an environmenfs and expression are evaluated to produce a value. The environment is a function
from variables to their values, and initially has an empty domain. The valugsem® whose nodes

"To avoid using higher-order functiorfsg and so on are assumed to be provided as top-level functions.
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fun from(i) = ¢ :: from(i 4 1)
fun mapy(z:izs) = f(x) 2 map(zs)
fun filter,, (z::zs) = if p(x) then z::filter(zs) elsefilter(zs)
fun fold, (z::zs, accumulatoy =
if dondx)
then accumulator
elsefold, (zs, g(accumulatorx))

Figure 2.10 Examples of common functions

(* An allowed merge function. *)
fun merge, (z::xs,y:iys) = h(x, y)::mergg,(zs, ys)

(* A disallowed duplication function. *)
fun dup-streanistrean) = (stream strean)

Figure 2.11 Examples of merge and (illegal) duplication functions ASh

are algebraic datatype constructors and tupling operators, and whess ke 0-place constructors and
stream values. Streams are represented with a triple suSheag, e;;]. In itself, this is not a particularly
useful value. To obtain the head of the streajy, must be evaluated if. To obtain the tail (another
stream) e, must be evaluated if. According to SASL's semantics, the value of the head of the stream
is only considered valid if the tail expression also produces a naadue.

2.6 Deforestation

Our language restrictions are closely related to Wadler's treelessdgs$[, 98, 55]. Treeless programs
manipulate tree-like data structures without creating intermediate data stejcarthey can work on
unbounded data structures in bounded space—the same goal as $A®stricted) treeless term [50]
is of the form:

tt = w Variable
cty ... tt, Constructor
fa...op Function applied to variables
casevofp : ¢ty ... p:tt, Pattern-matching on variables

If the body of a function is a treeless term, it is treeless. The functions attelrp matches called by a
treeless term must be treeless. A term made from composed treeless feintdipitself be transformed
to a treeless function by the “deforestation” algorithm. The variables musséxtlinearly.

SASL’s syntax effectively provides the same restrictions, in a diffefemh. While treeless terms
restrict all variables, in SASL we only need to restrict streams, as thesb@only values which may
take up unbounded space. SASL streams are linear, as requirednlyhrelevant constructor iISONS.
The restriction that only variables may be used as parameters to functbnsadches in a treeless form
is equivalent to the stability constraint—that a stream may natdresd onto in a recursive call.

SASL’s restrictions may seem weaker, but turn out to be equivalent. 3LSAnction maycoNsan
item onto a stream that it passes to another function, as long as that fucallinot recursive, since

8n general a stack may be needed, but when restricted to lists no stasdsd
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S,e o Sz ],

/

(APPLY ) Y wherefun flz)=e

S, fle) v
S S
(CONSTRINTRO ) — % U1 G Ok
S,cler, ... ex)  c(vi,y...,v)
S,et vy ... S,e U

(TUPLE-INTRO )

S,(el,...,ek) (vl,...,vk)

CONSINTRO
( ) S,eriea S, e, ea]

S,e  ¢(0) S[E d,e; w
S,casecof ¢ (1) e ... (@) e v

(CONSTRELIM )

S,er (v1,...,v5) S U,ea w

TUPLE-ELIM
( ) S,casee of () e 2 v

/
S,er [9 end,eq)
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CONS-ELIM
( ) S,casee; of z1iix0 € 9w

S,ep v Sz d]ea w

LET -
( ) Sletr=¢iney v

(VAR ) ———=—z dom(S)

Figure 2.12 Big step transition relation for SASL
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this can be statically unfolded to a treeless form. Matching on a stream insidecoh’s argument
expression can be transformed to treeless form by syntactically pulling ttoh eepression outside of
the function call.

Wadler's work distinguishes between treeless forms, and compositionsedéss forms (where a
tree is passed between the functions), which may be made treeless, leadihgddiered approach.
SASL does not create such a distinction, so that functions may have bbaie®mpose other functions
together, but still be treated as treeless, since they could be transfortoedtieeless form (as long as
none of the functions being composed are recursive calls). Reeuwslis in tail positions cannot be
composed with other stream-processing functions, as this would either \tidegéability constraint, or
mean the call was not a tail call.

In effect, SASL is a treeless language with a more user-friendly syntawvelkr, the compilation
techniques used are very different. Wadler’s deforestation algorittetiytoemoves the intermediate
data structures, but may cause an exponential growth in code size. 18 on the lazy evaluation of
streams to prevent unbounded data production; data are producessardgessary, and the treeless-style
limitations guarantee that unbounded storage will never be required.

2.7 A Comparison to SAFL+ and Synchronous Dataflow

We compare SASL with the statically-allocated functional language SAFLdHtensynchronous stream
language Lustre. SAFL+ was chosen as the most similar existing language, Lwistre is another
stream-processing language, albeit one that takes a rather diffppgotah.

2.7.1 SAFL+

SAFL+ was introduced in Section 2.1.2. The main difference in approack issh of CSP channels in
SAFL+, versus the use of streams in SASL. CSP channels may coneespes in almost arbitrary
ways, allowing the possibility of deadlock, while SASL’s streams form arlezyetwork of pipelines.
While the programmer is expected to deal with the details of channels in SAFL-e #reshidden
in SASL. Channels require the user to deal with explicit parallel prosessed serial and parallel
composition, while this is handled implicitly in SASL.

The channels in SAFL+ mean that the language is not only not pure, ihats@be non-deterministic.
Basic SASL is a pure, deterministic language, although non-deterministicsexterare discussed in
Chapter 7. Streams are not just syntactic sugar for channels; the deimaamd nature of stream item
production means that a single channel cannot be used to implement a skiréamient evaluation is
used (as described in Section 5.2), the ability to cancel active computatieqused, moving further
away from a CSP-like model. Channels can, however, be used to impleregraighing of non-stream
values, as is done in the CSP synthesis of the next chapter.

Finally, many differences show up in the synthesis approaches, exgplairther in the next chap-
ter. SAFL and SAFL+ use resource sharing and do not perform atitopipelining, while SASL is
intended for pipelined hardware, and does not share resourcdd.+S#efines synchronisation points
in its evaluation, whereas SASL wishes to minimise synchronisation where thigsalo increase in
performance.

2.7.2 Lustre

Lustre was described in Section 1.2.2. The main difference betweenreyocts stream processing
languages and SASL is that in the synchronous stream langafigesiables are streams with explicit
clocks, and all processing is done in terms of streams, whereas in SASirében processing is demand-
driven, not pervasive (there are non-stream variables) andphtidy clocked, helping modular design,

where the programmer need not specify the exact timing of componentggaiadling between them.
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(* Functions may be composed to create a pipeline of stream functi. *)
fun compose(i) = fold, (filter(mapy (from(i))), 0)

(* Such functions can be called repeatedly. *)
fun composeg(i) = if predicatdi) theni elsecomposg(compose(i))

(* And any function from scalar to scalar can be mapped over a stram. *)
fun composg(z::zs) = compose(z)::composg(xs)

Figure 2.13 Examples of function composition in SASL

The demand-driven nature of SASL streams makesriérge, (from Figure 2.11) function simple to
write, while in Lustre it is necessary to organise the clocks so that valwes on both input streams si-
multaneously, perhaps through explicit back-pressure if either inmarstis generated by an unbounded
loop. Lustre uses elock calculugo describe which streams may be merged, while in SASL any pair of
streams may be merged (subject to linearity constraints). While a functioduiixestreanis allowed in
Lustre, linearity prevents it in SASL (although later we give an embeddihgistire in SASL).

The pervasive use of streams in Lustre makes conventional programritimtpaps difficult. While
iteration in SASL can be achieved through a tail-recursive function califreuequires a data-flow
program where elements of a stream represent iterations, and eaditlsegperforms an iteration of
the loop, or resets the loop with new values should a new request comesulidae sent out by sending
a stream value out on the cycle representing the final iteration of the l@gp hardware therefore takes
a stream of loop initialisation requests, and returns a stream of loop reluhs. loop is unbounded,
some form of back-pressure will be required to prevent new requastshe current loop has finished.

SASL achieves the same result directly, hiding the implementation of bac&ypesand signalling.
Functions may be composed without worrying about timing or signalling, asrstowigure 2.13.
Although synchronous stream languages may be more convenienttfainagdasses of problems (such
as hard real-time systems with exact per-cycle requirements), SASL psofadhiliar features from
conventional software languages, presenting a higher-level ingetathe programmer. Control over
the cycle-based timing of streams is lost, in exchange for more abstraction@edlexible synthesis,
freeing the programmer from many detalls.

To aid comparison, we will give an example of a Lustre program translat8&&1, and vice versa.

2.7.2.1 Conversion from Lustre to SASL

The Lustre program is taken from a Lustre paper[60]. It is shown inr€i@.14. Each item in thelarm
stream is thend of the appropriate elements from tHeadlineandis-setsteams. The streais-setis
defined as being the sameszfor the first item, and then is set if the correspondietjitem is set, reset
if the correspondingesetitem is set, and otherwise takes on the value from the previous cycle.

The most direct translation to SASL puts all the Lustre parameter streams inttuged SASL
stream, giving the program shown in Figure 2.15. In this translation, eaohiiit¢he stream of tuples
represents the values held by Lustre streams on that clock. Since SA&8mstare produced indepen-
dently, and all Lustre streams are synchronised by a clock schemewertall the Lustre streams into
a single SASL stream, enforcing synchronisation. Lustre streams thatheseclocks can be merged
with the main clock by using hiatons (“nothing” elements) to fill the gaps. gieeconstruct is imple-
mented by passing extra scalar parameters supreasis-set The returned stream also passes back the

%t may be possible to extend SASL with “pragma’s or annotations to spgaifig requirements for the synthesis tool—
this is a possible further area of research.



2.7.A Comparison to SAFL+ and Synchronous Dataflow 49

node WatchDogset reset deadline: bool) returns (alarm: bool);
var is-set: bool,

let
alarm = deadlineand is-set
is-set= set
if setthen true
else ifresetthen false
elsepre(is-sed;
tel.

Figure 2.14 Lustre WatchDog program

fun WatchDogln¢str, is-first, prev-is-sef =
casestr of (set resetdeadling::rest

let is-set= if is-firstthen setelse
if setthen True
else ifresetthen False
elseprev-is-sein

let alarm = and(deadlineis-se} in

(alarm, set reset deadling:: WatchDoglIntrest False is-se

fun WatchDogstrean) =
WatchDoglnfstream True, False)

Figure 2.15 SASL WatchDog program

data passed in, since the stream passed in cannot be used again dwitg.line
In general, a Lustre node that takes streamshroughz,,, returning streams; throughy,,, can be
embedded in SASL as a function of the form:

fun examplé(xy,...,x,):tl state = (fi(...), ..., fm(...))::examplétl, g(. . .))

where thef; andg are SAFL-like combinatorial functions of the and the non-stream variabdtate
Using this translation, Lustre programs can be converted relatively eésiby,elegantly, to SASL. For
example, Lustre stream duplication can be represented in SASL by dupdita¢iistream element-wise:

fun dup-el{z::zs) = (x, z)::dup-el{xs)

(in contrast to the disallowedup-streanfunction of Figure 2.11).

The above program does not show the advantages of SASL, as it istie lexample, and so avoids
features that are tricky to implement in that language, such as loops. AhHaugjre may simplify
the expression of some simple synchronous dataflow tasks, SASL is a muetapmopriate tool for
situations involving loops and back pressure.

2.7.2.2 Conversion from SASL to Lustre

A simple example SASL program is shown in Figure 2.16. The functiewton-raphsop is a
simple Newton-Raphson root finder used to illustrate the use of iteration in SAB& function
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fun newton-raphsop(r) =

lety = f(x)in
if abs(y) < e then z elsenewton-raphsop(z y/f '(x))

fun map-newton-raphsaii, str) =
casestrof z::xs
(4, newton-raphsop(r)):: map-newton-raphsagiti + 1, xs)

Figure 2.16 SASL example root-finding program

map-newton-raphsgnapplies the root finder to a sequence of initial values. The function will metur
a stream of roots, with the root returned depending on the associateddenthfe input stream. Each
item in the result stream is tagged with an integer, to show the processingendkncies between
the stream items generated. We assume mathematical primitives, the nyrtiteefunctionf and its
derivative /" are all supplied.

As Lustre has no built-in signalling mechanism, it has to be added explicitly to theclinglementa-
tion. Each item of data is accompanied by a signal on a request line. Tatledeple, pipelining is not
used. Each function has an input request line and a result product@ratid a new request may only
be made after a result has been produced. The stream is controlled efdthest line, a result line and a
reset line. All signalling lines are level sensitive. The details of signallindgpfe-level implementations
of SASL programs are discussed later in this thesis.

The implementation of the functiarewton-raphsopis shown in Figure 2.17. The functiorfsand f’
are implemented by the nodesandFD respectively. Explicit control logic is required, using tHeed
variables to time tokens.

The implementation of the functionap-newton-raphsgris given in Figure 2.18. The variabketive
marks whether the node has been activated and will respond to streaestedlhe variablStateholds
the internal state, set when the function is called, and updated each timara &&m is returned.

When the function is initially called, it does little more than store its parameter and itsatkas
active. When a request arrives on the output stream, a request isamalde input stream. When the
result arrives, it is sent to a copy of the node perfornmegiton-raphsop, and the result is combined
with the current state value and returned over the output stream. Thealrgéate is then updated.

Compared to the original SASL version, all the complexity of control flow jgomed. The example
here was simple SASL, yet produced rather complex Lustre, even ttombglinidirectional handshak-
ing was used. In more complex programs it will quickly become extremely diffictanage the control
flow. SASL's main advantage over Lustre is that it allows the details of cbfitve to be hidden and
automated in such programs while still enabling the processing of streamed data

2.8 Summary

This chapter examined a number of possible functional I/O models, befwoeliting a nave stream
processing langauage. Programs that could not be statically allocatedi@reonstrated, before adding
a set of restrictions which made the language statically-allocated. Semantebnetly discussed and
SASL's approach compared to that of deforestation. Finally, the larguag compared with Lustre,
using example programs.

This chapter has laid the groundwork for the rest of the thesis (mostlgljrin@ synthesis chapters, 3
and 4), by introducing both the basic SASL language, and the linearitytahility constraints that are
used to statically allocate more advanced features later.
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conste : real.

node NewtonRaphsaofResetReqIn: bool; Dataln: real) returns (ReqOut bool, DataOut: real);
var FReqln FReqOut FDReqln FDReqOut : bool;
var FDataln, FDataOut FDDataln, FDDataOut: real;

let

tel.

assert true not(Reqglnand pre(FDReqOu});

FReqIn= false Regqlnor pre(FDReqOu};
FDataln= 0. if ReqInthen Datalnelse
if pre(FDReqOu} then
pre(FDataln) pre(FDataOut/pre(FDDataOul else
pre(FDataln);
(FReqOutFDataOub = F(ResetFReqIn FDataln);

FDDataln = FDataln,
FDRegln= FReqOutand (abgFDataOup «¢);
(FDReqOutFDDataOuy = FD(ResetFDReqln FDDataln);

RegOut= FRegOutand (abgFDataOu} < ¢);
DataOut= FDataOut

Figure 2.17. Lustre version ohewton-raphsop
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node MapNewtonRaphsgiResetReqln StrinResStrOutReq bool;, Dataln, StrinData: real)
returns (RegqOutStrinReqStrOutRes bool; (StrOutDataA: int; StrOutDataB: real));
var Active NRReq bool
var State: int;
var NRData: real
let
Active= false if Resethen false else
if RegInthen true else
pre(Active);
State= 0 (if ReqgInthen Dataln elsepre(State )+
(if pre(StrOutRegthen 1 else0)
RegOut= ReqIn

StrinReg= StrOutRend Active
(NRRegNRDatg = NewtonRaphsdiResetStrinResStrinData);
StrOutRes= NRReq

(StrOutDataAStrOutDataB = (State NRDatg;
tel.

Figure 2.18 Lustre version ofap-newton-raphsgn
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CHAPTER 3

Translation to CSP

CSP [67] is used as the initial synthesis target for SASL, as it is a relatiughylevel language that
is designed for representing parallel systems. Channel communicatioidgs@ straightforward way
to specify and implement many SASL features. CSP uses explicit parallelisthe synthesis from
SASL must extract parallelism from the original program. From a CSH-tl&ription, translation to
hardware is straightforward: the CSP programs can be rewritten into-lewarHDLs that use CSP
channels, such as Handel-C [39], and from there synthesised td hdndavare implementation.

The synthesis approach is like conventional compilation in many ways. Thaxsiee is linearised
into a set of instructions. For software, these commands would be sedjirsttiactions, while in this
synthesis they make up interacting processes. Each expression serdpreby a process that triggers
the processes representing its sub-expressions. Where posdibfgpsesses are run in parallel, making
more efficient use of the parallelism available in hardware.

Section 3.1 is a general introduction to the aims of SASL compilation, providingc&doop to
both CSP synthesis and the graph-based compilation of Chapter 4. Seétithel gives an abstract
hardware-oriented view of SASL’s calling conventions. Section 3.3 labkynthesising bound variable
access, and Section 3.4 covers the actual translation into CSP. Sectioa Brieissummary.

3.1 Synthesis Aims

Our synthesis goal is to convert function definitions into hardware ressuhat perform those functions.
Despite targeting CSP, the final goal is hardware, so we take a hartiwespproach. Functions are
converted intanodulesconsisting of a set of CSP commands and channels, implementing the function.
Following VHDL and Verilog, the translation uses “unshared” resouricethose languages, each time a
module is used, a new piece of hardwarei(estancé is created. This approach is taken by a number of
HLS systems, such as Handel-C, but contrasts with SAfelssurce-awarepproach, where hardware

is shared through arbiters, and textual duplication is required to duplieatevare. SASL modules

can therefore be treated as “black boxes”, as the inputs and outputefared solely by the function’s
parameters and return type, with implementation details hidden.

Pipelining: By creating multiple instances of modules, more parallelism is made available in SASL
than was available in SAFL. SAFL expects only a single caller to be activeumeibn at a time, so
that sharing resources does not necessarily limit performance. SASLi@allow multiple outstanding

55
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function calls, pipelining requests.In such a system sharing resources could lead to much resource
contention. Since hardware resources in SASL are duplicated asdheetiders are not required to
control access from multiple external call sites, as occurs in SAFL (t@ilrséve functions may receive
calls from internal call sites, but simpler, specialised arbiters can beinisedh cases).

SASL’s aim to produce pipelineable circuits is also shown in the forms of aealyat are applied.
SAFL performs register placement analysis, allowing it to eliminate registeiiations where a value
is guaranteed to stay constant until required. As SASL allows pipelinimtheurequests could change
values at any point, so SAFL's “permanising registers” (which aregifely pipeline latches) are always
required in SASL. Pipelining is discussed further in Section 4.1.

Scheduling: The synthesised SASL programs schedule operations dynamically, asndda loops
require some form of dynamic scheduling. Each basic operation starts allhiine data it requires is
available, rather than according to a pre-determined schedule. Thesasiduling described in this
chapter and the next are fully dynamic. Section 5.1 discusses the statdubobeof parts of SASL
programs, which is used to reduce the overhead of full dynamic schgdualirch likesoft schedulingn
SAFL.

SASL's synthesis tries to maximise parallelism, while SAFL inserts deliberate symishtion points.
For example, in a SAFlet binding, the value being bound must be completely evaluated before the
body. This use of “let barriers” allows certain operations to be serigliselping the user specify the
scheduling of shared resources. No such feature is needed with. SA®LCSP synthesis retains this
constraint, as it uses broadcast access to variables (see SectiobuBB)e alternative unicast-based
graph synthesis of Chapter 4 avoids this serialisation.

SASL's feature set makes generating fixed low-level schedules diiffithe presence of possibly
unbounded loops prevents static scheduling and the I/O mechanisms relydemand-driven re-
guest/acknowledge scheme. In software real-time systems the programmeealtyeknows nothing
of exact instruction timings, or the optimisations performed by the compiler, ldrey as the hard-
ware is suitably powerful it can be used to perform real-time operati@sqit the compiler not being
targeted to the specific real-time constraints. Such an approach may alsemevith SASL.

Streams: SASL synthesises stream operations to reads and writes on demaew-buises that are
similar to CSP channels. Whereas CSP channels send the data as aaaduesiirn no data with the
acknowledgement, the SASL bus sends a data-less request and detiarmsth the acknowledgement.
A coNnsoperation becomes a bus write, while performing a pattern matching on a $¢reaptemented
as a read from that bus. Dynamically, each bus has at most a single asaderiter, so that execution
is deterministic. In our CSP synthesis, these buses are implemented as @HRB ofiannels—one CSP
channel is used to transmit a request token, while the other is used to traesmitss. All channels in the
resulting CSP program have at most a single reader and a single wri@mibaily, so that execution
remains deterministic.

Primitives: The basic form of SASL does not include facilities for “primitive” operatidhat are
implemented in another language. Such primitives are not necessary to impkemygsure statically-
allocated function, as these functions can be described directly in SA8lingfunctions that have
state or perform I/O could be problematic, as the optimisation and evaluatiorismodg rely on the
pure functional nature of the language.

However, this does not stop the possibility of implementaxgernal linkage(using the term from
software). Provided the primitive acts in a pure functional style, a call &x&arnal function would look
just like a normal function call in the SASL source, with similar semantics. Itldvbe synthesised to

1The simple CSP synthesis of this chapter does not allow pipelining, but gsapthesis (Chapter 4) does.
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B Call
a) Rese Inactive Called
@) Reset(Inactive)—— " ——>{(_Called )

Resel \b Stream Request -
= Processmg)
Stream Reply
Ready
Stream Request -
] Processmg)
Stream Reply
Call
(b) Reseti(lnactive ] =1 Called )
Return

Figure 3.1 The function call state machine for (a) functions with atres and (b) stream-less functions

the instantiation of a module defined directly in, for example, Verilog. The priettiphysical interface
would be highly dependent on the hardware “calling conventions” ofyhehesis system, as would the
signalling for the top-level calling interface.

3.2 Synthesis Outline and Function Interfacing

When synthesising SASL, a new instance is created for each norsiveruoall site in the original pro-
gram. Instantiation proceeds hierarchically, so that creating a new iestaeates new instances of
all modules it uses. Although this section describes the interface usedStrtle ideas are broadly
applicable to graph synthesis too.

The only I/O resources an instance requires are for passing in artmarahreturning results—calls
to sub-functions are hidden internally. In the approach taken here, taitice is split into:

A call/return mechanism for transferring basic types. This consists of an input channel to provide
non-stream arguments and activate the instance, and an output cteargietn non-stream results
and signal that the instance is now quiescent and prepared for segagsts.

A set of stream buses representing input and output streams, to transfer streamed valuensequ
tially, on demand. Stream buses consist of a pair of channels: a reduagstel, used to demand a
new stream item, and a result channel, which returns the newly genetiaach stem. There may
be multiple instances with read and write access to a single stream bus, bustbahg ever at
most one active reader and one active writer on any stream bus, deedaléring imposed by the
language—stream matches arNses occur in a fixed order.

A reset mechanism This consists of a single channel which, when written to, resets the instance
to a quiescent state, as described below.

A state machine representing the calling convention is shown in Figure 3Tl{a)left-hand states are
“quiescent” states, and the right-hand states are “calculating” stateat dtyipams may only be read
during a calculating state, and an instance may not move to a quiescent siaté@ Wwas outstanding
requests on its input streams.

The calling convention for an instance starts when a function call is rezplsedy sending basic type
arguments (if any, or a unit datatype otherwise) to the non-stream inpanheh—causing a transition
from thelnactivestate to theCalledstate. In thénactivestate (including before the first call is initiated),
the instance will not read from its input stream buses, and will not respmmequests on its output
stream buses (it may receive and ignore such requests while inactive ghiaring the stream bus with
othercoNsexpressions). After the instance has moved toGhbed state, the instance may read from
its input streams, and the eager part of the function is evaluated befobadtetype return values are
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int unit
gen int stream int strea
unit
unit int
int streal _ int stream
unit

Figure 3.2 A “black box” view of the functionggen (int  int stream), map (int stream  int stream) and
fold (int stream  int)

passed back over the non-stream output channel, causing a transitimReadystate. Evaluation of
lazy consexpressions of the form: e’ returns without evaluating or ¢’. No stream items are returned
at this stage, since stream items are generated lazily, produced only ondjéater in execution.

Matches on the streams passed in as arguments map to reads from the 'mgtantstream buses,
and, after the hardware has signalled a return (i.e., it has enterBe #ugstate), matches on the returned
streams become reads from the instance’s output stream buses. Ansirgpm may only be read when
the associated stream-production hardware is quiescent; the harthale Ise in theReadystate before
any stream requests are sent, so that there are no outstanding fuatti@m mcomplete stream requests.
A read request on a stream causes the hardware to go Rrticassingstate, and it returns to tiiReady
state when the result is produced. There is Braecessingstate for each stream in the function’s return
type. A stream read request is implemented as a write to the stream bugstrelyannel. The instance
generates the appropriate value for the current head of the streamgtants it over the reply channel
of the stream bus$.

A function instance may be called multiple times, inside a tail recursive loop, takithgedarning
different streams each time, so that a single stream bus may have multiple sissaTigted with it over
the life of the program. However, only one stream may be active on a gerat a given time. The
stability constraint of Section 2.4.3 prevents a stream generated in oneocalbéing accessible when
another call to the same module occurs. Between calls to a function instandesttrece should be
reset through a write to its reset channel, so that it loses any state ésdadih the streams it returned,
going back to an “uncalled” state. The reset moves the instance froRetdystate to thénactivestate,
whereupon a new call can generate new streams. A resetlimatbivestate does nothing. For a function
that returns no streams, theactivestate and th&®eadystate are the same, as shown in Figure 3.1(b).
In such a case, the reset signal does nothing, and can be omitted, $etimié¢rface reduces to SAFL's
call model.

Synthesised programs do not contain any residual polymorphism; thevieldtlaction must not have
any type variables in its type, and for other functions the return type mustlbedo be inferred from the
parameter type (for example, the functimm f = = f z is disallowed). Hence, polymorphic values do
not appear in the hardware, and no special treatment is required.

Interfaces for functions that generate, map and fold streams are shdvigure 3.2. Vertical arrows
represent basic value buses, providing call/return signals. Horizamals represent stream buses
(requests from right to left, results from left to right). The stream buepgesenting streams passed
to or returned from the function are fixed channels, and do not need tefdresented in the tuple of
data transferred when calling or returning. If no basic types are seatwned a unit type is used as a
placeholder during the function call.

2In more detail, it evaluates both the head and tail ofcleis expression, and only returns the head value once both the
head (the stream value) and tail (execution up to the aextsexpression) evaluation have completed.



3.3. Variable access 59

3.3 \Variable access

The CSP synthesis approach relies on converting functions into dati#lstructures, whose nodes
transfer intermediate results representing the results of sub-expressienedges (which are imple-
mented as channels). The implementation of variables in SASL has some subbetiestream vari-
ables can either be treated as being stored in some form of re-readehlde/é'broadcast”) or being
transferred over edges like other intermediate values (“unicast”).eTéd®mes, and their advantages
and disadvantages, are described in the following sections. Strearleatiave already been discussed
informally, and their implementation is described in Section 3.3.3.

3.3.1 Broadcast variables

The “broadcast” approach is to store non-stream bound variablesdénexglly accessible place where
they can be read as many times as is required. The location may only beittegrwhen the previously
held value goes out of scope. This is implemented in CSP with variables; ina daelware imple-
mentation, a register would be used. To implemebtz = e; in e, ¢; would be evaluated, and the
result stored before, is evaluated. Any occurrence ofin e; becomes a CSP variable access. Tase
expressions would be dealt with similarly.

This is a relatively simple scheme, and is used in this CSP synthesis. Theidewmshis scheme
is thatey cannot begin evaluation untif has completed, and the function cannot be pipelinednrust
be held constant until it goes out of scope, so only one call can becactiy at a time. When &ONS
expression is evaluated, the head must be evaluated before the tail, aériegytaontain a recursive
call which overwrites variables that the head is accessing. These@manggs can be addressed, at the
expense of complexity, with unicast variables.

3.3.2 Unicast variables

An alternative which allows for more parallelism is to use channels to supphstream variable values.
Forexample, idet z = e1 in ey, e; would be converted to a structure with its output channel representing
the valuer. The body expressios, would have an input channel representin@nd these two channels
would be made identical. The two expressions can evaluate in parallel, hdemd to synchronise
whenes; waits forz (rather like thdenient evaluatioomodel [144]). Thus, more parallelism is available,
and requests may be pipelined. Expressions involeaggework similarly.

This model comes at some cost in complexity. Since variables are transfezec¢hannels, and
channel reads and writes must be matched up, variable access musabe-iien a programis run, any
variable that goes out of scope should have been accessed exaetlfsorthat all variable storage is left
empty once the evaluation has completed). This can be achieved by insegeg®ons that explicitly
copy variable values if a variable occurs more than once in an expreasidadding expressions to “use
up” variables that are bound, but never accessed. Section 4.2.% slognto convert SASL to a linear
form.

It is also necessary to make sure that even if a variable is not used wéowas value-generating
expression to terminate before returning. For example, itetrexpression above, the whole expression
should only terminate if both; ande, complete evaluation, rather than just even ife; never uses.

Although this variable usage model is more complex, it can allow the generdtimore efficient
hardware, and provides a more consistent synthesis model (all datasifeted over channels). We have
not used this model for CSP synthesis, but it forms the basis of nextartsagraph synthesis.

3.3.3 Stream Variable Access

Streams are implemented using stream buses, as described in Section @2s ¥atails remain to be
explained:
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Ordering Stream Accesses: Itis necessary to ensure that the reads or writes to a stream occuem ord
This ordering is not enforced by the actual stream buses. To make (®aglam matches) occur in the
correct order, basic-type values are used to to represent the stréamé value is returned bgons
expressions to signal that the stream is ready to be read from. Streduimmaementations then return
a unit value to show that that read has now occurred, so that the nextaontake place. Passing these
values around ensures read ordering dependencies are met. Therdeitelependencies are enforced
by the implementation afonsitself.

The Stream Activity Model: The stream bus model expects that if an expressimturns a stream,
the circuitry associated with it will not listen for requests on the stream befts evaluated, but will
afterwards. In other words, each subexpression obeys the callimvgmtions for streams given in Sec-
tion 3.2. The enclosing expression must ensure that no other circuitry isitigten the stream bus
when it evaluates the expressi@rso that there is only ever a single piece of circuitry waiting for stream
requests on that stream.

By analysing the syntax tree, it can be shown whether the property hwlddl Sub-expressions of a
function. For example:

In alet, if the body expression does not allovcaNsto listen on the returned stream bus before the
expression is evaluated, and does afterwards, the overall expreghibave the same property.

coNsexpressions of the forra, :: e; are synthesised so that the stream bus returned ks/also
returned by thecoNs expression. The implementation of toeNs expression will not listen on
the stream bus before it is evaluated, so it will keep to the model as loag @dses too. Once
evaluated, it will listen for a request, but not evaluateso that there is only a single active listener.
When a request arrives it stops listening and evaluatesde,, so thate, will manage listening
for requests on the stream bus.

Stream matches work by evaluating the expression that is being matchedapasure that there
is some circuitry listening for a request on that stream bus, and only théarmpéng the request to
read the item.

Variable access expressions need to be carefully implemented to meet thig seedselow).

Stream Variables: A naive implementation of variable access does not meet the above requirements.
For example, in the expressidet s = f() in z::s, s is bound to a stream which is activated in the
function call to f—a coNs expression inf will be waiting for stream requests whehnreturns. The
expressionz:: s would then be evaluated and wait for a request on the same stream pastiey the
(as yet unexecuted) tail expression to not yet be waiting for requestedus. TwaONSexpressions
would be simultaneously waiting for requests on the same stream bus, can®ngr.

A solution to this problem is to distinguish between the streamSbassociated with the variable itself
(representing the stream returned by the binding expression) andgtiedssociated with the variable
occurrence. In the above example, evaluatiorf @fwould causeS to be listened on, but nat. The
evaluation ofx:: s would then causé’ to be listened on. When a stream read occurg’pn is returned
and the variable access expression evaluated. Further requé&sshould return items from§. To make
this occur, the variable access expression stafisvearding process that repeatedly waits for a request
onT, performs a request a$), receives the item fron§ and returns it orf".

Eliminating Unnecessary Forwarding: Forwarding all streams at every variable access is inefficient
and complicates tail recursive calls. However, variable occurrenitegypes containing nom-stream
identifiers may be treated differently. The type system guarantees transtreith nonx stream identi-
fiers are notoNsd upon or merged with other streams. This means it is not necessary tartbsuch
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(* (&) A function that needs to forward stream items. *)
fun select(test, stream1 , stream?2) = if test then stream1 elsestream?2

(* (b) A function that does not need to forward streams. *)
fun select2(test, stream) = if test then stream else casetream of x::zs s

(* (c) If modifying a stream with cons, forwarding is required. *)
fun f1(x) = let stream = g() in x:: stream

(* (d) Transforming program (c) eliminates the need for forwarding. *)
fun f2(z) = z::1g()

Figure 3.3 Example functions that may need stream forwarding

streams in a variable access expression, as there will never be a situagmmitis possible to have two
CONsexpressions simultaneously waiting on the associated stream bus.

A simple optimisation is to only forward streams that have a stream identifierimfthe variable
occurrence’s type (remember that the typing rules allow this to differ frarstieam identifier in the

type of the variable itself, due to thesubstitution). The stability constraint requires that streams used in
recursive tail calls have nonstream identifiers, so that the streams passed into recursive calls are nev

forwarded, simplifying synthesis.

Examples: A selection of functions are given in Figure 3.3:

Example (a) may return eithetream1 or stream2 conditionally, using the same stream bus. Since
both binding expressions are evaluated befetert is called, there would be twooNsexpressions
waiting for requests on the same stream bus, if forwarding were not ukedype the function
correctly both variable access expressions musktsstitutions on the stream identifiers, so both
streams are forwarded to the returned stream bus.

Example (b) conditionally selects between the stream given as an argumetiheasame stream
with an item read from it. The same stream bus can be used to return the tresuti 1 both cases,

without the possibility of multipleeoNsexpressions waiting for requests on the bus simultaneously.
The variable occurrences do not needubstitutions in order to be typed, and so the streams need

not be forwarded.

Example (c) callgy() to create a stream, and then triesdoNs an item onto this stream. The
stream must be forwarded, as the stream bus returngd)hyill already be active when theons
expression is evaluated. The variablecarn has ax stream identifier associated with it, as it is not
dependent on a parameter stream, and so the variable occurrenos eefiftream with & stream
identifier, causing forwarding.

Example (d) shows how the forwarding process can be eliminated by regniérvariable. Since
no variable is used, no forwarding is required. The functigmthen lazily evaluated, and not called
until after thecoNsexpression has responded to a request, so thatdhes expression ang() can
safely share a stream bus. The analysis of this chapter cannot ideatifgtdoducing a forwarder is
unnecessary, but this extraneous forwarding is eliminated in the nepteci{@here we distinguish
between the streams currently markgd

3.4 CSP Synthesis

Our synthesis uses a form of CSP based on that in Hoare’s CACM g&ifjeextended with finite al-
gebraic datatypes and tuples; we assume that tuple and constructor psrai@/@vailable, and that
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matching can be performed with guarded expressions. A function calhieca write of scalar argu-
ments on one channel, followed by a read of the result on another. @uoagh was influenced by
Abdallah [1]. The functions are transformed to CSP using a syntaxtdiddcanslation, and the final
program constructed by composing the translated functions in parallel.

In contrast to SAFL, SASL functions must hold some state describing str@adesd, this is part of
the rationale for using lazy lists—they provide a way of dealing with state foali®so on). A function
that returns a stream holds the information required to generate furtherfiemshat stream. Before
a function is called again, the hardware that produces stream valuebenteset to thénactive state,
as described in Section 3.2. This is done by giving each expressioset™annel that is written to
before the proper function call is performed.

The details of synthesising non-stream elements are discussed in SectloaBdthe implementation
of streams is discussed later in Section 3.4.2. Before synthesis startsogitarpmust be unfolded so
that each function has at most a single external call site (to avoid the oeedlbitration), and each
variable is given a unique name (to avoid scoping issues).

3.4.1 Non-stream CSP Synthesis

Each subexpression has two value-less input channels; one stdutstievaof the expression, the other
performs the reset as described above. An output channel is usetlito all the scalar results of the
expression. All subexpressions are translated as shown in Figu(@3 8l 3.4(b), and the resulting
commands are composed together in parallel. Each time the rules are appkbdpémes are created
for the channels and temporary variables. The following channels aextieption to this:

The E™, E°% and E™*¢* channels.

Thee“* channel of a function definitiofun f = = e.

Thee{", ..., e2" channels of a constructor matchiogseeg of ¢ ... e 1 ... g... e g
Thee{“! channel of a tuple matchingpsee of (z1,...,2x) e 1.

Theef“t channel of det expressioriet z = ¢ in ey.

The E™, E°“ and E™*°* channels are made identical to the appropriate sub-expression chahnels o
the enclosing expression, to allow communication between the sub-exprassienclosing expression.
The other channels in the list are made identical to/l&’ channel of that expression (¢r* for a
function definition). This ensures that the result of the sub-expressipassed out directly, and no
commands are generated to read from that channel. For expressioilisdnuesive contexts, the output
channel of the tail position sub-expressions must not be made sepsnaie,if a tail call occurs no
results will be passed out.

SASL variables are implemented using the “broadcast” model of Section 3ighithe values stored
in CSP variables. These variables are not scoped, so variable rensmaguired to ensure unique
names. SASL variable names are bounddsematches antét expressions by evaluating the expression
producing the variables, assigning the results to CSP variables, andsdieatig the body expression.
The same CSP variables are used to store the SASL variables from lifferetions of the same
function instance, so the translation must be designed to avoid race cosditiene CSP variables are
overwritten when the old values may still be required.

Two forms of function application are given. Non-recursive call sitgqeet a result to be returned,
which is then passed out on tapplication’soutput channel. Tail recursive call sites expect no result to
be passed back locally, with the result instead being passed back direotighhthefunction’soutput
channel.

When a non-recursive function call expression is reset, it simply résetiinction it calls, and the
argument expression, as if the function being called (which is unshhegtipeen inlined. Recursive
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(a) Function translation—see Section 3.4.1

Original function, f | Translated functions (with channef&', fou and f7**¢)

(/™72 e ()
I]freset?() e reset!O]

funfz=e

(b) Non-stream expression translation—see Section 3.4.1
Original expressionk | Translated expression (with channél§, E°* and E"¢)

fe (non-recursive) Eresety()  f reset)() ereset]()]

[Emf)() e in!();eout?t; fin!t;fout?t;Eout!t

fe (recursive)

Emf)() e m]() outf)t [ reset!() freset!()];Ereset?();fin!t

[

[

I]E?"eset?() e reset[()]
[E™2() e 10 ... MOl

[ef ™2ty ... eg™7ty);
clew, - ex) Eoe(ty, ... ty)
I]Ew.’eset?() e {eset[() L elgeset!()]
[E™?() [e ’”L() = ”‘!(Z],
[ ou 7t1 e ou ?tk];
(er,- ex) E"“t!(tl,...,tk)
I]Ereset?() e {eset!() . e]:eset!()]

caseep of ci(...) e

...

qc(' : ) €k Ereset?() e geset[() . e]:eset[()]

[E™2() e ¢"10i[e§" ?ea(--) e {"10)

leg™Pex(.-.) e ;M)

caseey of (£E1, cees Ik) €1 Eresetfp() e geset[() Teset|()

Emfp() m|() outf)(xl’_. fk) em!()

letz = e in e Ereset‘? ) e gesety() reset|()

Emf)() E out!x

H
[
[ ]
[E7() e §"0); eg"7; e1"!()
H ]
[
[

z Eresetf)() Sklp]
(c) Stream expression translation—see Section 3.4.2
Original expressionk | Translated expression (with chann&l§, £°% and E7es¢t)
o e [Ezn?() E O“t!(); [Sreq?t() e {n|() t t
” reset 9 reset | reset |
e : T stream? [E72() e 1) e ()]

Ereset‘? ) ‘e {eset!() egeset!()]
el e 3M(); eg™2(); Skt

E : 7 stream?

caseey Of r1iiag € 1

)
[
(B2 e §10; e820); 5™01(); §°F 2 =
)

S
€T streamz resetf) reset | reset |
79 1 T stream? B e 1) ex*1()]
. s [E™?()  START(0 1,09); B
E(Tl [E™¢?() STORo 1,02)] FORWARD(oq,03)
P

Figure 3.4 Syntax-directed translation to CSP
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calls are more complicated. To keep the reset signalling graph acyclic,aweenrsive call site is reset,
it only resets its argument sub-expression. When the recursive fareetlihbitself occurs the function call
expression resets the enclosing function it is calling. Since the call site Eeamession of the function
it is resetting, it must expect a reset signal and not propagate it, intrgegvent an infinite loop. Once
the function has been reset, the actual function call is initiated.

3.4.2 Stream CSP Synthesis

Streams are represented using a combination of stream buses to passi@amavalues, and unit values
that represent the streams on the scalar side, in order to ensure therstaela and writes occur in order.

Stream buses are associated with stream variables using type annoiatiarsimilar way to how
the stream identifiers are associated with streams. A stream with stream iderffsociated with the
stream busS is given a type of the form streamf . A distinct stream bus is created for each stream
parameter. For typing, stream buses are treated in the same way as stetiieid, except that when a
variable access expression returns a stream identifiea different stream bus is assigned to the returned
stream® New stream buses are assigned where possible, but if two streamaagemed together at
the end of a conditional expression the buses are required to match by¢hsystem, since the results
should be written to the same stream bus, regardless of execution patlfttakeonstraint can be met
using a unification-based typing system).

Figure 3.4(c) shows the translation relating to stream expressions, wifilaceeent translation of
the variable access expression. The types of expressions are\@s0 &g the stream buses used are
held in the types. Each stream bblds compiled to two channels: a unit request charstéf and a
result channeB*. Again, new names are created for the channels and temporary varialitethe
exception of the output channels of sub-expressions that do occulréorigexts:

The e$* channel of &coNsexpressiore; :: es.
The ef“ channel ofconsmatching formcasee, of z1:izy e 1.

These channels are made identical to the expressioty's

In the constranslation rule, an incoming request returns immediately, setting up a ptbe¢s®its
for a request. If a request arrives, it triggers processing of tlhe lkeepression, while if it receives a
reset, it returns to an inactive state. When the head finishes computingjuai®s the tail, and when
the tail finishes evaluating the result of the head expression is passed thé stream’s result channel.
It is necessary to make the stream buses: {6t and £°“ identical so that if the tail expression causes
a recursive function call the completion of the call is detected, signallingtlileastream item may be
returned.

The consmatching rule works by evaluating the stream-producing expressipperforming a
stream request, storing the read item in the variabl@and activating the body expressien

The variable rule in Figure 3.4(c) generates stream forwarding comnuaintythe functionSTART,
sTopandFORWARD, defined in Figure 3.5. These rules are complicated by the fact that aleamaly
be a tuple of stream and non-stream types. The rules simply break dowartakle’s type, extracting
the stream buses of streams that are to be forwarded. For each stitbearstwveam identifier of in the
type of the variable occurrence:

The FORWARD function generates a process that forwards items when an item is cgivihe

channelFf,;T. It will continue until it receives an item on the chand?%’fT.

The START function generates a command to start the copying process when the vacabbs
expression is evaluated, by sending an iterﬁf@T.

3For theconsrule the stream bus of the whole expression is the same as the streantheiaiifexpression.
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START(of ... o L0o? ... 0 2) = START(0{,0?) ... START(c},02)
START(7,7) = skip
ST T I
START(T stream? , T stream?) = For )iy = *
J skip : otherwise
STORo] ... o Lo? ... 0 2) = sTOMo},0?) ... STORo},02)
STORT,7) = skip
s s FEN0 ¢ ifj =«
STOH(T stream? , T stream?) = off .
J skip : otherwise
FORWARD(o} ... o L1 o? ... o 2) = FORWARD(c{,0?) ... FORWARD(c),0?2)
FORWARD(T,7) = skip
FORWARD-STREAM(S,T") : if j =
FORWARD(T stream? , T stream?) = : (5,7) J =
! J skip :  otherwise

whereFORWARD-STREAM(S, T') =
[FfﬁT?() active 1 := true; [activeS’T = true; T™7() S Teq!();SaCk?t;T“k!t
Jactive™T = true; FOSJ’?T(?() active 5T = false]
[y () skip]
andactive™T is a new CSP variable

Figure 3.5 Functions to generate the stream-forwarding commands

The sTopfunction generates a command to stop the copying process when the expiessset,
by sending an item of,;".

Between them, these functions generate all the commands required todatevas fromsS to 7" (if the
stream bus is forwarded tdl” in multiple variable occurrences, a single instance of the forwarder can be
shared). Streams with nonstream identifiers in the expression’s type are not forwarded, as theairigin
stream can be used directly instead.

Example: An example program that inverts the elements of a stream, with its translation tasCSP,
shown in Figure 3.6. It is annotated with numbered sub-expressionsinplieand output buses are
andO respectively. As the variable occurrencessof andzs both have types whose stream identifier is
non-, the streams do not need to be forwarded.

3.5 Summary

This chapter has introduced a simple synthesis to CSP, based on thecdstiachriable model. It
provides an introduction to the synthesis of the next chapter, which, while cwmnplex, still relies
on the same syntax-directed approach of creating communicating sulspesc although in the next
chapter these will be represented as graph nodes. This chapter gasdtie use of stream buses, which
will be refined in the next chapter so that less stream forwarding is esjuir

This chapter also introduced the “unicast” variable access model whichewilked by graph synthe-
sis. Graph synthesis adds a further layer of complexity by allowing the pipglof requests.
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(* Map a stream. *)
fun mapnot(str) = (casestre of zi:xs  ((not x 5)4:: (mapnot xs7)6)3)1

(* The function implemented in CSP. *)
[mapnot™?str e ™ | mapnot™*t?() e
€70 € 5105 e§20: T™0: T 2ias = 0 el [ e e ) e 10)
[e52() e §*1() [ es>=?() skip]

(€270 mapnot U1 [0™7() e PO [t e Fh() e

I] reset e Zes.et!() egeset]

[eOUt‘?t e 1(); mapnot®™?(); O 1t,]

[eP?() e P1(); e2%y; not™ty; not® 7ty ety | ef5t  mot TesCt()  elesetl()]
[

6

e

[e7"

Ieset]

(5
B0 e P ) skip

e z7”'() ut2tg; [ereset()  mapnot™€()]; ekt ?(); mapnot ™t
resetf)() e ;eset!()]
e 2U() [ ebeset skip]

Figure 3.6. A stream function and its CSP translation
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Dataflow Graph Translation

The previous chapter deals with the translation of SASL to CSP. Thererammber of weaknesses to
that approach:

The broadcast variable access model (SASL variables become Ci@Bles limits parallelism.
Unicast variable access (SASL variables become CSP channels) eouseth in CSP synthesis, at
some cost to circuit complexity.

Certain SASL features are poorly matched by their CSP implementation. Fopexatwo CSP
channels are required to implement each SASL stream, providing far moilevelsynchronisa-
tion than is necessary.

Non-trivial transformations are difficult, as they must be performed oreeitie original syntax
tree, or the final CSP (which lacks high-level structure).

Certain optimisations cannot be implemented in CSP, such as lenient evaluati@e(smon 5.2).

Given these limitations, we would like to transform the SASL programs to an interteddianat that
suits the details of SASL, aids optimisation, and is easy to synthesise to RTLapfheach we have
taken is that of dataflow graphs. Dataflow graphs can be producedSASL relatively simply, and
the hardware implementation is also quite straightforward: each node in thke graepresented by
an instance of a hardware module, and the graph’s edges becomeatammnections (some simple
example nodes are given in Appendix A, and some node schematics aieutistrthroughout this
chapter). The dataflow graphs provide great flexibility for optimisation.

The dataflow graphs use request/acknowledge signalling to allow basktpe. Each edge acts like
a synchronous CSP channel, with a single static reader and writer. &uingwith many nodes, this
can lead to a large synchronisation overhead (a common complaint agafasiridven asynchronous
circuits), and Section 5.1 discusses the uses of static scheduling to thduaeerhead where possible.
The basic graph model shares much with Buck’s token flow model [26].

Although translating the non-stream aspects of the language is relativellessypthesising streams
is rather more complex. Each stream in the program is translated into a memhsaurce calledstream
bus which is accessed by all nodes which read or write to that stream.

The dataflow graphs are intended to be synthesised into hardware velmateal with pipelined re-
quests. This differs from SAFL, which deals with at most a single outstgnchi. Most functional
structural HDLs can create pipelined hardware and systolic arrays, but at trensemf support for

67
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high-level control structures such as loops. SA&lhaviourallysupports both control flow structures,
and pipelined, systolic-style implementations. Issues surrounding pipelidi8g Srograms are exam-
ined in Section 4.1.

Despite the discussion above of “dataflow graphs”, the synthesisagpio this chapter uses three
graph styles, which are broadly similar, but gradually replace the higkiel{source-oriented) features
with low-level (target-oriented) features:

Section 4.2 covers the conversion of SASL to a simple dataflow graph loasbadear types to
provide unicast variable signalling.

Section 4.3 removes tail calls from these graphs, by introducing iteraticatgpds.

Section 4.4 brings the hardware implementation of streams into the the datafldw gregucing
graphs from which hardware may be constructed.

4.1 Pipelining SASL

The call model presented in Section 3.2 deals simply with a single caller at a tirsbpas in Fig-
ure 4.1(a). SASL is intended to allow pipelined requests, and this requimes a&alling convention.
The call/return/stream-request/reset model (see Figure 3.1) providescanhodel for stream requests,
assuming a single outstanding call. This model is extended here to allow multiplaralitg) calls, to
increase parallelism.

Basic Pipelining: For functions that do not take streams as parameters or return them, the calling
convention for the synthesised modules is simple. Requests may be sentimétaace as fast as back-
pressure allows (that is, as long as the “ready for input” line is set). |Reme then produced in order,

so that then'™™ request leads to the'" result, as shown in Figure 4.1(b). If one of the requests leads to
non-termination, all further results are blocked.

Finer Granularity I/0:  The basic calling convention expects a single argument value, and a single
result value. The argument and return value are each sent as an atatnidfumultiple values are
used as parameters or results, they are collected together using tupkesnajhunnecessarily restrict
parallelism by enforcing synchronisation between the items where norguisae. The optimisation of
Section 5.3.1 deals with eliminating unnecessary tupling.

The pipelining model can be extended to deal with multiple inputs and multiple outpuieating
logical tuples. Then!" input tokens on each of the input edges are collected together to form thallogic
n'™ parameter (and similarly for output edges). This model can be used fdmpigegeneral graphs
(rather than just single-in single-out functions).

One thing to note is that the multiple parameter and return elements are grouped byrival number
on that edge, rather than the exact timing, just as:ffieoutput matches the™® input, independent of
how many more inputs were received before the output was produaedexBmple, two values may
arrive on inputA before the first on inpuiB, but the value orB is still associated with the first value to
arrive onA.

Pipelining Streams: The CSP reset model for streams cannot be used directly with a pipelirtechsys
A reset now must not reset all processing involved in stream produydtiinstead only reset the set of
streams currently being output, at which point the streams associated witbxtheatl to the function
may be accessed. In keeping with the finer-grain /O model, a separamseset is provided for each
stream returned, rather than a single line that resets all streams.
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€)) Arguments: Results:
Scalar Parameters A————= |

———=Scalar Result A
Scalar Parameters B——=

——=Scalar Result B
Scalar Parameters-€6——=

| ——=Scalar ResultC
N
Time
(b) Arguments: Results:
Scalar Parameters A———=

Scalar Parameters B———=
—— = Scalar Result A
Scalar Parameters 6—— =
—— = Scalar Result B

| ——=Scalar Result C
Time
(c) Arguments: Results:
Scalar Parameters A———=

Scalar Parameters B——=
——= Scalar Result A

Stream Reset A=————— =----oooeeee = Stream Read A
RREEEIEEREE = Stream Read A
l=—  Stream Reset A

Stream Read B<-------------- =
——= Scalar Result B
Stream ResetB=———— =<=---------o-- = Stream Read B
Scalar Parameters-6———= |............... = Stream Read B
Stream Read G-+ > = Scalar ResultC
RREEEIEEREE = Stream Read B

<— Stream Reset B

Stream Read G=<-------------- e I > Stream Read C
Stream Reset & | Stream Reset C
N
Time

Figure 4.1: Example call sequence for (a) unpipelined access, (b)ipgzkaccess with scalars, (c) pipelined
access with streams.
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Figure 4.2 Example bus encoding of a stream.

An example calling sequence is shown in Figure 4.1(€he function has a single stream parameter
and result, as well as scalar arguments and results. Stream accassasc@liows:

The stream values between the 1) *! reset andh!" reset on a particular stream bus are associated
with then'" set of scalar parameter and return values.

Then'" output stream may only be read from after tti€ scalar result that represents that stream
is produced. This stream may be read between the stream reset of\lweipigtream on this bus,
and this stream’s reset.

Then'" input stream will not be read from until the associatéd input token has been received.
Stream reads and resets may be triggered as part of producing theresalts (reads 2 and 4), or
be triggered by the production of a stream item (read 5). Stream resebtedaggered when the

stream stops being live, either during scalar result production, whgeansread occurs (resets 1
and 3), or when the output stream that uses it is reset (reset 6).

Requests for stream items are not pipelined. However, this need not linaitgham, as the actual
production of stream items can be pipelined (see Section 5.2.5), and axstream items made through
a FIFO, partially decoupling stream writing and reading.

A simple example of how the streamed values may be sent over a set of wihesvis & Figure 4.2.
Two-phase signalling is used for all wires except reset. A requess leadn acknowledgement and
a value being produced together at some later point. A reset drops thef the stream, so that the
next value produced is the first item of the next stream to be transferrétht bus. For a synchronous
implementation all edges are expected to coincide with an underlying clockhdwxact number of
cycles between request and response can vary.

4.2 Dataflow Graph Generation

The initial intermediate format is a simple dataflow graph, where edges esprieputs, outputs and
intermediate results, and vertices represent data processing oper&i@mually the vertices are im-
plemented using standard RTL modules, and the edges are implementedrasisigec channels.

The graphs are built up from the node types shown in Figure 4.3. Thagegae created by connecting
together basic nodes, call nodegiNsconstructs and conditional constructs. Basic nodes and call nodes

The graph is rather simplified, showing scalar functions as taking areippte amount of time to process (thus making
pipelining worthwhile), while presenting stream reads as instantaneouslénto keep the diagram from becoming too large.
This may well not be the case in practice.
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are like the terminal symbols of a grammar, whileNs nodes and conditional nodes are like non-
terminals, containing (finitely) nested subgraphs. An example dataflovh gsaghown in Figure 4.9,
which will be used as a translation example later.

In this section, entire streams are represented as single tokens, just Blkeutted for scalar values.
The coNnsnode produces a stream token, and when the stream token is matchedésimveubgraph
in order to obtain the head item and a stream token representing the nart gten. A stream is read
using a stream-matching normal node that takes a stream token, and teeuhesad token and the tail
token produced by theonssubgraph. For the moment, the mechanism for transferring data between the
conNsnode and stream-reading node is hidden. The graph representatieotminS4.4 will explicitly
split the stream into a unit (data-less) token used to signal that the streaadis and a stream bus to
connect the producer to the consumer in order to transfer the actual data

The basic form of SASL cannot be directly converted to the dataflowhgrapresentation. SASL
variables may be used more than once, or not at all, while dataflow graels edpect one read per write
(the variables must be linear). While the CSP synthesis of Chapter 3 udgdadtast” approach to
variables, the dataflow graph relies on “unicasting” variable values.uhfeast approach makes reuse
of storage easy, simplifying pipelining, since a storage location can bedeasssoon as the item has
been read once. The “broadcast” approach allows the same data vakiesiad repeatedly, but requires
that the item is kept around until it is not live. This can limit pipelining and may ireggxplicit reset
lines.

In order to convert the program to a dataflow graph, it is first conslae_inear SASL, wherall
variables are linear. This translation is explained in the next section, whileathgation from Linear
SASL to a dataflow graph is given in Section 4.2.2.

4.2.1 Translation to Linear SASL

Linear SASL demands that if a variable becomes non-live, it must haveusssl exactly once. While
normal SASL requires that a stream variable is used at most once, ISA&Ar ensures thatll variables
are usedreciselyonce during terminating computation. This makes it possible to convert the binding
and usage of a variable into an edge that connects the output of theteamomputes the variable’s
value to the point at which the variable is used.

Linear SASL's grammar is given in Figure 4.4. The expressmms andkiLL are introduced:

The bup expression is needed to duplicate values, since each variable may orggdence. It
returns a pair containing two copies of the variable’s value (variablesicing streams may not
be duplicated, to preserve the original linearity constraint).

TheKILL expression is needed to “use up” variables that are otherwise natsackdo preserve
linearity. It acts as if the variableis read and discarded, before returning the value of the expression
€.

The linearity requirements are shown in the syntax-directed rules of Fgbir& he rulelin; should be
applied to each function, returning the empty set if the function meets the lineagityrements, and
error otherwise. Thdin rule generates the set of free variables the expression will have xaetlye
once if it terminates. The rules are constructed so that the same variableoinlag nsed in multiple
subexpressions (except for conditional expressions). Variablesewsed within the expression they
are bound in. All cases of a conditional expression should use the sdmlevariables, so that the same
variables are accessed irrespective of the condition.

The conversion of a SASL program to Linear SASL is achieved by a syditacted translation to
remove non-linear variable access. The syntax tree is traversed indowopfashion, applying the
following rules:
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Normal nodes are used to do basic data processing that does
not require function calls—the “normal” operations that do
not require special case operations. This include tupling,
untupling, stream reads, the creating and unpacking of al-
gebraic datatypes, and implementing primitives. Normal
nodes take a token from each input edgeperform an op-
eration, and place a result on each output edge

Function call nodes implement function calls. The function
argument is put on thé edge to trigger the call, and the
result is returned on the edge. Both recursive and non-

recursive function calls use function call nodes.

Conditional select and mergenodes are used for control-
flow. Depending on a conditional token supplied on the
edgeC, a token on the edgé will be supplied to one of
the I;, and a result token read from the matchiflg and
written to O.

w .

cons| <D
y o
(0]

Key: <= =asubgraph.

CONS nodes are are used to represent the lazily evaluated
CONsexpressions. They act like normal nodes with a single
input / and outputO. When a token is supplied tb the
value of the token is stored, and a token representing the
whole stream is returned fro®@. When the stream token
returned ovep) is read from, the associated token that was
read from/ is sent out ovel’, and a result token is expected
from O’. The result token must be a pair of the stream’s
head value, and the new stream tail. These are returned as
the result of the stream read.

Figure 4.3 Dataflow graph nodes
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caseeof my ... m
caseq of (x1,...,2,) e 2
caseq of z1imm e o

Program definition
Function definition
Function application
Constructor

Tupling

CONSexpression
Constructor case matching
Untupling

Stream match

letz=gin ey Let expression
x Variable access
DUP(z) Variable duplication
KILL (z, €) Variable destruction
m:= c(r1,...,T) € Match
Figure 4.4 Linear (“unicast”) SASL's grammar
ling(fun f z=e) = lin(e)- =
lin(f e) = lin(e)
lin(c(er,...,ex)) = lin(er) lin(e k)
lin((er,...,ex)) = lin(er) ... lin(ey)
lin(e;:iea) = lin(er) lin(ez)
lin(caseeof my ... m) = lin(e) (lin,(m) ling, (my,))
lin(casee; of (x1,...,2,) e 2) = lin(er) (lin(ea)- x1,..., 7% )
lin(casee; of zyizy e 2) = lin(er) (lin(ea)- 1,22 )
lin(letz = e inex) = lin(er) (lin(eq)- x )
lin(z) = =
lin(DUP(z)) = =«
lin(KILL (z,e)) = x lin(e)
ling(c(zy,...,2) €) = lin(e)- = 1,...,2%
error if s=error t=error s t =
s t = .
st otherwise
;= error ifs =t
T s otherwise
{ error if s=error t=error s2t
s-t = .
st otherwise

Figure 4.5 Linearity rules
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(* (&) The non-linear function select. *)
fun selectsel a,b) =
caseselof z::xs
if tes{z) then a elseb

(* (b) The linear form of select. *)
fun selectsel a,b) =
caseselof z::xs
KILL (s, if tes{x) then KILL (b, a) elseKILL (a,b))

(* (c) The non-linear function sum-diff. *)
fun sum-diffz, y) =
(sunfz, y), diff(z, y))

(* (d) The linear form of sum-diff. *)
fun sum-diffz, y) =
caseDUP x of(z1, z2)
caseDUP y of(y1, y2)

(sum(zy, y1), diff(z2, y2))

(* (e) A function already in linear form, xor. *)
fun xor(z,y) =

if x

then not(y)

elsey

Figure 4.6. The functionsselectandsum-diff

If the expression is a constructor matching, the sets of variables usedbgenditionally-executed
sub-expression are made identical by wrapping the sub-expressigns. is (taking care to avoid
variable capture).

If a variablex occurs in multiple sub-expressions of an expressiaihe expression is replaced by
caseDUP(z) of (z1,22) e, and the variable is renamed in the sub-expressions. For constructor
matchings all the conditional expressions count as a single single suéssiqn.

If the expression binds a variahlethat is not used in the body sub-expressigmr is replaced by
KILL (z, €).

This transformation converts SASL programs to Linear SASL programsentheDuP expressions are
“pushed in” as far as possible into the syntax tree, ané@the expressions are “pulled out”. Under eager
evaluation, performingups as late as possible ard.L s as early as possible minimises the number of
live variables and streams.

Example: The functionselect shown in Figure 4.6(a), would be rewritten in Linear SASL as shown
in Figure 4.6(b). In Linear SASL, each conditional case uses batidb, killing the variable that is not
returned. The third parameter varialde] is used in the matching expression, which produces two new
variables,x andzs. The variabler is used as a parameter to the functtest while xs is killed, as it
would otherwise be unused.
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The use ofbur is illustrated by convertingum-diff from Figure 4.6(c) into the Linear SASL form
of Figure 4.6(d). As the variablesandy are each used twice, they must be duplicated. Figure 4.6(e)
shows a function with multiple conditional sub-expressions that use the saable. This does not go
against the linearity requirements, and in fact the function is already in lfogar since in all dynamic
execution paths both andy are used exactly once.

4.2.2 Translation to Dataflow Graph

A dataflow graph can be produced quite directly from a Linear SASLraragusing the syntax-directed
translation of Figure 4.7. Thin lines are used to represent a single gdgieh éntaining a single value.
Thick lines represent a bundle of graph edges, containing one or raloresv The edges flowing into the
top of a graph represent the graph'’s free variables, and the edgeg¢lae graph represents the result of
evaluation.

Constant expressions may produce graphs with no input edges. Tdftowamodel requires that
each nodeV has at least one edge to trigger it, so each of these nodes is provided withexige
input. The edge is supplied with tokens from the nddethat most closely enclose€. N’ may be a
conditional orconsnode. In the later forms of graph, multiplexers (see Section 4.3.1) or iteraté®@sno
(see Section 4.3.2) may also enclose subgraphs.i#f not enclosed within another node, the activation
edge must be triggered at the top level when an external call occurs.

Example: The functionskip-blanksof Figure 4.8 will be used as an example throughout this chapter.
The dataflow graph for this function is shown in Figure 4.9.

4.2.3 Graph Properties

There are some properties of the dataflow graphs that are particulafiyl,sd that we wish to preserve
throughout the transformation to a low-level system. For example, if ona fsk@ovided on each input
edge of a graph currently containing no tokens, and each function @alpletes, the result will be
one token on each output edge, and a graph containing no tokensowgré we design the nodes
correctly requests can be pipelined, so that if new sets of tokens arandmafore all previous tokens
have emerged, the result would be the same as if the graph were usedipgalined manner.

In order to get correct overall pipelining behaviour, the following gnties are required of the com-
ponents:

Normal nodes and function calls must return results in the correct drdether words, they should
be pipelineable as described in Section 4.1.

Conditional constructs should produce results in order. At the merge &tgs should be read
from subgraphs in the order they were fed in, either by keeping a FIfi€hvweontains the collection
order, or by only allowing a single token into the construct at a time.

conNsnodes must only allow a single stream to be generated at a time on the assstcegadbus.
Later in the synthesis process, once the stream buses have beeatepnecking primitives will
be introduced to ensure mutual exclusion. In the mean time, we assume thatreaen generated
dynamically has a separate stream bus, so that all stream reads wilbcaaggeest from the correct
stream.

We use the termormalityto describe the property of graphs that behave like normal nodes—pleeste

by taking a single token on each input, producing a single token on eaalt anghare quiescent between
requestsTotal normality(TN) describes graphs that will always produce a full set of outpwdriskvhen
given a set of input tokens, whilgartial normality (PN) is the name given to graphs that may become
trapped in an infinite loop, but are otherwise TN. A PN graph that is not Tidimally a programmer
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(==

letz =e1in es

CONS

(61,...,6k)

Untuple

T
é%

1Tk

€1..€2

o Jo

casee; Of (x1,...,2) e o | casee; of x1iixas € o casee of my m,
T
5o
DUP(x) KILL (x, €) c(xy,...,x) e

Figure 4.7. Syntax-directed translation to dataflow graph form
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fun skip-blanks strears-
casestreamof x:: xs
caser of
Blank skip-blankses
Symbols s::skip-blankses

Figure 4.8 A function to demonstrate CDFG conversion

Untuple

S XS

skip-blanks

Tuple

Figure 4.9 The dataflow graph for the functicakip-blanks
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Figure 4.10 Schematic for a synchronous Muller C element
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Figure 4.11 Schematics for edge-to-level and level-to-edge signavexsion

error, as we expect programs not to go into unproductive loops,atieh programs can be written
in SASL they must be dealt with. A graph that can correctly deal with multipletandéng requests
is pipelineable The dataflow graphs are PN and pipelineable, by construction (ignorindetiaés of
stream buses, which will be covered later).

4.2.4 Node Implementation

Of the kinds of node in Figure 4.3, the function call nodes anais nodes will be transformed during
later parts of the graph synthesis process into other node types. Hoitésgossible at this stage to
give example implementations of normal and conditional nodes, in order vidpra better intuition of
how the graphs are actually synthesised to hardware. Sections 4.3.3%ahgdrévide further details of
node implementations.

For the implementation given here, each edge is split into three parts: astéigeeRR, an acknowl-
edgement lineA, and a set of data lineg). The request and acknowledgement lines perform two-phase
signalling, and the data is guaranteed to be stable between the time the recgigstlied and the
acknowledgement is given.

In order to deal with these two-phase signals, a number of common elementsradeiced. The
synchronous Muller C element shown in Figure 4.10 switches its output t@the galue as its inputs
when all inputs match. This is used to detect when, for example, a setudseschave all arrived, so the
next stage can commence. The “E2L" and “L2E” circuits of Figure 4.&luged to convert between the
edges of two-phase signalling and level-sensitive triggering, which is nwneenient for certain parts
of the control logic. An assumption of these blocks is that there will not beriiam one transition per



4.2. Dataflow Graph Generation 79

D1 11

. . E2L Sy
(| MUX
O » D
DQ 12 L
D Q

Ry . . E2L S,
A, C

5 -

Ry

Ay

Figure 4.12 Schematics for a “Join” construct

Ry, ——— —— Ro,
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Dy, — —— D
h Combinatorial o1
Di, — Logic — Do
Di, — —— Do,
A — Ao,
A[2 — C Aol
Ap, — —— Ao,

Figure 4.13 Schematics for a normal node

clock cycle.

The Join block shown in Figure 4.12 is used in the implementation of the conditiodahaltiplexer
nodes. It takes a set of wires representing a number of graph edgesierges them—when there is
a request event on one of the inputs the associated data is transmitted ataetlo@tput wires, and the
outputs request line is triggered. When an acknowledgement edgeiisecetee input acknowledgement
lines are made to match the associated input request lines, acknowledgarggthal request. The Join
block is designed with the assumption that there will only ever be one unatdahged request passing
through it at a time.

The design may require some explanation. The MUX block puts ihjputits outputO unless one of
theS; is asserted, at which point it placgson its output. The construction of the acknowledgement logic
depends on generating a signal that is high while the output has an wmdekiged request. Only when
the request is acknowledged is the appropriate input acknowledgesdtingshe acknowledgement line
to the same state as the request line.

Using these building blocks, example implementations of normal nodes andticoaldnodes are
given in Figures 4.13 and 4.14. The names of the inputs and outputs usentbessheme as used in
Figure 4.3. The details of these schematics are as follows:

A normal node simply wraps up a piece of combinatorial logic. When a repasdbeen signalled
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Ry

Dy
} L2E

Dc(1]
} L2E

D¢ (2]

Ap

Ac

Figure 4.14 Schematics for a conditional node

on all inputs, all data is now present, so the output will be valid (after a catdial delay), and the
output requests are signalled. Similarly, the acknowledgements are mdtasdnuntil all outputs

have sent their acknowledgements, so that the outputs are held constaet.thBt a sequence
of normal node implemented like this will not perfonpipelined processing without the explicit
insertion of buffering stages.

The conditional node triggers when both eddesnd C' have had request events. Depending on
which bit of C' is set, the event is passed on to the appropriate subgraph. The oufpestrés
passed on to a Join block which passes on the request and routes ilogvleclgement back to
the appropriate subgraph. When both the subgraph has acknowl¢slggzlit, and the output has
been acknowledged, the input is acknowledged. This prevents multiplesisqoassing through
different conditional subgraphs simultaneously and overtaking eaein oth

4.2.5 Other Dataflow Architectures

The dataflow graphs used here are similar to those used by dataflowsgoo@chitectures. These
systems have functional units like conventional processor systems seddof having an instruction
stream, they have a set of instructions which are triggered when thernefgeaes of data are available
(modern out-of-order superscalar processors are effectively lirdaéaflow processors, allowing them
to hide memory latency).

Such dataflow systems have various problems which can be solved iglaiivgply in hardware.
These include:

Excess parallelism may be produced—Iloops may be spawned faster thacathég evaluated.
Traub's thesis [144] covers the useleboundedoops to limit parallelism. A hardware implemen-
tation avoids this problem, since the parallelism is limited by available hardware.

Different iterations of a loop must keep their tokens separate. A numtsgprbaches have been
tried to distinguish tokens from different iterations, such as code cop\dntpured” tokens (each

token is given a tag) and activation records for each iteration. In reaedtthe tokens for a given

iteration are kept synchronised by preventing tokens overtaking ¢aehio the hardware.
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Not all the tokens may be used, leading to the need for garbage collectioexpglicit garbage
collector can be used, or if activation frames are used the space is rethaimea the variables go
out of scope. In hardware, the lack of time penalty o means linearity can be used, ensuring
that each value is used exactly once, so GC is not required.

4.3 The Control/Dataflow Graph

Function call nodes can be viewed as placeholders for actual functiolerimeptations. The Con-
trol/Dataflow Graph (CDFG) eliminates these nodes, replacing them with thal actplementation
of control flow, as described below. This transformation is a kind of linlétagge, replacing symbolic
representations of function calls with actual function calls. The normalitypipelineability properties
should be preserved when performing this transformation.

Non-recursive function calls are achieved by simply replacing the fumcatl node with a copy of the
graph of the function being called. Recursive tail calls are more compiear@ dealt with in two stages:
removing recursive calls that are enclosed withons expressionsgoNs-enclosed tail recursign and
removing recursive calls that are not enclosed@nsexpressionsdirect tail recursior). It is necessary
to distinguish between these two cases, as in the first case the result df¢hk ireturned to the&oNs
node, and in the other it is passed directly to the enclosing function.

Transforming recursive calls introduces loops to graphs. If the henalvg heavily pipelined with
insufficient buffering, it may be possible to produce deadlock if tok@msot loop back to the top of the
loop because they are blocked by back-pressure from tokens éaither loop. The implementation of
iteration nodes must prevent this (e.g., by ensuring adequate bufferiogps).

4.3.1 RemovingcoNs-enclosed Tail Recursion

When a tail-recursive call occurs, we wish to reactivate the originalvteae, rather than invoke the call
on a new instance (which is wasteful of hardware, and will not work withaunded loops). Instead
of replacing the function call node with a new instance, it is replaced withl focthe current instance.
This section examines the replacement of recursive calls that occur withiaitlof acoNsexpression;
the next section covers all other recursive calls.

To implementcoNs-enclosed recursive calls, a multiplexer node is placed around the funcéph gr
to allow calls from both the external call site and internal recursive cal,sated the edges that went into
the function call node are now connected to this multiplexer node. The multipiexie is described in
Figure 4.15. The transformed dataflow graph for the exasidf@blankds shown in Figure 4.16.

Recursive calls enclosed @consare now implemented as calls back to the same piece of hardware.
As long as the original graph was pipelineable, the new graph is too, siacedtrrsive call just becomes
another pipelined request. Sincensnodes do not directly execute their subgraphs (instead waiting for
a stream request before execution starts), the completion of one callltaritheare will not depend on
the completion of a recursive call to the same hardware, so no deadalems are introduced.

This transformation breaks the earlier structuring conventions, in tha énemow edges thdirectly
connect nodes inside theoNs subgraph with nodes outside. These graphs can no longer be built up
using just concatenation and composition. However, normality propergestiiipreserved, although it
is now necessary to desigroNs nodes so that they can be reactivated between the time they receive a
stream request and send the corresponding reply.

The multiplexer only needs to store a finite amount of state, since eachiveatakwill return without
performing a furthecons-enclosed recursive call. This is because thered®®s node interrupting
every path from the top level of the multiplexer’s subgraph to the recucsill site. Once theonsnode
is reached, evaluation returns immediately.

This transformation cannot, in general, be applied to direct¢aots-enclosed) recursive calls. If the
other recursive tail call iskip-blanksvere made into a connection into the multiplexer, the multiplexer
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Multiplexer/demultiplexer nodes share access to a re-
source. They are used to implemeandns-enclosed tail
Lo I calls in stream-producing functions (see Section 4.3.1),
where the function may be called from either an external
i call site or a recursive call site inside the tail portion of a
CONS expression. A request token is accepted from any
o of the top inputsl;, and passed on through eddgge(and
% the edge the token was received from is recorded). When
a token is received on edge, it is passed out the arc

O, matching the corresponding input arc the request token
came from.

I Iteration nodes are used for loops, acting likela ...
while loop. A token is taken in on edgg and passed
through on edgé’. The subgraph produces tokens on edges
C andO’. When theO’ token reaches the diamond node,
o the binary condition token of’ selects whether to pass the
¢ token back for another iteration through the subgraph, or to
produce a result token on edge This is used to convert
direct tall calls to iteration (see Section 4.3.2).

I

@]

Key: <= =asubgraph

Figure 4.15 Dataflow diagram looping node types

Untuple

S XS

Tuple

Figure 4.16 Removal ofcoNs-enclosed tail recursion
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CIS“BIank”’?) C Tuple
Untuple
S [xs

XS Y n

% Tuple

\b \

Figure 4.17. Naive removal of direct tail recursion

node could be called an unbounded number of times before returnindgingaebounded storage. A
different approach is required.

4.3.2 Removing Direct Tail Recursion

As mentioned above, direct tail recursion cannot be removed by ometo a recursive call in the
graph, since the calls may nest. However, the list of call sites does nailgataed to be stored; since
the recursive calls are in tail position, we can just return directly. Thiscgob is shown in Figure 4.17
(the multiplexer’s new (diagonal) input arrow does not update its redstdge, so the return goes to the
last caller).

Unfortunately, this approach means that the conditional node loses its litgnonaperty—the recur-
sive call is rather like goto out of a subroutine. The hardware implementation may fail, as nodes with
subgraphs may expect that a token exits for each token that entereint@aperate correctly.

A better approach disallows direct tail recursion, and introduces articeraperator. The iteration
operator is used to constructmmpoline[140], which repeatedly calls a supplied function. Functions
with direct tail calls are rewritten to use the trampoline, returning parametetisdmext call instead of
performing the call directly.

An ML definition of thetrampolinefunction representing the iteration node is given in Figure 4.18,
along with a version o$kip-blankgewritten to usérampoline The program is effectively being rewrit-
ten in a structured style [45]—the recursive calls in tail positions act réikeegoto s, and are replaced
with a loop with a single entry and a single exit point. This structured style canbenapped to a
dataflow graph.

The functiontrampolineis implemented using the iteration node type shown in Figure 4.15. The func-
tion itself can be implemented using the graph shown in Figure 4.19, with the funictimrepeatedly
called substituted fof.

The actual function transformation is achieved by rewriting the tail exnesss follows:

1. If the expressiom contains no direct tail calls, retuonge).
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datatype(«, 3) trampoline= Repeabf « Doneof 3

fun trampoline f param=
casef(param) of
Repeatnew-param trampoline f new-param
Doneresult) result

fun skip-blanks-2 strears
casestreamof x:: xs
casex of
Blank Repeatrs)
Symbols Dongs:: skip-blankses)

fun skip-blanks stream-
trampoline skip-blanks-2 stream

Figure 4.18 The ML functiontrampoline

2. Ifthe expression is a tail cafl(e), returnRepeate).

3. Otherwise, recurse on each sub-expression in a tail position, stdb#tiéresulting expressions into
the original expression, and return the result.

The graph ofkip-blanksafter all recursive calls have been removed is shown in Figure 4.20.thaite
the multiplexer must be placed outside of the iteration node, sincedNs-enclosed recursive calls wish
to call skip-blanks rather tharskip-blanks-2 The graph looks somewhat complicated, but most of the
normal nodes are performing trivial operations, and optimisation couldvemach of the complexity.
The bar on the left identifies the implementatiorskifp-blanks-2the one on the right marlskip-blanks

The graph is similar to Figure 4.17, except that it has been rearrangleatsbe point at which control
returns to the top of the loop is moved outside the conditional. Although this sdw®explained the
transformation syntactically, it can also be applied directly to dataflow graphking it possible to
optimise the dataflow graph, and then later remove direct tail recursion.

The transformation is not technically source-to-source in that the resplagram may not adhere to
SASL’s type system. If the original function returns any streams, or akgstreams as parameters, the
algebraic datatype used to signal whether to return or iterate will contai@earstwvhich is disallowed by
the typing system. However, this restriction is only used to simplify the stability aadrity constraints,
and this transformation does not cause any real synthesis problems.

The transformation maintains the normality properties of the original graghthbuteration node
type needs to be carefully designed to work in a pipelined environment. Hdte is incorrectly im-
plemented, two tokens could enter the loop, the second complete in fewer iteratimhleave the loop
before the first. Two possible solutions are:

“Lock” the node when a token enters it, preventing other tokens enteririgdpeauntil the first has
left.

Tag each item that enters the loop, buffer results, and emit the items in dhiteis like the use of
a reorder buffer in an out-of-order CPU to order the committing of instrustion
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Figure 4.19 Encapsulating a transformed program in a trampoline

4.3.3 Node Implementation

Schematics representing possible implementations of multiplexer and iteratios axedghown in Fig-
ure 4.21 and and Figures 4.22 and 4.23 respectively. The designsaw/éwkows:

The multiplexer node works by taking a request from any of the incomingsdmd sending it to
the subgraph, along with its data. The matching acknowledgement is sdntiobée appropriate
input. The state of the input request line is forwarded to the output retjpestforwarding on

the request) when the the subgraph has completed (that is, when the $iggusput and output
request lines match). The output edges’ acknowledgements are radkdddthe subgraph. As
with the conditional graph, this implementation allows for only a single request podoessed at
atime.

The iteration node implementation has been divided into two schematics. Fig@etie2inner
part, wraps up the subgraph so that it has a single request edge gledasiknowledgement edge.
The output request edge now also acts as an input acknowledgenetheanput request acts as
an output acknowledgement. The schematic is effectively an “depipelimnagper, in that only a
single request may be passed through at a time.

The output part, shown in Figure 4.23, collects data, either from a new iaquest, or the result
of a previous iteration, and sends it to the subgraph. Depending on tit @ that iteration, the
result is either sent out of the graph, or is passed around for aritetegion.

4.4 Extracting stream buses

For a hardware implementation of the graphs, some representation is mé¢ldedonnections between
the hardware that requests items from streams, and the hardware tiegstre request&tream buses
are shared resources used by stream matching nodes to requesteind stream items, and kNS
nodes to detect requests and service them. Each stream bus may a¢ éinyeoimave at most one reader
and one writer. SASL has been designed so that each stream value irotlianp can be statically
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Figure 4.20 The functionskip-blankswith recursive calls eliminated
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Figure 4.21 Schematics for the multiplexer node
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Figure 4.22 Inner part of the iteration node schematic
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Figure 4.23 Outer part of the iteration node schematic

associated with a stream bus; each stream match node (readpaischode (write) is associated with a
particular stream bus.

To extract the stream buses required by a graph, and where theyeateall values of stream type are
annotated with stream buses. The following sections introduce the useafsiiuses, explain the type
system extension and then give some examples.

4.4.1 Stream Buses

The stream buses of graph synthesis are fundamentally the same as &8 lsises, except that the
rules for when it is necessary to introduce new stream buses in varietBssaexpressions are made
more accurate. This allows better synthesis, with fewer stream forvearelguired.

The model of Section 3.3.3 is that an expression which returns a streashbukl not listen for
requests on that bus until the expression has been evaluated. By usingpttel combined with lazy
evaluation ofcoNs, it should be impossible to have a stream bus where two or mors nodes simul-
taneously listen for requests on the same stream bus.

This section introduces a more accurate model. The only types of expregsere it is possible to
cause more than or@oNsnode to listen on a stream bus are:

CONSsexpressions which write to a stream bus that already ltas\es node listening on it.

Variable access expressions which create stream bus forwardefs fetward onto a stream bus
that already has a listener.

Function call expressions that return values on a stream bus whickhakea a listener when the
function call occurs.

Constraints are introduced to the type system of the following section tonirthese situations from
occurring. By introducing fresh stream buses in variable accesessipns, it is always possible to meet
the above constraints, as was done for CSP synthesis.

For example, in the expressitet x = f() in True:x, the stream returned bf() will be listened on
before theconsexpression is evaluated, so the variable occurrenoeist create a new stream bus and
forward to it, so that theons expression will beconsing onto a stream bus that is not being listened
on at the time it starts evaluating.
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4.4.2 Stream Bus Typing

For this chapter’s stream bus typing we replace the stream identifiers vatmstsus names, so that a
stream will have the type stream, wherei represents a stream bus. No information is lost, as each
parameter stream is given a unigue stream bus instead of a stream idefitfier stream buses are
introduced by being returned from functions, or by the stream buditttlms performed by variable
access expressions. These stream buses correspond’tsteeam identifier. The stream buses used in
different functions should be distinct.

The typing rules for stream buses are shown in Figure #.Z4e rules use the functiodSB(e),
which returns the set dhctive Stream Buseshese are the stream buses which may be being listened
upon bycoNsnodes or stream forwarders at the start of the given expressienfufibtion can use any
appropriate conservative approximation. A few of the typing rules mayiregome clarification:

The APPLY rule matches up stream buses between the caller and callee. H,usesibstitution
on the stream buses occurring in the typefdthis substitution is similar to the one used in Sec-
tion 2.4.1). This substitution maps the stream buses present in the formalgtaraype to those
corresponding ones in the actual parameters. All other stream busgsavh only present in the
function’s return type are mapped to distinct stream buses that do nearippA SB(f ). In this
way, it operates very similarly to polymorphic typing.

TheCONS-INTRO rule has the requirement/ ASB(e). This is to prevent theonsfrom listening
to a stream bus that already has a listener on it.

The CONSTRELIM rule requires that all stream buses returned by the conditional expressie
the same. Whichever conditional path is taken, the results must appear amthestseam bus.

ThecoNs-ELIM rule reads from a stream, and the same stream bus is used for both thelsthiegm
read from and the stream representing the tail. After the match has atctimeeremainder of the
stream will be accessed through the same bus. The limitation of one actasgader per stream
bus is enforced by ordering the stream matches using dependenciegiafhe

TheVAR rule allows streamed items to be moved to a new stream bus (which may be requised to
the CONSINTRO andCONSTR-ELIM rules). The substitutiofi is used to replace stream buses with
other stream buses. The target stream buses must be distinct and hhestwtvely listened upon
at the start of the expression (that is, they are not #B(z)). In hardware, this is implemented by
a module that is activated when the expression is evaluated, forward@sgrstequests from the
new stream bus to the original stream bus, and then forwarding resoks ba

4.4.3 Typing Implementation

The typing rules can be implemented using a unification-based approacfalddls of stream types are
assigned separate stream bus variables, and the variables are unifiddrito meet the constraints of
the type system.

The implementation initially assumes that no stream bus substitutions are usedablevaccess
expressions, and whenever a constraint that a particular stream btisehbe an active stream bus in an
expression is broken (for example, in theNs-INTRO rule), the problem is traced back and a stream bus
substitution introduced. Using this technique, a minimal number of stream bst§tstibns are made.

Under this implementation, if a stream bus that is returned by an express@ttive before starts
evaluating, there must be a live variable containing a stream associated evittream bus (otherwise,

2This thesis relies on a number of type-like rule systems, which could aliegtyabe implemented using, for example,
abstract interpretation [44].
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Figure 4.24 Typing rules A.SB and the type substitutions are explained in Section 4.4.2)
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(* (a) The function select, with stream bus annotations. *)
fun selectsel;, ag, b3) =
casesel of z::xsy
KILL (Xsi, if tes(z) then KILL (b3, aq)4 €ISeKILL (a2, b4)4)4

(* (b) The function skip-blanks, with stream bus annotations. *)
fun skip-blanks stream=
(casestream of x::xs
casexr of
Blank (skip-blanks xs; )2
Symbols (s::(skip-blanks xs;)2)2)2

Figure 4.25 The linear functionselectandskip-blanksannotated with stream buses

the stream bus would have been reset). Conversely, all stream bhoisbsane referenced in the environ-
ment must be active stream buses. Hence, for this implementation, we camAl&f (¢) to be the set
of all stream buses ia's environment.

4.4.4 Typing Examples

select: As a simple example, the functi@electfrom Figure 4.6(b) has been typed, and stream buses
produced. The stream buses are represented by integers subiadfigtsre 4.25(a).

The streams in the parameters are given stream buses identified as &-e®.clilrence of the variable
seldoes not require a substitution on the stream bus in order to type. Théleamatching the tail,
xs, keeps the same stream bus. Both sub-expressions of the conditiondtaneshe same type, so
a new stream bus is required to meet the type constraints (if an old streawebrisised, one of the
variable access expressions would be substituting in a stream bus thatidyabeing listened on). The
associated variable access expressions have stream bus substitutidhs,other variable occurrences
do not require substitutions to type.

skip-blanks: For the next example, we examine the typingskip-blanksfrom Figure 4.25(b). The
parameter stream is given the new identifier 1. The variable occurrdrateeamdoes not require a
stream bus substitution in order to type correctlyxsalso types with bus 1. This is necessary to meet
the stability constraint. In order to type correctly, the function must returava stream bus, which
matches up with the stream bus returned by all recursive function calls.

It is necessary for the same stream bus to be returned by both reccatiivand the function itself, in
order for a simple implementation of recursive calls in hardware. The gyoijseguaranteed by the fact
that all recursive calls occur in tail positions, and that all expressiotelinall position have the same
type.

The typing of recursive calls can be implemented by creating stream haslearfor the streams in
the return type, and then unifying these stream variables with others @isect@as was discussed in
Section 4.4.3).

4.4.5 Representing Stream Buses

An extended form of CDFG is used to show the stream buses extractadfectype system annotation.
Each stream bus is displayed graphically using a pair of edges—a thim rn@quest a stream item
in one direction, and a thick arrow for the stream result in the oppositetidinell nodes that use the
same stream bus are connected to the same bus in the graph. The busedhmamght of as tri-state,
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connecting upcoNs nodes to stream matchers, with only one reader and one writer activg airen
(although a real-world implementation would probably rely on multiplexers).

The earlier graph representation is modified slightly. Stream matchers@wginodes are now dis-
played in the graph using the symbols from Figure 4.26, explicitly showingexdions to stream buses.
Stream bus substitutions in variable access expressionfoaddrder nodes to the edge representing
the variable access expression in the dataflow graph. When varialiesniog streams are killed the
edge containing the stream bus value going into the assoc¢iatechormal node has stream killnode
inserted on it.

The match node no longer has a separate output edge for the tail of thm stkeail edge is unnec-
essary, since all it provides is synchronisation information which is beiogigeed by the head value
anyway. Since the stream buses carry the actual stream data, the reesenting streams are simply
unit values, and may be omitted if other edges provide the required orderingen stream requests.

The forwarders representing stream bus substitutions need not be impdehas primitives. A graph
implementing the forwarder is shown in Figure 4.27. Using a symbol to reprtescommonly repeated
graph simplifies the intermediate graphs, allows a “hand-crafted” low-leyg@ementation to be used,
and may improve the possibilities for later graph optimisations.

Examples: The graph for the functioselect with stream buses shown explicitly, is given in Fig-
ure 4.28. The stream match becomes a match node, which reads an item freshstineam. Thesel
stream is then killed, as it is not used further. Depending on the item reatfre stream, either stream
bus 2 or 3 (representingandb, respectively) is killed, and the other forwarded to stream bus 4 Gepre
senting the returned stream), before a token is returned, signifyingdph bas finished processing, and
that stream bus 4 can now be read from. A further example, the CDF@&seting the functioskip-
blanks with stream buses shown explicitly, is given in Figure 4.29 (the dotted bogeraos pipelining,
and will be explained in Section 4.4.6.1).

This figure is the lowest-level graph-based representation of the ciltozain be converted to hardware
by instantiating the nodes and connecting them together. The implementation ofdénéypes used in
this graph are described throughout this chapter. The nodes anduoteig uses are as follows:

Multiplexer Shown in Figure 4.21.
Iteration Shown in Figures 4.22 and 4.23.
Conditional Shown in Figure 4.14.

Match Shown in Figure 4.31.
ConsShown in Figure 4.30.

Normal nodesShown in Figure 4.13. The combinatorial part of the functions depend on thigispe
nodes: “Repeat” and “Done” nodes simply tag the incoming bus with an eitregresenting
whether the value is a “Repeat” or “Done”, “Is “Repeat”?” and “Is ‘i&d?” and the unpack nodes
simply test the tag or extract the bus respectively. TineP” nodes simply return two copies of the
incoming bus, while the “Tuple” and “Untuple” nodes concatenate anda&pthe parts of buses.

Mutual exclusion boxesGiven in Figure 4.33.

Reset boxesre described in Section 4.4.6. In a basic implementation, the output streaat’e
is the reset line for all the registers in the implementation of the graph.
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CONS nodes are now attached to the stresiwhich they
listen on and send results to. When a token arrived on
the value is stored, and a unit token representing the stream
being ready is passed out 6h When a read on the stream
occurs, a request will arrive on the stream Bysriggering
thecoNsnode to send its stored value ovéyand wait for
aresult onD’. When this arrives theoNsnode returns the
result overS to the waiting stream match node. The dashed
box is used for reset processing (see Section 4.4.6).

Match nodes are attached to the stream bus they read from,
using the stream bus information produced during typing.
When the unit token representing the stream arrives on edge
1, the request is sent out over the stream.$usnd the node
waits for a result. When the result arrives, it is written to the
edgeO, both producing the result, and signalling that the
stream bus is ready for the next request.

Forwarder nodes are used to implement stream bus substi-
tutions. When a token is received édnrepresenting a re-
quest to produce the stream, a forwarding process is started,
and the token sent out a@n, to show the forwarder is ready.
When a stream request is received$nit is forwarded to

S, and the corresponding result forwarded back. A possible
implementation is shown in Figure 4.27.

Stream Kill nodes inform the listener on the stream bus that
no more stream items will be requested. This causes a reset
to be sent to listeninggONS nodes; see Section 4.4.6 for
details.

Key: <= =asubgraph

Stream Bus Mutual Exclusion nodes prevent more than
one stream being produced on a stream bus at a time. A
single token is allowed in on the edde and sent to the
subgraph as normal. No further tokens are allowed in until
the stream buS' is reset, at which point another single token
is allowed in on/.

Figure 4.26 Stream bus processing nodes
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4.4.6 Managing Stream Buses

In earlier sections of this chapter, streams have been identified usingi@cthat it is quite possible
to have two streams active on the same stream bus, and distinguish betwedartheads by using the
appropriate stream token. In an actual implementation, only a single strearbatmund to a stream
bus at a time. We must ensure that the previous stream is destroyeddeafwestream is created on the
same bus, as we are not otherwise able to tell which stream a particulas retmhded for.

This section deals with controlling access to stream buses on two levels. Initelyests are not
pipelined, and it is only necessary to ensure that old streams are deléted thee new streams are
introduced on the same bus. The second level deals with locking accessam duses when there
might be pipelined requests to use the stream bus.

Resetting Streams In order to prevent multiple streams from being active simultaneously on kesing
stream bus, it is necessary to reset the stream bus, clearing the osiga@zah data, before processing
the new stream. If requests are not pipelined, it is sufficient to resenstoeses when the streams they
hold go out of scope.

To show this, we can use the fact that the dataflow graphs are strustitedt all thecons nodes
that produce items on a single bus are either nested inside each other,lternatave branches of a
conditional. Therefore, the only way for multiple streams on the same strearnolmccur would be
through looping constructs:

Multiplexer nodes are used to perform recursive calls from wittims expressions. The original
consnode will be deactivated before the ne&ansnode is activated.

Iteration nodes could lead to multipteoNs nodes active on the same bus if a stream were kept
from previous iterations. However, each iteration represents a tail odllthee stability constraint
prevents any streams except the original parameters from being pastseekn iterations. All
newly generated streams would be killed, clearing any actes nodes.

Hence, if requests are not pipelined, each stream bus will have at reigfl@ stream active on it at any
time. We now discuss the mechanism by which killing a stream leads to the appecgiream buses
being reset.

The CSP synthesis technique relied on explicit reset signals being seet hartiware block repre-
senting a function before it is called again. In graph synthesis, we usadithat a stream variable will
be killed when it goes out of scope in Linear SASL. Each stream bus hesegline associated with
it, written to by stream kill nodes, and read from bpNsnodes. When a variable containing a stream
is killed in Linear SASL, a stream kill node is generated in the graph. Whendte is activated, the
stream is going out of scope, and thens node listening for requests on the stream bus is reset. The
reset causes theoNsnode to not respond to any stream requests until it is activated agaicdiying
a new token on its input edge.

Resetting is slightly complicated by forwarders and state-holdiogs nodes. When a forwarder
receives a reset on the stream it outputs to, that stream is becomingssiateeand so the stream that
is being forwarded is also becoming inaccessible, and the reset mussdmed. ThecONS nodes
may store values representing streams while waiting for stream requesishléconsnode receives a
reset, these values are lost, and the stream buses associated with thiehbsheset, as the streams have
become inaccessible. The stream buses associated with tokens heldClontheode will be those that
are generated externally to the dashed box around ¢thes node’s body graph, and read from inside.
When thecoNs node receives a reset on its stream bus, it should send resets onttease Isuses,
causing a cascade of resets. The stream dependencies are aoyttlecascades will terminate. Race
conditions are prevented by mutual exclusion boxes, as described iexhsattion.
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4.4.6.1 Pipelined Requests

Nalively pipelining requests into a graph that generates a stream could lead tolenstitgams being
bound to the same bus, since pipelined tokens may enter thesargnode (or different nodes on the
same bus, if the head of the stream is produced conditionally). Mutualséswlis required on access to
stream buses, so that only a single stream may use it at a time. To do this,adeic®a new node type,
the stream mutual exclusion box (shown in Figure 4.26). ldkeisnodes, forwarders and multiplexer
nodes, each mutual exclusion box is associated with the productions dfculza stream bus.

During synthesis, a mutual exclusion box is generated for each stremmTbe box surrounds the
smallest subgraph that generates its stream. To find this, markoeachnode, forwarder and multi-
plexer that writes to a particular stream bus. The exclusion box for thedmstbus is then placed to
enclose the smallest subgraph that contains all of these nodes (whietingghe graph’s hierarchical
structure).

The box only allows a single request to enter its subgraph at a time. Oncssihaaed stream bus
is reset, a new set of tokens may enter. In order to prevent race cosditiee enclosed graph must be
fully reset before new tokens are allowed to enter.

It is useful to show that the introduction of mutual exclusion boxes doetead to deadlock. This
can be shown as follows:

1. Graphs without loops will not deadlock because of mutual exclusianlieE calls do not depend
on later calls, and so later requests can be blocked by the mutual exclisiés bntil the earlier
calls have completed.

2. Multiplexer loops are not a problem, since mutual exclusion boxes areddeoundthe associated
multiplexer. If the recursive function generates an intermediate stream, ttiplexer may enclose
another mutual exclusion box farat stream, but that mutual exclusion box will not cause deadlock,
as it will be cleared before the next iteration, since intermediate streams eemnb non-live
before recursive calls can occur.

3. lteration nodes are the last possibility for deadlock. Again, exclusiedaround intermediate
streams do not lead to deadlock. If multiple requests are allowed into an iteratien\nn and N
returns a stream bus, deadlock could occur if a request enters the mutual exclusion bax dort
of order. The hardware falv would try to produce results in order, and would wait for the first
streams to be returned, but that stream cannot be produced until the st‘eanrently under (out-
of-order) production is reset. Fefto be reset, all previous streams, including@vhich is blocked)
must be reset first. This problem is solved by specifying that if an iteratiole meturns a stream,
the node’s implementation must only allow a single token into its subgraph at a time.

Under lazy evaluation, pipelined requests cannot occur within a mutublséxe box, and so any
extra hardware to support pipelining can be removed from the implementdtibatgart of the graph.
If lenient evaluation (described in Section 5.2) is used, multiple requests engipélined into the head
expressions oEonses within multiplexer nodes, but otherwise the requests will not be pipelimet, a
so the hardware may be appropriately simplified. Note that the use of mutlasiex boxes prevents
the pipelined production of multiplstreamson the same stream bus. Lenient evaluation still allows the
pipelining of item production within any particular stream.

4.4.7 Node Implementation

The stream forwarder node can be constructed from other node tipesmplementations of the other
nodes from Figure 4.26 are described below:

The coNsnode stores whether it has been activated using the register shown at tef tfgthe
schematic. Itis activated if the node has received a request on its ifgeitleut has not yet received
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Figure 4.33 Schematics for the Mutual Exclusion node

a stream request, and is otherwise inactive. When the request amities input line, the input data
is also latched. The stream bus request and result lines are levehsgrtiifirst of which triggers
the subgraph, the second of which being triggered when the subgragiompleted its calculations.

The Match node schematic simply triggers the stream bus when a requesei®maslinput line,
and upon receiving a stream acknowledgement latches the stream dst@atput, and sends out
an output request.

The Stream Kill node simply triggers the associated stream kill line. This liretgedl latches
within the circuit associated with thesoNsnodes when the stream is reset.

The Mutual Exclusion node prevents further requests passing thimtghhere has been a reset
on the associated stream bus.

4.5 Summary

The last chapter presented a simple synthesis based on CSP, utilisingastoactess to variables, and
disallowing pipelining. The synthesis of this chapter relies on a specialistiatéate graph represen-
tation in order to allow a more efficient implementation. Unicast variable acoegdifses pipelining.
Mutual exclusion boxes prevent multiple streams from being active on the saeam bus simultane-
ously. The use of stream bus typing eliminates many unnecessary stredornwarders that would be
produced under the CSP synthesis.

The synthesis of this chapter is rather more complex than the one presettedoirevious chapter,
but allows correspondingly better synthesis results. The synthesisdaebrof this chapter form the
basis of the optimisations described in the following chapter.
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CHAPTER D

Optimisation

The basic translation of SASL to a graph form, as outlined in Chapter 4, ijurnction with a Ver-
ilog implementation of the nodes, provides a relatively simple way to produckvhae. However, the
hardware produced would be highly suboptimal. The main problems with thedyadhesis are:

Much use is made of dynamic scheduling. Request and acknowledge rienaseal to transfer all
data, even if a statically scheduled pipeline could be created.

Parallelism is not exploited to a great extent. Stream items are producdéinand-driven fashign
so that the hardware that would produce an item remains idle until the item iestegy when it
could be produced ahead of time. The use of pipelining is very limited.

Program optimisations are not applied. The use of a high-level langllags a variety of program
transformations to be performed, but none have been discussed.

These three issues are discussed in the following sections. Section &r& tteyuse of static scheduling
in simplifying the design. Section 5.2 introduces lenient evaluation, whichgeewa way of looking at
ahead-of-time stream production, and allows increased pipelining. S&cBdmiefly examines program
transformations and, more specifically, transformations of the dataflgphgraAlthough this is not a
thesis on program optimisation, this should give a flavour of the transfomsatitat may be applied.
Section 5.4 provides a brief summary of the chapter.

5.1 Static Scheduling

The CDFGs of the previous chapter assume universal dynamic schipdatinexample, with the graph
in Figure 5.1, the dynamic schedule would have node 1 trigger as soornaaardaees on edge A, and
node 2 when data arrives on edge B. Node 3 then triggers when witendutes 1 and 2 have completed,
and an item has arrived on edge C. The intermediate edges have indepeyliest and acknowledge
lines.

In general, this is overkill. If each primitive node takes a single cycle to caedpla simple static
schedule can be created where all three nodes may be executed itepgkasch like a classical hard-
ware pipeline). By statically scheduling subgraphs, we can reduce tiedhsynchronisation overhead,
replacing the subgraph with a large node with dynamically scheduled ingutLaput edges. This circuit
will have lower area requirements, and may run faster if signalling circuity @n the critical path.

1As we will assume in this section, for simplicity. Fixed multi-cycle nodes carepeesented as a sequence of nodes, while
nodes with variable timing cannot be statically scheduled.

101
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Figure 5.1 A simple example CDFG

5.1.1 The Problem

The idea of static scheduling is to remove redundant dynamic synchronisdtiés not possible to
remove all dynamic synchronisation, since there are constructs thée daa-dependent delays. The
static schedule should generally not be slower than the dynamic schexfidrample by forcing a delay
on the critical path that could be shorter under a data-dependent dysetmeidule. In some cases it may
be more efficient to introduce a slower static schedule, if it produces Bugiadsa and synchronisation
overhead savings.

The use of static scheduling relies on some form of timing to schedule the stagexessing. For
synchronous circuits, this timing will be in the form of a global clock, and the gnmrrelatively sim-
ple. Static schedules may still be useful for asynchronous circuits, thoBigndled data systems use
delay elements to time combinatorial blocks. If the circuit is designed to baldirtbe delay elements,
the result is rather like a synchronous system with a distributed clock [@&itic scheduling can be
used as a way of attempting to balance the delay elements. Even for asymahircuits using com-
pletion detection, such as dual-rail encoding, some way of choosingevihénsert latches is needed.
Static scheduling using approximate timings provides a way to do this and jeroelatively balanced
asynchronous circuits.

The problem is to identify sets of nodes that may be synchronised to akxagsite together, so that
the synchronisation overhead may be reduced. Once two nodes ale@yised, their outputs will be
produced simultaneously, so that nodes that only depend on these a#putts scheduled for the next
cycle, for example.

The scheduling bears many similarities to, but is not the same as, the schadidohgh many other
high-level synthesis systems [102]. These relyssheduling allocating and binding elements of a
dataflow graph. The scheduling phase in such systems chooses wtiehgsnber of the static schedule
each node is placed in, in order to minimise latency, while allowing hardwaoeiness to be shared,
assuming a fixed arrival time for the inputs. In a SASL graph, the aim cdrgeing a schedule is to the
reduce synchronisation overhead, and we cannot assume fixeal &imies for the tokens, but similar
techniques may be used as a starting point for SASL's scheduling.

5.1.2 ASAP and ALAP Scheduling

The aim of static scheduling is to find sets of nodes that may be statically $etiddurun together,
leading to a decrease in the amount of signalling required, without leading/év feerformance than a
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Figure 5.2 A graph to schedule

full dynamic schedule. In general, scheduling problems are often ftmibe hard, and as scheduling is
only tangentially related to the aims of this thesis, only simple ASAP and ALAP siihgdechniques
are discussed.

Before trying to apply scheduling, it is necessary to define which graehsan apply the scheduling
to. Static scheduling is performed hierarchically, with nodes that contaigrapbs treated as single
nodes for the purpose of scheduling. A particular subgraph may beaditaicheduled if all the nodes
in it are statically-schedulable. If a graph contains a node that doeskeoa tiixed time to process, the
graph may be split into a pair of subgraphs, before and after that eadb,of which may be statically
scheduled.

Once the statically-schedulable subgraphs have been identified, aibeedorithm can be applied.
This thesis only covers the simple ASAP (As Soon As Possible) and ALAPL&s As Possible)
scheduling schemes. Figure 5.2 shows a simple graph that will be used esample. Each node is
assumed to take a single cycle to complete, and the inpufsandC, and the output® and F are all
assumed to be coming from and going to different static scheduling domaitisatsthere is no static
synchronisation between them.

As Soon As Possible Scheduling ASAP scheduling places operations in the earliest cycle where they

may occur. For example, if we could assume that tokens arrivetl @& and C' at the same time,
we would combine nodes to produce the schedule in Figure 5.3. Each dottexffectively becomes
a single node, and the set of edges between each pair of dotted baxesdsea single edge for the
purpose of synchronisation. The outguis available 2 cycles befor®.

The schedule can simply be generated by assuming the inputs arrive at tand that each node

is scheduled to run ahax(t;) + 1, where thef; are the timesteps at which the node’s parameters are

produced. Nodes with the same timestamp are scheduled together.
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Figure 5.3 Naive ASAP scheduling

If we cannot assume that the inputs arrive at the same time, scheduling&gowore difficult. If bad
assumptions are made, one of the outputs may be produced later tharanec&ssvork around this,
rather than using a plain numerical timestamp, an algebraic one can bessedjreg4, B andC arrive
at timesa, b andc. For example, node 4 would be scheduled at time:(b + 1, ¢). Once all the nodes
have been scheduled, those that have the same timestamp expressiosciiedéed to run together.

Figure 5.4 shows the example scheduled algebraically. Nodes 3 and 5 nsahdutuled together,
with node 6 scheduled for the next cycle, and 7 the cycle after that (inktbenae of back pressure
preventing progress). Since a new scheduling domain must be creageddiferent input values are
merged together, ASAP scheduling generally works best when a smallemwhinputs are used to
produce a larger number of output values.

As Late As Possible Scheduling An ALAP schedule that assumes thatand £ would be read si-
multaneously is shown in Figure 5.5, with the operations scheduled as latssaslp@ccordingly. The
no-operation and node 5 have switched around, compared to Figuen8.8alueC' can arrive 3 cycles
later thanA or B without affecting timing, but ifA is late the production of (which does not depend
uponA) is delayed.

Algebraic ALAP scheduling can be achieved by assuming results mustodeiqed at timeg and
e, and scheduling everything as late as possible to meet these deadlinesLARechedule is shown
in Figure 5.6. ALAP scheduling is simply the dual of ASAP scheduling. Siregeddencies still flow
forwards at runtime, each statically-scheduled set of nodes still triggesson as all data has arrived.
In contrast to ASAP, ALAP works best when a small number of results eigiroduced that depend
upon a large number of inputs.
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Figure 5.4 Algebraic ASAP scheduling

Figure 5.5 Naive ALAP scheduling
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Figure 5.6: Algebraic ALAP scheduling

Real-World Scheduling A real-world scheduling system can generate any schedule between the
ASAP and ALAP schedule. As long as the relative timing of the nodes fits leatweese extremes,

the schedule will be as fast as a dynamic schedule. By carefully chotbsimglative timings, the nodes
may fit into a small number of groups of synchronised nodes, cutting dosvnuitimber of synchronisa-

tion domains. Alternatively, a simpler system may just choose between an ABARLAP schedule,
depending on which provides the smaller synchronisation overhead.

The scheduling so far has ignored back-pressure. Real-world stagclgling must take this into
account. Back-pressure prevents a node from taking in more data uotitiat has been accepted by
the next stage. If a set of nodes are statically scheduled together|amsaug waiting for its output to
be acknowledged may now block a large number of other nodes that itéhreyrised with. The use of
buffers can prevent this situation.

One of the simplest and most common such situations is dealt with using a fixed bufigure 5.4,
nodes 3 and 5 are scheduled together, with 6 the next cycle, then & iStzer edge leading from 5to 7,
and if this is not buffered then 5 and 3 cannot read in new data until 7 itakies new data. If a one-item
buffer is inserted between nodes 5 and 7, each token will pass throeigartiie number of edges, and so
the synchronisation overhead can be reduced, and back presdoreger caused internally. In general,
if two nodes are scheduled a fixed number of cycles apart, a fixed sidked ban be used.

5.2 Lenient Evaluation

One of the aims of implementing algorithms in hardware is to achieve high perfoenignextracting
parallelism and using as much as possible of the available silicon simultaneoushevét, the lazy
evaluation otoNsnodes works against this goal, since stream items are produced on deergatsing
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request, calculation and use of stream itéme.the case of a pipeline of stream mapping functions, a
cascade of requests will travel from the output to the input, and the masisit be passed back before
any further processing of stream items occurs. This is poor utilisation ditttbvare, since only a small
part of the circuit is active at any time; the lazy evaluatiowoiNs expressions, although simple from a
theoretical point of view, unnecessarily prevents parallelism.

However, it is possible to produce stream items in parallel with the main execatidhat if an item
is available when a stream match occurs it can be used immediatelgni§ expressions are evaluated
ahead of time, mapping operations may be pipelined, since multiple stages cae active in parallel,
making much better use of the hardware resources.

This evaluation ocoNsnodes ahead of time is neither eager nor lazy evaluatiorighigntevalua-
tion [144]. The differences in evaluation strategies can be illustrated witfollog/ing expression:

letz =e1in ey

Eager evaluation evaluates; first, and upon completion evaluateswith the new binding. In a pure
functional language we can evaluatein parallel with those parts af, that do not require:, but
the overall expression does not finish evaluation until legtandey, have completed.

Lazy evaluation does not immediately evaluatg, but will evaluatess. The first timer is used ires, e1
is evaluated, and the result saved for whenesvsrequired again. Evaluation of the full expression
completes when, finishes, and ifc is never used; is never evaluated.

Lenient evaluation computes:; ande, in parallel. Ifxz is required ines, we wait until the result oé;
is available. Evaluation completes whenfinishes. Ifz was required, the computation ef has
finished too. Ifx was not needed, we do not wait fer, and cancel any on-going computation. In
effect, the value of is calculated speculatively.

Lenient evaluation terminates in the same situations that lazy evaluation termindtdeclkeases the
latency required for a computation by increasing parallelism. It does faat &ifie pipelining of requests,
since it only activates hardware that would otherwise be idle.

The difficulties with lenient evaluation mirror the difficulties of implementing dataflovecpssors (see
Section 4.2.5), since lenient evaluation is the natural evaluation modelt&dtayagraphs. The problems
there included garbage collecting unused values:

The garbage collection of basic type values that are not used can stithply smplemented by
waiting for the results to be produced and then using a kill node, since eegaation is still relied
upon to produce basic values (the lenient evaluation of basic values isskgtin Section 6.3).

To garbage collect streams, we must now be able to clear a circuit thetively evaluatingif it
turns out that further values from that graph are not needed.

5.2.1 Signalling on Lenient Streams: The “Push” Model

Under lazy evaluation, the stream buses use a demand-driven, or, ‘matfel. Stream items are re-
gquested, which initiates computation, and the result is supplied when it is deltlshich also ac-
knowledges the request). This model may also be applied to lenient evaluation

However, an alternative “push” model is available. Since stream items dre pooduced ahead of
time, it is unnecessary to request the items. Instead, an item can be platiesllmrs as soon as it is
ready, along with a “data ready” signal. To read a stream item, we wait untiub&ontains a stream
item, and then acknowledge it.

2It has even been said of general lazy languages that “Lazy evaligtioore sequential than most imperative languages”,
as the next reduction expression is unique under this model.
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Figure 5.7. Example bus encoding of a lenient stream.

This difference in signalling may seem minor, but it reflects the underlyiaduation model, and
will help simplify the underlying implementation. For example, it greatly reduces theplaxity of
implementing non-deterministic stream reads (as will be introduced in Sectiant/islalso no longer
necessary to ensure that the production of stream items starts befoeadiregrof the stream, as reads
now wait for data to become available. For the rest of this section we asspusé anodel for the stream
buses.

A possible encoding of Enientstream bus on physical wires is shown in Figure 5.7 (in contrast to
Figure 4.2). In this diagram, the values are now produced before beimgumed, although the resets
marking a new stream are still signalled by the consumer. Note that the va|wdttibugh produced, is
never consumed, since a reset is triggered first. It is not necessaajttior a new value to be produced
before triggering a reset.

5.2.2 Cancelling Lenient Evaluation

Under lazy evaluation, when a stream is no longer needed, it will be in atiieatate, and the stored
values used to generate its next item are simply dropped. In comparigier, lenient evaluation some
active computation must be halted. The CSP synthesis of Chapter 3 canusédb with this model, as
CSP provides no way to halt a running computation that is not performing /0.

In the CDFG synthesis of Chapter 4, each stream bus has a “kill” line iagsdevith it to inform the
listeningcoNsnode that no more items will be read, and that the hardware should be resathdnge
is that now the hardware associated with tt@ns node may be actively computing when the request
arrives, and that all current computation associated with the streandgbe@eleared, rather than just
clearing the stored values that would be used in producing the next itetheFRuaore, newly introduced
race conditions must be avoided.

Under basic graph synthesiscaNnsnode is reset if its stream bus receives a reset, andahesnode
is currently active. An alternative approach is to resebaisnode if it has been activated since the last
reset on the stream, and it ihaadconsnode. A heacconsnode is one that is not enclosed by another
CONsnode that writes to the same stream, and so will represent the very heagenéeated stream.
When the headonsnode is reset, it should clear the state from all¢lmansnodes it contains, too.

For any activecoNsnode, its enclosing heatbbNsnode will have been activated since the last reset,
since reaching the middle of a stream requires reading its head, and smarthecons node would
reset the enclosing heatbnNs node will reset, clearing any computation the contaiocedis node is
performing. At the same time, since the heaoinsnode’s graph is solely used to generate the stream,
resetting it will not clear any processing used for anything other thaergéng the stream. Furthermore,
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any streams used by tke®Nsnode will either be generated within the enclosing head node, and therefore
be reset when the head is, or are passed into the head node from adglu the head node will trigger
the cascading of reset signals.

This new reset model is convenient for lenient evaluation, where allkes activated” signal is
simpler to generate than a “is currently activated” one, and reduces $iséjlities for race conditions.
These possibilities still exists when edges leave the subgraph of aleeeghode, in order to pass into
a multiplexer—the reset signal may arrive while tokens are outside of ¢thes node’s reset domain.
To avoid this problem, we require multiplexer nodes that enclose dead nodes to perform the reset
instead of the headoNsnode.

In order to eliminate unnecessary reset circuitry, and share the sasbtsystem between multiplexer
nodes anccoNs nodes, we separate tlleNs node and the “reset box” which surrounds its subgraph.
The reset box is now a separate graph node type, similar to the stream exafualon boxes, and a reset
box must surround any multiplexer aoNs node that is not enclosed by another multiplexecons
node that is also generating the same stream. The reset box node is datiiatea token enters, and
deactivated after it has been triggered by an arriving reset sigrsalting these reset boxes is sufficient
to correctly reset the system.

The reset box performs both the computational reset and reset tagcad

For the computational reset, it is sufficient to reset the reset box'sapldo its initial state. All
tokens and intermediate results are lost. Any stream item being pushed ontieéma bus should
be dropped.

To reset the streams used by the reset box, a reset signal is sentadithe stream buses generated
outside and used within the reset box, as linearity prevents these streamssfiing used elsewhere.

Since evaluation may have been underway when the reset signabatheestream buses being
reset may already have been reset as part of computation. The egciesat box must therefore
track which streams have already been reset, and only reset the renzaitiegstreams. Otherwise
the same stream bus may be reset multiple times, causing successive stréamsame stream
bus to be killed. Using push-based streams simplifies the operation, aswilsetd occur during
stream requests.

As long as the circuitry for the reset boxes is well-designed, there slheutt race conditions. When
a reset box is reseill internal state should be cleared simultaneously, so that there are no ineermal r
conditions. The forwarding of reset signals to stream buses that edebyshe stream being reset may
seem a possible source of problems. However, as long as stream itaowésttgements and stream
resets are atomic, there should be no problem, and as stream depenttanti&n acyclic graph, infinite
loops of resets are not possible.

5.2.3 Basic Lenient Evaluation

Lenient evaluation cannot be achieved by simply starting the evaluationm$ nodes as soon as they
are reached. The ordering of stream items depends on lazy evaluatiosute ¢hat only a singleoNs
node will reply to a stream request at a time (or send an item out, if the “puskiel is used). If a
CONsnode activates the negtoNs node before a stream request arrives, that pexis node may try
to provide the next stream item, too.

A simple solution is to only allow one stream item to be generated on a stream dtisnat, so that
the items are produced in order. The negiNsnode will start evaluation only when the preceding item
is read. To implement this, each stream bus is provided with an activity line. @silygleconsnode
is allowed to assert the line at a time, holding the line high from the moment it stadtaging a stream
item until the item is acknowledged. The ne@dNsnode to be activated (which will produce the tail of
the stream) waits until the line is clear before asserting the line itself and stastimgutation of the next
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Figure 5.8 Node dependencies for lazy stream reading

stream item. The activity line provides mutual exclusion on the productionedrstitems. Note that it
may be the sameonNsnode that is both producing the current stream item, and waiting for that item to
be read before starting on the next one, having been called through alexeitip

The dynamic dependencies between stream processing nodes cawbdrsia graph, where edges
represent dependencies. For comparison, the dependenciesrbatwes for a simple stream program
under lazy evaluation are shown in Figure 5.8. A stream is generated tlegirésented by theons
node A, and then matched. Only when the match is evaluated are the head anxgragisions of A
evaluated (the tail expression triggeriogNs node B), and the head value returned. Another match is
then performed, which triggers the head and tail expressioo®rtnode B.

In comparison, the dependencies under basic lenient evaluation ave sh&igure 5.9. Activating
theconsnode A triggers evaluation of its head and tail expression, including #otvaoNs node B,
but evaluation of this node does not start yet. When the match occurgends on both the head and
tail expressions ofoNsnode A completing, at which point it returns a value, and triggers the evaluation
of consnode B’s head and tail expressions.

While this model provides some basic lenient evaluation, and increasdklmra only a single
stream item may be produced ahead of time. Therefore, it is not possibigelnp the production of
items on a single stream. In a pipeline made by composing mapping functions (dtetiesire multiple
intermediate streams), each pipeline stage produces a stream that eammbefiftem produced ahead of
time, as shown in Figure 5.10(a). However, if the same function is implementediagle mapping of
a complicated function, only a single item is buffered, and the processirg [@pelined, as shown in
Figure 5.10(b). This limitation is addressed by the following sections.
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Figure 5.1Q Performing mapping operations with a single item buffer
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5.2.4 Lenient Evaluation with a Stream Bus Controller

In some programs, execution time depends on reading items from a strearitklg gs possible. In
order to speed up execution, it is useful to pipeline production of stréameats. While this can be
achieved with the basic lenient evaluation, by arranging the operatiorisraesxample, a pipeline of
maps, it would be useful to be able to pipeline a single map operation. Thisrsegftains how this
may be achieved.

Ideally, every time &coNSnode activates anotheloNsnode, the new node would be able to immedi-
ately begin execution. However, this may produce stream items out of dfdecoONS nodeA triggers
CONsnodeB but B produces its stream value befafecompletes, the values would be produced in an
incorrect order. Our previous approach prevented this by only alp@isinglecoNsnode on a stream
bus to run at once.

A solution that allows more parallelism is to fit each stream bus witraam Bus Controllethat
collects stream bus data items in order, rather like a reorder bufferR@gjuests to activateonsnodes
go through this stream bus controller, which has a FIFO listing whioks nodes were activated in
which order. If there is no space in the FIFO, back pressure is appigdh& nextcoNs node is not
allowed to start evaluating. Otherwise, the neensnode is added to the FIFO’s list and activated.

When an item is available from ttieonsnode on the front of the FIFO, it is output. When that item is
acknowledged, the acknowledgement is forwarded tactbes node, and that element is removed from
the FIFO. If an item is available from the nexsbNsnode in the FIFO, that is now output. In this way,
stream items are returned in the order thatclmens nodes were activated. When a reset occurs on a
stream the activeoNsnodes are reset, and the buffer cleared.

If a coNs node reactivates itself, through a tail recursive call, thats node’s subgraph will be
processing pipelined requests to produce multiple stream items simultaneobslg.oWs nodes and
multiplexer nodes will need to be designed to cope with this. For example, the mdtiplay need to
deal with multiple outstanding requests.

The dependencies between nodes under this model are shown in Figglrdrbcomparison to Fig-
ure 5.9, there are no dependencies between one stream match ocanditige production of the next
stream item, so the next item may be produced ahead of time. The streammbad@ois used to match
up the Match nodes with their associatedNns nodes, in order.

If a stream is produced by a singte®Nsnode, or static scheduling ensures thatdkais nodes will
produce stream items in order, the stream bus controller can be eliminatetheRest of this section
we will assume that a stream bus controller or some other technique is useslite ¢hat stream items
are collected in order, so that the in-order collection of stream items doegsed to be addressed in the
dataflow graphs.

5.2.5 Changing the Evaluation Model: Lazy Tail Matching

The basic evaluation model assumes lazy evaluatiaroofs. Matching on a stream causes evaluation
of the head and tail expression, and the variables are only boundhvadtleaxpressions complete eval-
uation. The evaluation of the tail expression completes when it reachesxheans expression. The
contents of thacoNsnode are only evaluated when the next stream read occurs. Undevkmgation,
the binding of values coincides with the point at which stream evaluation.stops

However, for lenient evaluatiowoNsnodes are evaluated before they are read from; the evaluation of
the tail expression does not stop at the nexiNs expression, but carries on into it. The original reason
for delaying the return of the stream’s head value until evaluation re@cbesisin the tail expression
has gone. In other words, the edges connectingthes nodes to the Match nodes in Figure 5.11 have
no real use under lenient evaluation.

This unnecessary edge delays the returning of stream values until teed@aiition path has reached a
certain point in its evaluation, which may slow down computation, and also sesdhe complexity of
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Figure 5.11 Node dependencies for lenient evaluation with a streancbnsoller

the implementation.

An alternative lazy evaluation model, which we dalty tail matchingtreats the head and tail of the
stream as separate lazy values. When a stream match occurs, onlydha kieastream is evaluated,
the tail remaining unevaluated. When the next stream read occurs, thekxpadssion is evaluated,
to produce acoNs node containing a head expression and a tail expression. The head®gp is
evaluated to produce the next stream item, and the tail expression is agaimeedluated.

This approach represents a slightly different evaluation model. Usingythbad to represent a
computation that does not terminate, the original SASL semantics treat the ¢alue and( ::xs) as
indistinguishable fron{ :: ). When the stream is matched upon, the matching only completes when
both the head value has been produced, and the tail evaluation hasddehemexicons expression.
Under lazy evaluation, this represents a point at which evaluation is rsdspaintil the next stream
request.

Under lazy tail matching, a stream matching completes if and only if the evaluatitwe dfead part
of the coNsexpression representing the stream completes. Lazy tail matching canwtitine value
(z:: ) from ( ::xs), and allows the reading of the head valud_azy tail matching increases the set of
expressions that terminate.

The lenient evaluation model we use for the rest of this chapter is a lemiesior of lazy tail matching.
As in lazy tail matching, stream head values can be used as soon as tledyeeavproduced, but now
evaluation of the stream’s tail expression continues on in the backgrodimgtaph showing the new
dependencies is given in Figure 5.12. This graph is similar to the one usitigaansbus controller
(Figure 5.11), except the matches now only depend on the head égpress

We use the functiotoggleto demonstrate how lazy tail matching affects the produced dataflow graphs:
fun toggle) = True: False:toggle)

The dataflow graph for basic lenient evaluatiorcafiNsis shown in Figure 5.13. The dataflow graph is
similar to that for lazy evaluation, except the reset box has been sapafbdad is now enclosed inside
the mutual exclusion box. The graph for lenient evaluation using a streamdmntroller is identical to
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Figure 5.12 Node dependencies for lenient evaluation with lazy tailahiag

this, since the changes are only in the internal implementation of nodes aanh $tvses. Figure 5.14
shows the dataflow graph of the same program implemented with lazy tail mat@iisgsimpler graph
is no longer valid, as a number of dependencies on the tails of the stream &vBger needed—the
output edge oEoNsnodes are often not used, and this allows the graph to be rearrasgedglained
in the next section.

5.2.6 Rearranging Graphs for Lazy Tail Evaluation

Under lazy tail evaluation, the onlyoNs nodes whose outputs are used are heads nodes (that is,
those that are not enclosed as the subgraph of anothies node writing to the same stream). Under
basic lenient evaluation, if theoNnsnode is enclosed in the subgraph of anothens node, its output
edge would be used to signal to the enclostns that the tail expression has finished evaluating.
However, with lazy tail matching, this information is no longer used. Tlaasesnodes that are directly
enclosed in multiplexers have their output edge forwarded out of the mukipldka multiplexer is
enclosed in anotheroNsnode on the same stream, that output edge is not used, either.

The edge returned by @oNs node or multiplexer is only used if it is not enclosed in anothens
node on the same bus. A multiplexer that is not encloseddiynsnodes on the same bus simply returns
the value produced in its subgraph to the outside. If the value were nixdeetside of the subgraph, its
creation inside the subgraph could be eliminated too. Each multiplexet@rdnode used to produce
a stream is enclosed in reset box (see Section 5.2.2). By modifying théress so that they do not
expect an edge to be output from their subgraphs, the output edgéiscafNs and multiplexer nodes
are eliminated. Instead, reset boxes return a token as soon as thdyeleaviaitialised after receiving a
token.

This is a safe transformation. Under the “pull” stream model, the output edge & CONS node
signalled that theonsnode has been activated, so that it would be safe to read from othestteam.
Under the “push” stream model, it is not necessary to wait for thediosts node to become activated
before reading (as long as the previous stream has been reset) tre@itput edge of the reset box
only needs to signify that the stream is ready to be reset. The resetdmxesovide this signal, even if
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Figure 5.15 The functiontoggleimplemented using the new nodes

the enclose¢oNsnodes and multiplexers have not yet been activated.

The transformation subtly increases the amount of lenience in the langiage the reset box may
now signal readiness before execution react@snsnode. In effect, all functions that generate a stream
throughcons-enclosed tail calls (and thus get implemented using a multiplexer) are lenieata&zd.
The output edges of multiplexers aadNsnodes may also have been used as the synchronisation edges
for kill nodes. This can be eliminated by moving the dependence to the edggigm the node instead.

Since the output of multiplexer nodes are no longer used, the second badf mode, which collects
a token and forwards it to the appropriate destination, can be removedniltiplexer now only needs
to multiplex tokens in, and not demultiplex them out. The new graphofggleis shown in Figure 5.15.

The other node types that have subgraphs (and therefore may kes@yréng) are conditional nodes
and iteration nodes. Different forms of these nodes must be used wighagiis that generate a stream,
but do not return results:

The return-less conditional node is the top half of the existing conditiort®.n& conditional token

selects which output the input token should be passed to. The subgedyptmsno values (although
they may send a token back to an enclosing multiplexer, if there is a tail call)isTisgd to replace
the original conditional node when used in a stream-generating graph.

The iteration node type is used to implement tail calls that are not enclosed@na expres-
sion. For functions that return a stream, under lazy tail evaluation, at diiécall is now treated
identically to a tail call through aoNs—the edge is connected back to the enclosing multiplexer.

To summarise the changes to the dataflow graphs, the old multiplexer nodedraseplaced with a
top-half-only versionconNs nodes no longer produce an output token, the “reset box” has bkem ta
out of thecoNsnode and become a separate node, and a new top-half-only conditioeahasdeen
introduced.

Example As an example, thekip-blanksfunction of Figure 4.25, whose original dataflow graph is
shown in Figure 4.29 is redrawn in Figure 5.16 to use lazy tail evaluationgfidph is now much sim-
plified, removing many of the edges that caused unnecessary depsdérhe conditional expression
is implemented using the top-half-only conditional node, both the directamds-based tail recursion
go through a top-half-only multiplexer, and the whole graph is encloseddsed box.
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5.3 Program Transformation

A wide range of functional-style optimisations (such as those in [15]) maypkea to SASL source,
although their effectiveness may be somewhat different when appliedgogms that will be synthesised
to hardware. The folding and unfolding of functions [78], for examplws an area/parallelism trade-
off.

This section discusses a number of optimisations that can be performedsandafaflow graphs. The
basic intermediate dataflow graph is well suited to optimisation, providing more bieastructure than
the initial syntax tree gives, and having more flexibility than the low-level C$itkce the construction
of the recursive calls and stream buses are not specified at thal s@gg graph-level optimisations
are covered. Performance improvements that depend on the low-levehiemition, such as lenient
evaluation and static scheduling, were discussed earlier in this chapter.

5.3.1 Enabling Graph Optimisations

In order to effectively optimise a dataflow graph, it is necessary for thptgto accurately represent
the computation. The basic dataflow graph format has a number of def@sencthat it can suggest
dependencies where none exist. Difficulties include:

Kill nodes may suggest a dependence between the value being killed araditbeised to synchro-
nise the elimination.

Tuples (and algebraic datatypes) may suggest a dependence beteedantents of the tuple,
where none exists in practice.

A single operation may be distributed among a number of nodes, hiding the twe d the
operation.

The rest of this section discusses transformations that may be applie@ir@rdduce these difficulties.
The notation for the graph transformations in this chapter uses dotted labeadked with letters to
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represent subgraphs. Since the optimisations rely on the dependegiwieeh subgraphs, the notation
uses single edges between nodes to represent what could be adggobetween subgraphs in an actual
dataflow graph.

KILL Expression Elimination  The use okiLL nodes may introduce an artificial dependency where a
value depends on a result that is being killed, but is not otherwise useel cothputation. For example,
Figure 5.17 shows a valid transformation that increases lenience, buiatimadt be performed using a
simple transformation. The values produced insidand B are only used by theoNs node, and so
they could be moved inside the node, except the kill node makes it appetireivalue being killed also
depends on the output of tldNs node. SubgraplB may be moved inside theons node, butA is
blocked unnecessarily.

One solution is to recognise these “fake dependencies” produced byoki#s, and to ignore them.
A more general approach is to remove the “synchronisation edges”hys&dl nodes, as shown in
Figure 5.18. The nodes may then be freely moved about, and if the same t®Bms@mantics are
required the node may then be reconnected to an appropriate edge cdjphe guch as an output edge
of the subgraph it is in, effectively performing Figure 5.18 in reverse.

Alternatively, the edge can be left unsynchronised. This means thatiagsions likéet x = e; in ea,
the expression may finish evaluating befefedoes, and after a value is returned the hardware may
continue to perform computation. If the program terminates, howevergthdts will not be affected,
and the transformation may allow more parallelism. A similar transformation may biedpp stream
reset nodes.
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Untuple

Figure 5.20 Unnecessary dependencies can be removed by eliminaprgriades

Removing Tupling Expressions Tupling values together in the dataflow graphs removes their indepen-
dence, and creates possibly unnecessary synchronisation betwétmit in the tuple. For example, in
the graph shown in Figure 5.19, subgraphappears to depend o, andC' on B, unnecessarily. An
improved version is shown in Figure 5.20.

For tupling nodes followed by untupling nodes, the transformation is simple,théthupled value
edge being replaced by a set of edges representing the componemteal Modes can generally be
rearranged to deal with a set of input edges, rather than a single tujgedand the node could be split
into a set of normal nodes which work on different parts of the tupledeyahereasing parallelism.

The transformation becomes more complex when the tupled value is usedchipfiucalls, condition-
als orconsnodes. Such nodes expect and return a fixed number of edgesangling and untupling
nodes to take a number of data items and transfer them to the subgraple. tijblsy and untupling
nodes can be made implicit, so that, for example, conditional nodes take aegiges in, and each
conditional subgraph gets a matching set of edges supplied to it. This altapk transformations to
be simplified by removing the need to deal with tupling nodes, as well as remorimecessary depen-
dencies. Once the optimisations are complete, tupling and untupling nodes caintboduced around
function calls, conditional nodes adnNsnodes, but otherwise they can be eliminated, allowing greater
flexibility in the scheduling of operations.
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Similar transformations can be applied to the components of algebraic datetgpiest the tag in-
formation does not need to wait for the components of the datatype, andttsecan be transfered
independently. This transformation may have a cost associated with it, in thmgt rmaere edges are
introduced, leading to more dynamic scheduling, which may reduce the maxipesd and increase
area requirements. Static scheduling (from Section 5.1) should be ablmovgenost of these edges,
greatly reducing the overhead.

Associative Node Normalisation Many graph transformations can be applied by performing pattern
matching on the graphs (although optimal graph covering is NP-completetjlitussseful to heuristically
apply graph transformations in this way).

There are many ways in which-adic associative operators can be expressed by chaining together
diadic operators, which all produce the same result. Common examples efithass include addition
and various logical operators, as well as the nodes. For some of the more complex pattern matching
substitutions to be effective, they must recognise these patterns.

In order to simplify these optimisations, sets of associative operators thkttagether to form a
single operation can be merged into a single compound node. This nodesodrethplit up as necessary
when matching for graph transformations. After the graph transformatiawves been applied, the nodes
will have been rearranged, and new sets of associative nodes mayrdgpedm&Vhen synthesising, the
node can be split up in such a way as to optimise for latency, based on sketituing information.

An example graph is shown in Figure 5.21(a). The chained-together additides are merged
together to give Figure 5.21(b). Pattern-matching for common sub-estpreslimination (see Sec-
tion 5.3.2) can break down the triadic addition as shown in Figure 5.21(€) fifial optimised graph is
shown in Figure 5.21(d).

5.3.2 Peep-hole Optimisation

Once the graph is converted to the form described in the previous se@ionomber of basic software-
like optimisations become simple. These include:

Dead Code Elimination Subgraphs whose results are solely used layLa node produce no useful
value, and if the function returns a value, it will not be affected by the agatjpn done by the sub-
graph. Eliminating these subgraphs will reduce resource requiremedtsiay reduce computation
time, but the optimisation also affects termination, under eager semantics (axylsemantics ter-
mination is the same, as the value is never needed, and so never compgedsime that useful
programs are productive, and so this is not a problem. The graphdraratfon is shown in Fig-
ure 5.22. The graph can then be tidied further by applying the transfomretawn in Figure 5.23.

Common Subexpression Elimination For a subexpression to be repeatedly calculated, the values it is
calculated from must be duplicated, and the same operation applied to ggciibe transforma-
tion to remove the calculation of common subexpressions is shown in Figure BhiZldoes not
cover common subexpressions where one of the expressions is tetaldaside a conditional or
loop. For this, the expression must first be pulled out, using a transfomsatah as one of the ones
described below.

Strength Reduction Some combinations of nodes may be replaced by other combinations of nodes that
produce the same result, but take less resources, or have a smalley. |Siermge graph substitution
rules can be used to perform this strength reduction, such as the exdropieis Figure 5.25.

As well as these simple examples, more complex transformations, some spele#idiare synthesis,
can be performed. The rest of this chapter discusses a few of these.
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Figure 5.21 Graphs representing the use of merging associative nodegpfimisation

Figure 5.22 Dead code elimination transformation
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Figure 5.23 Elimination of DUP/KILL pairs

Figure 5.24 Common sub-expression elimination transformation

o

Figure 5.25 An example of a strength reduction transformation
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Figure 5.26 Deconditionalisation of a subgraph

5.3.3 Flattening Conditionals

The basic conditional node waits for all inputs to be available before tiiygyéne appropriate condi-
tional subgraph. If the parameters to the subgraphs are available ltorg bee condition value which
selects which subgraph to use, computation may be being held up unméggeBganoving some parts
of the conditional subgraphs out of the conditional node, those partsoma@&xecuted ahead of time,
which could reduce the overall latency.

This is equivalent to rewriting the expression

if e; then ey elsees

as the expression
let zo = e inlet 23 = ez inif e; then x4 elsexs

This transformation is also used in software, where it is knowih@mversion It allows the elimination
of expensive branches, by the usecohditional movenstructions [66]. All paths are executed, but only
the results of the required path are used.

An example of the graph transformation is shown in Figure 5.26, which ddiionalises the sub-
graphA. The introduction of th@up andkiLL nodes makes the transformation look rather more com-
plicated than it actually is, and a number of these introduced nodes may be egteamiay in turn.

After this transformation, the conditional node will need to wait for the outfhstubgraphA before
activating a subgraph, so this transformation is best used if moving theaglh out of the conditional
node does not extend the critical path. Some static scheduling is requirélif tb be checked. If the
same subgraph is removed from multiple conditional cases, common sussrprelimination can be
performed.

However, not all node types may be moved out of the conditional node iwétyisNodes that may fail
to terminate, such as recursive call nodes and stream match nodes,atbstpulled out. Also, nodes
that take in linear values cannot be pulled out, because the deconditiogpa&igsisformation introduces
a DUP node that would try to duplicate them. Subgrapln Figure 5.26 is therefore constrained to not
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Figure 5.27 Deconditionalisation of a linear-variable-using sulpgra

contain unbounded-time or linear-value-reading nodes.

Figure 5.27 shows a graph transformation that permits the deconditionalisdosubgrap that
reads linear values, as long as it does not take unbounded time. If tear®ee than 2 conditional arms,
all paths but the one containing must not use the linear value, and are transformed as the right-hand
arm is. Figure 5.28 is simply common subexpression elimination across a conlgitinodavorks even
if the subgraph4 includes unbounded computations or reads from linear values (thesgfaptust be
identical, but theB3; may all differ).

If a form of lazy evaluation is used (see Section 6.3), it is possible to di#eomalise all the condi-
tional computation, including unbounded loops and access to linear variditer deconditionalisation,
the linear values may pass througbpr nodes, but dynamically the value will not need be used more than
once, as only the closure representing the conditional path that is takdreveialuated. Some form of
guards must be present if the lazy values are evaluated leniently, tonpteedinear values from being
used multiple times during the lenient evaluation.

This transformation is part of a more general set of techniques whiegeanhs are moved through the
enclosing node. For example, Figure 5.17 shows an attempted transformvagom nodes are pushed
inside of acoNsconstruct.

5.3.4 Removing Conditional Nodes

As mentioned in the previous section, lazy evaluation allows the computatioralgia conditional
arm to be made non-conditional. The same can be done with eager evalpatidded the graph takes
bounded time and does not access linear values. Once all the conditimsabhithe node have been
reduced to selecting an input and returning it, killing the unused valuesptititional node can simply
be replaced by a normal node which reads an item from each of the inputs iand (depending upon
the conditional value) returns one of them—that is, a multiplexer. This is dguiveo generating a
conditional moveénstruction when performing if conversion.

This transformation makes it possible to implement low-level logical operatifficgeatly without
resorting to providing logic primitives. Functions representing logical "atat”, “not” and so on can
be defined in terms afaseexpressions where the expression to be matched upon returns a badiean
The conditional node that is synthesised can then be removed, replawiiih & 2-input multiplexer.
Strength reduction can then reduce subgraphs containing these mulsgiexedes representing logic
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Figure 5.28 Deconditionalisation of a common subexpression

gates.

5.3.5 Unrolling Loops

In software, loops may be unrolled. This is often done to reduce the exerbf the conditional expres-
sion on the loop, so that more time is spent in computation than is in testing the loopeattadiso
allows more flexibility for instruction scheduling so that, for example, loads neapdved further away
from the point at which the value is used. In hardware, unrolling the lbaps different aim. Although
static scheduling may be improved in an unrolled loop, the main differencethatréhe synthesised
circuit should provide more parallelism, but will also use a larger area.

Simple implementations of looping hardware will only allow a single set of tokens targond a
loop at a time. More complex implementations may allow multiple sets of tokens running iodjpe
at a time, so that use of the loop is effectively pipelined. If the ordering afstes unimportant (see
Section 7.3), it is relatively simple to allow multiple sets of data in the loop simultanedfishyultiple
sets of data can be processed by the loop in a pipelined manner, the éacnemsber of pipeline stages
allow more parallelism. The loop may be unrolled by creating multiple copies of theaqatygonnected
sequentially. Conditional expressions may be needed to skip fractioralotes of the unrolled loop.

5.4 Summary

This chapter has focused on optimising the performance of the graphtedrey the previous chap-
ter, both by optimising the graphs themselves, and the way in which they aresigeitth to low-level
hardware. More specifically:

Basic static scheduling has been added, as a way of removing a certaintasheynchronisation
overhead.

Lenient evaluation increases the amount of parallelism available by letting tlyedaaluated parts
of a program calculate before they are required, without adverdelgtiaig the termination charac-
teristics.

Graph-based program transformations use the flexibility of the grapimisaft to minimise the work



126 Chapter 50ptimisation

performed, and reschedule when nodes are evaluated in order to ayg@dermance.

The static scheduling and program transformations can be treated asndéep of the rest of this
thesis. The lenient evaluation model, however, provides the groundaotke next chapter’'slosures
andpromises



CHAPTER O

Closures and Statically-Allocated Laziness

Basic SASL does not support closures, higher-order functionsyoicaim of laziness beyond the explicit
lazy coNns expressions. The language was originally intended to act as a simple stadigatiyted
language in which to experiment with stream-based I/O. Closures and lazioglsl lead to unbounded
storage requirements, and so were disallowed.

Lazy lists can also lead to unbounded storage requirements. SASL mamaggsict them to bounded
storage, and we can attempt to apply the same techniques to closures.-étidgrefunctions are one
of the more important features of functional programming languages; Jeovtleey're often just used
as a “macro” mechanism. Section 6.1 discusses this approach, graduafigiey it to a more general
concept of statically-allocated closures. Section 6.2 takes another &gl lon allowing the closure
to evaluate leniently. Section 6.3 then uses the work on closures as a staitingppmplement lazy
evaluation. The final section of this chapter summarises its contents.

6.1 Higher-order Functions as Macros

A common use of higher-order functions is to simply provide a function tempatewhich a particular
operation can be inserted. For example, the commap filter andfold list operations are generally
defined as higher-order functions which take a function that desasibastis to be done to each element.
The same result could be achieved by textually substituting the argumetibfuimto the original body.
A software implementation may or may not do this inlining: the performance impravemast be
weighed against the code bloat of producing all$pecialisedunctions. However, this issue does not
arise with unshared hardware implementations, since all non-recuedivtes are unfolded anyway.

A simple implementation of higher-order macros can be achieved by:

Adding a function type(o; ¢ 2)r, WhereF' is a function identifier representing the particu-
lar function. Types with different function identifiers are not equal. Turection identifiers in a
parameter are treated like polymorphic type variables. Function types tetlowed at the top
level. In this way every function value in the unfolded program is assatisitd a single function.
Functions may not be stored in streams.

Creating function access expressions. Top-level function namesecasdal to create function
values. By not supporting nested functions, we do not need to cope auifting issues (cf combi-
nators).

127
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(* Higher-order functions. *)

fun mapf, x::zs) = f(x)::mapf, xs)

fun genmagf, g) = map(f, g())

fun toggle) = True: False:toggld)

fun invert(xz) = casex of True False False True
fun main() = genmayinvert toggle)

(* Expanded functions. *)

fun map-inverfz:: xs) = invert(z):: map-invertxs)
fun genmap-invert-toggle = map-inverftoggle))
fun main-expanded = genmap-invert-toggle

Figure 6.1 Some simple higher-order functions and their macro-syfgnsions

Changing the function application expression to take a function value aachenpter, rather than
just a specific function and parameter.

Constraining recursive calls so that the same functions values aresafe@yback as the same
parameters. This is the closure stability constraint, similar to the stream stabilgiraion

Requiring call graph structure constraints to be maintained. Checks masideel to prevent a
function f from generating a function value for a function that (possibly indirectilsc& The
only exception is in creating a function value corresponding to itself for tlipgse of performing
a tail call to it in a tail position.

These limitations make it easy to implement macro-style higher-order functionsh wan be simply
expanded out at compile time. By expanding out the functions at the syetaritbasic dataflow graph
stage it is possible to leave the rest of the compilation process unaltered.

Examples Some simple higher-order functions and their macro-style expansioni@ans sn Fig-
ure 6.1.

6.1.1 Nested Function Definitions

Plain SASL does notinclude lambda abstractions, or other ways of negtiotidns. Without values that
hold functions, nested function values are of little use. Now that (limited) oésshave been introduced,
nested functions provide little challenge. Lambda lifting [76] can convestieisfunction definitions that
use static scoping into a set of top-level function definitions.

The idea is to convert variables that are used by a function, but dedimtsitle of its body, into
extra parameters. For a full higher-order language, these extrenggma would be curried, and the
function partially applied. This can be simulated by making the value represémnétignction also hold
the values that would be used as the extra parameters. Nested funcéaenarated with the syntax
lambdaz e, wherez is a variable and an expression. The result is a function value.

Now that the functions have an environment associated with them, it is possibtereofunction
values within function values. To ensure bounded data structures, wepnewent arbitrarily deeply
nested closures. The only way these structures may be created amghtihecursive calls. The same
problem occurs with streams, which lead to the introduction of the stability iegeint of Section 2.4.3.
The closure stability constraintequires that, for recursive calls, the closures supplied to recuraile ¢
must be the same ones that were supplied to the function in the original calledsises the closures
remain statically allocated.
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(* Higher-order function. *)
fun check-rang@ower, upper, strean) =
map((lambdaz lower xandz upper, stream)

(* Expanded function. *)
fun map-check-rangglower, uppen, z::xs) =
(lower zandz uppen::map-check-rangglower, upper, zs)

Figure 6.2 Closures that use their environment, and their expansions

Once environments are introduced, it is possible to store a stream insidgugecld simple solution
is to disallow stream values within the environment of closures. A more complekan allows such
values, but then treats such closures as if they were tuples containiagnstriney must be used linearly,
and cannot be enclosed within streams or algebraic datatypes. Nestiaghoflssures is allowed, as
nesting of tuples is allowed. When one of these closures is killed (that is) igevalue becomes
non-live, and is explicitly destroyed in Linear SASL), the enclosed streaunss be reset.

Example An example function, and its expansion are shown in Figure 6.2.

Curried Functions and Mutual Recursion The introduction of lambda abstractions allows us to cre-
ate curried functions. A simple example is the curried versiomaf

funmapf (z::zs) = f(x):mapf zs
This is syntactic sugar for:
fun mapf) =lambdas (casesofzizs f(z):mapf xs)

Converting to top-level functions gives the following (with the square ketscas intermediate form
notation for environment values):

fun map(f) = map-2 /]
fun map-2f](s) = cases of zi:xs  f(z):mapf xs

These functions look like they may be mutually recursive. However, wheptthbgram is unfolded the
calls to function values become calls to fixed functions. It is no longer sacgs$o pass around the
function values to identify the function to call, but the environment associgitbideach function value

still needs to be passed around, so the function values are replacednwiitbnenents. For example,
given a functiony, mapbecomes specialised as follows:

fun map,(e) = e
fun map-2 (e, z::ws) = g(e, v)::map-2,(map,(e), zs)

The parametet supplied tomap, represents the environment fin the original function. The value
map, returns is the environment ohap-2,. The functionmap-2, takes an environment as well as its
parameters. Only the final application in the tail position causes the actuahlaitself, which is
directly recursive, so mutual recursion is not required.

We may be tempted to extend the language to alleirec” style bindings, allowing nested recursive
functions. If we prevent enclosed functions from calling enclosingtions, the conversion to a top-
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level only form is not complicated. However, if we allow the enclosed funstim tail-call enclosing
functions, mutually recursive functions may be introduced.

Although the synthesis of mutually recursive functions is not discussesgpitindn this thesis, it is quite
possible to implement in SASL. One approach would be to move to a more continbased-approach,
so that each function is a state in a state machine, and tail calls become stétiemsarigampolines (as
explained in Section 4.3.2) can be used for similar effect. An alternative isftddlthe functions into a
set of nested loops.

6.1.2 Lazily-Evaluated Closures

The “macro-like” closures of the previous section have many featuraésaditional closures. Most
limitations are to prevent the construction of unbounded data structureasjuscursion and algebraic
datatypes are limited.

However, the introduction of (singleton) function identifiers was solely to kiyngpynthesis, and is
unnecessary from a static allocation point of view: it is unnecessaretept different function values
being joined together at the end of conditionals. Rather than mark eactiofunalue with a single
function it can contain, function identifiers can become sets.

A singleton set is compiled as before. If it is not a singleton, the functiorewedm be compiled down
to an algebraic datatype, with a different constructor for each of thsilgesfunctions being called.
The data associated with each constructor is that function’s environmeatcal site, all the possible
functions are instantiated, and the correct function is selected at runtising,a conditional expression.

This kind of analysis has been studied in the past, as control-flow ana@/sh) (132, 64, 9] and
closure analysis [137]. The analysis we uspadf/variant the set of functions a function value may take
are calculated based on the call site used to reach that expressiothéorthee non-recursive chain of
calls), instead of conflating all calls to the function. This is a result of thesi@ming synthesis used.
The analysis converges as the set of functions is finite.

The removal of higher-order functions has also been studied undarietyvof names, including
elimination of higher-order functions [125], closure conversion [138, defunctionalization [14, 13]
and higher-order removal [40]. The analysis for SASL is greatly simgliig the closure stability
constraint, which means that it is not necessary to perform any iteratiomdaa fixed point.

6.2 Leniently-evaluated Expressions

The earlier sections of this chapter have only looked at using closueawag of simplifying the expres-
sion of a program, rather than as a way of suspending the evaluatiotueSwhat may not be needed.
For example, the Scheme language [82] ubslay andforce expressions to generate and consume
promisedor this purpose. A promise (@uspensionis only executed once, independently of how many
times it is forced, so it is more like an explicit version of lazy evaluation than sucto(which may be
repeatedly evaluated).

In software, delaying evaluation until required prevents processsmurees from being used until
they are required. With hardware, this provides no advantage, sintattieare to produce the values
will be otherwise be idlé. More useful in hardware is the ability to speculatively evaluate an express
and cancel it should it not be required.

Linear SASL already killsszaluesthat are not used, but this is quite different from killiegpres-
sions If a value is killed, the expression must complete; non-terminating exprsssannot have their
resulting value killed, but the expression can be killed. Similarly, killing an @sgion can be almost
instantaneous, while killing a value may require synchronising and waitingpéovalue to be produced
before killing it.

1In fact, the hardware may be producing other pipelined values, butevessuming that sufficient parallelism is available
that the “speculative execution” of values that may not be needectistietily free.
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Promises are introduced to SASL using a similar syntax to Scheme, with exmess the form
promise e andforce e. The new typer promiseis also introduced, as a stream data type. A promise can
return any SASL data type, but cannot be enclosed in a stream or ailgeatatype. A promised data
value cannot be accessed except by forcing it to obtain the contaihed va

Promised expressions may not contain tail calls. To contain a tail call, a prpmisald have to be
in a tail context, and the function would retupn If p performs a tail call, it has to return a value of the
same type as the function being called—that is, a promise. All that would lde@ed is a promise that,
when forced, returns a promise of the same type.

As with closures and streamspeomise stability constrairis introduced to prevent unbounded recur-
sive structures. In recursive calls, promise values must match up betheérmal parameters and the
arguments of the recursive call.

Using Promises Promises allow expressions that should be evaluated conditionally to be tatkeh o
conditional expressions. For example, a conditional arm can be evélingiarallel with the conditional
value which selects whether the body should be executed. This allowsttbal grath length of the code
block to be shortened to improve performance.

It also allows code duplication between conditional expressions to be elimin&tsvo out of three
conditional paths required a value, that value can be produced asréspr@and forced in those con-
ditional paths. The hardware that produces the value is implemented ordy(@amopposed to if each
conditional expression had its own function call), and the third path will eatddayed if the value turns
out not to be required.

The main advantage of the lazy evaluation of Section 6.3 is that it gives thegpnaer these optimi-
sations automatically, without having to explicitly create and force promises.

Implementing Promises In order to simplify the implementation of promises, they are initially con-
strained to be linear, and not return streams or other promises. Such@saarssimply be implemented
using leniently-evaluated streams in a source-to-source translation.rdiméspd value is placed at the
head of a lazy list, which is otherwise populated with “do not care” values:

promise e becomes::: cs. (), wherecs, is a function which returns a stream of constant values of
the same type as

force e becomesasee of z::xs  x.

The promise stability constraint simply maps to the stream stability constraint. dfnaise is not used,
it is killed, just as an unused stream is killed.

Using streams to implement promises is overkill. The infrastructure to deal withiltreeulanecessary,
and the stream system can be specialised to deal with promises. “Promes &eslike stream buses
(and are typed similarly), except that only a single item will ever be traresfesver a promise bus
before a reset occurs, and can thus be optimised for this. Promisedreseset in the same situations
that stream buses are reset.

Promises are created with promise nodes that are identical to lezierd nodes, except that they
write to promise buses. Like leniegbNs, they are enclosed in reset boxes (see Section 5.2.2), except
that the reset boxes trigger on the promise bus’s reset line, rather gnatrélam bus’s. UnlikeoNs
nodes, the promise node’s subgraph does not trigger another nodiegtdonthe same bus after it. The
actual implementation of a promise node is identical to a lerdemts node—the only difference being
in how the subgraph is constructed, and how the promise bus can be optimised

A promised value is forced by performing a read on the promise bus. A ligla stream read
performs the read from the bus, but then automatically triggers a reseteasitjnensures that once
the promised value has been read it becomes non-live. As forcing is likeaarsread, a forcing can be
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(* (@) Redundant copy of f. *)
caser of A f()

B f()

C g()

(* (b) Redundancy removed. *)

let y = promise(f()) in casex of A y
By
C g()

Figure 6.3 An expression with and without redundant hardware

A
|
1
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Figure 6.4 A graph using promises

leniently evaluated within another promise. If a promise is killed, all the promisgstaeams it depends
on must be reset too. Promises are killed using a node very similar to a stiltaodk.

Example The expression in Figure 6.3(a) can be rewritten as shown in Figure) é3gkder to elim-
inate a redundant copy gf. The graph for the expression is shown in Figure 6.4. In this graph, the
promised value is leniently evaluated, while the conditional expression iscstéinteasesd and B the

read nodes wait for the promised value before resetting the promiserbaaséC' the functiong() is
evaluated instead, and the promise is killed without reading its value.

Returning Streams and Promises If a promise is to return streams or further promises, extra stream
and promise buses must be created to transfer these values. Thesednuise treated as normal promise
and stream buses, except that they must not be read from until the prenttosing them has been
forced.

The type system requires that not only should the enclosing promise imagtel up in typing, but
also the promise and stream buses of any enclosed promises and streamskelthe buses match
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up, variable access expressions allow bus substitutions on the encileses] bs well as the outermost
promise bus. In hardware, these become stream forwarders. Sineerdiosed streams and promises
depend on the enclosing promisgf p is killed without being read from, all the enclosed buses must be
reset too.

Replicating Promises It may be useful to have more than one expression access the resutbofiag
(as long as the promise does not return any linear values). The valueentlyplicated after forcing the
promise, but if it turns out that neither copy is used, the evaluation will len in vain, possibly
slowing execution.

An alternative is to introduce a new explicit promise-replication node, jut@supP node was in-
troduced to Linear SASL. Such a node copies the token representingotinésp’s availability, but also
handles duplication of the values sent on the promise bus. Since the evalomlyooccurs once, the
promise replication node must cache the produced value. If any con$aroes a replicated promise,
the node will force the original and cache the result. Any further focwgl receive thismemoized
value. Once all consumers have either forced or killed the promise, treewitictlear. If all consumers
kill the promise, the reset is forwarded to the original producer, anddbe resets.

The replication of promises so that the values may be evaluated once ahchulsiple times, but not
evaluated unnecessarily, forms the basis of our implementation of lazy gealimSection 6.3. Note
that a replication of a promise is not the same as the original promise for thesas of the promise
stability constraint on recursive calls—replication performs substitutionm@mise buses.

Pipelining Promises The production of different streams on the same stream bus is not pipelined
Attempting to interleave the production of items from different streams on the sae@n bus causes
many difficulties, and is likely to be of limited use, since it is expected that the nuofbiegms per
stream is large, and the time spent switching between streams on a streaouidibevsmall compared
to the time producing the stream items. The actual production of stream itemsaoticalpr stream can
be pipelined. Mutual exclusion boxes are used around stream-prgdyreiphs, and the same approach
can be used for simple implementations of promises.

Although they can be implemented as single-item streams, promises have #feeeptbehaviour. A
single item is used from each of these promise streams, and so it does mosenake to worry about the
interleaving of streams. If a promise is forced, it acts similarly to a normal S&®kession, where we
expect that requests may be pipelined into the graph, and results teoethe correct order. Promises
may be pipelined, and if no promise is ever killed it can be treated like a norrtelaya graph.

When a pipelined promise is killed, it is not possible to reset the promise-gragdhardware com-
pletely, since other items in the pipeline must not be cancelled. Instead, theadrarmust now cancel
only the leading set of tokens:

For straight-line code, this simply requires dropping the set of tokengstethie graph’s exit.

For iteration and conditional nodes, there will be hardware to collect thesokepipeline order,
and this can be used to identify and eliminate the appropriate set of tokens.

For subgraphs that produce streams, if one of the tokens being killgusasd through a mutual
exclusion box, that mutual exclusion box and its contents are cleared.

Pipelining promise production, with selective reset, gives a large overb@apared to the opposite
approach of mutual exclusion and a complete reset, and so its use musighedvagainst improved
performance from pipelining.
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6.3 Statically-Allocated Laziness

The bulk of SASL is eagerly evaluated, with lazy (or in practical terms, l€n@oNS expressions. In
earlier sections, lazy evaluation was dismissed as inefficient for haedimapreventing parallelism) and
not statically allocatable (lazy evaluation may create what are effectivbélgunded nested promises as
arguments of tail-recursive calls). Lenient evaluation may be used toessaftficient parallelism is
achieved. Unrestricted streams and closures may require unboundedymemarements, but appro-
priate rules can restrict them to bounded forms, making them practicalsafid €or statically allocated
systems. In the same vein, limited lazy evaluation may be statically-allocatablel, aiséfpractical.

There are several reasons why lazy evaluation may be useful. Moviagytevaluation causesoNs
nodes to no longer be a special case. Exppaiimiseandforce expressions become redundant. Lazy
evaluation is a common model in software functional languages, and it magddel to explore the
similarities; the blow-up of storage requirements is the bugbear of lazy éealua software systems.
Static-allocation will limit the language’s laziness, so there will be some trade-of

A key feature of lazy evaluation is that values are not re-evaluatedtieaelthey are required. SASL's
lazy evaluation should also leniently evaluate values ahead of time. Both effésgsires are provided
by the promises of the last section. The basic approach is to take an eagmi/dataflow graph and
make it lazy by enclosing data processing elements so that the values detwenpromises, and all
parameter promises are forced before being used.DURenodes are replaced with promise replication
nodes.

Dealing with Iteration The promise stability constraint requires a promise that is passed into a func-
tion be passed unevaluated in any recursive call. In graph form, thdtas to disallowing promises as
parameters to iteration and multiplexer nodes, unless the promises areasat ¥athin the loop. This
gives us our practical limitation on laziness in hardwailévalues may be evaluated lazily, except those
that are passed into recursive callEhis is as might be expected, since it is the recursive calls that allow
the build-up of unbounded nested promises that can make lazy evaluatisensory-hungry.

Handling Streams Streams may not contain promises. As such, values must be forced befoge
sent over streams. However, streams are leniently evaluated, so thigyfradone leniently too (by
performing the forcing within a&oNs node) and the forcing may be cancelled by resetting the output
stream, just as the leniently evaluated forcing of a promise may be cancekgdtidpromise value is
killed. The other stream-related nodes can be simply treated as normal motkrss of the insertion

of forcings and promises.

Synthesis Details Under the simplest version of the transformation, almost every node ipsulated
to force inputs and promise outputs. The specific transformation for eagi gonstruct is described
below. The graph form used is the one associated with lenient evaluatitmth& nodes given in
Section 5.2.6. Figures show a number of the transformations, with the prousise bmitted (as stream
buses were in basic dataflow graphs, to simplify the diagrams). Nodegghasent subgraphs, (marked,
for example, ‘A”) are transformed to lazy subgraphs, (such 48, when used in the lazy version of
the graph.

Normal nodes, and other nodes without subgraphs (match nodesyrflamnodes and stream Kill
nodes) have all input edges preceded by a forcing node, and thgraptvis enclosed in a promise
box, as shown in Figure 6.5. Normal nodes with more then one output ee@plérinto a set of
nodes with one output each.

Mutual exclusion boxes and reset boxes are not modified (althoughesaiboxes will be intro-
duced with the new promise nodes).
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Figure 6.6. Converting conditional constructs to lazy form
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Figure 6.7. Converting top-half-only conditionals to lazy form
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Figure 6.10 ConvertingcoNsnodes to lazy form
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Figure 6.11 Removing unnecessary promises

Conditional expressions force the value used for the condition, and fbe result of each condi-
tional arm, and the whole graph produced is enclosed in a promise boxis Bhiswn in Figure 6.6.

Top-half-only conditionals, used in the tail of lazy tail matching loops (seti@e5.2.5) only force
the condition value, as illustrated in Figure 6.7.

Multiplexers force all inputs (both external and from the subgrapld then convert the parameter
value to a promise at the start of the subgraph. Figure 6.8 shows thisoimaasion.

Iteration nodes enclose their subgraph so that the parameter value is maaginotoise, and the
returned value is forced. The iteration node’s input is then forcedttendhole graph enclosed in
a promise box, as shown in Figure 6.9.

coNsnodes force the edge that supplies the item to be written to the stream, and éhis ttoeh
enclosed in a promise box. This transformation is illustrated by Figure 6.10.

To keep the same external interface as was used previously, the tbps#eteon is enclosed in a wrapper
which converts parameters to promises, and forces the returned value.

Grouping Data Processing Elements The previous section creates far more promises than necessary.
Just as the basic synthesis creates a large number of separate nadeargtdynamically scheduled,

but which can be statically scheduled in groups (see Section 5.1), wdicanate a large number of
these promises, producing a graph which performs the same set of ctionmthut with a much lower
overhead. This is a form dtrictness analysisNote that the optimisations below may be applied to
promises in general, as well as lazy evaluation.

The basic transformation is shown in Figure 6.11. A promise that is immediatelydaan be simply
reduced to an eagerly evaluated graph. If a promise is replicated this opiimisannot be applied
directly. Figure 6.12 shows how a replication node can be moved through fodes to eliminate
replication code and perhaps allow the elimination of the force and its assbpiatmise.

In order to allow further elimination of promises, we need to be able to move pesriiside other
promises, so that they can be matched up with the appropriate forcingHudéransformation is shown
in Figure 6.13. In a non-lazy system this transformation may increase lazaman eager value is now
evaluated lazily. Along with other transformations that allow blocks of noddmtmoved in and out
of subgraphs (see Section 5.3), these transformations allow the majoritgrafses to be eliminated,
without changing the termination characteristics or degrading performance

Identifying Lazy Values So far we have assumed that there is a one-to-one mapping between lazy
values and SASL expressions. When a tuple is created, it forms a praneither none of the tu-
ple is evaluated, or all of it is. Finer granularity may be wanted, for exanijgeiag the independent
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Figure 6.13 Transforming an eager value to a lenient one

evaluation of elements of a tuple, or even the fields within an algebraic dataipg&uctor. This can be
achieved by not forcing the parameters to a tupling or datatype constnader and removing unnec-
essary promises around the deconstruction node. The transformatiighily somplicated by streams,
as values that are passed through streams must have all nested promncisgs f

The Execution Model It may be useful to try to visualise how statically-allocated laziness is evaluated
in parallel. Under lazy execution, evaluation now causes an initial badswrass through the program,
as requesting the value from the output triggers a cascade of reqaekisdods for values that are
definitely needed, effectively running the dataflow graph in revers@ps skip their bodies, requiring
that their inputs be available for computing their bodies, and similarly conditioegisre the conditional
value be calculated first. Once the values are available, parts of therfbpivase of execution can begin,
which behaves similarly to eager evaluation, except that values that anecessarily required are not
evaluated at this stage. Loop and conditional bodies that produce vailigsare required are evaluated.
When unevaluated values turn out to be needed, extra smaller backweasis are generated to trigger
the production of the value. The general structure is akin to full lazimedseager evaluation for loops.
This evaluation model closely matches the pull model of Johnson’s Value[3aendence Graph [72].

Under lenient evaluation, all values will be produced speculatively,atdttiere will still be backwards
requests for the results of promises, but they may be fulfilled immediately if shdtsevere calculated
leniently and are available immediately. Alternatively, the lenient evaluation earwed as eager
evaluation, but with the addition of a backwards dataflow of cancellatioralsighat are produced as
items are discovered to be not needed.

6.4 Summary

This chapter has gradually built up the infrastructure for statically-allociatziness. Limited support
for higher-order functions was introduced through macro expanaiwhthe support was then extended
to more general statically-allocated cases.
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Leniently-evaluated closures were then introduced as a way of incgepamallelism, by providing
the interface of a partially-evaluated function, while internally computingliesihead of time. These
promisescan be implemented using either stream buses, or more specialised prorese bus

Finally, these closures were used to implement a statically-allocated formyoéVatuation, where
data is produced lazily, except that which is required by loops.

This chapter marks the end of the work on evaluation models. The next clexpeeds the basic
SASL language in a different direction by investigating non-deterministiastreperators.
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CHAPTER [

Multi-Set Processing and Non-Determinism

The inclusion of non-deterministic operations can improve language ekyeaess and allow new com-
piler optimisations. By non-deterministically reading from a set of streams, takan{jrst item to be
produced, a more flexible 1/O model is introduced. When the order of itemstiream does not matter,
the items can be processed in any order, leading to a number of optimisations.

Non-deterministic streams in functional programming languages have beétddbedore, in the con-
text of functional operating systems [138, 79]. In those systems, thenssrare for communication
between processes connected by mutually recursive definitions. disagrcommunication is allowed,
introducing the possibility of deadlock. Although SASL's approach is mucherfiorited, eliminating
deadlock, some points still apply. Stoye [138] notes that non-determinigiratyps are not referentially
transparent. For example, given a functioergethat interleaves two streams non-deterministically, the
expressiontet x = merge(ey, e2) in(x, ) and(merge(ey, e2), merge(e, e2)) are not the same. In that
paper, the approach taken is to only allow therges at the top level of a program. SASL does not
restrict the use of the non-deterministic operators in this way; if SASL codiggkcated during optimi-
sation, care should be taken that the program’s semantics are not dh&melternative approach that
eliminates this problem is discussed in Section 7.5.

Section 7.1 covers the use of non-deterministic stream read primitives, wdadhan element from
one of a given set of streams. Section 7.2 introduces an analysis to ideadtigs “tainted” by non-
determinism. Section 7.3 then discusses the usauifi-setsor bags to represent streams where the
ordering of elements is unimportant. This enables a number of low-level optiomsahat increase
parallelism. Section 7.4 contains an analysis to identify lists that may be treategsawithout affecting
the results generated. Section 7.5 discusses how the language caotesltesreferential transparency.
A summary is provided in the final section of this chapter.

7.1 Non-Deterministic Stream Reading

There may be situations where multiple input streams are constructed a¢uwkiffates, and we do not
care which stream we read from next. Moreover, it may be useful @ frean the first stream which
has available data. For example, the streams could represent events $etrof input devices, where
we wish to act on the first event that occurs, regardless of the deaté thccurs on. This has some
similarities to thealternative commanéih CSP, which also introduces non-determinism, and the Unix
selectsystem call. As differences in program timing may produce differentarorders for data, such
matching on streams using a “first-come, first-served” system leads tdeterminism.

141
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This non-determinism does not fit naturally with SASL’s lazy stream modelmaiches SASL's
lenient streams better:

Lazy evaluation requires a request to be sent before stream items are produced.-detesministic
read must send a request to each stream, and wait for the first resuilvég at which point the
other requests must somehow either be cancelled or buffered for fetuats.

Lenient evaluation produces data as soon as possible. A non-deterministic read will actedram
the first stream that has an item available.

The language needs to provigeductivityguarantees: if there is a non-deterministic read from a pair of
streams, one of which never produces an item, the other of which is gigel(tbat is, it will eventually
produce an item), data from the productive stream should always lieedtsthe non-productive stream
should not block execution. Furthermore, if a pair of productive streemmson-deterministically read
from, it should be guaranteed that items from both streams will eventuallydake fEhis is afairness
guarantee. A suitable model is thatwéak fairnessor justice[93]. This states that every time a stream
has data available, it will eventually be read. In temporal logig; i$ a streamyeq a predicate for
whether data is available on that stream, an#l a predicate for whether the data is being read, it is
written asd<O( req(s) ack(s)) 1. Note that the time steps for the fairness guarantees are executions
of the matching expression: the guarantees only hold as long as the matehséap under scrutiny is
evaluated an unbounded number of times (which is in no way guaranteedsin) SA

The following sections discuss how non-deterministic stream reads catdmiiced to the language’s
syntax, how they may be implemented in hardware, and give an analysis touniatkvalues produced
by a program may be “tainted” by non-determinism.

7.1.1 Language Considerations

In CSP, reading from one of a set of channels can be achieved thesuglternative command, which
consists of a list of pairs of input commands and body commands to be exelfutata is available on a
channel, that input command is executed, reading data from the chatimektssociated variable, before
executing the body command. When the body command finishes execution, thataleecommand
also completes (as with conditional expressions, where only a single pdgssion is executed). A
near-direct translation of this to SASL would be to creatak@rnative expressigrcontaining a list of
stream matching expressions, of which one is executed:

(caseel of z1:iws; e 2

[

[casee;. of zy:iwsy e ?)

This approach, while possible, has two major drawbacks; it does néhegattern-matching style ML-
based languages typically use, and has an awkward syntax. Furtieesaoh of the! are not accessible
from the otherei, so thee} will often just be variable access expressions for variables bound otitside
expression, creating more awkward programs.

An improved syntax takes a tuple of streams as the value to be matched upon, withttihecases
each reading from a single stream, leaving the other streams unread:

casee oOf (vq::2st, sl , 1,{39 ) e
( 28, xoiws3, , ﬁks ) e 2
( I’§, 155’5; 7@::%‘5]]2) €k

YIn words, at all points in time there will be a future time at which either there iquest, or there is an acknowledgement.
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case(casee of (z::xsq, yu9)  (x,x8 1,...,T8K)
casee of x:: (zs1,...,x8;) e /‘ ' '
(xs, yeias) (z,xs 1,...,x8E))
of (x,xs1,...,xs,) e’
casewrap(e) of z:: (xsy, ..., xsE)
casee of (z:iws1, @9 e 1| |caseunwrap(zsi,...,xsy) of (zs1,...,xs;)
: : casex of Constri(xz) e 1
(za,  aiamy) e
Constn.(z) e g
where
fun wrap(xsy, ..., xzsk) = (wrap,(zs1), . .., wrap,(zsy))
fun wrap;(x::xs) = Constr;(x)::wrap;(zs)
fun wnwrap(xsi, ..., xs;) = (unwrap,(xsy), ..., unwrap(xsy))

fun unwrap;(x::zs) = (casex of Constri(x) x):unwrap ;(xs)

Figure 7.1 Equivalence between the forms of non-deterministic strestching

In this syntax (which we will call Syntax A), the unmatched streams are stiliedola through other vari-
able names, while the matched stream is split into a head and tail part. As withuoboisinatches, only
a single case is executed, although unlike constructor matches, the matokésa clon-deterministically
rather than based on the valuecof

An alternative approach (Syntax B) is based on a different view of th@astreams are being pro-
cessed: given a set of streams, we wish to read an item from one of tbedyg bot care which stream.
This can be performed with an expression of the form

casee of z:: (vs1,...,ws,) e’

wheree provides a tuple of streams of the same typés the head of one of the streams, and the
match the tail of the the read stream or the other streams, as appropriatx Bysiclosely related to the
non-deterministic stream-interleaving functiorerge and is included to provide a contrast with Syntax
A. Syntax B separates the non-deterministic read itself from the conditiagpeg¢ssion predicated on
which stream was read from.

Streams of different types can be non-deterministically read togetherthanstream that came
from can be identified, by mapping the elements of each input stream to eedifieonstructor in an
algebraic datatype (care must be taken to meet the linearity constraintsjedtmmsque is used to show
equivalence between Syntax A and B in Figure 7.1.

SASL's streams are lazily-evaluated values, and pattern matching in laayalges has traditionally
been a problem; patterns can be set up such that it is impossible to knowaincadwhich arguments
need to be evaluated to select the correct match with minimal evaluation, such as

match e with (.,0,1) e 4
(17—70) €2
(0, 1,_) €3
(1,1,1) €4
(0,0,0) e

This is not a problem, as although the non-deterministic matches are perfomaeskt of lazy variables,
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fun mergelas, bs) = case(as, bs) of (a::as,bs) a::mergelas,bs)
(as,b::bs) b:mergelas,bs)

fun merge2as, bs) = case(as, bs) of x:: (as,bs) x::mergeZas, bs)

Figure 7.2 Non-deterministic merge functions for Syntaxes A and B

SASL performs these reads in an eager manner. All the streams are mapcresimultaneously, and
the case where the first stream match completes is used. The non-determeéaidsicely on the use of
lenient evaluation for streams.

Perhaps the simplest real-world function that uses non-determinism isdigefunction, described
above. Implementations of theergefunction are shown in Figure 7.2. It is not possible to implement
general non-deterministic reads in SASL using mhergefunction, since once the streams are merged
there is no way to obtain both individual streams again, and linearity preaeness to the original
streams. The non-deterministic read is therefore a more powerful rterdeistic operator than the
mergefunction, and so is the primitive provided. In other functional languagés non-deterministic
merges (such as that described by Stoye [138hgrgecan be used to implement a SASL-style non-
deterministic read, since the streams are not linear.

7.1.2 Hardware Implementation

For the hardware implementation, we assume lenient evaluation, using the $gisalling described
in Section 5.2.1. With this, a non-deterministic stream read is not much more comgplibatea plain
stream read. Instead of acknowledging and returning an item from thke sitteam being read when it
is available, the system monitors a number of streams, and returns andvéetdkges the data from the
first one that makes an item available. The match can be implemented with a nmiteredmds from
a set of streams, returning the stream item and a source tag identifyingegamdtom which the the
item came. If Syntax A is used, the item is fed into a conditional node, with theitimm value coming
from the source tag. Syntax B can simply be implemented by dropping theesagrand returning the
matched item.

The arbiter used to select the stream to read from must achieve weastitdowever, since the ar-
biter is implemented as a finite piece of logic, we can obtain a stronger gugraifiegary fairnesg5].
Instead of requiring that no input stream waits forever, this requireéshibee is some bounklsuch that
a stream with data available will never have to wait more thateps (i.e., executions of the stream read
expression) before its data is read. It is simple to ensure finitary fajfoesxample with an arbiter that
“round robins” if multiple items are already available, and otherwise retumrtt item to appear.

7.2 Identifying Non-Deterministic Values

With the introduction of non-deterministic operations, we now have valuesrgtd that may vary
between runs of a program, even if the same data is supplied. Thesetwmiuistic values can make
debugging difficult, as bugs become increasingly difficult to reprodésesuch, it would be useful to
minimise the parts of the program containing non-deterministic values, andédamalyse the non-
deterministic parts of the program, perhaps using formal methods on thisevbare simple testing is
no longer sufficient.

In order to minimise the non-deterministic elements of a program, or analyse thamed¢o be able
to identify them. This section covers the identification of non-deterministic valNes-determinism
“taints” values—a value that depends on a non-deterministic value will itsefibbedeterministic, so
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that non-determinism can spread throughout a program.

This analysis has many similaritiesescape analysib6]. Escape analysis identifies values that may
be part of a data structure returned by a function, so that the valuetda@mllocated in storage that is
released when the function returns (such as a stack frame). Esapsiswill tag values with the other
values they may reference, so that if that variable is returned, a setapieg variables can be found.
To identify non-deterministic values, a new pseudo-variable represamimgleterminism is introduced.
The variables used in non-deterministic read matches are made to depetsifsetido-variable. Any
values which may be affected by non-determinism will depend on the pseidle?

The identification of non-deterministic values can be performed using araebsiterpretation or
type-like system. The approach used here is based on a type systemndlgssacan be viewed as a
precursor to the analysis of Section 7.4, which is used to analyse whiemsti@ay have their items
reordered without affecting the results. The identification of non-detéstitrvalues is undecidabfe,
and so we use a conservative analysis. It will either identify valuesfastdl deterministic, or possibly
non-deterministic.

As with other analyses, we need to choose how closely the analysis shodédl tim® program. At one
end of the spectrum, each expression can either be flagged as eitineingeudeterministic result, or
returning a result which may possibly contain some non-deterministic elemetite Ather end, values
may be broken down to show which particular concrete values may begaddion-deterministically
by an expression (thus allowing more accurate analysis of which exeqatba may be triggered non-
deterministically). It is a trade-off between speed and accuracy.

Our approach does not track elements within lists, so that if a non-determiglstent isconsd
onto a deterministic list and then the tail taken, that list will be marked as nomdatstic. The elements
of tuples are tracked independently. The implementation relies on an anniyfag¢eslystem, with each
stream type and basic type marked as either being deterministic or possibiietesministic. We elide
the basic and stream types in this analysis, focusing only on the determirisas v@ihese determinism
typeso are therefore similar to the types of Section 2.4.1 except that each basgtraach type is
replaced with a boolean expressibrrepresenting whether the value is deterministic or not. The boolean
value F' is used to represent a deterministic type, dhd possibly non-deterministic type, so that, for
example, a value that is a pair of a deterministically generated basic valueremddeterministically
generated stream would be typedras 7.

The boolean expressions in the type are simply disjunctiofi§ éf anddeterminism variablesOnly
disjunctions are needed since non-determinism is “contagious”, so awalu® non-deterministic if
any of the values it depends upon is. Determinism variables (represent@deek letters) represent
the determinism types of parts of the function’s parameter, so that the detemtiype returned by
a function can depend on the type of its parameter (and if a function is catledrfultiple sites the
analysis need not be repeated).

The syntax for a determinism typeis:

g (0’1 O‘k) E
E B, ... B,
B T F o g v...

We generate determinism types using the typing rules shown in Figure 7.3, enitlurgfication, or
polymorphic recursion [107]. The type for the functitm f(x) = e is given byo; ¢ 2, where
x:01 e : o9. The disjunctions on tuples are applied component-wise:

1 1 2 2 1 2 1 2

2The “decision variable” of Section 7.5 effectively makes this pseuattable into a real variable.
30r rather, undecidable for a Turing-powerful system, and only ictjwal for a statically allocated system.
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TheDIST operator distributes an expression over possibly-nested tuples:

EpbisT(oy ... 0 ) = (EDISTo1) ... (EDISTo §)
Fi{DISTEy = FE; FEo

The typing implementation is complicated by recursive calls. For non-reeuails, a substitution is
used on the determinism variables, similar to those used in SASL'’s originabtggstem. For recursive
calls, the determinism type of the subexpression containing the recuadiveiltdepend on the overall
determinism type of the whole function, which is not yet known.

For an example, we will use the functighn

fun f(p,q,r) = if pthenq elsef(true,r,q)

If the type of this functionis givendsx 5 v) ¢, thetypingrulesgivé =« (8 O[F/a,v/f]. The

least fixed point of thisis = « [ +. The fixed point can be reached either by repeatedly substituting
¢ into itself and simplifying until a fixed point is reached, or by repeatedly tyiregfunction, initially
assuming that recursive calls produce deterministic results, and repedtingetter approximations
until a fixed point is reached.

This typing is similar to the Mycroft-Milner type system [107], whg@aymorphic recursioris used.
The Mycroft-Milner type system has been shown to be undecidableljGbihat is not a problem in this
language, since the lack of recursive datatypes means that the typesnatiari form a finite-height
lattice, so the function’s type converges.

Higher-Order Functions Although basic SASL does not deal with closures and higher-order fun
tions, they were introduced as an extension in Chapter 6. Identifying thelet@rministic values in a
higher-order program is beyond the scope of this thesis, but the aalgy be implemented by using
higher-order escape analysis [56].

Analysing Within Algebraic Datatypes The analysis described in this section does not keep track of
non-determinism within algebraic datatypes. For example, if a “mhitatypeis created, a deterministic
value paired with a non-deterministic one, and the deterministic value read th& pair, the analysis
will mark the value as possibly non-deterministic. Although treating the algebeatatypes differently

to tuples simplifies the analysis, treating them so differently is not necegsamngral recursive datatypes
would pose a problem to accurate analysis (for example, escape amal\&ts [122] only covers the
“spines” of the list as a whole, rather than individual elements), but Si&Simited to non-recursive
data structures, so that more accurate analysis is possible.

Extending the analysis to algebraic datatypes should improve the acctitheyamalysis, at relatively
little computational cost. A number of approaches are possible, but a e¥yasivnple one consists of
treating algebraic datatypes as tuples. An initial item represents the datégpewith a further place
in the tuple for each constructor in the datatype. When typing a construgimssion, the places in the
tuple for the tag and other cases of the algebraic datatype are left asidéddc (F'), and when per-
forming a pattern match on the datatype, the matched variables for eaclooasérom the appropriate
part of the tuple. The new rules fGONSTRINTRO andCONSTRELIM are shown in Figure 7.4.

Non-deterministic Termination The analysis of this section has assumed that a value is only non-
deterministic if some value required to produce it is non-deterministic. Howtherager evaluation
model makes it possible to create expressions where termination depead®ordeterministic value,

but the value that is returned is deterministic. An example is shown in Figure 7.5.
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Figure 7.3 Rules to identify possibly non-deterministic values
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Our analysis marks the expression as returning a deterministic value. Alfttzongw analysis could
be introduced to identify possible non-termination dependent on nonadatstic values, we view the
possible non-termination as a bug, and restrict our analyses to direntdicies.

7.3 Generalising Streams

Basic SASL deals only with ordered streams of data. In an actual implementat®may unnecessarily
restrict execution. Conditional execution nodes must merge together therdgkein the order they
entered in. When loops are used to process data, the results areniglasisen the order the requests
were sent in. These ordering constraints may not be a necessanf ffagtprocessing, and including
them may limit performance and require extra hardware resources. Bifyileg streams that do not
actually need to be lists, but could be implementetlass hardware optimisations can be performed.

Bags also known asnulti-sets can be viewed as lists where the order does not matter, or sets where
an element may occur multiple times. Rather than havieg@®s operation and associated match that
put the data in in a known order, the program is allowed to insert items into tharishremove them in
any order. If ordering restrictions are removed, data processing menger need to block, waiting for
a particular item. The model bears some similarity to out-of-order execution @rszglar processors.

We treat the non-determinism introduced by multi-sets separately to that inécbdue non-
deterministic stream matching. Section 7.3.1 discusses some backgroundidetddsion to dealing
with multisets, while Section 7.3.2 introduces possible syntax. Section 7.3.3 diglalsome of the
details of the hardware implementation. Section 7.4 then provides an analysis nvlly be used to
identify streams that may be treated as bags.

7.3.1 Dealing with Multi-sets

SASL’s streams are lazily-evaluated lists, so appropriate extensions mimye by looking at the
formalisms for lists. Monoidsprovide an appropriate formalism for finite data structures. A monoid
consists of a sef, an associative operatorof typeS S S, and a left and right identity  S.

A free monoidin some sense represents the most general monoid. The free monoid ovatetiparye

of all monoids represents all the finite lists, withas append. The free monoid over commutative
monoids represents bags or multi-sets, while the free monoid over commutatiigeanpotent monoids
represents sets.

SASL implements lists, so sets and multi-sets may be viable alternatives. Setst prggeblem,
in that once an item has been produced, it must not appear again. To implirise either functions
must be limited to injective maps on the sets, or the system must keep track of eratteshts, and
remove duplicates. This may require unreasonably large storage reguie The implementation of
unbounded bags is somewhat simpler. They can be simply be treated as bstseldments may be
reordered. In the worst case, the bags may be implemented using lists.

Notice that we assume that bagmsy be reordered, but it is neverecessaryto reorder them. For
example, if a bag is being mapped through a funcifoand an element of the bag causeg(z) not
to terminate, the whole program may not terminate. The implementation is not fiaréetdother ele-
ments “overtake” this non-terminating element. This assumption greatly simplifies theneptation
of unbounded bags in limited hardware resources.

As with stream-reading non-determinism, some form of fairness is nege¥¥eak fairness is used,
so that if an item is added to a bag it will be read from the bag a finite numbeagfdads later. The
hardware arbiters must be designed to ensure this fairness.

It should be noted that monoids deal with finite data structures. Unbouthatadstructures have
some rather different properties. With lists, unbounded data structarebecused to represent finite
data structures, as described in Section 2.3.2. However, this is not lpos#ib multisets, since the
end-of-structure delimiter that would be used in a list could be reordesistyseful data elements.
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Instead, bounded bags need to be treated separately, with bag-matbhinigave cases for non-empty
and empty bags. This chapter mostly discusses unbounded bags, ibngberforming the bag-
identification analysis on bounded bags, and the hardware implementatioorafdd bags are included
in Sections 7.4 and 7.3.3 respectively.

7.3.2 Syntax and Types for Reorderable Streams

The difference between ordinary streams and reorderable streamin i dite difference between in-
teger types and floating-point types, or fixed-size integer types armbudied integer types. There is a
great deal of commonality in the operations that may be applied, althoughsiliesreay differ. Values
may be cast between the types, with possible loss of information. An optimismpiles may be able
to move casts around in order to reduce execution cost.

SASL’s options in dealing with multisets are mirrored in the approaches that laiiguages take.
Standard ML has a special case that overloads built-in arithmetic opefatorgeger and floating-
point types. However, user-defined functions may not be overload#ds way. Objective CAML
uses separate operators for the different types. Haskell provigesctgisses, which allows a function
to be polymorphic over a set of numeric types. All these languages reexpiiit casting functions
to translate between the types. In comparison, implicit conversion is used i dgaamically-typed
scripting languages (and even some languages without dynamic typirgasu€). The rest of this
section discusses a variety of approaches.

No Overloading Our initial approach is to use separate notation fordistns and bagcons. The
original notation remains:.:”, but the notation ++" is used for dealing with reorderable streams, giving
the following new forms of expression:

e1ttes
casee; of z1++x9 € o

The type system is similar to before, except that stream types now cohsiasio types, tuples, list-
like streams of basic types, and bag-like streams of basic types. Sinceatkeseparate ordered and
unordered stream operations, the typing is unambiguous. On the downssjukrate functions are
required for otherwise identical operations on streams and reordetaddens. Casts may be performed
with functions such as:

fun unorder(s) = cases of x::xs x++unordefxs)
fun order(s) = cases of x++xs x::order(zs)

These functions also show us what to expect when casting betweeedatel unordered streams. An
unordered stream, when cast, produces a stream which when readntélircthe items of the unordered
stream, in any order, as before, but if further items@oeiSd onto the stream, and the stream read, the
newly consd items will be read first. Once an ordered stream is cast to an unordaegdll original
ordering information is lost, even if it is then cast back to an ordered stream.

Overloaded Operators With overloaded operators, both ordered and unordered streanc® a1l
upon with expressions using:”, and the type is inferred from the type of the stream beirggnsd
upon. The advantage of this is that it makes possible polymorphic strearticius that can read both
ordered and unordered streams. This approach is more complex tharetlemded arithmetic operators
of Standard ML (which are effectively syntactic sugar), matching morgetyathe use of type classes.
However, the top-level streams must be identified as either bag-like or lisinlikeder to infer the
types of other streams from them. Functions that generate new strearbgsedton existing streams,



150 Chapter 7 Multi-Set Processing and Non-Determinism

also need to mark whether these streams are list-like or bag-like. Some funoagrenly make sense
on ordered streams. Type annotations may be used to clear up thesenstoble

For example, subscripts may be provided in the type annotation represerdierga () and un-
ordered ) streams. Variables may be used when inferring the ordering natureeo$togzam from
another. Figure 7.6(a) is a function that returns a stream that is bag-ike ibnly if the original stream
is bag-like. In general, whether a returned stream is bag-like may depewtiether a number of argu-
ment streams are bag-like. For example, inzhefunction of Figure 7.6(b), there will be no ordering
information in the returned stream only if both parameter streams are babspdhe type annotation
for the returned value depends on multiple stream type variables.

Since there are no separate operators, the cast functions have taritiemeo use type annotations:

fun unorder(s) = cases of z::xs z::unorders) : « Streamy,
fun order(s) = cases of x::zs  z::order(zs) : « streamo

Every function that generates a new stream using the overloadedasesdl need a type annotation
for the returned stream. It may be useful to have some form of defaelt @@lered streams may be used
anywhere a bag may be used, but not vice-versa. Streams may tedrefiveated as list-like by default.
Bag-like streams may be treated as a subtype of ordered streams, withrecat?wused whenever the
order of elements in a stream does not matter.

Implicit Typing At the end of the previous section, treating streams as lists by default is meghtion
The type system can be arranged so that all the user ever sees is ligtdikes A newWSHUFFLE
expression type can be introduced, which effectively takes a list-likarstreasts it to a bag-like stream,
and then back again, so that all ordering information is lost, but the ugesees list-like streams.

Internally, the synthesis tool may identify streams that may be treated as kaggtitout altering the
behaviour of the program, using the analysis of Section 7.4. From this giouiw, the identification
of bags is not something the user need deal with, but is something the conapilerfer. TheSHUFFLE
expression acts as a cast to a bag-like stream, in those situations whemmbiéec cannot infer it,
but does not require the user to keep track of types. Only the conmersim list to bag needs user
annotation, as this is the direction in which information is lost.

Using implicit typing, the language’s original syntax is minimally extended witrstherFFLE expres-
sion, and bag-like streams may be introduced with minimal effort from the &geguser’s point of view.
The implicit typing approach will be taken in the following sections.

7.3.3 Implementing Reorderable Streams

Once the reorderable streams have been identified (using the analysistioinS7.4), the information
can be taken into account in the way data items are written to or read from tketiaed stream
bus. Note that reorderability is not a property of a stream bus, but afethe and write nodes. For
example, the same stream bus may be used to first transfer a header itelarjfallowed by a set of
reorderable items. A stream write is reorderable if the stream producte loyiginalcONS expression
is reorderable. A stream read is reorderable if the original exprebsiog matched upon is reorderable.

Stream Reads Given a set of reorderable stream reads on the same stream, the mld¢iveonstraints
can be relaxed. However, not all constraints can be removed, sinc#ilt ieecessary to kill the stream
when all reads that were to be performed have completed. Sequenceereble stream read operations
may be converted to run in parallel, as shown in Figure 7.7.0Urenode duplicates the “stream ready”
signal, so that it is available to both stream reads at the same time.

This transformation may not help improve performance much, since the stlsstdeam implementa-
tion only allows a single item to be read per cycle, and even with the reads detingted in parallel,
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Figure 7.4 Analysing non-determinism within algebraic datatypes

fun loop() = loop()
fun nondets, t) =
let y = case(s,t) of (x::xs, ¢t ) loop()
(s, mxuizs,) Truein
True

Figure 7.5. A non-deterministically terminating function

(* @) The map function applies the function f to a list or bag item-wise.*)
fun map;(s : a stream) =
casesof ziizs  f(x):map f(zs) : « stream

(* b) The zip function pairs together elements of two streams. *)
(* The result will only be order-less if both parameter streams are unordered. *)
fun zip(s : « stream,t : [ stream) =

cases of ziixs casetof yiiys (x,y)::zip(zs,ys) : (o ) stream n

Figure 7.6: The functionamapandzip, with casts

DUP
@tream Re%i( Stream R}ad
x xrs \ys Yy

Join

€2

Figure 7.7. Conversion otasee; of z::xzs  casexsof y:iys  es to a reorderable form
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fun iterate(x) = if tes{x) then z elseiterate( f(z))
fun mapiter(x:: zs) = iterate(x):: mapiter(xs)
fun mapiterZz::zs) = (x, iterate(z)):: mapiter2(xs)

Figure 7.8 Reordering loop items

the actual stream reads may be serialised as before. There is also rheaolef constructing arbiters,
as multiple stream read nodes may now activate at the same time.

An alternative approach is to keep the property of having a single dynaader, but create sets of
read operations that may be reordered, and choose a static ordadsfweéhin the sets to maximise
performance under statically scheduling. For example, if there are tws, e results of which trigger
complex operations, the read associated with the longer evaluation path téggered first.

Stream Writes Lazily-evaluated stream writes cannot be reordered, since stream iterpsoduced
individually, on demand. Using the lenient evaluation of Section 5.2 allowarstitems to be produced
ahead of time, in advance and in parallel. Lazy tail evaluation, using a sbesicontroller, minimises
dependencies between the production of items. The stream bus contraifedizo deliver the items
of a list-like stream in order. Reorderable streams allow the stream busiento be eliminated, and
replaced with a simpler arbiter.

Reorderable Streams and Pipelining It is not only streams that may increase efficiency by allowing
reordering. Tokens passed through pipelined iteration and conditionatracts could be reordered
if ordering is unimportant and the path lengths are different for diffedeta. Hardware is normally
constructed to ensure data ordering, but if the order is unimportantnvelicainate this overhead.

If an edge carries tokens thiailly represent(as defined below) items of a reorderable stream, those
tokens can be reordered. For example, the funati@piter shown in Figure 7.8 maps each item by
iteratively applying a function to each item until a test is passed. If the inglibatput streams are bags,
it is not necessary that the callsiteratereturn in the order they are initiated.

Note, however, that the functiamapiter2must have its calls tderate complete in order, since the
results are paired up with the original requests. This is what is meant ygs#ne tokens must “fully
represent” an item. For an edge to fully represent an item read fronmrderable stream, all possible
dataflow paths from the read to a stream write must pass through thatfatggtream writes, all non-
constant dependencies of the write must pass through that edge. Sdilgl@dataflow paths mustinclude
those passing the data through intermediate streams, as well as over pthiedges. The dependencies
are based on the dynamic flow of data. For example, in the body of a contligigmrssion, an edge
will fully represent a stream read if all the stream write dependenciestinat read go through that edge
given that conditional branch is taken

The only place where tokens may be pipelined when processing a rablelstream is in the stream’s
head expression. Under lenient evaluation, each stream only everdiagle activation of a tail ex-
pression at a time, which evaluates to find the next head and tail (the daméesl are illustrated in
Figure 5.12. The evaluation of the sequence of tail expressions cabeigne serially. However, the
same head expression may be activated multiple times simultaneously, if the chalrerptassions
reaches the san@oNsnode before the previous head value has been produced.

If an edge in a head expression graph fully represents a reordstedden, the tokens that pass through
the edge may be reordered. The possibility of token-overtaking generdityoccurs with conditional
and iteration nodes, where the time a token takes to pass through can bemgetaeht. Such nodes
are analysed, and the stream items may be reordered if the data passeth tine node either fully
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represents the stream item being generated, or depends only on a@estaint (over the stream) values
and streams that are fully represented by that edge.

If a conditional or iteration node can be reorderably pipelined, it can vkadas such, and a hardware
implementation chosen to make use of this. A reorder buffer or locking meschasno longer required
to keep the tokens that pass through the node in order, greatly simplifyidgsigm, and allowing higher
performance.

Bounded Bags Bounded bags can be implemented by adding an extra “bag empty” line to the strea
buses, and creating a “bus active” line to be monitored by the nodes wénehate the bag empty signal.
These “null nodes” are the translation of an empty-bag expressiomrarattivated when a token enters
them, but do not instantly signal the bag empty line. If there is any activity initbeity that generates
values on the associated stream bus, the bus active line is held high, dpagtieenpty signal is not
raised, as further items could appear. When theibfigally empty, the only active node associated with
the stream will be the null node, the bus active line is dropped, and theaudgl can then send the bag
empty signal. Once this is acknowledged by the stream read, the nodeitdetiysind the bus is reset
(enclosing mutual exclusion nodes may need to be signalled). Boundeddmdgycan be represented in
SASL by a standard list-matching on the empty aadvs cases, which will then be implemented in the
dataflow graph by a combination of stream read and conditional nodes.

7.4 ldentifying Reorderable Streams

Using implicit typing, we need to be able to infer which stream values are bagitik which are list-
like. Even if explicit typing is used, it is valuable to be able to identify list-like stredhat may be
treated as bag-like without altering the results produced. Bag-like streaynemare less resources to
implement, and can allow increased parallelism.

We first need to identify what is meant by a stream that may be treated in lgkbaganner. A list-
like streams may be treated as bag-like if, for every reordering of the elements of trensttbere is
some reordering of other actual bag-like streapihat would produce the same result. That is, if we
cannot tell if the result produced comes frarbeing reordered, of remaining ordered and thgbeing
reordered.

As a simple example, given the express8MUFFLE(map(s)), the stream returned fromapmay be
treated in a bag-like manner, and so the parameter to the function may be t@wsirtannot tell if a
particular ordering of the result comes frenbeing reordered, or the returned stream.

The analysis marks streams as bag-like or list-like at the typing levelFFLE expressions are used
to explicitly mark streams as bag-like. From this, the analysis conservativaljifies streams that are
bag-like (unlike Section 7.2, which conservatively identifies deterministicegluThe analysis does
not identify values that may depend on a bag. For this, we can use addgenanalysis like that of
Section 7.2 to trace values that depend on the resgHOFFLE expressions.

Reorderability Typing To identify streams that may be treated as bags, it is necessary to identify the
flow of data between streams. For this purpose, we perform a depgndealysis which is similar to
the processing done in escape analysis.

The analysis is performed on a per-function basis, ordered so thatgbs of all functions called
non-recursively are known. Annotated types are used, similar to theeskin Section 7.2. We elide the
basic type information, so that the value types are defined as follows:

o:=( ... o) B Sp

Since reorderability is a property of streams, we now distinguish betwesa types,B, and stream
types,S. Furthermore, the identification of bag-like streams relies on the bidirectilomabf informa-
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tion, so the expressions of Section 7.2 are replaced with boolean reorderability variaBleand the
type system introduces constraints on the values ofth&rue represents a bag-like stream, and false
a list-like stream. The typing used is the one that produces the smallest serdérable streams that
satisfies the constraints.

The basic typing rules are shown in Figure 7.9. At the top level, those paaam result streams
that are reorderable should have their associ&ednstrained to true. The rest of this section explains
the details of the typing rules and their implementation.

Typing Non-recursive Function Calls The (appLY) rule works like the other typing rules, in that it
substitutes identifiers in the called function in order to match the call site’s typorgedeh call site,
a fresh set of reorderability variables and associated constraintscated for the called function,
and for each reorderability variable substitutedébya constraint is generated making the original
and substituted reorderability variables equal.

Typing Recursive Calls Recursive function calls may be typed using polymorphic recursion, much as
they were in Section 7.2 when identifying non-deterministic values. Agairstints are gener-
ated to make the values of the reorderability variables match up between thierfiuaiguments
and parameters.

Stream consand Matching The (CONSINTRO) and (CONS-ELIM) rules only provide constraints in a
single direction, sinceoNsng an element onto a bag may produce something that is not itself a
bag, and similarly reading an element from a stream, thereby producing adwes not mean that
the original stream was a bag.

Constructor Matching The (CONSTRELIM) rule must provide the constraints that streams returned
from all the conditional arms are reorderable if and only if the streamrretLiny an expression as a
whole is reorderable. Similarly, a stream in the environment is reorderaduhe ibnly if all uses of
that stream are reorderable. These constraints are expresseetasraiitions ONEONSTRELIM).

The side conditions on the return type are used to generate constraioli®as:f
(8 ..o F)=(l ... oF ... (e ... oh cl=0l ... ol

Sk=Sg ... Sp, R=R., ... R,

Using these rules, we can generate the side conditions on the environteagglying the rules
to each element of the environment:

A=Ay ... A, 1z dom(A)A(x)=A o) ... A,(z)

Stream Reordering The (SHUFFLE) rule typessHUFFLE expressions, which conceptually perform an
arbitrary reordering of the stream. In practice, they mark the streangalidegassigning itsk the
valueT), but will create no new hardware at the implementation level. It is providexpdcitly
mark a stream as reorderable.

Examples Some simple examples are shown in Figure 7.10. The funidisireamis typed asSr

Sgr. The returned value is reorderable if and only if its parameter is. Theaifumnread-streanwould be
oftypeSg B S g, withthe constrainR R ’. Thatis, if the parameter stream is a bag, the returned
stream will be a bag (reading an item from a bag produces a bag), batriéthrned stream is bag-like,
this does not mean the parameter stream is. For example, the parametemstrgaepresent a bag of
data with a single-element header. Similarly, the functioite-streamhas the typd3 S rp S g, with

the constrain?’  R.
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Figure 7.9 Rules for identifying reorderable streams

fun id-streanis) = s
fun read-streanis) = cases of z::zs  (z,xs)
fun write-streantx, s) = z::s

Figure 7.10 Simple examples for reorderability of streams
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fun skip-untila, s;) = cases; of x::xs
(ifa==x
then zs;
elseskip-untila, zs4)5)6

fun copy-untila, s1,t2) = cases; of z::xss
(ifa=2x
thenty
else(x::copy-untila, xss, t5)6)7)s

Figure 7.11 Further examples for reorderability of streams

More complex examples are given in Figure 7.11, with each stream valo¢sdea with the identifier
of its reorderability variable:

The type ofskip-untilis B S & § £ with constraintsk! R 2, R? = R? R* and

RS = R® R®, aswell as those generated by the recursive call. The fixed pointrig foginitially
assuming the recursive call always takes and returns bags, andth&rng generate an initial
approximation to the constraints between parameters and return valueg Ryia T andR®> = T
gives the constraink! R °. The next approximation to the constraints from the recursive call is
R* R 5. This gives the overall constraifit’ R 6, and a fixed-point is reached.

If a bag is supplied, the result is a bag, but if the result is a bag, the ptaaim@ot necessarily a
bag.

The type ofcopy-untilis B S g1 S g2 S ps, with the constraint®?! R 3, R?2 = R* RS,
R” R %andR® = R” R*. The initial approximation thak® = 7', R®> = T andR® = T leads
to the constrain?® R 2. This becomes the constrairf R ° on the recursive call, and the
fixed point is reached with the constraiRt R 2.

If the result is a bag, the parametanust be a bag, but not necessarily vice versa.

The two functions demonstrate how bag-like streams may be inferred iretiffgirections, depending
on whether the streams are being read or constructed. The fus&ijpuintil repeatedly reads from a
stream, so that if the original stream was a bag, the returned stream willH&functioncopy-until
repeatedlycoNses onto the stream so that if the returned stream is a bag, the originaill be.

Limitations and Extensions The above analysis is limited, however. Some functions, sunotegsnd
filter read one stream and produce another, and given the above anaysinot infer reorderability
between these streams. It would be useful forrep function to have the typ&” S %, since it
works in an item-wise fashion. An analysis that produces such typinggda @i Appendix C.

7.5 Restoring Referential Transparency

SASL with non-deterministic extensions lacks referential transparenegti@l function calls may lead
to different results. However, it is another question as to whether this naalytte unsafe program
folding/unfolding transformations. For a non-deterministic operation to Ipiciied, the stream being
read or shuffled must be duplicated. Linearity prevents stream variadileg used repeatedly. However,
if the entire stream is internally generated, and does not depend omagteratream, the entire piece of
stream-generation code may be duplicated. In other words, the followmetjdn, valid in a referentially
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transparent system, shows the problems of nhondeterminism:

fun togglez) = x::togglgnot(x))
fun folded) = let x = hd(SHUFFLE(togglgTrue))) in (z, x)
fun unfolded) = (hd(sHUFFLE(togglgTrue))), hd(SHUFFLE(togglg True))))

If the original syntax is to be used, care should be taken to avoid suctfdrarations, either by dis-
allowing non-deterministic operations that do not process any externgijytied streams, or by never
unfolding non-deterministic operations.

An alternative approach is to make the language purely functional agaido his, we can use Bur-
ton’s approach [31], where an infinite (lazy) tree of decisions is usetkeer non-deterministic opera-
tions. The tree is supplied as a parameter to the function, and passed imto-dkterministic operations.
When non-deterministic operations are unfolded, they receive the saenaricctake the same decision.

This approach must be modified for SASL. The infinite lazy tree could redpiirdte storage, if
references to old parts of the tree are kept. Instead the tree is madedm#aat each non-deterministic
operation takes a decision value and returns a new decision value, altbnigswesult. With this con-
straint, referential transparency is not restored by forcing the sacisiates to be taken in different
unfolded branches, but rather by disallowing the unfolding of nonraeiéstic operations. A split op-
erator would take a decision value and return two decision values, allowing faultp-deterministic
operations to occur in parallel.

As with streams, the non-deterministic decisions, rather than being refédmnan object being
passed in, could be represented as a monad, at the expense of moainfyaw the simple functional
model.

7.6 Summary

In the other chapters of this thesis, deterministic streams have been as3inisethapter has examined
what happens if this assumption is broken. Non-determinism has beemubkéedchapter to reorder the
reading of items from different streams, and the reading of items within a sirgiem.

Non-deterministic stream reading allows a wider range of 1/0O operations petermed than other-
wise, but can make a program’s output non-deterministic. An analysis reasred that identifies the
non-deterministically-generated values produced by a function.

Using multi-sets (bags) instead of lists gives the synthesis tool greaterilftgxii situations where
order is not important, and may result in higher-performance output. A auailpossible syntaxes were
presented, and an analysis given that is able to mark streams as beilikebagren that the ordering
on certain other streams is unimportant.
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CHAPTER 8

Conclusions and Further Work

8.1 Conclusions

Recall the initial thesis from Chapter 1:

The thesis of this work is that statically-allocated pure functional languagdended to u
streams (linear lazy lists), are suitable languages for behavioural hardwynthesis of r
active systems. Furthermore, higher-level functional features sucloasres and lazy eval
uation may be usefully incorporated in a statically-allocated form to producemimising
synthesis tool with a high level of abstraction.

The language presented in this thesis, SASL, meets the requirements fatieatty-allocated pure
functional language”, and uses streams. It is a behavioural languayeas shown to be suitable for
synthesis in Chapters 3 and 4. The stream 1/0 model was shown to fit claigiefe reactive paradigm.

Chapters 6 and 7 show how higher-level features may be integrated inentheage, and Chapter 5
demonstrates a number of optimisations may be performed. These featuuseful in that they extend
the power of the language and allow complex operations to be described .si®ydyall, this thesis
has provided evidence of the feasibility of this approach, showing thahalével of abstraction can
be achieved. The language meets its targets of providing a usefulaledeal for the implementation
of stream-processing algorithms, although the challenge remains to cregéraising version of the
compiler which integrates well with a general industrial design-flow.

The rest of this chapter looks at extending SASL, both from the pointen? vf language features,
and in terms of synthesis possibilities. Appendix B provides a simple case study

8.2 Language Extensions

SASL, as presented in this thesis, is a relatively minimalist language, missingohtrg/features that
might be expected of a modern ML variant. A practical language may be®gw have features such
as a module or functor system, allowing the creation of abstract data tyjpeserttion discusses various
language extensions which interact with SASL's streams or static allocation.

Arrays Memories are a common feature of hardware designs, despite our rekittanse them in
SASL due to possible von Neumann bottlenecks. Arrays are a commoseepgon of memory blocks
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in hardware, but are typically not well-supported in pure functionallaggs. To update an array, there
is typically a function that takes an array, an index and a new value, &nthsea new array. However,
there may be references to original array left, so that the entire arrayewyto be copied to perform
the update. In SASL's type system we can use linear types to ensurerthatisage is efficient.

Furthermore, the pure functional approach to arrays ensures thaishefixed ordering on the array
accesses, so that all memory accesses occur in a deterministic ordedetéoministic array access
could be achieved by including operators to “fork” and “join” the arrajue in a controlled manner,
providing multiple sub-functions with simultaneous access to the array. Alieghyaarrays could only
be split into non-overlapping sub-ranges, to provide deterministic parailelitis approach is rather
like the monadic state-splitting of Brisk [69].

Sized Types and Non-Linear Arrays SASL lacks the ability to natively describe arbit bus. Multi-
bit values can be represented using tuples of boolean values, or muele by using streams of
boolean values. In an unrestricted language the stream approachheonidre flexible, as-bit oper-
ations could simply be described in termsmoép fold and so on. SASL, however, provides linearity
constraints, and only allows for tail calls when processing recursivetsties. Moreover, SASL will
implement these buses serially, processing a single bit at a time and makingggoof the possible
parallelism.

The reason for these restrictions is that SASL cannot make any assusnghiont the size of the
datatype. If the maximum size were known, it would no longer be necessargcess the data linearly,
and limited non-tail recursion could be performed. A known size bounddaliow the synthesis tool
to unfold the function, so that the whole structure may be processed itlepara

Sized types [70, 41] provide a way of reasoning about the size of ttatdwges. Sized types normally
provide “at least as large as” and “no bigger than” information, althdoglour purposes we are only
interested in upper bounds on size. There is no reason to restrictvesr$e sized streams—we can
use general size-limited restricted datatypes. For example, a restrictey weecould be defined as

follows: , . .
datatype o treét! = Nodeof o tre¢ o tree’

atre@ = Leafof a

The superscripts define the size of the structure, in this case in terms afirtiteen of nodes on paths
to the leaves. The size is calculated recursively over the structure. Bsahgdefinitions, the storage
requirements for any tree can be found from the concrete size valuese¢hased as superscripts (just as
the type variables are replaced with concrete types). As the size of thetdatture is known, functions
that include non-tail recursive calls can be created, as long as slisit@a be determined to form a
bounded depth call chain, based on the size of the structure. For exahgpfellowing function could
be statically allocated with sized types:

fun flip(Nodga, b)) = Nod&flip(b), flip(a))
flip(Leaflz)) = Leaf{x)

These sized types effectively provide a type of polymorphism, and as taitidard polymorphism, the
top-level functions must provide the exact types, and the synthesisggr@ompiles the program down
to concrete types. For sized types, this involves unfolding the functiomsvtir on sized types. The
above function would be fully unfolded, and optimised down to a rearrgngjithe bus representing the
value.

Another approach is to treat bus-like data structures as small arraylike Uhe arrays described
above, they need not be linear. As well as allowing the update and fetohindividual bits, mapping
and folding functions may be provided. However, arrays do not tie inedswith the type system, and
may be less flexible.
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Exceptions Exceptions provide a useful mechanism to handle error conditions. Bonm®, when
processing an incoming stream of data where an error can be detetteat barrected, it may be useful
to be able to raise an exception, and handle the error appropriatelyveiQutenay not be obvious when
an exception should be raised, for example if the exception is raised whérgjag a stream. The
appropriate solution appears to be to raise the exception when the streaemelehere the exception
occurred is matched. If lenient evaluation is used, the generated excemyp be delayed, or even
discarded unused.

In effect, exceptions are treated as variant types, arranged sonthatager expression that uses a
value containing an exception immediately returns an exception. Streams geslasut promises allow
the raising of the exception to be postponed. By implementing exceptions iaatsathe synthesis
system does not need to provide non-local jumps, so that existing villing-keset circuitry does not
need to be rearranged. On the other hand, it will complicate the normakbdatajih tests for exception
values. An alternative approach more similar to software exceptions mapefsussible.

Exceptions would need restrictions in order to be statically allocatable. mRiegeecursive tail calls
from occurring within “try” blocks should be sufficient to allow static allocatio

Continuations Continuation-passing style is popular within some areas of the functionaigmmoging
community, such as in Scheme [145]. A tail call is effectively a “goto”, apeliminating all function
calls but tail calls we can view the program as a finite state machine with the funetsostates, which
may seem attractive for a hardware implementation. Continuations can alsedticonstruct a variety
of complex control-flow structures.

However, the conversion to continuation-passing form does not seefualu Continuation passing
eliminates the stack, but SASL already eliminates the stack, and, as SASdaurdither than shares
resources, every function statically knows where to return to. Thefummtinuations can hide ordering
constraints normally expressed by expecting function calls to return im,a@éhat pipelining becomes
difficult.

It seems feasible to construct a synthesis system based on continuadgingp but continuations
appear to be difficult to integrate with the synthesis approach presentasd thdhis.

Streams in Algebraic Datatypes The basic SASL type system disallows streams from occurring inside
algebraic datatypes. This restriction should be able to be removed. Killingwsed value of such an
algebraic datatype must reset any streams it contains, which can beeathigyperforming a Kill on

the enclosed value based on the datatype’s tag. For the stability constraistreifua identifiers on
any streams passed recursively must match up for streams in the same ppstias with tuple types.

A “Top” stream identifier is introduced for streams in datatypes that camemir—that is, if a stream
cannot be passed back in that position, the constraint is met.

Monads Monads provide an alternative way of performing I/O in a pure functiomajuage (as de-
scribed in Section 2.1.3). It should be possible to macro-convert montdstiram reads and writes
(function definitions that evaluate their arguments cannot be used fordhigdtion, since the expres-
sions used by the monad may need to be lazily evaluated).

Explicit Parallelism  Explicit parallelism is a major feature of most HDLs, and in some situations it
may be useful to introduce it to SASL, although it may be difficult to do so withasing the pure
functional aspects of the language or introducing deadlock. The ugegbin calculus [32] is one
possible approach.

A more SASL-like approach would be to keep parallelism implicit, but allow thenaroger to ex-
plicitly destroy the ordering dependencies that prevent parallel execuBASL uses linear values to
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enforce ordering of operations, and by forking and joining thedaes(rather than forking and join-
ing the control-flow) it may be possible to create programs in the style of exphcéllelism without
resorting to parallel and sequential composition.

Streams of Streams and Linear Trees One of the last typing restrictions that is not directly associated
with ensuring static allocation is the prevention of nested streams. From stoéatneams, it should
be possible to generalise to arbitrary linear recursive data-strucitvfitssthe appropriate stability con-
straints it should be possible to statically allocate programs with such data stsjalthough it seems
that the hardware required would become increasingly complex.

Relaxing the Stability Constraint SASL's basic stability constraint requires that stream identifiers
match up across recursive calls. A weaker, yet sufficient, constsaihait none of the streams passed
recursively have ax” stream identifier. The number of streams and stream identifiers passeduothe
tion is finite, so that the number of ways of arranging those stream identifigre function’s parameter
typing is also finite. By repeatedly unfolding the function, each recuisallepath will eventually lead
to a repeated arrangement of stream identifiers, so that we now havef asgually tail recursive func-
tions that meet the original stability constraint. These functions can therrdoggad into a single tail
recursive function.

This conversion allows the creation of functions sucinéerleave

fun interleavéx:: s, ys) = z::interleaveys, xs)

However, the unfolding operation may lead to a blow-up in code size, anchdtislear how useful a
less restrictive constraint would be in practice, although there may be rfiective ways to relax the
constraint.

Relaxing the Linearity Constraint ~ Similarly, the linearity constraint could be made more flexible. If
a stream has a bounded amount read from it, and then the original stedaenis reused, this can be
implemented with a fixed-size buffer. Similarly, if a stream is read twice whileyriog) two streams,
whose results are merged at the correct rate (in the style of a syncisretteam language), this should
be synthesisable. It appears that this approach would require somakininip sized types (for typing a
stream that has a finite amount read) or a clock calculus [60] (for decidansteam may be duplicated
and later the values that depend on it merged).

The Dangers of Over-Extension This section has covered a variety of ways in which SASL could be
extended. However, there are dangers in adding too many featunegil€s are expected to be reliable,
as people wish to only debug their own code, and not have to deal with andgygeneration. Synthesis
tools should be more reliable still (although in practice this appears not to beskg @s debugging
hardware issues can be even more painful, and fixing a fielded brg&mscan be much more difficult
and expensive. Increasing the complexity of the language can indvetisthe possibilities for compiler
errors, and also the complexity the programmer must deal with, leading toldgwi®ls and possible
user error. Producing sensible error messages becomes increasifigijt as more complex language
constraints are added. For example, the error messages producacdekieaded linearity constraint
failure could be quite obscure.

8.3 Synthesis Extensions

As well as extending the language itself, we can extend the synthesis toel, @itlividing incremental
improvements, or changing the fundamental assumptions of the translation:
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Loop Unfolding and Resource Awareness Although SASL attempts to pipeline execution, the paral-
lelism may be limited by the number of simultaneously available pipeline stages in a loopddr to
improve throughput, it may be useful to either unroll loops, or produce nhelltigpies. For loops with
known bounds, fully unrolling the loop removes the overhead of loop obrthese transformations are
likely to be most useful when applied to inner loops. This is similar to softwaredooplling [11], but
performed for a different reason.

However, such transformations need to be performed within a resawaee context: unfolding hard-
ware takes up physical resources, which are unlikely to be unboundfétout hardware constraints,
impractical unfoldings may be performed. The unfolding can be constréinéhe area usage, requiring
it to stay below some limit, and either estimating the area required [157, 101}formpég feedback
directed optimisation based on the results of low-level synthesis.

Loop unfolding also allows the program to be partially evaluated, or spesildiE8]. The resulting
specialised function may not only be faster than the original, but also talessigpace, since function-
ality that is not required may be removed.

Resource Sharing SASL assumes that resource-sharing is not worthwhile, as it limits the ability to
pipeline. This is overly simplistic, since performance can depend much morghktron inner loops
than on less frequently-called code. By sharing the resources usedréyuently-called code, more
area becomes available to implement inner loops. Sharing resources megsit¢he amount of dy-
namic scheduling required, but as this occurs on less time-critical codénthitdsnot be a problem for
performance.

There is a danger that thisogram foldingwill not improve area usage, as well as decreasing perfor-
mance. The folding may prevent specialisation, and will require the useltptaxers and other control
circuitry to manage the sharing. For small functions, folding may introducg Wires from all the call
sites to the shared function instance. These can take up space, comgticatamd-route and decrease
the performance of the circuit. Hence optimising synthesis tools that cae sfsources will need to
take into account these overheads when selecting functions to perfetnmatisformation on.

Throughput Estimation  In order to correctly select expressions for folding and unfolding, it cese
sary to know how critical the function is to the program’s performance. dtigd be estimated using
programmer-supplied hints, by performing simple estimates, or by simulatioratistieedata. Once the
data is obtained parts of the program may be folded and unfolded until leatkie@mre removed. Note
that production rates of different pipeline stages may be uneven, sbuffiats may be needed between
stages if good throughput is to be achieved.

Look-up Tables and Memoization Some functions may be very complex, but only work on a small
domain, so that they may be efficiently implemented using a look-up table. Otinetidns could have a
much larger domain, but dynamically only use a small fraction of it. Referandiasparency allows us
to memoize function, that s, to provide a cache of the function’s recent resutiis.rmakes it possible to
return the appropriate value immediately upon receiving a call with the sarmamptars, without invok-
ing the function’s body (depending on whether different call sites todihgesfunction are correlated or
not, folding function instances may or may not improve memoization perforraberient evaluation
even makes it possible to call the function in parallel with a table look-up, andet the request if the
item is found. The tables can be implemented using similar content addressabtgiese(CAMS) to
those used for processor caches [66].

Hardware/Software Co-Design As mentioned in the introductory chapter, hardware/software co-
design is becoming increasingly important, especially in the application areagioh SASL is in-
tended. SASL could be extended to allow co-design with both manual and diggragitioning of
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functional programs. SASL's software-like approach may make it simplefficiently simulate on a
software system than many other HDLs during the early stages of cordesig

Linear Values and “Unpipelining”  SASL's synthesis approach relies on passing around data, latching
it into sets of registers as it is passed through the pipeline. Values carsibedelicated. While this
is well-suited to processing relatively small data values in a pipelined fasthi@nis not appropriate
for large values. Normally, such values are stored in a memory, and wetdexpect the values to be
effortlessly duplicated. The use of arrays can be generalised toajdéinear data structures, so that the
data becomes localised to one set of registers. The functions that ptbeeglue then work directly
on the stored value. In such a situation, it makes sense to share the funstamces working on that
value, since each instance would be identical.

In effect, object instances are being created, with a fixed piece opsuleded state, and a set of
methods which perform operations on the object. The object is no longsegalong a pipeline, but
individual function call requests will be sent to the “object”. This apploean be used not only for large
linear values whose implementations are represented within SASL, but cebealssed as an interface
to non-SASL resources.

This technique can be used to create large data structures with integratedgng operations that
make use of parallelism. For example, a sized type could be used to creaip ddia structure, and
the heapify operation may be unfolded and distributed over the storagatsmalst operations can be
performed in parallel (theoretically the large heaps could be implementeddsyngahe heap values
along a pipeline, but this would require unrealistic amounts of storage).dratdures may be used that
rely on the available parallelism for efficiency, such as the tagged up/dovter [106].

Once large, linear values are being created, it may be useful to extetygpehsystem to simplify the
generalised in-place modification of such values without requiring extra nyenkar example, a list
reversal may be performed in place, but majvely use extra buffering. Hofmann’s work on in-place
updates may be applicable [68].

In a similar vein, analyses based on globalization [58] may be used to finesvatuich can be pulled
out of pipelines, so that they may be held constant in a register external pipiline, rather than being
duplicated across each stage. This should allow resource usage dpeliteedatches to be reduced.



APPENDIX A

Example node implementations

This appendix contains example implementations of a few representative nsele in the graph-based
synthesis. They are designed to always produce partial normality if ceedpmorrectly, and be pipelin-
eable. This appendix describes a simple signalling model which is also usqibandix B, and then
discusses the implementation of a few example node types, namely normal aodssstream match-
ing and reset boxes. The nodes are very much proof of conceparandesigned with simplicity in
mind, rather than optimisation for speed or area. A section at the end disdhgsimplementation of
other node types. Although the nodes here assume a synchronous imléonenhere is nothing in
principle preventing an asynchronous version.

A.1 Signalling

In the example synthesis, two-phase signalling has been relied uponadfosignalling line, there is a
request wire and an acknowledgement wire. Events are signalled g efithe request line, and ac-
knowledgements by edges of the acknowledgement line, so that whetlestéas been acknowledged
both lines will be in the same state. Only one request may be outstanding at a time.

The usefulness of this signalling mechanism comes from how signals mayriérnsal. Requests can
be merged by waiting for all request lines to go high before setting the ohiglut and waiting for all
to go low before setting the output low, while the acknowledgement consistsysihpeplicating the
acknowledgement signal. Forking a request value can be coped witlnoygj@cknowledgement lines
in a similar fashion.

Waiting for all inputs to become the same before changing output state cahibee using Muller-C
elements. The implementation given here relies on a module that not only detegiketion, but also
copes with reset signals and provides a one-cycle pulse when newdata to simplify the implemen-
tation of nodes. Thisync module is defined as follows:
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module sync(clk, reset, newdata, ready, latch, inreghi, in reglo, inack, outreq, outackhi, outacklo);
input clk, reset, inreghi, inreqlo, outackhi, outacklo, re ady;
output inack, outreq, newdata, latch;
reg inack, outreq, newdata, got_in, got_out;
assign latch = Igot_in & ((inreghi & ~inack) | (inreglo & ina ck));
always @(posedge clk) begin
if (reset) begin
inack <= 0;
outreq <= 0;
newdata <= 0;
got_in <= 0;
got_out <= 0;
end else begin
newdata <= latch;
if (latch) begin
inack <= inreghi;
got_in <= 1;
end
if (ready) begin
outreq <= “outreq;
got_out <= 1;
end
if (got_out & ((outackhi & outreq) | (Toutacklo & ~“outreq))) begin
got_in <= 0;
got_out <= 0;
end
end
end

endmodule

The module’s I/O lines are as follows:

The linesinreq andinack receive requests from previous stages and acknowledge them,-respec
tively. Similarly, outreq andoutack synchronise with the next stage.

As there may be any number of predecessor and successor nodesretije and outack
lines are actually implemented as a pair of linesgghi  andinreqglo , andoutackhi and
outacklo ). Thehi line is fed with theanding of the input lines, antb with theor ings. In this
way, both the required “all high” and “all low” signals can be detected.

The clock €lk ) and resetreset ) lines provide the global synchronous clock and a reset line.
The reset line is not global, but associated with the enclosing reset dtixasparts of the circuit
may be selectively cleared.

Thelatch signal informs the data-flow part of the node that new data should be latehbe
processed on the next cycle.

Thenewdata signal informs the data-flow part of the node that the data latched on thegsev
cycle is ready to be processed. Once processing completegattie line is asserted for a cycle.
Simple combinatorial circuits connédetich  directly tonewdata .

Since streams do not have to be synchronised together, a simple leviéirsesthieme can be used. The
stream bus consists of a register to hold the “has data” value, plus a régidtee data itself. Acknowl-
edgement simply clears the “has data” value. Resets are provided by $tus reset line being held
high for a single cycle. For basic lenient evaluation (as used in AppendiaxrBextra “activity” line can
be provided, signalling that data is being produced on the bus, to pravetitercoNnsnode from start-
ing execution. This is the model that will be used in the nodes of this appeaittieugh more complex
systems will use a separate stream bus controller.

A.2 Normal Nodes

The example normal node is a module that takes two inputs, and returns twasoupnsisting of the
sum and difference of those inputs:
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module addsub(clk, reset, req_il, req_i2, ack_il, ack_i2, req_ol, req_o2, ack_ol, ack_o2,
data_il, data_i2, data_ol, data_o2);

input clk, reset, req_il, req_i2, ack_ol, ack_o2;
output req_ol, req_o2, ack_il, ack_i2;

input [7:0] data_il, data_i2;

output [7:0] data_ol, data_o2;

wire ack, req, newdata, latch;
reg [7:0] d1, d2;

I+ Synchronisation. */

sync s(.clk(clk), .reset(reset), .newdata(newdata), .re ady(newdata), .latch(latch),
.inreghi(req_i1 & req_i2), .inreglo(req_il | req_i2), .in ack(ack),
.outreq(req), .outackhi(ack_ol & ack_02), .outacklo(ack _o0l | ack_02));

assign ack_il = ack;
assign ack_i2 = ack;
assign req_ol = req;
assign req_o2 = req;

/+ Data latching. */
always @(posedge clk) begin
if (latch) begin

dl <= data_il;
d2 <= data_i2;
end
end
/= Data processing. */

assign data_ol = dl1 + d2;
assign data_o2 = dl1 - d2;

endmodule

The main work is done in the instance of tegnc module. Theready line is connected to the
newdata line so that the results become available on the next cycle, since the datagingcis simply
a combinatorial function. The inputs are latched as the data is received.

A.3 CONS Nodes

A consnode may be implemented by the following Verilog-like code (see below for wing Werilog
is not used):

module cons_el_e2(clk, reset, req, ack, data, str_act, str _res, str_data);

input clk, reset, req;
output ack, str_act, str_res;

input [7:0] data;
output [7:0] str_data;

reg [7:0] str_data;
reg str_act, str_res, ack, sub_req_in, sub_ack_out;

wire sub_ack_in1, sub_ack_in2, sub_req_out, ready;
wire [7:0] result;

assign ready = ((sub_req_in & sub_ack_in1 & sub_ack_in2) | ! (sub_req_in | sub_ack_in1 | sub_ack_in2)) & !str_act;

always @(posedge clk) begin
if (reset) begin
sub_req_in <= 0;
sub_ack_out <= 0;
ack <= 0;
end else begin
/I Input request.
if (ready) begin
str_act <= 1;
sub_req_in <= req;
end
/I Input acknowledge.
if ( sub_ack_in1 & sub_ack_in2) ack <= 1;
if (lsub_ack_in1 & !sub_ack_in2) ack <= 0;
I Collect results.
if (sub_req_out != sub_ack_out) begin
sub_ack_out <= sub_req_out;
str_data <= result;
str_res <= 1;

end
end
end
el instl(.clk(clk), .reset(reset), .data_i(data), .data _o(result),
.req_i(sub_req_in), .ack_i(sub_ack_inl), .req_o(sub_r eg_out), .ack_o(sub_ack_out));

e2 inst2(.clk(clk), .reset(reset), .data(data),
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.req(sub_req_in), .ack(sub_ack_in2), .str_act(str_act ), .str_res(str_res), .str_data(str_data));

endmodule

A real Verilog implementation would need to provide extra buses to the instdm&in order to allow
connection back to any multiplexer that encloses this node. Furthermorgtythact , str _res and
str _data data lines are treated as registers which may be shared between thentlifieckiles. This
is disallowed in Verilog, but the same effect can be achieved by either imptamgehe program in a
flattened description (as is used for Appendix B's example), or by pireyidoth input and output nets
and some extra logic. This would complicate the explanation of the module, drasdmen omitted.

ThecoNsmodule works by passing new requests on to both the head and tail suladraplthey are
idle. The stream is marked as active (usétig _act ), to prevent othecoNsnodes writing to it, as part
of basic lenient evaluation (see Section 5.2.3), and the input acknowlet@e node provides no scalar
return value, since it only outputs to the stream. Oategroduces a result, the value is acknowledged,
and written to the stream bus’s data bsis (_data ), andstr _res is set high to signal available results.
The appropriate match node will take this data, and resetttheact andstr _res lines, allowing the
nextcoNsnode to evaluate.

Note that thecoNsmodule does not need to handle stream resets explicitly. These are hiaydted
enclosing reset box for the stream, which will send an appropriate sigrtakereset line.

A.4 Match Nodes

A match node can be implemented with the following Verilog-like code (againstthe* buses have
been simplified to make the code more readable):

module match(clk, reset, req_i, ack_i, req_o, ack_o, data_ o, str_act, str_res, str_data);

input clk, reset, req_i, ack_o;
output ack_i, req_o;

output [7:0] data_o;

inout str_act, str_res;
inout [7:0] str_data;

reg str_act, str_res, waiting;
reg [7:0] data_o;

wire newdata, ready, latch;

/= Synchronisation. */

sync s(.clk(clk), .reset(reset), .newdata(newdata), .re ady(ready), .latch(latch),
.inreghi(req_i), .inreglo(req_i), .inack(ack_i),
.outreq(req_o), .outackhi(ack_o), .outacklo(ack_o1));

assign ready = (newdata | waiting) & str_res;

always @(posedge clk) begin
if (reset) begin
waiting <= 0;
end else begin
if (newdata & !str_res) waiting <= 1;
if (ready) begin
data_o <= str_data;
str_act <= 0;
str_res <= 0;
waiting <= 0;
end
end
end

endmodule

The module works by reading the value from the stream bus and returnimigili, clearing the stream
bus activity and result flags in order to allow the next item to be produdeah item is not available
when the module is activated, thaaiting flag is set so that the result can be returned when it does
become available.
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A.5 Reset Nodes

The example code below encloses a function which takes no scalar pasaretiereturns no scalar
results, but takes a stream input (representestiby.i _*), and returns a stream outpst( _0_*):

module reset_e(clk, reset, req_i, ack_i, req_o, ack_o,
str_i_act, str_i_res, str_i_data, str_i_rst, str_o_act, str_o_res, str_o_data, str_o_rst);

input clk, reset, req_i, ack_o, str_i_act, str_i_res, str_ o_rst;
output ack_i, req_o, str_o_act, str_o_res, str_i_rst;

input [7:0] str_i_data;
output [7:0] str_o_data;

wire str_i_rst2, new_reset;
reg str_i_is_reset;

assign new_reset = reset | str_o_rst;

assign str_i_rst = str_i_rst2 | (new_reset & !str_i_is_res et);

e inste(.clk(clk), .reset(new_reset), .req_i(req_i), .a ck_i(ack_i), .req_o(req_o), .ack_o(ack_o),
.str_i_act(str_i_act), .str_i_res(str_i_res), .str_i_ data(str_i_data), .str_i_rst(str_i_rst2),
.str_o_act(str_o_act), .str_o_res(str_o_res), .str_o_ data(str_o_data), .str_o_rst(str_o_rst));

always @(posedge clk) begin
if (new_reset)
str_i_is_reset <= 0;
else if (str_i_rst2)
str_i_is_reset <= 1;
end

endmodule

For the computational reset, all that the node does is supply the enclaeditb a reset signal that goes
high if the output stream bus’s resstr{ _o_rst ) goes high. To forward the stream resst, _i _rst

is triggered ifstr _o_rst goes highprovided that the stream has not already been reset since the last
time the node was activateihis prevents two streams on the same stream bus being killed if the node’s
input stream is killed before the output stream is killed.

A.6 Other Nodes

The other node types can be implemented as follows:

Conditional nodes can be implemented most simply if only a single item is allowed in at a time, al-
though a pipelined version with in-order collection is quite possible. Regaestiorwarded to
the appropriate sub-module, and when any results appear they asrdedmo the output, with
acknowledgements routed appropriately. Top-half-only conditionaés§setion 5.2.6) are simpler
still, as no mutual exclusion or collection of results is required.

Multiplexers are implemented as nodes that may be triggered from one of a number oAskisation
is not required amongst the inputs, as only a single set tokens will bechasaend the tail part of
a multiplexer’s subgraph at any time.

Iteration nodes work similarly, except the produced value may be routed to either causkeeanter-
ation, or generate a result. The simplest implementation relies on preventing moknthaet of
tokens from entering at a time. More complex, pipelined solutions must bange o sort results
into the correct order before emitting them.

Mutual exclusion boxes are set up like normal nodes, except that a flag is kept of whether the-appr
priate stream bus has been reset, and new items will not be accepted umlehhas occurred.

Stream forwarders can be implemented within the language itself, and synthesised to other basic nod
types.

Stream kill nodes simply hold the reset line of the appropriate stream bus high for one cyclen wh
triggered.
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APPENDIX B

Case Study

This appendix examines a simple case study, ainekly simple, the volume of synthesised code is not
the performance of the synthesised circuits. Thatally unreasonable. Rather than being a very sim-
first section introduces the example, Section Bgte signal generator, the produced code includes
examines the CSP synthesis, and Section B.3 &} streams, with back-pressure, resets and the
amines graph synthesis. Section B.4 finishes off bgope for pipelining. While such features may be
providing an overview of the performance seen. overkill for a circuit of this size, they become in-

creasingly useful in larger programs.

B.1 The Example Both compilers use a flattened output approach,
producing a single module containing the entire
This appendix provides a small synthesis examjraph, rather than many individual modules repre-
ple. A simple program is translated, as the synthgenting individual nodes. As there are few pairs of
sis tools produces rather voluminous output. Ti@des which are identical, this does not lead to a
program is a sawtooth-wave generator. It takegygeat amount of redundancy, and reduces the com-
stream of @uration pitch) pairs, and produces glexity of the synthesised output, as the individual
stream of 8-bit values representing the wave. Eagfodules do not need to be wired together. This
waveform lasts fodurationcycles, with the incre- makes both synthesis easier and the output shorter,
ment in output value changing Ipjtch each time. although a module-structured graph may make life
The code is shown in Figure B.1. Rather thagasier for humans working with the generated code.
building up the arithmetic operations up from first
principles, the tools use primitives supplied by tI"B.Z CSP Synthesis
underlying low-level HDL, to reduce clutter in the
synthesis results. The synthesis tools for CSP ande Handel-C [39] language was chosen as the tar-
graph-based synthesis are described in the folloyet for CSP synthesis, as the language includes all
ing sections. the necessary CSP features and is intended for syn-
Both compilers are proof-of-concept, and rely otinesis to hardware. The Handel-C tools include a
simplistic, inefficient code generation techniquesimulator, which was used to test the tool’s output.

Some inefficiencies, such as the introduction of re-The synthesis process implemented is very sim-
dundant wires, are easily optimised away by thigr to that described in Chapter 3, with only a
low-level synthesis tool, while others, such as thew minor differences. For example, the stream
creation of unnecessary pipeline stages or inefiuses were forwarded in tioNsand constructor-
cient signalling lines, would require much morehatching expressions, rather than in the variable
difficult optimisation, and would best be fixed byccess expression (effectively forwarding as late as
improving the SASL compiler’s output stage.  possible rather than earlier), as this fitted more eas-
Although the example program appears reldy into the compilation framework.
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(* Test program for CSP synthesis. *)
fun signalinternal(remaining value step commands=
if isnonzergremaining
then value: signalinternal(decrremaining, add(value step, step commands
else caseommandsf
(count step::commands signal internal(count zerq ), step command}s

fun signal commands- signalinternal(zerq), zerd), zerq ), command}s

fun mainx = signalx

Figure B.1: The example SASL program

AS can be seen from the COde beIOW, the Sytman unsigned 0 add_76_reset; chan unsigned 8 add_76_out;
. . . . . . chan unsigned 0 add_76_in; unsigned 16 x_77;
thesis tool is very inefficient. Each basic operatiGhin unsigned 0 chan_74; chan unsigned 16 chan_73;
ch unsigned 0 chan_72; unsigned 0 var_56;
Cl’eateS a new DFOCESS (Or SEt Of prOCGSSES), Wlllib’led 0 var_55; uns?gned 0 var_54; uns?gned 0 var_53;
its own input, output and reset channels. StatlE e s oo 70 esat - reaned 0 varso
scheduling (see Section 5.1) is necessary to MefBe s s 7o tan inoaned o changee © ee=4m
operations into a more manageable nuMber of PET s b aimes s ar b o s vr 47
cesses. The large number of declarations also Stefff . c.e o whan es: -

ns?gned chan uns?gned
from the many unread variables which are creatgh \1soned 0 Sanse shan tnaened o chanoa.

0 0
0 0
. ; . . i 0 chan_64; chan uns@gned 8 chan_63;
as the destinations for the reads from O-bit sigfan unsigned 8 chan_62; chan unsigned § chan_61;
0
0
0

unsigned 0 chan_60; chan unsigned 0 chan_59;

na”ing Channels chan unsigned 0 chan_58; chan unsigned 0 chan_57;

chan unsigned 0 chan_56; chan unsigned 24 chan_55;
The Synthesised Code iS as fO”OWS' chan unsigned chan_54; unsigned 0 var_45;
: unsigned 0 var_44; chanout unsigned 8 Sack_9;
chan unsigned O Sreq_9; unsigned 8 var_43;
chan unsigned 0 chan_53; chan unsigned 0 chan_52;
chan unsigned 0 chan_51; chan unsigned 8 chan_50;
chan unsigned 0 chan_49; chan unsigned 0 chan_48;

void main(void)

uns!gned 0 var_124; uns!gned 0 var_123; uns!gned 0 var_122; chan unsigned 0 chan_47; unsigned O var 42;

unsigned 0 var_121; unsigned 0 var_120; unsigned 0 var_119; unsigned 0 var_41; unsigned O var_40; unsigned O var_39;
unsigned O var_118; unsigned 0 var_117; unsigned 0 var_116; unsigned 0 var_38; unsigned 0 var_37; unsigned 0 var_36;
unsigned 0 var_115; unsigned 0 var_114; unsigned 0 var_113; unsigned 0 var_35; unsigned 0 var_34; unsigned 0 var_33;
unsigned 0 var_112; unsigned 0 var_111; unsigned 0 var_110; unsigned 0 var_32; unsigned 0 var_31; unsigned 0 var_30;
unsigned 8 var_109; unsigned 0 var_108; unsigned 0 var_107; unsigned 0 var_29; unsigned 0 var_28; unsigned 0 var_27;
chan unsigned 0 zero_66_reset; chan unsigned 8 zero_66_out H unsigned 0 var_26; unsigned 0 var_25; unsigned 8 var_24;

chan unsigned 0 zero_66_in; unsigned 0 x_67;
chan unsigned 0 chan_101; chan unsigned O chan_100;
chan unsigned 0 chan_99; unsigned 0 var_106;
unsigned 0 var_105; unsigned O var_104; unsigned 0 var_103;
unsigned 8 var_102; unsigned 0 var_101; unsigned 0 var_100;
chan unsigned O zero_64_reset; chan unsigned 8 zero_64_out
chan unsigned 0 zero_64_in; unsigned 0 x_65;
chan unsigned 0 chan_98; chan unsigned 0 chan_97;
chan unsigned 0 chan_96; unsigned 0 var_99;
unsigned 0 var_98; unsigned 0 var_97; unsigned 0 var_96;
unsigned 8 var_95; unsigned 0 var_94; unsigned 0 var_93;
chan unsigned 0 zero_62_reset; chan unsigned 8 zero_62_out H
chan unsigned 0 zero_62_in; unsigned 0 x_63;
chan unsigned 0 chan_95; chan unsigned 0 chan_94;
chan unsigned 0 chan_93; unsigned 0 var_92;
unsigned 8 var_91; unsigned 8 var_90; unsigned 8 var_89;
chan unsigned 0 chan_92; chan unsigned 0 chan_91;
chan unsigned 0 chan_90; chan unsigned 0 chan_89;
chan unsigned 0 chan_88; chan unsigned 8 chan_87;
8 8
0 0
0

unsigned 0 var_23; unsigned 0 var_22;
chan unsigned O zero_82_reset; chan unsigned 8 zero_82_out
chan unsigned 0 zero_82_in; unsigned 0 x_83;
chan unsigned 0 chan_46; chan unsigned 0 chan_45;
chan unsigned 0 chan_44; unsigned 0 var_21;
unsigned 0 var_20; unsigned 0 var_19; unsigned 8 var_18;
unsigned 8 var_17; unsigned 8 var_16;
chan unsigned 0 chan_43; chan unsigned 0 chan_42;
chan unsigned 0 chan_41; chan unsigned 0 chan_40;
chan unsigned 0 chan_39; chan unsigned 8 chan_38;
chan unsigned 8 chan_37; chan unsigned 8 chan_36;
chan unsigned 0 chan_35; chan unsigned 0 chan_34;
chan unsigned 0 chan_33; chan unsigned 0 chan_32;
chan unsigned 0 chan_31; chan unsigned 24 chan_30;
chan unsigned 0 chan_29; unsigned 0 var_15;
unsigned 0 var_14; unsigned 8 step_81;
unsigned 8 count_80; unsigned 16 var_13;
chan unsigned 0 chan_28; chan unsigned 0 chan_27;
chan unsigned 0 chan_26; chan unsigned 16 chan_25;
chan unsigned 0 chan_24; unsigned 0 var_12;
unsigned 0 var_11; unsigned 0 commands_79;
— unsigned 16 TMP_1_78; chan unsigned 16 Sack_7;
0 var_86; chan unsigned 0 Sreq_7; chan unsigned 0 chan_23;
| 0 | 0 | 0 var_83; chan unsigned 0 chan_22; chan unsigned 0 chan_21;
unsigned 0 var_82; unsigned 0 var_81; unsigned 0 var_80; chan unsigned 0 chan_20; chan unsigned 0 chan_19;
unsigned 0 var_79; unsigned 0 var_78; unsigned 0 var_77; chan unsigned 0 chan_18; chan unsigned 0 chan_17:
unsigned 0 var_76; unsigned 0 var_75; unsigned 0 var_74; unsigned 1 var_10; ungigned 0 var_9: unsigned 0 var 8;
unsigned 0 var_73; unsigned 0 var_72; unsigned 0 - e =
0 0 0
0 0 0
0 0 0

chan unsigned 8 chan_86; chan unsigned 8 chan_85;
chan unsigned 0 chan_84; chan unsigned 0 chan_83;
chan unsigned chan_82; chan unsigned 0 chan_81;
unsigned 0 var_88; unsigned 0 var_87; unsigned
unsigned 0 var_85; unsigned 0 var_84; unsigned

| | | var_71; unsigned 0 var_7; unsigned O var_6; unsigned 1 var_5;
unsigned 0 var_70; unsigned 0 var_69; unsigned 0 var_68; unsigned 0 var_4; unsigned 0 var 3;
unsigned 0 var_67; unsigned 0 var_66; unsigned O var_65; . —r

chan unsigned O isnonzero_84_reset;

unsigned var_64; unsigned var_63; unsigned var_62; chan unsigned 1 isnonzero_84_out;

unsigned 8 var_61; unsigned 8 var_60;

chan unsigned 0 chan_80; chan unsigned 0 chan_79;
chan unsigned 8 chan_78; chan unsigned 8 chan_77;
chan unsigned 0 chan_76; chan unsigned 0 chan_75;
unsigned 8 var_59; unsigned 0 var_58; unsigned 0 var_57;

chan unsigned 0 isnonzero_84_in;

unsigned 8 x_85; chan unsigned 0 chan_16;

chan unsigned 8 chan_15; chan unsigned 0 chan_14;
chan unsigned 0 chan_13; chan unsigned 1 chan_12;
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chan unsigned 0 chan_11; unsigned 0 var_2;

unsigned 0 var_1; unsigned 0 commands_73;

unsigned 8 step_72; unsigned 8 value_71;

unsigned 8 remaining_70; unsigned 24 var_O;

chan unsigned 0 chan_10; chan unsigned 0 chan_9;
chan unsigned 0 chan_8; chan unsigned 24 chan_7;
chan unsigned 0 chan_6;

chan unsigned 0 signal_internal_68_reset;

chan unsigned 0 signal_internal_68_out;

chan unsigned 0 signal_internal_68_in;

unsigned 24 TMP_2_69; chan unsigned 0 chan_5;

chan unsigned 24 chan_4; chan unsigned 0 chan_3;
chan unsigned 0 signal_60_reset;

chan unsigned 0 signal_60_out;

chan unsigned 0 signal_60_in;

unsigned 0 commands_61; chan unsigned 0 chan_2;

chan unsigned 0 chan_1;

chan unsigned 0 chan_0; chan unsigned 0 main_58_reset;
chan unsigned 0 main_58_out; chan unsigned 0 main_58_in;
unsigned 0 x_59;

par {
/= Test harness. */

unsigned int O result;
main_58_reset ! 0;

x_59 = 0;

main_58_in ! 0;
main_58_out ? result;

for(;;) { Sreq 9! 0; }

}

{ Sreq_7 ? x_59; Sack 7 ! 0x1020;
Sreq_7 ? x_59; Sack_7 ! 0x2020; }

/* Generated code. */

for(;;) prialt

case main_58_in ? var_124:
{ chan_2 ! 0; chan_1 ? commands_61;

signal_60_in ! 0; signal_60_out ? var_120;

main_58_out ! var_120; } break;
case main_58_reset ? var_123:

par { chan_0 ! O; signal_60_reset ! O;

break;

}
for(;;) prialt {
case chan_2 ? var_122:
chan_1 ! x_59; break;
case chan_0 ? var_121:
{} break;

}

for(;;) prialt

case signal_60_in ? var_119:
{ chan_5 ! 0; chan_4 ? TMP_2_69;
signal_internal_68_in ! 0;
signal_internal_68_out ? var_88;
signal_60_out ! var_88; } break;

case signal_60_reset ? var_118:
par { chan_3 ! 0;

signal_internal_68_reset ! 0; } break;

}

for(;;) prialt

case chan_5 ? var_117:
{ par { chan_81 ! 0; chan_82 ! 0;
chan_83 ! 0; chan_84 ! 0; } opar {
chan_85 ? var_89; chan_86 ? var_90;
chan_87 ? var_91; chan_88 ? var_92;

chan_4 ! (var_92) @ (var_91) @ (var_90) @

(var_89); } break;
case chan_3 ? var_116:

par { chan_89 ! 0; chan_90 ! 0; chan_91 ! 0;

chan_92 ! 0; } break;

}
for(;;) prialt
case chan_84 ? var_115:
chan_88 ! commands_61; break;
case chan_92 ? var_114:
{} break;

}

for(;;) prialt {

case chan_83 ? var_113:
{ chan_101 ! 0; chan_100 ? x_67;
zero_66_in ! 0; zero_66_out ? var_109;
chan_87 ! var_109; } break;

case chan_91 ? var_112:
par { chan_99 ! 0; zero_66_reset ! 0;
break;

for(;;) prialt
case chan_101 ? var_111:
chan_100 ! 0; break;
case chan_99 ? var_110:
{} break;

¥ .
for(;;) prialt
case zero_66_in ? var_108:
{ zero_66_out ! 0; } break;

case zero_66_reset ? var_107:
{} break;

}

for(;;) prialt {

case chan_82 ? var_106:
{ chan_98 ! 0; chan_97 ? x_65;
zero_64_in ! 0; zero_64_out ? var_102;
chan_86 ! var_102; } break;

case chan_90 ? var_105:

par { chan_96 ! O; zero_64 reset ! O; }
break;

F .

for(;;) prialt {

case chan_98 ? var_104:
chan_97 ! 0; break;
case chan_96 ? var_103:
{} break;

}
for(;;) prialt
case zero_64_in ? var_101:
{ zero_64 out ! 0; } break;
case zero_64_reset ? var_100:
{} break;

)

for(;;) prialt {

case chan_81 ? var_99:
{ chan_95 ! 0; chan_94 ? x_63;
zero_62_in ! 0; zero_62_out ? var_95;
chan_85 ! var_95; } break;

case chan_89 ? var_98:

par { chan_93 ! 0; zero_62_reset ! O; }
break;

}

for(;;) prialt {

case chan_95 ? var_97:
chan_94 ! 0; break;
case chan_93 ? var_96:
{} break;

}
for(;;) prialt
case zero_62_in ? var_94:
{ zero_62_out ! 0; } break;
case zero_62_reset ? var_93:
{} break;

}

for(;;) prialt

case signal_internal_68_in ? var_87:
{ chan_8 ! 0; chan_7 ? var_0; par {
remaining_70 = (var_0)[7:0];
value_71 = (var_0)[15:8];
step_72 = (var_0)[23:16]; commands_73 = 0;
chan_10 ! 0; } break;

case signal_internal_68_reset ? var_86:
par { chan_6 ! 0; chan_9 ! 0; } break;

for(;;) prialt {

case chan_10 ? var_85:
{ chan_13 ! 0; chan_12 ? var_10;
switch(var_10[0:0]) { case 0: chan_18 ! 0;
break; case 1: chan_48 ! 0; break; o}
break;

case chan_9 ? var_84:
par { chan_11 ! 0; chan_17 ! O;
chan_47 ! 0; } break;

}

for(;;) { chan_50 ? var_43; chan_53 ! 0;
signal_internal_68_out ? var_83;
Sack_9 ! var_43; }

for(;;) prialt {
case chan_48 ? var_82:
{ signal_internal_68_out ! O; prialt {

case Sreq_9 ? var_80:
chan_51 ! 0; break;
case chan_47 ? var_79:

par { chan_49 ! 0; chan_52 ! 0; } break;
} } break;
case chan_47 ? var_81:

par { chan_49 ! 0; chan_52 ! 0; } break;
for(;;) prialt {

case chan_53 ? var_78:
{ chan_56 ! 0; chan_55 ? TMP_2_69; par
chan_54 ! 0; signal_internal_68_reset ! 0;
chan_52 ? var_76;
signal_internal_68_in ! 0; } break;
case chan_52 ? var_77:
chan_54 ! 0; break;

)

for(;;) prialt

case chan_56 ? var_75:
{ par { chan_57 ! 0; chan_58 ! 0;
chan_59 ! 0; chan_60 ! 0O; } par {
chan_61 ? var_46; chan_62 ? var_47;
chan_63 ? var_48; chan_64 ? var_49;
chan_55 ! (var_49) @ (var_48) @ (var_47) @

{
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(var_46); } break; par { chan_24 ! 0; chan_27 ! 0O; } break;
case chan_54 ? var_74: }
par { chan_65 ! 0; chan_66 ! 0; chan_67 ! 0; for(;;) prialt {
chan_68 ! 0; } break; case chan_28 ? var_37:
} { chan_31 ! 0; chan_30 ? TMP_2_69; par {
for(;;) prialt { chan_29 ! 0; signal_internal_68_reset ! 0; }
case chan_60 ? var_73: chan_27 ? var_35;
chan_64 ! commands_73; break; signal_internal_68_in ! 0; } break;
case chan_68 ? var_72: case chan_27 ? var_36:
{} break; chan_29 ! 0; break;
} }
for(;;) prialt { for(;;) prialt
case chan_59 ? var_71: case chan_31 ? var_34:
chan_63 ! step_72; break; { par { chan_32 ! 0; chan_33 ! 0;
case chan_67 ? var_70: chan_34 ! 0; chan_35 ! 0; } opar {
{} break; chan_36 ? var_16; chan_37 ? var_17;
} chan_38 ? var_18; chan_39 ? var_19; }
for(;;) prialt { chan_30 ! (var_19) @ (var_18) @
case chan_58 ? var_69: (var_17) @ (var_16); } break;
{ chan_74 ! 0; chan_73 ? x_77; case chan_29 ? var_33:
add_76_in ! 0; add_76_out ? var_59; par { chan_40 ! 0; chan_41 ! 0; chan_42 ! 0;
chan_62 ! var_59; } break; chan_43 ! 0; } break;
case chan_66 ? var_68: }
par { chan_72 ! 0; add_76_reset ! 0; } for(;;) prialt
break; case chan_35 ? var_32:
chan_39 ! commands_79; break;
for(;;) prialt { case chan_43 ? var_31:
case chan_74 ? var_67: {} break;
{ par { chan_75 ! 0; chan_76 ! 0; } par { }
chan_77 ? var_60; chan_78 ? var_61; } for(;;) prialt {
chan_73 ! (var_61) @ (var_60); } break; case chan_34 ? var_30:
case chan_72 ? var_66: chan_38 ! step_81; break;
par { chan_79 ! 0; chan_80 ! 0; } break; case chan_42 ? var_29:
} {} break;
for(;;) prialt {
case chan_76 ? var_65: for(;;) prialt
chan_78 ! step_72; break; case chan_33 ? var_28:
case chan_80 ? var_64: { chan_46 ! 0; chan_45 ? x_83;
{} break; zero_82_in ! 0; zero_82_out ? var_24;
chan_37 ! var_24; } break;
for(;;) prialt { case chan_41 ? var_27:
case chan_75 ? var_63: par { chan_44 ! 0; zero_82_reset ! 0; }
chan_77 ! value_71; break; break;
case chan_79 ? var_62: }
{} break; for(;;) prialt {
} case chan_46 ? var_26:
for(;;) prialt { chan_45 ! 0; break;
case add_76_in ? var_58: case chan_44 ? var_25:
{ add_76_out ! x_77[7:0] + x_77[15:8]; } {} break;
break;
case add_76_reset ? var_57: for(;;) prialt {
{} break; case zero_82_in ? var_23:
{ zero_82 out ! 0; } break;
for(;;) prialt { case zero_82_reset ? var_22:
case chan_57 ? var_56: {} break;
{ chan_71 ! 0; chan_70 ? x_75; }
decr_74_in ! 0; decr_74_out ? var_52; for(;;) prialt {
chan_61 ! var_52; } break; case chan_32 ? var_21:
case chan_65 ? var_55: chan_36 ! count_80; break;
par { chan_69 ! 0; decr_74_reset ! O; } case chan_40 ? var_20:
break; {} break;
} }
for(;;) prialt { for(;;) prialt {
case chan_71 ? var_54: case chan_26 ? var_15:
chan_70 ! remaining_70; break; chan_25 ! TMP_1_78; break;
case chan_69 ? var_53: case chan_24 ? var_14:
{} break; {} break;
) )
for(;;) prialt { for(;;) prialt {
case decr_74_in ? var_51: case chan_21 ? var_12:
{ decr_74_out ! x_75 - 1; } break; chan_20 ! commands_73; break;
case decr_74_reset ? var_50: case chan_19 ? var_11:
{} break; {} break;
} }
for(;;) prialt { for(;;) prialt {
case chan_51 ? var_45: case chan_13 ? var_9:
chan_50 ! value_71; break; { chan_16 ! 0; chan_15 ? x_85;
case chan_49 ? var_44: isnonzero_84_in ! 0O;
{} break; isnonzero_84_out ? var_5;
chan_12 ! var_5; } break;
for(;;) prialt { case chan_11 ? var_8:
case chan_18 ? var_42: par { chan_14 ! 0;
{ chan_21 ! 0; chan_20 ? var_40; Sreq_7 ! 0; isnonzero_84_reset ! 0O; } break;
Sack_7 ? TMP_1_78; commands_79 = 0; }
chan_23 ! 0; } break; for(;;) prialt {
case chan_17 ? var_41: case chan_16 ? var_7:
par { chan_19 ! 0; chan_22 ! 0; } break; chan_15 ! remaining_70; break;
} case chan_14 ? var_6:
for(;;) prialt { {} break;
case chan_23 ? var_39: }
{ chan_26 ! 0; chan_25 ? var_13; par { for(;;) prialt {
count_80 = (var_13)[7:0]; case isnonzero_84 in ? var_4:
step_81 = (var_13)[15:8]; } chan_28 ! 0; } { isnonzero_84 _out ! x_85 != 0; } break;
break; case isnonzero_84 reset ? var_3:

case chan_22 ? var_38: {} break;
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} 1587: Output from channel ‘Sack_9' = 224
for(;;) prialt { 1618: Output from channel ‘Sack_9' = 0
case chan_8 ? var_2: 1649: Output from channel ‘Sack_9' = 32
chan_7 ! TMP_2_69; break; 1680: Output from channel ‘Sack_9' = 64
case chan_6 ? var_1: 1711: Output from channel ‘Sack_9' = 96
{} break; 1742: Output from channel ‘Sack_9' = 128
1773: Output from channel ‘Sack_9' = 160
} 1804: Output from channel ‘Sack_9' = 192
} 1835: Output from channel ‘Sack_9' = 224
} 1866: Output from channel ‘Sack_9' = 0
1897: Output from channel ‘Sack_9' = 32
1928: Output from channel ‘Sack_9' = 64
Output from channel ‘Sack_9' = 96
The test harness resets the function and then cali§ oumu: rum chanel ‘sack o' = 126
H Output from channel ‘Sack_9' = 160
it with a unit value (as there are no scalar parantgs: oubu fiom dhamel ‘Sack o' = 109

ters), before reading a unit value out (as there are no
scalar return values). The test harness then attemptshe stream values produced are as expected. The
to read as many items from the output stream @g$ge number of intermediate channels shows itself
possible. not only in the size of the Handel-C output, but
The test harness suppli@s1020 (a step size of also in terms of its performance. Each value takes
0x10 for Ox20 cycles) anddx2020 (a step size about 30 cycles to produce! This is to be unsur-
of 0x20 for 0x20 cycles) as two items on the inprising with such nive synthesis. Note also that
put stream. After that, the input stream becomgse 64" item is never produced. For that item to
unproductive. be returned, not only does the head expression of
When synthesised using Celoxica’s tool, the folhe cons have to complete, but also the tail ex-
lowing resource-usage information is produced: pression. The tail expression blocks waiting for the

| Gates| Inverters | Latches| Others third item from the input stream, and so the value
Compiled 1 0 340 1629 . t d d
Optimised | 1 0 286 | 1271 IS Not proauced.
Expanded| 2208 452 976 155
Optimised | 1313 | 305 805 155 3 Graph Svnthesis
When simulated, the following output is produceoB P y

The same program, when synthesised to Verilog,

95: Output from channel ‘Sack_9' = 0 . .
126: Output from channel ‘Sack 9' = 16 under graph synthesis, produces the following:
157: Output from channel ‘Sack_9' = 32
188: Output from channel ‘Sack_9' = 48
219: Output from channel ‘Sack_9' = 64 /I Standard synchronisation block.

250: Output from channel ‘Sack_9 = 80 ‘include sync.v

281: Output from channel ‘Sack_9' = 96

312: Output from channel ‘Sack_9' = 112 /I Synthesised module.

343: Output from channel ‘Sack_9' = 128 module synth();

374: Output from channel ‘Sack_9' = 144

405: Output from channel ‘Sack_9' = 160 reg clk; reg req_in; wire ack_in; wire req_out;
436: Output from channel ‘Sack_9' = 176 wire ack_out; reg reset;

467: Output from channel ‘Sack 9" = 192

498: Output from channel ‘Sack_9' = 208 reg str_act_10; reg str_res_10; wor str_rst_10;

529: Output from channel ‘Sack_9' = 224 reg str_act_12; reg str_res_12; wor str_rst_12;

560: Output from channel ‘Sack_9' = 240 reg [15:0] str_dat_10; reg [7:0] str_dat_12;

591: Output from channel ‘Sack_9" = 0
622: Output from channel ‘Sack_9" = 16 wire [7:0] wl_1_0; wire [7:0] wl_3_0; wire [7:0] wl_5_0;
653: Output from channel ‘Sack_9' = 32 wire [23:0] wl_6_0; wire [23:0] w2_g_0; wire [23:0] w3_g_0;
684: Output from channel ‘Sack_9' = 48 wire [7:0] w4_0_0; wire [7:0] w4_0 1; wire [7:0] w4_0_2;
715: Output from channel ‘Sack_9' = 64 wire [15:0] w4_1_0; wire [7:0] w4_2_0; wire [7:0] w4_2_1,
746: Output from channel ‘Sack_9 = 80 wire [0:0] w4_3_0; wire [0:0] W5 _g_0; wire [7:0] w5_g_1;
777: Output from channel ‘Sack_9' = 96 wire [7:0] w5_g_2; wire [7:0] w5_g_3; wire [15:0] w6_0_0;
808: Output from channel ‘Sack_9' = 112 wire [7:0] w6_1_0; wire [7:0] w6_1_1; wire [7:0] w7_g_0;
839: Output from channel ‘Sack_9" = 128 wire [7:0] w7_g_1; wire [7:0] w7_g_2; wire [7:0] w7_g_3;
870: Output from channel ‘Sack_9' = 144 wire [7:0] w9_g_0; wire [7:0] w9_g_1; wire [7:0] w9_g_2;
901: Output from channel ‘Sack_9' = 160 wire [7:0] w9_g_3; wire [15:0] w10_0_0; wire [7:0] w10_1_0;
932: Output from channel ‘Sack_9' = 176 wire [7:0] wl0_1_1; wire [7:0] w10_2_0; wire [15:0] w10_3 0
963: Output from channel ‘Sack_9' = 192 wire [7:0] w10_4_0; wire [23:0] w10_5_0; wire [0:0] wl4_g_ O
994: Output from channel ‘Sack_9' = 208 wire [7:0] wl4_g_1; wire [7:0] wl4_g_2; wire [7:0] wl4_g_3;
1025: Output from channel ‘Sack_9' = 224 wire [7:0] wl6_1_0; wire [7:0] wl6_1_1; wire [7:0] wl7_3 0;
1091: Output from channel ‘Sack_9' = 240 wire [23:0] w18 _4_0; reg [23:0] w4_g_0; reg [7:0] w6_g_1;
1122: Output from channel ‘Sack_9" = 0 reg [7:0] wl0_g_1; reg [7:0] wl0_g_2; reg [7:0] wl0_g_3;
1153: Output from channel ‘Sack_9' = 32 reg [7:0] wi2_1_0; reg [7:0] wl2_g_2; reg [7:0] wl2_g_3;
1184: Output from channel ‘Sack_9' = 64 reg [7:0] wil2_1 1; reg [15:0] wl5_0_O; reg [15:0] wl6_0_0;
1215: Output from channel ‘Sack_9' = 96 reg [7:0] wi8_1 0; reg [7:0] w18 3_0; reg [7:0] wl18_1_1;
1246: Output from channel ‘Sack_9' = 128 reg [0:0] w20_3_0; reg [7:0] w20_0_1; reg [7:0] w20_0_2
1277: Output from channel ‘Sack_9' = 160 reg [7:0] w20_2_1; reg [23:0] w22_g_O; reg [23:0] w24_6_0;
1308: Output from channel ‘Sack_9' = 192
1339: Output from channel ‘Sack_9' = 224 wire req_0; wire latch_1, data_1, req_1, ack_1; wire req_2;
1370: Output from channel ‘Sack_9" = 0 wire req_3; wire latch_4, data_4, req_4, ack_4; wire req_5;
1401: Output from channel ‘Sack_9" = 32 wire latch_6, data_6, req_6, ack_6; wire req_7; wire ack_8;
1432: Output from channel ‘Sack_9' = 64 wire req_9; wire latch_10, data_10, req_10, ack_10;

1463: Output from channel ‘Sack_9' = 96 wire ack_11;

1494: Output from channel ‘Sack_9" = 128 wire latch_12, ready_12, data_12, req_12, ack_12;
1525: Output from channel ‘Sack_9' = 160 wire ack_13; wire req_14;

1556: Output from channel ‘Sack_9' = 192 wire latch_15, ready_15, data_15, req_15, ack_15;
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wire latch_16, data_16, req_16, ack_16;

wire latch_17, data_17, req_17, ack_17;

wire latch_18, data_18, req_18, ack_18;

wire ack_19;

wire latch_20, ready 20, data_20, req_20, ack_20;
wire ack_21;

wire latch_22, ready 22, data_22, req_22, ack_22;
wire ack_23;

wire latch_24, ready 24, data_24, req_24, ack_24;
wire ack_25;

reg wait_10; reg trigger_7; reg wait_12; reg old_req_7;
reg wait_15; reg wait_18; reg trigger_5; reg trigger_14;
reg old_req_12; reg old_req_18; reg trigger_3;

reg trigger_2;

always @(posedge clk) begin
if (str_rst_10) str_act_10 <= 0;
if (str_rst_10) str_res_10 <= 0;
if (str_rst_12) str_act_12 <= 0;
if (str_rst_12) str_res_12 <= 0;
end

sync s0(.clk(clk), .reset(reset),
.inreghi(req_0), .inreglo(req_0), .inack(ack_1),
.outreq(req_1), .outackhi(ack_24),
.outacklo(ack_24),

.newdata(data_1), .ready(data_1), .latch(latch_1));

sync s1(.clk(clk), .reset(reset_24),
.inreghi(req_3), .inreglo(req_3), .inack(ack_4),
.outreq(req_4), .outackhi(ack_20),
.outacklo(ack_20),

.newdata(data_4), .ready(data_4), .latch(latch_4));

sync s2(.clk(clk), .reset(reset_24),
.inreghi(req_5), .inreglo(req_5), .inack(ack_6),
.outreq(req_6), .outackhi(ack_12),
.outacklo(ack_12),

.newdata(data_6), .ready(data_6), .latch(latch_6));

sync s3(.clk(clk), .reset(reset_24),
.inreghi(req_9), .inreglo(req_9), .inack(ack_10),
.outreq(req_10), .outackhi(ack_11),
.outacklo(ack_11), .newdata(data_10),
.ready(data_10), .latch(latch_10));

sync s4(.clk(clk), .reset(reset_24),

.inreghi(req_5 & req_6), .inreqlo(req_5 | req_6),
.inack(ack_12), .outreq(req_12), .outackhi(ack_13),

.outacklo(ack_13), .newdata(data_12),
.ready(ready_12), .latch(latch_12));
sync s5(.clk(clk), .reset(reset_24),

.inreghi(req_14), .inreglo(req_14), .inack(ack_15),

.outreq(req_15), .outackhi(ack_16 & ack_18),
.outacklo(ack_16 | ack_18), .newdata(data_15),
.ready(ready_15), .latch(latch_15));

sync s6(.clk(clk), .reset(reset_24),

.inreghi(req_15), .inreqlo(req_15), .inack(ack_16),

.outreq(req_16), .outackhi(ack_18),

.outacklo(ack_18), .newdata(data_16),

.ready(data_16), .latch(latch_16));
sync s7(.clk(clk), .reset(reset_24),

.inreghi(req_14), .inreglo(req_14), .inack(ack_17),

.outreq(req_17), .outackhi(ack_18),
.outacklo(ack_18), .newdata(data_17),
.ready(data_17), .latch(latch_17));
sync s8(.clk(clk), .reset(reset_24),
.inreghi(req_15 & req_16 & req_17),

.inreglo(req_15 | req_16 | req_17), .inack(ack_18),

.outreq(req_18), .outackhi(ack_19),
.outacklo(ack_19), .newdata(data_18),
.ready(data_18), .latch(latch_18));

sync s9(.clk(clk), .reset(reset_24),
.inreghi(req_4), .inreglo(req_4), .inack(ack_20),
.outreq(req_20), .outackhi(ack_21),
.outacklo(ack_21), .newdata(data_20),
.ready(ready_20), .latch(latch_20));

sync s10(.clk(clk), .reset(reset_24),
.inreghi(req_2), .inreglo(req_2), .inack(ack_22),
.outreq(req_22), .outackhi(ack_23),
.outacklo(ack_23), .newdata(data_22),
.ready(ready_22), .latch(latch_22));

sync sl1i(.clk(clk), .reset(reset),
.inreghi(req_1), .inreglo(req_1), .inack(ack_24),
.outreq(req_24), .outackhi(ack_25),
.outacklo(ack_25), .newdata(data_24),
.ready(ready_24), .latch(latch_24));

always @(posedge clk) begin
if (latch_4) w4_g 0 <=
if (latch_6) w6_g_1 <=
if (latch_10) w10_g_1
if (latch_10) w10_g_2
if (latch_10) w10_g_3
if (latch_12) w12_1_0
if (latch_12) w12 _g_2
if (latch_12) wi2_g 3
if (latch_12) wi2_1_1

if (latch_16) w16_0_0 <= wl5_0_0;
if (latch_18) w18 1_0 <= w16_1_0;
if (latch_18) w18_3_0 <= wl7_3_0;
if (latch_18) w18_1_1 <= wi6_1_1;
if (latch_20) w20_3_0 <= w4_3_0;
if (latch_20) w20_0_1 <= w4 _0_1;
if (latch_20) w20_0_2 <= w4_0_2;
if (latch_20) w20_2_1 <= w4 _2_1;
if (latch_22) w22_g_0 <= w2_g_0;
if (latch_24) w24 6_0 <= wl_6_0;
end
always @(posedge clk) begin
if (reset_24) begin
wait_10 <= 0;
trigger_7 <= 0;
wait_12 <= 0;
old_req_7 <= 0;
wait_15 <= 0;
wait_18 <= 0;

end

a55|gn W.
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trigger_5 <=
trigger_14 <= 0;
old_req_12 <= 0;
old_req_18 <= 0;
trigger_3 <= 0;
end else begin
wait_10 <= data_10 &
“((req_3 & ack_23) |
I(req_3 | ack_23));
if (data_10 | (wait_10 &
((req_3 & ack_23) |
I(req_3 | ack_23)))) wait_10 <= 0;
if (data_10 |
(wait_10 & ((req_3 & ack_23) |
I(req_3 | ack_23))))
trigger_3 <= “trigger_3;
if (data_10 |
(wait_10 & ((req_3 & ack_23) |
I(req_3 | ack_23))))
w22_g_0 <= wl10_5_0;
if (data_12 & !str_act_12)
trigger_7 <= "trigger_7;
if (data_12 & !str_act_12)
str_act_12 <= 1;
if (data_12 & str_act _12)
wait_12 <= 1;
if (wait_12 & !str_act_12)
trigger_7 <= “trigger_7;
if (wait_12 & !str_act_12)
str_act_12 <= 1;
if (wait_12 & !str_act_12)
wait_12 <= 0;
old_req_7 <= req_7;
if (req_7 != old_req_7)
str_dat_12 <= w7_g_0;
if (req_7 != old_req_7)
str_res_12 <= 1;
if (data_15 & “str_res 10)
wait_15 <=
if (str_res_10)
wait_15 <= 0;
if ((data_15 | wait_15) & str_res_10)
str_act_10 <= 0;
if ((data_15 | wait_15) & str_res_10)
str_res_10 <= 0;
if ((data_15 | wait_15) & str_res_10)
wl5_0_0 <= str_dat_10;
wait_18 <= data_18 & “((req_3 & ack_23) |
I(req_3 | ack_23));
if (data_18 | (wait_18 & ((req_3 & ack_23) |
I(req_3 | ack_23)))) wait_18 <= 0;
if (data_18 | (wait_18 & ((req_3 & ack_23) |
I(req_3 | ack_23))))
trigger_3 <= “trigger_3;
if (data_18 | (wait_18 & ((req_3 & ack_23) |
I(req_3 | ack_23))))
w22_g_0 <= w18 4 0;
if (data_20 & (w20_3_0[0:0] == 1))
trigger_5 <= "trigger_5;
if (data_20 & (w20_3_0[0:0] == 0))
trigger_14 <= “trigger_14;
old_req_12 <= req_12;
old_req_18 <= req_18;
if (data_22) trigger_3 <= "trigger_3;
if (data_24) trigger_2 <= “trigger_2;

end
if (reset) begin
trigger_2 <= 0;

end else begin

end

1.1 0 = 7do;

1.3 0 = 7°dO;

150 = 7do;



assign w16 1 1 = wi6_0_O[15:8]; plex solution.

assign wl7_3 0 7'do;

assign wi8 1 1, wil8 3 0, wil8_1 0;

assign req_0 = req_in;

assign ack_in = ack_1;

assign req_out = req_24;

assign ack_25 = ack_out;

assign req_7 = trigger_7;

assign req_9 = trigger_7;

assign ready_12 = data_12;

assign ack_8 = req_7;

assign ack_11 = req_10;

assign ready_15 = (data_15 | wait_15) & str_res_10;

assign req_5 = trigger_5;

assign req_14 = trigger_14;

assign ack_13 = old_req_12;

assign ack_19 = old_req_18;

assign ready_20 = (old_req_18 != req_18) |
(old_req_12 != req_12);

assign ready_22 = data_22;

assign req_3 = trigger_3;

assign ack_21 = req_20;
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assign wl 6 0 = wl 50, wl 30, wl10; /I Wait for reset

assign w2_g_0 = w24_6_0; #50

assign w3_g_0 = w22_g_0; /I Send first stream item.

assign w4_0_0 = w4_g_0[7:0]; str_res_10 <= 1; str_dat 10 <= 16'h1020;
assign w4_0_1 = w4_g_0[15:8]; /I Wait until first item has been read.
assign w4_0_2 = w4_g_0[23:16]; #3000

assign w4_1_0 = w4_0_0, w4_0_0; /I Send second stream item.

assign w4_2_0 = w4_1_0[7:0]; str_res_10 <= 1; str_dat 10 <= 16'h2020;
assign w4_2_1 = w4_1 _0[15:8]; end

assign w4 3.0 = w4 2 0 != 0;

assign w5_g_0 = w20_3_0; endmodule

assign w5_g_1 = w20_0_1;

assign w5_g_2 = w20_0_2;

i 5_9_3 = w20_2_1; i 1 i -
o Wi4-5.0 = w2d. 3.0 - The .syntheS|s tqol |mplement_s streams using ba
assign wl4_g_1 = w20 0_1, sic lenient evaluation (see Section 5.2.3) with lazy
assign wl4 _g_2 = w20_0_2; K K K K i

i 14 3 = w20_2_1 -
assion WA 08 w02t tail matching (§ee Section 5.2..5). Signalling bg
assign w6_1_0 = w6_0_0[7:0]; tween nodes is performed using two-phase sig-
assign w6_1_1 = w6_0_0[15:8]; ) . . . 3 )
assion w7 g 0 = wiz 10 nalling, to simplify synchronisation, while the
assign w9_g 0 = wl2_1 0O; . . .
assign w7 g L = wi2 g 2 streams, having a single reader and writer at any
assign w9_g_1 = wlZz g 2; . R . .
assign w7_g 2 = wi2 g 3 time, are implemented as level sensitive wires.
assign w9_g 2 = wl2 g 3; . . . . .
assign w79 3 = wi2 11 The details of this scheduling are discussed in Ap-
assign w9 _g 3 = wl2 1 1 . . . .
assign w10_0_0 = wi0_g_1, wi0_g_1; pendix A. The node implementations rely on sim-
assign wl0_1 0 = w10_0_0[7:0]; . . ™. . .
assign wi0_1_1 = wi10_0_O[15:]; ple mutual exclusion in conditional and iteration
assign w10_2 0 = w10 g 2 - 1; . . .
assign wi0 3.0 = wi0_10, wi0_g 3; nodes, which should be sufficient for small pro-

i 040 = 0_3_0[7:0 0_3_0[15:8]; .

o W08 0 = wig e o 4 w0 s o grams, and require less overhead than a more com-
assign wl6_1 0 = w16_0_0[7:0];

Nodes are scheduled by placing basic opera-
tions into a single cycle, based on an ASAP sched-
ule. The produced code is rather smaller than the
Handel-C code, when the fact that the output is at a
much lower level is taken into account.

Synthesis to a 0.18 micron process, optimising
for speed, gives a design with 667 cells (each cell
consisting of at most a few logic gates), of which
291 are latches. When simulated, the following re-
sults are produced:

2
=y
‘oo‘
\b\
o

|

assign reset_24 = reset | str_rst_12; Time: 26 Value: 0
assign ready_24 = data_24; Time: 36 Value: 16
assign req_2 = trigger_2; Time: 46 Value: 32
assign ack_23 = req_22; T!me: 56 Value: 48
assign str_rst_10 = str_rst_12 / * Wired OR */; Time: 66 Value: 64
Time: 76 Value: 80

/I Test harness: Time: 86 Value: 96
Time: 96 Value: 112

initial #10000 $finish; Time: 106 Value: 128
Time: 116 Value: 144

/I Clock cycle has length 10. Time: 126 Value: 160
initial clk = 0; Time: 136 Value: 176
always #5 clk = “clk; Time: 146 Value: 192
Time: 156 Value: 208

/I Initially reset main line and returned stream. Time: 166 Value: 224
initial begin reset = 1; #10 reset = 0; end Time: 176 Value: 240
assign str_rst_12 = reset; Time: 186 Value: 0
Time: 196 Value: 16

/I Send a request after reset. Time: 206 Value: 32
initial begin req_in = 0; #10 req_in = 1; end Time: 216 Value: 48
Time: 226 Value: 64

/I Immediately acknowledge stream result. Time: 236 Value: 80
assign ack_out = req_out; Time: 246 Value: 96
Time: 256 Value: 112

/I Read output stream. Time: 266 Value: 128
always @(posedge clk) begin Time: 276 Value: 144
if (str_res_12) begin T!me: 286 Value: 160
$display("Time: %4d Value: %3d", Time: 296 Value: 176

$time/10, str_dat_12); Time: 306 Value: 192

str res_12 <= 0; Time: 316 Value: 208

str_act_12 <= 0; Time: 326 Value: 224

end - Time: 336 Value: 240

Time: 356 Value: 0

end Time: 366 Value: 32
Time: 376 Value: 64

initial begin Time: 386 Value: 96

Time: 396 Value: 128
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Time: 406 Value: 160 provide different logic primitives, with the Synop-
Time: 416 Value: 192 . . .

Time: 426 Value: 224 sis tool counting library cells, and Quartus count-
Time: 496 vae: 3 ing FPGA elements (generally look-up tables, or
Time. 466 Value. o6 LUTs). The differences between tools make com-
Time: 466 value. a0 parisons difficult, so only high-level metrics have
Time: 496 Vawe: 192 been provided, and the logic unit count should be
e Vol o treated as approximate.

Time: 536 Value: 64

Time: 546 Value: 96

Time: 556 Value: 128

T:Qi: 566 VZIE:: 160 B41 TOO|S

T!mef 576 Valuef 192 ) .

Time: e yalue: 224 Handel-C version 2.1 and Synopsis vcs 7.0.1 were
Time: 616 vae: %2 the simulators used to generate the cycle counts.
Time: 620 Value: 96 The low-level synthesis tools used were Handel-C
ime: 636 Value: 128

Time: 646 Value: 160 i I il I
Time: 646 Value: 160 version 2.1, which targets X|I|nx.FPGAs, Synopsis
Time: 666 Value: 224 release dc-2003.12-spl, targeting a 6 metal layer

generic logic 0.18 micron process, and Quartus Il
New results are produced every ten cycles,varsion 4.2, targeting the Altera Stratix FPGA fam-
three-fold improvement over CSP synthesis. Mordy.
over, the synthesis performed relied on a simplis-
tic synchronisation scheme which inserts many uB-4.2  The signal program

necessary latches in order to simplify the synth;F:he signal program was synthesised using both the

sis process. For an optimising compiler much b ) L
ter performance figures would be expected. Ti&esp and graph synthesis paths. Even taking into

: . ccount the possible differences in what counts as a
graph synthesis not only provides better resuﬁs

than CSP output under basic compilation, but al Qgic unit under the different syn_thgas toals, it can
. o . e seen that the graph synthesis is vastly superior
gives many more opportunities for effective low-

S0 : to ndave CSP synthesis, as might be expected. The
level optimisation (as well as the high-level optlahcference between the Synopsys and Quartus logic
misations discussed in the thesis). ynopsy 9

Note that d to the CSP impl ati counts can be put down to the primitives used. The
ote thal, compared o the implementatiofitarences in register count are rather smaller.

an extra value is produced, as expected, since t n extra copy of thesignal program was syn-

Igzy ta evgluatlon dqes not wait for thg t.a” expre hesised, with the static-scheduling optimisation of
sion blocking on the input stream. This is a bene

. ) . . ection 5.1 disabled. The table shows that there
as it prevents internal buffering from holding items . . S
. is a large overhead in scheduling, and minimis-
back unnecessarily, and allows as many results. as

. . -INg this is a vital operation if good synthesis is
possible to be produced at the earliest opportunl% be achieved, since simple scheduling can halve

both the resources required and the execution cycle
B.4 Performance count.

Table B.1 shows the results of a number of sim
lation and synthesis runs. Tlsggnalfunction was
synthesised to both CSP (or rather, Handel-C) amdorder to demonstrate how the area and time re-
Verilog, using the synthesis techniques describedjoirements of the produced hardware scales, the
Chapters 3 and 4 respectively. In order to test scabry simple functions shown in Figure B.2 were
ability, a series omapfunctions (described below)synthesised, producing the results seen at the bot-
were also synthesised. tom of Table B.1.

The table gives the number of cycles to executeThe synthesis tool does not attempt to merge the
(both for the first item, and as the number of cynaps together (that is, it does not take advantage of
cles between items) and the hardware resourcesthe-fact thatmapf) (mapg) = mapf ¢)), sothe
quired, separated into a logic unit count and registsmposition of the functions represents a realistic
count. Unfortunately, different synthesis systenthaining of SASL elements. By simplistically scal-

B.4.3 The map programs
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Program High-level Initialisation | Per Item || Low-level | Logic | Register
Synthesis Cycles Cycles || Synthesis| Count | Count

signal CSP 95 31 Handel-C| 1773 805
signal Graph 26 10 Synopsys| 376 291
signal Graph 26 10 Quartus 92 230
signal Graph (unscheduled 46 28 Quartus | 211 422
map-1 Graph 13 7 Quartus 34 53

map-2 Graph 19 7 Quartus 67 105
map-3 Graph 25 7 Quartus 102 158

Table B.1: Table comparing performance figures for different synthechniques and options

(* The basic map function. *)

fun map-de¢str) = casestr of x::zs

(* One-, two- and three-stage maps. *)
fun(map-1) = = map-decx)
fun(map-2 = = map-de¢map-de¢z))
fun(map-3 = = map-de¢map-de¢map-de¢z)))

decr(x)::map-deczs)

Figure B.2: Themapprograms

ing up a simple mapping function with extra stages,
it can be seen that the pipeline length affects the

set-up latency, but once the pipeline is full the inter-

item time is the same in all cases. The resource util-

isation scales up linearly with the pipeline length.
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APPENDIX C

Extending the Identification of Reorderable Streams

This appendix extends the analysis of Section 7.4. Where the basic artagaist identify whether a
newly-generated stream is bag-like, or the streams used to generafeéhaanalysis of this section can
do so, for common functions such m&pandfold.

C.1 The Type System

The type system presented here is an extension of that given in Sectiom7#der to track stream
items through basic values, the values are now marked with the set of paraaieés upon which they
depend. To deal with loop dependencies, basic values are markethgscbastant or variable over
loops. The new value types are defined as follows:

c = (0 ... o) B S
X = CV

B stands for a basic type value, afdor a stream type value. Stream type values are marked with a
booleanR, which is true if the stream is reorderable, and false otherwise, as before

Each stream and basic type is now also annotated with/a sgiresenting the set of parameter values
on which the value depends. Each basic and stream type in the parameisocgated with a new
parameter tag. For example, if a function has a parameter of typ@! Int stream, the parameter
type for this analysis could bB{Cl} S 52}- A basic value that depends on both parameters would have
typeB}/LQ}.

A basic type value may be marked as either constaftaof variable {). A basic type parameter
that is a constant value is one that is kept constant over recursive Tals is similar to the stability
constraint on streams, but instead of requiring that recursive catidfsek the same stream in recursive
calls, constant parameters must have the same value fed back.

A non-parameter value marked with is identical to the constant basic type parameter it depends
upon. ItsI set will contain only the tag associated with that parameter. In recursilgetica formal
and actual argument types should be identical for constant paranidteranalysis of constant values is
conservative, so that parameters marked as constants are definitely some constant parameters may
be marked as variable unnecessarily. If a function contains no reewsills, all basic type parameter
values are marked as being constant.

The typing rules from Section 7.4 must be extended to collect dependdaomdtion. The new rules

181
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are shown in Figure C.1. The rest of this section explains the details oftiypeg rules.

Typing Non-Recursive Function Calls The (APPLY) rule depends on theReTURN function and the
CONST predicate. TheRETURN function generates the return type of the function, given the formal
typing and actual arguments, while tbensTfunction ensures the constant stability constraint is met.

The constant stability constraint requires that in recursive calls cdnsgas values in the formal
parameters should match the actual parameters. To test a recursitrerfuadl with formal parameters
or and actual parametess;, we calculatecONST(of, 04). CONSTIs defined as follows:

CONST((of ... o i),(0cf ... o })) = CONSToi,0%) ... CONST(o },07)
CONST(BI, o) = (Bf =0
CONSTBY,0) = T
consT(SE,o0) = T

The functionRETURN is then used to calculate the appropriate return type of a function, given the type
of the function and the type of the actual arguments. The generation éfehd X values are covered
here, as the generation of thewas covered in Chapter 7.

The formal parameter type is matched up with the actual parameter type, apthgsare generated
from theis in the formal parameters to the corresponding elements in the the actuakpenrs using
the rules shown in Figure C.2. The functiDepreturns the type associated wittandIDepsreturns the
I associated with that typ@lliDeps(I) generates all th&’ from the actual parameters associated with
a set of/ from the called function.

These functions are used by the pseudocodr#aiurN, which is shown in Figure C.3. This function
omits theR values for the streams, as their calculation was shown earlier, in Chapkar €onstant
basic values, the type is preserved directly from the actual parametervidile for other types the
dependence sdtis generated from the union of all the dependence sets from the actuahemts it
depends upon.

Typing recursive calls The functionRETURN, described above, is used for non-recursive calls, but
recursive calls are typed by finding a fixed point. Thare found by initially making the unsafe ap-
proximation that the dependency sets for the values returned fromsieztdiunction calls are empty.
The function’s generated return type is then used as the next approxineétibe return type for the
recursive calls. This will converge as the set of dependencies willinnhgase, and is bounded by the
case where a value depends on all parameters. This process is simildanusetthdor finding the sets of
constraints on the.

Other Typing Rules The (CONSTRELIM) rule must merge several different types, when joining to-
gether the paths from a conditional join. Not only should the returned \ddpend on all the values
which the various conditionally-generated values depend upon, butuighlso depend upon the ex-
pression’s condition. To achieve this, the rule relies on the conditionaleriergtion(o; + o2);. This
function creates a type that is of the same structure, @ando-, and combines the dependencies of the
two. Each stream and (non-constant) basic type in the returned type witllefgend on those identifiers
in 1. The function(c; + o2); is defined as follows:

(0} . oD+ oo oD = (ol +oDr ... (0 L+od)
(BI/+BI/)[ — Bg
(BI/"‘BI//)[ — B}/UI’UI” (|fI/ :T)
)

(B]/ +BIH I = B}/UI’UI” (|f X/:V X”:V)
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A e : o3 f o1 09
(APPLY) , . .
A fe : RETURN(o1,09,03) CONST(o1,03) if call is recursive
A ey BIX1 A e B;(’“
(CONSTRINTRO) ! % £
A cler,...,ex) : Bl ur,
ey : o A e
(TUPLE-INTRO) ! ! £ Ik
A (e1,...,e) 1 01 ... O g
X R
e1 : B A ey : S
(CONSINTRO) L2 IR R
er1:lex : Sip
Al,xll:Bf(,...,xélzBf{ e1 : o1
Ay e : BY
A,z :BX, ...,2" :BX e, : o
(CONSTRELIM) e DM A=Ay ... A
A caseeof ci(z,...,7,) e
(;L(xf,,x,?n en: (o14+...+on)r
A e 01 ... © Az 01, ., X0 eo 1 O
(TUPLE‘ELlM) 1 1 k y L1 1 s Lk k 2
A casee; of (z1,...,2,) eo : 0
A e1: SFE A B 15:SE ey o
(CONSELIM) Leor ol Pt Ol > "R R'

A caseeiofziiam e9 o

A ey :09 Ax:og e9 1 01

LET .
( ) A |et$:€1|n€2 01
VAR
( )A,xza T 0o
A . St
(SHUFFLE) ¢ 5 —
A SHUFFLEe) : St

Figure C.1: Rules for identifying reorderable streams
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GEN((of ... o }),(0? ... o })) GEN(o {,0%),...,GEN(c},0%)

GEN(Bp,y,0) Dep(i) = o
GEN(S¢iy,0) Dep(i) = o

Depli) = B{p IDepgi) = I
Dep(i) = S¢1y IDepqi) =1

AliDeps(I) = | JIDepgi)

icl

Figure C.2: Definitions forDep, IDepsandSetIDeps

let RETURN(formal-from formal-to, actual-from) =
GEN(formal-from actual-from;
letreCRETURN (01 ... o k) =RETURN(01) ... RETURN '(0%)
RETURKI(Bé}) = Dep(i)
RETURM(BI ) = BXlllDeps(I)
RETURN(ST) = Saurpeps(r)
in RETURN (formal-to)

Figure C.3: Definition for the functiorRETURN
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fun loop() = loop()
fun comparés, t) =
cases of x::xs caset of y::ys
let z = if z = y then Trueelseloop() in True:: comparégxs, ys)

Figure C.4: A possibly non-terminating function
(Sﬁ + Sﬁ/ )[ - SIRiJ/\I}/%UI”

C.2 Stream-Generating Functions

The analysis of this section is devoted to the generation of new streams, tvbialork of Section 7.4
could not deal with. We use the testream-generating functioris describe those functions that return
a single stream, witkeverycall to the function ending in a recursive call. Every leaf expression in a
tail position of the syntax tree must be a recursive call. A stream-geneffatctjon may take in a
number of streams as parameters that are used in generating the new streamon examples of
stream-generating functions arep filter, zip and the constant stream function.

A function is statelessf none of the parameters are of ty@s . This name is used because each
recursive call to the function then does not use any state from prei@ations, beyond passing in the
unread parts of the streams. This allows each iteration to be considergamugmtly, so that streams
may be treated as bags if each element is processed independently raiedaiely.

Given a stateless stream-generating function, we can attempt to infer stre@vodirections:

Forward analysis: If the returned stream has at most one element generated per iteratioeacnd
generated item does not depend on any ordered streams, the resugtangistbag-like, as each item
is generated independently, and any output ordering could be acligvedrdering the parameter
streams.

Backward analysis: Conversely, if a parameter stream is read from at the rate of at most ameéte
iteration, and that value is not combined with values from any other streahish(sould cause an
ordering dependence), and the result is used to create a bag-like sne&stream is bag-like, too.
Reordering the elements of the parameter stream would only reorder thenedeshéhe returned
bag.

The rest of this chapter is devoted to formalising these analyses.

Changing Termination Properties Note that, as in Section 7.2, we work with the actual dependencies
generated, ignoring dependencies which affect termination but notcthal asalues (expressions that
affect termination but not the result are an effect of eager evaluattangxample where the conversion
from a list to a bag does not affect the results, but may change terminatioreisin Figure C.4. Such
programs are viewed as a programmer error.

Thesehidden dependenciato not affect the forwards analysis, and the backwards analysis rsectio
covers the case where the hidden dependencies are ignored, witdgegpdr dealing with how to extend
the algorithm to identify hidden dependencies.

C.3 Forwards Analysis

For the forwards analysis, we must know the maximum number of times the steéanmed by the tail
call is consd onto over any dynamic path through the function. For this, we usethes-counting
function cc, as shown in Figure C.5. This function returns the maximum number of iteonssd
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cc(fe) = { 0 Recursive.call
Non-recursive call
cc(c(er,...,ex)) =
cc((er,...,ex)) =
cClerieg) = cCCleg) +1
cc(casee of ¢i(zf, ...,z ) e
. = max(CC(ey),...,CC(ey))
Gzl 7l ) e n)
Cc(caseel of (1’1, Cey (Ek) e 2) = CC(@Q)
Cc(casee1 ofz; i ay e 2) = CC(@Q)
cc(letz = e inea) = cC(er)
cc(z) =
CC(SHUFFLE(e)) = cC(e)

Figure C.5: Rules forcoNs-counting expressions

onto the returned value in an expression. It returfier any expression where one of the tail position
subexpressions does not contain a recursive call. For any furdatiohz = E, cc(E) = ifand only
if the function is a stream-generating function.

If the function has typer S %, andcc(E) 1, then the stream is generated at the rate of at most
one element per iteration. For the returned stream to be a bag, we juseréw it only depends on
bag-like streams and constant basic types. In other words, if a furfatiofi z = E has typer S F
andcc(k) 1, then we can add the constraif,_.; R; R, whereR ; is defined as follows:

T BCZ} is in the parameter type
R, = F B%} is in the parameter type
R Sg'} is in the parameter type

Note that for the returned stream to be a bagyust be a stateless function as far as the generation of the
stream goes (the function may have non-constant parameters, but teegahbe used in the generation
of the stream).

Examples The example functions used both in this section and the next are shown ire Kigéir
Forwards analysis applies to these functions as follows:

The functionmap; has the typesﬁ} S fi,}- We cannot infer this function produces a bag when
given a bag using the basic rules. However, ¢cleavs-counting function returns 1, so we can add
the constraint? R ’/, as required. We cannot infer th&f =~ R—for that, we need to use the
backwards analysis of the next section.

Thefilter,, function works similarly, as it has @oNs-count of 1, and the returned stream depends
only on the parameter stream.

The zip function also works with forwards analysis. The function hasoais-count of 1, so given
the typesfi, S g} S ﬁ”z}, the function has the constrairt R’ R ”.
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(* Perform a function on each element of a stream. *)
fun map; s = cases of zixs  f(z) :: map y(ws)

(* Remove the elements which fail a test from a stream. *)
fun filter, s = cases of z::zs  if p(x) then z::filter ,(zs) elsefilter,(xs)

(* Merge two streams by creating pairs of elements. *)
fun zip(s,t) = cases of x::xs caset of y:iys (s,t):zip(zs, ys)

(* Create a stream where each item in the parameter stream is refzed. *)
fun dup(s) = cases of x:1zs  ziiziidup(xs)

Figure C.6: Example functions

Finally, the functiondup has acons-count of 2, so we cannot use the forwards analysis to infer
if the returned stream is bag-like. This is as we might expect, since the edtstream may well
not be a bag even if the parameter stream is, as the function introducessoelation between
consecutive elements.

C.4 Backwards Analysis

The backwards analysis identifies streams that are used in a bag-likeThigymeans that the stream
is read in a stateless stream-generating function, with at most one eleneperegeration. The read

items must not be merged with items from other stream reads, or used to dbetrelading of other

streams, as this may make it necessary to read the items from the two streams indtwrder, so that

each stream cannot be reordered independently. If more than one il fsom a stream per iteration,
the items may be treated differently, so the input stream cannot be inferbedtbag.

For example, thenap; function from the previous section allows us to infer the parameter stream is
a bag if the returned stream is, since the read item is not merged with anyretliteitems, while we
cannot create a similar constraint on #igfunction, since the items on the output stream are created by
merging together items read from different input streams.

To count the number of reads performed on a stream, a read-coumictigpfurC is used, as shown in
Figure C.7. The function counts the number of reads associated with enstteatifier (as introduced in
Section 2.4.1). Stream identifiers from the original typing system are ustnbr than the dependence
set identifiers, as we only wish to count reads from the original streathnainfrom new streams that
somehow depend upon it. We ignore sub-expressions that cannat eetiream which will pass the
stability constraint, since these expressions cannot contains readstiemms which will be passed
recursively. If a parameter stream is passed to (and returned frastearfunction theeXTCOUNT
function is used, which in this analysis conservatively marks the streamwsagofy having been read an
unbounded amount. For a stream to be considered for backwardsianék/read count must be less
than or equal to one.

For stream-generating functions, we now add the roteNs-ELIM-2), shown in Figure C.8. This rule
allows the constraint/; R” R to be added if the stream read (on a stream of Spé}) occurs in

a stateless stream-generating function that returns a stream cﬁ’ﬁpand only one read is performed

on that stream per iteratiol; represents the requirement that the data read from the stream (which will
therefore haveé in its dependencies) be used in a bag-like manner. This is generatedy thglU; a
default value of true, and constraining it to false if an itewNsd onto the returned stream somehow
depends on bothand any other non-constant value.
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RC(a, fe) = { RC(a,e) : Recursive call
EXTCOUNT(«,e) : Non-recursive call
RC(a, c(er,...,ex)) = 0
RC(w, (e1,...,er)) = RC(a,e1)+ ...+ RC(a,eg)
RC(a,eriies) = 0
RC(a,casee of ¢;(z1,...,2;,) €1
= max(RC(a,€e1),...,RC(a,ey)))
G271, .., 2L ) e n)
RC(«, casee; Of (z1,...,x;) € 2) = RC(a,e1)+ (a,e2)
RC(«,casee; of x1 i 9 e 2) = RC(a,e1)+ RC(a, e2) + ISREAD(«r,0) Wheree; : o
RC(a,letz =ejines) = RC(a,e1)+ RC(a,e2)
RC(a,z) = 0
RC(«, SHUFFLE(e)) = RC(q,e)
1 @ a=
ISREAD(cx, T Streany) = { 0 a :Bﬂ

« is contained inr wheree : o

EXTCOUNT(a,e) = 0 : otherwise

Figure C.7: Rules for read-counting expressions

A eq Sg} A,xlzB“{g},xngg/} ey 1 O ZC(C;%Z?) 1

CONSELIM-2
( ) A caseeiofzimm eq o

Ui R" R
where:

« is the stream identifier associated with the parameter annoﬁ%ﬁgd

the rule is applied in a stateless stream-generating function with body exjpréss

the function returns a stream of ty|5¢; .

Figure C.8: The (CONS-ELIM-2) rule
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To find the dependencies between items, it is not sufficient to look afgted itemscoNsd onto
the returning stream, as this loses dependencies caused by controlFtovexample, if an item is
consd onto the stream conditionally, depending on the value of another streemthere will be a
dependence. Instead, we genegpendence setwhich are sets of values which are all used together
when generating stream items. Ans treated in a bag-like way if any dependence set it is in only
contains it and constant parameters.

The set of dependence sets is generated by the typingslikeiles of Figure C.9. Each dependency
set represents either:

All the parameter values depended upon by an item thabissd onto the returned stream. The
dependencies include dependencies on conditionals that enclasenisexpression.

For streams that are conditionally read, a set is generated containingrdéepe on that stream,
and dependencies on the enclosing conditionals.

The (CONSTRELIM) rule is the most complex. It uses tReADS function, which generates the set of
parameter streams that are read in a particular expressEamsis defined as follows:

READS(e) = ¢ RC(qg,e) 1

whereq; is the stream identifier associated with the parameter annof: deT he rule then distributes
the conditional dependenciésover all dependency sets in, using the notationiD);, defined as:

(D)y=d I d D

If any dependency set contains more than one parameter stream, it meatieéms involved cannot be
inferred to be bag-like. This can be expressed by a formula to geneedie tonstraints:

d D.i d(j di =j NONCONSTj) U ;)

whereNONCONST(7) is true if V{f} isn’t in the parameter type. This rules ensures that if a dependence
set contains two or more streams, those streams cannot be inferred @-lleeba

Identifying Hidden Dependencies Hidden dependencies occur when a stream’s productivity depends
on two streams being synchronised, even though no elements of the destiem depend on both of
these streams (as mentioned in Section C.2). To identify all the hidden deyp@xjén order to constrain

the associatedl; to false, the dependence sets of values that are bound to variablesarhictt used
must be generated. This must be done not only in the current functiba/dmuin all functions called
from it. This extension should not be too complex, but makes the expositithre afnalysis somewhat
more difficult.

Examples The examples from Figure C.6 are used again:

Themapy function is a stateless stream-generating function (as are all the functions figtine),
and the parameterhas a read-count of 1, so it is a candidate for backwards analy#ig fifinction
is given the type?ﬁ} S ﬁ'}, the set of dependence sets generated by the function is simply,
soU; istrue, and?’ R.

Thefilter, function adds a conditional expression, but the condition depends soléhgatem read
from the parameter stream, so it too produces the constraint that if theedtstream is a bag, the
parameter stream will be too.
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The zip function (of typesS{i, S g} S ﬁ"z}) produces the dependence set$,2 , and so
bothU; andU; are constrained to false. We cannot infer the parameter streams argivegthat
the returned stream is a bag.

Finally, thedupfunction (of typeSﬁ} S ﬁ'}) contains twaCONS expressions, but each depends
on a single read from the parameter stream, so that the generated seentielece sets is just
1 , and we can produce the constraftit R.

Analysing Within Algebraic Datatypes As with the analysis of Section 7.2, the accuracy of the anal-
ysis can be increased by looking inside algebraic datatypes, for exagnefecbding them as tuples.

Summary The analysis of this appendix extends that provided in Section 7.4 to praddeof con-
straints that should identify bag-like streams in a wide range of common funcéiboaing a number
of optimisation that would otherwise not be possible.
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APPLY
( ) Fes
X
e1 : By ea>D
CONSINTRO
( )61 . 62[>D I
(CONSTRELIM) e : Bff ei>D; d;=READS(e;)
casee of ¢i(zf,...,2)) e
Gl al) en>(D1 ... D, dy
>D
(TUPLE-ELIM) e
casee; Of (x1,...,25) € o> D
ea> D
(CONSELIM) 2

casee; Of vy i 2o e 9> D

GQDD
letx =e1iney>D

(LET)

e>D
SHUFFLE(e) > D

(SHUFFLE)

Figure C.9: Rules for generating dependence sets
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