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Summary

With the advent of personal computers in the mid 1970s, the design of
operating systems has had to change in order to take account of the new
machines. Traditional problems such as accounting and protection are no longer
relevant, but compactness, efficiency and portability call have all ‘become
important issues as the number of these small systems has grown.

Since that time, due to the reductions in the costs of computer components
and manufacture, personal workstations have become much more common, with
not only the number of machines having increased, but also their CPU power and
memory capacity. The work on software for the new machines has not kept pace
with the improvements in hardware design, and this is particularly true in the
area of operating systems, where there is a tendency to treat the new machines as
small, inferior mainframes.

This thesis investigates the possibility of enhancing work done on the original
personal computer operating systems, so that better utilisation of the new
machines can be obtained. The work concentrates on two main areas of
improvement: the working environment as perceived by the user, and the
underlying primitives and algorithms used by the operating system kernel.

The work is illustrated by two case studies. The user environment of the
TRIPOS operating system is described, along with a. new command line
interpreter and command programming language, and a series of techniques to
make better use of the available hardware facilities is discussed. The kernel of
the TRIPOS operating system is examined critically, particularly with the
respect to the way that machine resources are used, and finally, a new set of
kernel primitives and algorithms is suggested, with reference to an experimental

kernel for the real time implementation of network protocol software.
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1. Introduction

When the first production computers became available in the 1960s, they
were so expensive to build and maintain that the primary consideration in their
use was the amount of work they could do, and the number of users they could
serve. Originally, access was through “batch jobs” where the user constructed
his program, either on paper tape or punched cards, and then submitted his job
to the operators for execution, collecting the results some time later.

As computers became larger and faster, so time-sharing became possible, with
many users accessing a central mainframe interactively, being able to edit and
develop their programs on disc rather than on paper tape or punched cards. The
large multi-user operating systems were pre-occupied with accounting and
protection, attempting to ensure fair and equal access for all their clients, and
preventing users from interfering with each other and with the operating system
itself. Significant advances were made with virtual memory and address
translation mechanisms, since users could be kept apart by putting them in
separate address spaces where they could harm no-one but themselves. True
independence came with virtual machine operating systems, which created an
environment as though each user had his own personal workstation.

At the same time, mini-computers such as the Data General NOVA, DEC
PDP-11 and Computer Automation LSI4, were becoming cheaper and more
readily available, and by the mid 1970s it was financially viable to give each user
a real personal workstation. This trend was continued by the development and
gradual refinement of the 8 bit micro-computers, such as the Motorola MC6800,
the Signetics 6502, the Intel 8080 and the Zilog Z80. As micro-processors became
more powerful and the cost of memory fell, it became even more attractive to
have personal computers rather than shared access to a mainframe, since the
interactive response time was better, and the cost of hardware and maintenance
much lower.

The operating systems which ran on the mini- and micro-computers were, on
the whole, very simple, and in many ways similar to the batch monitors written
for the earliest mainframes. Because the machines had small amounts of
memory, the system software had to be compact and uncomplicated, and hence
usually single threaded. Even if multi-tasking was provided, it was of a primitive
gort with very little practical application.

During the 1970s as the diversity of the small machines increased, it was ‘

realised that, for the first time, portability in operating system design was a




major issue, and several successful systems were produced out of this approach.
One such operating system was TRIPOS [Richards79a}, which forms the basis of
the work described in the rest of this thesis.

At the same time as the development of portable, single user operating
systems, there was an increase in the interest shown in high speed
communication, and its application in local area networks. One of the networks
built was the Cambridge Ring [Wilkes75, Hopper78], which provided a 10
megabit/second communication medium for a variety of heterogeneous
computers. This provoked a great deal of work in designing and implementing a
distributed working environment [Needham82], and as part of this exercise,
TRIPOS was modified so that it would handle remote, virtual peripherals,
accessed via the network [Knight82]. The distributed version of TRIPOS ran on a
“processor bank” of Computer Automation LSI4/10 and LSI4/30 machines, and
was used as the multi-tasking environment for the implementation of the
Cambridge File Server [Dion80].

By the late 1970s and early 1980s, there had been sufficient advances in VLSI
techniques that it was possible to have 16 and 32 bit micro-processors, for
example the Motorola MC68000, the Zilog Z8000 and the Intel 8086 and 8088.
More ambitious processors such as the Intel iAPX-432 were planned, but never
came to fruition. At the time of writing, not only have DEC managed to
implement a version of the PDP-11 in VLSI, but also the MicroVax, a version of
the 32 bit VAX-11. With the improvement in the type of processor came the
production of 64K and 256K dynamic memory chips at a fraction of their
previous cost, making it possible to have a personal 32 bit workstation with
several megabytes of memory at a cost of well under £10,000.

Apart from the obvious application of building new machines with larger
amounts of memory, it was possible to develop high-resolution bit-mapped
screens, which enabled much more information to be displayed than on a
standard VDU. The technique of splitting the screen into several “windows”,
with different processes attached to different windows, enabled concurrency to be
used in a convenient and simple manner. Also, the use of a “pointing” device (as
well as the normal keyboard) meant that areas of the screen could be selected
quickly and accurately, with menus being used to obtain different facilities. The
pioneers of this type of personal computing were the Xerox Corporation, and
descriptions of this type of computing can be found in [Thacker78, Redell80,
Lauer8l, XEROX82, XEROXS84]. At the time of writing, even though computers
with high-resolution screens are available, they are still relatively expensive

compared to other systems, and as a result are rather in the minority.




With the exception of the Xerox systems described above, the development of
software for the new machines tended to lag behind the hardware innovations,
with two main approaches being adopted. There were those who treated the new
machines as large micro-processors, and so “ported up” the small, simple
operating systems such as CP/M [DigitalResearch82]. Alternatively, there were
those who treated the new machines as small mainframes, and so “ported down”
large and complicated operating systems such as UNIX [Ritchie74]. Some
operating systems were designed from scratch, but these were mainly aimed at
the business and hobby markets, and tended to fall into the first category.

‘1.1 Background

At the end of 1980, a local company was employed to design a new machine,
based on the MC68000, which was to fulfil two functions. Firstly, it was to
replace three rather aged NOVA computers, and take over from them the task of
teaching assembly language programming to undergraduates. Secondly, it was
intended as the second generation of machine to be installed in the processor
bank, to augment the stock of LSI4s.

Originally, there were two basic types of system envisaged: one with 64K
bytes of memory to be used by students, and one with 256K bytes of memory to
be used by the rest of the research department. It soon became clear that this
distinction was unnecessary, since effort would have to be exerted to support two
different sets of system software, and in any case, the cost of 64K dynamic RAM
chips had dropped to an insignificant part of the machine’s price. It was decided
therefore that all systems should have a minimum of 256K bytes, with the option
of upgrading them to 512K bytes if necessary.

The first 68000 prototype was available in May 1981, and the first printed
circuit board version was produced in the following October. At the time that
the hardware development was being done, a small group of people were
preparing the system software for the new machines. It was decided that
TRIPOS was the operating system which should be run on these machines. At
the time, this made great sense, since TRIPOS was designed to be portable, and
as the 68000 processor itself was only in the prototype stage, there was as yet no
alternative commercial product. TRIPOS was already running on the LSI4
machines, and as a result, a large amount of both system and application
software was already available.

A macro assembler [Wilson81] and interactive debugger [Wilson82a] for the
68000 were written, and an undergraduate student produced a prototype




TRIPOS kernel as part of his final year’s work. This was taken by M. Richards,
and from it he produced a working version of the TRIPOS kernel, along with a
BCPL code generator for the 68000.

With an assembler, a BCPL compiler and a kernel, the task of implementing
the rest of TRIPOS proved to be fairly straightforward. After all, TRIPOS had
been ported onto new machines many times, and the only difference between the
68000 and other TRIPOS implementations was the BCPL word size.
Unfortunately, much of the ring handling software had word length dependencies
(the ring word size up to then had been the same as the machine word size), and
B. J. Knight had the job of removing the 16 bit dependencies.

One piece of work which did have to be done from scratch was the software
for the 68000’s ring interface. The LSI4 computers had an interface based on the
8X300 micro-processor [Gibbons80]. The 68000 machines had been designed with
a 6809 based interface, and although the functionality of the two processors was
roughly the same, the interface code itself had to be totally re-written. This was
done by N. H. Garnett, and his initial work on the 6809 interface later turned
into the supermace byte stream handler [Garnett83].

The debugging of the hardware, and the initial testing of the software was
primarily done by myself and the original design engineer. By the end of 1981,
we had a rack of three working 68000 processors, all running ring-based TRIPOS.
By that time, the cost of memory had come down even further, and it was
decided to upgrade all the machines to 512K bytes. All subsequent machines
would have at least this much, and at the time of writing, the majority have been
upgraded to 1M byte.

1.2 Motivation and aims

The purpose of the work described here was to make better use of the 68000
machines, by investigating how they were used and what could be dome to
improve performance. Out of the work done, it was hoped that certain design
principles for the new machines would emerge, and that a set of guidelines could
be drawn up for the use of future implementations.

The motivation for doing the work was that neither of the two types of
operating system described earlier were capable of taking full advantage of the
new hardware, and only by investigating different techniques would it be possible
to use these machines efficiently. The small operating systems were inefficient,
since they did not provide multi-tasking, and could not hope to make full use of
the CPU and memory facilities available. The large operating systems were also -




inefficient, not because they could not make full use of the hardware, but because
they relied too much on fast discs for paging and swapping. The peripheral
technology has not kept pace with the micro-processor advances in terms of
speed, and the result is that these operating systems spend much of their time
idle, waiting for disc I/O transfers to be completed.

The approach adopted here was to start with a simple operating system
which did have multi-tasking, but did not require fast peripherals. The operating
system in question—TRIPOS—also had the advantage that that it had been
developed in Cambridge, and hence the sources were freely available. It was also
written almost exclusively in a high level language, BCPL [Richards69], making it

ideal for experimental modification.

1.3 Work doae

The work done on TRIPOS {falls neatly into two separate areas. Firstly, the
user interface was investigated, and a new command language interpreter and
command/programming language were designed and implemented. Secondly,
different ways of improving the user environment and making use of the extra
memory and CPU power were tried, and several are described along with a
discussion of their relative merits.

Working on TRIPOS was fine for the development of user level software, but
because of the problems of compatibility, it was never possible to perform useful
experiments on the TRIPOS kernel itself. An opportunity did arise, however, in
the form of a requirement for a light-weight multi-tasking kernel for small
IBM/370 machines, and many of the potential modifications to the TRIPOS

kernel were incorporated into this design instead.

1.4 Layout of thesis

Chapter 2 investigates the work done by others in the fields of single user
operating system design and command programming languages.

The next two chapters set the scene for the rest of the work. Chapter 3
describes the relevant parts of the TRIPOS operating system, and in particular,
its command language interpreter and the programs which form its primitive
command language. Chapter 4 describes how this simple command environment
was enhanced so as to improve the user interface, and the facilities which were
added to enable the work on a new command and programming language fo

proceed.




Chapter 5 introduces the command and programming language REX, and gives
examples of programs and command sequences written in the language. The
important differences between the REX language and other programming
languages are discussed, and some issues of the TRIPOS implementation of REX
are described.

Chapter 6 investigates how the user environment of an operating system can
be improved by providing extra facilities for doing specific tasks. Techniques to
utilise large amounts of memory by keeping programs pre-loaded are discussed,
along with a simple window handler interface to a full screen editor and two
different facilities for directory management. |

Chapter 7 investigates issues associated with the design of operating system
kernels. Different techniques for operating system implementation, structuring,
scheduling and memory allocation are discussed, and a set of guidelines for future
operating system designers is drawn up. As an illustration of some of the ideas
presented, the GMK multi-tasking kernel is described, and contrasted with its
TRIPOS predecessor.

In conclusion, chapter 8 sums up the work done and discusses some of the

results.

1.5 Extent of collaboration

Chapter 3 describes the original version of TRIPOS, and is included as an
introduction to the rest of the thesis—none of the work described in it is my own.
Chapter 4 describes the TRIPOS Shell which, although entirely my work, is
based heavily on the design of the UNIX C Shell.

Some of the TRIPOS facilities described are the work of other people, and
where this is the case, it is stated explicitly in the text. Particular mention
should be made of the “PIPE:” and “CORE:” pseudo devices, which are both the
work of M. F. Richardson, and the “WORCESTAR” full screen editor, which is the
work of W. R. Stoye. I am also indebted to many of the members of the Systems
Research Group, too numerous to mention individually, who have helped to
produce the many utilities which comprise the TRIPOS environment. Without
them, this work would not have been possible. ‘

Apart from the exceptions mentioned above, the rest of the work described in
this thesis is entirely my own, as are all the comments, discussions and

conclusions,




2. Related Work

There are two main areas of research which are related to the work described
in this thesis, and they are treated separately here. The first is the area of
operating system design for single user computers, and the relationships between
the requirements, the techniques used and the facilities provided. The second is
the design of user command languages, and their relationships to more orthodox

programming languages.

2.1 Operating system design

Although much work has been done on operating system design in the past,
single user computing is a relatively new phenomenon, since only recentl‘y has it
become financially viable to provide individuals with their own personal
workstations. Initially, these came in the form of mini- and micro-computers,
usually small, which supported simple operating systems, very similar in concept
to those produced for the old batch mainframe systems. In the early 1970s, there
was much research into the implementation of small operating systems in high
level languages, and designing them so that they would be portable onto many
different types of hardware.

As the cost of computers fell and the corresponding cost in manpower rose, it
became clear that simple, portable single user operating systems were financially
advantageous, and towards the end of the 1970s many such sysiems were
developed. With the arrival of cheap memory and fast 16 or 32 bit micro-
processors in the early 1980s, single user computing became even more attractive,
but unlike their 8 bit predecessors, very little work was done on how to make full
use of them.

Much of the work described in this thesis is based on the TRIPOS operating
system [Richards79a], which was developed at Cambridge as a piece of research
into portable operating system design. Many other systems were produced at
about the same time as TRIPOS, and through looking at the different
implementations, it is possible, with the benefit of hindsight, to draw conclusions
as to how future single user operating systems should be designed.

At the same time as the work done on single user operating systems, there
was a large increase in the number and variety of high bandwidth local area
networks. The result has been that, more recently, research has tended to be in

the area of distribution, with the underlying operating system design being rather .




neglected. Although networking is a highly important area of computer science
research, it is outside the scope of this thesis, and on the whole unrelated to the

topics discussed here.

2.1.1 OSe

One of the first experiments in single user operating system design was OS6
[Stoy72), designed by J. E. Stoy and C. Strachey at the University of Oxford, and
implemented initially on a CTL Modular One. OS6 introduced many new
concepts which were to be adopted by the other systems which followed, and
many of its ideas still have much relevance, even though the nature of computing
has changed greatly in the past 15 years.

OS6 is a single user, single threaded operating system, and thus removes
many of the complexities of more orthodox systems. Through the single user
simplification, the necessity for accounting and protection have been removed,
and the fact that OS6 is single threaded removes the problems of inter-process
communication and process synchronisation. It was the designers’ view that,
before generalisations could be made regarding multi-user working or
concurrency, it was necessary to solve the simple single user problem first. It is
this approach which has enabled subsequent implementations to benefit from
their results.

0S6 is written almost entirely in one high level language, BCPL [Richards69],
since it was considered that doing so would ease implementation and increase
portability. Stoy and Strachey chose a typeless language because they believed
that the most important aspect of an operating system language should be
control structure, with matters such as storage and object representation being
left to the programmer. The portability of OS6 came from the fact that the
BCPL source was compiled into a compact code for a virtual machine, which was
then interpreted by a 250 line program written in Modular One assembly code.
Because of the use of an interpreter, the resident part of the system was much
less bulky than it would have been had it been compiled directly into machine
code. As a result, much more of the operating system could afford to be written
in a high level language. It also meant that many of the peculiarities of the
underlying hardware could be hidden from the operating system, and even though
interpretation reduced the effective machine speed by a factor of 15, this was
considered a small price to pay for generality. Apart from the interpreter, the
only parts of the system not written in BCPL were a few small procedures
executing I/O instructions which could not be compiled.




0S6 has no special command language, with BCPL being used as the
interface between the user and the program loader. Programs may call each
other recursively, with the store containing the code of loaded programs being
managed as a “last in, first out” stack. The local variables of the programs are
also held on a stack, which is unwound whenever a program finishes or an error
occurs. There is no distinction between what is operating system code and what
is user code, and nothing in OS6 is inherently more privileged than anything else.
There is no mechanism to protect the operating system from accidental over-
writing (the problem of malicious over-writing being ignored in the context of the
gsingle user operation), but the authors claim that such problems are rare, and
they attribute this fact to the banning from the system of assembly language
programs.

One of the most important techniques to come out of the work on OS6 was
the concept of “stream functions” enabling I/O streams to be handled in a device
independent manner, and compound streams to be built for “on the fly” data
transformation. The effect of an OS6 stream function is to take one I/O stream
as an argument, and yield a different one as its result. Through this technique,
0OS6 has a standard “internal code” for the representation of characters, with the
ASCII parity bit to be used to indicate underlined characters, and a special code
to mean “4spaces”. The conversion between this code and the external
representation is done in the individual device handlers. Although the use of an
internal code is not especially important, the concept of event driven streams,
with data processing being done at each level in the stream as the data passes, is
extremely powerful and has been adopted by many later systems, including
TRIPOS.

2.1.2 UNIX

In the early 1970s, mini-computers were still fairly expensive, and hence there
was still the necessity to use them to provide time-sharing services. An operating
system designed for this purpose was UNIX [Ritchie74], originally implemented
on DEC PDP-7 and PDP-9 computers, with later versions running on PDP-11/40
and PDP-11/45 machines. UNIX is designed to bring a high degree of generality
and power to a small, cheap ($40,000 in 1974) computer system, and provides
many novel facilities which were not available in larger operating systems.

UNIX is implemented almost entirely in C [Kernighan78] (a derivative of
BCPL), with only a few hundred lines being written in assembly code, either out
of necessity or for efficiency. In order to ease the implementation and portability

of UNIX, the C language was extended to make it more general and less machine




dependent. The major addition was the “TYPEDEF” construct, which enabled C
data types to be parameterised. ‘

The UNIX filing system is hierarchical, with mountable volumes grafted as
directories in the filing system structure. In an attempt to rationalise access to
files and devices, they both appear as entries in the filing system, with device
handlers being marked as “special” files. Both are handled in exactly the same
way, giving the user a high degree of uniformity, but meaning that it is
impossible to access a raw device directly. In a similar way to files and devices,
processes can be connected together by means of “pipes”, with the output of one
process being sent as the input of another. In this way, a program can take a
stream of characters as its input, process them, and send another stream of
characters as the output—the effect being that of a “filler”. It is the UNIX
philosophy that every program should concentrate on doing only one job well,
and because of this, many complex operations (such as compilation) are
implemented as a whole set of programs connected together by pipes.

One of the original design decisions of UNIX was that it should provide a
convenient and powerful programming environment, which was clean and simple
to use. This has been accomplished by providing a program called the “Shell”
[Bourne78], which acts as the entire user interface to the operating system. The
purpose of the Shell is to take a series of command lines and execute them—just
as with any other command language interpreter. The Shell does rather more
though, in that it holds the entire user environment, and allows the setting up of
multiple processes with pipe connections between them. The syntax used is
simple and concise, making it easy to build up complex sequences of commands
and run background processes.

The authors attribute the success of UNIX to three main factors. Firstly, it
was developed “in house” to aid the writing and testing of programs, and was
designed from the start to be a highly interactive system. Secondly, because the
machines on which it was implemented were small, there were fairly severe size
constraints on the system and its resident software. This constraint encouraged
conciseness and economy, and resulted in an elegant design. Thirdly, very soon
after its initial conception, the operating system was fully self-supporting. This
meant that the designers of the system were themselves forced to use it, and they
quickly became aware of any functional deficiencies. As all the program sources
were on-line, it was possible for modifications to be made quickly and easily, with
the result that the system continued to evolve on demand.

There is a certain irony about UNIX in that, even though it was capable of

supporting multiple users through time-sharing, it was originally built as a simple
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single user programming environment for mini-computers. Through its
portability and popularity, it has been moved onto many different types of
machine, and several versions now exist. The University of California at
Berkeley has produced a much extended version of UNIX [Berkeley81},
incorporating virtual memory and inter-process communication—items which had
been omitted from the original design. Some of the machines on which UNIX has
been implemented (such as the DEC VAX-11) are too expensive for single user
operation, and so support many users in a time-sharing environment. The irony
comes from the fact that, as micro-computers have become cheaper and more
powerful, it has been possible to port UNIX onto them, but these
implementations revert to supporting just a single user. Certain commercial
versions of UNIX are now available: XENIX [Microsoft82] which has attempted
to standardise the operating system, CROMIX [Cromemco82] which runs on Z80
and 68000 machines, and more recently, ULTRIX [DEC84] (a derivative of the
Berkeley version of UNIX) for DEC MicroVax machines.

In his retrospective look at UNIX [Ritchie78], D. M. Ritchie examines the
reasons for its success, and highlights some of its shortcomings. He believes that
it is simple enough to be comprehended by most people, and powerful enough to
meet most of its users’ requirements. This is particularly true because of the
sheer number of utilities and applications programs now available to run under
UNIX. He also believes that the user interface is clean and simple, but perhaps
rather cryptic and difficult to learn by newcomers to the system. The
shortcomings of UNIX arise from the fact that there is no inter-process
communication mechanism (making multi-event processes impossible to
implement), and since processes cannot be locked in real memory, a guaranteed
real-time response is difficult to achieve. This is worsened by the fact that
processes cannot access devices directly, and that although I/O appears
synchronous to the user, the system performs read-ahead and write-behind on his
behalf.

2.1.3 SOLO

In the mid 1970s, there was an interest in adding concurrency primitives to
orthodox programming languages, and such a language (concurrent PASCAL)
was used by P. Brinch Hansen to implement SOLO [BrinchHansen76]. In many
ways, SOLO is very similar to OS6 in that it was intended for single user
operation, with no special facilities for accounting and protection. SOLO was
implemented originally on a PDP-11/45, and like OS6, it is written almost
entirely in a high level language (concurrent and sequential PASCAL). The only .
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agsembly language in the entire system is a 4K word kernel, which represents
only 4% of the whole system.

In order to ease implementation and increase portability, SOLO runs on a
virtual machine which removes low level programming features such as registers,
addresses, interrupts and so on. Through the use of a virtual machine, and the
protection which arises from the PASCAL compile time checking mechanism, the
entire SOLO system (100K words of code, including two compilers) was
implemented by two people in less than a year. "

SOLO has a fixed number of processes, with input, output and the user job
being executed concurrently. All other programs in the system are sequential.
The system itself has no built-in I/O drivers for different devices, but simply
provides a mechanism for data to be produced and consumed by sequential
PASCAL programs loaded from disc. In this way, the user can add more devices
and perform complex operations on I/O data (in a similar way to stream
functions), without having to modify the underlying operating system.

The user interface in SOLO is very similar in concept to that of OS6, in that
the command language is simply an extension of the implementation language (in
this case PASCAL rather than BCPL), and the user can enter programs which
themselves call each other recursively, with arbitrary nesting. Unlike OS6,
programs which are not active are swapped out to disc, with only the data of
these programs being kept on a stack in memory.

The SOLO filing system is held on a slow disc with removable packs. Each
user has his own pack which contains his private files, and because of this the
authors did not think it necessary to provide a hierarchical filing system. Bach
pack contains a catalogue of the files on it, and each file on the disc has an
agsociated data type. All programs check the type of their input files before
accessing them, and associate types with files when writing to them. The
possible types are scratch for compiler work files, ascti for normal text files, with
seqcode and concode for compiled sequential and concurrent PASCAL
respectively. Files can be protected against accidental over-writing, but since
each user has his own private disc pack, protection against malicious alteration or
deletion is not necessary.

In summing up his system, Brinch Hansen attributes the success of SOLO to
the choice of implementation language. The whole development cost was under 2
man-years, and he estimates an equivalent cost of 20 to 30 man-years if the
system had been implemented in assembly code. He also believes that, as an
added benefit, writing in a high level structured language leads to a system which

is much more understandable and easy to maintain than would have been
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possible before.

2.1.4 MUSS

The MUSS operating system [Frank79] produced at the University of
Manchester is rather different to the others discussed here, in that it was never
specifically designed for single user operation. Instead, it was implemented
simultaneously on six different types of machine, ranging from the MU5 main
user job processor, through an ICL 1905E front end processor for batch work, to
a DEC PDP-11/10 front end processor for interactive work. Rather than having
a single, portable, general purpose operating system for all these applications,
several compatible systems were designed to cover a wide range of applications.
The systems were built so that the processes running in one machine could
cooperate with the processes running in another, and so the whole system
structure was standardised over the different machines.

In order to achieve this goal, all operating system modules run in different
virtual machines, and communicate with one another by sending and receiving
messages. On each machine, a small highly privileged kernel is responsible for the
multi-programming of the different virtual machines. The designers chose
messages rather than shared data areas as the means of inter-process
communication for two main reasons. Firstly, it preserves the independence of
modules, with virtual machines only interacting through the exchange of
messages. Secondly, since there is separation between virtual machines, it is a
simple extension to allow message passing between different physical machines.

The most relevant part of the MUSS project is the design and operation of.
the operating system kernel. Its job is simply to schedule a small, fixed number
of system processes, which perform more complicated scheduling, memory
management, and so on. The main design aim for the kernel was simplicity,
because of the desire for very fast process switching. The technique used is very
simple and rather elegant. If the number of processes is fixed and small, then
each process can be represented by a single bit in a machine word. It is therefore
possible, rather than maintaining a queue of runnable processes, waiting processes
and so on, to have single word “sets” of processes for this purpose (where each
process is represented by a single bit) so that adding or removing a process from
a set is simply a logical or or and operation.

The main use of MUSS was to provide a powerful computing environment for
main users on the central University mainframe, but it is an impressive design
achievement for the system to run on such a machine, and at the same time be

fully compatible with one running on a 16K word PDP-11. The technique .
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vindicates the view expressed later in this thesis that for an operating system to
be truly general purpose, it must be designed as a series of separate layers, with

each layer only being included if required.

2.1.5 THOTH

At about the same time that TRIPOS was being designed and implemented
at Cambridge, the other operating system which most resembles it, THOTH
[Cheriton79], was being being produced at the University of Waterloo. The two
main design aims of THOTH were portability and real-time performance—two of
the targets of TRIPOS—but unlike TRIPOS, THOTH is designed to support
many users in separate virtual address spaces.

THOTH has been implemented on the Texas Instruments 990 and Data
General NOVA mini-computers—machines with totally different architectures.
The portability is achieved by designing the operating system for an ideal
“THOTH machine”, and by writing most of the software in a high level language,
in this case EH [Braga76), another derivative of BCPL. Like BCPL and C, EH
allows the programmer to write in a structured and portable manner, at the same
time avoiding acting as a barrier between him and the hardware. In order to
ease implementation, the EH language supports a “twit” statement for the in-
line inclusion of assembly code.

THOTH aims for an efficient inter-process communication mechanism, and
attempts to make it easy to solve problems using small concurrent processes.
Normally, each process runs in a separate address space, but it is possible to set
up teams of processes which share a common address space, and hence can share
data. Inter-process communication is by means of fixed length 8 word messages,
and there are primitives to send, receive and reply to messages. Because
processes are held in separate address spaces, all messages must be
copied—something which enforces simple semantics since everything must be
passed by value, but which can cause a great deal of inefficiency if copying occurs
too often. One feature of THOTH is that, after a message has been sent, the
sending process is blocked until the message has been received by the recipient
process. This means that for true, multi-event programming, a team of several
processes must be used in order to ensure continuity of service.

THOTH uses a simple priority based scheduling algorithm, where high
priority (system) processes can pre-empt low priority (user) processes, thus
ensuring speedy response to real-time stimuli. Processes of equal priority are
handled in a “first come, first served” manner, but no time slicing is done. Even

so, THOTH is used to support multiple users, primarily in the teaching of real- .
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time operating system principles to undergraduate students.

1/0 in THOTH attempts, like UNIX, to present a uniform interface between
the user and peripheral devices. All streams are represented by general “file
control blocks”, which hold the current byte position in the file. There are
functions provided to access the stream in a random way (if applicable) by
investigating and setting the byte position value. Although the mechanism is
clean and simple (being very similar to that provided by UNIX), it does not have
the expandability of the stream function method, and is not as general.

In their conclusion, the designers of THOTH believe that the project was
successful, as it demonstrated that it was possible to write a portable operating
system for a parficular class of machines. The implementation (like TRIPOS)
supported only one language, making portability of other programs onto THOTH
a more difficult proposition. The system has been used for undergraduate
teaching and as a research tool, and is also in use industrially for real-time

control applications.

2.1.6 Lampson and Sproull

As a piece of research into single user operating system structure, B. W.
Lampson and R. F. Sproull produced an “open” system [Lampson79]. Rather
than protecting each user process in its own virtual machine where the realities of
the outside world could be hidden, the principle was that the operating system
would be very open, with no well defined boundaries between it and its user
programs. All parts of the system would be accessible to the user, and available
for modification—absolutely nothing would be hidden from him.

The operating system is written in BCPL, and runs on a Xerox ALTO
computer [Thacker78]. There are just two processes—the keyboard process which
handles characters typed by the user, and another process which handles
everything else. There is no scheduler, and no synchronisation is necessary, since
the keyboard is purely interrupt driven. It is more reasonable to treat this
system as a run time library providing access to useful abstract objects, such as
I1/0O streams, files, discs and so on. Each of the abstractions is represented as a
single BCPL word.

Because there is only one active process, there are no communication
primitives, and so if two programs wish to cooperate, they must do so by using
disc as the intermediate medium. There is a mechanism for saving and restoring
the processor state from a disc file, and through this it is possible to switch
between different contexts in the single process. This is effectively a coroutine

switch, and programs which take over the processor in this way are called
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“juntas”.

The authors attempted to standardise access to the disc filing system and to
the local area network. This facility proved convenient for the user, but was
difficult to maintain because much of the functionality was duplicated in different
operating system modules. They do not recommend this type of standardisation
in future systems. The “open” approach, although interesting, makes it difficult
to change the internal representation of objects (such as files), since there is no
way of doing this without affecting assumptions made by the user. This makes
this method less general purpose, and because the system hides none of the

hardware from the user, it also makes it less portable.

2.1.7 PILOT

By the early 1080s, the cost of hardware had come down enough to increase
the power of the machine which could be given to a single user. One of the
companies to pioneer this approach to computing was Xerox, and a product of
their PARC research laboratory was the PILOT operating system [Redell80].

PILOT provides a single language environment for high level programming on
a powerful single user computer. PILOT is implemented entirely in MESA
[Mitchell79], and the two are very closely coupled. In many ways, it is
convenient to think of PILOT as being a multi-programming environment for
MESA, in very much the same way as TRIPOS is for BCPL. Not only is the
personal computer used extremely powerful, but it is also micro-coded specially
for the MESA language, and since concurrency is built into the language,
absolutely none of the system need be written in anything other than MESA.

One of the facilities provided by MESA is module interface checking, making
it easy to split the implementation into many separate modules, with all the
consistency checking being done by the MESA compiler. The design team
attribute the success of PILOT to this fact, since the 24,000 lines of MESA which
comprise the system were split into around 160 modules, with each module being
roughly 150 lines. Each module could be defined absolutely in terms of its
interface, and then implemented by any of the 8 strong team independently.
Since PILOT does not rely on hardware mechanisms for protection, system
integrity (so called “defensive protection”) is provided by MESA’s type and
interface checking. |

The PILOT filing system is large and flat, with the file and volume modules
providing the basic structures for disc storage. File names are 64 bit unique
identifiers or uids, which are guaranteed unique in both space and time. This is

essential, since removable volumes are the standard way of transporting files from .

16




one PILOT machine to another, and any chance of name clashes would make this
impossible. Each file has several attributes associated with it, on the assumption
that a higher level module will provide more complicated features, gsuch as
naming, date stamping and so on. One of the attributes is an uninterpreted 16
bit “type” value, which aids in recovery of the filing system after a disc failure.

PILOT has a simple linear virtual address space of 232 16 bit words, and all
processes run in this address space. As mentioned earlier, the protection is
provided by means of MESA type checking. There is also a “world swap”
mechanism to enable the entire virtual memory of a machine to be changed, in
order to bring in a totally new environment. This is used by the PILOT
debugger “CoPilot” whenever a system error occurs.

1/O streams under PILOT are very similar to those in OS6 and TRIPOS, in
that it is possible to build compound streams from individual stream components,
with each component performing “on the fly” transformations on the data flowing
though them. Combining this facility and the file “type” attribute, it is possible
to implement a fully typed filing system, supporting many different file
structures.

As with other concurrent languages, inter-process communication in MESA is
through use of shared memory, and facilities are provided such as fork (to create
a new process), monitors, condition variables, coroutines and so on, as well as
simple recursive procedure calls. There is also a signal operation—a special type
of procedure call used in exception handling. MESA also supports
communication between loosely coupled processes (in other words, those on
different machines), through a family of backet communication protocols called
Internet [XEROXS81a}.

H. C. Lauer [Lauer8l] in his review of the PILOT operating system,
comments on some of the design decisions and their relative success. The virtual
memory system was implemented to take account of discs with slow access times,
with heavy use being made of concurrency and queueing. He says that, given the
actual speed of the discs used, it would have been better and simpler to treat
them as synchronous devices. He also comments on the fact that the PILOT
stream mechanism was not used much for communication between machines,
since even with loosely coupled processes, it is easier in MESA to use a procedure
call interface (through the Courier [XEROX81b] remote procedure call

mechanism).
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2.1.8 LILITH

With the advent of the Am2901 bit-slice processor, it has become more
convenient to construct micro-programmable hardware which is tailored to a
specific task. One such example of this is the LILITH computer [Wirth81]
designed and built at ETH Ziirich. The LILITH is a personal computer whose
architecture is tailored to the language MODULA-2 [Wirth80], with a memory of
128K 16 bit words (half of which is used by a high resolution display), a disc, a
local area network, a keyboard and a mouse. The processor is micro-programmed
to interpret “M-code”, the intermediate code of the MODULA-2 compiler.

All the LILITH software is written in MODULA-2, including the operating
system “MEDOS”. The reason for this is to take advantage of MODULA-2’s
module interface checking, so that a relatively secure system can be built without
the requirement of hardware memory protection. The approach followed is very
similar to that of PILOT, with the operating system forming a powerful run time
environment for a single type-checked language.

For simplicity, LILITH is built with a single processor, so as to remove the
problems of processor synchronisation. The designers also believe that
concurrency in processes plays a minor role in operating system implementation,
and so MEDOS uses coroutines exclusively. Transfer of control between
coroutine processes is implied in statements which send signals or wait to receive
“signals”, where a signal is represented as a MODULA-2 data type. There is a
data type “PROCESS”, with primitives to create a process given an entry point,
and transfer control to a process. Using these mechanisms, MEDOS schedules its
processes in a simple “round robin” manner. Interrupts are handled by having
device driver coroutines to which control is given whenever a device interrupt
occurs. ‘

In their conclusions, the LILITH team consider that their approach to
personal computing has been successful, in that the specialised hardware enables
systems programs to be written in a high level language, with little problems of
code compactness or overall efficiency. The LILITH machines present a pleasant
interface to their users and permit a high degree of interaction, without the
restrictions of mainframe computing. They believe that their choice of language,
as with PILOT, has enabled them to build a large system in a simple and clean
manner, with much of the burden being removed by the MODULA-2 interface
checking facility. They also believe that, through using a single high level
language, it is possible to design a computer architecture without regard to its
suitability for assembly language programming. The resulting computer can be

geared towards a language, and take advantage of such factors as variable length '
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addresses in order to provide a high density of code.

2.1.9 TRIX

As local area networks became more common, so did the tendency to design
operating systems around them, concentrating rather more on the distribution
aspects than on the operating system design per se. One such approach was
taken at the MIT [Ward79], and encompassed both the hardware and software
design for a distributed system.

The basic items of hardware used are “NU” computers, connected together
via the ¥“NUBUS”., Each computer is built out of several standard components
(such as processors, memory, keyboard, screen and so on), with the number and
type of components used depending on the nature of the particular application
and the facilities required. Several CPU cards are available, including those for
the Motorola MC68000, Zilog Z8001 and the “RHO” processor, a 32 bit Am2901
based micro-codable machine. Memory comes in units of 128K bytes with 16K
DRAM chips, and 512K bytes with 64K DRAM chips. There is also an interface
to an 8 megabit/second local area network.

The software work resulted in the TRIX operating system [Ward80], which
was designed to allow transparent communication over the local area network.
In order to achieve this goal, TRIX removes abstractions such as files, devices
and so on, and replaces them by “streams” which connect different processes.
Streams are simply full-duplex communication paths between processes, down
which messages are sent. The important factor is that the semantics of the
communication are associated with the stream, not with the mechanism at the
end of the stream, meaning that it is possible to implement simple operations
(such as “read”, “write” and so on) in a device independent way. On the whole,
it is impossible to tell whether a stream is connected to a device, another process,
or in fact to another machine via a network handler.

In order to achieve efficiency, the TRIX system handles static objects such as
files by means of “system processes”, which remove some of the overhead of the
more general stream mechanism. The user cannot tell that this is taking place
though, since the same set of standard opcodes are used by the system processes
as are used by everything else. Each stream has a name associated with it, and it
is possible to open a stream by quoting its name. There are certain specialised
“directory” processes, which allow the association of names with streams, and
they provide a generalised naming convention which can be used to specify a
“path” through a series of directory nodes, just like directories in a conventional

filing system. Using the stream representation, as with stream functions, it is -
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possible to perform data transformations “on the fly”, for example, the user
should not be able to tell whether his files are each separate and being handled
by separate processes, or stored in a compact archive format and handled by only
one process. This approach has the effect of making network access totally
transparent, with access to remote services and files appearing no different to the
user than simple access to local versions.

The stream mechanism is simple and elegant, but suffers from four major
drawbacks. Firstly, the efficiency of simple objects sometimes suffers, since they
have to be represented in a complicated way. This can be avoided to some
extent by having system processes, but the real time delay in passing a message
through a chain of processes may be quite large. Secondly, since the filing system
is represented by a set of processes and streams (which are transient objects),
problems arise when the machine crashes, in that it is impossible to restore the
structure to exactly what it was before the crash. Thirdly, since streams are
fixed objects, it is difficult to handle a filing system with removable disc packs.
Fourthly, since streams can be set up between arbitrary processes, there is
nothing to stop cyclic structures. These have the same problem as with memory
management, since a simple “use count” method is not enough to ensure that
streams are freed when a connection is broken, and some type of garbage

collection is required as well.

2.1.10 SPICE

Another project similar to that at MIT is the SPICE system [CMUB80] being
developed at Carnegie-Mellon University. SPICE (Scientific Personal Integrated
Computing Environment) is intended to provide a high performance network of
over 100 personal computers, with shared facilities such as printers and filing
systems. SPICE is an ambitious piece of research, with operating system design,
resource distribution and programming environments being just three of the areas
covered. Rather than designing specialised hardware like the MIT project,
SPICE uses commercially available computer and network systems. Most of the
work has been done on DEC VAX-11 and Three Rivers Corporation PERQ
machines, with ETHERNET being the communication medium.

The piece of work most relevant to this thesis which came out of the SPICE
project is the ACCENT operating system kernel [Rashid81], which has been
designed from the start for network operation. One of the major design aims of
the ACCENT team was to build an operating system which would access the
network transparently, and allow decomposition of modules so as to allow their
distribution between different processes on the same machine, or onto different °
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processors on a network. Multiple languages are supported by ACCENT, with
each program being separated into its own virtual address space for protection.

The ACCENT kernel provides two types of protection. Firstly, there is the
address space protection mentioned above, which ensures that no process can
affect any other, except through use of the inter-process communication facility.
Secondly, access protection is included in the form of capabilities, which prevent
unauthorised communication between processes. The authors contrast this to the
PILOT approach, where all processes run in a single virtual address space, with
protection being obtained through the use of a single, heavily checked
programming language.

The whole ACCENT system is communication oriented, with simple messages
being used both to communicate between processes and different computers. The
messages are structured in such a way that intermediary processes, for example
debuggers, protocol converters or network communication servers, can intercept,
modify and then retransmit messages in a transparent manner. Because all
processes exist in different virtual address spaces or on different machines,
messages are always copied thus simplifying the communication semantics. This
approach is very similar to that adopted by THOTH, but ACCENT attempts to
optimise the copying of messages from one address space to another by simply
placing data pages into the address map of the receiving process.

One interesting feature of ACCENT is that messages are not sent to
processes but to “ports” (mailboxes), and in order to send a message to a port, a
capability for that port must be held. The “send” capability can be owned by
many processes, and passed to a child process by a parent when it is created.
Only one “receive” capability for a port can exist at any one time, and this
capability can be passed between processes which provide the same service.
Associated with each port is a “backlog” value, which defines the maximum
length of the message queue which can build up for that port. Once the backlog
threshold is reached, sending processes are suspended until their message can be
placed in the queue properly. If a CPU bound process does not wish to block
waiting for a reply to a message, then it can use the “pseudo interrupt” facility,
in which a software interrupt is generated by the kernel whenever a message
arrives on a particular port.

The ACCENT kernel has 16 different priority levels, and performs time
slicing between processes at the same priority level. The concept of “aging” is
used to ensure some degree of fairness in scheduling. The kernel attempts to
provide a high speed context switch, by allowing each language to have support

in micro-code for the saving and restoring of its state. In most cases, the cost of
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a context switch is only twice that of a normal language procedure call.

In their conclusions, the authors believe that the ACCENT kernel is well
designed, and provides a clean and efficient environment in which to perform
research into program distribution. They defend their use of messages and
independent address spaces by using machines for which micro-code support for
these functions can be provided. They believe that the mechanisms they have
chosen give a much more secure and general environment than equivalent
systems such as PILOT, and allow for the introduction of powerful debugging

and monitoring facilities, as well as virtually total network transparency.

2.1.11 MAYFLOWER

The MAYFLOWER. operating system [Hamilton84] came out of a research
project at Cambridge University, investigating aspects of distribution and remote
procedure call mechanisms. Of the systems described so far, the closest in
philosophy to MAYFLOWER is PILOT, in that they are both written in a single
concurrent language, but in this case, CLU [Liskov81] rather than MESA. The
extensions to CLU to support concurrency were implemented at Cambridge by
K. G. Hamilton. Unlike PILOT, MAYFLOWER will support other programming
languages, since its interface is via a language independent “trap” mechanism,
but so far this has not been done.

The MAYFLOWER kernel was originally implemented on a Motorola
MC68000 without memory mapping, and its primary aim was to provide a clean
and efficient programming environment for CLU. The kernel separates processes
into domains, but allows groups of processes to be run as part of the same
domain, in very much the same way as THOTH’s teams. Unlike THOTH
though, there is no separation into different address spaces, and all the protection
is through the type checking mechanism of CLU. There are two simple
synchronisation primitives which can be used to communicate between different
processes running in the same domain. Each process can run at one of eight
priority levels, with time slicing being performed between processes at the same
priority level.

The main thrust of the MAYFLOWER work is to build a distributed system
around different processes all running the MAYFLOWER kernel, with remote
procedure call being used to communicate between machines. It is currently
being used to implement a resource management system, and distributed

compilation and debugging systems.
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2.1.12 Commercial operating systems

Over the past few years, commercial operating systems for the new
generation of personal computers have come in two distinct sorts: UNIX and
everything else. Because of the portability of the UNIX system, and the
increasing number of software packages available for it, more and more
implementations have appeared on many different types of hardware. Examples
are CROMIX, XENIX and ULTRIX, all of which are based on UNIX, or are
UNIX compatible.

The other types of operating system available commercially tend to be simple
and single threaded, based on those for the 8 bit microcomputers of the mid
1970s. An obvious example is CP/M [DigitalResearch82], originally implemented
on the Intel 8080, with more recent versions for the Intel 8086 (CP/M-86) and
Motorola MC68000 (CP/M-68K). Another example is MS-DOS [Microsoft83],
which has been produced for the IBM PC computer, running on the Intel 8088.
The only multi-tasking performed is the spooling of printer output, and apart
from that, the facilities provided are very simple. An attempt to produce
something more ambitious came with the Sinclair QL in the form of QDOS
[SinclairResearch84], which supports screen windowing, with a different task

running in each window.

2.2 Command languages

In the past when operating systems have been designed, the emphasis has
been on how many users they can support, and how much work they can
perform. This attitude arose from the time when only batch access to computers
was possible, and machines were so expensive that their utilisation had to be
maximised. When time sharing systems became available, the user interface was
rather neglected, with users having to type cryptic incantations in order to get
their programs to execute.

One step on from typing commands directly at a terminal is the ability to
write command sequences, in other words, files containing commands which
would have been typed at the terminal. Such a mechanism could be used for
running a series of commands repeatedly, or if parameter substitution were
possible, then for providing templates to define the execution of frequently used
sets of commands. For such a language to be properly usable though, it must be
possible to test for the success (or failure) of commands, and to be able to
execute commands conditionally. It should also provide some sort of looping

construct, and perhaps simple variables.
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The problem is that most systems have evolved as described above, with
facilities being added when it seemed appropriate. The result is that, on the
whole, command languages are clumsy and awkward, usually with an archaic or
cryptic syntax, making sequences written in them totally unreadable to anyone
other than the original author. Surprisingly, very little has been done to improve
this area. New command languages have been produced, but like their
predecessors, the facility has tended to be built into the command language
interpreter, and even though the results are more powerful, they are just as
clumsy.

Some people have attempted to combine the idea of an interpretive
programming language with an interactive command language, in order to clean
up the area of command syntax and program execution. The approach has
proved fruitful, in that the user of such a system is faced with learning only one
language for both his computation and command execution. The work referenced
here is all by people who have treated command languages as programming
languages, but with various different types of result.

2.2.1 Stephenson’s EXEC

One of the first command languages to be designed with programming in
mind was IBM’s EXEC program for the Conversational Monitor System [IBM72],
and the one based on it by C. J. Stephenson [Stephenson73]. In his view,
command control languages are generally rather primitive and awkward, with the
language interpreter being an integral part of shared computer systems. The
advent of virtual machines each supporting a single user has meant that
experimentation in the command control area is now possible.

Stephenson describes the traditional view of a command line, where the first
word on the line is taken as the name of a command, and the remainder of the
line is then passed to the command as a parameter list. He stresses the
importance of the recursive view of command environments, where commands
can be executed from within the editor for example. In his view, a command
control language is not a true programming language, since it lacks the nctation
of evaluation, and in general it lacks variables and the ability to execute
sequences of commands conditionally, depending on the result of some evaluation.

He then lists the three main design decisions taken regarding the command
language. Firstly, it is a special purpose language, designed for the controlling of
commands only. The only data object is a character string, and the interpreter
handles only a limited type of expression evaluation. Only integer arithmetic is

supported. Secondly, the language is interpretive, since compilation would have .
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been difficult, and at best partial. Thirdly, commands written in the command
control language are written exactly as if they had been typed at the terminal.
There is no program prologue or epilogue, and control statements are
distinguished syntactically from data by being prefixed by the “&” character.

Simple variable assignment is provided, with all values being held textually.
There is a conditional clause in the form “&IF ... &ELSE”, and a looping construct
in the form of “&D0 ... &WHILE”. Labels are provided by prefixing a name with
the “-” character, and may be jumped to using “&GOT0”. Primitive terminal I/O
is provided through “4READ” and “4PRINT”. Terminal input is handled in the
form of a buffer, which also acts as a LIFO stack. In this way, command and
data records can be stacked in the terminal buffer, so that they can be read by
the command interpreter or a user program. There are functions provided to
stack and unstack terminal records, and to rotate the stack. Simple string
manipulation functions such as “€SUBSTR OF” and “&CONCAT OF” are provided,
along with relational operators for comparing strings. Arguments are passed
from the command line, and are available as the variables “41” onwards. The
interface to the command environment is provided through functions like
“GEXIT” to abandon a program, and variables such as “¢RETCODE”, which holds
the return code from the most recently executed command.

In conclusion, Stephenson challenges the decision to use a stack to hold
terminal records, since it would have been more natural to use a FIFO queue.
The only reservation he has about using a queue is that the wrong effect is
obtained if a queue is not empty before further records are added. He therefore
suggests that both a LIFO and FIFO facility should be provided, and that the
queue should be flushed after the execution of each command. He also says that
the command language described is fine for interactive working, but suggests that
more powerful facilities (such as macro processing) would be useful if the
language were to be used for anything more complicated than simple command

gequences.

2.2.2 KRONOS and MULTICS

Although many of the command languages for large operating systems were
primarily intended only for program control, some do have facilities found in real
programming languages, and these features can sometimes be exploited. A. W.
Colijn [Colijn76, Colijn81] has experimented with KRONOS and MULTICS,
encoding the classic problems of “Ackermann’s function” and “Towers of Hanoi”
in the two different command languages. Through this, he investigates the
facilities provided by the languages, and comments on the restrictions which they
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impose.

The KRONOS command language, KCL, has features taken from high level
languages such as FORTRAN and ALGOL60, which makes it a programming
language in its own right. It allows arbitrary integer arithmetic, and provides
simple variable assignment through “SET” statements. Only three variables are
allowed—the pseudo registers “R1” “R2” and “R3”. Conditional execution is
possible through the “IF” statement (similar to the logical IF statement in
FORTRAN), and output can be sent to the terminal by means of the “DISPLAY”
statement. There is also a “CALL” statement, enabling another KCL command
file to be executed recursively. The overall result is something which looks
remarkably like FORTRAN, but has the restriction of just three variables and
(like FORTRAN) no string manipulation primitives.

The MULTICS command language is different from KCL, and much more
closely linked to the CMS EXEC language described earlier. MULTICS supports
two types of command: loaded commands and special control commands, whose
names are prefixed by the “&” character. Variables are supported, and can be
assigned using the “value$set” statement. Normally, objects are held in string
representation, but are converted to numeric values when necessary. Expression
evaluation is possible using LISP like prefix notation, for example “[&plus A 1]”.
Conditional execution is provided by means of single line “&if ... &then ..
kelse” statements, with iteration possible through recursive entry of the same
command file. Simple console output is available through “¢print”.

Although Colijn accepts that the applications chosen are rather frivolous, he
does believe that the fact that what he has done is possible implies that

command control languages are actually more powerful than most people assume.
He says that command languages should not be dismissed for programming
applications, since it is often more efficient to use an interpretive command
language than to go through the steps of compilation and linking with a more

traditional programming language.

2.2.3 Programmer’s Workbench and the C Shell

Rather than designing a separate command execution language, another
possibility is to extend the standard command language interpreter so that it
incorporates programming language features. This approach was taken by the
people working in UNIX, and two examples exist in the the form of the
Programmer’s Workbench Command Language [Mashey76] and the C Shell
[Joy80]. Both take advantage of the original UNIX Shell, which provides a clean

and well defined interface to the operating system execution primitives. The .
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work in both cases involves an extension of the Shell syntax to encompass
programming language features, to enable simple programs to be constructed, as
well as complex command sequences.

In his description of the Programmer’s Workbench (PWB), J. R. Mashey
describes the modifications made to the standard UNIX Shell, with the result
being the PWB Command Language, or PWB CL. He investigated nearly 2,000
CL procedures in order to determine frequency and type of use, and the facilities
most used by different applications. He lists all the important facilities which a
CL should have.

It must be easy to use interactively, and should emphasize simplicity and
avoid the need for redundant typing. It must be convenient to use CL both as an
on-line command language, and as a programming language, and it must be
possible for CL procedures and compiled programs to be used interchangeably,
with the user being unaware which type he is executing. CI procedures should
be easy to create and simple to maintain, and it must be possible for many users
to share libraries of these procedures. The language should provide simple
arithmetic, pattern matching and string manipulation facilities, with the
emphasis being on characters rather than numbers.

Mashey also believes that the CL interpreter should not be viewed as part of
the operating system, but as a user program which communicates with it. In this
way, it is possible for users with different tastes or requirements to tailor the CL
to their own liking if they want. His view is that, although many different
versions will appear initially, there will be a tendency towards the “survival of
the fittest”, and only those with useful modifications will actually be adopted by
the user community.

The PWB Shell provides 26 string variables, “$a” to “$z”, of which the first
half are guaranteed to be initialised to the null string. The rest are initialised to
special values, for example “$r” holds the current return code. Arguments are
passed to CL procedures as the variables “$1” to “$9”, with “$0” being the name
of the procedure. The “shift” command is provided for accessing argument 10
onwards. Assignment is possible through the “= a b” construct, where the value
“p” ig assigned to the variable “$a”. Variables can be set to the results of loaded
commands by “piping” the output into a variable, for example “date | = 4”.
Loops are possible using the “goto” statement, and labels are introduced by the
“.” character. Simple operators such as “=” are provided for comparing strings,
but a different set of operators must be used when comparing numbers (“-eq”
instead of “=” for instance), otherwise the comparison would be lexicographic

rather than numeric. Commands can be issued conditionally through the “if ...
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then ... else .. endif” construct, and a “switch ... endsw” statement (similar
to that in C) is provided.

In his assessment of the PWB CL, Mashey suggests a series of things which
should be done to improve the command language. Firstly, some sort of looping
construct (for example “while”) should be added. Secondly, the Shell should be
modified so that the majority of the control code is resident, to make execution of
CL programs much faster. Thirdly, the syntax should be tidied up, as it has
many ugly aspects. Finally, the argument passing should be changed so that the
decoding of parameters does not require shifting within a loop.

The C Shell was produced by W. Joy at the University of California at
Berkeley, and is part of the Berkeley distribution of UNIX. Joy has attempted to
copy as closely as possible the syntax of the C language, at the same time adding
facilities such as a command history and command line editing. The C Shell
attempts to provide an entire programming environment, with directives for job
control, scheduling, command execution and simple programming.

C Shell variables have names prefixed with the “¢” character, and may be up
to 20 characters in length. Arguments passed from the Shell are available as the
variables “$1” onwards, with “$0” being the name of the Shell procedure. Unlike
the PWB CL, the C Shell syntax is such that numbers of greater than one digit
can be written without ambiguity, and so there is no need for a “shift”
command. Within a C Shell program, lines can be read from the terminal by
using “$<” in the same way as a simple variable.

There is a series of built-in commands which evaluate arithmetic expressions,
and the operators used are equivalent to those in the C language. There is a
conditional statement “if ... then ... else .. endif”, and a C like “switch”
statement of the form “switch ... endsw”. There is a simple looping construct
“foreach”, which iterates for each “word” in a string. More general looping is
available through the use of labels (a label being a name followed by a “:”
character), with the “goto” statement providing transfer of control.

In many ways the PWB CL and C Shell are remarkably similar in their
outlook, with each taking the same program as their starting point, and
producing very much the same results. Both suffer from the fact that the syntax
is ugly and difficult to understand, and although the languages are fine for
writing command sequences and driving programs for sets of commands, they are
neither general nor efficient enough for true programming.
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2.2.4 BASIC and LISP

Another approach to the problem of command languages is to use a
programming language which already exists, and add control features to it. The
obvious example is BASIC [Kurtz78] (Beginner’s All-purpose Symbolic
Instruction Code), a language originally designed in 1963 by T. E. Kurtz and J.
G. Kemeny at Dartmouth College. The main purpose of the language was, as the
name implies, to teach simple programming to people who were new to
computers. BASIC is an interpretive language with variables, conditional
statements, FOR loops and GOTOs, and provides simple terminal and file I/O:
Because of its small size, BASIC has been implemented on many micro-
computers, and on these machines it forms not only the programming language,
but the command language as well. This is analogous to the OS6 and SOLO
operating systems described earlier, since they also used a simplified form of their
programming language as the user interface.

As a more serious suggestion, J. Levine [Levine80] asks why a functional
language such as LISP should not be used as a command language. He looks at
older command languages, such as IBM’s JCL for catalogued procedures, and at
the UNIX Shell and CMS EXEC languages, examining the features they have in
common. He believes that treating single commands as tools (such as editors to
perform text processing and data manipulation) means that very powerful
compound utilities can be built up, with the driving program being written in a
command language.

Levine thinks that command languages such as the Shell and EXEC are good
for certain applications, but he believes that in many ways they are totally
deficient. The facilities for handling data structures are primitive, with only
strings and integers normally being supported. I/O is usually of a rudimentary
sort, and most importantly, programs written in such languages tend to be ugly
and unstructured, with large Shell and EXEC programs typically being totally
unreadable to anyone other than their authors.

He suggests that what is required is a language where execution is immediate
and easy, procedures are easily constructed and modified, data is symbol oriented
(rather than number or string oriented), and where procedures can be used just
like built-in commands. In his view, the LISP language, although over 20 years
old, has all these properties, and would be ideal for the command language
application. In his view, there is no distinction to be drawn between command
and programming languages, and future implementations should attempt, where

possible, to combine the two.
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2.2.5 MXEC

As an alternative to a command programming language, another approach is
to use a macro processor built on top of the standard command language
interpreter. The MXEC system [Ash81], produced at Bolt Beranek and Newman
Inc., is a sophisticated macro processor with the ability to create multiple parallel
tasks. The aims of MXEC were to provide something which had powerful
facilities and which enabled the user to customise his environment to his own
tastes.

Instead of defining executable programs, MXEC uses a macro facility as a
pre-processor for normal command lines. Through its structure, not only is it
possible to produce complex command sequences, but also to perform file editing
functions and string processing. MXEC is built as a user program which calls the
DEC TOPS-20 EXEC program to execute commands. The TOPS-20 operating

“system was not modified in any way to support MXEC—a fact which aids its
portability and hence usefulness.

MXEC allows multiple parallel processes to be created, and provides a facility
to have “secondary I/O streams”, which can be used to link separate jobs
together, in a similar way to UNIX pipes. MXEC also provides a “daemon”—an
asynchronous process which watches for a number of conditions, and informs the
user when they occur. Services it provides are notification of new mail,
completion of line printer listings, date and time, and so on.

The MXEC syntax is rather opaque, but Ash claims that, through the
facilities provided to debug macros, even relative newcomers are soon able to
construct their own command sequences. Like other macro processors, programs
written in MXEC tend to be ugly and difficult to read, and as a result are usually
short. As a system to tailor an environment to a particular user’s needs, macro
facilities are extremely useful and MXEC has achieved popularity at its place of
creation. The fact that macro processing for the command language application
has not caught on elsewhere implies that, as a general facility, it is less

convenient and more difficult to learn than an executable programming language.

2.2.6 REXX

Of the languages described here, the only one to have been designed for both
programming and command execution is the replacement for IBM’s CMS EXEC
language, REXX [Cowlishaw84]. REXX was designed primarily at the IBM UK
Laboratories at Hursley, and was then continued at the Yorktown Heights
Research Center. It is based heavily on PL/1 but is interpretive, and unlike

conventional programming languages, its prime objective is to be easy to use.
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The authors of REXX say that it has three major functions. Firstly, it is a
Janguage for personal programming, which is easy to teach and quick to learn. In
this aspect, the language is very similar to BASIC and LOGO [Harvey82] in its
outlook, and is now in heavy use as a tool for teaching computer newcomers.
Secondly, it is a language for tailoring user commands, and so is very similar in
this way to the UNIX Shell and MXEC. Thirdly, because the language provides
powerful string manipulation and pattern matching facilities, it can act as a
replacement for a general macro processor. As a language, it is easier to write in
than most macro languages, and is more understandable by people who are not
computer professionals.

The language attempts to be small, having only a few powerful constructs.
Procedures, loops and conditional statements are almost identical to PL/1, with
the exception that the syntax is less strict, and unnecessary punctuation can be
omitted. All variables are held internally as strings of potentially infinite length,
with operators provided for simple string and numeric calculations. One of the
primary design aims of REXX was readability, and unlike other IBM languages,
there is no restriction on the case of characters, or on the layout of the program.
In order to make the language easy to use, variables are not declared explicitly,
and all variable scoping is dynamic.

Cowlishaw believes that one of the most interesting features of REXX was
that it was documented before it was implemented, and the documentation was
distributed over IBM’s VNET to potential users, in order to obtain feedback
before any programming effort had been expended. He attributes the simplicity
and ease of use of the language to this factor, and say that the comments of
“real” users (as opposed to computer scientists) had meant that it was possible
to draw the line between usability and complexity, and to create a language

which was concise and simple without being cryptic.
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3. TRIPOS

3.1 Introduction

All of the work described in this thesis is either implemented under, or
heavily influenced by the TRIPOS operating system [Richards79a]. TRIPOS was
developed at Cambridge by M. Richards and a group of his research students,
and was intended to be a small, efficient, portable operating system for 16 bit
mini-computers. Much of its portability comes from the fact that it is
implemented almost entirely in BCPL [Richards69]. In an attempt to achieve
simplicity, one of the facilities which was sacrificed was language independence,
and in many ways, it is better to think of TRIPOS as a powerful multi-tasking
run time system for BCPL. All the software described here which runs under
TRIPOS is, without exception, implemented in BCPL.

The information included in this chapter is only that which is actually
relevant to the work described later. A more comprehensive description of the
techniques and data structures used can be found in [Knight82].

3.2 BCPL

BCPL is a block structured programming language of the ALGOL family,
whose design came out of the work done on CPL [Barron63], from which it takes
its name. The structure of BCPL programs is very similar to that in any other
ALGOL-like language, but BCPL differs from the others in having only one data
type—the machine word. The size of the BCPL word is defined by the nature of
the underlying hardware, and BCPL achieves its portability by treating its
memory space as a contiguous vector of these words, with each word having an
address one different to its neighbours. All kinds of abstraction—integers,
boolean values, character constants and so on—are represented in terms of simple
values stored in a single BCPL word. As a BCPL memory address is just an
offset in the vector of words, pointers can easily be stored, and operators are
provided for obtaining the address of an object, and for indirecting on an address.
Since there is no data type checking, pointer arithmetic is easy, but also prone to
user error—it is perfectly possible to write syntactically correct BCPL programs
which are semantically meaningless.

BCPL has four data storage areas available to the programmer. The stack is
used to store procedure parameters and local variables, but unlike other ALGOL ‘

languages, dynamic free variables are not allowed. The code area is used to store
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static variables (similar to ALGOL60 “own” variables). Static variables are
rarely used though, since they have names which can only have scope local to a
single code section, and their use tends to cause the inherent re-entrancy of a
stack based language to be lost. Variables which have truly global scope are held
in the global vector, and are represented simply as names which correspond to
offsets within this vector. Unlike static variables, globals can be accessed by
more than one section, and since each program has its own global vector, their
use does not stop re-entrancy. The fourth area is the heap, but since access to
the heap is via procedures in the run time library rather than built-in to the
BCPL language, it is only possible to reference heap items via pointer variables.

BCPL allows programs to be compiled in separate sections, but since only the
global vector is common to different sections, each global variable or procedure
must be assigned a unique offset in the global vector. This is usually
accomplished by having a single header file containing nothing but global
declarations, which is then included by all separately compiled sections of a
program. There is no interface checking though, and care must be taken to avoid
global name clashes, and to ensure that when a header file is updated, all the
BCPL sections which rely on it are re-compiled.

BCPL is intended as a language for systems programmers, and is ideal for
writing compilers, editors and other utilities. It provides a high degree of power
and flexibility to the experienced programmer, and in many ways it is convenient
to think of BCPL as a structured assembly code, while having the portability of a
high level language. Because of the lack of checking and the ability to write
nonsensical programs, BCPL is not a beginner’s language, and a great deal of self

discipline is required when writing in it.

3.3 The operating system

The TRIPOS operating system is implemented as a simple kernel, on top of
which runs a set of tasks and devices. Each TRIPOS task is assigned a fask id, a
positive integer, and a unique priority, also a positive integer, which defines the
task’s importance compared to the other tasks in the system. Since TRIPOS is a
single language operating system, associated with each task is its BCPL stack
and global vector, pointers to which are stored in the task control block. Each
TRIPOS device is assigned a device id, a negative integer, and comprises five
different pieces of code which are called during different stages of the device’s

lifetime.
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Communication between tasks and devices is by means of packets, which are
blocks of memory, at least two but conventially five words in length. One of the
fields in the packet defines the identifier (task id or device id) of the recipient.
When the packet is sent, this field is altered so that it holds the identifier of the
sender, and in this way, the packet can be returned to its owner.

Communication between tasks and the kernel is by means of a machine code
library called klib, in which each kernel primitive is defined as a BCPL callable
procedure. Some primitives need atomic access to certain data structures, and
when this is the case, mutual exclusion is obtained by running with interrupts
disabled. If a program is written in any language other than BCPL, then in
order to call the kernel primitives, it must must use the standard BCPL calling
conventions.

Scheduling is pre-emptive, with the highest priority runnable task always
being the one which is given the CPU. No time-slicing is done, and so the task
priorities have to be arranged so that starvation of important tasks does not
occur. Devices, although they look like tasks to the user, are always called
synchronously whenever a packet is sent to them, and device interrupt handlers
must use a special set of kernel primitives to handle packets, since the standard
primitives cannot be used from anywhere other than a normal BCPL
environment.

Storage is allocated from a single pool, and no track is kept of the memory
allocated by a particular task. A single store chain “first fit” algorithm is used,
since it is easy to encode, and on a 16 bit mini-computer, the number of allocated

blocks is typically fairly small.

8.3.1 The system tasks
The first four tasks in any TRIPOS system are fixed, to enable them to be
located in a standard manner without the necessity of some kind of lookup. The

system tasks are:

. Task 1 is always the main user task, and runs the standard command
language interpreter described later in this chapter.

. Task 2 is always the debug task, and it is to this task that a packet is
sent whenever some sort of exception occurs. On machines where
memory is scarce, the resident debug module may be very small, with a
command to enable the rest of the debugger to be loaded when required.

. Task 3 is always the console handler task, which is responsible for the
handling of the console device, and providing console I/O streams for
user programs.

o Task 4 is always the main file handler task, which is responsible for
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handling the disc device, and providing file I/O streams for user
programs.

The tasks mentioned above are guaranteed to have fixed task identifiers, but
dynamic services are available through the use of the assignments list, which
keeps a mapping between the name and the task identifier of a handler. New
devices and handlers can be loaded and unloaded explicitly by using the mount
command.

TRIPOS was originally intended to run on stand-alone mini-computers, but
with the development of the Cambridge Ring, the standard system tasks were
replaced by equivalent code which handled virtual rather than real devices
[Knight82]. The TRIPOS kernel was also used in this distribution process, since
it provided a light-weight multi-tasking environment for the development of Ring
services, notably the File Server [Dion80] and the Ring-Ring Bridge [Leslie83].

TRIPOS was therefore used for two totally different applications. Firstly, it
provided a portable, single user operating system for mini-computers, with a
command language, a filing system and many utilities. At the same time, the
TRIPOS kernel was used as a multi-tasking run time system for the BCPL

language, for the implementation of real time network servers.

3.3.2 Input/Output

The TRIPOS input/output system is extremely general, and borrows an idea
originally used in OS6 [Stoy72]. Since every program under TRIPOS is written in
BCPL, input/output is through BCPL streams, and each open stream is
represented by a stream control block. Associated with the stream control block
is all the control information for the stream, and all streams are handled in an
identical manner, no matter what kind of device they represent. The relevant
fields in the TRIPOS stream control block are:

link Not used by the I/O system, but is available for the user to allow him

to keep a chain of open streams.

id Used to differentiate between input streams, output streams and update
(both input and output) streams.

type Misnamed field used to hold the task identifier of the handler for the
stream device. If negative, it is assumed that the stream is interactive.

buf Used to point to a buffer for this stream. For input streams, characters
are read from the buffer, and for output streams, characters are written
to it.

pos Used to keep the byte offset of the position in the buffer of the current
character.
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end Used to keep the byte offset of the end of the buffer.

funcl  Used to hold a pointer to the stream replenish function. Whenever an
input stream runs out of characters in the buffer, the stream replenish
function is called to fill the buffer. If zero, this stream cannot be
replenished.

func2  Used to hold a pointer to the stream deplete function. Whenever an
output stream fills the buffer, the stream deplete function is called to
empty the buffer. If zero, this stream cannot be depleted.

func8  Used to hold a pointer to the stream close function. Whenever either of
the BCPL procedures endread or endwrste is called, the stream close
function is called to free any resources allocated to the stream (for
example, the buffer). If zero, then no special action is taken when the
stream is closed.

There are also two extra user fields which can be used for special effects. The
above mechanism is ideal for input streams, since it is possible to generate data
to be read “on the fly”, which can cut out an intermediate disc stage. This is
particularly useful for such things as parameter substitution, queueing of input
lines and so on, and is heavily used by much of the software described later in

this thesis.

3.4 The command language interpreter

For an operating system to be at all usable on a small, 16 bit mini-computer,
a compromise must be reached between the facilities offered by the operating
system, and the amount of free storage available to the user. There is no point in
having a system which provides powerful facilities if there is so much resident
code that the user finds himself restricted when running his own programs.

The TRIPOS command language interpreter was conceived very much with
this in mind, and the original CLI was extremely simple, with the main execution
loop being only a handful of lines of BCPL. It was always intended that it should
be easy to replace the simple CLI if its facilities proved inadequate, and the
expected result was that each TRIPOS site would develop its own command
language interpreter depending on the requirements of its users and the facilities
provided by its hardware. In fact, what happened was that the original CLI was
adopted as the standard one, and many utilities were written which relied on its
particular environment. It was unfortunate that this happened, since although
the original CLI was small and simple as intended, it provided no room for
expansion, and after the introduction of the utilities which relied on it, further

development was hindered.

36




The majority of the CLI code is involved with the general housekeeping of
task creation and deletion, and with the handling of the CLI I/O streams. At
the heart of the CLI there is a'simple, infinite loop, which does the following:

. Prints out a prompt
o Reads a single item
o Treating the item as a filename, attempts to open it, looking first in the

current directory, and then in the system command directory
) Loads the file into memory performing any necessary relocation

. Re-initialises the global vector, setting up all the globals defined in the

module
o Creates a coroutine corresponding to the global routine start
° Calls the coroutine, giving it the same I/O streams as the CLI

. Deletes the coroutine and unloads the module

3.5 Arguments to commands

As mentioned above, the first argument on the command line is assumed to
be the name of the file containing the command. After it is read, the remainder
of the command line is untouched by the CLI, and so all argument reading and
parsing is done by the command itself. Since the CLI’s I/O streams are passed
to the command intact, the command can read its arguments from the current
input stream. It can also leave the input stream in whatever state it desires,
knowing that the CLI will continue reading its commands from that stream,
when it finishes.

In virtually all cases, command arguments are read using the BCPL
procedure rdargs, which reads items from the current input stream, and parses
them with respect to a user defined pattern. The pattern is defined as being a

set of keywords, each with an optional set of qualifiers. The qualifiers are as

follows:

/A The /A qualifier means that this argument must always be present
(hence cannot be oritted)

/K The /K qualifier means that, if this argument is present, then it must be
introduced by its keyword (hence cannot be positional)

/S The /S qualifier means that this keyword is a switch and does not take

an argument
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A typical rdargs pattern might be:

"FROM/A,TO/K,QUIET/S"

The first argument FRON is not optional (the /A qualifier) but need not have its
keyword specified (absence of the /K qualifier). Hence, if the FROM keyword is
omitted, the first unkeyed item will be taken by default. The second argument
TO, must have its keyword specified (the /K qualifier) but is optional (absence of
the /A qualifier). Hence, if the TO keyword is omitted, no positional parameter
will be taken by default. The third argument QUIET is a switch (the /8 qualifier)
and is also optional (absence of the /A qualifier). Hence, the keyword QUIET is
either present or not present—it does not imply an argument.

The following are examples of valid command arguments which would match

the above pattern:

filel to file2

filel quiet

to file2 filel

quiet to file2 from filel

The rdargs procedure reads from the current input stream, stopping either on
end of line or at the delimiter “;”. It also handles the parameter “?” specially,
treating it as an enquiry as to the parsing pattern, printing out the pattern and
then prompting for further input. Because virtually all commands use rdargs, the
TRIPOS user sees a simple, coherent command syntax, with well defined
command separation.

There are some commands however which do not use this well defined
interface to the user. They read characters from the input stream, performing
the parsing themselves rather than relying on rdargs. Commands like this can
therefore ignore command separators, and provide a totally different command
syntax. They can also leave the input stream in whatever state they wish, which
can have the effect of the CLI repeating or skipping commands, or even executing
arguments as though they were commands. It is using this, rather primitive,
mechanism that many of the so called CLI commands work, such as input, run,

¢ and so on.

3.6 Programming conventions

Since virtually everything in TRIPOS is under the programmer’s control,
certain conventions must be adhered to if total chaos is to be avoided. One of
these conventions—the use of rdargs to read and parse arguments to |

commands—has already been mentioned, but there are many others. The three
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most important ones are described in detail here.

3.6.1 Storage allocation

All store in TRIPOS is allocated from the same pool using the BCPL routine
getvec. When a block is allocated, no attempt is made to record which task
allocated it, and no restriction is placed on how that store is used—for example,
there is nothing stopping a piece of store allocated by one task from being passed
as an argument to another task, and freed by it rather than by the allocator. As
a result of this, it is the duty of each command to free all the memory which it

has allocated, otherwise store will gradually be used up.

3.6.2 I/0 streams

There are two conventions associated with I/O streams.

The first one ties in with “storage allocation”, since the same rules apply to
stream control blocks as to allocated store—namely, files which have been opened
must also be closed. If not, then the files remain open and cannot be accessed
again, and the store for their stream control block and data buffer remains
allocated, causing store to be used up.

The second one relates to the I/O streams which are shared between the
loaded command and the CLI. Just as the arguments to a command are read
from the current input stream, it is conventional to read any other console input
also from this stream. This is to make the writing of command sequences easy.
Similarly, it is conventional to send any console output from the command to the
current output stream. This is so that the output from a series of commands can
be spooled to a file rather than sent to the console. In addition to the first point,
neither of the current CLI streams must be closed, since the CLI is incapable of

coping with this case.

3.6.3 Break conditions

Since TRIPOS does not keep lists of the resources obtained by a command, it
cannot in any clean way stop that command running in response to a user break.
This problem is exacerbated by the fact that TRIPOS uses messages as its infer-
process communication mechanism, and since the messages are not copied when
they are sent, there is the possibility that stopping a command may cause
deallocation of resources which are already in use by another task.

As a result of this, the command itself must periodically poll for a break
condition (using the BCPL routine testflags), and take appropriate action when
one is detected. Appropriate action in this context means freeing all allocated

store, closing all open files, and generally returning the environment to a -
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standard state before stopping. All commands must therefore perform this test
regularly enough to give the impression of “forced termination”, with the
inevitable effect that they are slowed down because of this. There must also be a
conscious effort to insert tests for the break conditions at strategic points in a

program, otherwise it may be unstoppable.

3.7 The CLI environment

The CLI environment is stored entirely in a set of 20 CLI global variables
which are shared between the CLI itself and the programs which it loads. In this
way, loaded programs can give the impression of being “built in” since they alter
the CLI environment in exactly the way that native code would.

The loaded command is therefore run using the same global vector as the
CLI, but using a different stack, since the command is run as a coroutine of the
CLI. The reason for this is that coroutine stacks can be created and deleted
dynamically, and hence the size of the stack given to a loaded command can be
set by the user to be appropriate for that command. This is particularly
beneficial on machines with a small amount of memory, since the store can be
split efficiently into code, stack and heap areas.

The CLI has two sets of input and output streams: the standard and current
streams. In normal, interactive running, these two sets of streams are identical.
The streams differ in one of two cases—the output streams differ when the
output from commands is being spooled to somewhere other than the console; the
tnput streams differ when commands are being read from somewhere other than
the console.

Information as to the user’s current position in the filing system is also held
as part of the CLI environment. Locks (pointers to filing system descriptors) are
held on both the current directory and the system command directory.

Apart from I/O streams and directory locks, the CLI holds all the
information needed to run commands and store return code information after
command completion. Information as to whether the CLI is in foreground or
background mode is kept, along with information as to whether the current CLI
input stream is interactive or not. In short, the twenty system globals reserved
for the CLI are treated as an environment vector—one which holds all the

information necessary to enable it to run.
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3.8 CLI commands

There are a whole series of commands which alter the environment of the
CLI. They are each fairly short and simple, but make explicit assumptions about
the nature of the CLI under which they run. What follows is a small selection of
these commands, with an indication of how they use the peculiarities of the CLI

environment to perform their function.

3.8.1 The PROMPT command

The prompt given to the user when the CLI expects input can be changed by
means of the prompt command. prompt, unlike the other examples in this
section, actually uses rdargs to read its argument, and does nothing special with
the CLI input stream. It does, however, update the buffer pointed to by
cli.prompt (one of the CLI globals), which is the source of the prompt printed out
by the CLI at the beginning of its main loop. For example:

prompt "Tripos> "

3.8.2 The RUN command

Commands can be run in the background by means of the run command. run
just reads from the CLI input stream, copying the entire command line into a
buffer, ignoring command separators. This buffer is then incorporated into a
stream control block, and passed to a newly created CLI task as its standard
input stream. The new task runs at a lower priority than the main one, and in
“background” mode. In this mode, the printing of prompts is inhibited, and the

task deletes itself when its main input stream is exhausted. For example:

run copy filel to file2; delete filel; echo "Finished"

Note that, since the parsing of the command line is done by run rather than
by the CLI, the command separators are ignored, and the whole command line is
passed to a background task for execution. If the implementation of the CLI
changes, then the effect of the run command may also change, and a discussion of

this problem can be found in chapter 4.

3.8.3 The IF conmand

Commands can be run conditionally by means of the 1f command. if treats
the first set of arguments on the line (up to the command separator) as being its
own, and the rest of the line as being the commands to be obeyed conditionally.
It evaluates its own arguments, yielding a boolean result. On true nothing is
done, leaving the CLI to read and execute the rest of the command line normally. .
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On false, the rest of the command line is ignored (by repeatedly calling the BCPL
routine rdch), causing the CLI to start reading at the next input line. For

example:

if mctype 68000; type 68000-info

- 8.8.4 The REPEAT command

Commands can be run repeatedly by means of the repeat command. repeat
relies on a feature of the main CLI input stream—that a single command line is
stored as a single buffer. It is therefore possible to reset the buffer pointer back
to the beginning of the input line (by repeatedly calling the BCPL routine

unrdch), causing the CLI to re-read the entire command line. For example:

wait 10 mins; echo "Waiting ..."; repeat

3.9 Spooling

Spooling is simply the re-direction of program output (which would normally
be sent to the console) to some other device, for instance a disc file or a prinfer.
Spooling is possible under TRIPOS because of the two CLI output streams, and
the conventions adopted by most programs.

Under normal circumstances, the current output is the same as the standard
output, i.e. directed to the console. When spooling, the current output stream is
updated to point to the new stream—so long as each command follows the
convention that all output is sent to the CLI current output, it will all be
redirected to the device. After spooling, the current output stream is closed and
then set to be the same as the standard output again, restoring normality.

3.9.1 The SPOOL command

The spool command performs the function described above. Its argument is
the name of a file to which output should be redirected. This file is opened, and
selected as the CLI current output (after closing the previous one, if it was
already different to the standard output). spool without any arguments simply

closes the spool stream, and re-selects the standard output.

3.10 Command sequences

For the execution of a series of commands repetitively, command sequences
are required. Command sequences (or command commands) are simply files

containing lists of commands which would normally be typed at the console. .
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When executing a command sequence, the CLI takes successive commands from
the file rather than from the console, but with similar effects. It is here that the
two CLI input streams play their part. Under normal circumstances, the two
streams are identical, and refer to console input. When executing commands
from a file rather than from the console, the current snput is set up to be the file
stream. The CLI continues executing command lines from the file until the
stream is exhausted, at which point the stream is closed, and the current snput
once more becomes the same as the standard snput.

3.10.1 The T command

The t command has the effect described above. Its argument is the name of
the file from which commands are to be taken. The file is opened, and set up as
the CLI current input, carefully closing the previous one if it was different to the
standard input. The commands are then taken from the file exactly as if they
were typed at the console. As with the spool command, for t to work properly,
the command input conventions must be adhered to—as long as this is the case
though, what is contained in the file should be exactly the same as that which
would have been typéd at the console. For example, to compile a file, the

following command sequence could be constructed:

echo "Starting to compile"

bcpl file to obj.file

join obj.file obj.library as command
echo "Finished compiling"

3.10.2 The LAB and SKIP commands

Because of the intimate coexistence of the CLI and its commands, it is
possible to set labels within a command file, and skip forward to them. The lab
command simply ignores its arguments and returns—a null operation. Its
function is textual, since it is used by the skip command. The argument to skip
is the name of a label; the action of skip is to read the command file, searching
for a line beginning with the letters “lab” followed by the name of the required
label. This facility, in conjunction with the if command mentioned earlier,
makes it possible to construct command sequences which will work under

different sets of circumstances. For example:

if mctype 1si4; skip lsid
if mctype 68000; skip 68000

lab 1s8i4
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lab 68000

3.10.3 Parameters

One of the primary uses of command sequences is to be able to use
parameters, in other words, to write a general command sequence with the
ability to have the “circumstance dependent” parts filled in dynamically. For

example:

bepl bepl.<file> to obj.<file>

The above line defines a general command, which compiles a source file kept in
the directory bcpl, storing the resultant object code in the directory obj. The
name of the file is left as the parameter <file> whose value is not defined until

the command sequence is executed.

3.10.4 The C command

The ¢ command is like the t command, except that it allows the use of
parameters and parameterised command sequences like the one described above.
c, like t, takes its first argument as being the name of the file which is to be
executed as a command sequence. The rest of the arguments are taken as the
parameters which will be used to substitute the “gaps” in the command file.
Within the file itself, there are control records which are interpreted specially by
the ¢ command itself, and which are not passed to the CLI for execution. One of
these is the “.k” control record, which defines the format of parameters expected
by the command file. The argument to the “.k” record is a rdargs pattern. For

example:

.k file/a
bcpl bepl.<file> to obj.<file>
echo "File <file> recompiled"

3.10.5 Temporary command files

Apart from the obvious matter of parameter passing, there is one other major
difference between the ¢ and t commands. The t command transfers control,
initially from the console to a file, and then from one file to another. t never

returns, and so the following exé.mple would not actually work:

bcpl becpl.file to obj.file
t otherfile
join obj.file obj.library as command

The ¢ command however is defined to return, and this poses a problem. To -
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implement this sort of recursive call properly, a stack of input streams would be
required, whereas in reality there are only two—the standard input and the
current input.

The way that the call and return is implemented is as follows. When c is
applied to a file, it creates a temporary work file (in the directory “t:”), and
makes a copy of the file being commanded there, incorporating any parameter
substitutions. Included in the name of the temporary file is the task identifier of
the commanding task, so as to avoid name clashes with any other CLIs which
might also be doing the same thing. When copied, the new file is opened, and
selected as the CLI current sfnput, and execution continues as with the t
command. The “returning” effect is obtained by the following ploy—after
making a copy of the file being commanded, it continues to copy into the
temporary file until the old file is exhausted. The effect is that after executing
the commands which were in the command file, any remaining commands which
were left from the old file are then executed as well.

If c is called twice, the temporary file into which the new copy should be
made is also the current file from which commands are being taken. It can be
seen therefore that two temporary files are necessary, if the problem of the same
file being required for both reading and writing at the same time is to be avoided.

An extra piece of CLI assistance is required for the ¢ command which is not
required by t. To avoid temporary files being left in the “t:” directory after the
execution of a command sequence, the CLI has not only to close down the
command file when it is exhausted, but to delete it as well. To this end, there is
a buffer (pointed to by one of the CLI globals, cli.commandfile) which holds the

name of the current command file. This file is deleted when no longer required.

3.11 Return codes

When a loaded command returns, it can pass two return codes back to the
CLI. One is a “severity” code, and is used by the CLI to determine whether to
stop a command sequence prematurely. The second is a “reason” code, which
can be used, in conjunction with the why command, to print out a meaningful

message when an error occurs. If, for example, the command:

type bcpl.file

is executed, and the file bcpl.file does not exist, the type command stops with
return code 10 (meaning “hard error”) and reason code 5156 (meaning “file does
not exist”). The two return codes are stored in CLI globals cli.returncode and

cli.result2 respectively. As would be expected, the 1f command can be used to
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test the values of these globals. The conventional return codes are 5 (soft error),
10 (hard error) and 20 (total failure); these can be tested using if warnm, if
error and if fail respectively. A return code of zero implies success. The quit
command treats its argument as an integer, and simply returns to the CLI,
setting the return code to the value given. If run in non-interactive mode, quit
also skips the rest of a command sequence to ensure that the return is immediate.

Return codes have little meaning when in an interactive environment, but
when executing a command sequence, unless the user explicitly requests it, there
really is little point in continuing after one of the commands in the sequence fails.
The user can set a threshold at which the command sequence stops by using the
failat command. failat, like the other CLI commands already mentioned,
simply sets the value of one of the CLI globals, this time cli.userfasllevel.
Alternatively, using the 1f command, errors can be detected within the command
sequence. The following command sequence uses many of the facilities of the CLI
which have been described above, and shows what is possible using the very

simple facilities available:

.k file/a

failat 10

if mctype 1si4; skip 1lsi4

if mctype 68000; skip 68000

echo "Unknown machine type!"; quit 20

lab 1si4; bcpl bepl.<file> to lsi4.<file>; skip check
lab 68000; bcpl bepl.<file> to 68000.<file>
lab check

if error; echo "Error in compilation; quit 20
¢ link <file>

if error; echo "Error in linking"; quit 20
echo "Compilation and linking complete"

3.12 Evaluation of the CLI

It cannot be denied that the CLI is small, but its interface is far from simple.
From the user’s point of view, the facilities provided are crude and, although
usable, certainly not ideal. Most commands have the same kind of user interface
" and usually work in the same sort of way, but there are exceptions which may
cause confusion, particularly to novices. Because the arguments are read from
the input stream by the command, rather than being processed by the CLI, there
are ambiguities which are hard to resolve. For instance, consider the following:

input to filel; dinput to file2
blahl blahi blahi
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/%

blah2 blah2 blah2

/*
Simplistically, one might expect the blahi line to be stored in filel, and the
blah?2 line to be stored in file2. This is not the case, since the input command
first reads its arguments using rdargs, and then continues to read until the

terminator /* is found. The result is that filel contains:

input to file2
blahi blahi blahi

with the result that an attempt is made to load blah2 and /* as commands.
From the programmer’s point of view, the interface to the command language
interpreter is also far from satisfactory. Although he has total control, he must
exercise a great deal of self discipline and keep to the TRIPOS conventions, or
the results will be at best unpredictable, and at worst, disastrous. Ironically,
although each command has full access to the CLI environment, there exists no
interface for a command to call the CLI recursively in order to execute a
command line from within a program. This means that it is impossible to write a
new command language interpreter simply as a sophisticated pre-processor which
passes command lines to the simple CLI for execution. Anything which wishes to
act as a CLI in fact must totally replace the original, and because of the CLI
commands described earlier in this chapter, any new version must either re-
implement these commands or provide all the same interfaces to enable all the

old ones to continue to work.
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4. Enhancing the User Interface

4.1 Introduction

This chapter investigates the areas in which the corxmand language
interpreter described in chapter 3 can be improved, and in particular, how
facilities which make use of large amounts of memory can be incorporated, in
order to enhance the user interface. It shows how an existing command syntax
can be altered in such a way as to allow constructive program concurrency, and
discusses some of the problems associated with introducing enhancements to an
existing system.

Some of the work described in this chapter is quite heavily based on the
UNIX Shell [Bourne78] and C Shell [Joy80], since they have already tackled many
of the relevant problems. Because of its superficial similarity with the UNIX
Shell, the enhanced TRIPOS CLI has been called the TRIPOS Shell. This is
probably a misnomer, since the TRIPOS Shell is merely a sophisticated command
language interpreter, and not the all-embracing working environment of its UNIX
counterpart. In particular, the TRIPOS Shell does not include any sort of
programming language, as this facility is handled by the REX system, described in
chapter 5. Since the facilities provided by UNIX have proved so popular, there
was little incentive to design something new. In fact, providing a high degree of
compatibility actually has a great advantage in an establishment such as the
Cambridge Computer Laboratory, since many of its inhabitants spend much of
their time swapping between different systems in order to get their work done.

4.2 Areas of enhancement

Given the new generation of 68000 TRIPOS machines, some of the design
decisions, taken with respect to the smaller systems were beginning to look rather
conservative, to say the least. If memory is plentiful, then it is no longer
important to save store by having an extremely simple CLI, with the more
complex facilities being provided by loaded commands. The size of resident
programs becomes insignificant compared to the total amount of memory, and so
it is more reasonable to provide built-in facilities. It is also possible to keep
certain programs pre-loaded ready for use, and this technique is discussed in
chapter 6.

Because of the extra memory it is possible to have more resident tasks,

enabling much better use to be made of the available CPU power. Being able to
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have many resident tasks also aids the process of program design, since logically
distinct activities can be split, giving a higher degree of modularity. The ability
to have many resident tasks is only useful if the command language interpreter
makes it easy to run many jobs in parallel. Similarly, the command language |
interpreter must make it possible to connect tasks together, so that the output of
one becomes the input of another.

One way of improving a user interface to a command language interpreter is
to cut down the amount of typing necessary. The time when this is most
important is the case when a command line has been mistyped, since it is
irritating and inconvenient to have to type the whole line in again, just to correct
a small mistake. A command history and line editing facility can be added
simply to a command language interpreter, so long as the relevant interfaces are
present.

Another advantage which arises from the definition of a command history
interface is the ability to execute command lines which have not been typed
directly at the console. This means that it is possible for programs running under
the command language interpreter to call it recursively, passing to it a command
line to be executed. The existence of this interface makes it reasonable for the
user to provide a command pre-processor to handle any desired command syntax,
and means that it is possible to design a language which incorporates a command

execution facility.

4.3 Pipes

Experience with UNIX has shown that, given sufficient memory and CPU
power, with two tasks which are essentially serial in nature, much time can be
saved simply by connecting the output of one process to the snput of the other.
Using this method, maximum parallelism is achieved, without the added overhead
of spooling intermediate results to disc. A typical application is in the case of a
compiler and its language pre-processor. Here, the pre-processor is run on the
raw source, and the result is a file which is acceptable to the compiler. The
compiler uses the intermediate file, producing compiled code as the result.

The mechanism used to send the output of ome program to the input of
another program is the pipe. A pipe is essentially a pair of I/O streams, one
input and one output, which feed into and out of a buffer. The pipe writer
continues to write into the pipe until the buffer is full, at which point it is
suspended. The pipe reader continues to read from the pipe until the buffer is

empty, at which point it is suspended. The two tasks are therefore self- .
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regulating, in that if the writer produces too much output, then it is suspended
until the reader catches up. Similarly, if the reader consumes all its input, then

it is suspended until more output is produced.

4.3.1 UNIX pipes

The UNIX pipe system works well because of two, related factors.

Firstly, there is a simple programming convention that all programs, by
default, take input from the primary input stream, and send their output to the
primary output stream. (These streams are directly analogous to the TRIPOS
current input and current output streams described in chapter 3). In the UNIX
case, I/O streams are normally presented to a program implicitly and already
opened, whereas with TRIPOS, input and output files are presented to a program
textually on the command line, and therefore unopened.

Secondly, and as a result of the previous point, UNIX is able to make use of a
simple and powerful command syntax, where single characters can be used to
define primary input and output streams, and pipes connecting two processes.
<file means “take the primary input from file”, >file means “send the
primary output to file”, and commandl|command2 means “pipe the primary

output of commandi into the primary input of command2”. For example:

preproc <filel | compile >file2

runs the pre-processor command preproc which takes input from filel, and
pipes the output into the compiler command compile which sends its output to
file2.

4.3.2 TRIPOS pipes

The TRIPOS Pipe Handler was written originally by M. F. Richardson, and
like many TRIPOS facilities is implemented as a device, “pipe:”. Unlike UNIX,
the pipes are not anonymous, and must be given names by the user. Pipes of the
same name can then be opened for reading by one task, and for writing by
another task, at which point they work in exactly the same way as UNIX pipes,
with the output of one task being sent as input to the other task.

The pipe: device pre-dates the TRIPOS Shell by three years or so, but was
not in common use because there was no simple way of using pipes implicitly. All

pipe naming had to be explicit, as did the use of background tasks. For example:

run preproc filel to pipe:namel
compile pipe:namel to file2

When compared with the clarity and succinctness of the UNIX example above, it
is not difficult to see why TRIPOS pipes were little used.
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4.3.3 Pipe expressions

Given that pipes must have textual names, and that these names must
appear in their rightful position on the command line, a completely different
syntax to that of UNIX is appropriate. The most important point, is that all
arguments to TRIPOS commands are textual and are normally read using rdargs,
hence they must match some predetermined pattern. This means that, unlike
UNIX, pipe symbols cannot be treated as command separators (since the position
of the pipe symbol in the line is fixed) and so some other scheme must be devised.

Taking the previous example, the first stage in rationalisation is to remove
the need for the explicit call of run, and to replace the pipe name given by an

anonymous pipe symbol. The two command lines then become:

preproc filel to |

compile | to file2
This cuts down on the amount of typing necessary, but it is still of no use since
the two commands have not yet been joined in any way. To the user, sending
output to a program rather than to a file is easy to conceptualise—it is simply
the replacement of a file name by a program name instead. Under TRIPOS, one
way of doing this is to use syntax of the form:

preproc filel to (compile | to file2)

Here, the pipe symbol “|” of the first command line is just replaced by the whole
of the second command line. Note that delimiters, in this case parentheses, are
required in order to remove possible ambiguity over textual binding. Using the

same logic as above, the command line can also be re-written as:

compile (preproc filel to |) to file2

which is similar, except that the substitution of the pipe symbol has been done on
the second commangd line.

The commands within parentheses containing pipe symbols are called pipe
ezpressions. The TRIPOS Shell reads the single command line, and treats pipe
expressions specially. Firstly, the pipe symbol is replaced textually by a Shell
generated pipe name. The whole pipe expression is then extracted from the
command line, and is replaced by the same pipe name as that used within the

expression. Thus, taking the original example again, out of:

preproc filel to (compile | to file2)

the two resulting command lines are:

preproc filel to pipe:xxxx
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compile pipe:xxxx to file2

Pipe expressions are run as background tasks, with the main command running in
the foreground.

The syntax chosen has a couple of drawbacks. Firstly, because a pipe
expression can return at the most one result, only one pipe symbol per pipe

expression is allowed. This means that UNIX command lines like:

preproc <filel | compile | assemble >file2
cannot be represented as succinctly under TRIPOS, with the result of the

translation being:

preproc filel to (compile | to (assemble | to file2))

which is more complicated, and certainly less obvious. Secondly, because it is
impossible for the Shell to determine whether a command will open a pipe for
input or output (or just treat it as a piece of text), it cannot check for clashes,
and mistyping of a command line can cause total deadlock. Command lines such

as.

copy filel to (copy file2 to |)

are syntactically correct, but otherwise meaningless, since the same pipe name
would be opened for output twice. Having mentioned the problems, users have
not found the single pipe name to be a restriction, since TRIPOS commands were
never designed to make use of piping in the first place. Similarly, pipe deadlocks
are few and far between, and can be corrected by killing the pipes concerned, and
starting again. ‘

One pleasing outcome of the chosen syntax is that it is possible to have pipe
expressions which do not contain any pipe symbols. The result is that the
command within parentheses is executed in the background as before, but since
no pipe has been used, it is replaced by the null string in the original command
line. A simple command within parentheses is therefore identical to using run.

For example:

(copy filel to file2)

4.4 Command history mechanism

The command history mechanism is one of the most useful features of the
UNIX C Shell. In a conventional environment where commands are typed
interactively to a command language interpreter, there is always the very real
possibility that a typing mistake will be made, and the line will have to be re- \
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typed. Also, in such an environment it is quite likely that having executed one
command line, the next one will be very similar if not identical.

Many intelligent terminals keep a stack of recently typed lines, and provide
simple line editing facilities. This copes with both the above cases. Command
lines which are in error can be recalled, edited to correct the error, and then re-
transmitted to the host computer for execution. Similarly, command lines which
differ only superficially from recent onmes, can also be recalled, edited and then
executed. An obvious example of this type of terminal is the IBM 3270 series,
which provides not only local line editing, but local screen editing as well.

The principle of keeping a command history is to make use of the two simple
facts outlined above, and to provide a mechanism for their exploitation without
the need for an intelligent terminal. A command history is, as the name implies,
a collection of the most recently executed command lines, stored within the
command language interpreter. Special commands are then provided so that the
history may be interrogated, and individual command lines extracted for
modification and re-execution. For this to be a worthwhile feature, it must
obviously be less work to recall and edit a command line than to type it in again
from scratch. The character sequence to recall a specific command line must
therefore be short and accurate, and editing commands must be simple and easy
to use.

The syntax chosen to recall old command lines is exactly that used by the
UNIX C Shell. There were two main reasons for using a specification which
already existed, rather than inventing something original. Firstly, many
members of the Computer Laboratory were either using UNIX heavily in
Cambridge, or had used it heavily at their previous locations. For their sake, it
seemed perverse to produce a system which did the same thing, but in a different
way. Secondly, there would have been an argument for choosing another method
if the original one had proved inadequate, over-complicated or cumbersome.
Many of the C Shell facilities provided are indeed very complicated, but what
arose from talking to many C Shell users was that only a subset of the features
were actually in common use, and those which were did exactly what was
wanted.

In defining the syntax to be used for the TRIPOS Shell, as with any re-
design, those features of the old system which were deemed to be good were kept,
and those which were either never used or considered too complicated to use were
discarded. Having recalled a previous command line, it is possible to apply
simple editing commands to it before it is executed. Again, the syntax chosen is
a subset of that used by UNIX, but very little of the power is lost because of the '
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simplification. A description of the TRIPOS Shell command histéry mechanism

can be found in appendix 1.

4.5 Command execution

For the pipe expression and command history mechanisms to work, it must
be possible to take a series of command lines, and execute one in the foreground
and the rest in the background. It was at this point that the first real restriction
of the TRIPOS CLI was recognised, since it has no well defined program
interface—there is no way of being able to call the CLI from a program in order
to execute another command line recursively. Executing command lines in the
background is easy, since the mechanism of the run command is perfectly
adequate for them, but the foreground command presents something of a
problem.

There were three possible solutions to the problem, depending on the required
amount of compatibility with the old system. Firstly, if the Shell were to remain
as a program running under the standard CLI, then some other way of executing
the command lines would have to be found. Secondly, as an alternative to the
previous point, the standard CLI could be altered to add the recursive call
facility which would be required by the Shell. The third possibility, and the one
which was finally adopted because of problems with the other methods, was to
remove the old CLI completely, replacing it with something which both has the

required program interfaces and also handles the pipe ezpression syntax.

4.5.1 The command executor task

In an attempt to clean up the interface to the TRIPOS CLI, the command
ezecutor task, or cef, was born [Wilson83]. The principle of the cet was
simple—to provide a TRIPOS task with a well defined, packet level interface,
which would execute a command line, and on completion of the command, would
yield the final return codes. In other words, to abstract from the CLI the part of
the code which was involved with command execution, leaving just those parts
which deal with syntax analysis and command decoding.

This was exactly the interface required by the Shell—after parsing the main
input line, each resulting command line could then be passed to the cet for
execution, with an indication as to whether it should be run in foreground or

background mode. The two functions provided by the cet are as follows:

(id, priority) := setup( command )
(rc, result?2) execute( id, environment, foreground )
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In the first call, the argument to the cet function setup is simply the name of
a command. The cet loads the command into memory, and creates a separate
task in which the command will eventually run. The two results of the call are
the 1d of the newly created task, and the priority at which the task will run.

In the second call, the arguments of the cet function execute are the id of
the task to be executed (ome of the results of the setup function), a vector
containing the environment in which the command should be executed, and a
boolean flag stating whether the command should be run in foreground mode.
The two results of the call are return codes rc and result2, which resulted from

the execution of the command. The environment vector has the following entries:

° Stacksize—the size of the stack which the command should be given

. Arguments—the arguments to the command (the command line without
the command name)

o Input Stream—the current snput for the command

° Output Stream—the current output for the command

The environment to each new command is set up afresh just before command
execution, and any changes in the environment are not passed on to subsequent
commands. The concept of the cet is therefore much cleaner than the original
CLI, and in an ideal world, would have worked well in practice. So what went
wrong? The cet did work, after a fashion, but much of the existing system was

designed in such a way that its performance was never acceptable.

4.5.2 Command arguments

The first problem is one of command arguments. In chapter 3, the principle
of reading command arguments from the CLI current input stream was
explained. This in itself does not present too much of a problem to the cet—it is
easy under TRIPOS to construct an input stream control block which turns an
arbitrary string (e.g. the command arguments) into a stream which can be read
using rdch or rdargs. What does present a problem though, is that commands
are entitled to continue reading this stream in order to obtain the remainder of
their command input. In fact, as explained before, not only are they entitled to
do go, but TRIPOS programming convention defines that they should.

The new stream control block which must be constructed is now rather more
complicated. Not only must the command arguments be packaged up into the
buffer of the stream control block, but the replentsh function must be set up so
that, when the command line is exhausted, further characters are read from the

true current tnput stream instead.
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4.5.83 Type ahead
In order to minimise confusion when many tasks wish to read from the

console, TRIPOS has the concept of a current snput task. This is the task to
which input typed at the console is sent, and can be changed by typing the
“gSnn” command to the console handler, or from a program by sending a set
current input task request to the console handler task. All tasks other than the
currently selected one are suspended if they attempt to read from the console,
and are only re-activated when they themselves become the current input task.

It can be seen at once that the cet runs into difficulties here. To read the
initial command line, the current input task must be the Shell. When running
the foreground command, the current input task must be the task which is
running that command. This in itself is not a problem, since the console handler
provides the interface to switch input tasks.

The real problem arises as follows. The current input task cannot be changed
until the code for the command has been loaded and the new task corresponding
to it has been created. With large commands, there can be a delay of several
seconds between typing the name of the command, and the command being
loaded and ready to accept input. The result is that, after typing the original
command line, the user has no idea of how long he must wait in order to make
sure that items typed at the console will go to the command task rather than the
Shell task. Most programs which require console input write out a prompt when
they are ready (e.g. the edit command), but others (e.g. input) do not, so with
these commands, the user can never be sure whether what he is typing is having
the correct effect.

This is not the only place where the switch of tasks causes a problem. The
other major area which is affected is that of “type ahead”, that is the ability to
type future commands while the current command is still executing. This no
longer works if the current input task is altered, and the reason is simple. While
a command is executing, the current input task is the task which is handling the
command. Anything which is typed during the execution time of that command
is queued up for that task, remaining unread. When the command finally
completes, the current input task is set back to the original CLI task, for which
the type ahead was originally intended. The effect to the user is that the extra
commands he typed have been “swallowed” by the system, but the actual result
is more subtle than that. The nezt time that a command task is created with the
same task identifier as the one which had the type ahead input queued for it,
those lines will appear as though they were typed as data to that command.
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One way round this problem would have been, rather then keeping the queues
of input lines on a “per task” basis, to have just one queue, with only the current
input task being entitled to read the queued lines. For this mechanism to work
properly, the switching of current input tasks must be done synchronously (with
console commands being queued in the same way as other input). This removes
the benefit of being able to have multiple tasks, since a new task cannot be

activated until the old one has read all its input lines, and so was rejected.

4.5.4 Existing TRIPOS commands

Because the many TRIPOS CLI commands have such an intimate
relationship with the CLI itself, they tend to stop working when they are taken
out of their original context and put somewhere new. The cet brought out many
problems of this nature. For most commands, it is possible to imitate the CLI
environment enough for them to continue to work as before—the majority of
commands do not touch the CLI environment at all, and if they do, it is simply
to test the CLI “background” or “interactive” flags.

The problem arises with commands like prompt, t, spool and so on, which
rely on altering the CLI environment in order to work properly. If the commands
are executed in a task other than the main CLI, the results are harmless but do
not have the desired effect. Take for example the prompt command. This alters
the the buffer pointed to by cli.prompt, which is one of the CLI globals. This
buffer is local to each task, and so running the prompt command therefore alters
the prompt in the command task, not the CLI task, and so would appear to the
user to have no effect. More seriously, commands like t and spool cease to
work, since their effect relies on altering the CLI’s current and standard I/0
streams—these streams are also local to the command task, and so the real CLI

environment remains unaffected.

4.5.6 Conclusions

Although the command executor task is, in principle, a clean and simple way
of solving some of the CLI problems, many factors make its operation far from
ideal. Many of the problems described above can be overcome by introducing a
set of built-in commands, that is a set of commands which are interpreted
directly in the Shell itself rather than being executed by the cef; in this way,
commands such as prompt, t and spool can be made to work. Even when this
has been done though, the problems of not knowing which the current input task
is, and being unable to use type ahead, both add up to a system which is

frustrating to use and unpredictable in its results.
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4.6 Implementation of the Shell

Because of the problems outlined above, it is essential under TRIPOS for
foreground commands to execute as part of the CLI task. This, combined with
the fact that the old CLI provides completely the wrong interface to support a
new one built on top of it, leaves only one other possibility—to replace the old
CLI with a new one—the Shell. As will be seen later though, this replacement
must in essence be an augmentation, since there are so many existing commands
which make assumptions about the environment in which they run.
Unfortunately, in order to maintain compatibility for the user, these commands
must be accommodated in any new implementation.

In the original implementation of the CLI, there was the concept that all CLI
input—both command lines and data for the commands—came from the same
input stream. What was left unread on the command line by the CLI was
considered as data for the command, and vice versa. This effect is very difficult
to simulate if the main input stream is treated in a different way. With the pipe
expression and command history mechanisms described above, the Shell must

treat each command line as a whole. Consider the following example:

compare (typehex filel to |) (typehex file2 to |); echo "Done"

This is a single command line which would originally have been read from the
console, and possibly later extracted from the command history. When parsed,
no less than four separate command lines remain to be executed, two in the

background and two in the foreground.

4.6.1 Background execution

The mechanism of the run command is used when executing a command line
in background mode. Basically, console input is a meaningless concept for
background commands (since console input is always directed towards the
foreground task), and so it need not be provided. This fact simplifies matters
immensely. Having established the command line to be executed in the
background, the next step is to create a pseudo input stream from which the
background task will read its command line. Under TRIPOS, this is

straightforward—a stream control block is constructed with the following

parameters:

buf Buffer containing the command arguments
pos Zero (beginning of line)

end Number of characters in the buffer
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funcl  Zero (no replenish function)
func2  Zero (no deplete function)
func8  Zero (no close function)

The effect of such a stream is that the command line is read as though it had
been typed at the console, but since the replenish function is missing, “end of
line” is also treated as “end of stream”. After executing the single command line,
the background Shell will therefore detect “end of stream”, at which point it
closes down. The pseudo stream is closed (a null operation since the close
function is also missing), and the task then deletes itself.

To ensure that the storage used by the command line buffer is freed when the
pseudo stream is closed, two solutions exist. Firstly, a close function could be
defined which freed the buffer when it was called. Secondly, the storage for the
stream control block and the command line buffer could be allocated together as
one contiguous area of memory. No close function would now be required, since
when the stream control block was freed, the buffer (being part of the same piece
of storage) would be freed also. The latter is the simpler solution, and was the
one chosen.

Having constructed a dummy input stream, a new Shell task is created to
deal with it. All parameters from the main Shell are copied across to the new
one by a variety of means. The stack size for the Shell itself is a parameter to
the BCPL function createtask, and hence is passed implicitly when the task is
created. The size of the command stack and other dynamic parameters are
passed to the new Shell in the startup packet, that is, the first packet to be sent
to the new task just after its creation.

Fixing the global vector size for the newly created task is not quite as simple.
When a task is activated (when it receives its very first packet following initial
creation), the task segment list is scanned, and the global number of the highest
referenced global is found. This number determines the exact size of the global
vector for the new task, and must be set artificially high for a Shell, if it is to
cope with as many loadable commands as possible. The way the global vector
size is set dynamically is to add an extra entry to the new task’s segment
list—one which contains no executable code, but one which has its “highest
referenced global field” set to the desired value. Hence, when the task is
activated, it is this value which determines the size of the global vector, not the
highest referenced global of the Shell itself.

All of the Shell environment—the current working directory, the prompt, and
go on—are all passed to the task either as simple arguments in the task startup .
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packet, or as entries in the Shell environment vector, which is also passed. The

new Shell is, as nearly as possible, a clone of its parent.

4.6.2 Foreground execution

Unfortunately, execution of foreground commands is not so simple as the
background case. The main problem comes from the original design
decision—that command names, command arguments and command data should
all be read from the same input stream. Before describing some of the
contortions which must be employed in order to solve this problem, it is worth
saying how it might have been done differently, and why this solution was not
adopted instead.

By changing the definition of rdargs, it would be possible to take input from a
Shell buffer rather than from the current input stream. This buffer could either
be passed to rdargs as a parameter, or be accessible as a Shell global variable.
Adding an extra parameter to rdargs is, although the more general of the two
possibilities, not a good idea, since all programs would have to be edited to take
account of the new version. Using a global Shell buffer solves the simple case
where rdargs is used just to parse the arguments to a command, but does not
take into account the utilities which use rdargs to parse data files or interactive
input lines. These programs would have to be altered so that they stored the
relevant data characters in the Shell buffer, rather than relying on them being
read from the current input stream. Both possibilities require existing programs
to be modified, and would mean that compatibility with other TRIPOS
installations would be lost.

Given that the simple solution was inappropriate, another solution had to be
found. The requirements were as follows: it had to be possible to construct an
input stream for each command, which both contained the arguments to that
command and provided access to the main Shell input stream, in case the
command needed to read data from it. This in itsef was not particularly
complicated, after all, the command ezecutor task employed just such a method
in order to solve the same problem. Unfortunately though, this is not the
solution to the whole problem.

The general principle is the same as that originally designed for the cet. A

dummy stream control block is constructed with the following properties:

buf Buffer containing the command arguments
pos Zero (beginning of line)
end Number of characters in the buffer
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funci  Special replenish function

func2  Zero (no deplete function)

func8  Special close function

argl Pointer to the main Shell input stream control block

The properties of such a stream control block are that the command line will
be read normally (from the buffer provided), but if the command continues to
read from the stream, requiring input data, then the special replenish function is
called. The result of this call is to over-write the dummy stream control block
with the information held in the stored main stream control block. After doing
s0, a character is read from the saved stream, causing the real replenish function
to be called. Should the special close function be called, which is possible with
the ¢ and t commands, then the main stream control block is copied over the
dummy stream control block, as with replenish, and then the real close function
is called in order to free any allocated store. The command buffer used in the
dummy stream control block is also freed.

If the special replenish or close functions are called, then nothing need be
done to restore the status quo after execution of the command. If, however, the
dummy stream is not over-written by the standard stream, then this must be
done explicitly by the Shell. There are problems associated with this process, in
that it is possible for one of two things to have happened:

o If the endcli command had been executed, then the input stream
parameters would have been patched, so that end of file would be
encountered on the next read operation.

. If the t or ¢ commands had been executed, then a new Shell current
input stream would have been created.

Either way, the stored stream control block cannot simply be copied back
over the dummy stream control block indiscriminately, and the algorithm
adopted must depend on the state of the current and standard input streams
before and after command execution. On closer inspection, it is clear that only
two situations are actually possible.

If the Shell were running in “normal” mode, in other words, not running a
command file, then before execution of the command, both the standard and
current input streams will be the same—they will point to the dummy stream.
After execution, then, assuming the standard stream has not been patched by
endcli, the dummy stream should be copied over it. The only possible change is
that the current stream will have been replaced with a new stream, by the t or ¢

commands.
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If the Shell were running a command file, then before execution of the
command, the standard and current input stream will be different, with only the
current stream pointing to the dummy stream. After execution, there cannot
have been any change of state in the streams, since this would have been
reflected by a call of either the special replenish or close functions. Assuming
that the current stream has not been patched by endcli, the dummy siream

should be copied over it.

4.6.3 Shell search paths

One of the inadequacies of the old TRIPOS CLI was that it only searched
two command directories in order to locate loadable commands. First, the
current directory was searched, followed by the main system command directory,
usually “sys:c”. The Shell searches two other directories as well, thus allowing
user command libraries to be set up.

The mechanism used is the directory assignment, in other words, an entry in
the assignments list which refers to a disc directory rather than to a mounted
device. The advantages of using directory assignments are that, firstly, access to
the assignments list is quick, and secondly, directory assignments can be set up
and changed easily by means of the assign command. The order in which the

directories are searched by the Shell is:

. The current working directory

o The directory referenced by “COM1:”, if any
. The system command directory

. The directory referenced by “COM2:”, if any

It is therefore possible to have user command libraries which either do or do
not over-ride the system command directory. Also, by taking advantage of the
“DIR:” device (see chapter 6), assignments can be made to groups of
concatenated directories, thus “COM1:” is in fact a set of directories which are
searched before the system command directory, and similarly for “COM2:”.

As part of its interface with the REX interpreter, the Shell also searches the
current working directory, and the assignment “REX:”, in order to find REX
programs. This mechanism is discussed in more detail in chapter 5.

4.6.4 Built-in commands
As described in chapter 3, the original TRIPOS CLI had no built in
commands, but achieved the same effect by allowing loaded commands to update

its data structures. When the original design was done, 20 global slots were
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reserved for CLI data structures, and then each global was allocated to its
specific task, leaving no room for expansion.

The Shell has many more data structures than the old CLI, but in order to
keep compatibility with programs written for the old system, it must maintain
the CLI globals as before. This means that some of the Shell data structures are
accessible via these system globals, but other structures are only accessible
through the Shell’s own private globals. As explained above, the Shell saves its -
entire environment while executing a loaded command. The result of this is that
the commands which alter the Shell data structures not in the system area, must
therefore be local to the Shell itself. Those which fall into this category are
termed “built-in commands”.

The number of built-in commands has been kept to an absolute minimum.
Those which are provided either manipulate the Shell data structures, or over-
ride loaded commands which make invalid assumptions about the Shell
environment. These assumptions are where particular details of the old CLI
environment have been exploited in order to give a special effect. There are two

areas where this is the case—command line parsing, and global vector allocation.

4.6.56 Command line parsing

One of the major differences between the CLI and the Shell is the place where
the splitting of the command lines into their constituent commands is done.
When running under the CLI, it is up to each individual command to leave the
main CLI input stream in a state fit for the next command. Hence there are no
enforced breaks in command lines, and there is nothing to stop individual
commands reading beyond command separators. Three commands which rely on
this fact in order to function properly are run, repeat and if. Specifications of
these commands can be found in chapter 3.

Under the Shell, command lines are read as whole entities (so that they might
be stored in the command history), and then subsequently parsed, and split into
their individual commands. Taking an example, the difference in the effect of the

two systems can easily be seen:

run copy filel to file2; delete filel; echo "Finished"

Under the CLI, the effect is to create a background task which runs the copy,
delete and echo commands in sequence. Under the Shell, the whole command
line is split into three separate commands: run, delete and echo, which would
then be executed in sequence. The side effect of the run command is to create a
background task which runs the copy command. Note here that, not only are the

semantics of the command line different in the CLI and Shell versions, but the
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overall effect may be catastrophic. If the delete command begins execution
after the background copy command, then the delete will fail, since the object
filel would already be in use. This is not the effect wanted, but is however,
harmless. Alternatively, given that the background task is of lower priority than
the foreground Shell, it is likely that the delete command will actually begin
execution before the background copy command—the result being that filel is
deleted before it is copied, and any information held in filel is lost.

The repeat and if commands suffer the same problems as the run command,
and all three must be handled specially. For that reason, they are included as
built-in commands, where it is possible for them to access the command line

before it is split into its constituent commands.

4.6.6 Global vector allocation

One of the reasons that loaded commands are executed as coroutines of the
CLI or Shell is so that the size of the BCPL stack given to the command can be
set dynamically. Unfortunately, things are not quite so simple with respect to
the global vector. The loaded command and its parent CLI or Shell share the
same global vector, the size of which is determined by the TRIPOS kernel at task
creation time. Although the global vector size is set to be fairly large (currently
600) there is always the possibility that certain commands will require a global
vector larger than this. The Cambridge Rainbow Group, for example, use a
modified version of the BCPL run time library [Wilkes82] which calls for a global
vector which is double the default size.

Under the old CLI, the problem of changing the global vector size was tackled
in a cunning, if rather inelegant manner, by means of the globals command.
The command worked as follows. First, all the relevant CLI parameters stored in
the global vector were extracted, and put into a TRIPOS packet. This packet
was then sent to the CLI task, leaving it enqueued on its work queue. After
saving this information, the “highest referenced global” field of the CLI code
segment was patched to reflect the new required global vector size, and the main
CLI input stream was closed prematurely. The CLI, being unable to read
commands from the closed stream, shut itself down. The stack and the global
vector were freed, and the task state was set to “dead”. However, since the CLI
had sent itself a packet before.committing suicide, it was then immediately re-
activated by the kernel scheduler, with a new stack and global vector. This time,
the global vector size was the value patched into the “highest referenced global”
field, and so the globals command effectively returned, having fulfilled its

purpose.
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For this mechanism to work properly, an intimate knowledge of the the CLI
function and data structures was required, and this knowledge is unfortunately
no longer valid when running under the Shell. The globals command must
therefore be over-ridden by a built-in equivalent, which works in a slightly
cleaner, if less machine-independent way. The Shell version of the globals
command simply allocates a new vector of the required size, and then cdpies the
values from the old global vector into it. A small machine code subroutine is
then called, which has the effect of updating the BCPL “G” register (the
processor register used for global references) to point to the new global vector
rather than the old. The old global vector is then released to the free pool, and

execution continues with the new global vector of the required size.

4.6.7 Other built-in commands

The rest of the built-in commands exist because they manipulate Shell data
structures, and hence cannot be implemented as loaded commands. These
commands fall into three main categories. The general commands deal with the
local Shell environment, allowing the command history to be investigated and
Shell options to be altered. The directory commands deal with the manipulation
of the directory stack mechanism, and allow directory environments to be saved
and restored. A description of the general and directory commnds can be found
in appendix 1. The third category of command, in other words those which

interact with the REX language system, can be found in chapter 5.

4.7 Summary

The TRIPOS Shell is much enhanced version of the old command language
interpreter, and incorporates many of the good ideas from the UNIX Shell and C
Shell. More importantly, the TRIPOS Shell has tidied up many of the earlier
design inconsistencies, and now provides a much cleaner user interface. As far as
possible, compatibility between the Shell and the CLI have been maintained, but
where this is impossible, built-in commands have been provided to over-ride the
old commands which would not work under the new system.

An extension to the TRIPOS syntax has been defined, which provides a
simple and convenient way of using concurrency, with pipes being used to
connect different tasks. As a result of the change of syntax, a different technique
for the execution of foreground and background tasks was developed, and through
this it became possible to execute command lines without requiring them to be
typed at the console. The command history mechanism uses this technique to

keep a set of recently executed command lines, allowing them to be recalled and ‘
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edited.

Because of the work on command execution techniques, it became possible for
programs to call the Shell recursively. The effect of this is to allow the user to
provide a command pre-processor which handles any desired syntax, without the
necessity for the whole of the command environment to be re-implemented. It is
this interface which the REX command and programming language uses, and more
details can be found in chapter 5.

In conclusion, the TRIPOS Shell is, although more complicated than the CLI,
more convenient to use, and much more productive for the experienced TRIPOS
user. Furthermore, in conjunction with the REX language system and the devices
described in chapter 6, it has been possible for the user to take advantage of the

more powerful CPU and much larger memories of the new TRIPOS machines.
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5. A Command Programming Language

5.1 Introduction

In traditional operating systems, much work has been expended to add simple
programming language features to command language interpreters, so as to
enable the user to construct command sequences. These languages tend to be
unstructured and ugly and provide only very basic facilities, such as the
conditional execution of commands and simple variables. If looping constructs
are provided, then they are generally of a very crude nature. Above all, the
programs written in traditional command languages are virtually unreadable by
anyone other than the original author. Examples of this type of command
language are those for IBM’s Conversational Monitor System [IBM72,
Stephenson73] and UNIX [Mashey76, Bourne78, Joy80].

As an alternative to a simple command language, it is possible to use a macro
language as a pre-processor for command lines, and this was the approach
adopted in MXEC [Ash81]. There is nothing wrong with the idea of using macros
to tailor a command environment or to execute groups of commands, but macro
languages tend to be even less readable than command languages, and it is
difficult to include a sensible control structure which includes conditional
execution and iteration.

This chapter describes the REX command programming language, which
tackles the problem in a somewhat different manner. Rather than adding
programming language features to a simple command language, it turns the
problem around, and adds command execution features to a powerful interpretive
programming language. By adopting this approach, it is possible to have all the
advantages of a language designed for general programming, with the added
benefit of having a clean and well defined interface to the command language
interpreter, enabling command sequences to be constructed simply and easily.
This approach is similar to that taken by IBM’s REXX [Cowlishaw84] except
that the IBM language is designed primarily for teaching, and is very heavily
based on PL/1.

The main aim of this work was to investigate the features which would be
required in any language to be used for both command sequences and general
programming. The Cambridge TRIPOS environment was ideal for this type of
work for two main reasons. Firstly, through the enhancements made to the

command language interpreter (described in chapter 4), there already existed a
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system which possessed the necessary interfaces for the development of a
command language. Secondly, the Cambridge TRIPOS community was large and
active, with many sophisticated users who were themselves involved in research.
This meant that there were many people who were prepared to try out new
ideas, and more importantly, to give intelligent feedback and make constructive

criticisms.

5.2 Motivation

The motivation for the work described in this chapter came from two distinct
areas.

Firstly, TRIPOS lacked a language in which small “throw-away” programs
could be written easily. The term “throw-away” as used here should not be
confused with the technique of throw-away compilation [Brown79], where parts of
a program are compiled when required, and the compiled code discarded when
memory becomes scarce. It is used to describe the type of program, usually very
short, which is written quickly for a single application and then discarded when
no longer required. The only language available on TRIPOS for such work was
BCPL, which although ideal for systems programming, was hardly the right
language to use if it was wished to make a program correct first time. It is easy
to write nonsensical programs, and there is little in either the language or the run
time library to help with such things as string manipulation—one of the facilities
which would be required when writing throw-away programs. Also, BCPL is a
compiled language, making the “edit, compile, debug” loop fairly slow.

Secondly, TRIPOS lacked a decent language in which to write command
sequences. Chapter 3 has shown that, with clever use of the c, t, lab, skip and
if commands, it is possible to write reasonably complex command sequences.
Unfortunately, the language is unstructured, difficult to read, and since
everything is implemented using disc I/O and loaded commands, it is relatively
slow to execute. Even though it is possible to speed up the execution of
command sequences by keeping the relevant commands pre-loaded (see chapter

6), this does not help the structure and readability of the language.

5.3 Requirements

Before designing designing any new language, particularly one which must
fulfil two functions, it is necessary to investigate the requirements of the
language. In fact, even though conventional systems separate command and

throw-away programming languages, there is very little difference between the
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two types of application, and it is possible to draw up a list of requirements for a

language which can satisfy both.

o It must be easy to learn by beginners and experts alike

) It must be possible to write programs quickly

. It must be easy to read by someone other than the programmer

. It must have good input/output facilities

. It must have a good control structure

° It must have good string handling facilities

. It must have a clean and simple interface to the operating system
. Above all, it must be easy to get programs right first time

The aims of the REX project were to design and implement such a language,
and then to incorporate it into the TRIPOS Shell in such a way as to make
command sequences and throw-away programs easy to produce and fast to

execute.

5.4 General philosophy

The list of requirements given above already defines many of the facilities
which the language should have. The fact that it should be easy to learn and fast
to write in implies that the language must be small, with only a few powerful
constructs. The fact that it must be easy to read implies free format input
layout, long variable names, character case equating wherever possible, and the
ability to use procedures in order to modularise programs. The fact that it must
be possible to get programs right first time implies a tolerance of user error which
is not normally seen in other programming languages. For ease of use, it should
be possible to use variable names without declaring them explicitly, and variables
must be capable of having a data type which might change dynamically during
the running of the program.

The first major design decision to be taken was whether the language should
be compiled or interpreted. With a compiled system, the programs would run
fast, but things like error handling and dynamic data type coercion would be
difficult to implement, and would require a large support library. Conversely,
with an interpreted system, execution speed could be sacrificed in order to
improve the ease with which error handling and data type coercion could be
implemented. In addition, with an interpreted system, it would be easier to trace

the execution of a program, and hence improve the debugging properties. Since ,
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execution speed is not a major issue in either of the two types of language, an
interpreted system was chosen, with the added bonus that the interpreter would
be portable onto other TRIPOS machines.

5.5 The REX language

The syntax of REX has many similarities to other languages, in that it has
variables, arrays, procedures, conditional statements, loops and so on. Many of
the facilities provided are new, and these are discussed in detail later in this
chapter. The language itself is described fully in appendix 2.

As an indication of the power of the REX language, included here are two
short examples showing how it can be used. The first example is a command
sequence, and corresponds to the rather ungainly example in chapter 3. The
second example is less practical, and shows how the classic “Towers of Hanoi”
problem can be programmed in REX. Although they are both rather contrived,
they give an insight into what REX programs actually look like, and what they

capable of in practice.

5.5.1 Simple command sequence

$ Example 1: Command sequence from chapter 3

proc run( command ):
obey command
if rc "= 0 then
exit( rc, command )
fi
corp

if ~rdargs( args, "file/a", file ) then
exit( 20, "Bad arguments:" args )
fi

if mctype = "1si4" | mctype = "68000" then
run( "bcpl bepl."||file "to" mctypel|"."|[file )
run( "1link" file )

say "Compilation and linking complete"
else
exit( 20, "Unknown machine type:" mctype )
fi
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5.5.2 Towers of Hanoi

$ Example 2: Towers of Hanoi

proc move( disc, pegl, peg2, peg3 ):
if disc > 0 then
move( disc-1, pegl, peg3, peg2 )
say "Move disc" disc "from peg" pegl "to peg" peg2
move( disc-1, peg3, peg2, pegl )
fi
corp

move( 4' "A"‘ "B"' "C" )

5.6 Language issues

On the face of it, the REX language appears very similar to many in the
ALGOL family. This is true to a certain extent, since the purpose of this
research was not to investigate syntax design per se, but more to look at the way
in which the language was used in practice, and what facilities it must have in
order to meet its requirements. Because of that, relevant keywords and
constructs have been adopted from other languages—for example, “break” and
“loop” come from BCPL, “skip” from ALGOL68, “dim” from BASIC, and “||”
from PL/1.

Apart from the obvious superficial similarities with other languages, REX
introduces many new features which were designed specifically for throw-away
programming and the writing of command sequences. It is in these areas where
REX diverges from both command and programming languages, and it is the

principal differences which are discussed in this section.

5.6.1 Data typing

REX is, like many other programming languages, strongly data typed.
Languages such as ALGOL68 [VanWijngaarden76] , PASCAL [Wirth74] and so
on insist that every variable carries with it an associated data type, the usage of
which is checked for consistency by the compiler, and faulted if there is a data
type mismatch. In such orthodox languages, it should be noted that all data type
checking is performed at compile time, with each object’s data type being fixed
once declared. In the case of arrays, all elements of the array are assumed to
have the same data type, and the concept of records is needed to encompass

array-like structures which employ a selection of different data types.
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REX differs from conventional languages on all these important points.
Firstly, variables do not have to be declared explicitly—they simply come into
existence the first time they are given a value. Secondly, once a variable has
been given a value (along with its associated data type), not only may the value
of the variable change throughout the running of the program, but the data type
may change also. Thirdly, the data type of an array variable is simply array, not
array of X, which is what would be required in other languages. Each element of
an array acts in an identical manner to a simple variable, being capable of taking
on any value and data type. Fourthly, since the data type of variables, array
elements and so on, are not actually known until run time, all data typing and
coercion is done then, rather than when the program is loaded from disc.

REX has eight possible data types, each of which are used in certain specific

circumstances. The data types are:

. number

. string

o bool

° proc

o array

. tnput channel
. output channel
. nil

Some of the values are capable of being coerced into other data types with
little problem—the number 1234, for example, can easily be be coerced into the
string "1234", and vice versa. Other data types are more specialised, and cannot
be coerced so easily. For instance, there is no obvious way of coercing snput
channel to anything else.

The internal representation of each of the data types is quite heavily
determined by the underlying BCPL implementation language. The precision of
objects of type number, for instance, is determined by the size of the BCPL
word—32 bits on a 68000, Similarly, REX strings are implemented internally as
BCPL strings, and hence are represented as blocks of bytes in memory, with the
first byte holding the string length. The maximum length of objects of type
string is therefore determined by the size of the BCPL byte—normally 8 bits,
giving strings of up to 255 characters. Objects of type bool are simply
represented by the BCPL truth values true and false.
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The other data types, excepting nil, which has no associated value, are
represented as pointers to more complicated data structures. Data type proc is
represented by a pointer to a procedure definition block, which holds pointers to
the list of formal parameters for the procedure, and a pointer to the main
procedure body. Data type array is represented by a pointer to an array control
block, holding the dimensionality of the array, the subscript lower and upper
bound values, and pointers to the constituent array elements. Finally, data types
snput channel and output channel are represented by pointers to I/O control
blocks, which hold flags giving the channel’s type and status, and a pointer to the
BCPL stream control block representing the I/O stream itself.

5.6.2 Arrays and array elements

Arrays in REX are simply matrices of up to five dimensions, where each
element of the array is entirely independent and acts in exactly the same way as
a normal variable. This means that each array element has its own associated
value and data type, which can change dynamically throughout the running of a
program.

Arrays themselves are handled in a rather unconventional manner. In
orthodox languages, allocating an array of, for example, 100 by 100 elements,
would cause 10,000 units of memory to be allocated, where each unit was capable
of holding an object of the array data type. REX approaches the problem
somewhat differently, in that it works on the assumption that most arrays are
either very small or very sparse, and that there is no point in allocating storage
for array elements which are not going to be used.

Because of the decision to use sparse arrays, the strategy adopted for
accessing array elements cannot simply be direct lookup, with the address of an
element being calculated by multiplying the relevant dimension bounds and array
subscripts. The method used in fact is one of hashing. On each array access,
first the dimensionality of the array is checked against the number of subscripts
given, and an error flagged if there is no match. Next, each of the subscripts is
compared in turn with the lower and upper bounds of the relevant dimension,
and if out of range, the access is rejected. Having validated the number and
values of the subscripts, a hashing function is applied to them, and the resulting
value is used to index a hash table of array elements. Each array element with
the same hash value is linked on a chain from the hash table, and this chain is
then scanned for an element with exactly the right subscript values.

The size of the hash table is set according to the number of elements in the

array. If the number of elements is less than some pre-defined maximum .
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(currently 100), then a hash table of that size is chosen. Arrays with greater
than this number of elements have a hash table of the maximum size. It should
be noted here that, since only those array elements which are actually defined
have an entry in the hash table, access speed is defined not by the size of the
array, but by the density of its utilisation. Obviously, if a 10,000 element array
had all of its elements defined, then the chains of array elements hanging from
the hash tables would, on average, be 100 items long. Access time would indeed
be slow on such an occasion, but it is doubtful whether a program which required
such facilities should be written in REX anyway. In practice, arrays are typically
either small or sparse, and so the problem does not arise. For most applications,
where the number of defined elements is less than the maximum size of the hash
table, the correct array element is usually found as the only item on its hash
chain.

It is arguable that, for small arrays, it would be better to arrange to use a
linear vector rather than a hash table, as this would improve performance. By
observation, it was found that the majority of array access time was being taken
not in chaining down the hash table list, but in checking the dimensionality and
values of the array subscripts before chaining even began. These checks would be
just as expensive, no matter what the method used to access the array data

structure, and so the single hashing method remained the one used.

5.6.3 Records and other data structures

One of the principal differences between REX and other data typed languages,
is that individual array elements can each have a different data type. This fact
makes REX arrays much more like multi-dimensional records in a conventional
sense, and like records, REX arrays can be used to build arbitrary data structures.
The fact which makes this possible is that the dim and table statements each
have the property of allocating a new array from the heap. Since array pointers
can be copied by using assignment statements, or by returning them as results
from procedures, dim and table can be treated exactly like the “new” operation
in PASCAL, or the “HEAP” generator in ALGOLG68.

Since each element in an array can have any value or data type, there is
nothing stopping arrays from referencing themselves or other arrays, in order to
create chains, trees, directed graphs and so on. The following fragment of code
creates a chain of LISP like nodes, where the first node element is a number, and

the second node element is a pointer to a chain of other numbers smaller than it.
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proc makechain( number ):
if number > O
then result table number, makechain( number-1 ) °
else result nil
fi ‘
corp

chain := makechain( 10 )

Just as chains can be created and manipulated easily, so can trees and other
complex data structures. The following fragment of code prints out a tree of

sorted items in ascending order.

proc printtree( tree ):
if +tree = nil
then return
else printtree( tree[ 1] )
say treel 2 ]
printtree( treel 3 1)
fi
corp

printtree( root )

In the above examples, it has been shown that it is easy to create relatively
complex data structures, and to manipulate them in a simple and clean manner,
just by using arrays. The user is unaware of the problems of storage allocation
and pointer arithmetic, and since all data type and array bound checking is
performed at run time, the interpreter can pick up any error state, such as
following a non-existent pointer or using an array subscript which is out of

bounds.

5.6.4 The necessity of NIL

The data type nil is necessary because there must be some way of
representing the “null pointer”, and other special values. It would have been
possible to implement null pointers in a different way, simply by re-defining the
equality operators “=” and “~=", so that they would work for objects of type
array, as well as for numbers and strings. In this way, the user could easily
define an array which he uses to represent the null pointer, and then using the
newly extended comparison operators, check for this special value.

This solution was not adopted, since there are several other occasions when
special values are required, usually to indicate some sort of error condition, and
in those cases it would not be quite so easy to have a user defined value. One

example of this is the result returned by the I/O functions openin and openout,
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if they fail to open the file given to them. Using the same principle as put
forward for the array case, it should be possible to enhance the equality operators
still further, so that they work for data types input channel and output channel
as well. This is of little use though, since there is no simple way of generating
the special value with which to do the comparison later. The only way it could
be done would be to have two variables, one an snput channel, and the other an
output channel, referring to streams, the opening of which is guaranteed to fail.
This is not only untidy and inelegant, it is also prone to error, since operations
very rarely fail when this is required of them!

The solution adopted is much more general, and applicable to the two cases
outlined above, along with more besides. If a new data type, nil, is created, for
which the equality operators are defined, then it is possible to provide null
pointers and other special values easily. The major difference between nil and
other data types is that ni has no associated value, and the comparison
performed by the equality operators is a comparison of data type, not of data
value. nil can, therefore, safely be compared with any object of any data type,
and will only return true when compared with itself. The openin and openout
functions return nsl when the “open” operation fails, and the rdargs function
returns ntl for undefined data values, to distinguish these from the null string.
nil is not only necessary in order to implement REX data structures properly, but

also simplifies many of the other situations when a special value is required.

5.6.5 Procedures

One of the design requirements of REX was the ability to write readable,
modular programs. One way of improving both readability and modularity, and
at the same time, increasing the power of the language enormously, is through
the use of procedures. As with the data type and array mechanisms described
earlier, REX implements procedures in a rather unorthadox way.

In other strongly typed languages, such as PASCAL or ALGOL, because the
data type checking is performed at compile time, it is necessary for the syntax of
these languages to reflect, when a procedure is defined, whether the procedure
returns a result, and if so, what the data type of that result is. This introduces
the distinction between subroutines and functions which all major programming
languages have. Apart from unchecked languages like BCPL, it is impossible
normally to treat a procedure on one occasion as a subroutine, and on another
occasion as a function.

REX removes the distinction of subroutines and functions from the declaration

of a procedure—all procedures have data type proc, and are declared using the .
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proc statement. There are three ways of returning from a procedure. It is
simply possible to complete execution of all the statements in the procedure, at
which point the procedure returns without passing back a result. Explicit return
from a procedure is obtained by using the return or result statements. return
has the same effect as before, in other words, returning to the caller without
passing back a result. result, on the other hand, takes as its argument an
arbitrary expression, which is evaluated and passed back to the caller, along with
its associated data type.

Because of the fact that procedures may or may not return a result,
procedure calls are valid, either as simple statements, or as parts of expressions.
When a procedure call is made, the REX interpreter makes note of the context of
the call, which defines whether a result is required or not. On return from the
procedure, either implicitly or explicitly, the interpreter compares the
requirement for a result against the fact of whether or not a result has actually

been provided, trapping the error condition if there is a mismatch.

5.6.6 Parameter passing and variable scope

When a procedure call is made, each of the parameters in the parameter list
is evaluated, and the value and data type are assigned to the corresponding
formal parameter variable. A check is made at this point that the number of
parameters given matches exactly the number of parameters expected, and if not,
the operation is aborted. As with the definition of the procedure itself, there is
no necessity to define the data type of the formal parameters in the syntax of the
declaration, since they will be taken dynamically, depending on the values and
data types of the actual parameters.

All variables in REX which are defined, are given entries on the vartable stack.
When executing the main part of a REX program, all variables share the root
stack. When a variable is used in an expression, the stack is scanned from top to
bottom, and if the relevant variable is found, its value and data type are
returned. If the variable is not found on the stack, then it does not have a
defined value, and hence the condition should be flagged as an error. When
updating a variable, either explicitly by using an assignment statement, or
implicitly by using prompt, read etc., again the variable stack is scanned in a top
to bottom manner, and if the variable is found, its value and data type are
updated accordingly. In this case, however, it is not an error to reference an
undefined variable, since it is through assignment that variables become defined
in the first place. If a variable does not already have an entry on the variable

stack, then a new one is added at the top of the stack, in which is stored the new .
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value and data type.

In this way, variables become defined as they are used, and the amount of
time taken to look up the value of a variable is proportional to the number of
items on the variable stack, which for short programs is fairly small. All
variables defined on the root stack, therefore, have global scope while executing
anywhere in the main program, with the only restriction being that a variable
must be defined before it is used. Note that, because of the lack of a variable
declaration syntax, it is impossible for 1f and do clauses to have variables of local
scope, but owing to the nature of programs written in REX, in practice this is not
a restriction.

When it comes to procedures, the variable stack is handled slightly
differently. The current top of the variable stack is stored internally by the
interpreter, and this point now becomes the base of the procedure stack frame.
Each of the formal parameters of the procedure is then assigned the value and
data type of the corresponding actual parameter, the effect of which is to create
new items on the stack for these variables, within the current stack frame. If one
of the formal parameters has a name identical to a variable defined in a previous
stack frame or the root stack, then the previous entry remains untouched.

During the running of the procedure, variables used in expressions are
handled in exactly the same way as before. The entire stack is scanned from top
to bottom, and the first entry found which matches the variable is the one used.
In this way, formal parameters are found before any variables in previous stack
frames which might have the same name. Dynamic free variables, in other
words, variables which have been defined in previous stack frames, are available
to this procedure, and because of the way the variable stack is scanned, the effect
is what one might expect, with the most recently defined incarnation of a
variable being the one actually used.

It should be noted here that this mechanism is different to the one adopted
by languages which perform data type and variable scope checking at compile
time. In languages such as PASCAL and ALGOL, the scope of dynamic free
variables is set during compilation, and is restricted by the nesting of procedure
declarations. Unless one procedure is declared as being local to another, there is
no way that the variables of the outer procedure can be touched by the other.
The only exception to this rule is the “main program”, which acts as though it
were a large procedure within which all others are declared. The result is that
variables declared within the main program are therefore accessible to all other

procedures, and therefore have the effect of being global.
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The mechanism adopted by the REX system is rather different, and is much
more akin to the LISP association list strategy. The scope of variables is defined,
not at compile (or in this case, syntax analysis) time, but when the program is
actually executed. The result of this is to make the scoping of variables c{ynamic,
and depend on the order that procedures are called, rather than the way in which
they are declared. This is subtly different to the standard practice, and is only
possible, as in LISP, because all the variable declaration and data type checking
are performed at run time.

Assignment to variables while within a procedure is handled in a rather
different manner. Formal parameters to the procedure are defined as being local
to that procedure implicitly, since new entries for them are always created at the
base of the new stack frame. Given that REX has no primitives to enable
variables to be declared explicitly (rather than simply being assigned to), only
the formal parameter variables would be local in scope and could be updated
without fear of corrupting variables defined in previous stack frames. In order to
alleviate this matter, when a variable has a value assigned to it within a
procedure, rather than scanning the entire stack to find a variable entry, only the
current stack frame is scanned, with a new entry being added at the top of the
current frame if necessary. In this way, any variable which is assigned to within
a procedure, either implicitly in the case of formal parameters or explicitly in the
case of assignment statements, is always local to that procedure, and hence
cannot corrupt variables of the same name defined in previous stack frames.

From the user’s point of view, this mechanism is simple to use, and is almost
always what is wanted. He sees it as though the most recent version of all
defined variables are copied into the new stack frame whenever a procedure
starts, and from then on, all variable access within that procedure is local to it.
Since actual parameters are evaluated before being passed to a procedure, and
altering the formal parameters while in the procedure affects only the local
environment, the effect to the user is that of simple “call by value”, with read
only access to all dynamic free variables.

Because of the strategy employed here, it is not possible to have global
variables, since each variable acts as if it were local to its particular stack frame,
including those defined on the root stack. There are, in fact, only two ways in
which procedures can affect the external environment. Firstly, they can of course
return a result to the caller, and no restriction is placed on the value and data
type of this result. Secondly, they can update external array elements.

Arrays are represented simply as pointers to array control blocks, and so

finding the root of an array is simply a matter of looking up the array name in ‘
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the variable stack—a read only operation. Having once found the root of the
array, elements of the array can be updated easily, and since an array element
update does not go through the “variable stack” mechanism, the side effects are
not restricted to the local environment. The following code fragment shows how
this mechanism can be used in very much the same way as the BCPL global

vector:

dim globals[ 150 ]
result?2 := 10

proc procedure( a, b, ¢ ):

globals[ result2 ] := 200
result 100
corp
resl := procedure( 1, 2, 3)
res2 := globals[ result2 ]

Alternatively, since it is possible to set up single dimension arrays which have
defined values (see the table statement), it is easy to arrange that more than
one result is returned from a procedure, without resorting to side effects. Using

this method, the above example becomes:

proc procedure( a, b, c ):

result table 100, 200

corp
res = procedure( 1, 2, 3 )
resl := res[ 1]
res2 := res[ 2 ]

5.6.7 Dynamic type coercion

One of the factors which makes REX such an easy language to write programs
in is that, if the wrong data type is used in a particular context, then the
interpreter attempts to coerce the value given to the correct data type, so as to
avoid an error situation if this is at all possible. Take, for example, the following

code fragment:
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prompt "How many types round the loop?": howmany

for i to howmany
do

od

In this example, the prompt statement is used to print out a message to the
main Shell output stream, and then read the user’s response into a variable called
howmany. The data type of howmany at this point is string, since there has been
no interpretation of the characters typed by the user. When howmany is used as
the argument to to in a do statement, the data type required is not string, but
number. Since this fact is obvious from the context, the interpreter attempts to
parse the string as a number, using the same syntax as for REX source code. If
the coercion is possible, in other words, the user has typed in a valid number,
then the coercion takes place implicitly, and the do statement is obeyed normally.
Ounly if the user’s response to the prompt statement is invalid will the type
coercion system complain.

Examples such as this are common in the writing of REX programs, and it is
very rare that the user actually has to know what data type a variable or an
array item has at any particular moment. There are, however, cases where the
dynamic type coercion mechanism may have totally the wrong effect, and to this
end, several functions are provided which enable the user to perform explicit data
type coercion. Before describing the functions themselves, it is worth looking at
an example where the implicit data type coercion system is inadequate, and
where user intervention is required.

The problem arises primarily from the relational operators, which are defined
for both numeric and lexicographic comparisons. If both arguments to a
relational operator are of the same data type—both number or string—then it is
obvious which sort of comparison should be done. If, however, the data types are
mixed—one number and one string—then it is not clear what should be done.
Should the string be coerced to number, and a numeric comparison done?
Alternatively, should the number be coerced to string, and a lexicographic
comparison done? In order to avoid this ambiguity, the functions num and str
are provided, in order that the data type of a particular variable or expression
can be determined explicitly by the user, so as to obtain the desired effect. The
relational operators are defined such that, if either of the operands is of data type
number, then the other is also coerced to number, and a numeric comparison is

done. If not, then both operands are coerced to data type string, and a
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lexicographic comparison is done. Consider the following code fragment, which

illustrates the need for explicit data type coercion:

prompt "Type two numbers:": a, b

if a < b then say "a < b" fi
if num(a) < num(b) then say "num(a) < num(b)" f£fi

When the two variables a and b are initially defined by the prompt
statement, they both have data type string, and so in the first if statement, a
lexicographic comparison is done. In the second if statement, the operands are
explicitly coerced to data type number before the comparison is done, and so the
operation performed is numeric. If the two values entered were “6” and “107,
then the ambiguity is clearly seen—b5 is less than 10 numerically, but not
lexicographically, and so, only by using explicit coercion will the correct result be
obtained.

Along with the functions num and str described above, there are four others
which are provided for similar purposes. The ustr and lstr functions are
exactly equivalent to str, except that the coercion involves, not only a
conversion to data type string, but the upper or lower casing of the consituent
characters as well. These functions could be written in REX, but were included as
built-in functions for efficiency. The chr and asc functions were added for a
rather different reason, and provide services which could not be written in REX
itself. They are exactly analogous to the BASIC functions of the same name, in
that they provide a mapping between single characters and their ASCII code
representations. Characters in this context are objects of type string and length
one, such as "a". These functions are not strictly needed, but enable the REX
programmer to use the special facilities available in his terminal, which are only
accessible through using control characters and escape sequences.

As an alternative to having multiple data types and providing coercion
between them, it is possible to have just one data type—the character
string—and perform all other operations using it. This is the approach adopted
by REXX [Cowlishaw84] where all variables are capable of holding strings of
potentially infinite length. Before any ambiguous operation (such as a
comparison) can be performed, the operands must be parsed to see which type of
operation is appropriate. This removes the problem mentioned above where
numbers can be compared wrongly, simply because they are being held in
variables with the wrong data type. It does, however, add a distinct overhead to
every arithmetic operation, since there must be a conversion from the string

representation of a number, each time it is used in a numeric context.
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5.6.8 Error recovery and debugging

Even th.ough REX is designed to be an easy language to write in, it is
inevitable that mistakes will be made. Simple syntax errors (such as the omission
of “then” after “if”) are corrected as a program is loaded from disc, and a
warning message is printed when this happens. More serious syntax errors cause
the program to be rejected, again with messages being printed out giving the
probable cause of the problem. Given that REX is a dynamically typed language
with full run time checking, the majority of errors are detected not as incorrect
syntax, but as undefined variables, array subscripts out of bounds, type coercion
problems and so on.

Whenever a run time error is detected, a message is printed out indicating
the cause of the error and giving the line number in the original source where the
error occurred. The set of statements being executed is abandoned, and the
interpreter starts again at the next well defined point in the user program. This
means at the head of a loop, or at the end of a program block such as a procedure
or an “if” statement. If no sensible error recovery point exists, the program is
aborted.

The REX interpreter also has two tracing modes, which enable an erroneous
program to be debugged. The first mode, designed primarily for the debugging of
command sequences, simply traces the execution of “obey” statements, printing
out each command line as it is passed to the Shell for execution. Combined with
the Shell option to inhibit the execution of command lines, a command sequence
can be checked quickly so as to find out where it is in error. The second mode is
designed for the tracing of whole REX programs, and before executing each
statement, the interpreter prints it out along with the source line number.
Because there is little overhead in loading a REX program again, the debugging
loop is fast, and with the two tracing facilities described above, the effort

involved in correcting a program is usually very small.

5.7 Implementation issues

The previous section discussed some of the language issues which make REX
different from conventional languages, and which help to make it easy to learn
and simple to use. The following section looks in more detail at the REX
interpreter itself, and examines how it works, and how it is integrated into the
TRIPOS Shell environment.
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5.7.1 Representation of REX programs

That which has been described so far is the representation of REX programs
as files on disc, which is how they are perceived by the user. In order for a
program to be interpreted, it must first be read into memory and parsed, before
it is in a fit state for the interpreter to use.

Since REX is essentially an ALGOL-like block-structured language, the most
convenient way to parse it is by means of recursive descent syntax analysis,
resulting in the applicative ezpression or AE tree, and it is the AE tree
representation which the interpreter uses to execute the program. Normally,
using an AE tree is a bulky way in which to store a program, and the tendency is
to “flatten” it into some more compact, linear representation. Since it is assumed
that memory is in plentiful supply, and the typical REX program is less than 100
lines long, the amount of store wasted by using the AE tree rather than a linear
code is negligible.

The advantages of using the AE tree as the structure for interpretation are
twofold. Firstly, since the input format for the interpreter is the output format
for the syntax analyser, the extra translation stage is removed from the loading
process. Secondly, tree-walking techniques such as those employed by optimising
compilers and so on, are well understood, and the AE tree structure enables the
recursive nature of the interpreted language to be implemented conveniently
using the recursion facilities of the interpreting language. Constructs such as do
loops, if statements and so on, can easily be represented at interpretation time
by a procedure call with local variables. The nesting of such statements is
possible simply through the use of recursive procedure calls.

The overhead of loading a REX program is, on the whole, fairly small, with the
majority of the time being spent in opening the file containing the source.
However, once loaded, there is little point in unloading a REX program unless
memory is particularly scarce, and so programs are loaded once when first
referenced, and from then on, interpreted directly from memory, with the initial

loading operation being omitted.

5.7.2 Storage allocation and garbage collection

As with any other large, complex program, the REX system requires the use of
dynamic storage allocation. The implementation language, BCPL, provides only
the very primitive getvec and freevec functions, and does not have any sort of
garbage collection mechanism. Also, in its standard state, storage allocation
under TRIPOS can be a slow business in which the whole store chain is scanned

for every piece of storage allocated (see chapter 7). It is therefore reasonable for .
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the REX interpreter to provide its own dynamic storage allocation scheme, along
with any necessary garbage collection mechanism.

There are three main areas in which the REX interpreter requires dynamic
storage, each of which have very different requirements, and are handled in

different ways. They are:

° Programs
. Arrays
° Strings

The REX program is, as explained before, represented in memory by its AE
tree. The memory from which this tree is built is allocated from the program
pool by the syntax analyser module, as and when it is required. The property of
program storage is that it is allocated in very small units—typically 4 or 5
words—and once allocated, not freed until the whole program is unloaded. In
order to speed up allocation of program memory, chunks of 1,000 words are
allocated from the system pool, with the program nodes being allocated from
these chunks on demand. The fact that the nodes cannot be freed individually is
of no consequence, since this never happens in practice, and because of the
relatively slow access to the system pool, allocating memory in larger units speeds
up the syntax analysis operation.

Arrays are created dynamically during the running of a REX program by the
dim and table statements. In order to be able to build data structures from
within REX, arrays once allocated, must not be freed, except when no references
to them exist, in other words, when they become garbage. This only happens
when an array pointer is over-written by another value during the running of a
program, which in practice is virtually never. On observing techniques adopted
by other REX programmers, it was found that arrays tend to be defined at the
beginning of a program, have their elements updated during the running of a
program, and are not discarded until the run is over. Because of this fact, array
memory is allocated from the array pool, which is handled in a similar way to the
program pool. Large chunks are allocated from the system pool, which are then
subdivided and allocated to array items on demand. On completion of the REX
program, all the memory in the array pool is released back to the system, unlike
program memory which is kept until the program is unloaded.

REX strings, on the other hand, are an entirely different matter. Because of
frequent use of the juxtaposition and concatenation operators, combined with the
way that string parsing and other string manipulation functions work, strings are

often generated implicitly as part of simple expression evaluation, and then '
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discarded as garbage later. All this happens behind the user’s back, and he is
totally unaware of the amount of string garbage being created on his behalf, over
and above that which is is creating himself, simply by over-writing string
variables or array elements.

Since REX strings are defined to be implemented internally as BCPL strings
which have a fairly short maximum length, it is a reasonable proposition to
allocate fixed size string buffers, each of maximum length, which come initially
from the string pool. Each string in a REX program is marked as being either
temporary or permanent. Temporary strings are those which are yielded as
intermediate results from string concatenation operations and so on, and are not
referenced elsewhere. Permanent strings, on the other hand, are referenced either
from variables on the variable stack, or from array elements. Whenever a
variable or array element is updated, the item being over-written is checked to
see if it is of data type string, and if so, the string’s state is changed from
permanent to temporary. Similarly, the object which is being written is checked,
and if it is of data type string, its state is changed from temporary to permanent.

Before each new REX statement is executed, the list of allocated strings is
scanned, and those found to be in temporary state are moved from the
“allocated” chain to the “free” chain. During execution of the statement,
whenever a string buffer is required, it is first allocated from the “free” chain (if
there is one spare), and from the main string pool if not. The string is then
added onto the “allocated” chain, and execution continues. This kind of garbage
collection must be done synchronously, since at times other than between
execution of statements, it is impossible to judge whether an allocated temporary
string is actually referenced or mot, since it may still be in use as part of some

intermediate result.

5.8 Interface to the Shell

The feature of the REX language which makes it ideal for writing command
sequences, as well as just simple throw-away programs, is its interface to the
command environment via the Shell. The interface as seen by the user is
extremely simple, with just two statements affecting the Shell, and a handful of
“gystem” variables, which allow access to the command environment.

The most useful feature of the interface between the Shell and the REX system
is that it is bi-directional, with either program being capable of calling the other
via the interface module REXSHELL. Not only can the Shell and REX programs call

each other, but they can each call themselves recursively using the same .
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interface. The effect of this is that, at run time, there is no discernable difference
between loaded commands and REX programs, with either being capable of being
in control at any one time. Using the recursion facility to save and restore
environments, it is possible for loaded commands to execute other loaded
commands or REX programs, and for REX programs to execute loaded commands
~ or other REX programs, with the depth of recursion being restricted only by the
amount of memory available.

In order to implement this recursion, it is clear that some sort of stack
mechanism is required. Using a single program stack is insufficient, since its size
would either have to be set to that required by the maximum recursion depth, or
would have to be expandable dynamically. One way of obtaining the effect of an
expanding stack is to use the BCPL coroutine mechanism, with each coroutine
representing a new “frame” in the calling sequence. Figure 5.1 shows the three
different types of coroutine used, and their relationship to one other. In each
case, the environment of the current execution level is saved on the coroutine
stack, before the next coroutine is called. On return from an execution level, the
coroutine used to implement that level is deleted, and the old environment is
restored from the previous coroutine stack. The structure can therefore be
imagined as a stack of environments, where each environment is represented by a

coroutine stack. This technique is discussed further in chapter 7.

5.8.1 The OBEY statement

One of the great benefits of the work done previously on the command
executor task, pipe expressions and command histories (see chapter 4), was that
the problem of splitting' a command line from its input stream had already been
tackled. Indeed, the Shell already possessed the necessary procedural interface to
enable free standing command lines to be executed in a given environment, as
this was required as part of the command history and pipe expression
mechanisms.

This interface was designed with the possibility of adding a sophisticated
command language to the Shell at some later time, and hence fitted exactly the
interface required by the REX “obey” statement. The effect of obey is very
simple—its argument is coerced to data type siring, and then treated as a
command line, being passed to the Shell for execution in the current Shell
environment, exactly as if the command had been typed directly at the console,
or extracted from the command history. The command line is then executed,
with control being returned to the REX program as soon as the command

completes execution.
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Current Current Coroutine

Either a Shell or a REX coroutine, depending on whether a
loaded command or a REX program is executing. This
coroutine can call another of either type before it returns.

Shell Second Shell Coroutine
Called from the second REX coroutine via an “obey”
statement as before, but this time causing a loaded command
to be executed.

Second REX Coroutine
Called from the first REX coroutine. This represents a REX

program executing an “obey” statement, causing another
REX program to be executed.

REX Coroutine

Used to handle the execution of a REX program. All
information local to the REX program is held in this stack.

Main Shell Coroutine

Base of the Shell calling structure. Used to store the Shell
environment whenever a loaded command or REX program
is executed.

Root Stack of the Shell Task

Allocated by the kernel when the Shell is created, with a
small fixed size. Deallocated only when the Shell Task is
deleted.

REX/Shell Coroutine Stack Structure

Figure 5.1
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The interface is also general enough that it is possible for loaded commands
to call their parent Shell recursively, in order to execute further commands or
start up new Shell sessions from within other programs. An example of this is
the TRIPOS MAIL system [Wilson84] which allows the user to switch trivially
between the MAIL environment and the Shell environment, without the necessity
of having a separate Shell task and selecting it explicitly.

5.8.2 The QUEUE statement

Since many programs prompt the console for parameters which are not given
on the command line, a facility is provided to enable input lines to be enqueued
in such a way that they are read by these programs directly, without the
necessity for them to go to the console. The queue statement works
asynchronously, adding the line given as its argument to the queue of lines which
are waiting to be read by the main Shell input stream.

As with the command executor task and Shell foreground command
execution, the effect works because of the generality of the TRIPOS stream
handling mechanism. The stream control block for the queued input stream has

the following structure:

buf Buffer containing the current input line
pos Character position in line buffer
end Number of characters in line buffer

funcl  Special replenssh function

func2  Zero (no deplete function)

func8  Special close function

argl Pointer to real (unqueued) Shell input stream
arg?2 Pointer to queue of input buffers

The queueing mechanism works through the special replenish function, which
is called whenever the line buffer is empty, and the Shell requires further input
characters. The replenish function first looks at the queue of buffers to see if
there are any, and if so, copies the contents of the first queued buffer into the line
buffer, unchains it from the queue and returns, giving the effect that the Shell
had read the queued line as though it had been typed at the comsole. If no
queued lines are available, then the replenish function of the real Shell input
stream is called in order to refill the line buffer.

It is impossible for the Shell to tell whether the characters it is reading have
been typed at the console by a user, or added onto its input queue by a REX .
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program. This mechanism is useful not only for queueing data lines which are to
be read by loaded commands, but for queueing command lines which are to be
read by the Shell as though they had been typed directly. It should be noted
that the obey statement works synchronously, thus avoiding the queueing
mechanism, and enabling commands to be called from a REX program which can
" then read any queued input lines. On the whole, it is the case that queue is only
used to enqueue data lines, but it is a rather pleasing side effect of the
mechanism that enqueued command lines work as well.

The ability to enqueue a set of lines to be read by a command language
interpreter or the programs which it loads is not new, and was used in the IBM
EXEC [IBM72] language and its derivative [Stephenson73]. The mechanism used
by EXEC is slightly different though, in that the lines are kept on a LIFO stack
rather than a FIFO queue. Both mechanisms have their disadvantages. The
stack is confusing for the user, since the lines must be stored in the reverse order
to that in which they will eventually be read. The queue is not confusing, since
lines are stored in the natural order, but the mechanism is prone to error. This is
because it is impossible to guarantee that the queue is empty when a line is
added, and so any program executed synchronously may pick up data lines which

were not intended for it.

5.8.3 1/0 and the EX: device

I/O from within a REX program is possible in one of two ways. Firstly, there
are the “interactive” statements, say and prompt, which work by using the main
Shell channels, and can be used for all console I/O. Secondly, there is the more
general mechanism of being able to open arbitrary files for input or output, and
then performing I/O on these files. The openin and openout functions are
provided for opening files, and these correspond exactly to the findinput and
findoutput functions of the underlying BCPL system. The form of the arguments
to openin and openout therefore depend on what is required by the BCPL
system—on TRIPOS, file names are used.

All input and output is performed on a record by record basis, with the
splitting of BCPL streams into their individual records being done in a machine
independent manner by the REX interpreter. Additionally, when reading a record
from an input channel, there is the option to apply the parse operation on the
line as it is read, allowing individual words to be extracted. When the BCPL end
of file marker endstreamch is encountered, a flag is set in the relevant I/O

channel control block, and this flag can be tested using the eof function.
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Being able to open arbitrary files for I/O means that the full power of
TRIPOS pseudo devices is available to the REX programmer. The most useful of
these devices by far is “EX:” (see chapter 6), which enables filenames to be
extracted from their parent directories. Using this device, it is possible to write
REX programs which act on some or all of the files within a directory. As an
example of this facility, it is possible to re-write the TRIPOS command
scratch—a program which deletes all the files within a directory—in REX.

$ Tripos SCRATCH command

if “~rdargs( args, "dir", dir ) then
exit( 20, "Bad args" )

fi
if dir = nil then dir := "t:" fi
stream := openin( "ex:" || dir )

if stream = nil then
exit( 20, "Directory" dir "not found" )
fi

until eof( stream )
do
read stream: file
obey "delete" file
od

close( stream )

5.8.4 The system variables
In order to provide access to certain TRIPOS and Shell parameters, it is

necessary for REX to have system variables. There are five of these:

. re

° mcname
® mctype
o systype
. args

The variable rc always evaluates to the current Shell return code, which is
set by loaded commands when they call the BCPL procedure stop, and by REX
programs when they call exit. The return code has data type number, and can -
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be treated as a number in all calculations. It can trivially be checked after an
obey statement, in order to detect whether the command line executed
successfully. The variables mcname, mctype and systype correspond exactly to
fields in the TRIPOS “information” data structure, which gives details of the
local machine environment. They are all of data type string, and refer to the
current machine name, machine type and system type respectively. Given that
these variables are special (being operating system dependent), they are handled
by procedures in the REXSHELL module, so as to maintain portability.

The args variable is set up by the REX interpreter to be of type string and to
have the value of the arguments given by the user to the REX program being
obeyed. There are two different facilities provided for the user to interpret the
arguments string. Firstly, the parse statement splits up strings into “words” in
very much the same way as the UNIX Shell. Secondly, rdargs enables strings to
be parsed in a more complex way, with a generalised pattern being used to split

strings into keywords and arguments.

5.8.5 Execution of REX programs from the Shell

The Shell provides the ability to execute REX programs implicitly, or to
interact directly with the REX system. It has already been described in chapter 4
how the Shell searches for loaded commands in a series of directories. This is not
in fact the whole story, since the Shell can also handle the loading and execution
of REX programs.

The new sequence of events is as follows. When a command name is typed
in, the REX system is called to find out whether this is the name of a REX program
which is already loaded in memory—if so, then the REX program is entered. If
not, then the current directory, COM1:, system command directory and COM2: are
all scanned in sequence, in an attempt to load the command name as a program.
If this fails, then the current directory and REX: are searched to see if the name
corresponds to a REX program. Only if that fails is the whole search abandoned.

5.9 Portability and the REXSHELL module

There are two levels of portability which are worth investigating here.
Firstly, the portability of programs written in the REX language, and secondly,
the portability of the REX language system itself.

Programs written in REX vary in portability depending on how much of the
operating system interface is used. For programs which do not perform file I/O
and do not execute command lines, the only factors which affect portability are

the precision to which arithmetic calculations are done, and the maximum length '
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of string variables. For those programs which do use the operating system
interface, the form in which arguments to the openin and openout functions are
given varies depending on the underlying BCPL run time library and the syntax
of file names, and the nature of command lines, return codes and so on, depends
on the nature of the operating system. These problems do not arise between
different TRIPOS systems though, and so provided no unreasonable assumptions
are made about numerical precision or the maximum length of strings, REX
programs should be portable between TRIPOS systems, with no modification
| necessary.

The REX language system itself achieves portability by being written entirely
in BCPL, and by avoiding the use of any of the BCPL language extensions. This
means that it is portable not just to other TRIPOS installations, but to almost
anywhere which runs a BCPL system. The REX syntax analyser and interpreter
make no assumptions about their BCPL run time system, in that they take great
care over allocation and deallocation of resources, explicitly freeing anything
which has been obtained. Also, since all the free store management is
implemented as part of the REX system, only the most primitive of BCPL
environments is required for the system to run.

Even though REX and the TRIPOS Shell were designed to run together, no
assumptions are made about the operating system interface. The Shell and REX
modules both communicate with each other and with the operating system by
using a library of procedures in a third module, REXSHELL. By simple re-
definition of the procedures in this module, it is possible to run either the Shell or
the REX system in isolation. Similarly, it is possible to use the REXSHELL module
to provide the REX language system with an interface to any other BCPL
implementation, and as an illustration of the portability of the REX system, it was
moved successfully onto an IBM 3081/D under MVS, with the only modifications
being to the procedures in REXSHELL.

5.10 Performance

The following measurements were taken to give an indication as to the
performance of programs written in REX. The first is a set of measurements of
different parts of the language in isolation, giving some indication of their relative
execution times. The second is an implementation of Ackermann’s function in
REX, whose performance can be compared with similar programs written in other
command languages. All measurements were taken under TRIPOS on a
Motorola MC68000 processor running at 8MHz.
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5.10.1 REX performance test

The following test statements were executed to give some idea of the
efficiency of the different language constructs. The tests include simple
assignment, arithmetic and string operations, subroutine and function calls with
different numbers of parameters, array lookup and assignment, and conditional
and looping statements. Each of the tests were executed 1,000 times, and the
timings taken from the TRIPOS real time clock, which is accurate to 0-02
seconds. The timing for 1,000 executions of the null statement skip was then
subtracted from each of the measurements, giving the timing for the operation
itself. The result is the timing for 1,000 operations measured in seconds, in other

words, the timing for a single operation measured in milliseconds.

Statement Time (mS)
x := 100 05
x := 100 + 200 09
x := "100" 11
x := "100" “200" 22
x := 100 + "200" 1-6
x := "100" 200 3.7
sub0 () 19
sub1(100) 24
sub2(100,200) 2-8
sub3(100,200,300) 33
x := fun0() 24
x := fun1(100) ' 2-8
x := fun2(100,200) 33
x := fun3(100,200,300) 3.7
x := arrayi[100] 1.7
x := array2[100,200] 21
x := array3[100,200,300] 24
x := array4[100,200,300,400] 2.8
X = array5[100.200,300.400.500] 31
arrayi[100] := 1 1-6
array2[100,200] := 2 1.9
array3[100,200,300] := 3 22
array4[100,200,300,400] := 4 2-6
array5[100.200,300.400,500] := b 29
if true then skip fi 1.2
if false then skip fi 0-2
if true then skip else skip fi 1.2
if false then skip else skip fi 1.2
to 10 do skip od 95
for i to 10 do skip od 11.9
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5.10.2 Ackermann’s function

As an indication of the performance of REX as opposed to other command
ianguages, measurements were taken for different arguments of Ackermann’s
function, and then compared to similar implementations on other systems. A. W.
Colijn [Colijn76, Colijn81] has taken timings for Ackermann’s function written in
the KRONOS and MULTICS command languages, and uses the results to discuss
the relative power of the languages, and the limitations of the different systems.
The KRONOS language is not recursive and has only three distinct variables, so
it is impossible to implement anything more ambitious than “ackermann(2,2)”.
The MULTICS command language is more general, but runs into performance

difficulties above “ackermann(2,3)”.

$ Ackermann's function programmed in REX for comparison
$ with KRONOS and MULTICS command languages.

proc ackermann( m, n ):
if m=0
then result n + 1
elif n=20
then result ackermann( m-1, 1)
else result ackermann( m-1, ackermann( m, n-1 ) )
fi
corp

x := ackermann( 2, 4 )

The KRONOS measurements were taken on a CDC 6400, the MULTICS
measurements on a Honeywell level 68 DPS. The REX measurenients were again
taken under TRIPOS on a Motorola MC68000 running at 8MHz. The timings

are all in seconds.

Function KRONOS MULTICS REX
2,0 0-318 0-861 0-0332
2,1 1364 2362 0-0880
2,2 3-849 4-501 0-1676
2,3 — 7-454 0-2734
2,4 — — 0-4048
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5.11 Summary

The REX system was designed as the result of an investigation into two
different types of language which, although separate on traditional systems, have
very much the same sorts of requirements. The first is the simple interactive
programming language, which enables small throw-away programs to be
constructed quickly and easily. The second is a well structured, easy to read
language for the writing of command sequences.

The REX language itself is simple, with very few constructs which must be
learned by the programmer. It is strongly typed, but all type checking is
dynamic and performed at run time, with as much implicit type coercion being
performed by the interpreter as possible. Arrays are handled in a rather novel
way in REX since they resemble multi-dimensional records much more than
conventional matrices. Each element of a REX array is entirely independent, and
has its own value and data type. Since arrays can contain references to other
arrays, complex data structures can be built and manipulated. Not only is the
data type checking performed dynamically at run time, but so is the scope
checking of variables. The effect is much more like that experienced in LISP by
means of the association list, than it is in more conventional block structured
languages.

The REX system has been implemented under TRIPOS, and runs alongside
the Shell. One of the most important aspects of the language is the nature of its
interface to the Shell and other parts of the underlying operating system. This is
achieved through the use of a module of procedure libraries, REXSHELL, which
acts as a link between the two halves of the system and an interface to those
parts of the REX system which are TRIPOS specific. Through the use of this
interface module, it is possible to run either the Shell or the REX system in
isolation. Similarly, by re-defining the procedures which are operating system

specific, it is possible to achieve a high degree of portability.

5.12 Evaluation of REX

Although it is possible to measure the performance of REX by timing the
execution of programs, the real value of the work is very difficult to assess. It is
not easy to say how much programmer productivity improves with the
introduction of a new facility, and the only possible measurement is the amount
the facility is used, and the type of feedback from its users. Of the 60 or so
registered TRIPOS users at Cambridge, almost all have written at least one REX
program, and over half are regular REX programmers. The language is often used

96




for text processing and file management, but the most common use is for simple
command sequences.

When writing a short command sequence, there is little to choose between
different systems, and simple macro processing such as that used in the TRIPOS
¢ command or the MXEC system are entirely adequate. Since the command
sequence is so small, neither efficiency nor readability are important issues, and
the vast majority of command languages are capable of supporting this kind of
application. For this type of sequence, a command programming language can
actually be a hindrance, since it is likely that unnecessary keywords, string
concatenation operators and so on will have to be used, when all that is required
is simple text substitution.

For more complex command sequences involving conditional execution of
commands, looping and so on, a more powerful type of command language is
required. Variables are needed as well as simple parameter substitution, and
there must be a convenient way to interrogate the success or failure of command
execution through return codes. Macro processing is less suited for such an
application, since a better control structure is required. For this sort of
command sequence, a command programming language is ideal, since it has the
sort of control structure and operating system interface needed. However, it is
also possible to use a command language interpreter which has had programming
language features added to it. IBM’s EXEC languages, the UNIX Shell and C
Shell, and the command languages of KRONOS and MULTICS are examples of
systems based on this principle, and all are powerful enough for this type of
application.

When it comes to writing throw-away programs, more facilities are required,
and it iz here that the command programming language comes into its own.
Even though conditional statements, looping constructs and simple I/O are
provided in the powerful command language interpreters mentioned above, there
are often many restrictions. For example, it is possible that looping and
conditional statements cannot be nested, or that the language only provides
string variables with no means for performing arithmetic evaluations, or that it is
impossible to perform I/O on disc files.

Because a command programming language is designed with structure,
simplicity and flexibility in mind, it provides the necessary facilities to enable
either simple or complex programs to be written quickly and accurately. At the
same time, since its design is based on “real” programming languages (as opposed
to being an augmented command language interpreter), it has a clean and simple

syntax, and provides all the expected I1/O, arithmetic and string manipulation
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facilities. The benefit of such a system can be seen both from the point of view of
the user and the system designer. The user benefits, since he must learn only one
language rather than two, and the language he has to learn is designed
specifically to be simple to use and easy to get right. The system designer also
benefits, since it is possible to combine two tasks into one, and this reduces the

amount of implementation and maintenance effort which he must expend.
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6. Additions to the User Environment

6.1 Introduction

In the previous two chapters, the emphasis has been on enhancing the user
environment by providing a powerful command language interpreter and
command programming language. The user tends to view these facilities as part
of the operating system, since they appear to him to be built-in and
unchangeable. This chapter investigates how the user environment can be
improved, not by enhancing the resident operating system, but by adding user-
level services which either improve the overall utilisation of the hardware or
provide powerful facilities which enable complex operations to be performed
quickly and easily.

The factor which makes this kind of work desirable and necessary is the
increase in the amount of memory which is available on the new generation of
personal workstations, Although there are some programming languages and
general applications which are capable of making use of large amounts of
memory, the majority cannot, and as a result, techniques must be developed to
take account of this. As stated in chapter 4, one of the ways of utilising large
amounts of memory is to have many resident tasks which provide useful services.
Memory can also be used to cut down on the amount of disc traffic, and since
modern cheap peripherals are usually fairly slow, doing so is advantageous.

The facilities described in this chapter fall into two categories, both of which
help to enhance the user environment. Those in the first category improve the
utilisation of the whole system, either by performing certain operations faster
than was possible before, or by making more efficient use of the available
hardware facilities, particularly memory. The facilities in the second category do
not actually cause any improvement in performance or hardware utilisation
themselves, but make the system much more convenient to use, and so have the

effect of altering the way in which certain types of computation are performed.

6.2 Motivation

The motivation for the first part of this work was the wish to improve the
performance of TRIPOS running on the processor bank 68000 computers. The
conditions experienced on these machines were typical of those found on other
systems, in that memory was in plentiful supply and the speed of most

computations was limited by the speed of access to the filing system. In the
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specific case of the Cambridge environment, the reason for the slow filing system
accéss was that the discs were managed by a remote fileserver which was running
into performance difficulties because of the growing number of clients it had to
support.. The problem, though, is a more general one, and is experienced by any
system whose general operation is I/O bound rather than CPU bound. The
second part of this work was prompted by the desire to improve the facilities
available to those people using TRIPOS for program development to support
their research. The aim was to investigate those areas where services were either
not provided or provided only in a very inconvenient form, and then to see how
they could be added in such a way as to improve the user working environment.
As with the REX system described in chapter 5, TRIPOS proved an ideal
context for this work, since it supported users who were prepared to try out new
ideas and give useful feedback. Under TRIPOS, it is also very easy to add
dynamic services in the form of pseudo devices. The mechanism is identical to
that used by peripheral handlers, for example the console and disc drivers, but as
the name implies, no real device is actually handled. Using pseudo devices, it is
possible to add new features to the user environment without altering the
operating system in any way, and because of the generality of the TRIPOS
stream mechanism, they appear to the user simply as an extension of the normal

filing system.

6.3 Winchester discs

Because access to the disc filing system was rather slow, there have been
many ideas as to how the situation could be improved. One suggestion
[Wilson82b] was to supply each 68000 workstation with its own 10 megabyte
Winchester disc drive. Unfortunately, due to a design error on the part of
Motorola and the lack of a convenient Memory Managemexit Unit for the 68000
processor, it was not feasible to use such a disc as a paging device for virtual
memory. It would have been possible, however, to use the disc as a local cache,
which could either be built up implicitly, with the filing system keeping recently
accessed items on the local disc rather than the remote fileserver, or explicitly,
with the user copying his working environment onto the Winchester disc at the
beginning of a session, and copying it back at the end.

The Winchester disc idea was never implemented, for several reasons.
Firstly, Winchester discs, disc controllers, 68000 disc interfaces and mounting
racks were all rather expensive—it was far more cost effective to give each 68000

machine another half megabyte of memory than to supply it with discs. °
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Secondly, because of the Cambridge “processor bank” philosophy of machine
allocation (rather than the Xerox “one per person” strategy), when a machine
crashed it would have been impossible to guarantee that the same machine would
be available afterwards in order to restore the session. Thirdly, machines in the
processor bank are available to any authorised user, and there is no restriction as
to the range of software which can be run on the machines. Because of this
generality, each operating system is entitled to make full use of the connected
hardware, and hence no assumptions can be made about the state of that
hardware when a new operating system starts up. This meant that it would not
have been practical to keep a permanent cache on the Winchester disc, since its
integrity could not be guaranteed between sessions. Tinally, since TRIPOS itself
is a totally unprotected operating system, it is very likely, particularly during
program development, that the machine would crash before such time as any
modified files could be copied back to the fileserver. Combined with the fact that
it would not even have been possible to guarantee the re-allocation of the same
machine in order to pick up the pieces, the result is that a Winchester disc was

not a reasonable proposition.

6.4 The CORE: device

Given that memory was cheaper to purchase than disc, this is what was
actually done, and all but four of the processor bank 68000 machines were
upgraded to at least one megabyte each. TRIPOS, being originally designed for
small, 16 bit mini-computers, had never run in so much memory before, and was
unable to use it sensibly. There exiéted, therefore, the ridiculous situation of
TRIPOS only using about one quarter of the memory available, and at the same
time, often being idle due to the slow speed of access to the filing system.

The first attempt to improve this situation came in the form of the CORE:
device, implemented by M. F. Richardson. The aim of CORE: was to build a
virtual disc drive in memory, with disc blocks being replaced by memory pages.
The advantage of this approach was that there already existed a TRIPOS file
handler “FH3” [Richardson80] for physically connected discs, and it was simply a
matter of altering the disc device driver code to access memory pages rather than
physical disc blocks. As expected, CORE: was quick to implement, and since all
data structures were held in memory, access to files held in CORE: was fast.
There was also the added advantage that, because CORE: acted exactly like a real

disc, nothing needed modifying in order to make use of it.
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The CORE: device had several uses, two of which were more important than
the others. Firstly, it was useful for keeping small, temporary files, for which
there is no necessity to keep a record on disc. Falling into this category were
simple, throw-away programs, listing output from compilers and assemblers, and
intermediate object modules used for linking and loading. Secondly, it was useful
for keeping the binaries of frequently used programs, so that loading these
programs did not require access to the main disc filing system. The TRIPOS
CLI could not make use of this facility, since it only looked for commands in the
current directory and the system .command directory. However, the TRIPOS
Shell enabled CORE: to be used to its full advantage in that, through the
assignments “COM1:” and “COM2:”, it was possible to have user command
libraries which were searched either before or after the system command

directory. Simply by executing:

assign coml: core:

it was possible to copy frequently used commands from disc into CORE:, and from
then on, to have the cached versions over-ride those on disc.

Using CORE: to keep cached commands had an enormous effect on
programmer productivity and general morale, since it made it possible to enter an
editor without the frustrating delay waiting for it to be loaded from disc.
Additionally, other programs could be made to run faster. For example, the
speed of the BCPL compiler could be increased by a factor of two in some
circumstances, simply by keeping the intermediate OCODE file in CORE: rather
than on disc.

There were, however, several disadvantages to the CORE: approach. Firstly,
the handler itself was quite large (since in its “FH3” form, it was capable of
handling an entire filing system), with only a small proportion of its facilities
being used. Although the size of the handler in memory terms is not particularly
important, the CORE: handler had to be loaded from disc at the beginning of each
session, and hence the larger it was, the longer it took to load. Secondly, since
CORE: was simply a disc filing system handler with its blocks in memory rather
than on disc, there was the overhead of keeping directory blocks, file root blocks,
checksums, block pointers and so on. Similarly, the unit of allocation was the
“block”, and so memory was wasted if the last block of a file was not full.
Thirdly, CORE: was simply another filing system from which programs had to be
loaded, and no account was made of the fact that programs in CORE: were in
memory already. The effect of this is that there were always two copies of a

program in memory—one in CORE: and one actually being executed. If the .
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program being loaded was large, say an editor, then double the amount of
memory was required, and the amount of copying involved was enough to give a
noticeable delay between typing the command, and the command starting to

execute.

6.5 The PRELOAD system

From experience with CORE:, it was obvious that it was beneficial to utilise
memory to keep pre-loaded programs. Unfortunately, CORE: was too general a
solution to the problem, and due to its generality, could not make use of two
simple facts specific to loaded programs.

The first is that loaded modules (in other words, files loaded using the BCPL
procedure loadseg), have a well defined format in memory, which is different from
that used in CORE: blocks. Any system which attempts to improve the handling
of pre-loaded programs must use this format if it is to avoid large amounts of
copying and duplication.

The second is that, under TRIPOS, nearly all the programs to be loaded are
BCPL modules, and that the vast majority of these contain code which is pure.
In other words, most programs which would be pre-loaded do not modify their
own code, and hence are capable of being shared. On the whole, those which are
not pure, are in fact serially re-usable, in other words, their code cannot be
shared, but once finished with, can be used again. This simple piece of
information about TRIPOS programs has a very important implication—in most
cases, it is not actually necessary to give each task its own copy of code to be
executed, and when execution has completed, since the code will not have been
corrupted by its execution, there is no need to discard it.

Given the facts outlined above, it became clear that it was possible to design
a system for keeping pre-loaded programs, where the code itself was kept in a
form ready for use, with no copying necessary. If the loaded code were pure, then
it was also possible to allow multiple tasks to use the code simultaneously, with
no need to load a copy for each new incarnation.

In order to implement a scheme which worked in this manner, it was
necessary to determine where in the loading sequence the pre-loaded code should
be used in preference to the disc version. With CORE:, it was necessary to
employ the COM1: facility of the TRIPOS Shell in order to give the desired effect,
since the pre-loaded programs were simply held as files in a memory filing system.
For a more specialised implementation, where the only thing capable of being

loaded into memory is a program, it is clear that the correct place to intercept
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the loading of programs is in the BCPL procedure loadsey, through which all

loading requests must pass.

6.5.1 The SEGLIB library

Over-riding system procedures under TRIPOS is a straightforward job, and
requires use of the library command [Evans8l]. The function of the library
command is to load a segment into memory, and then to append this to the
segment list referenced in the task control block. The effect is that whenever a
new command is executed or a subtask created, this segment list is scanned in
order to initialise the globally defined procedures held within the segments. The
segment list is scanned in a specified order, and hence globals defined in later
segments will over-ride globals defined in earlier segments.

In order to implement the pre-loading system, a library segment SEGLIB was
produced, in which re-definitions of the system procedures loadseg and unloadseg
were held. These new procedures would, before going to disc in order to load a
segment, investigate whether the PRELOAD: device was resident, and if so, pass
over the responsibility of loading the program to it.

The reason for using a separate task, rather than a global data structure
shared between tasks, is primarily one of synchronisation. It would obviously
have been possible to employ some global data structure, linked into the TRIPOS
rootnode in a similar way to the assignments list, in which all the information
about pre-loaded programs was stored. This solution has one major drawback,
and that is the problem of updating the data structure in an atomic manner. It
would have been necessary for the updating task to have a critical code section
which would run at maximum possible priority (effectively uninterruptable) while
it was manipulating the pre-load data structure. Given that there is no shortage
of memory, and that inter-process communication is cheap under TRIPOS, it is
much better to handle important data structures within a task, so that the
synchronisation problems are handled by the kernel’s message passing system. It
is also better from a programming point of view, since the pre-load data structure
becomes an abstraction, hidden behind a well defined message interface, thus
allowing details of the implementation to be transparent to the user of the

service.

6.5.2 The PRELOAD: device

The pre-load handler task is implemented as a pseudo device, which is
mounted using the mount command. The reason for using a device is that
TRIPOS does not associate a name with a task, simply a number—the task id.
There is no way normally of finding out the identity of a task simply by knowing |
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its function, since the allocation of identifiers is dynamic, and may change from
occasion to occasion. The four main system tasks—the primary Shell, Debug, the
Console Handler and the File Handler—all have fixed identifiers, which are
defined to be the same on all systems. This is satisfactory for a small number of
tasks, since the identifiers can be fixed at system generation time, but for tasks
which are created dynamically, it would mean reserving a free task slot for every
possible loadable handler.

The “mounted device” scheme avoids this problem by associating with each
handler a name, which is kept in the assignments list. Along with the name is
kept the task id of the handler, and a secondary value which is device dependent.
The BCPL procedure devicetask is provided for interrogating the assignments
list, and effectively provides a mapping between the task name, and its identifier
and secondary value. Rather than binding the pre-load handler to a specific task
id, it is much more convenient to bind it to a name—PRELOAD : —which can then
be looked up in the assignments list whenever required. It is through this
mechanism that the SEGLIB library determines whether the pre-load handler is
resident.

Within the PRELOAD: device itself, the loading and unloading of programs is
handled, along with the maintaining of the main pre-load data structure. Calls
come into the device from all tasks which have the SEGLIB library loaded, and
each request is handled in turn. Because several disc accesses can be performed
in parallel, it is advantageous to have a degree of parallelism within the PRELOAD:
device itself, so that loading a large program from disc does not have the effect of
blocking other requests, possibly for other programs which are already pre-loaded.

To this end, the PRELOAD: device is organised as a master scheduler and a set
of slave coroutines, each of which is capable of handling any of the pre-load
functions. When a new request arrives, unless the operation requested is
something which can be done quickly and synchronously, the table of coroutine
pointers is scanned for one which is currently unoccupied, and it is then activated
to handle the request. If all the coroutines prove active, then the request is
added onto an internal queue, and processed when the next coroutine becomes

free.

6.5.3 Requests to PRELOAD:
The possible requests to the PRELOAD: device are:

. Load
. Unload
. Loadseg
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o Unloadseg
. List
. Monitor

The load request causes a file to be loaded from disc, and added to the list of
pre-loaded programs. This operation returns to the caller immediately, and is
then handled asynchronously by the device. The reason for this is to enable a
series of pre-load operations to be executed quickly in a user’s initialisation
sequence, without the necessity of using background tasks. The effect to the user
is the same, but the result is to remove the problem of memory fragmentation
which occurred due to the alternation of permanent pre-load code areas and
transient Shell stacks and global vectors.

The unload request causes a file which is in the list of pre-loaded programs to
be removed from the list, and unloaded from memory. If the program is already
in use, then it is not unloaded immediately, but only when its use-count next
drops to zero.

The loadseq request is a call from the loadseg procedure in the SEGLIB
library. The list of pre-loaded programs is scanned to see if the file being loaded
corresponds to a pre-loaded program. If found, then the use-count is
incremented, and a pointer to the pre-loaded segment is refurned. If the program
is not found, then it is loaded from disc in the normal manner.

The unloadseg request is a call from the unloadseg procedure in the SEGLIB
library. The list of pre-loaded programs is scanned to see if the segment being
unloaded corresponds to a pre-loaded program. If found, then the use-count is
decremented, and if required, the entry removed and the program unloaded. If
the program is not found, then it is unloaded from memory in the normal
manner.

The list request causes a copy to be made of the pre-load list, which is then
passed back to the caller, so that it can be printed out. The copy is made
synchronously, so as to avoid strange timing effects with the updating of the
main list.

The monistor request enables or disables the PRELOAD: handler monitoring
function. When enabled, each loadseg attempt is logged to the console, along
with the name of the program being loaded, and information as to whether the
program was found in the pre-load list, or had to be loaded from disc. Using the
monitor facility, it is possible to detect program naming problems, and to
investigate whether optimisations are possible by pre-loading something which is
used frequently, for example, the handler for the “NIL:” device which provides -
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access to dummy streams.

6.5.4 The pre-load list

The pre-load list is the main data structure employed by the PRELOAD:
device. As its name implies, it is a linked list of pre-load entries, each of which
holds information about a single pre-loaded program. The fields in the pre-load

list entry are:

. segment—Pointer to the loaded program
o segname—Name of the loaded program
. usecount—Use-count for re-entrant (pure) programs

. unloading—Flag saying whether the program should be unloaded
. reentrant—Flag saying whether the program is re-entrant

. checksum—Binary checksum of the program

6.5.56 Naming of pre-loaded programs
The naming of pre-loaded programs presents a problem which is worth
discussing. Ideally, a pre-loaded program should be recognised as such, no matter

which path name is used to access it. For example, the files:

status
:c.status
sys:c.status
are all the same file in the filing system, except that they have different names,
and loadseg called with any of the three arguments should always load the same
program.
Under TRIPOS, it is possible to identify a file uniquely, by using its key. On
a system with a local disc, this is the block id of the file header block; on a
fileserver based system, this is the puid (the fileserver’s unique identifier) of the
file. Both these numbers are guaranteed to be unique, and hence can be used to
identify the file unambiguously. It would be possible, therefore, to associate with
each loaded module its key, so that the naming ambiguities could be resolved.
This, however, defeats the object of having a pre-loaded program, since to obtain
the key of a file, it is necessary to consult the filing system, which immediately
re-introduces the delay due to disc access which is supposed to be avoided.
As a compromise, rather than keeping the file key, the file name is kept in
the form in which it is expected to be used. The command preload, which acts
as an interface between the user and the PRELOAD: device, allows an optional

alternative name to be given to the program, which is the name it is to be known
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by when it is pre-loaded. For example, the status command could be pre-loaded

by using the following command:

preload sys:c.status as status

In this case, “sys:c.status” is the full path name of the program, and is used to
identify the file unambiguously for loading purposes. The name the program is
known by when loaded is “status”, since this is what would be typed by the user
as the command name. It is also possible for this mechanism to provide
alternative names for programs, should a user prefer this.

There are, unfortunately, times when the name presented to the PRELOAD:
device by loadseg does not match the name by which the program is known in
the pre-load list, and hence unnecessary disc accesses are performed. This is,
however, harmless, and does not happen very often. When it does happen, the
effect is fairly obvious and can be investigated by using the PRELOAD: monitor
option.

When a program is pre-loaded, one of the pieces of information passed by the
user to the PRELOAD: device is a flag saying whether the program is re-entrant or
not. The value of this flag affects the action of PRELOAD: whenever that program
is involved in a loadseg or unloadseg call.

For re-entrant programs, when a loadseg call is made, the program’s use-
count field is incremented, and a pointer to the loaded code is returned. When
an unloadseg call is made, the program’s use count field is decremented, and the
binary checksum of the program is re-calculated and compared with its original
value, in order to detect whether the program has corrupted itself. If it has, then
a warning is printed out, and the program is unloaded at the first possible
opportunity.

For non re-entrant programs, when a loadseg call is made, the pre-loaded
version is only used if the program’s use-count field is zero. If not, implying that
the code is already in use, then a new copy is loaded from disc, so as to prevent
an impure program from being used by two tasks simultaneously. When an
unloadseg call is made, no attempt is made to detect program corruption by re-
calculating the binary checksum—the onus is on the author of the non re-entrant
programs to make them serially re-usable, if advantage is to the taken of the pre-
load system.

Whenever an unload request is made, or an unexpected program corruption is
detected, the program’s unloading flag is set in the pre-load list entry, and
whenever the use-count reaches zero, the program is unloaded, and the entry

removed from the pre-load list.
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6.5.6 Problems with PRELOAD:

The PRELOAD: system as described works well in practice, and is simple to
use, even for relative newcomers to the system. It does, however, have
drawbacks, and is certainly not the only way of achieving the desired effect.
There are two main problems associated with the PRELOAD: system as it stands.

Firstly, as mentioned before, in order to cut down on unnecessary disc
accesses, the name of the pre-loaded program must match exactly the name used
in a loadseg request, otherwise the effect is lost. An example of this is the
“dat-to-strings” overlay, which is loaded by many programs, to provide
mappings between TRIPOS internal date format, and printable strings. Some
programs reference the overlay as “:1.dat-to-strings”, and others as
“gys:1.dat-to-strings”. Inconsistencies such as these must be detected by the
user, and corrected manually by altering and re-compiling the offending
programs. '

The second problem, and one which is much more difficult to solve, is the
case when the system procedures loadseg and unloadseg have already been re-
defined by something other than SEGLIB. This is the case, for instance, whenever
a language other than BCPL is run under TRIPOS—ALGOL68C and
MODULA-2 each have their own linking loaders, which are implemented as
libraries, in a similar way to SEGLIB. Unfortunately, in order to avoid infinite
recursion, both SEGLIB and PRELOAD: must each have their own definitions of
loadseg and unloadseg, and those definitions must be fixed at the compile time of
the two programs. This means that anyone wishing to use a version of loadseg
which is different to the default, must have their own, modified versions of
PRELOAD: and SEGLIB.

This is highly unsatisfactory, since it makes the installing of updates to the
pre-load system a slow and tedious process, and there is always the possibility of
missing one of the private versions. Thus, a mechanism is required which saves
the value of a global which is about to be over-ridden, and then makes it
available to the program which is doing the over-riding. This is impractical, and

at the time of writing, no simple, clean solution to the problem has been found.

6.5.7 Alternative methods

The mechanism described above is only one way of solving the problem of
pre-loaded programs. With PRELOAD:, programs are pre-loaded at the behest of
the user, and fully under his control. Only those programs which are explicitly
pre-loaded will ever be kept in memory, and then only until the user: decides
explicitly to unload them.

/

109




It is possible to imagine a system where the only thing under the control of
the user is the amount of memory available for pre-loaded programs, and that
some, more automated way could be found for deciding when to load and unload
pre-loaded programs. One could no doubt define some suitable algorithm which
employed a “least recently used” technique for deciding what to unload when
storage in the pre-load area was scarce. For the system to work in a reasonable
way, given the normal “edit, compile, debug” cycle, the algorithm would also
have to take into account frequency of lise, gize of program and length of time
taken to re-load it, should it have to be brought in again from disc.

The problem with such a scheme, as with any paging algorithm, is that there
are always situations when the system will work pessimally, and very few when it
will work exactly as the designer had intended. In effect, such a scheme would
require “hints” from the user—such as what to load when the system started up
initially—in order that more sensible decisions about loading and unloading could
be taken. When taken to its logical extreme, “hints” become direct commands to
the pre-loading system, and the manipulation of pre-loaded programs reverts
entirely to total user control.

Experience has shown that the user is almost always the best judge of what is
best to be kept pre-loaded, and that even though it would, theoretically, be
possible to automate the process to some extent, there is little incentive for doing

80.

6.5.8 Performance

As with the REX system described in chapter 5, it is difficult to measure the
improvement in programmer productivity due to the inclusion of a new facility.
Obviously, it is possible to measure the amount of time taken to load a program
from disc, and given that the equivalent operation for pre-loaded program is
effectively instantaneous, thus calculate the amount of time saved. The absolute
figures are small: 10 seconds on average for entering a screen editor and 15
seconds for performing a BCPL compilation are typical figures. This may seem
insignificant compared to the amount of time actually spent in an editor or
performing a compilation, but the advantage of the extra speed is of psychological
importance to the user.

If entering an editor entails a delay during which the programmer is forced to
be idle, then frustration occurs, and after a while there is a growing reluctance to
leave the editor, given the delay involved in re-entering it. Similarly, if compiling
a program means that the compiler and its overlays must be loaded from disc,

then there is a similar reluctance to use it because of the time taken. On the -
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other hand, if entering the editor and compiling a program are both fast
operations, then it is possible to adopt the “fix one problem at a time” approach
to debugging, rather than spending a large amount of time staring at a terminal
or a program listing.

The benefit of a pre-load system is, therefore, not in the small amount of
absolute time saved in loading the programs from disc, but in the change of
attitude taken by the programmers, and the methods they use for program
development. Although it is difficult to quantify this benefit, many people
(including the author) believe it to be high.

6.6 Other TRIPOS devices

Keeping programs cached in store is only one way of using the large amount
of memory available on the new 68000 TRIPOS machines. Another method,
which has just as big an effect on programmer productivity, is to increase the
number and quality of the services available to him. The biggest impact in this
area was no doubt the TRIPOS Shell and REX system, but there are other smaller
programs which, each in their own way, have managed to improve the working
environment significantly.

As mentioned before, the most convenient way of encapsulating a new service
under TRIPOS is to use a task. Synchronisation problems are then handled by
the operating systém kernel, and the details of the implementation can be hidden
from the user behind a well-defined, message level interface. PRELOAD: is an
example of a device, which is loaded into memory by means of the mount
command—originally intended for loading disc handlers and so on. Using mount
is only one of three ways of taking advantage of pseudo devices though, and the
examples which follow give an indication as to how the other methods work.

6.7 The WINDOW: device

The “WINDOW:” device falls, along with PRELOAD:, into the first category of
pseudo devices—those which are mounted. The TRIPOS mount command takes
a description of the device from a file, including the filename of the handler
program, task priority, stack size and so on, and comstructs the device in
memory, adding the device’s name to the assignments list.

The default TRIPOS console handler communicates with the Terminal
Concentrator [Ody84] on Ring based systems, and directly with the physical
console device on stand-alone systems. If a command line interpreter or Shell is

required which uses a console different to the default, then a new handler must
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be provided. The WINDOW: device providevs a console handler which has the

required interface to enable a full screen editor to implement process buffers.

6.7.1 Process buffers
The first editor to use the concept of process buffers was EMACS [Gosling82]

which runs under UNIX. Process buffers are full screen editor windows which,
instead of representing a file being edited, represent a console session.
Everything which would be written to the console, instead gets written into the
editor window, and anything typed into the window is handled as though it had
been typed at the console.

The benefits of such a mechanism are easy to see. No longer are artificial
command histories and command line editing required, since a transcript of the
entire console session is available in the editor window, and commands, data and
program output can all be edited, copied and moved as though they were simple
text, with all the power of the full screen editor at the disposal of the user. If
process buffers are so much more powerful than simple console sessions and
command histories, then why are they not always used in preference? There are
two main reasons for this.

~ Firstly, and most importantly, full screen editors tend to be slow at re-
drawing areas of the screen which have changed. In order to work properly, they
must keep an internal map of what the screen should look like and what it
actually does look like, so that the necessary updates can be made. What a full
screen editor is unable to do propsrly is to make use of the hardware assisted
“scroll” facility of the terminal itself. This does not matter whilst editing a file,
since a user will tend to step through the file one page at a time, in which case
the whole screen must be re-drawn anyway, or simply type characters, in which
case the speed of update is not critical. When “editing” a console session though,
since output from commands cause the window contents to change suddenly and
without warning, the screen must be re-drawn fairly often, which can be a slow
process. There is also a problem with programs which use control characters or
escape sequences to access facilities provided by the terminal (such as
highlighting, cursor positioning and so on), since these are handled by the editor
and are not passed through to the terminal.

Secondly, full screen editors tend to use non-printing control characters as
editor commands. This means that these characters cannot be typed directly
into a process buffer, since they would be interpreted by the editor, and never be
received by the underlying program. These characters must therefore be

“escaped” by using some sort of special character sequence.
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Despite their problems, process buffers are extremely useful objects in
practice, since there are many times when it is convenient to be able to edit a file
and run a console session simultaneously. Under TRIPOS, there was only one
editor which was capable of being able to perform this task, and so the WINDOW:
device was implemented specifically with this editor in mind. The interface to
WINDOW: is, however, extremely general, and could be used by any other TRIPOS

editor to perform the same function, with little or no modification.

6.7.2 The implementation of WINDOW:

The editor in question is WORCESTAR [Stoye83] which was implemented by
W. R. Stoye, and the original encouragement to provide a process buffer handler
came from him and other WORCESTAR users. One of the major differences
between other TRIPOS editors and WORCESTAR is the ability to split the
screen between two different files, The mechanism is by no means as general as
the EMACS loose binding between buffers and windows, but is enough for most
applications, and enables the introduction of process buffers.

In order to implement one process buffer, four separate tasks are required.
The editor task handles the real console I/O, and deals with screen layout and
general screen management. The WINDOW: task handles requests from the editor
task, and in turn, communicates with the COHAND (console handler) tasks, of
which there is one per window. Each COHAND task has at least one Shell task,
which actually executes the commands typed by the user.

Because WORCESTAR is written in a single threaded manner, its interface
to the WINDOW: device is polled. Each window has its own fwtd—a task window
identifier—and every transaction associated with a window is flagged with its
twid. The editor calls WINDOW: with one of the following requests:

o Create Window
° Delete Window
o Read Buffer

. Write Buffer

. Write Escape

The create window request causes WINDOW: to allocate a new window slot,
and if necessary, to create a new COHAND and Shell task to go with it. The result
of the request is the twid of the new window. The delete window request causes
WINDOW: to cancel the relevant window slot, and to invalidate the fwid given, so
that it cannot be used again. The read buffer request causes WINDOW: to call the
relevant COHAND task for this window, in order to pick up any buffered output
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which should be written to the window. The write buffer request causes WINDOW:
to call the relevant COHAND task for this window, in order to write a line of input
typed into the window to the main input task for that window. The write escape
request causes WINDOW: to interpret a line of input typed into a window in a
special way, passing control information to the relevant COHAND task.

The WINDOW: device has the effect of acting as a “go between”, providing a
clean interface between the editor task, and the tasks using the process buffer.
The create window and delete window primitives are relatively self explanatory,
in that they deal with the creation and deletion of windows, along with the
housekeeping entailed in such actions. The read buffer and write buffer
primitives are somewhat confusing, in that “read” and “write” are taken from the
point of view of the editor task, not from the point of view of the program in the
process buffer. Essentially, all that the WINDOW: device does is to multiplex
output coming from the process buffer tasks, giving it to the editor when
required, and to demultiplex output coming from the editor, sending it to the
process buffer tasks. The write escape primitive is necessary, since
WORCESTAR uses many of the control characters which TRIPOS requires in
order to give commands to the console handler. Examples of this are CTRL-B,
which is used to communicate a “break” condition to an executing program, and
CTRL-S which is used to select the current input task. Both these control
characters have different meanings to the editor. The solution to the problem is
to enable the user to type a line into a process window, flagged in such a way
that it is interpreted by the console handler, rather than being transmitted to the

program running in the window.

6.7.3 The COHAND console handler

The WINDOW: console handler, COHAND, must be an exact replacement for the
standard “#” device. Unfortunately, the RMVTHand implementation of this
device [Knight82] has grown so much that many of the functions it provides are
either inappropriate to process buffers, or impossible to implement. Those which
are relevant have been implemented, with the others being ignored.

By far the most common usage of the “¥” device is simple, line-by-line input
and output, using standard stream control blocks created by findinput or
findoutput, and with input/output being performed using rdch and wrch. This is
easy to implement, since each line of input or output corresponds exactly to the
“buffer” which it required by the editor and WINDOW: handler. Other console
handler functions, for example “set current input task”, are also easy to

implement, and so have been included.
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What is not easy to implement is the entire set of console handler functions
which are involved with single character I/O. These functions were added
because RMVTHand needed to know whether to drive the virtual terminal
protocol stream in line mode or character mode [Ody84], and were necessary to
support full screen editors. In order to deal with this problem sensibly, functions
were added to enter and leave “single character mode”, and perform “single
character read” and “single character write” operations. On top of that, extra
functions were included in an attempt to speed up the execution of those
programs which used single character mode—mainly full screen editors. An
example of this sort of function is the “how much input” request, which enables a
program to find out how many characters have been buffered, waiting to be read.

Given that COHAND runs under the WORCESTAR editor, which itself runs in
single character mode, it is inappropriate to implement another level of single
character 1/0. The reason for this is that programs which switch RMVTHand
into single character mode, implicitly take over control of the entire console, and
in particular, the layout of the screen. When running in a window, a program
must only be allowed to take over its own window, and cannot be allowed to
touch the rest of the screen. Unfortunately, RMVTHand does not provide
primitives like “clear screen”, “position cursor” or “set highlight mode”, and so
any program which handles the entire screen, does so by sending control
characters or escape sequences directly to the terminal itself. Consequently, since
the single character I/O could not be provided in a satisfactory manner, it was

omitted.

6.7.4 Summary

The process buffer scheme described above works well, and has only one
major disadvantage, and that comes from an inadequacy of the TRIPOS system
itself. Once a task has been created, it cannot be deleted explicitly until such
time as it runs to completion. This, in the case of a task running a Shell as part
of a process buffer, is never. The effect is that, whenever a window is deleted, i
is impossible to clean up the tasks which were created for that window.

In practice, this does not actually present a problem, since deleting a window
simply suspends the polling of its COHAND task. As a result of this, any program
using the console handler which requires some form of console 1/O, will suspend
waiting for it. Everything then remains in a suspended state until a new window
is created, at which point, rather than create a new COHAND for the window, the
old one is used in preference. This has the effect of waking up the program
waiting for 1/O, and everything then starts up again. The create and delete .
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functions would more accurately be described as connect and disconnect.

6.8 The EX: and EXALL: devices

The second category of pseudo devices are those which are loaded on demand.
Like mounted devices, they are represented as names followed by a “:? character,
but unlike mounted devices, the names are never included in the assignments list.
Devices loaded in this manner tend to be single threaded in structure, and hence
are only capable of handling one client at once. The handlers of such devices are
loaded in response to findinput or findoutput requests, where the name given as
the argument is prefixed by the name of the handler. When presented with such
a name, the assignments list is scanned for it, but if this operation fails, the
system handler directory “sys:h” is scanned for a handler of the same name. If
one is found, then it is loaded into memory, and everything then proceeds as if
the device had been mounted.

An example of such a device is the Byte Stream Handler, “BSP:”, written by
B. J. Knight. Here, advantage is taken of the fact that running a Ring byte
stream connection is essentially a two stage process. Firstly, the open block
must be sent out, and its openack reply awaited. This part is essentially
synchronous, and is accomplished as part of the task which is opening the byte
stream connection. Secondly, once the connection is established, the byte stream
is run as a finite state machine with an associated byte stream control block, the
code for which is shared by all byte stream connections. This is implemented,
either as a separate task in the same machine in the case of standard TRIPOS
[Knight82], or as code in the Ring interface processor in the case of supermace
[Garnett83]. The code to establish the connection is loaded on demand from the
file “sys:h.bsp”, and once established, the byte stream is then handled
asynchronously, with the BSP: device code being discarded.

An alternative mechanism to the loaded device calling a task which already
exists, is for the device to create a new task specially. It is this mechanism which
the “EX:” and “EXALL:” devices adopt. The motivation for the work on these
devices was that many programs require as their input a file containing a list of
filenames on which the program should act. In order to obtain such a list of
filenames, it was necessary either to type the list in by hand (which was slow,
tedious and inaccurate), or to run the “ex” program, directing the output to a
file, and then editing the file to remove the unwanted information.

There was obviously a need for a device which would, when given the name of

a directory, return a file containing the names of the files within that directory. .
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There is no reason why the file produced needs to be stored in the filing system,
because the TRIPOS stream mechanism is general enough for the file to be
generated on the fly, as required by the calling program. The EX: and EXALL:
devices perform exactly this function, with the only difference between them
being that EXALL: searches for files in sub-directories, as well as in the named
directory.

The EX: device is loaded by calling the BCPL procedure findinput, with

argument:

ex:<directory name>

This loads the code of the handler (from the file “sys:h.ex”) which obtains a
Jock on the directory, and sets up a stream control block for the newly created
input stream. The effect of the operation is that, whenever the stream’s
replenish function is called, the directory is examined until the next file entry is
found, at which point the name of the file is stored in the stream’s buffer (with
the pos and end fields being set up accordingly), and the calling program
consequently reads this file name as data from the stream. When the stream’s
close function is called, the directory lock is freed, and the EX: handler deletes
itself. ‘

Being able to handle directories in this way is extremely powerful, and is
made more so by an extra level of pattern matching which has been included.
The name of the directory given as the argument to EX: or EXALL: may contain
“wildeard” characters—“?” which matches any single character, and “*” which

matches any number of characters. Thus:

ex:*-obj.?777
would match all files with three character names, in directories whose names

ended in “-obj”. So, for example, the above pattern would match:

68000-0b] . abc

1lsid-obj.def

pdpii-obj.ghi
and so on. The wildcard facility is implemented using the regular expression
pattern matcher [Richards79bj, with a suitable translation being performed
between the “?” and “*” notation, and the more general and complex notation
used by the pattern matching system.

The ability to have wild cards is particularly useful for those people working
under TRIPOS who, either by choice or necessity, do not separate source and
binary files into different sub-directories. An example of this is the MODULA-2
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system which forces all files to be in the same directory, and using the UNIX
philosophy, differentiates files by using suffices: “-mod” for MODULA-2 source,
“_def” for MODULA-2 definitions, and so on.

6.9 The DIR: device

The third category of pseudo device occurs when a handler is accessed, not by
its name in the assignments list, nor by implicit loading from the system handler
directory, but via a filing system lock. A lock is represented as a small control
block in memory, in which is stored all the information about the lock, such as its
owning task, and whether the lock is exclusive or shared. This method is very
similar to the assignments list system, except that the information about the
handler is stored in the lock, rather than in the assignments list entry.

An example of a device which uses this mechanism is “DIR:”, which enables
multiple directories to be concatenated. A set of concatenated directories can be
thought of as being a single, shared lock on a virtual directory, which is simply a
table of other, shared locks on real directories. The property of a lock is that,
whenever a filing system operation is attempted on an object whose owning
directory is represented by a lock, a message is sent to the task which owns that
lock, and it is up to that task to perform the operation. In this way, whenever
access is attempted to any object in the set of concatenated directories, the DIR:
device is called to handle it. Having taken control, DIR: can then attempt the
operation on each of the stored directory locks in turn, until one which succeeds
is found. The effect seen by the user is that the set of concatenated directories
appear as one single directory, and hence a group of directories can be used
anywhere that a single directory would be valid.

The actions described above are only appropriate for certain filing system
functions. The operations findinput and locateobs are both valid, since the filing
system is not updated, and even if the operation is ambiguous, it is reasonable for
the first object which matches to be the one which is used. Operations such as
findoutput, deleteoby and so on, are poteiltially destructive in their nature, and
since any ambiguities cannot be resolved in a reasonable manner, these operations
are faulted.

The main application for concatenated directories is where a “search path” is
required, in other words, where objects which have the same purpose are actually
held in different directories. The most striking example of where concatenated
directories are of help is in the area of the Shell, and its handling of loaded
commands and REX programs. The Shell provides the facility where the directory |
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assignments “COM1:” and “COM2:” are scanned for loadable commands, and the
directory assignment “REX:” is scanned for REX programs. Using concatenated
directories, it is possible to have a whole series of directories which are scanned in
order to pick up the required program. This means that it is possible for groups
of people, working together on the same project, to have shared and private
command directories, in addition to any standard system directories, without
ever having to specify explicit path names.

Since the DIR: device is only accessible while there is a copy of its lock in
existence, the most convenient way to keep and access that lock is to give it a
name, and store the name in the assignments list. The command responsible for
manipulating directory assignments is assign, and with a slight change of syntax
from the original version, it can easily handle concatenated directories.

Normally, the command:

assign coml: 68000-obj

causes a lock to be obtained on the directory “68000-0bj”, and a pointer to this
lock to be included in the assignments list under the name “comi:”. For

concatenated directories, the command:

assign comi: 68000-obj+:bjk.68000-0obj+:njo.68000-0b]

causes the DIR: device to be loaded and called. This in turn sets up a table of
three entries, one for each directory in the list, and returns as its result a newly
generated lock which refers to DIR: rather than the main file handler.

The DIR: task for a set of concatenated directories stays in existence until
the number of locks which reference it drops to zero. At this point, it releases
the locks it holds on the constituent directories, and then deletes itself.

6.10 Summary

The original implementation of TRIPOS, when moved onto 68000 machines
with large amounts of memory, was incapable of making efficient use of the
facilities provided by the hardware. Because of the speed of access to remote
fileservers or slow local discs, much of the CPU power was lost waiting for disc
transactions. This can be improved by using memory pages rather than disc
blocks to provide a resident filing system. Alternatively, it is possible to pre-load
frequently used programs so that the overheads of reading the programs from
disc can be avoided, and the code can be shared between different tasks.

Another way of making use of the large amounts of memory available is to

provide extra services which improve the user environment. Although not -
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strictly necessary, these facilities increase the convenience of the system to those
who use it, and alter the philosophies adopted to solve everyday problems.
Examples given above are a process buffer handler which makes it possible to
conduct a console session from within a full screen editor, and two different
facilities which ease the handling of filing system directories.

The additions suggested in this chapter are just some of those possible, and
the examples given illustrate how the modifications may be made to an existing
system. In many ways TRIPOS was ideal for this work since it was easy to add
new facilities in the form of pseudo devices. It is the principles involved which
are important though, and these are applicable to other systems which, like the
original version of TRIPOS, are unable to harness the power of the machines on

which they are run.
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7. Kernel Issues

7.1 Introduction

The chapters up to now have tended to concentrate on how to adapt existing
system software to take advantage of larger and more powerful personal
computers. In contrast, this chapter concentrates on the issues involved in the
design of operating system kernels, and aims to draw up a set of guidelines for
anybody faced with the task of producing one for the new generation of machines.
In order to reach the set of guidelines, many of the techniques adopted by
previous designs are described, and then discussed with respect to different types
of application. To give an indication of the success of a previous design, different
aspects of TRIPOS are examined critically, and performance measurements are
taken in order to suggest better techniques.

Various different areas of operating system design are explored in an attempt
to reach conclusions. The whole area of language choice and utilisation is
discussed, with reference to the operating system kernel itself and the programs
which use it. The different uses of coroutines within an operating system are
investigated, especially the choice which the implementor of such a system has to
make—that between coroutines and processes. The topic of scheduling is
examined, along with the relative merits of pre-emptive and time slicing
techniques. The issue of storage allocation takes on new importance on large
memory machines, and different methods are compared with respect to their
relative convenience, simplicity and efficiency. Finally, more general issues such
as structure, portability and the nature of the user interface are discussed.

As an illustration of some of the ideas presented here, an experimental light-
weight multi-tasking kernel for network protocol software is introduced, and
contrasted with its TRIPOS predecessor.

7.2 Language issues

There are two different levels at which programming language decisions must
be taken when designing any new operating system. Firstly, there is the decision
as to which Janguage should for the operating system implementation—should it
be a high level language for portability, or assembly code for efficiency?
Secondly, what restrictions, if any, are to be placed on the user of the operating
system, with respect to the languages he may use? These two issues are

essentially independent, and so can be examined separately.
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7.2.1 Operating system language

Before the introduction of the large personal workstation, there were
essentially two sorts of computer for which operating systems were available. In
simple terms, these could be classified as “large” and “small”.

Large systems, on the whole, tended to be physically large, requiring a large
amount of human effort to keep them running, and were financially expensive.
Typically, the amount of memory available was measured in megabytes, with the
rate at which instructions could be executed being greater—sometimes much
greater—than 1 MIPS. Large systems, because of their capacity and expense,
tended to support multiple users, either in the form of batch processing or time
sharing. One thing which distinguished large systems from others was the
complexity and speed of their peripherals. Elaborate channel and I/O processors
took the function of handling peripheral devices away from the CPU, leaving it to
perform users’ calculations for the maximum amount of time.

Small systems, on the other hand, tended to be desk-top computers, with
each user having his own personal machine. Their memory size was severely
limited, being measured in tens of kilobytes rather than megabytes, and the
processor speed was almost always around 1 MIPS, as this was the limit of the
NMOS and CMOS technology out of which these systems were built. No
elaborate I/O processors were available on these machines, and since peripherals
were often polled rather than using DMA, much of the CPU’s time was spent in
handling devices rather than in performing computation.

Even though the types of system described above are so different, there was
always the tendency to implement operating systems for both in assembly code.
The reasons for this decision reflect the requirements of each. Multi-user
operation combined with large numbers of processes mean that efficiency is of
great importance to large systems, with the compactness of the resident software
being the over-riding factor for small systems.

As the number of both types of system increased, so did the philosophy that
portability was more important than efficiency, and as the small systems grew
larger in capacity, so the need for compactness was reduced. In order to achieve
this portability, it became increasingly common for operating systems to be
written in a high level language. Examples of such systems are common: 0Sé6
[Stoy72] was written in BCPL, SOLO [BrinchHansen76] in concurrent PASCAL,
THOTH [Cheriton79] in EH (a derivative of BCPL), PILOT [Redell80] in MESA,
MEDOS [Wirth81] in MODULA-2, and for larger machines, UNIX [Ritchie74] in
C.
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There are obvious advantages to writing operating system code in a high level
language. The portability issue has already been raised, but this is only one
reason for the choice of such a language. One of the main advantages is the
ability to define algorithms and manipulate data in a structured manner, which
has the effect of increasing software reliability and improving the system
programmer’s productivity. Using a high level language also has the effect of
making program interfaces much more easy to define, and in certain
circumstances, the language system can be used to check those interfaces for
consistency. Add to that the fact the software written in a high level language is,
on the whole, easier to read by someone other than the original implementor, and
making modifications and fixing bugs is much easier than with assembly code.

Having listed the advantages of using a high level language for this type of
software implementation, it is worth looking at some of the disadvantages.
Firstly, no matter how good a compiler is, the output produced by it is never as
fast nor compact as hand crafted assembly code. Secondly, high level languages,
by their very nature, cushion the user from the harsh realities of the underlying
hardware, and although this helps with portability from one machine to another,
it dces hinder the task of the system designer. This is because it is the job of the
operating system to control and manipulate the hardware of the machine on
which it is running, (accessing memory, peripherals and so on), and this job is
made more difficult if the language makes it impossible to deal with the hardware
directly.

The problems of compactness and efficiency are much less of a problem, for
the simple reason that the distinction between large and small systems described
earlier is becoming less and less. As micro-processors become more powerful and
the cost of memory falls, it is now possible to have computers which fall into both
categories. The systems are large, because of their power and memory size, but
gtill small because of their physical size and because they operate in a single user
manner. One factor which puts these new machines definitely into the “small
systems” category, despite their capacity, is the fact that access to peripherals is
still handled by the main processor, and since there is no point in attaching
expensive, fast devices to cheap, single user computers, access to peripherals
tends to be slow. Because of this, it is clear that the efficiency of the operating
system kernel (in terms of CPU cycles) is not the major factor which determines
the overall utilisation of the machine. There is little point in having a set of
finely tuned systems procedures, which spend most of their time idle waiting for
I/0O to occur. Compactness is no longer an issue either, since the cost of memory

is now a very small fraction of the price of the whole machine. Code which
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appeared bulky in 64K bytes is of no importance if several megabytes are
available.

With the arguments given above, there is no advantage at all in writing a
new operating system in assembly code, and only one minor disadvantage to
using a high level language—the problem of accessing the hardware directly.
There are two ways of tackling this problem. One is to choose an
implementation language which allows full and free access to the underlying
hardware, with no data typing restrictions stopping this. 0S6, TRIPOS,
THOTH and UNIX were all designed in this way, with OS6 and TRIPOS being
written in BCPL, and the others being written in EH and C respectively, which
are both derivatives of BCPL. The other approach is to use a strongly typed
language, such as PASCAL for SOLO, MESA for PILOT and MODULA-2 for
MEDOS—all languages which hide the hardware behind a level of
abstraction—and then use either micro-code or assembly code sections to provide
loopholes in the typing mechanism to enable the hardware to be accessed.

Whatever the choice of implementation language, there is always a cerfain
amount of any operating system which will always be machine dependent.
Falling into this category is the code to handle bootstrapping and general
initialisation, the section which handles the processor register dumping and
loading while switching between processes, and the code which initiates, and then
handles interrupts which come from device transactions. Often, the hardware
can help in this area by, for example, providing a single instruction to perform a
complete context switch.

The amount of software which must be written in assembly code depends
very much on the nature of the operating system, and more particularly on the
“ideal machine” it was designed for. Certain systems, notably PILOT and
MEDOS, require very little, if any, since the operating systems run on hardware
which has been tailored and micro-coded for their particular needs. Unless this is
the case though, there will always be discrepancies between the ideal and actual
machines, and when porting an operating system onto a new computer, there will
always be some programming to be done at the assembly code level.

Given the arguments outlined above, there is no reasons why systems should
not be designed so that the amount of programming at this level is kept to an
absolute minimum. Since memory is plentiful, compactness is not an issue, and
because of the relatively slow access to peripherals, efficiency is not really at
stake. The operating system which follows this ideal to its logical conclusion is
UNIX, with only the tiniest part of the operating system kernel and I/O device
drivers being written in assembly code, with the rest of the kernel, device drivers

124




and other operating system functions being written entirely in C.

Even though much of TRIPOS is written in a high level language, the entire
operating system kernel, a BCPL run time library and all the device drivers to be
written in assembly code—typically 3,000 to 4,000 lines in all, or about three
man-months’ effort. The arguments used for this are necessity first, and
efficiency second. Certainly, operations such as those mentioned before
(initialisation, interrupt handling and so on) must be programmed in assembly
code, and so these sections are inevitable. The efficiency argument is less easy to
justify, unless the kernel is in use in a situation where it must have a fast real
time response. For normal operating system running, where the client is a user,
the efficiency issues are much less important, and a great deal of time and effort
could be removed from the job of porting TRIPOS, simply by recoding most of
the operating system kernel in BCPL.

Whatever the language chosen to implement the operating system, there are
very strong reasons for writing all of it in that particular language. It would
obviously be possible to implement different parts of the operating system in
different languages, indeed this should not be prohibited by the designer, but
there are many advantages to a single language approach.

Firstly, there is the issue of consistency between different operating system
modules, and the definition of the interface between them. If two modules are
written in different languages, then the task of defining and formalising the
interface is made much more difficult. Automatic interface consistency checking
(such as that provided by MESA or MODULA-2) can only be used conveniently
if both sides of an interface are programmed in that language, otherwise the
mechanism is useless.

Secondly, there is the issue of simplicity when it comes to accessing operating
system data structures, such as process control blocks or the free store chain. If
more than one language is used to access these data structures, then decisions
must be taken in order to define the physical layout of these structures in
memory, whether addresses should be byte or word values, and so on. Since no
one representation is ideal for all languages, there is always a compromise
involved when designing such systems, and so it is clear that, for at least one of
the languages involved, access to these data structures would be in an unnatural
manner.

Thirdly, there is the issue of portability, and the amount of effort required to
move an operating system onto new machines. It is already the case that an
assembler and a compiler must be written for the primary implementation

languages. If, added to that, there is the requirement that other compilers must
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be written for each of the other implementation languages, then the amount of
work involved in these will increase the task of porting the operating system to
such an extent that it becomes unfeasible.

For these three reasons, it is therefore advantageous to keep to a single
language for the implementation of the entire operating system. In this way,
interfaces between the modules can be checked by the language compiler (if this
is possible), data structures can be handled in the most natural way for the
language, and the task of porting the operating system onto other machines is
reduced, since only one compiler is actually necessary. Also, if the amount of
assembly code required by the operating system is small and its structure gimple,
then the assembler required need not be at all sophisticated, with the result that
the language implementation is the only major obstacle to portability.

7.2.2 User languages

Even though a single language operating system has many attractions, it is
not at all clear that this philosophy should be enforced on the users of such a
system. On the whole, operating systems fall into three distinct categories with
respect to user languages.

Firstly, there are the single language systems, where the user of the operating
system is forced to write in the same language in which the operating system
itself is implemented. Examples of such systems are TRIPOS where the language
is BCPL, PILOT where the language is MESA, and MEDOS where the language
is MODULA-2. With single language systems, the whole gearing of the operating
system is towards this language, with system calls being represented by language
procedure calls. Even if it is possible to implement other languages on such
systems, this is often difficult and inefficient. R. D. Evans [Evans81] describes
some of the problems of implementing PASCAL and ALGOL68C on TRIPGS,
which is heavily geared towards every program being written in BCPL.

Secondly, there are the preferred language systems, where the user of the
operating system is encouraged to write in the same language as that used by the
system itself, but sufficient “hooks” are included to make it possible for other
languages to be used in a clean and efficient manner. The major difference
between this type of system and the single language version is that the interface
to the operating system kernel is much less language specific, usually being
implemented using “traps” or “supervisor call” instructions rather than by
language procedure calls. Examples of preferred language systems are UNIX,
where the language is C, MAYFLOWER [Hamilton84], where the language is
CLU and CAP [Wilkes79], where the language is ALGOLG8C.
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Thirdly, there are the truly language independent systems, which allow the
user to write in any language, neither enforcing nor encouraging his decision. On
the whole, language independent systems tend to be large, and support multiple
users each with different requirements. In such circumstances, it is not
reasonable to restrict the choice of implementation language, and so all interfaces
are sufficiently general to allow for complete language independence.

Given the power and generality of the new generation of personal
workstations, there is no reason why they should not support implementations of
many different languages. Similarly, as these machines become more common, 8o
the requirements of their users diversify, making the ability of an operating
system to support many different languages essential.

There have been arguments in the past about whether language independence
causes a decrease in efficiency, simply because the interface between the user and
the operating system must be more general. The generality means that there
must be a well defined calling convention between the user programs and the
kernel, implemented either through a subroutine call or a processor “trap”
instruction. Indeed, the interface does have to be more general, with more
dumping and loading of processor registers, and on the whole, trap instructions
are slower than simple subroutine calls, since part or all of the machine state
must be saved. Also, there is often a certain amount of decoding necessary when
a trap is executed, whereas subroutine calls go to the correct entry point
immediately.

The advantage of executing a trap instruction is that there is usually an
implicit change of processor privilege state, which may be necessary in order to
access peripherals, protected memory and so on. Single language systems, such
as TRIPOS, force the processor to operate always at its highest possible privilege
state, since there is no simple way of determining where the user code finishes
and the operating system code starts.

Because of the inability to draw a clean line between what is in the user
domain and what is in the operating system domain, it is very easy to become
confused about what aspects of a design are operating system issues and what are
language issues. TRIPOS, for example, as well as allocating each process a task
control block, also allocates a stack and global vector as well, on the grounds that
the task code, being written in BCPL, will require them. This is, in a sense,
confusing two completely separate issues—the creation of a new task and its
initial activation, and the allocation of resources to that task which are language
specific. In fact, TRIPOS actually suffers because of this, since activation of a

task happens within the kernel, with interrupts disabled. The activation process, ‘
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requiring two areas of store to be allocated and initialised, also runs with
interrupts disabled, and the whole operation may take several milliseconds,
during which time no interrupts can take place.

This ambiguity of definition is removed in a language independent system,
since the interface between processes and the operating system kernel is clear cut,
with a definite domain transition taking place when passing from one to the
other. The interfaces between the kernel and the rest of the world should be well
defined, and wherever possible consistent. There is a great advantage if the
calling conventions of processes are the same as those for exception handlers,
interrupt handlers and so on, since this allows any language to be used anywhere
in the system. The topic of calling conventions is discussed in more detail later

in this chapter.

7.3 Processes and coroutines

Using the process as the unit of operating system work is a concept that has
been around for many years. More recently, there has been an increase in the
interest shown about coroutines [Moody80], and their use in operating system
design. B. J. Knight [Knight82] describes how coroutines can be used to
subdivide work within processes into more manageable units, and discusses their
use in helping to implement a multi-threaded remote debugger [Atkins83]. Some
operating systems, notably MEDOS, have done away with the concept of
independent concurrent processes altogether, with coroutines being used
exclusively for scheduling purposes.

Before examining processes and coroutines in more detail, it is worth
comparing their properties and limitations. Both processes and coroutines can be
treated as individual units of “work” whose execution can be suspended at any
time, while the processor performs some other function, and then resumed af
some later time. They both require an environment which is saved when
suspension occurs and is restored on resumption. The differences between
processes and coroutines lie in two distinct areas.

Firstly, processes are capable of being pre-empted, in other words, if some
event occurs which enables a more important process to start execution, then the
current process is suspended forcibly, and is only resumed when the more
important process has no more work to do. Coroutines, on the other hand,
cannot be pre-empted, in that they continue to run until such time as they

suspend themselves voluntarily.
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Secondly, each process is run in a separate environment, and may be written
in a different programming language. This means that a process context switch
involves the dumping of the current machine state, (represented by the processor
registers, program counter, status word and so on), and the loading of the new
state. Unless the processor provides instructions to help with this, the job of
dumping and restoring of machine states can be fairly lengthy, particularly if
memory page tables must be updated as well. Sets of coroutines, on the other
hand, tend to be written in the same programming language, and execute as part
of the same process. A coroutine context switch is, therefore, much cheaper than

its process equivalent, since much less of the environment needs to be changed.

7.3.1 Processes

Processes have several uses within an operating system, but by far the most
important feature they provide is that they can be pre-empted, should this prove
necessary. An example of this type of pre-emption is when the completion of a
disc transfer or a character being typed on a keyboard causes a user process to be
suspended in favour of a more important system device handler. In this way, it is
possible both to handle devices, servicing them within their critical access times,
and to allow the user to run programs which are heavily CPU intensive. Pre-
emption is normally implemented using a priority based scheme, in which each
process is assigned a value which enables its relative importance with respect to
other processes to be calculated. In such a system, a process continues to
execute until such time as it suspends itself voluntarily, or a process of higher
priority is given work to do. This means that, with a pre-emptive system, it is
always the most important process which is capable of running which is actually
given the CPU.

Processes also have other uses, in that a process is often the unit of
accounting and protection on multi-user systems, and so the process context
switch can be used in order to control the resources being used and to protect
users from one another. Similarly, since a process is a self contained unit, it is
possible to treat processes as abstractions, holding sensitive or important data as
part of their environments. In this way, data can be confined to the area in
which it is used, with a well defined interface at which checks for consistency or

authentication can be made.

7.3.2 Coroutines
Coroutines have similar properties to processes, except that once running, a
coroutine cannot be pre-empted by another in the same process, and suspension

is always voluntary and explicit. Coroutines are also simpler in concept, since
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normally they are defined in terms of a programming language rather than an
operating system. Context switches are therefore done at a language level, and
hence tend to be not much more expensive than a simple procedure call. As aids
to implementation, coroutines have four main uses.

Firstly, they are useful for separating the different parts of a multi-threaded
program into several, single threaded units, with each unit being represented by a
coroutine. For TRIPOS, B. J. Knight [Knight82] explains how, by careful
redefinition of the BCPL function pktwast in terms of cowait (the coroutine
suspension primitive), it is possible to encode a complicated multi-threaded
program as a batch of simple, single threaded coroutines. The benefit here is a
human one, since on the whole, people are used to thinking serially, and are very
bad at imagining operations happening in parallel. There is a direct comparison
to be drawn between coroutines and the use of “control blocks”, which is another
way of implementing multi-threaded programs. Take, for example, a protocol
handler which deals with a set of I/O streams. Using the coroutine method, each
stream would have an associated coroutine, and whenever a request came to the
handler for a particular stream, it would be handled by the relevant coroutine.
Using the control block method, whenever a request arrived for a stream, the
relevant control block for that stream would be located, and the parameters
stored in the block would be adjusted accordingly. In each case, the same
operation is done, with the state held on the coroutine stack as local variables
being exactly equivalent to the state held in the control block. The only
difference is one of human conception, with coroutines making multi-threading
easier to understand.

Secondly, since coroutines can never be pre-empted by other coroutines, their
operation is guaranteed to be mutually exclusive, with the execution of one
coroutine stopping the execution of another. Because of this, coroutines can
handle shared data structures with impunity, since they need not suspend
themselves until the operation on the structure is complete. Using coroutines
rather than processes therefore has the advantage, in some cases, of removing the
need for an interlocking operation, such as a message queue or a semaphore. For
light-weight applications, mutual exclusion is much more efficient than either of
the other synchronisation methods.

Thirdly, since the size of a coroutine stack frame is determined dynamically,
there is the ability to use several coroutine stack frames to represent a stack
whose size increases and decreases dynamically. Since entire environments can be
saved on coroutine stacks, it is convenient to use these stacks chained together,

as though they were “frames” on a much larger stack, with each frame
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representing an execution level. In this way, control can be passed from one level
to another, with the environment being saved before the call, and restored
afterwards. An example of this kind of use is given in chapter 5.

Fourthly, it is possible to use coroutines to implement the interface between
different programming languages. This seems strange on the face of it, since one
of the properties of coroutines is that they are programming language specific,
and this is one of the factors which makes them so efficient. This is true in most
traditional implementations, but for a small amount of extra overhead, it is
possible to design a set of coroutine primitives which are programming language
independent. The approach suggested here was adopted by the GMK kernel
(described at the end of this chapter), which unifies all kernel calling sequences,
including those for coroutine manipulation. So long as the calling sequence used
by the coroutine primitives is simple and consistent, it can be called from any
language, and if the sequence used by the coroutine package is the same, as that
used by the operating system to enter newly created processes, there is no reason
why each coroutine should not be implemented in a different language.
Obviously, since the coroutine package claims to be language independent, it
must save the context of each coroutine before it calls another. Because the
other coroutine may be programmed in a different language, it is no longer
possible to implement coroutine switching quite so efficiently as before, since the
saving of the processor registers cannot be optimised. Having said that, the time
taken to switch between coroutines of different languages is still much less than
the time taken in a process context switch, and so using coroutines as the
interface between different languages is an extremely elegant and attractive

proposition.

7.4 Scheduling

One of the requirements of any operating system which has multiple processes
is that these processes should be scheduled in such a way as to share out the
CPU resources as the application dictates. Much has been written about the
problems of scheduling for large systems, particularly those which support many
interactive users. In such cases, what is important is the maximum utilisation of
the CPU, and the sharing out of CPU resources to each of the user processes in a
fair and equal manner. On a single user machine, all these parameters change,
and the issue of scheduling is much simplified.

The first, and most important point is that on single user machines, the

whole of the CPU power is potentially available to service the needs of that user, °
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unlike a multi-user time shared system, where the CPU must be shared by many
competing users and batch jobs. The concept of “fairness” in scheduling is
therefore removed, since unless the CPU is idle, it is bound to be executing at
Jeast one of the user’s processes, and then only in preference to others belonging
to him. The fact than a user has the entire CPU available means that the factors
important to him are the overall throughput of his system and the amount of
time he has to wait for operations to complete. Scheduling on a single user
system is therefore not a matter of accounting, but one of sensible resource
management in order to maximise convenience and minimise real time delay.

The second point is that, on a single user system, the number of resident
processes is usually very small (on TRIPOS, typically less than ten), and so
simple techniques which would be inefficient on large systems become more
attractive on personal computers.

Of the many different scheduling algorithms available, there are three which
have particular relevance to single user systems. The important observation is
that no one algorithm performs perfectly under all possible conditions, and so the
type of scheduler chosen for an operating system depends heavily on the
application involved. The two applications which have the most diverse
requirements are also the two which are the most common. Firstly, there is the
light-weight, multi-tasking kernel, which is the basis for the real time servicing of
devices, such as discs or networks. Secondly, there is the operating system which
provides a service to a user, allowing him to edit files, compile and run programs,
interrogate databases and so on. The requirements of these two types of system
require very different techniques, in order to maximise their efficiency and

performance.

7.4.1 Unique priority

The first type of scheduling which is worth investigating is the pre-emptive
“unique priority” system, as adopted by TRIPOS. In many ways, this is the
simplest algorithm to apply, and one of the best to use in a general purpose
operating system. Each process is given a unique priority, usually a positive
integer, which defines its importance in relation to all the other processes in the
system. The scheduling algorithm itself is very simple—the runnable process
with the highest priority is always the one which is given the CPU. This process
continues to run until either it blocks, or another process with a higher ‘priority
becomes runnable. This may happen in response to a device interrupt, or the
active process giving work to an inactive, higher priority process. When this

happens, the active process is effectively pre-empted by the higher priority -
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process, and so important jobs (such as handling fast devices) can be
accomplished, even if the user processes are CPU intensive.

The simplicity of this system means that only one queue is required, and that
is a queue of all the process control blocks, sorted with respect to their priority.
In order to activate a process, the chain of process control blocks is scanned from
high to low priority, with the first “runnable” process being the one chosen.
Since blocked processes are never activated and runnable processes are only ever
activated in a priority determined order, there is no need to keep a separate
queue of runnable process control blocks.

The system is indeed simple, but has one major drawback, which arises if any
of the processes go into a CPU loop, blocking either never or very infrequently.
It has already been stated that this does not affect higher priority processes,
since these will pre-empt a CPU bound process whenever necessary. This is not
the case for processes of lower priority though, since they will never be able to
pre-empt the active process, and since the process very rarely blocks, the lower
priority processes suffer from partial or total CPU starvation.

This is not a problem to the system processes, since they can arrange to have
priorities greater than those of the user processes. The user may run into
difficulties though if he has more than one active process, gince for the scheduler
to work properly, he must only ever have one CPU bound process, and he must
arrange for that process to have the lowest priority of all processes in the system,
otherwise starvation will occur. Apart from the obvious case of the user running
CPU bound programs, there are other occasions when the single priority pre-
emptive algorithm performs badly.

The first case occurs when there is more than one incarnation of a single
process, each performing the same function. This will be the case if, for instance,
there are two file handler processes, each handling different physical discs. It will
also happen in the case where the operating system kernel is being run without a
user, performing a real time service, such as a network fileserver. Within such a
server, there are likely to be several processes all of which perform exactly the
same function—handling disc objects or network transactions, for example. With
this sort of arrangement, it is artificial to give each of the different incarnations a
different priority, since no single one is inherently more important than any
other. In fact, being forced to assign umnique priorities actually hinders such
systems, since the incarnation which happens to have the highest priority will be
the onme which is given the CPU in preference, potentially causing partial
starvation to the others. The same is also true for the incarnation with the next

lowest priority, as it will pre-empt any lower ones, and the incarnation with the
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lowest priority may never see the CPU at all. The problem can be solved, either
by juggling the process priorities every so often, or by running each of the
processes as coroutines within the same process.

The second case is where it is necessary to support more than one user on the
same machine. This may seem a rather odd requirement for a “single user”
operating system, but it is often the case that it is convenient to allow one user
to be logged on via the intimately connected console, and another via a local area
network. Another example of where multi-user operation is desirable is to allow
many people to access a central resource, a database for instance, either from a
series of consoles, or from network connections. This is in fact a special case of
the previous problem, but more important in reality, since the clients which are
kept waiting due to the CPU starvation are not computers but people. If two
people are actively working on a system then, simply by running a CPU intensive

program, one can effectively lock out the other.

7.4.2 Non-unique priority

The second type of scheduling is a variation of the previous algorithm, with
the extension that processes of equal priority are allowed. Pre-emption of low
priority processes by high priority processes occurs as before, but processes of
equal priority are handled in a “first come, first served” order.

This method of scheduling removes one of the problems of the unique priority
algorithm, since multiple incarnations of the same process can each be given the
same priority, and so will be handled in the order that events actually occur,
rather than in an artificial priority ordering. Using equal priorities does not solve
the multiple user problem, since processes which have the same priority are
handled in order, and until the active process releases the CPU by blocking, the
next one awaiting execution (with either the same or a lower priority) suffers
from starvation.

For systems which have to respond well to real time events, such as network
servers, this type of scheduling has much to recommend it. An example of a
system which uses this method of scheduling is THOTH, which is designed

specifically for real time operation.

7.4.83 Round robin

The third type of scheduling which is worth investigating for use on single
user systems is “round robin”. This is very simply the gharing of the CPU
between processes of effectively equal priority, by partitioning the CPU time
available into slots, or time slices, and then giving the CPU to each process in

turn, changing to a new one whenever a process blocks or a time slice expires. As

134




with the previous algorithm, processes are either blocked or runnable, with the
runnable processes being held on a separate queue. When a process is wakened
after being blocked, it is added to the end of the runnable queue so that it can be
activated during the next available time slice. When the active process either
blocks or is timed out, the next item on the queue is activated, and if the
outgoing process is still runnable, it is re-inserted at the end of the queue. In this
way, the CPU is shared out in a fair manner between all the processes which are
ready to run.

This algorithm is precisely what is required for time sharing, and has been
adopted by many multi-user operating systems, such as IBM’s 0S/360 and
UNIX. What the round robin algorithm fails to take into account is the fact that
certain processes have more importance than others. These processes have to
wait their turn, which may be a long time in real terms, depending on the
number of runnable processes and the length of the time slice. Devices with
critical access times are difficult to handle when round robin scheduling is used,
and operating systems which employ this algorithm are typically fairly bad at
handling real time events. This problem can be solved by promoting processes to
the head of the runnable queue rather than adding them to the end, and by
allocating different time slice values to individual processes, where the le\ang’ch of

the slice is inversely proportional to the process’s importance.

7.4.4 Which scheduling algorithm?

As explained above, each of the three algorithms have their own particular
advantages and disadvantages. The one chosen by an operating system designer
should very much depend on the application which that system is to be used for,
but if a general purpose system is required, then some compromise is necessary.
The factors which affect the choice of algorithm are the number of users a system
must support, the number of processes and its required real time response.

The “unique priority” system is the simplest of the three to encode, but is
particularly bad if either the number of processes is large (since the length of the
chain of process control blocks to be scanned for each scheduling operation would
be large), or if there is a possibility of one process causing CPU starvation for
others. In other cases, the behaviour of this algorithm is good, and real time
response can usually be guaranteed.

The “non-unique priority” system is unaffected by the number of processes,
since a separate queue of runnable processes is kept. The algorithm is easier to
encode than round robin, since it requires no real time clock, but even though

equal priority processes are allowed, they are handled in the order in which they -
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are ready to be run, which does not remove the possibility of CPU starvation.
Real time response from such a system is good, since it is always the most needy
process which is executed at any one time.

The “round robin” system is also unaffected by the number of processes, gince
there is a separate queue for those processes which are runnable. It is more
complex then either of the priority systems to encode though, since a real time
clock is required in order to define the time slices. Round robin is ideal for
systems supporting multiple users, since each user is guaranteed a fair proportion
of the available CPU time. What the round robin system is particularly bad at is
responding to real time events, which have to wait their turn in the time slicing
queue. This can be improvéd by careful queue manipulation and time slice
tuning, but is unlikely to be adequate in situations where a regular, fast real time

response is required.

7.4.5 A compromise solution

Unless one of the very basic methods described above is adequate for a
particular application, a compromise algorithm can be used to combine the
advantages of more than one. This should only be done if a truly general purpose
system is required, because unless that is the case, it is almost always better to
sacrifice a small amount of performance in order to maintain simplicity.

The following solution is a combination of the “non-unique priority” and
“round robin” algorithms, and provides a good real time response, along with the
ability to share time between processes of the same priority. The algorithm
requires a queue of processes which are ready to run. At any one time, it is
always the process at the head of this runnable queue which is given the CPU.
The process continues to run until one of three events occurs. Firstly, if the
process blocks, then it is removed from the runnable queue, and the next item in
the queue is executed instead. Secondly, if something occurs which causes a
higher priority process to become runnable, then this process is added to the head
of the runnable queue, and then activated. Thirdly, each time a new process is
activated, a “countdown” value is set in its process control block, and each time
the processor is interrupted by the real time clock, this value is decremented. If
this value reaches zero, the priorities of the active process and the next process
on the queue are compared, and if they are the same, the active process
relinquishes the CPU. Since the suspended process is still runnable, it is re-
queued so that it will run again at some later time.

A variation on this algorithm is adopted by the ACCENT [Rashid81] and
MAYFLOWER kernels, which allow a small number of priority levels, and then .
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apply a time-slicing scheduling algorithm for processes at the sanie priority level.
Restricting the number of levels may enable the implementation to optimise
performance by splitting the queue of runnable processes into several queues, and

thus reduce the overhead of inserting a process which has been woken up.

7.5 Calling conventions

One of the most important aspects of operating system design is the nature of
the interfaces between different parts of the system. The most important feature
about all operating system interfaces is that they should be consistent. This may
seem an obvious statement, but it is surprising how many system designers ignore
the consistency issue in an attempt to define specialised interfaces for specialised
jobs.

There are many levels of operating system interface, and the ones
investigated here apply to the operating system designers and system
programmers, hence the interfaces in question are those at the lowest level. It is
the case, however, that if the design at the lowest level is clean and consistent,
then this philosophy tends to percolate through the rest of the system. This is
particularly important for two main reasons. Firstly, these low level interfaces
tend to involve assembly code sections, and so having a consistent calling
sequence simplifies their implementation. Secondly, so long as the interfaces are
consistent, the code can be written to be context independent, with the same
calling sequence being used no matter what the occasion. There are four main
areas where it is imperative to use the same calling sequence, if the operating
system is to be truly general. ‘

Firstly, there is the calling sequence for newly created processes. When a
process is created, parameters to the kernel create process primitive should
include an entry point to the process, and an argument to be passed to that
process when it is activated. On activation, the new process should effectively be
called as a subroutine of the operating system, given its argument and return
address in a standard way. The process then runs to completion, and on
returning from the subroutine call, should then be deleted by the system. If a
result (return code) is passed back from the process to the operating system, then
this should also be done in a standard manner.

Secondly, there is the calling sequence for device interrupt handlers. Rather
than having each interrupt handler programmed in an ad hoc manner, it is better
for the interrupt to be trapped by the operating system, and for the kernel to call

the interrupt handler for that device as a subroutine, in exactly the same way as -

137




it calls newly created processes. There should be kernel primitives to create and
delete interrupt handlers, and when an interrupt handler is created, an argument
should be given to the kernel which is then passed on to the interrupt handler
each time it is activated. Just as before, the calling sequence should be a
subroutine call, with the argument and return address being passed in a standard
way.

Thirdly, there is the calling sequence for general exception handlers. These
are very similar to device interrupt handlers, but are called whenever some sort
of error occurs, such as division by zero, addressing non-existent memory and so
on. Unlike interrupt handlers, exception handlers should be activated on a “per
task” basis, so that individual errors can be trapped and treated cleanly.' In this
way, it is possible to implement a clean debugging environment, with the
exception handler (debugger) being called whenever an error occurs. As with the
previous two examples, the calling sequence should be consistent, and exception
handlers should again be called as subroutines of the operating system. Using the
exception handler mechanism, such things as inter-process signalling and
asynchronous break handling can easily be implemented. '

Fourthly, in order to make the consistency of these calling sequences
especially useful, coroutines should be called in exactly the same way as
processes, interrupt handlers and exception handlers. If this is the case, then it is
possible to take advantage of the mechanism discussed earlier, in other words, the
use of coroutines as interfaces between programs written in different languages.

Obviously, the exact calling mechanism to be used depends very heavily on
the facilities provided by the underlying hardware, but no matter what the
instruction set is, the principles are the same. All programs, whether they are
processes, coroutines or handlers, should all be called as subroutines of the
operating system, with the only valid means of exit being the return address
passed by the subroutine call. In this way, the kernel can arrange to handle such
things as machine state dumping and restoration, interrupt enabling and
disabling, and so on, in fact all the things which would be common to all systems
programs can be handled centrally by the kernel.

Having decided always to call these programs as subroutines, it is essential to
use the same conventions for register allocation, workspace pointers and return
link addresses, as well as the passing of arguments and results. The general rule
is that a program should not have to know whether it was called as a process, a
coroutine, or in response to an error or a device interrupt.

As an illustration of the points made here, included are two calling sequence

conventions for different machines, which obey the consistency rules. The first is \
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a real example, and taken from the GMK kernel for IBM 370 machines described
at the end of this chapter. The other is hypothetical, and is the suggested
equivalent of the 370 version for the Motorola MC68000. The processors have
different architectures, but it can be seen that the principles involved in the
design of the calling sequence are exactly the same. The IBM 370 conventions
are:

R15  Base address of called program

R14 Return link to operating system

R13  Pointer to workspace for register dump

R1 RO Argument and result registers

Thus, each 370 program looks like:

USING PROGRAM,R15 Establish addressability

PROGRAN ST R1,.... Save argument
L Ri,.... Load result
BR R14 Return to the operating system
DROP  R1b Discard base register

For the 68000, the calling sequence would be just as simple, but since the
processor provides a stack and “program counter relative” addressing, there are

fewer processor registers involved. The 68000 conventions might be:

A7 Pointer to stack, holding operating system return link. The stack is at
least big enough for one entire register dump.

D1 DO Argument and result registers

Thus, each 68000 program would look like:

PROGRAM NMOVE.L D1,.... Save argument
MOVE.L ....,D1 Load result
RTS Return to the operating system

The calling sequences suggested are simple to implement and convenient to
use, but the most important fact about them is that they should be adhered to in
all possible circumstances. If this is done, then the result is total language
independence throughout the whole system, with inter-language communication

thoroughly feasible.
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7.6 Inter-process communication

As with the topic of scheduling, much has been written about different types
of data sharing and inter-process communication. There are two main schools of
thought. Firstly, there is the group of people which believes that inter-process
communication should be performed using messages which are sent and received
by processes. These messages are held on queues, and processed usually in a
“first come, first served” order. Secondly, there is the group of people which
believes that inter-process communication should be performed using shared data,
which is handled by special procedures called monstors [Hoare74], which can only
be entered by one process at a time. Other processes waiting to use the monitor
must be queued, and as with messages, are usually handled in the order in which
they are queued. H. C. Lauer and R. M. Needham [Lauer78] put forward the
view that there is no practical difference between the two methods, with both
functionality and performance being exactly equivalent. This view is illustrated
simply by looking at figure 7.1, which is a diagrammatic representation of both
different types of system. If the handler is a process, then its attached queue is a
set of messages waiting to be received, dealt with, and returned. If the handler is
a monitor then its queue is a set of process control blocks, representing the
processes which are waiting for the monitor lock to become free. In either case,
the effect is the same, with the only difference being how the mechanisms are

conceptualised by their human users.

7.6.1 Messages

Messages are simple blocks of memory containing information to be passed
from one process to another. Message primitives allow messages to be sent and
received, and since message return is asynchronous, having once sent a message,
there is no need to block waiting for the reply.

The message passing system is easy to conceptualise, since it has many
analogues in every day life. Each person working with operating systems is used
to the idea of posting letters which cause some form of work to be done on his
behalf (while he goes off and does something else), with the reply arriving some
time later. This ease of conceptualisation is one of the major advantages which
message systems have over their monitor counterparts, since programmers find it
natural to think in terms of messages and replies. This point cannot be stressed
too highly—a system which is easy to understand is also one which is easy and
convenient to use.

Using message passing as the basic primitive in inter-process communication

has one extra advantage over the use of monitors and procedures—that the
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mechanism is extendable to cover communication over computer networks. Two
examples of systems which use this fact to make program distribution easier are
MUSS [Frank79] and ACCENT, both of which use small, structured messages for
communication between virtual and real machines.

Many systems, both large and small, have used message passing as their
inter-process communication mechanism. Examples of systems which employ this
technique are IBM’s OS/360, the University of Waterloo’s THOTH and
Cambridge’s own TRIPOS. The factor which unites these systems is that they
are implemented in untyped, sequential languages (either assembly code, BCPL
or one of its derivatives), and that all checking, if any, is performed at run time.
Using messages has the advantage that inter-process communication is language
independent, but adds the overhead of run time parameter checking. Two of the
examples cited above, THOTH and TRIPOS, have been used extensively for
implementation of network services, and the logical extension of operating system
messages into network packets has made their use highly successful. Because the
message passing system is so easy to comprehend by beginners, both systems
have been used in the undergraduate teaching of real time operating system
principles.

Messages have two major problems when it comes to implementation.
Firstly, as with network packets, the amount of information held in a message
depends heavily on the application involved. Some systems, for example
TRIPOS, allow messages to be of arbitrary length, thus removing any restriction.
TRIPOS, however, is only able to do this because messages are objects owned by
the user rather than by the system, and are allocated from the user’s memory
space. If some protection is required (through copying) or if allocation of
messages is from a system pool, then it is necessary to enforce a maximum
message length. THOTH, for instance, restricts messages to 8 words. The result
of this restriction is that objects, rather than being passed by value within the
message, tend to be passed by reference, with messages containing pointers to
objects. When this happens, there is the possibility that, by the time the
message is processed, it will be in a different virtual address space to the data
which it references. Not only that, but the extendability of inter-process
messages into network packets is also lost. Secondly, since the values passed in
messages are simply bit patterns, any data typing must be performed
dynamically at run time. There is also the problem that, since processes may be
implemented in different languages, there may be disagreement as to how certain

data types (for example, strings) are represented.
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7.6.2 Monitors

A monitor is a block of program code, usually a set of procedures, which
operates on a shared data structure or device. Such a concept is not new, since
the language SIMULA [Dahl66] effectively had this with its class mechanism, and
more recently, object-oriented languages such as CLU [Liskov81] have become
popular. The difference between a monitor and a class in SIMULA or a cluster in
CLU is that procedures within a monitor may be defined to be “mutually
exclusive”, in other words, only one of the procedures may access the shared data
structure at once. Before being able to execute such a procedure, a process must
first obtain a monitor lock, that is a token of entitlement to enter a procedure
within a monitor. If the monitor is in use, then the process is held on a queue
until the lock is freed, at which point it is dequeued and re-activated.

Operations like this have analogues in every day life, and so are easy to
understand. Visiting the doctor, for instance, involves either going straight into
his surgery to see him if he is free, or waiting in a queue if he is not.
Unfortunately, as it stands, the monitor mechanism is not quite as general as the
message passing case, since entering a monitor always causes a process to block if
the monitor is in use. In order to achieve the asynchronous operation provided
by the message queueing mechanism, the operations fork and josn are required, to
enable “half” the process to be blocked waiting for the monitor while the other
continues to work, followed by a joining up and re-synchronisation sometime
later. Taking the “doctor” analogy further, this would imply a cloning operation
at the surgery, with one clone waiting in the queue, and the other clone
continuing to work. The two clones would then meet up some time later, and
reform into one person again.

The analogy is far fetched, and since there are no fork and jotn operations in
real life, it can be difficult for programmers to think in this way. Compared to
the simplicity of message passing, monitors seem unduly complicated. There is
no logical extension of monitors which encompasses networks either, since remote
execution of procedures [Birrell84, Hamilton84], although possible, is less easy to
achieve.

Having said this, monitors have an advantage in type checked programming
languages which have concurrency built in, such as MESA. With such languages,
since inter-process communication is by means of shared, type checked data
through type checked procedures, it is possible to perform all the consistency
checking at compile time, and thus cut run time overheads. Because of this,
operating systems which use monitors tend to be written in a single, concurrent

programming language which has a high degree of compile time type checking. ‘
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The PILOT and MAYFLOWER operating systems are implemented in exactly
this way, with the type checking being performed by the language system, and
the run time implementation of queues and monitor locks being implemented by
the underlying multi-tasking mechanism.

Even though they seem less natural than messages, monitors and the use of
procedures are extremely attractive propositions when it comes to operating
system design. This is primarily because of the semaphore mechanism
[Dijkstra68] for ensuring single access to monitor procedures. Semaphores are
simple and cheap to implement, meaning that monitors can be included easily,
either as built-in additions to a programming language as in MESA, or as a
procedure library attached to a language run time system, such as the monitor
implementation for BCPL [Lister76].

One of the reasons why semaphores are so attractive is that they allow
uncontested access to a resource, for example the free store chain in a store
manager. Without semaphores, access to such a structure must be controlled,
either by having a store manager process (which guarantees mutual exclusion at
the cost of two process switches), or by running the primitives which access the
structure always with interrupts disabled. There are many operating system and
user structures for which it would be convenient to control access using
semaphores and monitors.

The same rules would apply as to the other types of program discussed with
regard to calling conventions. In this way, monitors can look like, and be

implemented as if they were processes, coroutines and so on.

7.7 Naming and location of services

In many ways, operating systems suffer from the Same problems as networks
when it comes to location of services, particularly those which are in any way
dynamic. Each process (or monitor) must be given some identifier, so that it'can
be located whenever it is required. This problem is not so important if the
operating system is written in a single, concurrent programming language
(usually with a monitor facility), since the naming of services is handled at
compile time. For other types of system though, there must be some way of
locating a service within a machine.

One way of doing this is to allocate to each service a unique identifier, which
would correspond to a message maslboz, in other words, to fix the place to which
a message should be sent in order for a particular function to be i)erformed. The
operating system could then keep tables of these identifiers, with each available °
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service having an entry in them. An example of a system which uses such a
mechanism is ACCENT, where messages are sent to ports (mailboxes), and can
then be handled by any process which has a “receive” capability for the relevant
port.

In order to ease implementation, rather than sending a message to a general
mailbox, it is convenient to arrange for messages to be sent directly to processes,
with a function code within the message to allow demultiplexing to take place in
the destination process. This cuts the possible number of message destinations
down enormously, but does not remove the problem of locating the relevant
process in the first place.

For static services, for example the console handler and filing system
processes, it is reasonable to used fixed identifiers which are globally available,
and defined to be the same on all machines. This, however, is not satisfactory
when it comes to dynamic services, since this would force fixed slots to be
allocated for every possible service process. A solution to this problem is to give
each process a unique name, as with network services, and provide mapping
functions to convert between process names and process identifiers dynamically,
in very much the same way that a nameserver provides such a mapping service
for a network. Even though it was never designed as such, the TRIPOS
assignments list provides exactly this mapping, but in a rather ad hoc manner. A
better solution is to associate with each process a name which defines that
process uniquely, and is assigned to the process when it is created. It is then
possible to put the name in each message, and for the kernel to process the name
mapping on the fly whenever a message is sent. In practice, this is an inefficient
way of proceeding, and it is better for the kernel to provide explicit mapping
primitives, with the name being used to locate the service and the process
identifier to access the service. Associating a name with a process carries little
overhead, and experience with TRIPOS has gshown that expansion would have

been made easier had this facility been available.

7.8 Storage allocation

As with many of the other issues raised in this chapter, storage allocation is a
subject which has been well researched before, but mainly in the context of large,
multi-user operating systems. Many of the new algorithms could not be applied
to small single user machines though, because they often wasted areas of store,
which were sacrificed in order to improve allocation time. This was impractical

on such small machines, as memory was scarce and so had to be conserved at all -
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costs. The other issue which was important on small sytems was the size of the
largest contiguous area of free store—{ragmentation is a problem on any system,
but badly allocated store would make these small machines unusable.

Since program space was also at a premium, the simplicity of the free store
allocation system was also important, with the result that the simplest possible
algorithms were used. Two simple methods suggested by D. Knuth [Knuth73]
are first fit and best fit. With both algorithms, a gingle chain of allocated and
free store is kept, and scanned linearly. If a block of size n is requested, then first
fit returns the first block in the chain which is at least size n, and best fit returns
the block which is closest to size n while still being large enough. The first fit
algorithm is simpler, and in most cases, performs better. Since the best fit
algorithm must always scan the entire store chain before a decision can be made,
first fit is bound to win, since it is likely that a free block of the required size will
be found by only scanning part of the chain. Also, since best fit always minimises
the wasted store when a block is split, it tends to create large numbers of small,
useless blocks which are never coalesced, causing store fragmentation.

The choice of simple algorithms is only reasonable while two conditions hold.
Firstly, the length of the store chain must be short enough that the act of
scanning it is not a disastrously slow process. Secondly, only while memory is
scarce is it necessary that the algorithm used should be simple—as soon as more
store is available, code size and wasted memory both become less important.

TRIPOS uses a single chain “first fit” approach, and this worked well on the
machines that the operating system was originally designed for. When TRIPOS
was moved onto newer, larger machines, the scaling up of the memory size had
an acconipanying effect on the length of the store chain, with the average length
of the chain increasing from around 120 blocks on LSI4 machines to around 400
blocks on 68000 machines. Since the free store chain is a data structure which
must be updated atomically, most of the scanning is performed with interrupts
disabled. In an attempt to ensure the real time handling of peripheral interrupts,
each time around the scanning loop, interrupts are enabled for one instruction,
allowing interrupt events to be handled. If the interrupt causes a re-schedule
(which is quite likely) and the newly scheduled process also attempts to access
the store chain, then the interrupted process must start its scan at the beginning
again. To measure how often this happens in practice, a monitoring version of
the TRIPOS kernel was put into service, which logged each time a store chain
scan had to be re-started. The results showed that restarts happened very rarely
in normal running—the maximum recorded total was 29 for a machine which had

been running for a whole day—with the average number of restarts being around
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7, most of which happened while the system was in its initialisation phase.

Even though restarting the scanning of the store chain is a rare occurrence,
the allocation of store is still not an efficient process. Figure 7.2 shows the
measurements carried out on around one hundred 68000 TRIPOS sessions, whose
store chains were inspected remotely while the systems ran normally. The graphs
show the number of links in the store chain which must be followed in order to
allocate 1, 10 or 100 blocks of various different sizes, with the frequencies being
the average number of links scanned per block allocated.

The interesting points to note are the discontinuities at block size 256-512 for
1 allocation, and 32-64 for 10 allocations. These indicate the points at which the
free blocks of a required size within the store chain are used up. Before the
discontinuity, blocks are allocated from free areas within the store chain itself.
After the discontinuity, blocks are always allocated at the end of the store chain,
and so the rate determining factor is the overall length of the chain itself.

Figure 7.3 shows the relative frequencies of blocks of different sizes within the
store chains, which are either free or allocated. The interesting points on this
graph are the peaks in the number of allocated blocks of size 8 and 512, which
correspond to stream control blocks and I/O buffers respectively. Another point
worthy of note are relative discrepancies between the numbers of free and
allocated blocks of size 2, implying that these small blocks are created as the
result of breaking up larger ones, and are then never used or coalesced.

The reason for performing these measurements on the simple TRIPOS first fit
algorithm is that, out of the results obtained, suggestions can be made as to how
this simple algorithm can be improved, or how a new one could be used to better
effect.

7.8.1 Dual list first fit

The “dual list first fit” algorithm [Wilson85], is a variation of the standard
“first fit” approach, except that the free store is kept on a separate chain to the
allocated store. In fact, this is a direct extension to the TRIPOS algorithm, and
can easily be used to replace the standard one. The dual list method makes use
of two important factors. Firstly, it assumes that the number of free blocks in
the store chain is small, compared to the total number of blocks. (The observed
distribution under TRIPOS is that 8% to 15% of the store chain is made up of
free blocks). Secondly, it works on the assumption that, since the number of
words allocated is always even (due to the least significant “size” bit being used

as a flag), there is always at least one spare word available in every free block.
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Using these two pieces of information, the second word of every free block is
used to chain these blocks together, with the root of the free chain being kept
separately from the root of the whole chain. The effect of arranging the blocks in
this manner is twofold. Firstly, since the free chain is much shorter than the
whole store chain (and contains only free blocks anyway), the number of chain
items to be scannmed is much smaller than before. Through cutting out
unnecessary scanning, the cost of allocating blocks can be reduced to around 10%
of its original value. Secondly, since allocating a block from the free chain can
never actually increase the length of chain, the speed of allocation is not
determined by the total number of allocated blocks. In fact, if a block of exactly
the right size is found in the free chain, the length of the chain actually decreases.

The main disadvantage of such an algorithm is in freeing allocated blocks,
which must be re-inserted into the free chain, as well as being flagged as “free”.
This involves a scan of, on average, half the free chain, in order to find the
correct place to re-insert the block. There is a hidden advantage here though, in
that to re-insert the block properly, the previous and following blocks must be
obtained, and so coalescing adjacent blocks can be done trivially, thus minimising
the length of the free chain.

Overall performance of the dual list system is difficult to measure, since it is
determined by the number of blocks being freed, rather than by the allocation
time. Working on worst case figures, the whole free chain must be scanned both
for allocation and deallocation, so if the total length of the store chain is n blocks
of which 10% are free, then 0-2n operations must be performed in order to
allocate and free a block. For the simple first fit algorithm to match this
performance, a block of the correct size would always have to be found within the
first 20% of the store chain, which is not the case in practice. In fact, when the
store chain itself is saturated (the point of the allocation discontinuity) it is the
total length of the chain which determines performance, and so n operations must
always be performed for each allocation. Even though deallocation is simpler
with the single list algorithm (being effectively a null operation compared fo
allocation), this still gives the dual list algorithm a factor of five advantage at

worst case.

7.8.2 Buddy

If the amount of memory is large, and the speed of allocation is more
important than memory utilisation, the “buddy” method [Knuth73] is extremely
attractive. In the buddy system, only blocks whose size is a power of two are
allocated. When allocating a particular block, its size is always rounded up to -
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the next power of two. The beauty of this system is that, if the memory size is
2" then only n possible different sizes of block exist, and so the free blocks of
each size can be kept on one of n lists. Allocation is therefore straightforward,
since it is likely that a block of the correct size will already be free. If not, then a
block of the next size up is split into two, with one of these blocks being
allocated, and the other added to the free chain. The two blocks created in this
process are called “buddies”, and when both buddies have been freed, they are
then coalesced back into the original sized block.

The buddy method is highly attractive, so long as the size of the memory is
such that it does not matter if up to half of it remains unused. If that is the
case, and very fast allocation of memory is required (for instance, any kind of real
time service), the buddy system has much to recommend it. There are many
modified “buddy” systems in operation, where block sizes other than the simple
power of two are allowed. If certain block gizes are prevalent in a particular
application, it is reasonable to restrict allocation only to blocks of these
sizes—this is not strictly a “buddy” method, but has the same effect since it

involves the small fixed number of block queues.

7.8.3 Cartesian tree

The cartesian tree method for dynamic storage allocation is proposed by C. J.
Stephenson [Stephenson83]. Rather than using a simple chain of blocks linked
together in address order, he suggests that a sorted tree of free blocks should be
kept, with the following being true for each node of the tree.

. The descendants on the left (if any) have addresses less than that of the
current node, and the descendants on the right (if any).

o The size of the current node is greater than that of all its descendants.

In other words, the blocks are held in a tree, sorted first on size, and then on
address. In this way, the largest block of free store is always at the top of the
tree, with all other blocks appearing as leaves. There are two possible allocation
strategies with such a tree.

«Leftmost fit” is roughly equivalent to first fit, in that the leftmost node in
the tree which is of sufficient size is allocated. This has the effect of allocating
blocks in the low area of memory, leaving the large blocks in the high area of
memory. This is fast and cuts down fragmentation, but tends to make the tree
lop-sided.

“Better fit” is roughly equivalent to best fit, in that for each node of the tree,
the better of the two descendants is chosen, with the search stopping when both

descendants are too small. This too preserves the largest block until last, and
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also has the effect of keeping the tree more balanced.

The number of blocks to be considered on allocation is on average log,n,
where n is the number of nodes in the tree. The searching of the tree is fast, but
whenever a block is allocated or freed, the tree must be re-built in order to
maintain the sorting criteria. Coalescing adjacent blocks is easy though, since
the blocks are sorted in address order. Stephenson claims a space performance
comparable to first fit (with no store being wasted), and a time performance
which lies somewhere between first fit and buddy, depending on the balancing of

the tree.

7.8.4 Which storage allocation algorithm?

Of the four different algorithms presented here, the choice of which one to use
depends heavily on the nature of the application. First fit performs adequately
on small systems with short store chains, and is simple to program. Dual list
first fit removes many of the inadequacies of first fit, and is a reasonable choice if
a simple algorithm is required, but the number of blocks in the store chain is
large. The buddy method performs best of the four time-wise, and is hence a
good method for systems which should have a fast real time response. It is,
however, wasteful of space, with an average of 25% of allocated store being
unused. The final method, using a cartesian tree, is perhaps the most elegant of
the four, but since the tree must be re-built each time a block is allocated or
freed, it is more complex to program than the others.

" If a general purpose system is required which wastes no store and performs
better than first fit, then the dual list method is a good compromise. It is simple
to program, and although slower than the buddy method in execution time, it

does not sacrifice store utilisation in order to obtain improved efficiency.

7.9 User Interface |

The nature of the operating system interface to its user is probably the most
difficult to define, because not only must the kernel present a clean, simple and
consistent interface, but so must all the utilities and system processes which use
it. This consistency is not so easy to arrange as with the kernel, since the
amount of software work required is much larger, and the effort will be spread
over several, if not hundreds of individuals. Unfortunately, when this happens,
the style of the individual programmer tends to show in his product, with the
result that different programs have subtly different user interfaces. This is
particularly true if the operating system is in use at many different sites or allows

ease of portability from other machines, since then not only is there a difference
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in personal programming style to contend with, but possibly a totally different
“house style” as well.

Two systems which have suffered badly from this syndrome are UNIX and
TRIPOS. Their histories are very similar, since they were both originally
designed and implemented by small teams of people in a research environment,
which allowed a large amount of consistency in the kernels and low level
software. They were then “enhanced” by many different people from many
different sites, each with their own particular views about style and user
interface.

The only way to avoid this particular problem is for one individual—either a
person or a corporation—to act as a dictator, and define a uniform interface and
set of rules which all other people must follow. This job is made easier on a
single language system, since the interface can be defined in a concrete manner in
terms of interface procedures which all programmers must use. The Xerox
corporation have been very successful using this ploy, and the benefit to the user
of having a totally consistent set of interfaces is emormous. The process of
learning the system is made much easier, since there are no niggling special cases
or pieces of “folklore” to be understood.

There is one major part of the operating system interface, which is often
overlooked when designing single user operating systems, usually on the grounds
of complexity. This is the ability of the operating system to “clean up” after a
user program finishes, and being able to kill a program which is running
asynchronously.

The first, and most important decision which an operating system designer
must take is whether the clients of his system are to be users or programs, as the
requirements are totally different. When designing a system to support multi-
tasking facilities, for example, for a network fileserver, the most important factors
are efficiency and the real time response to requests. Some sort of priority
scheduling algorithm is needed, and since the processes running in the server tend
to be static, there is no need to worry about cleaning up, since this would be a
wasted facility and could cause inefficiency.

If, on the other hand, the operating system is being designed specifically to
support a user environment, then different factors apply. Firstly, real time
response is only necessary for the handling of devices such as discs, and user
programs should have the rest of the available CPU time divided between them
in a “time slice” fashion. Secondly, it is likely that such a system would be used
to develop programs, which in their course of development will no doubt fail.
The operating system must therefore be capable of debugging those programs and ‘
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also tidying up afterwards, and similarly it must be capable of killing programs
which are in some sort of uncontrollable state.

It can be seen that the two sets of requirements are almost exactly opposite,
and so the decision as to which facilities to provide when designing a general
purpose operating system is extremely difficult. For this reason, the best way of
tackling the problem is by building the operating system in two distinct layers.
The kernel layer has already been discussed, and deals with such factors as simple
memory management, process scheduling, inter-process communication and
interfaces to the physical hardware (such as interrupt handlers). This type of
kernel is small, efficient and simple, and is all that is required by programs which
just need a multi-tasking environment in which to work. This would be sufficient
for such things as the network fileserver mentioned earlier, and would also cope
with the running of debugged applications programs, for instance, a database or
information retrieval system. It can be seen though, that this kind of
environment is not sufficient to support a user programming environment, and so
an extra level built on top of the kernel is required.

It is worth mentioning at this point the experience with the TRIPOS
operating system which attempts to get away without having this intermediate
layer of user-oriented software. One of the basic design philosophies of TRIPOS
was simplicity, and that it was the user’s (not the operating system’s) job to
clean up at the end of a program run, deallocating everything which had been
allocated. This meant that it was the responsibility of the individual programmer
to remember to free every single memory block, close every file and free every
lock, because otherwise those resources would remain allocated, and hence
inaccessible.

This strategy is perfectly acceptable for network servers, buf users
(particularly beginners), find it unnatural and difficult to use. Certainly, it is
only a matter of discipline, and it is perfectly possible to write programs in such a
way that all resources are released when a program finishes. This discipline takes
time to learn though, and even experienced programmers occasionally forget to
deallocate something, with frustrating and sometimes unfortunate results.
Because of the discipline which is imposed on TRIPOS programs, it is usually the
case that they can be exported to other sites with little difficulty, since there is
no actual harm in freeing resources explicitly, even if the underlying operating
system does not require it. Unfortunately, portability is a one-way operation,
since programs written at other sites which do rely on their systems to tidy up

after them, require heavy modification if they are ever to run under TRIPOS.
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Now that memory is more plentiful and efficiency much less important, there
is no reason for not providing this intermediate user control layer, since the
benefits to the individual using the system are so great. The suggestion that the
user control software is added as an extra level on top of the kernel rather than
designing a single integrated system has two main advantages.

Firstly, the “small is beautiful” philosophy, when applied to operating system
design, pays dividends, since each small unit is capable of being defined
absolutely, with a published interface. This is particularly useful if the language
being used to implement the system allows for the checking of these interfaces,
since correctness and integrity are then much easier goals to attain. It is also
important that, unless the whole job is to be undertaken by one person, it must
be possible to split the implementation effort between many individuals so that
each of the operating system modules can be developed in parallel. It also aids
comprehension of the entire system if it can be broken down into small,
manageable units.

Secondly, unless a two-layered approach is followed, it is difficult to design a
system which is usable both by programs and by people, given that their
requirements are so different. Splitting the functionality into two parts not only
extends the applicability of the product, but since the user level software has a
well defined interface to the kernel, there is no reason why it should not be
portable to other, similar kernels which provide the same sort of primitives.

Built on top of the user control layer is the user interface, which the person
using the system actually sees. This includes the file and compiler utilities, and
all the other applications programs. As a rough guide to the demarcation of
functionality between the different layers, the following table suggests the
facilities which should be put in each.

The kernel layer should contain:

° Basic memory management
o Process creation and scheduling
. Inter-process communication

. Bootstrapping
o Device and interrupt handling

The user control layer should contain:

o Allocation/deallocation of memory
. Opening/closing of I/O streams

. Obtaining/freeing interlocks
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. Console I/O and attentions generated from the keyboard
o Asynchronous program deletion

The user layer should contain everything else, but some of the items which

fall into this category are:

. Compilers and assemblers
) File and other utilities
° Mail

° Applications

The command language interpreter and command programming language are
normally considered by most people to be integral parts of the operating system.
This is true in most traditional implementations, but it is actually better to
provide a simple “execute command” primitive in the user control layer, and then
run the command interpreter as a normal user program. If this is done, then it is
much easier to modify the command environment, either to add new facilities or
to tailor it for a particular requirement. It also means that it is possible to
produce totally new command interpreters, allowing for experimentation and,

perhaps, emulation of other systems.

7.10 Portability issues

One of the arguments for encoding an operating system in a hiéh level
language is to make the code more portable between different processors. This is
only one of the levels of portability which must be considered though, since in
some sense, portability of user programs is much more important than that of the
underlying operating system, as is portability of the operating system to another

machine with the same processor but a different peripheral architecture.

7.10.1 Overall portability

The type of operating system portability which has been investigated in the
past, tended to concentrate on overall portability, in other words, the portability
of the entire operating system and everything running under it between machines
with different processors. The standard way of achieving this goal was to design
an operating system for its ideal machine, that is, the hardware (usually
mythical) which would run that operating system best. This is the approach
used for THOTH, which is designed for an abstract “THOTH machine” rather
than for a specific piece of hardware. TRIPOS was also designed with overall
portability in mind, and through this approach, has been ported successfully onfo
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half a dozen or so different machines.

In order to achieve overall portability, it is important that the ideal machine
chosen for the implementation should not make assumptions about the hardware
which would restrict the set of real machines which could be used. This normally
means choosing the “lowest common denominator” of the facilities provided by
different pieces of hardware, and only using a particular facility if it is available
on a large proportion of the possible machines.

If overall portability is a design goal, then the safest definition of an ideal
machine is as follows. Assume a large, contiguous address space, which is not
segmented. It is important to treat the memory either as a vector of words or a
vector of bytes, since mixing the two tends to build in dependencies of word size
and byte ordering, which although they are different on different machines, need
not affect the operating system design. It is not safe to assume any sort of
memory management or memory protection facility, since the number of
machines which provide these is relatively small, and when the facilities are
provided, they are different on each type of machine. If protection is required,
then for portability reasons, it is much better to use a type-safe programming
language than to rely on hardware assistance.

To sum up, a simple machine with no fancy features should be assumed, with
the result that the portability of the operating system is determined by the
portability of the implementation language. This technique leads to under-
utilisation of certain hardware features, but in most cases, this is not of great

importance compared with the convenience of portability.

7.10.2 User level portability

Since the amount of operating system software on single user machines tends
to be small compared to the amount of applications goftware, there is an
argument for the portability to be at this level, rather than to aim for the overall
portability of the entire system. From the user point of view there is no
difference, since he sees the same interface no matter which machine he uses, and
hence he can move his programs easily from site to site.

The advantage of such an approach is that the operating system on each type
of hardware can attempt to make more use of the facilities available. For
instance, if memory management is available, there is no reason why different
applications should not be split into different address spaces, or given virtual
rather than real memory to work with. Similarly, if the hardware allows areas of
memory to be protected from accidental over-writing, then this can be used to
enhance the integrity of the system. There are many examples of facilities which .
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would improve the utilisation of individual pieces of hardware, and these facilities
would be used to their best advantage with this approach.

7.10.3 Same processor portability

This is a type of portability which is rather neglected academically, but is
exploited heavily in commercial environments. Same processor portability implies
that the operating system is portable onto other machines which have the same
instruction set, but which may have a different overall architecture, particularly
with respect to peripherals. The portability of such a system comes, not from the
language in which it is written, but from the abstractions it uses for items which
are architecture dependent.

An example of this type of portability is CP/M [DigitalResearch82], which is
implemented entirely in 8080 assembly code. Part of CP/M’s success came from
the fact that the Z80 processor, although made by a different manufacturer, is
compatible with the 8080. Even though the instruction sets of the different
processors were compatible, the peripherals connected to them were very
different. CP/M achieves its portability by assuming a set of simple facts about
the machine on which it runs—akin to the “ideal machine” approach discussed
earlier, but much more specific. The amount of memory is unimportant, so long
as it is contiguous and starts at location zero. The nature of processor interrupts
is irrelevant, since CP/M runs permanently with interrupts disabled, polling all
its peripherals. The rest of the portability arises from the separation of the
logical parts of peripheral access from the actual details of bytes, I/O commands
and peripheral addresses. Each new implementation of CP/M requires a new
section to be added to the BIOS (Basic Input Output System) module, which
deals with the actions of reading and writing disc blocks, the handling of
terminals and printers, and so on. This section is typically only a couple of
hundred lines of 8080 assembly code, meaning that very little effort is required to
port CP/M onto a new machine—a fact which has contributed to its popularity
and adoption as an industry standard.

If large numbers of the same processor become available, there there is a good
argument (particularly financially) for designing an operating system which
makes use of all the facilities provided by that processor, and then restricting
portability to other machines which share that processor. This is particularly
true if the designer of the software is also the manufacturer of the hardware,
since it is possible to acquire captive users. Examples of this type of system are
IBM’s 0S/360 and DEC’s VMS, both of which have dedicated clients who find it

financially impossible to patronise anyone other than the original manufacturer.

158




7.11 Case study: the GMK kernel

GMK is an experimental operating system kernel for IBM 370 processors, and
was designed and implemented at the IBM Ziirich Research Laboratory . Since
the time of the initial work, significant improvements have been made, and the
current version is the result of a large amount of development work done by
many different people. It should be stressed that the kernel described here is the
original version of 1983, and hence contains none of the modifications which have
been made since that date.

In the production of GMK, the principal design aim was to provide a light-
weight, multi-tasking environment for the running of real time network protocol
handling software. It was never intended to gupport a user programming
environment, and so falls into one of the two categories of operating system
kernel discussed earlier. Language independence was important, since at the time
the kernel was written, the implementation language or languages for the rest of
the system had not been decided upon. It was also a conscious design' aim fo
provide the maximum possible power and generality with the simplest possible
set of primitives, and hence many of the mechanisms used are “half way houses”,
or a compromise between generality and complexity.

The design of the kernel was heavily influenced by the author’s own
experience with the TRIPOS operating system, but GMK was by no means just
another TRIPOS implementation. With hindsight, it was possible to examine
the original design of TRIPOS critically, and so to decide how many of the ideas
involved had stood the test of time. Some of the features of GMK have been
adopted directly from TRIPOS, for example the task structure, scheduling,
communication using messages and free store management. On the other hand,
features such as programming language independence, flag signalling and the
whole area of device handling, are new, and totally unrelated to TRIPOS.

7.11.1 GMK tasks

The unit of program encapsulation in GMK is the task, and tasks
communicate with each other by means of messages or single bit flags. Each task
is given a unique task name and task tdentifier, which are used to identify that
task. The task name is up to 8 characters in length, and through the kernel
primitive mapname, it is possible for the binding between task function and task

identifier to be dynamic. The task identifier is a positive integer, and is used in

1

The initial design and implementation was done while the author worked at the Laboratory during
the Autumn of 1983.
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the kernel primitives to identify a task unambiguously. Thus, the mapping from
task name to task identifier must be done explicitly by the user before any task
communication can occur.

Each GMK task has a unique priority which gives that task’s relative
importance compared to all others in the system. Since no CPU bound software
would run under GMK, there was no need to provide any form of time slicing.
Processes of equal importance are implemented as separate coroutines within the

same task, enabling a “first come, first served” strategy to be adhered to.

7.11.2 GMK messages

A GMK message is a block of memory, at least two words long, of which the
first word is used to chain messages together, and the second word is used to hold
the task identifier of the source or destination task (depending on the state of the
message). GMK messages are of arbitrary length, and their contents are
uninterpreted by the kernel. Messages are always sent directly to tasks rather
than to mailboxes, and the allocation of store for a message is the responsibility

of the task sending that message.

7.11.3 GMK flags

Each task has a set of single bit flags occupying a word of memory, each of
which can be set and tested independently. The difference between the TRIPOS
and GMK concept of flags is that, under GMK, it is possible for a task to
suspend itself, waiting for one or more of its flags to be set by another task, or by
an asynchronous handler. In this way, flags can be treated as zero-length
messages, and since setting a flag avoids the message queueing mechanism, it is
possible to use flags to signal extraordinary events.

The biggest advantage of flags is that no memory is required to set a flag,
and so they can be used in situations where memory allocation would be a
problem. One of these circumstances where this is the case is in the signalling of
an interrupt condition from an interrupt handler (called asynchronously by the

kernel) to its parent task.

7.11.4 Kernel interfaces

Programs running under GMK communicate with the kernel by means of the
370 SVC (supervisor call) instruction. This provides a complete context switch
to one of 256 possible SVC handlers, of which only 10% or so are defined by the
kernel itself. The others remain available, and the setsvc primitive is provided
for adding new SVC handlers dynamically. Given the nature of the applications
which use GMK, memory protection is not an issue, and hence all programs run .
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in privileged state. Even so, it is still convenient to use the SVC instruction,
since it enables the entry to the kernel to be clean and well defined, and provides
the mechanism to enable kernel routines to run with interrupts disabled.

Interrupt handlers can be added by using the setezt and selint primitives,
which set up handlers for 370 external and I/O interrupts respectively. When
the relevant interrupt condition occurs, the kernel calls the handler which has
been set up for that interruption code. Interrupt handlers, unlike SVC handlers,
run asynchronously, and so they must use the normal kernel primitives in order
to re-synchronise with their parent tasks. When an interrupt handler is created,
a value is given to the kernel which is then passed as an argument to the handler
cach time it is activated. Because of the 370 architecture, this argument is likely
to be a pointer to a piece of workspace which is being shared between the parent
task and the handler. In this way, the interrupt handler code can be pure, and
hence shared by similar devices.

The calling conventions used by the kernel are general, and are exactly the
game in all circumstances. This gives a high degree of consistency, and makes it
possible to write tasks, interrupt handlers or coroutines in any of the available
languages. The kernel also takes responsibility for saving the processor registers
and status word whenever an interrupt occurs, and so handlers always appear as

simple subroutines of the kernel.

7.11.5 Free store allocation _

Free store is allocated in a “first fit” manner, with a single chain of free and
allocated blocks. With hindsight, the first fit algorithm was the wrong one to
choose, since (as explained earlier in this chapter) its performance becomes
linearly worse as the length of the store chain increases. There was also the
added problem that, although the kernel was designed to run native on a raw 370
processor, more often than not, it actually ran on a virtual machine under
VM/SP [IBM83]. In this environment, the memory given to the kernel is virtual,
and so scanning along a single store chain has the effect of requiring a whole
sequence of memory pages to be brought from backing store, which are used once
and then discarded.

The primitives available are implementation independent though, making it
possible for the underlying algorithms to change, without affecting the software
which uses them. getvec and freevec are provided to allocate and deallocate
blocks of store, with shrinkvec allowing an allocated vector to have some of its

gtore released back to the system.
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7.11.6 Task creation and deletion

The primitives to create and delete tasks are createtask and deletetask, but
the GMK philosophy is rather different to that of TRIPOS. Under TRIPOS, it
is defined that a task, once created, remains in “dead” state until a message is
gent to it. This is not the case under GMK, and when a task is created, the
parameters to the kernel primitive are simply the new task’s entry point and a
parameter to be passed to it when it is activated. The task is then called as a
kernel subroutine, with the argument passed to it on startup being the one given
by the creator. When created, a task is given a unique name (assigned by the
creator) and tdentifier (assigned by the system), with the mapname and mapid
primitives providing a mapping between the two task representations.

7.11.7 Task re-scheduling

The primitives provided by TRIPOS for task re-scheduling have proved
entirely adequate, and so have been adopted by GMK. A task’s priority can be
changed by using the changepri primitive, and the hold and release primitives
can stop and start a task being activated. There is also the extra primitive die
which can be called to kill the current task prematurely, and which is called

whenever a task runs to completion.

7.11.8 Message manipulation

As with TRIPOS, the primitives provided are gpkt to send a message {0
another task, dgpkt to remove a message from another task’s message queue, and
taskwait to suspend a task, waiting for a message to arrive. Messages can also be
awaited using the more gemeral wast primitive, which incorporates waiting for

flags as well.

7.11.9 Flag manipulation

As already described, flags take on much more gignificance under GMK than
they did under TRIPOS. The primitives setflags and testflags are provided to
manipulate flags synchronously, and in addition, flagwait is provided enabling a
task to suspend itself waiting for a flag event. The general wast primitive allows

suspension, waiting for either flags or messages.

7.11.10 Critical code sections

To enable atomic updating of data structures to take place outside the GMK
kernel, the primitives crit and uncrit are privided to enter and leave critical
sections of code. This is implemented simplistically by disabling and enabling
interrupts, but even so, it is a very useful facility. An alternative to this method

would have been to provide semaphores and monitors, although it is dubious
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whether the advantages would warrant the extra kernel complexity.

7.11.11 Device and interrupt handling

It is in the area of interrupts and device handling where GMK is totally
different from TRIPOS. Devices under TRIPOS, although simple in concept, are
complicated and difficult to encode, and tend to be larger than the design team
originally hoped. The main problem is that TRIPOS tries, to its credit, to make
devices look to the user exactly like tasks, in that communication with devices is
also through the use of messages. GMK takes the approach that only two very
small parts of a device driver actually need to be written in assembly code, and
that the rest can easily be written in a high level language. The result is that,
rather than having the distinction between tasks and devices which exists under
TRIPOS, GMK only has tasks, and provides primitives to enable a task to
handle devices directly.

The two pieces of assembly code mentioned above are the device start
routine, which handles the initiation of an I/O operation, and the device
interrupt routine, which handles the completion of an I/O operation. The action
of starting an I/O operation is synchronous, and can easily be handled by an
assembly code subroutine of the handler task. The kernel primitive startio is
provided, to enable the 370 channel address word to be updated and the I/O
operation to be started in an atomic manner. External and I/O interrupts are
trapped by the kernel, and then passed on to interrupt handlers, which can be set
up using the setezt and setint primitives. Because of their nature, interrupt
handlers are called asynchronously, and hence must use one of the kernel message

or flag primitives to communicate with their parent tasks.

7.11.12 Evaluation of the GMK kernel

The GMK kernel was written with a particular application in mind, but one
of the main design aims was to produce something clean and simple, which was
general enough for other applications as well. The two main areas where GMK
definitely improves on TRIPOS are those of language independence and device
handling.

All the GMK interfaces and calling conventions were designed carefully, with
the result that there is a high degree of consistency. This usually means that,
unlike TRIPOS, any task or coroutine can be written in any language, so long as
care is taken to choose a sensible format for any structure which is shared
between programs in different languages. Even though the calling conventions
used for interrupt handlers are the same as the others, it is possible that certain

languages may be difficult to use for this purpose, simply because of the
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complexity of the run time environment which they require.

The area of device handling has been completely re-designed, and the result is
much simpler and more convenient to use. It should be pointed out here that the
370 is an extremely good machine for I/O, with every device being handled in
exactly the same way. This meant that devices could simply be represented by
their device codes, and these codes could be used to identify device handlers
whenever an interrupt occurred. Again, interrupts are clean and simple on a 370,
with the results always being placed in the same memory location. Given that
I/O is so simple on a 370, it was decided to make maximum use of this fact,
which means that the mechanism is not easily portable to processors with a
slightly less ideal architecture.

The initial version of GMK was by no means perfect—storage allocation
using “first fit” and the exclusion of semaphores are just two of the decisions
which would be taken differently now. It was a significant improvement on
TRIPOS though, and many of the guidelines proposed in this chapter came
directly out of experience with GMK and its implementation.

7.12 Summary and conclusions

In this chapter, many different aspects of operating system design have been
discussed, and it is now possible to summarise the points raised, and provide
guidelines for designers of future systems. The most important point to note is
that there are two totally different applications for any multi-tasking operating
system. The first, which is the topic of earlier chapters, is the single user
workstation, where the operating system provides a convenient working
environment for one user to perform program development, word processing,
database interrogation, and so on. The second application is when the operating
system in question is used, not to serve users, but to serve programs or other
computers. This is particularly true in the area of computer networks, for
example fileservers and inter-network bridges, which are primarily involved with
giving a real time service to other network nodes.

These two types of application demand very different solutions, but through
clever design, it is possible to provide a general purpose system which goes most
of the way to solving the requirements of both applications. The general
guidelines which should be adhered to when designing a new system are as
follows.

The operating system should be split into two parts—the kernel layer, which

is involved with basic hardware management, and the user control layer, which is
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involved with the user’s working environment. The interface between the two
layers should be clean and well defined, with the kernel capable of being run in
isolation if no user is attached, and efficiency is more important than
convenience.

The kernel of the operating system should, where possible, be written in a
high level language. This is not primarily for portability, although portability is ‘
a useful side effect, but to enable algorithms to be encoded in such a way that
they are easy to read, verify and debug. On the whole, raw efficiency of compiled
code as compared to hand crafted assembly code is not important, and the
emphasis should be placed on efficient algorithms rather than efficient
implementation. The kernel itself should be written in a single language, since
this simplifies the definition of module interfaces, allows data structures to be
represented in a consistent and natural way, and may allow compiler checking of
interface definitions. The choice of language is not particularly important, except
that untyped languages tend to allow easier access to the underlying hardware
than typed languages, which usually require “loopholes” for this.

The interface between the kernel and its clients should be via a processor
“trap” mechanism, since this provides a well defined barrier behind which all the
kernel data structures can be protected. Using a trap mechanism also allows
language independence outside the kernel, and gives an easy way of distinguishing
kernel issues from language issues within the operating system itself.

The choice of scheduling algorithm which the kernel should use is determined
by the nature of the requirements. A priority system should be used for
applications where real time response is important, with time slicing being used
where multiple processes of equal importance are present, or where a multi-user
capability is required. A system which has process priorities and which time
slices processes of equal priority is a convenient compromise, should both facilities
be required.

Where possible, the interfaces and calling sequences used by the operating
system should be consistent throughout, and should not depend on context. In
this way, processes, coroutines, monitors, interrupt handlers and so on, can all be
written in the same way, with language independence being guaranteed.

The choices between processes and coroutines, and messages and monitors are
very much up to the designer of the system, and depend on his own personal
preferences. The main issue here is one of expandability, in that message systems
fit more cleanly into network architectures, with process messages and network
packets being exactly analogous. This is still a personal decision though, since

remote procedure calls are possible to implement, and have been shown to work
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well in practice. Coroutines are useful both as sub-processes within the same
process and, so long as the coroutine system is language independent, as
interfaces between programs written in different languages. For a truly general
purpose system, there is no reason why both messages and monitors should not
be provided. Monitors and the use of semaphores would, in some circumstances,
speed up access to kernel data structures (such as a free store chain) since
through their use, it is possible to ensure atomic update without having to
disable processor interrupts.

The storage allocation strategy used by the kernel should depend on the
nature of the application, and on the number of store blocks being handled. For
systems with large amounts of memory where a fast real time response is
required, the buddy method is the one to choose, otherwise the dual list first fit
method is a reasonable compromise between allocation speed and store wastage.

All the parts of the operating system responsible for cleaning up after
programs, handling asynchronous program killing and so on, should be
implemented in a user control layer, thus allowing the convenience it provides to
be an “added extra” if the corresponding reduced efficiency is not a problem.

Finally, if a portable system is required, then it should be decided at which
level the portability should be. Overall portability enables the entire operating
system to be moved, but precludes the use of special hardware features such as
memory management. User level portability ensures the portability of user
programs, and since the operating system itself need not be portable, this allows
optional use of such things as virtual memory and storage protection. A third
level of portability is possible if there is a wide range of machines based on a
single type of processor, in that a system can be designed to be portable, but only

between machines which use that processor.
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8. Conclusion

The work described in this thesis is an atiempt to decrease the widening gap
between the hardware available for large personal workstations, and the
operating system software which makes use of them. Through the development
of fast, single chip 32 bit micro-processors (typified by the Motorola MC68000),
and the massive reduction in the cost of 64K and 256K dynamic memory chips, it
is now possible for an individual to have on his desk a machine which, only a few
years ago, would have supported many tens of users.

Until the introduction of this type of machine, it was possible to classify
computers into two distinct categories. Firstly, there were the “small” machines:
cheap mini- and micro-computers with small amounts of memory, 8 or 16 bit
processors, and low performance peripherals. Secondly, there were the “large”
machines: expensive mainframes with large amounts of memory, fast 32 (or more)
bit processors, with peripherals controlled by I/O channels, each of which was a
reasonably powerful computer it its own right. The new generation of machines
did not fit conveniently into either category, having features which were
characteristic of both. Because of this confusion, two different approaches were
taken to operating system design.

The first approach was that the new machines were large micro-computers,
and as such, should be treated as larger versions of the “small” category
machines. This approach was taken principally by commercial establishments,
and out of it came operating systems like CP/M-86, MS/DOS and QDOS,
written for the 8086, 8088 and 68008 respectively. Because of the “small
computer” attitude, there was a tendency for operating systems to be single
threaded, with the only multi-tasking (if any) being in the form of spooling to a
printer.

The second approach was that the new machines were small mainframes, and
hence should be treated as smaller versions of the “large” category machines.
This is perhaps the better of the two approaches, since it aimed to utilise the
hardware to a greater extent. Also, much effort had been expended in the design
of the mainframe operating systems, even though many of the facilities were
inapplicable to the single user case. Unfortunately, mainframe operating systems
tend to be large and complicated, requiring fast discs to implement such things as
paging and swapping. It is this fact which sometimes makes using a mainframe
operating system on the new machines unsatisfactory, since not only are the discs
themselves slow, but the main processor must handle all its own I/O operations,
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and often access to peripherals is through polling rather than by DMA.

Both approaches have produced usable working environments, but neither
actually tackled the real problem—how to get the maximum possible out of the
new type of machine. The approach taken here was rather different to the two
described above, in that it took as its starting point a small mu!i:-tasking
operating system which was already designed for single user operation, and
investigated the changes necessary to enable this type of system to be enhanced
in order to make better use of the available hardware facilities. Out of the work
came a series of ideas, techniques and guidelines which, if applied elsewhere,

should improve overall performance and increase hardware utilisation.

The operating system taken as the starting point‘was TRIPOS, which had
the double advantage of being written in a high level language and also available
locally. TRIPOS was written in a portable manner, and before the work
described here, it had been implemented on half a dozen or so different 16 bit
mini-computers. The event which sparked this work was the porting of TRIPOS
onto a new range of 68000 based machines, each with at least half a megabyte of
memory—something for which TRIPOS was never originally designed.

The overall environment where the work was carried out was also important,
in that the only people using TRIPOS and relying on it to fulfil their computing
requirements were themselves involved in research. These people, who were
themselves used to trying out new ideas, could fairly easily be persuaded to take
part in experiments, and at the same time, would cooperate by niaking helpful
suggestions and providing intelligent feedback.

The fact that the work was carried out in a distributed computing
environment had little effect on the results, except that it was easier to release
new versions of software for testing purposes. The use of remote peripherals
(even fast expensive ones, such as the fileserver discs) had the effect of making
most computations I/O bound, and simulated closely what would have happened
if the work had been carried out on a stand-alone machine with locally attached,
but relatively slow peripherals.

There was one aim to the whole project, and that was to find out how the
new machines could be used to their full advantage. The work involved can be
split conveniently into four separate areas, and it is possible to draw conclusions

from each of these individually.

The first part of the work (described in chapter 4 and appendix 1), involved
the design and implementation of the TRIPOS Shell—an enhanced replacement
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for the original command language interpreter. Although this work was a pre-
requisite for that which followed, it is likely that the days of the command
language interpreter are numbered, and in the future, facilities such as command
histories will be obsolete. This is because the techniques involved aim to
optimise the use of the conventional computer terminal device—a dumb VDU or
teletype. With such a device, the only way of sending information to the host
computer is through the use of a keyboard, and because so many keystrokes are
required to send any particular command, the chance of error is always high.

The reason for the use of this sort of a terminal is that, in the past, many
users shared a computer, and since the machine was remote and had to handle
many terminal lines, only a low bandwidth connection was possibie. Also,
through the use of serial lines, standardisation was achieved, making it possible
to connect any terminal to any computer, and also to connect computers to each
other, enabling file transfer and so on. Serial lines have the advantage that they
are simple, require very few wires, and the data transfer rate is slow enough that
long distance communication using telephone lines is possible.

As the cost of computer components, particularly memory, has come down,
there has been the tendency to give each user his own personal workstation,
rather than sharing a single mainframe. Since the physical size of the machine is
usually fairly small, it is possible, by placing a machine in the office of its owner,
to shorten the distance between terminal and computer in such a way as to allow
much higher bandwidth communication. Combine this with the cheapness of
memory, and it becomes possible to give each user his own high resolution bit-
mapped terminal, on which can be displayed many VDU-like screens as separate
windows. Accompanying such a terminal is a pointing device, usually a mouse,
which enables characters, words or whole areas of the screen to be selected with
ease.

In such an environment, where the act of pointing replaces the less accurate
typing at.a keyboard, the need for command language interpreters is reduced,
since it is possible to point at commands, rather than type their names. Some
operating systems have already done away with their command language
intorpreters, with obvious examples being those for the Xerox personal
workstations [Redell80, XEROX82, XEROX84] and the Apple Macintosh
[Apples4]. No doubt, as memory becomes even cheaper, so bit-mapped terminals
will become more common, and future work on user interfaces should really be
concentrated in this area.

As a piece of future work, a “virtual screen” protocol should be designed, so

as to standardise the way in which bit-mapped terminals and pointing devices are ‘
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used. Only when this is done will it be possible to write software which handles
these devices in a consistent manner, and until it exists, a series of ad hoc
implementations will appear, making life confusing for the user and portability
impossible for the operating system designer. This protocol should enable bit-
mapped terminals to be used to access computers where only a low bandwidth
connection (such as a serial line) is available. In this way, even multi-user
operating systems and wide-area computer networks can make use of the new
technology.

There are still many occasions, though, when access to a computer must be
via a traditional terminal, and hence where a command language interpreter is
necessary. The main advantage that typing commands at a keyboard has over
pointing at a screen, is that it requires simpler equipment, and a much lower
bandwidth connection between the terminal and the host computer. This factor
is particularly important for systems which support many users, or are accessed
in some remote manner. Even local area networks with high point-to-point
bandwidths take several seconds to transfer a bit-map from one machine to
another. If a command language interpreter is required, then there are three
important facilities which it should provide if it is to be of maximum use.

Firstly, it should enable the user to have several tasks (both foreground and
background) executing in parallel, and provide some convenient way of switching
between them. It should also provide some way of being able to direct the
output of one program as the input to another program, so that the maximum
parallelism can be achieved. The syntax should be easy to learn and convenient
to use, with a reasonable compromise between being too verbose on the one hand,
and too cryptic on the other.

Secondly, it should provide some sort of command history mechanism, so that
recently typed command lines can be recalled, edited, and then re-executed. The
methods used to identify previous command lines should be concise and easy to
use, as should the editing commands. It goes without saying that it must be
easier to edit and re-execute 2 previous commmand line, than it is to type it in
again.

Thirdly, it should have a simple and clean interface to programs which run
under it, and it must be possible for these programs to call the command
language interpreter recursively, should they wish to execute a command line or
start up a new command session. So long as the interface is available, it is
possible for the user to switch between command environments at will, and also
to customise his command environment, simply by adding an extra layer of

software above the command language interpreter to handle the required syntax.
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In any computer system, there will always be the situation where a certain
set of commands must be executed repeatedly (with or without parameter
substitution), and for this application, some sort of command language is
required. In the past, such languages have been modelled on, but not actually
been, true programming languages, and have tended to have an archaic and
clumsy syntax. As a second requirement of any command environment, there
should also be a language in which the user can write small throw-away
programs. It is often the case that a column of numbers must be added up, or a
set of files must be re-formatted, or some other job which is too complicated for
one of the standard utilities (such as an editor) to perform. For this sort of
application a simple program is required, but traditional compiled programming
languages are far from simple to use, and programs written in them are almost
impossible to get right first time.

Assuming that there is a clean interface to the command language
interpreter, there is no reason why the two requirements cannot be fulfilled by
the same language. In fact, there is a distinct advantage in doing so, since firstly,
the user need learn only one language rather than two, and secondly, there is
often the desire to combine command execution with some form of
computation—surprisingly difficult in traditional systems where the command
and programming languages are separate.

To show that it was possible to design a language which was useful for both
command sequences and simple programming, the REX system (described in
chapter 5 and appendix 2) was designed and implemented. The language is
strongly data typed, but the interpreter, where possible, coerces from one data
type to another in order to avoid error. There is an emphasis on being able to
make a program work, and as a result the parser tries very hard to recover from
syntax errors while giving useful diagnostics, and the interpreter allows programs
to be traced as they are executed, in order to find out where they are going
wrong. The variety of applications is immense, but the most popular use by far
is for the implementation of short command sequences, for example, to compile,
link and then run a program. As well as simple command sequences, there are
examples of REX programs to re-format files, to sort and re-number the globals in
a BCPL header file, and to re-initialise a disc directory structure.

The third area of work, described in chapter 6, involved the investigation of
how simple techniques can be used to improve the convenience and performance
of a user’s working environment. Under TRIPOS, adding the extra facilities

proved relatively straightforward, owing to the way in which pseudo
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devices—handlers with no associated peripheral—could be created. In other
environments, adding such facilities may not be quite so simple, but the
principles involved are the same, no matter what the nature of the underlying
system.

One of the techniques, command pre-loading, demonstrates how it is possible
to improve the access to slow discs, simply by making use of memory to store
frequently used programs. Slow discs have always been a problem in computer
systems, and because of this, the technique of keeping in memory a cache store of
recently used disc blocks was developed. Although keeping a cache of disc blocks
in memory still has much to recommend it, it does not take account of files as a
whole, and so the effect of keeping a file in memory may be lost if one of its
constituent blocks has been lost from the cache. The type of file for which this is
important is a program load module, because the whole file is needed at once, and
even one disc transfer can slow the loading operation down. There is also the
important fact that programs, once loaded, are stored in a different format in
memory than they were on disc.

The experience with TRIPOS has shown that pre-loaded programs should be
handled in a different way to normal cached disc blocks. Both systems are
required, because it is still likely that, for instance a file will be read after it has
been written, or a directory block used after it has been examined. With both
mechanisms, better utilisation can be made of memory, and the overall
improvement in response which the user sees can be dramatic. It is likely that
the absolute amount of time gained from such a system is very small if measured
over a long period, but that productivity is improved because using large
programs (such as an editor or a compiler) no longer involves the long delay
while they are brought into memory from disc, and so the user’s attitude to

program development changes accordingly.

The fourth area of work, described in chapter 7, investigates the issues
associated with operating system kernels, in an attempt to draw up a set of
guidelines for future designers.

With the new type of machines, large amounts of memory are available, and
since access to I/O devices is slow, the size and efficiency of the operating system
kernel are no longer relevant issues. What is important though, and will become
more important as the cost of software development increases, is that th;: kernel
should be written in a single high level language, and provide as gemeral an

interface as possible to its clients.
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There are two main reasons for writing an operating system kernel in a high
level language. Firstly, by their very nature, high level languages are more
portable than assembly code, and although using a high level language does not
ensure portability, it certainly aids it. Secondly, it is easier and quicker to
express algorithms in a language which has a decent control structure, and
because programs written in a high level language must be checked by a compiler
before being executed, many potential problems can be detected at compile time.
If the language chosen provides the facility, it is also possible to use it to check
the interfaces between different operating system modules—something with helps
ensure correctness, and allows for the easy distribution of implementation jobs
between different individuals.

Even though the kernel itself should be written in a single high level
language, it should provide a general and language independent interface to its
clients. If possible, hardware traps should be used to enter the kernel domain, as
this allows non-kernel processes to execute at a lower level of privilege. It also
defines an exact point where the transition from user code to kernel code occurs,
and so defines a protection boundary behind which the kernel abstractions can be
hidden. Whenever the kernel passes control to user code—on entry to a process,
when an interrupt occurs and so on—it must do so in a simple and consistent
manner, preferably through means of a subroutine call. So long as all different
calling sequences obey this same convention, it is possible to write software which
is both language independent and context free.

If possible, an operating system should be designed in a two-layered manner,
so that the same kernel can be used for both real time programming work, and to
provide a user working environment. Where possible, all the user specific code
should be kept out of the kernel, so that if an application requires efficiency
rather than convenience, no CPU time is lost performing unnecessary work.
Designing the operating system in this way gives greater generality, and removes
the necessity of having separate implementations for the two different kinds of
application.

There are three different types of portability which the operating system
designer must bear in mind. Firstly, there is overall portability, where the whole
operating system, and everything which runs under it is designed to be portable.
Unfortunately, for an operating system to be portable to this extent, it cannot
afford to rely on facilities which are only available on a few machines. Secondly,
there is user level portability, where only the portability of applications goftware
is guaranteed. This approach has much to recommend it, since the user sees no

difference between this and overall portability, but it does allow more specialised
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use of the hardware available, for example virtual memory or a bit-mapped
terminal. Thirdly, there is same processor portability, where the operating
system is portable between different computers which the same type of processor.
As an example of this last case, IBM/370 machines are so common that there
was no point in making the GMK kernel portable onto other types of processor;

to do so would only have added complications.

To sum up, the new generation of computers have requirements which are
very different from either of their two types of predecessor, and a separate set of
techniques should be used in order to utilise them to their full capacity. They
have many weaknesses which require further work in order to improve
performance. The two obvious examples are the speed of and method of access to
peripherals, particularly discs, and the cleaning up of the micro-processor
instruction sets to make them more orthogonal, and easier for compilers to
generate code. Given that the new machines have so much memory, it would be
useful to have some standard form of memory management unit, built in VLSI,
which would enable operating systems designers to implement protection through
address space separation without restricting the portability of his product.

This thesis has attempted to show the subtle change of emphasis which is
required when designing system software for the new type of machines, from the
techniques to be used in the operating system kernel to the facilities which should
be provided in the user interface. The problem of slow access to discs combined
with the availability of large amounts of memory mean that it is possible to have
a great deal of resident software, providing functions which are specifically geared
to optimising the user environment. The memory size also means that it is
possible to treat as resident programs which are frequently used, since they can
be pre-loaded in such a way as to appear part of the operating system. The
combination of all the ideas results in a simple, unified design, which can be
applied to give a powerful working environment which takes full advantage of the

new type of large personal workstation.
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Appendix 1: Shell details

Command history mechanism

The Shell keeps a list of the most recently executed command lines, and
provides a simple method for editing and re-executing previous lines. Any input
line which begins with the character “!” is treated as one referring to a previous
command line, with the line involved being specified by one of the following:

{<number> Absolute command number

! -<number> Relative command number

R Last command

t<gtring> Last command beginning with <string>
17<string> Last command containing <string>

i <number> describes a command line absolutely and unambiguously by
quoting its sequence number. For example:

123

means “execute the command line whose sequence number is 23", '-<number>
describes a command line relative to the current one by quoting the difference in
the command sequence numbers. For example: '

-1

means “execute the last command line but 1”, in other words, not the previous
command command line, but the one before it. !! caters for the most usual
case—that of executing the previous command line again. !<string> describes a
command line textually, by defining the characters with which it starts. For
example:

lco

means “execute the last command line which begins with the characters co”.
This would match the commands copy, compare and so on. !7<string> is
similar to the previous case, in that it describes a command line textually, but in
this instance the position of the characters in the line is undefined. For example:

t7bepl

means “execute the last command line which contains the characters bepl”.

Line editing

After the text which selects a previous command line, edit commands can be
used to make simple alterations. Edit commands are of the general form:

<delim> <before> <delim> <after> <delim>

where <delim> defines one of editing delimiter characters (one of /x+,7°07),
<before> is the text to be replaced, and <after> is the replacement text. The
command line which has been recalled is scanned from left to right, and the first °

184




occurrence of the string <before> is replaced by the string <after>. Any
number of these edit sequences may be applied to a command line, and only when
they have all been applied successfully is the modified command line passed for
execution. Given that one of the most common pieces of editing is to add
something to the end of a previous command line, the null string is defined to
match at the end of a command line. The following are examples of valid editing
commands:

/wrong/correct/
~~ added at the end”

Shell commands

Shell commands are those which affect the local environment of the Shell
only, and perform functions which would cause a loaded command to know too
much about the Shell data structures.

The HISTORY command

The history command, synonyms clist and cl, causes information held in
the command history to be printed out. Associated with each entry in the
command history is a sequence number, which can be used to specify that line
unambiguously.

The SWITCH command

The switch command, synonym sw, enables the Shell monitoring options to
be interrogated and changed. Switches are simply boolean flags within the Shell,
and there are three available to the user:

) switch monitor, when set, tells the Shell to print out status
information about each loaded command which it terminates. This
information includes the name of the command, the amount of time
taken to load and execute the command, the amount of stack it used
and the return and error codes if the command failed. When unset, no
monitoring information is printed out.

° gwitch reflect, if set, tells the Shell to print out command lines
passed to it from REX “obey” statements. This allows the monitoring of
REX command sequences, without the necessity of modifying the original
REX program. When unset, command lines are not reflected.

. switch exec, if set, tells the Shell to execute loaded commands. When
unset, the Shell loads but does not execute commands, and this facility
can be used in conjunction with switch reflect on order to debug REX
command sequences.

In order to turn a switch off, the switch name is prefixed with “no”, so for
example, switch nomonitor disables the printing of monitor information. The
default state of the switches is nomonitor, noreflect and exec.
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The CHAR command

The char command enables the special characters used by the Shell, when
decoding command lines and pipe expressions, to be investigated and altered.
There are seven special characters available to the user:

e char bra is the character which introduces a pipe expression

. char ket is the character which terminates a pipe expression

. char pipe is the character which represents an anonymous pipe within
a pipe expression.

. char quote is the character which delimits strings of uninterpreted
characters

. char sep is the character which separates multiple synchronous
commands

. char and is the character which separates multiple asynchronous
commands

o char escape is the character which introduces a single uninterpreted
character

The default values for all the Shell characters are bra=(, ket=), pipe=l,
quote=", sep=;, and=& and escape=\.

Directory commands

Under the old CLI, the only command available for manipulating the current
working directory was set. The current directory was always represented by a
pointer to a lock (stored in the global currentdir), and the name of the current
directory was lost as soon as the lock had been obtained. This scheme has
various shortcomings, and the Shell directory commands were added in an
attempt to fill this gap.

The SET command

The set command is like run, globals and so im, in that it is a command
which is built-in in order to over-ride the loaded command of the same name.
The function of Shell set command is identical to its loaded counterpart, except
that it has access to the Shell “directory” data structure. This structure is
presented to the user as a current working directory, and a stack of “pushed”
directories. The set command alters the current working directory, allocating a
new directory lock, and updating the name of the directory, which is saved
internally within the Shell.

The UNSET command

The unset command allows the user to move to the parent of the current
working directory. UNIX has a simple tree-shaped filing system, where each
directory has one, and only one, parent. It is therefore possible to store within a
directory an entry which points to the parent. This entry is called “..”, and so
can be selected in order to give the desired effect.
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The TRIPOS filing system, on the other hand, is a directed graph structure,
and a directory may have several parents. It is therefore impossible to
implement this facility at a filing system level, and hence is done textually.

Filenames under TRIPOS are represented as a root name, followed by a series
of directory names, followed by the final filename. It is possible to scan a
filename from its end, searching backwards for either the root «.” character, or a
separating “.” character. The part of the filename before the character is the
logical parent of the whole filename, o for example, the directory
“gys:idw.bcpl” has the parent “gys:idw”. Using the name of the current
directory, which is saved at the time the set command is executed, it is possible
to employ the above algorithm to calculate the name of the parent directory to
be selected.

The PWD, PUSHD and POPD commands

The pwd command prints out the name of the current working directory,
along with the name of any directories held on the directory stack. The pushd
command allows the user to manipulate the stack of pushed directories. pushd
without an argument swaps the current working directory with the top item on
the directory stack, and can therefore be used to alternate between two different
working directories. pushd followed by the name of a directory causes the
current working directory to be pushed onto the directory stack, and the new one
to be selected as the current working directory. The popd command is the
opposite of pushd in that it “pops” the top item from the directory stack, and
selects it as the current working directory, thus restoring a previous working
environment. These commands are all equivalent to their UNIX counterparts.
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Appendix 2: REX details

REX programs

A REX program consists of a series of statements, with each statement
optionally terminated by a semicolon. These statements determine the flow of
control of the program, the evaluation of expressions, and the interaction
between the REX program and its Shell and I/O systems. REX input is free
format, with line breaks allowed anywhere where their meaning would be
unambiguous. Except in strings, the case of characters in a REX program is
ignored.

Comments

Comments are introduced in REX by the comment character “$”, with
everything from the comment character to end of line being ignored. In order to
avoid interpretation of random pieces of text as though they were REX programs,
all files containing REX source must have a comment as the first non-blank item.
For example:

¢ This whole line is a comment
x := 3 $ This comment follows a statement

Numbers

Numbers are of data type number, and can be entered in decimal, binary,
octal and hexadecimal. A decimal number is a string of decimal digits; a binary
number is the prefix “#b” followed by a string of binary digits, with “#0” and
“#x” being the prefixes for strings of octal and hexadecimal digits respectively.
Items of type number are used in all arithmetic operations, and all arithmetic
operations yield results which are of type number. Numbers are represented
internally as BCPL integers, and only integer arithmetic is supported. The
precision to which arithmetic operations are performed is defined by the word
size of the underlying BCPL implementation.
For example:

12345
#b101010
#0177T7
#x30ff

Strings

Strings are of data type string, and are entered as a series of characters
delimited by either single or double quotes. If a quote of the same type as the
delimiter is required in the string, then two quotes must be entered. Items of
type string are used and yielded by all input/output functions, and most other
data types can be coerced to and from data type string. Strings may have
lengths from zero up to the maximum determined by the underlying BCPL
system—usually 255.

188




For example:

"This is a string of characters"
*Bob’*s your Uncle’

Booleans
Booleans are of data type bool, and take one of the truth values TRUE or

FALSE. Items of type bool are used in conditional constructs, and all the
comparison and relational operators yield results which are of type bool.
For example:

true
falge

Variables

Variable names are up to 64 characters in length, the first character of which
is alphabetic, and the rest of which are alphabetic, numeric, or the characters “.”
or _”, Variables are capable of holding any value of any data type, and the data
type of a variable may vary dynamically throughout the running of a program.
For example:

x

A.B.C.D

file4

This_Is_A_Long _Variable_Name

Nil

Nil is of data type nil, and has no associated value. Its main use is that it
can safely be compared for equality or inequality with an object of any other data
type. This means that it can be used as an “error value” when an operation fails
(see openin and openout), or as a list terminator when general data structures
are built out of array elements (see arrays).
For example:

nil

Operators

REX has arithmetic, relational, string and boolean operators. Each operator
evaluates its arguments, coercing them to be of the required data type, operating
on them, and returning the result of the operation, together with its associated
data type.

Arithmetic operators

Arithmetic operators coerce their arguments to be of data type number, and
return values also of data type number. All operations are performed using
integer arithmetic, and the precision to which arithmetic operations are
performed is determined by the word size of the underlying BCPL
implementation.
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The monadic arithmetic operators are:

+ Plus

- Minus

abs Absolute
not Bitwise not

The dyadic arithmetic operators are:

+ Plus

- Minus

* Multiply

/ Divide

rem Remainder
<< Shift left
>> Shift right
& Bitwise and
| Bitwise or

For example:

-b

abgs (a + b * c)
a rem 10

a << (b/ ¢

(a & #xff) = b

Relational operators

Relational operators compare two items, and return the data type bool
There are three different types of comparison which are possible, depending on
the data types of the associated operands, and the possibilities are tried in turn.
Firstly, if either of the operands are of data type nil, then the comparison is
performed on the data types—rather than the values—of the operands. In this
case, only the equality operators, “=” and “~=", are valid. Secondly, if either of
the items being compared are of data type number, then the other is coerced to
data type number, and a numeric comparison is done. Finally, if neither of the
two previous conditions apply, then both arguments are coerced to data type
string, and a lexicographic comparison is done. With string comparisons, case
equating is done as a matter of course.
The relational operators are:

< Less than

> Greater than

<= Less than or equal
>= Greater than or equal
= Equal

"= Not equal

For example:

a<hb
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count >= 3

vegetable ~= "cabbage"

String operators

String operators evaluate their operands, coercing them to be of data type
string, and return values also of data type string. One of the operators has no
special symbol, and is represented just as the juxtaposition of two operands.
String concatenation will fail if the resulting string would be longer than the
allowed maximum, the value of which is implementation dependent.

The string operators are:

<juxtaposition> Join strings with separating space
I Join strings without separating space

For example:

"the value of x is" x "and y is" y
directory || "." || filename

Boolean operators

Boolean operators coerce their arguments to be of data type bool, and return
values also of data type bool. Note that the symbols used are the same as the
bitwise arithmetic operators, and as with the relational operators, it is the data
type of the operands which determines the nature of the operation performed.

The monadic boolean operator is:
not Logical inverse
The dyadic boolean operators are:

& Logical and
| Logical or

For example:
not flag
ak (b c)

System variables
To enable convenient access to the running environment, REX provides the

following variables which can be used to investigate certain system parameters.

re Current Shell return code (number)
mcname Current machine name (string)
mctype Current machine type (string)
systype Current operating system type (string)

Note that the above variables are special in that they cannot be assigned to, and
80 act much more like parameterless functions than variables.
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The ARGS variable

On entry to a REX program, the variable args is of data type string, and
contains the string representation of the arguments passed to the program from
the Shell. This will normally be split down into its individual elements (words)
using the parse statement, or parsed with respect to a pattern using the rdargs
function. Note that args, unlike the system variables rc, mcname etc., is a real
variable, and hence can change its value and data type.

The LEN function
The 1len function has the following form:

len( <expression> )

The expression is evaluated, and coerced to be of data type string. The result of
the function is of data type number, and is the number of characters in the
string, in other words, its length.

For example:

len( "The flowers that bloom in the Spring" )
len( stringi || string2 )

The SUBSTR function
The substr function has the following form:

substr( <STR expression>, <LWB expression>, <UPB expression> )

The STR expression is evaluated, and coerced to be of data type string. The LWB
and UPB expressions are both evaluated, and coerced to be of data type number.
The result of the function is of data type string, and is the substring of the STR
argument, from position LWB to position UPB. Substrings of length 1, in other
words, individual characters, can be obtained by using the array subscript
notation, treating a string as an array of characters.

For example:

substr( "ABCDEF", 2, 4 )
substr( line, 10, len( line ) )
buffer[ 23 ]

Explicit coercions

Sometimes, the default coercion performed by REX is not what is required. To
enable the programmer to override the default coercions, REX provides a series of
functions which allow explicit coercions to be made. In the following list, the
data type char (character) is not a true data type, but is simply a string of
length 1.

num( <exp> ) Coerces <exp> to number

str( <exp> ) Coerces <exp> to siring

ustr( <exp> ) Coerces <exp> to upper case string
1str( <exp> ) Coerces <exp> to lower case string
chr( <exp> ) Coerces <exp> to char
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asc( <exp> ) Coerces <exp> from char to number
(its ASCII code)

For example:

num( a ) < num( a )
str( 1234 )

ustr( x 1|l y Il z)
chr( 13 )

asc( "a" )

Precedence of operators
The REX operators, in order of decreasing precedence, are as follows:

I o Arrays & procedures
+ - abs not Monadic

* / rem

+ -

<< > 11

> = d= <K= "=

& |

<juxtaposition>

The precedence of operators can always be over-ridden by putting expressions
within parentheses.

Synonyms
The following symbols are synonyms of one another:

not \ ~
=" \=

Arrays

REX allows the programmer to define arrays of up to 5 dimensions, with each
array element having the property of a single variable. This means that the
different elements in an array may be of totally different data types, and hence
arrays can be thought of more as multi-dimensional records than as conventional

matrices.

Array elements

Array elements are accessed by applying a subscript expression to something
which evaluates to be of data type array (usually a variable). A subscript
expression is a pair of square brackets, containing a list of subscripts separated
by commas. Each subscript is coerced to be of data type number before being
used as an index into the array.

For convenience, items of data type string can be treated exactly as if they
were single dimension arrays of characters. Single characters may be extracted
from the string in the expected manner, and one or more characters can be
replaced by using array assignments.
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For example:

matrix[ i*2, j+4 ]

(procedures[ 4 1) [ one, two, three ]
stringl 4 ]

string[ 10 ] := 'abcde"

The DIM statement
The dim statement has the following form:

dim <list of array definitions>

Each array definition comprises a variable name, followed by a pair of square
brackets, containing a list of subscript bounds separated by commas. The
subscript bounds are given either by a single expression representing the upper
bound, or a pair of expressions separated by a colon, representing the lower and
upper bounds. If the lower bound is omitted, a value of 1 is assumed.

Executing dim has the effect of allocating a new storage element and defining
the dimensionality and bounds of the array. Because of this, dim can be used to
define elements of more complicated data structures, and since arrays may
themselves contain references to other arrays, trees and lists are easy to
construct. After the array is defined, the variable is assigned a pointer to the
array, and given the data type array.

For example:

dim values[ 100 ]
dim al 10, 10 1, b[ 10, 20, 30 ]
dim matrixi[ -5:+5 1, matrix2[ 0:10, 0:10 ]

The TABLE statement
The table statement has the following form:

table <list of expressious>

Tables are single dimension arrays whose elements are initialised. They have
data type array, dimensionality 1, lower bound 1, with the upper bound being set
by the number of items in the expression list. Each of the items in the list is
evaluated, and the resulting value and data type is assigned to the appropriate
array element. As with arrays, individual elements of tables can be of any data
type, and each time a table is defined, a new storage element is allocated. This
means that tables can easily be used to allocate records when building a dafa
structure.

For example:

veg := table "Courgette", "Parsnip", "Artichoke"
res table nil, vall, val2, vald
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General control statements

REX provides a series of general control statements, which are involved with
assignment, conditional execution, looping and other flow control issues. The -
number of these constructs has been kept to a minimum, without reducing the
facilities available to the programmer.

The assignment statement
An assignment statement has the form:

<variable item> := <expression>

The expression is evaluated, and the resulting value and its agsociated data type
are assigned to the variable. The variable item must be something which is
capable of being updated, and hence must be a variable or an array element. If
the variable item is already defined, then there is no necessity for its new value
and data type to be compatible with the old.

For example:

answer = 42
megsage := "HELP!"
al 1] = true

The IF statement
‘The if statement has the following form:

if <expression> then <statements> {fi
if <expression> then <statements> else <statements> fi

The expression is evaluated, and coerced to be of data type bool. If the value is
true, then the statements of the then clause are executed. If the value is falge,
then, if an else clause has been given, its statements are executed instead.
Multiple if then else statements can be linked by use of elif, with only one fi
being required at the end of the set of statements.

For example:

jf x =3 then x :=x +1 fi

if action = "greeting"
then reply := "hello"
else reply := 'goodbye"
fi

if person = "happy"

then state := "cheerful"
elif person = "sad"
then state = "migerable"

]

else state "mediocre"

fi
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The DO statement

The do statement is the single REX looping construct, providing all the
facilities of for, while, until and repeat loops in other languages. Associated
with each loop are six parameters, each of which can be omitted by the user if
that facility is not actually required. The parameters, if present, must be
introduced by one of the following keywords:

for <variable>
from <expression>
to <expression>

by <expression>
while <expression>
until <expression>

During execution, the loop is represented by a loop count, which starts at the
value given by the from parameter, and continues until it exceeds the to
parameter. Each time round the loop, the loop count is adjusted by the value of
the by parameter, which can be positive or negative. If the for parameter is
present, then the value of the loop count is assigned to this variable each time
the loop is executed. As well as the loop count, there are two boolean conditions
which are tested each time round the loop. The while parameter is evaluated,
and looping only continues if the value is true. Similarly, the until parameter is
evaluated, and looping continues if the value is false.

If any of the above parameters are omitted, then suitable default values are
taken. The default values are:

from 1

to <maxint>
by 1

while true
until false

where <maxint> is the largest positive integer capable of being represented by the
underlying BCPL system. The result of the defaults is that, if no parameters are
given (the simple “do .. od” construct), the effect is to execute the loop
<maxint> times, or in practice, for ever.

For example:

do handlecommands() od
for 1 to 10 do array[ 1] := -1 od
until ¥ > 100 do x := function( x ) od

The BREAK statement
The break statement has the following form:
break
Executing break has the effect of leaving the current do loop prematurely, .

overriding the terminating loop conditions.
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The LOOP statement
The loop statement has the following form:

loop

Executing loop has the effect of skipping the rest of the statements in the do
loop, and going to the point where the looping conditions are re-calculated.

The SKIP statement
The skip statement has the form:

skip

Executing skip has no effect whatsoever. skip is a dummy operation, and is
included because proc, if and do clauses, each require at least one executable
statement. '

The EXIT statement
The exit statement has the following form:

exit( <expression list> )

The expression list is a (possibly empty) list of expressions, separated by
commas. If the expression list is not empty, then the first expression is
evaluated, and coerced to be of data type number. The rest of the expressions
are evaluated, coerced to be of data type string, and concatenated together with
separating space characters. The effect of the exit statement is to leave the
current REX program, no matter how deep the loop nesting or procedure
recursion. The number, if present, is taken as a return code, and passed back to
the operating system. The string, if present, is printed out as an error message
to the main Shell output channel.

For example:

exit ()
exit( 10 )
exit( 20, "Compilation of" file "failed" )

Procedures

A procedure is a group of statements which are executed in a slightly
different environment to the main program. All procedures can be recursive and
may or may not return a result, thus allowing the same body of code to be used
as either a routine or a function.

Within the procedure, variables defined outside the procedure may be
referenced, but when a variable assignment is executed, a copy of the variable
local to the procedure is made. The variables in the formal parameter list for the
procedure are also local to the procedure, the calling mechanism therefore being
“call by value”. Note that there is no concept of a global variable, and the only
way a procedure can cause side effects is to update array elements.
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Procedure calling

Procedures are called by applying a parameter expression to something which
evaluates to be of data type proc (usually a variable). A parameter expression is
a pair of round brackets, containing a list of parameters separated by commas. If
no parameters are being passed, then the list is empty. Each of the parameters is
evaluated, and their values and associated data types are assigned to the
variables which form the procedure’s formal parameter list. The number of
parameters passed must correspond exactly to the number expected by the
procedure. After the parameters have been set up, the statements of the
procedure body are executed. If control reaches the end of the statements, then
the procedure returns without passing back a result.

Since a procedure may or may not return a result, a procedure call is valid
both as a statement and as an item in an expression.
For example:

x := function( i, 2, 3) + 4
subroutine( "a b c 4", arg2, x[ 4, 6 1)
(procedures[ 6 1) O

The PROC statement
The proc statement has the following form:

proc <variable> ( <variable list> ): <statements> corp

Executing proc has the effect of defining a procedure ready for use later in the
program. The variable list is a (possibly empty) list of variables, separated by
commas, which define the procedure’s formal parameters, and the statements
form the body of the procedure. After the procedure is defined, the variable is
assigned a reference to the procedure, and given the data type proc.

For example:

proc update( a, b, ¢ ): al 1] :=b+ c corp
proc apply( subroutine, x ):

for i to x do subroutine( x ) od
corp

The RETURN statement
The return statement has the following form:

return

Executing return has the effect of causing return from the current procedure,
without passing back a result. ‘

The RESULT statement
The result statement has the following form:

result <expression>
Executing result has the effect of causing return from the current procedure, .

with the expression being evaluated, and the resulting value and its associated
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data type being passed back as the result of the procedure. Note that, through
the use of the table statement, more than one result can effectively be returned
from a procedure.

For example:

result 3
regult "The answer is" 42
result table 100, 200, 300

The DUMPSTACK statement
The dumpstack statement has the form:

dumpstack( <expression list> )

The expression list is a (possibly empty) list of expressions geparated by commas.
The items in the expression list are evaluated, coerced to be of data type siring,
and concatenated together with separating space characters. The effect of the
dumpstack statement is to dump the state of all the variables on the program
stack to the main Shell output channel. The position of the stack high water
mark, stack frame and stack base are all printed out, along with the names and
values of the variables on the stack. The string calculated from the expression
list is printed out as a message at the head of the variable dump. Note that the
dumpstack statement is primarily provided for debugging use only.

For example:

dumpstack()
dumpstack( "Entering procedure CALCULATE" )

Interface to the Shell

Because of the way that the REX system was conceived, there is a simple and
clean interface between programs written in REX and the Shell environment. It is
possible to perform I/O using the main Shell I/O channels, and command lines
can be passed to the Shell for execution.

The SAY statement
The say statement has the following form:

gsay <expresslon>

The expression is evaluated and coerced fto be of data type string, and then
written out to the main Shell output channel, with a terminating newline
character.

For example:

gay "The value of x is" x "and x squared is" x*x v
gay "#** Command" command "failed with return code" rc
say a bcd e
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The QUEUE statement
The queue statement has the following form:

queue <expression>

The expression is evaluated and coerced to be of data type string, and then
enqueued onto the main Shell input channel, ready to be read by the Shell or a
program running under it.

For example:

queue "diablo"
queue "margin" margin "; pause; go"

The OBEY statement
The obey statement has the following form:

obey <expression>

The expression is evaluated and coerced to be of data type string, and then
passed to the Shell as a command line to be obeyed, exactly as if the command
line had been typed at the console, The command line is obeyed immediately,
and hence any program which is loaded may read input lines which have
previously been enqueued.

For example:

obey "print" file "opt vdu"
obey "bcpl bepl." || file "to obj." || file

The PARSE statement
The parse statement has the following form:

parse <expression> : <variable item list>

The expression is evaluated, and coerced to be of data type string, and is then
parsed into the variable item list. The variable item list is a list of either
variables or array elements separated by commas. If only one variable is present,
then parse is exactly equivalent to an assignment gtatement, with the expression
being assigned to the variable. If more than one variable is present, then the
expression is split into “words”, each of data type string. One word is assigned
to each variable, except the last variable in the list which has whatever is left of
the expression assigned to it.

Words are defined as being strings of non-blank characters, separated by
spaces. Words may contain spaces, so long as they are contained within quotes
(see the definition of “strings” for the syntax used), the outermost level of quotes
being stripped off by the parsing operation. parse is also called implicitly by the
read and prompt statements, allowing input lines to be parsed as they are read.
For example, after:

parse "The ‘'parse statement’ at work": a, b, ¢
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The variables would have the following values:

a HThe"
b "parse statement"
c "at work"

For example:

parse line: a, b, ¢
parse args: file, etc
parse al 1 ] [| al 2 J: vall, val2, val3

The RDARGS function
The rdargs function has the following form:

rdargs( <expression>, <pattern>, <variable item list> )

The expression and pattern are both evaluated, and coerced to be of data type
string. The BCPL procedure rdargs is then applied, parsing the expression with
respect to the pattern given, assigning each of the results to the corresponding
variable or array element. The number of items in the variable item list must
correspond exactly with the number of results yielded by the parsing operation.
Each variable will have data type string if the relevant argument is given—for
«/A” and “/K” items, the value corresponds to the parsed result, and for “/8”
items, the value corresponds to the name of the switch. In both cases, if the
argument or switch is omitted, the variable will have the value nil. The resulting
value is of type bool, and indicates whether the parsing operations was successful.
For example:

ok := rdargs( args, "from/a,to/k,quiet/s", a.f, a.t, 2.q )
ok rdargs( string, pattern, vi, v2, v3, v4 )

The PROMPT statement
The prompt statement has the following form:

prompt <expression> : <variable item list>

The expression is evaluated, and coerced to be of data type string. This string is
then printed out to the main Shell output channel as a prompt, without a
terminating newline character. A line is then read from the main Shell input
channel, and parsed into the variable item list, exactly as in the parse statement.
For example:

prompt "File name: ": filename
prompt "A B and C: ": a, b, ¢
Input/output

Simple I/O to the main Shell channels is available using the prompt and say
statements, but REX also allows similar I/O to other user defined channels. There
are facilities to open and close channels, read from and write to channels, and .
test for channel “end of file”. AllI1/O is on a record by record basis, with records

201




being separated by the newline character.

The OPENIN and OPENOUT functions
The openin and openout functions have the following form:

openin( <expression> )
openout ( <expression> )

The expression is evaluated, and coerced to be of data type string. The resulting
string is taken as the name of an operating system file, and opened for input if
the function is openin, or output if the function is openout. On success, the
resulting value is a pointer to the open channel, with its associated data type of
snput channel or output channel. On failure, the resulting value is nil. Note that
the form which the file name takes is operating system dependent.

For example:

inchannel := openin( "a.b.c" )
outchannel openout( dir || "." || file )

|

The READ statement
The read statement has the following form:

read <expression> : <variable item list>

The expression is evaluated, and coerced to be of data type tnput channel. A line
is then read from the input channel, and parsed into the variable item list,
exactly as in the parse and prompt statements.

For example:

read inchannel: line
read inchannel: a, b, ¢, etc
The WRITE statement
The write statement has the following form:
write <expression> : <expression>

The first expression is evaluated, and coerced to be of data type output channel.
The second expression is evaluated, coerced to be of data type string, and then
written out to the specified output channel, with a terminating newline character.
For example:

write outchannel: "My name is" myname
write outchannel: a b cd

The CLOSE statement
The close statement has the following form:
close( <expression> )

The expression is evaluated, and coerced to be of data type either input channel
or output channel. The specified channel is then closed, after which no further
I/0 on that channel is possible.
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For example:

close( inchannel )
close( outchannel )

The EOF function
The eof function has the following form:

eof ( <expression> )

The expression is evaluated, and coerced to be of data type tnput channel. The
result is of data type bool, and is true if end of file has been reached on that

channel, or false otherwise.
For example:

endoffile := eof( inchannel )

if eof( inchannel ) then break fi
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