Technical Report A

Number 844

B UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Decompilation as search

Wei Ming Khoo

November 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2013 Wei Ming Khoo

This technical report is based on a dissertation submitted
August 2013 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Hughes Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Decompilation is the process of converting programs in a low-level representation, such as
machine code, into high-level programs that are human readable, compilable and seman-
tically equivalent. The current de facto approach to decompilation is largely modelled on
compiler theory and only focusses on one or two of these desirable goals at a time.

This thesis makes the case that decompilation is more effectively accomplished through
search. It is observed that software development is seldom a clean slate process and much
software is available in public repositories. To back this claim, evidence is presented from
three categories of software development: corporate software development, open source
projects and malware creation. Evidence strongly suggests that code reuse is prevalent in
all categories.

Two approaches to search-based decompilation are proposed. The first approach borrows
inspiration from information retrieval, and constitutes the first contribution of this thesis.
It uses instruction mnemonics, control-flow sub-graphs and data constants, which can
be quickly extracted from a disassembly, and relies on the popular text search engine
CLucene. The time taken to analyse a function is small enough to be practical and the
technique achieves an F, measure of above 83.0% for two benchmarks.

The second approach and contribution of this thesis is perturbation analysis, which is able
to differentiate between algorithms implementing the same functionality, e.g. bubblesort
versus quicksort, and between different implementations of the same algorithm, e.g. quick-
sort from Wikipedia versus quicksort from Rosetta code. Test-based indexing (TBI) uses
random testing to characterise the input-output behaviour of a function; perturbation-
based indexing (PBI) is TBI with additional input-output behaviour obtained through
perturbation analysis. TBI/PBI achieves an Fy measure of 88.4% on five benchmarks
involving different compilers and compiler options.

To perform perturbation analysis, function prototyping is needed, the standard way com-
prising liveness and reaching-definitions analysis. However, it is observed that in practice
actual prototypes fall into one of a few possible categories, enabling the type system to
be simplified considerably. The third and final contribution is an approach to prototype
recovery that follows the principle of conformant execution, in the form of inlined data
source tracking, to infer arrays, pointer-to-pointers and recursive data structures.

Acknowledgments

I gratefully acknowledge the financial support of DSO National Laboratories, which made
it possible for me to pursue this PhD. I thank Tan Yang Meng and Chia Hock Teck, who
first encouraged me to take this journey; Ross Anderson, for deciding to take a green and
clueless individual under his wing as a PhD student in 2009; Alan Mycroft, for agreeing
to co-advise this same green and clueless PhD student; Hassen Saidi, for having me as a
summer intern and for getting me started on the fascinating topic of decompilation.

[thank my co-authors and collaborators Pietro Lio, Hyoungshick Kim, Michael Meeks and
Ed Robbins, for fruitful discussions that have given me new perspectives and have helped
me grow as a researcher. For providing me with much-needed advice, help and encourage-
ment along the way, I thank Saad Aloteibi, Jonathan Anderson, Joseph Bonneau, Omar
Choudary, Richard Clayton, Saar Drimer, Christopher Gautier, Khilan Gudka, Markus
Kuhn, Steven Murdoch, Frank Stajano, Raoul Urma, Robert Watson and Rubin Xu. I
am grateful to Graham Titmus and Chris Hadley for help with setting up the Rendezvous
server, and Laurent Simon for help with server testing. I am thankful to Andrew Bernat
and Frank Eigler for help with the Dyninst API and the Dyninst team for creating a great
tool.

Thank you, Dad, Mum, Pa, Mi and Li Ying, for always being there, especially during
times when I needed the most support and encouragement.

To Grace, Natalie and Daniel: thank you for being my inspiration. You are a gift, and
my joy.

To my wife, Shea Lin: thank you for your steadfast support when I was running long
experiments, writing or away, for being my comfort when the going was tough, and for
your uncanny ability to see past setbacks. Thank you for being you.

Soli Deo gloria

Contents

1 Introduction
1.1 Decompilation

1.2 Chapter outline

2 Models of decompilation: a survey
2.1 Heuristics-driven modelo
2.2 Compiler model
2.3 Formal methods modelo
2.4 Assembly-to-C translation model

2.5 Information-flow model

3 Decompilation as search
3.1 How prevalent is code reuse?
3.2 Prior work in software reuse research
3.3 GNU Public License violations
3.4 Proprietary software copyright infringement
3.5 A study of code reuse on Github 000000
3.6 Code reuse in malicious software L.
3.6.1 Analysis of “last modified” dates
3.6.2 Search for “http://” string
3.7 Summary of findingso L
3.8 Proposed approach: Search-based decompilation
3.8.1 Case study: Statistical machine translation
3.8.2 Proposed research agenda

3.9 Related work

11
16

17
17
18
19
20
21

4 Token-based code indexing 43

4.1 Introduction 43
4.2 Design spaceo e 44
4.3 Feature extractiono 45
4.4 Instruction mnemonics 45
4.5 Control-flow subgraphs 46
4.6 Data constantso 48
4.7 What makes a good model? 49
4.8 Indexing and querying 50
4.9 Implementation 52
4.10 Evaluationo 52
4.10.1 Optimal df jresnoid - - - « - « ¢ o e e e e e 53
4.10.2 Comparison of n-grams versus n-perms 54
4.10.3 Mixed n-gram models oo 55
4.10.4 Control-flow k-graphs versus extended k-graphs 56
4.10.5 Mixed k-graph models L. 56
4.10.6 Data constants Lo o7
4.10.7 Composite models L 57
4.10.8 Timing 59

4.11 Discussion 60
4.11.1 Limitations L 60
4.11.2 Threats to validity oo 60
4.11.3 Mnemonic n-grams and basic block boundaries 60

4.12 Related work 60
5 Perturbation analysis 63
5.1 Overview 64
5.2 Assembly-to-C translation L 65
5.3 Source-binary matching for functionso 65
5.4 Test-based indexing 66
5.5 Identifying structural similarity 67
5.6 Perturbation analysis oL 67
5.7 Guard functions 69
5.8 Perturbation-based indexingo 70
5.9 Implementation 70

5.10 Evaluation
5.10.1 Perturbation and guard functions
5.10.2 Comparison of different implementations
5.10.3 Coreutils dataset
5.10.4 Compilers and compiler options

5.11 Discussion
5.11.1 Undefined behaviour, .
5.11.2 Indirect jumps and external code
5.11.3 Function prototyping

5.12 Related work

Prototype recovery via inlined data source tracking

6.1 Survey of prototypes in coreutils and linux
6.2 Algorithm design
6.3 Conformant execution for type recovery
6.4 Memory validity, Fruem - - -« « v o o e
6.5 Address validity, Fogar - - - - - - o o o
6.6 Inlined data source tracking
6.7 Probabilistic branch negationo
6.8 Typesystem
6.9 Distance metric
6.10 Implementation
6.11 Evaluation

6.11.1 Basic inlined data source tracking

6.11.2 Adding probabilistic branch negation

6.11.3 Timing
6.12 Discussion
6.13 Related work

Rendezvous: a prototype search engine

7.1 System architecture
7.2 Results and performance
7.2.1 Storage requirements
7.2.2 Performance

Conclusions and future work

8.1 Future work

79
80
82
82
83
84
86
89
89
90
91
91
92
92
94
94
96

99
99
99
102
102

103

1

Introduction

“You can’t trust code that you did not totally create yourself. (Especially code
from companies that employ people like me.)”

— Ken Thompson, Reflections on Trusting Trust, 1984

Possibly the most well-known software backdoor was described by Ken Thompson in
his famous 1984 ACM Turing award acceptance speech he titled Reflections on Trusting
Trust [1]. A backdoor is a metaphor for a feature in a piece of software that exhibits
behaviour that is more permissive than normal operations would allow, and is well-hidden.
The backdoor that Thompson wrote existed in the login program on a UNIX system,
and allowed anyone with knowledge of a backdoor password to log in as, or gain access
to, any user account on that machine. From a software auditor’s perspective, the problem
with this backdoor was that it was not visible by inspecting the source code of the login
program. This was because while the backdoor existed in the executable, it was inserted
during compilation by a specially crafted C compiler.

In addition, this unique compiler functionality was not visible by inspecting the source
code of the compiler either because the compiler executable was modified such that it
could recognise that it was compiling itself and therefore insert the backdoor-inserting
ability into its compiled self. Thus, this backdoor could not even be spotted by inspecting
the source code of the compiler.

One method to detect a trojanised compiler was proposed by David Wheeler in his PhD
dissertation using an approach called diverse double-compiling [2]. The key idea is to
make use of the fact that source code compiled by two different but correct compilers
must necessarily be functionally equivalent. Therefore, the solution is to do compilation
twice on the compiler source code using the suspicious compiler and a second imported
compiler. If both compilers are correct, the compilation will yield two compilers which are
functionally equivalent. To test that they are, a second compilation by these two compiled
compilers will yield a third and fourth compiler that is equal byte-for-byte under certain
assumptions. If they are not equal, there is a difference in functionality between the two
compilers that were initially used (see Figure 1.1).

Another approach to detect a trojanised compiler is to use software reverse engineering.
We can use a disassembler, such as the UNIX utility objdump, to inspect the machine
instructions contained within an executable. Knowing this, however, the objdump program
could also be compromised with a backdoor that selected parts of the login executable

9

10

Compiler Ag Correct Compiler By

Compiler A Functionally equivalent Compiler By

Compiler Ay Bitwise identical Compiler By

Figure 1.1: Overview of the diverse double-compiling approach to detect a trojanised
compiler. Compilers Ay and B, are assumed to be two correct compilers. Using Ay and
By to compile the same compiler source, s 4, gives rise to compilers A; and B; respectively,
which are expected to be functionally equivalent. A second iteration of this process
produces compilers A, and Bs, which are expected to be bitwise identical, provided s4 is
deterministic. Otherwise, the initial assumption is wrong and one, or both, of the initial
compilers contains an error.

and C compiler to display. We cannot trust the disassembler in the operating system, but
we can similarly import one or more external disassemblers. The chance of having the
exact same backdoor in n independently developed disassemblers is small for a sufficiently
large n. When run on the compiler or login executable, all disassemblers should give the
same sequence of machine instructions, otherwise there is something wrong and we can
examine the difference between the disassemblies.

In January of 2010, the world was introduced to the first-ever targeted cyberweapon
known as Stuxnet. Stuxnet was a computer program designed specifically to hunt down
a particular industrial control system known as the Siemens Simatic WinCC Step7 con-
troller, but not just any Step7 system! Most of the Stuxnet infections were located in
Iran, a country that was never known for huge malware outbreaks [3].

The one characteristic that separated Stuxnet from other malware was its reliability.
Stuxnet had 8 methods of replicating itself from machine to machine, and it contained 5
exploits that had 100% reliable code execution capability on Windows Vista and later.
An exploit is similar to a backdoor in that it allows for more permissive behaviour by the
entity using it. The subtle difference is that a backdoor is usually intentional on the part
of the software designer, while an exploit is not. Stuxnet was reliable to the point of being
able to defeat anti-exploit security mechanisms such as data execution prevention (DEP),
circumvent 10 different security products from companies such as Microsoft, Symantec and
McAfee, and fool host-based intrusion detection systems by using a customised dynamic-
linked library (DLL) loading procedure. Its main kernel driver was digitally signed by
a valid code signing certificate so that it could be installed on any Windows operating
system since Windows 2000 without any users being notified [4].

The goal of Stuxnet was to cause damage to a specific group of centrifuges used in Iranian
uranium enrichment, and it did this by first seeking out computers containing Step7
software that controlled a series of 33 or more frequency converter drives which in turn
controlled an array of exactly 164 spinning centrifuges. If this specific configuration was
not found on a computer, it would simply shut itself down quietly. However, if it found
what it was looking for, Stuxnet would take over the controller, and periodically, once
every 27 days, it would speed up and slow down the spinning frequency of the centrifuges
for about an hour each time before restoring it to the normal frequency. Assuming that

1. Introduction 11

Stuxnet was launched in June 2009, it took about a year for it to be discovered, and a
further 5 months for software analysts and industrial control systems experts to decipher
the true intent of Stuxnet’s payload. Stuxnet was possibly the most complex “malware”
discovered to-date.

Analysing a program for the presence of a trojan or a malware sample is a task known as
software reverse engineering. The goal of reverse engineering (RE) is to reconstruct a sys-
tem’s design from the system’s details and extract the intention from the implementation,
and it applies as much to software as it does to any engineered system. Software RE is
important for tasks such as vulnerability analysis, malware analysis and identifying soft-
ware copyright infringement. Vulnerability analysis is the process of looking for intended
or unintended features in a piece of software or a system that would allow exceptionally
permissive behaviour if exercised. As Balakrishnan and Reps pointed out, “what you
see [in the source code] is not what you execute [5]”. Malware analysis is the process
of understanding the capabilities of a malicious program, and/or being able to uniquely
identify future versions of it. Software RE can also be used to investigate verbatim copy-
ing of proprietary or protected code, complementing source code auditing, especially if the
software uses third-party code to which the publisher does not have source code access,
or if obtaining the source code is challenging [6].

1.1 Decompilation

The goals of decompilation, producing compilable, semantically equivalent and readable
code, are difficult to achieve, even with today’s tools.

The standard approach to software reverse engineering is decompilation, also known as
reverse compilation. The goal of Hex-Rays, a commercial decompiler, is to convert “ex-
ecutable programs into a human readable C-like pseudocode text” [7]; the Boomerang
decompiler aims “to create a high level, compilable, possibly even maintainable source file
that does the same thing [as the executable]” [8]. Thus, the goals of decompilation are
three-fold.

Compilable A decompiler should produce a program that can be re-compiled to an exe-
cutable.

Semantically equivalent A decompiled program should do the same thing as the original
executable.

Readable The decompiled output should be comprehensible, for example, with well-defined
functions, variables, control-flow structure, high-level expressions and data type informa-
tion, which would not otherwise exist.

Table 1.1 compares the output of three decompilers: free but closed source Reverse Engi-
neering Compiler (REC) Studio version 4, open source Boomerang 0.3.1 and commercial
Hex-Rays version 6.2. The decompilers were tested on three functions, the Fibonacci
function, bubblesort and the GNU C library udivmoddi4 function, and assessed based
on compilability, equivalence of the output and readability. The function wudivmoddij
given unsigned integers a and b computes a mod b and a/b. The outputs of the three
functions are listed in Figures 1.2, 1.3 and 1.4 for comparison. We use the short-hand,
e.g. Fibonacci-Boomerang, to refer to the decompiled output of the target program by a
decompiler, e.g. the decompiled output of the Fibonacci executable by Boomerang.

12 1.1. Decompilation

REC Studio 4 Boomerang 0.3.1 Hex-Rays 6.2
Compilable no some yes

(undefined macros) (with some manual

editing)

Equivalence some some some
Readability
Variable types/ | no yes some
names (unknown types)
Control-flow yes yes yes
Higher-order no yes no
expressions (assembly present) (assembly present)
Total 1.5/5 4/5 3/5

Table 1.1: Comparison of the output of three currently available decompilers.

With respect to producing compilable output, REC used undeclared macros _pop() and
_push () and internal types _unknown_ and intOrPtr, which made the C output uncompil-
able. It is not known why REC typed variable _v16 in function L00401090 of bubblesort a
char, which was incompatible with type intOrPtr, the first parameter type of L00401000.
This type mismatch would be flagged by the compiler as an error. Bubblesort-Boomerang
was compilable with some manual editing, such as replacing the internal type __size32 to
int, and declaring a few overlooked variables. However, the first parameter in the main
function of bubblesort-Boomerang, &0, was not a valid C expression (Listing 1.7).

In terms of equivalence, all three decompilers produced an equivalent C program for Fi-
bonacci. For the bubblesort program, however, none of the decompilers correctly inferred
the array in main, choosing instead to type the three-element array as three integers
(Hex-Rays), two integers and a character (REC), or a constant (Boomerang). Indeed,
only the first array element is read in main; the second and third array elements are only
read within bubblesort. Without array bounds information, it is challenging to deduce
the array in main. Hex-Rays comes the closest to decompiling an equivalent bubblesort
C program, inferring the three-element array as three integers. However, the equivalence
of the recompiled program to the original bubblesort program depends on the order the
compiler chooses to arrange the integers on the stack. The Hex-Rays-decompiled variable
order was v1, v2, v3,i.e. vl at the lowest stack address. When the bubblesort-HexRays
C program was recompiled with gcc, the disassembly revealed that gcc had chosen to
swap the locations of v2 and v3 on the stack, resulting in a different variable order, v1,
v3, v2, and thus a semantically different bubblesort program from the original (Listing
1.8). For the udivmoddi4 function, the if (d1 != 0) statement in line u5 (Listing 1.9)
and the if (param2 != 0) statement in line ub2 (udivmoddi4-Boomerang, Listing 1.11)
were not equivalent since the variable d1, which comprised the most significant 32 bits of
the 64-bit parameter d (line u3), did not equate to param2.

In terms of readability, Boomerang was arguably the most readable, followed closely by
Hex-Rays. Boomerang was the only decompiler to not rely on macros, choosing instead
to inline all low-level operations. REC was the only decompiler to leave the types as
intOrPtr and _unknown_, possibly due to the lack of type information, while the other
two chose to use integers. None of the decompilers managed to reconstruct the high-
level expression fib(x - 1) + fib(x - 2), however the order of the two calls were pre-
served. Hex-Rays was unable to infer the first Bubblesort parameter as a pointer, instead

1. Introduction 13

Listing 1.2: REC
L00401000(intOrPtr _ad) {

Listing 1.1: Original _unknown_ __ebp;
int fib (int x) { _unknown_ _t8;
if (x> 1)
return fib(x - 1) + fib(x - 2); if (Lad <=1) {
else return _a4;
return Xx; }
} _t8 = L00401000(_a4 - 1);

return L00401000(_a4 - 2) + _t8;

Listing 1.3: Boomerang Listing 1.4: Hex-Rays

int __cdecl fib (int a1l) {

int v1; // esi@2
int result; // eaz@2

int fib (int paraml) {
int eax; // r24
int eax_1; // r24{30}

if (paraml <= 1) {
eax = paraml;

} else {
eax = fib(paraml - 1);
eax_1 = fib(paraml - 2);
eax = eax_1 + eax;

if (al <=1) {

result = al;
} else {

vl = fib(al - 1);

result = vl + fib(al - 2);
}

return result;

}

return eax;

Figure 1.2: Listings for 1.1 the Original Fibonacci program, and output of the three
decompilers 1.2 REC 4, 1.3 Boomerang 0.3.1 and 1.4 Hex-Rays 6.2, edited for length.

choosing to leave it as an integer. Considering the decompiled udivmoddi4 C programs,
udivmoddi4-HexRays was in fact shorter than the equivalent fragment of the original
udivmoddi4 function—the BSR (bit scan forward) instruction was left as is, as was the
expression HIDWORD (a3), which corresponded to register EDX (Listing 1.10). None of
the decompilers recovered the correct prototype for udivmoddi4, which was UDWtype
udivmoddi4 (UDWtype, UDWtype, UDWtype *) or the equivalent unsigned long long
udivmoddi4 (unsigned long long, unsigned long long, unsigned long long *).

Hex-Rays inferred int udivmoddi4(unsigned int, unsigned int, __int64, int),

choosing to split the first 64-bit parameter into two 32-bit integers, inferring the second as
signed int64 instead of unsigned int64 and inferring the third as an integer instead of a
pointer; Boomerang was closer with void udivmoddi4 (unsigned long long, unsigned
long long, unsigned long long *, unsigned long long, unsigned long long),

adding two extra parameters. No output was obtained from REC for function udivmoddi4.

Overall, based on the limited programs tested, the focus of the three decompilers ap-
peared to be largely on producing readable C-like code; equivalence was less of a priority.
With the exception of Hex-Rays, manual editing was inevitable if compilable code was a
requirement.

Today, the de facto decompilation approach involves several steps—disassembly [9], control-
flow reconstruction [10], data-flow analysis, control-flow structuring, type inference, and
code generation [11, 12, 13]. These are largely modelled on compiler theory. However, with
the availability of numerous public code repositories today, such as Github.com, Google

14 1.1. Decompilation

Listing 1.6: REC

Llstlng 1.5: Original L00401000(intOrPtr _a4, intOrPtr _a8) {
signed int _v8, _v12; intOrPtr _vi6;

unknown __esi, __ebp; _v8 = 1;
while(_v8 !'= 0) {
_v8 = 0; _vi2 = 1;
while(_v12 < _a8) {
if (*((intOrPtr*) (Lad + _v12 * 4 - 4)) >
((intOrPtr) (_Lad + _vi2 * 4))) {
_v16 = *((int0rPtr*) (_ad+_v12%4-4));

void bubblesort (int *a, int size) {
int swapped = 1;
while(swapped) {
int 1i;
swapped = 0;
for(i=1; i<size; i++) {
if C ali-11 > a[il) {

int '_"“p;[__ﬂ. *((intOrPtr*) (Lad + _vi2 * 4 - 4)) =
?P_I]a=1 (i1 *((intOrPtr*) (Lad + _vi2 * 4));
at atdds *((intOrPtr*) (_ad + _vi2 * 4)) = _vi6;
ali] = tmp; V8 = 1:

swapped = 1; } - ’

3 ¥ _vi2 = _vi12 + 1;
}
¥ }
}
}

int main(int argc, char **argv){
int x[3]; x[0] = 0; x[1] = 10; x[2] = 20;
bubblesort (x, 3);

L00401090() {
intOrPtr _v8 = 20, _v12 = 10; char _v16 = 0;

return 0: _unknown_ __ebp;
; 100401000 (&_v16, 3);
¥
return 0;
}
Listing 1.7: Boomerang Listing 1.8: Hex-Rays
void bubblesort(__size32 *paraml, int param2) { void __cdecl bubblesort(int al, signed int a2) {
unsigned int eax, eax_1; signed int v2, i; int v4, v5;
int ebx, ecx; __size32 esi; if (a2 >1) {
if (param2 > 1) { v2 = 1;
eax = 1; esi = 0; for (i =0; ; i=0){
for(;;) { do {
eax_1 = eax; v4 = *(_DWORD *)(al + 4 * v2 - 4);
ecx = *(paraml+(eax_1-1)*4); vb = *x(_DWORD *)(al + 4 * v2);
ebx = *(paraml + eax_1 * 4); if (v4 > vE) {
if (ecx > ebx) { *(_DWORD *)(al + 4 * v2 - 4) = vb;
(int) (paraml+(eax_1-1)*4) = ebx; *(_DWORD *) (al + 4 * v2) = v4;
(int) (paraml + eax_1 * 4) = ecx; i=1;
esi = 1; }
} ++v2;
eax = eax_1 + 1; } while (v2 != a2);
if (eax_1 + 1 != param2) continue; if ('i) break;
if (esi == 0) break; v2 = 1;
eax = 1; esi = 0; T
} }
} }
}
int __cdecl main() {
int main(int argc, char *argv[]l) { int vl = 0, v2 = 10, v3 = 20;
bubblesort (&0, 3); bubblesort ((int)&vl, 3);
return O; return 0O;
} }

Figure 1.3: Listings for 1.5 the Original Bubblesort program, and output of the three
decompilers 1.6 REC 4, 1.7 Boomerang 0.3.1 and 1.8 Hex-Rays 6.2, edited for length.

Code and Microsoft’s CodePlex.com, this thesis proposes performing decompilation as
search.

A similar shift occurred in machine translation. Translating between human languages is
hard, and computer scientists tried for two generations to tackle it using natural-language
progamming techniques that relied on syntactical analysis. Yet this problem is solved

1. Introduction

15

Listing 1.9: Original
typedef unsigned long long UDWtype;
typedef long long DWtype;
typedef unsigned int UWtype;
typedef int Wtype;
struct DWstruct { Wtype low, high;};
typedef union { struct DWstruct s; DWtype 11; }
DWunion;

static UDWtype

__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) {
ul: UWtype b, bm; DWunion nn, dd;

u2: nn.l1ll = n; dd.11 = d;

u3: UWtype dO = dd.s.low; UWtype di dd.s.high;
u4: UWtype n0 = nn.s.low; UWtype nl = nn.s.high;

ub: if (d1 !'= 0) {
if (d1 <= n1) {
/* count_leading_zeros(count,) counts the
number of zero-bits from the
msb to the first nonzero bit in the UWtype X. */

Listing 1.10: Hex-Rays
signed int __usercall _udivmoddi4<eax>(unsigned
int al<eax>, unsigned int a2<edx>, __int64
a3, int a4) {
unsigned int v6 = a2, v16; char v25;
_EDX = HIDWORD(a3);

if (HIDWORD(a3)) {
if (HIDWORD(a3) <= v6) {
__asm { bsr ecx, edx }
v25 = _ECX ~ Ox1F;
if (_ECX ~ 0x1F) {
v16 = (HIDWORD(a3) << v25) | ((unsigned
int)a3 >> (32 - v25));

count_leading_zeros (bm, d1);

if (bm !'= 0) {
UWtype ml, mO;
/* Normalize. */
b = W_TYPE_SIZE /* 32 */ - bm;
dl = (d1 << bm) | (40 >> b);

Listing 1.11: Boomerang
void __udivmoddi4 (unsigned long long paraml, unsigned long long param2, unsigned long long *param3,

unsigned long long param4, unsigned long long paramb) {
ubl: unsigned long long ecx = param4, ecx_1, ecx_2, ebp_1;

ub2: if (param2 !'= 0) {
if (param2 <= param5) {
if (param2 '= 0) {
ecx = 32;
do {
ecx_1 = ecx; ecx = ecx_1 - 1;
} while ((param2 >> ecx_1 - 1 & Ox1ffffff) == 0);
}
ecx_2 = ecx;
if ((ecx_2 ~ 31) !=0) {
ecx = (32 - (ecx_2 ~ 31));
ebp_1 = paraml >> ecx | param2 << (ecx_2 ~ 31);

Figure 1.4: Listings for 1.9 a fragment of the original udivmoddi4, and corresponding
output of 1.10 Hex-Rays 6.2 and 1.11 Boomerang 0.3.1, edited for length.

much more successfully nowadays by Google Translate!. According to Google, when a
translation is generated, “it looks for patterns in hundreds of millions of documents to help
decide on the best translation... . The more human-translated documents that Google

Translate can analyse in a specific language, the better the translation quality will be?.”

Instead of asking “How do we perform decompilation?” we want to ask “Given a candidate
decompilation, how likely is it to be correct?”. If a good enough match does exist, we
get equivalence, compilable code, and readability in terms of variable names, comments

Thttp://translate.google.com
2http:/ /translate.google.com/about

16 1.2. Chapter outline

and labels which are challenging to obtain via current approaches. The more source code
there is to index, the better the decompilation will be.

1.2 Chapter outline
The rest of this dissertation is structured in the following manner.

Models of decompilation: a survey (Chapter 2) surveys prior work in decompi-
lation, tracing the five different models of decompilation in an area of research that
spans more than fifty years.

Decompilation as search (Chapter 3) provides the motivation and the arguments
for performing decompilation as a search process. It addresses the questions: “How
prevalent is code reuse?” and “What components tend to be reused?”. A study of
code reuse in practice is provided, with evidence taken from: past research on code
reuse in the software industry and in open source projects, software repositories
on social coding site GitHub.com, leaked ZeuS malware source code and software
copyright infringement lawsuits. This chapter concludes with a proposed research
agenda for search-based decompilation.

Token-based code indexing (Chapter 4) contributes a code indexing technique
that is focussed on speed, optimised for accuracy. It makes use of three code features
at its core—instruction mnemonics, control-flow subgraphs and data constants—to
perform binary matching. This work was published at the 10th Working Conference
on Mining Software Repositories 2013 [14].

Perturbation analysis (Chapter 5) addresses the problem of differentiating be-
tween different algorithms implementing the same functionality, e.g. bubblesort
versus quicksort, and between different implementations of the same algorithm, e.g.
bubblesort from Wikipedia versus bubblesort from Rosetta code. This involves ex-
amining the input-output relationship of a function.

Prototype recovery via inlined data source tracking (Chapter 6) describes an
approach to prototype recovery using data tracking and follows on from Chapter 5 by
providing the basis with which to perform perturbation analysis. Unlike prior work,
the focus is on discerning broad type categories—mnon-pointers, pointers, pointer-to-
pointers—rather than the full range of C types.

Rendezvous: a prototype search engine (Chapter 7) is a demonstration of how
a search-based decompiler might look like in practice. Sample screenshots are given
as well as its results and performance.

Chapter 8 concludes by summarising the contributions made and discussing future
work in search-based decompilation.

2

Models of decompilation: a survey

From an academic perspective, work on decompilation spans more than fifty years of re-
search. As a nascent discipline in the 1960s, the earliest approaches to decompilation can
perhaps be described as being heuristics-driven. The compiler model, which emerged in
1973, gathered considerable momentum and is currently considered to be the de facto ap-
proach to decompilation. The formal methods model is a more recent development, with
publications first appearing in 1991. Although not considered to be decompilation by
some, the usefulness of assembly-to-C' translation has earned it a place among the other
models, with papers being published from 1999. Finally, the information-flow model,
proposed in 2008, views source code and machine code as high and low security infor-
mation respectively and decompilation as exploiting information leakage to reconstruct
an equivalent source language program for an observed machine language program. Both
Cifuentes [11] and Van Emmerik [13] give comprehensive summaries of the history of de-
compilers for the periods up to 1994 and 2007 respectively. One example of a post-2007
development is the emergence of C++ decompilers [15]. What follows is the history of
decompilation seen through the lens of the five aforementioned models of decompilation.
When a system or methodology spans more than one model, the most representative one
is chosen.

2.1 Heuristics-driven model

The heuristics-driven model exploits knowledge of patterns in executables to derive heuris-
tics with which to perform decompilation, with the main drawback of being machine and/or
compiler dependent.

The earliest decompilers were pattern-based, beginning in the 1960s with the Donelly-
NELIAC (D-NELIAC) and Lockheed Missiles and Space Company (LMSC) NELIAC
decompilers which used platform-specific rules to translate program instructions into
NELIAC, a variant of the ALGOL-58 programming language. Platforms worked on
included UNIVAC, CDC and IBM [16, 17]. Sassaman adopted a similar approach to
translate IBM 7000 instructions into FORTRAN in 1966 [18].

Several syntax and grammar-based approaches were proposed, starting in the 1970s. In his
PhD thesis, Hollander described a syntax-directed approach, involving matching patterns
of IBM/360 assembly instruction sequences and converting them into the correspond-
ing ALGOL-like instructions [19]. Schneider and Winiger described a translation-based

17

18 2.2. Compiler model

decompiler that used the inverse of a compiler grammar intended for ALGOL-like lan-
guages [20]. Hood used a definite-clause grammar parser to decompile unoptimised Intel
8085 assembly into “SmallC”, a subset of C. Inference of Pascal data types was per-
formed using operation type, operation width and run-time bounds checks inserted by
the Pascal compiler [21]. Systematic decompilation was proposed by Gorman using iden-
tifiable machine code sequences as patterns to form a grammar with which to build a
VAX-to-PASCAL decompiler [22].

The 8086 C decompiling system, developed by Chen et al. from 1991 to 1993, could
recover a C program from a Motorola 68000 program compiled with the Microsoft C com-
piler version 5. Library function recognition was performed using pre-computed unique
instruction sequence matching; type inference was done via a rule-based approach [23, 24].
DisC is a C decompiler targeting x86 programs running on the DOS operating system
compiled with the TurboC compiler version 2.0/2.01 [25].

Guilfanov described a type system for standard C library functions using declarations in
compiler header files such as windows.h and a set of platform-dependent type propagation
rules. The type system is implemented in the IDA Pro interactive disassembler [26]. In
2007, Guilfanov announced the launch of the Hex-Rays decompiler plugin for IDA Pro.
It was mentioned that “probabilistic methods and heuristics” and data-flow analysis were
in use [27].

Fokin et al. described a C++ decompiler called SmartDec, which is able to reconstruct
polymorphic class hierarchies, types and exception handling code. For the first task,
the hierarchy reconstruction is straight-forward if the run-time type information (RTTI)
is available and the virtual tables (vtables) are located. Otherwise, four rules are used
which look at the attributes of the vtables, virtual functions and constructors/destructors
involved in order to determine the class hierarchy [28]. Basic types are treated as being
composed of three components—core, i.e. integer, pointer or float, size and sign. The
algorithm for inferring composite types, such as arrays and structures, operates over finite
sets of labelled memory accesses [29]. The types of object pointers are treated separately,
since subclass fields can be of different types for different instantiations of the same
parent object. To deal with this issue, the algorithm avoids merging type information
beyond the inferred object size [15]. The main task in recovering exception handling
code is identifying try blocks and their associated throw and catch blocks. At the
time of publishing, the method for reconstructing exception handling code was compiler-
dependent. For gcc-generated code, reconstruction is done by tracking the call sites, or
sites where an exception may be thrown, and the corresponding landing pad, or code that
executes the catch block [15]. The pattern-based structural analysis used in SmartDec
identifies and reduces constructs such as do-while loops, if-then, if-then-else and
compound conditionals, and break- and continue-related control-flow edges [15].

2.2 Compiler model

The compiler model borrows techniques from compiler theory and program analysis, adapt-
ing it to perform decompilation.

In 1973, Housel and Halstead were the first to propose reusing compiler techniques to
perform decompilation. The intermediate representation they used was called the Final

2. Models of decompilation: a survey 19

Abstract Representation, and Housel’s decompiler reused concepts from compiler, graph
and optimisation theory [30, 31].

Cifuentes contributed techniques for recovering function parameters and return variables
using data flow analysis, and program control flow through a structuring algorithm in
her 1994 PhD thesis. She demonstrated her techniques through what is considered to be
the first general C decompiler for x86 programs, dcc [11, 32, 33]. In 1999, Mycroft was
the first to consider constraint-based type inference in the context of decompilation. The
use of the static single assignment form (SSA) was also suggested to “de-colour” register
allocation [12]. Johnstone et al. applied well-known compiler techniques to decompile an
assembly language for TMS320C6x digital signal processors, ADSP-21xx, to ANSI C. The
decompilation process includes applying structural control-flow analysis to recover the call
graph and control structures, and applying constant propagation and live variable analysis
to recover variables [34]. Van Emmerik formally addressed the use of SSA in decompilation
in his 2007 PhD thesis, describing the algorithms to convert machine code into and out of
SSA, perform data flow-based type inference and resolve switch-table jump targets. These
techniques were implemented in the open-source decompiler Boomerang [13, 8, 35]. In
2011, Lee et al. extended the work of Mycroft to consider both an upper and lower bound
on variable types using type judgements. They demonstrated their method, named TIE,
to be applicable as both a static and dynamic analysis [36].

Several have focussed on data-flow analysis and abstract interpretation [37] to analyse
machine code. Balakrishnan and Reps demonstrated a way to perform abstract interpre-
tation on machine code, allowing the recovery of a good approximation to the variables
using the value-set domain [38, 39, 40, 5]. Their work is incorporated in a commercial tool
named CodeSurfer/x86 [41]. Chang et al. proposed a modular decompilation framework
so as to reuse existing source-level analysis tools, such as a model checker for C. In this
framework, each decompiler is a different abstract interpreter and occupies a different level
in the decompilation pipeline. Adjacent decompilers are connected via common interme-
diate languages and communicate via queries and reinterpretations [42]. Kinder proposed
a simultaneous control and data flow analysis using abstract interpretation to overcome
the “chicken and egg” problem in control-flow reconstruction [10]. SecondWrite is a binary
rewriting tool that lifts machine code to the Low-Level Virtual Machine (LLVM) [43] in-
termediate representation, and makes use of the LLVM back-end to produce a C program.
The lifting process involves, among other things, recovering the function prototype and
deconstructing the stack into individual frames and variables. In performing these tasks,
SecondWrite makes extensive use of value-set analysis (VSA) [38], for example, to extract
parameters and variables. Where VSA is too imprecise, the analysis is supplemented by
run-time information. Type recovery is coupled with variable recovery and the algorithm
assigns a points-to set for each abstract location (aloc) as it is being discovered. Data
structures are then formed by unifying the hierarchy of points-to sets [44, 45, 46].

2.3 Formal methods model

The formal methods approach focusses on two aspects: using formal methods to perform
decompilation, and using decompilation as a means to verify machine code.

From 1991 to 1994, Breuer et al. demonstrated three approaches to, given the specifi-
cations for a compiler, generate a decompiler compiler, the inverse of compiler compilers

20 2.4. Assembly-to-C' translation model

such as yacc. In the first approach, the authors observe that a decompiler can be viewed
as a function from object code to a list of possible source-code programs; thus decompiling
equates to enumerating the attribute grammar of the compiler. A decompiler compiler
for a subset of the Occam programming language was demonstrated [47]. In the sec-
ond approach, the declarative nature of logic programming was exploited so that given a
compiler specified in terms of Prolog Horn clauses, a decompiler is constructed through in-
verting the clauses then performing reordering to prevent non-termination [48]. The third
approach defined a decompilation description language (DeCoDe), and implemented a
decompiler compiler in C++ [49].

The FermaT transformation system, developed by Ward in 2000, is a C decompiler for
IBM 370 assembler that uses the Wide Spectrum Language (WSL), also developed by the
author, as its intermediate representation. At its core, the system performs successive
transformations so that the resulting program is equivalent under a precisely defined
denotational semantics. Expressions in WSL use first order logic and include, for example,
existential and universal quantification over infinite sets. The system is able to derive
program specifications from assembly with some manual intervention [50, 51].

Katsumata and Ohori coined the term proof-directed decompilation in their 2001 paper,
and observed that a bytecode language can be translated to and from intuitionistic propo-
sitional logic through Curry-Howard isomorphism. They demonstrated their technique for
a subset of the JVM assembly language, decompiling to typed lambda calculus [52]. In a
follow-up paper, Mycroft compared type-based decompilation with proof-directed decom-
pilation and concluded that the construction of the static single assignment (SSA) form in
the former is equivalent to proof transformation in the latter for code with static jumps.
It was also suggested that the two approaches may be combined by using the type-based
approach as a metaframework to construct the appropriate proof transformation [53].

More recently, the work of Myreen et al. focussed on verification of ARM machine code
by performing decompilation into logic. The decompilation is performed in three phases:
firstly evaluating the instruction set architecture (ISA) model for each instruction stated in
terms of a machine-code Hoare triple, secondly computing the control-flow graph (CFG),
and thirdly composing the Hoare triples following the CFG [54, 55].

2.4 Assembly-to-C translation model

Assembly-to-C translation, which enables post-compilation optimisation and cross-platform
porting of software, focusses on producing re-compilable and equivalent code, sacrificing
readability.

Cifuentes et al. described the University of Queensland Binary Translator (UQBT), devel-
oped from 1999 to 2003, that enables quick porting of programs between Intel x86, Sparc
and Alpha platforms. The translation involves four phases. The source-machine binary is
first decoded to a source register transfer language (RTL) program using a binary-decoder;
secondly, the source-RTL program is then transformed into a machine-independent higher-
level RTL (HRTL) program via an instruction-decoder; thirdly, the reverse procedure
transforms the HRTL program down to a target-RTL program via an instruction-encoder
or alternatively into a C program; lastly, the target-machine binary is generated via a
binary-encoder or an appropriate C compiler. The binary-encoder and binary-decoder

2. Models of decompilation: a survey 21

are automatically generated using the New Jersey machine code toolkit [56]. UQBT per-
forms three machine-level analyses to address three issues that face binary translation:
locating all functions and all code, computing indirect control-flow targets and determin-
ing function parameters and return variables [57, 58, 59, 60].

RevNIC [61] and RevGen [62] are or incorporate assembly-to-C translators that allow fast
and accurate porting of, for example, proprietary network drivers and facilitate further
analysis using source-level tools. Translation is performed in two stages: firstly to the
LLVM intermediate representation via either a static or dynamic binary translator, then
to C via a CFG builder and the LLVM backend. The local and global state is preserved
by the translator and control-flow transfers are replaced by goto statements.

BCR (Binary Code Reuse) is a tool that allows a malware analyst to extract and reuse,
say, a decryption routine from a piece of malware. This is achieved through extracting
a fragment of interest from the program and inferring its interface, that is, its parame-
ters, return variables and their data dependencies. The output of BCR is a C program
comprising the function’s inferred prototype and its body, which consists of inlined x86 as-
sembly. The prototype is inferred via taint information collected from multiple execution
traces [63].

2.5 Information-flow model

Decompilation is viewed as using information leakage from the compilation process to
reconstruct source code, and is the only one to consider an adversarial model.

Drawing inspiration from compiler optimisation, Feigin and Mycroft proposed framing
compilation as a one-to-many transformation of high-security information, or the source
code L, to low-security information, or the machine code M. This equivalence set of
machine code programs is known as a kernel. The success of a decompiler relies on its
ability to infer the kernel for the observed M and recover L. The larger the kernel, or
the higher the degree to which the compiler (the defender) is optimising or obfuscating,
the harder the decompiler (the attacker) has to work [64]. Feigin alluded to Program
Expression Graphs [65], which make equivalence relations explicit in the intermediate
representation, that may assist information flow-based decompilation [66]. Also noted is
related work in code reverse engineering via side channel analysis [67, 68].

Viewing reverse engineering in the same vein, Della Preda and Giacobazzi proposed a
theoretical framework for the obfuscation versus static analysis arms race. The observa-
tional power of the attacker, the decompiler, is characterised by the types of static analysis
he/she can perform and which the defender, the compiler, must defend against [69].

This chapter has summarised prior work in decompilation in terms of five models. It is
evident that recent and ongoing research encompasses all models. Popular decompilers
today include Hex-Rays and Boomerang, highlighting the prominence of the heuristic-
driven and compiler models, also the oldest models of the five. Introduced in the next
chapter is a new model of decompilation, decompilation as search.

22

3

Decompilation as search

“When Google Translate generates a translation, it looks for patterns in hun-
dreds of millions of documents to help decide on the best translation. .. The more
human-translated documents that Google Translate can analyse in a specific lan-
guage, the better the translation quality will be.”

— Google Translate!

In 2004, Van Emmerik and Waddington described in some detail the process of decom-
piling a real-world Windows-based application. The application, which dealt with speech
analysis and included heavy mathematics processing, was written and compiled with Mi-
crosoft Visual C++ and the main executable was 670KB in size. With the aid of a
commercial disassembler, it took the team 415 man-hours, not including the first week of
exploration, to decompile and recover 1,500 lines of source-code consisting of 40 functions
and representing about 8% of the executable [70]. This effort included the development of
the Boomerang decompiler [8]. The payload of the Stuxnet worm, which came to light in
June 2011, took a multi-national team of numerous malware and supervisory control and
data acquisition (SCADA) systems experts five months of intensive coordinated analysis
to decipher [3].

This chapter takes the form of a position paper and describes the motivation and argu-
ments for performing decompilation, which can be a tedious and time-consuming process,
as search. It first examines code reuse practices in software companies, open-source soft-
ware development and malware development. This is done using four methods: a survey
of prior research in code reuse, a survey of software copyright litigation over the years, a
study of code reuse in the popular software repository Github.com and lastly a study of
code reuse in the leaked source code of the ZeuS malware. This is followed by an articu-
lation of the proposed approach, search-based decompilation, and we will consider, as a
case study, the emergence of statistical machine translation (SMT) in the area of com-
putational linguistics and propose a research agenda for search-based decompilation. We
conclude by surveying related work in search-based software engineering (SBSE), software
provenance and code clone detection techniques for binary code.

http://translate.google.com/about

23

24 3.1. How prevalent is code reuse?

3.1 How prevalent is code reuse?

Code reuse is prevalent in software companies and open-source communities, and factors
such as market competitiveness and complexity of software will continue to bolster this
trend.

In this first section, prior work in software reuse literature is surveyed in order to address
two main questions: If software is reused, what software components are reused, and how
much is reused?

3.2 Prior work in software reuse research

Code or software reuse can be defined as the use of existing software components in order
to construct new systems of high quality [71] and as a means to improve programmer
productivity [72]. Code reuse can be sub-divided into two categories: white-box and black-
box. White-box reuse refers to the reuse of components by modification and adaptation,
while black-box reuse refers to reuse of components without modification [73].

It was observed in the 1990s that software reuse, although highly desirable, does not tend
to occur in a systematic fashion [71], and the success of software reuse can be attributed
both to technical factors, and to a larger extent non-technical ones. Object-oriented pro-
gramming (OOP) has seen the most promise for component reuse; OOP environments
such as Eiffel [74] have integrated object libraries; component- and framework-based mid-
dleware technologies, such as CORBA, J2EE and .NET, have become mainstream [75].

As observed by Schmidt in 2006, the non-technical factors affecting software reuse can be
summarised as belonging to the following five areas [76, 77].

Market competitiveness Schmidt observed that code reuse was more likely to be
practised in business environments that were highly competitive, such as financial services
or wireless networking, and where the time-to-market was crucial. On the flip side, the
1980s was an example of a period when little software reuse was achieved in the U.S.
defence industry, due to the defence build-up in the Reagan administration when research
funding was abundant [77]. In 2008, open-source projects were found to actively reuse
software components in order to integrate functionality quickly and mitigate development
costs [78].

Application-domain complexity Software components that were easy to develop,
such as generic linked lists, stacks or queues, were often rewritten from scratch. In con-
trast, developing domain-specific components, such as real-time systems, from scratch
proved too error-prone, costly, and time-consuming [76]. In a study of the IBM reusable
software library (RSL), a library containing more than thirty libraries for data types,
graphical interfaces, operating system services and so on, it was found that RSL’s soft-
ware found its way to no more than 15-20% of any software product to which RSL was an
exclusive library vendor. In contrast, domain-specific components made up anywhere be-
tween 30% to 90% of the final product [79]. More recently in 2007, Mockus [80] examined
the reuse of directories and files between open-source projects and analysed a sample con-
taining 5.3 million source-code files. He found that about 50% of these files were reused

3. Decompilation as search 25

at least once in different projects. The most reused files were text templates, or “PO”
(Portable Object) files, used by the GNU gettext toolset, the install module for Perl and
files belonging to internationalisation modules. The largest batch of files that were reused
at least 50 times were 701 include files from the Linux kernel and 750 system-dependent
configuration files from GNU libc. Haefliger [78] studied the code reuse practices amongst
six open-source projects in 2008 and observed that all the projects reused external soft-
ware components; a total of 55 examples were found. The reused components represented
16.9 million lines of code, whereas the number of lines of non-reused code was 6.0 million.
It was discovered that 85% of reused components could be found in the Debian packages
list, and the three most commonly reused components were the z1ib compression library,
the MySQL database and the gtk/gdk/glib graphical toolkit.

Corporate culture and development process A 1980s study of Japanese “soft-
ware factories”, which were making greater progress than U.S. firms and having greater
success in reusing software components, found that the key enabler was organizational
factors, such as emphasis on centralised processes, methods and tools [81]. Open source
projects were found to conduct searches for suitable candidates for software to reuse via
the developers’ mailing list [78].

Quality of reusable component repositories In 1993, Diaz [71] argued that al-
though the 1980s saw the creation of large-scale reuse programs, such as the U.S. Ad-
vanced Research Projects Agency’s (ARPA) Software Technology for Adaptable, Reliable
Systems initiative, what was missing was the lack of a standardization/certification pro-
cess to maintain and ascertain software quality. Knight and Dunn [72] suggested in 1998
that a precise definition for certification of reusable software components is desirable,
since a reused component can add to the quality of the new product, not just mere func-
tionality. For open-source project developers seeking to reuse software, code quality was
judged by looking at the code, reading the documentation, frequently asked questions and
related articles, considering its popularity and how active its developers were [78].

Leadership and empowerment of skilled developers The quality and quantity of
skilled developers and leaders determine the ability of a company or a project to succeed
with software reuse. Conversely, projects that lack a critical mass of developers rarely
succeed, regardless of the level of managerial and organisational support [77].

We now examine cases of GNU Public License violations and proprietary software copy-
right infringement in order to answer the following two questions: What software compo-
nents are reused, and how is software reuse proven?

3.3 GNU Public License violations

The GPL allows certain permissions for other parties to copy, modify and redistribute
software protected under the GPL as long as those parties satisfy certain conditions. In
version 2 of the license, one of these conditions is that the parties provide either the
“complete corresponding machine-readable source code” or a “written offer ...to give
any third party ...a complete machine-readable copy of the corresponding source code”

26 3.4. Proprietary software copyright infringement

of the modified or derived work. According to Clause 4, “Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License” [82].

There are two aims in looking at GPL violations: Firstly, the types of software involved
is of interest, as is the frequency of such violations in the IT industry. Secondly, cases
of GPL violations are publicly documented by the Software Freedom Law Centre [83]
(SFLC), the Free Software Foundation [84] (FSF), GPL-violations.org and third-party
websites such as Groklaw.net.

Harald Welte, founder of GPL-violations.org, said that he saw 200 cases of GPL viola-
tions in Europe from 2003 to 2012 [85]. Bradley Kuhn, a technical director at the SFLC,
said he found on average one violation per day for the period 21 August to 8 November
2009 [86]. Due to the large number of cases that are pending enforcement action or res-
olution in court, only cases where either a lawsuit was filed and won (Won) or a lawsuit
was filed and settled out-of-court (Settled) were considered. To date, there has been no
known case in which the terms of a GPL-styled license were not successfully upheld in
court.

As of February 2013, there have been 19 documented and concluded civil lawsuits involv-
ing GPL’d software, 11 were heard in the US, 8 were heard in Europe (Table 3.1). In 16
out of 19, or 84.2% of cases, violations were found in firmware meant for embedded de-
vices, and the GPL’d components ranged from msdosfs, initrd, the memory technology
devices (MTD) subsystem, the GNU C compiler, the GNU debugger, binutils, BusyBox
and packet filtering module netfilter/iptables.

In addition to lawsuits, there have been more than 30 examples where the terms of the
GPL was successfully enforced without the need for litigation. Early cases of GPL com-
pliance include RTLinux in 2001 [111] and Lindows in 2002 [112]. In 2004, Welte was said
to have coaxed several distributors, including Fujitsu-Siemens, Securepoint, Belkin and
Asus, into compliance [113]. In 2005, a further 13 companies, including Motorola, Acer,
AOpen, Micronet, Buffalo and TrendWare, were handed warning letters by Welte [114].
Welte’s gpl-violations.org project managed to conclude more than 25 amicable agree-
ments, two preliminary injunctions and one court order for the period January to March
2005 alone [114].

It was not always clear how the GPL’d software components were discovered. In the
Viasat /Samsung case a Linux developer discovered code belonging to BusyBox, parts of
which he had written [115]. In the Mistic software v. ScummVM case, the ScummVM
developers were able to reproduce a same 0.9.0-related gfx glitch present in one of the
games [116]. In one case, Welte v. Fortinet Ltd., encryption was used, possibly to hide
the presence of GPL’d code.

3.4 Proprietary software copyright infringement

There are seven known cases involving proprietary software incorporating other propri-
etary software. In the case of Cadence Design Sys. v. Avant! the nature of the software
in question is not documented; however what is known is that both companies were chip-
design software manufacturers [117]. Three of the cases dealt with operating systems and
programming-related software: Green Hills v. Microtec dealt with compilers [118], the

3. Decompilation as search

27

| Year | Case | Product | GPL component | Outcome
2002 | Progress Software v. | NuSphere Gemini | MySQL Settled [87]
MySQL Table
2004 | Welte v. Allnet Router firmware netfilter/iptables Settled [88]
2004 | Welte wv. Gigabyte | Router firmware Linux, netfilter/ipta- | Settled [89]
Technology bles
2004 | Welte v. Sitecom Router firmware netfilter/iptables Won [90, 91]
2005 | Welte v. Fortinet FortiOS, Firewall, | Linux kernel Won [92]
Antivirus
2006 | Welte v. DLink Data storage device | Linux kernel (ms- | Won [93, 94]
firmware dosfs, initrd, mtd)
2007 | SFLC wv. Monsoon | HAVA Firmware Busybox Settled [95]
Multimedia
2008 | SFLC v. High-Gain | Firmware Busybox Settled [96]
Antennas
2007 | SFLC v. Xterasys Firmware Busybox Settled [97
2008 | SFLC v. Verizon FiOS firmware Busybox Settled [98
2008 | SFLC wv. Extreme | Firmware Busybox Settled [99
Networks
2008 | SFLC v. Bell Micro- | Firmware Busybox Settled [100, 101]
products
2008 | SFLC v. Super Micro | Firmware Busybox Settled [102, 99]
Computer
2008 | Welte v. Skype Tech- | VOIP Phone | Linux kernel Won [103]
nologies firmware
2008 | FSF v. Cisco Router firmware GCC, binutils, GDB | Settled [104, 105]
2008 | Jin v. IChessU IChessU client Jin Settled [106]
2009 | SFLC v. JVC, Sam- | Cell phones, PDAs | Busybox Settled/Won [107,
sung, Best Buy et al. | and other small, spe- 108]
cialized electronic de-
vices
2009 | EDU 4 v. AFPA EOF VNC GPL infringement
successfully appealed
by AFPA [109]
2011 | AVM v. Cybits Router firmware Linux kernel, iptables | GPL parts ruled
modifiable [110]

Table 3.1: Known cases of GPL violations either settled or won.

Cisco v. Huawei case involved embedded systems [119, 120], while Compuware v. IBM
dealt with mainframe systems [121, 122], and Veritas v. Microsoft dealt with the disk man-
ager in the Windows 2000 operating system [123, 124]. Database management software
was also featured in two of the cases, Computer Associates (CA) v. Quest Software [125]
and CA v. Rocket Software [126, 127] (Table 3.2).

In Veritas v. Microsoft and Compuware v. IBM, the source code was shared under a non-
disclosure agreement. In the similar case, Green Hills v. Microtec, source code was shared
under a distribution agreement. In CA v. Quest the source code was allegedly obtained
by former CA employees [125]. In Cisco v. Huawei the evidence presented was that of
the similarity of the user interface commands, but crucially also that of a similar software
bug that existed in both the versions of IOS and VRP in use at the time.

28 3.5. A study of code reuse on Github
Year | Case Infringing product Infringed product Outcome
1993 | Green Hills v. Mi- | “compiler technology” | “compiler technology” | Settled [118]
crotec
1995 | Cadence Design Sys. v. | Unknown Unknown Settled [117]
Avant! Corp.
1999 | McRoberts Software v. | Comet/CG (character | Finish product line Won [128]
Media 100 generation) source
code
2002 | Compuware v. IBM File Manager, Fault | File-AID, Abend-AID, | Settled [121, 122]
Analyser Xpediter
2003 | Cisco v. Huawei Quidway Versatile | Internetwork Operat- | Settled [119, 120]
Routing Platform | ing System (IOS)
(VRP)
2005 | CA v. Quest Software Unknown Quest Central for DB2 | Settled [125]
2006 | Veritas v. Microsoft Logical Disk Manager | Volume Manager Settled [123, 124
2009 | CA v. Rocket Software | “DB2 products” “DB2 products” Settled {126, 127

Table 3.2: U.S. cases involving proprietary software incorporating proprietary software.
In cases where the product in question is not known, it is labelled as Unknown.

3.5 A study of code reuse on Github

Github.com is the leading repository for open-source code bases, hosting a large variety of
projects in dozens of languages, including code belonging to several well-known software
companies, such as Mozilla, Twitter, Facebook and NetFlix. As an open-source repository,
Github had 1,153,059 commits from January to May 2011, more commits than Source-
forge, Google Code and Microsoft’s CodePlex combined [129]. The purpose of studying
code reuse on Github was to determine the components most widely reused. Two meth-
ods were used to study the two forms of code reuse: to study white-box reuse, the most
popularly forked projects were examined and a keywords-based search on Github and
Google was performed; to study black-box reuse, a keywords-based search was performed.

This study found that projects centred on web servers and related tools saw more than
2,000 project instances of white-box code reuse. Operating system and database develop-
ment were also areas where white-box reuse was actively pursued. The level of black-box
reuse was significantly higher than that of white-box reuse. Black-box code reuse in
Github was centred around: installation and programming tools (21,000 instances), web
servers and related tools (2,000 instances), databases (1,400 instances), cryptographic
libraries (885 instances) and compression libraries (348 instances). Some specialised li-
braries that were commonly reused were the Boost C++ library for C++ projects, 1ibusb
for embedded devices, and 1ibsdl for game development.

White-box reuse Forking a project on Github means to make a copy of that project
to modify it. The number of forks that a project has is a good proxy not only for the
popularity of that project, but also for white-box code reuse. The most-forked repository
as of February 2013 was Twitter’s Bootstrap front-end web development framework with
12,631 forks. Of the top ten most popularly forked repositories, seven of them were
for web-based development. The three non-web-based code bases were a demonstration-
only repository, a customised configuration manager for the zsh shell program and a
development toolkit for mobile platform applications (PhoneGap). The most popular
C/C++-based repository on Github was the Linux kernel with 1,933 forks (Table 3.3).

3. Decompilation as search 29
Rank | Repository Description Forks
1 Bootstrap Front-end web framework 12,631
2 Spoon-Knife Demonstration repository 12,249
3 homebrew A package manager for Mac OS 5,477
4 rails A Ruby-based web framework 5,014
5 html5-boilerplate An html5-based web framework 3,821
6 hw3_rottenpotatoes | A movie rating website 3,598
7 oh-my-zsh A configuration management framework for the zsh shell 3,310
8 node.js A Javascript-based event-based I/0 library 3,305
9 jQuery A Javascript-based library 3,217
10 phonegap-start A tool for PhoneGap application development 2,720
11 impress.js A Javascript-based presentation library 2,442
12 hw4 _rottenpotatoes | A movie rating website 2,343
13 backbone A Javascript-based database library 2,284
14 d3 A Javascript-based visualisation library 2,103
15 jQuery-ui A user-interface library for jQuery 2,044
16 symfony A PHP-based web framework 2,043
17 game-of-life A demonstration application for the Jenkins build manage- 2,008

ment tool
18 Linux A UNIX-based kernel 1,960
19 Codelgniter A PHP-based web framework 1,951
20 phonegap-plugins Plugin development for PhoneGap 1,900

Table 3.3: The most forked repositories on Github (as of February 2013).

A second independent indicator for white-box reuse was the number of search results
for the phrase “based on”. This search returned 269,789 out of 5,379,772 repositories
and 28,754,112 hits in all indexed source-code on Github as of February 2013. Since the
occurrence of this phrase on its own does not imply code reuse, for example “based on
position information” is a false positive, these search results were further analysed by
including additional terms, such as well-known project names and platforms, into the
query. A similar query was made on the Google search engine using the site-specific
qualifier site:github.com and the gross and unique number of hits were noted. The
results, tabulated in Table 3.4, are sorted by the number of Github repositories found.
Searches that returned fewer than 1,000 hits were excluded.

It was observed that web-based projects occupied the top-ranked spots in both of these
tables, in particular the jQuery, Bootstrap, Node. js and Rails projects. This can be ex-
plained by the fact that the most popular programming language on Github is Javascript,
with 21% of all projects written in the language. The other popular languages were Ruby
(13%), Java (8%) and Python (8%). One possible implication of this is that white-box
reuse is most popular amongst web-based software developers. The second category of
software projects in which white-box reuse occurred involved operating systems projects,
especially for Linux-related projects. The high number of hits for Linux can also be at-
tributed to the fact that many repositories had a directory named “Linux”, thus each
occurrence of a file within a “Linux” directory produced a hit in the search results.

The relevant results for the phrase “based on Google” were “Google Web Toolkit”,
“Google File System”, “Google Closure Library”, and “the Google Chromium project”.
The top entry for the Linux-related queries was “based on the Linux kernel” with 2,710
hits. One phrase that had 1,790 occurrences was “Based on linux/fs/binfmt_script.c”
found in the file 1linux/fs/binfmt_em86.c. The Ubuntu-related entries were related

30 3.5. A study of code reuse on Github

to configuration files and setup scripts, for example “based on the Ubuntu EC2 Quick
Start Script”, “install_dependencies.sh (based on the Ubuntu script)”, “based on the
Ubuntu /etc/init.d/skeleton template”, and “based on Ubuntu apache2.conf”. MySQL-
related results were databases, parsers, lexers and scripts based on the MySQL code base.
Database projects associated with MySQL included “MariaDB”, WikiDAT”, “NodeDB”,
“MySQL-for-Python3d”, “Twitter MySQL”, “GoogleCloudSQL”, “Shinobi” and “Smart
Library Management System (SLMS)”, just to name a few. There was only one relevant
Windows-based result— “based on Windows winerror.h”. For queries related to GNU,
“based on the GNU Multi-Precision library” was the most commonly occurring phrase,
followed by “based on the GNU toolchain”. Popular Mozilla projects and software that
were of interest to developers were “Mozilla XUL”, “Mozilla Rhino Javascript engine”,
“Mozilla Jetpack” and a “Mozilla SHA1 implementation”.

False positives On manual inspection of the other results, it was often the case that
the phrase “based on X” referred to X as a platform, an API or an SDK, rather than an
instance of code reuse. Examples of this were statements such as “the server is based on
Windows” and “the development is based on Windows, therefore...”. A fair proportion
were statements alluding to the use of a certain API or SDK; such as “based on the Google
App Engine SDK” and “based on Windows IMM32 API”. Android-related hits were
primarily associated with Android application development, and included projects dealing
with “Android NDK”, “Android Maven Plugin”, “Android SDK” and “Android example
project from Cordova/PhoneGap”. Windows-related entries were mostly associated with
APIs, SDKs and demonstration code. A commonly occurring phrase for the Apple-related
query was “(Based on Apple Inc. build ...)”. This phrase was printed to standard output
whenever the command 1lvm-gcc --version was executed, and hence it was found in
numerous issues filed on Github.

Black-box reuse The next set of experiments were performed to investigate black-box
reuse on Github. To do this, a list of libraries from the Debian distribution with the
most reverse dependencies was obtained by running the command apt-cache dotty on
an Ubuntu 11.10 system. If a package A is dependent on B, then we say that B is
reverse dependent on A. Out of a total of 35,945 libraries, the 10 with the most reverse
dependencies are listed in Table 3.5.

The number of repositories having the phrase “apt-get install” was used as an indication of
the number of projects that listed dependency information. There were 11,033 repositories
according to Github search.

Table 3.6 lists the results searching for “apt-get install jlibrary;” on Github. The top
entries were associated with installation of build tools (make, g++, build-essential),
language-specific packages (ruby, python-dev and php). Tools such as wget and git
were also commonly used to download additional packages not maintained by the distri-
bution. The popularity of Ruby- and Python-based projects explains the high occurance
of ruby, rubygems, python-dev and python-support packages. The popularity of web-
based applications on Github was evident given the number of repositories using apache?2,
1ibxml2, 1ibxslt, libssl and nginx. Databases were also commonly listed as depen-
dencies, for example mysql and postgresql. The zlib compression library was also
included as a requirement in 348 repositories.

3. Decompilation as search 31

Search phrase Github (repositories) | Google (unique entries)
“based on (the) jQuery” 8,336 (633) 293,400 (650)
“based on (the—Twitter’s) Bootstrap” 3,005 (623) 115,117 (460)
“based on (the) Rails” 11,441 (479) 699,700 (320)
“based on (the) Google” 3,783 (426) 345,700 (630)
“based on (the) Node” 38,527 (367) 2,346,700 (590)
“based on (the) Linux” 291,490 (334) 2,318,600 (220)
“based on (the) Ubuntu” 2,080 (286) 44,800 (270)
“based on (the) Android” 4,292 (259) 106,230 (260)
“based on (the) MySQL” 1,809 (249) 351,700 (140)
“based on (the) Windows” 12,568 (227) 604,650 (150)
“based on (the) Codelgniter” 3,400 (195) 3,350 (260)
“based on (the) Symfony” 3,345 (154) 28,430 (200)
“based on (the) Debian” 2,749 (145) 121,440 (220)
“based on (the) GNU” 23,825 (129) 11,010,600 (150)
“based on (the) Gtk” 10,498 (90) 1,920 (120)
“based on (the) BackBone” 1,797 (88) 175,660 (230)
“based on (the) Apple” 10,275 (70) 240,800 (610)
“based on (the) Microsoft” 6,314 (49) 194,430 (200)
“based on (the) Gnome” 3,706 (45) 178,620 (120)
“based on (the) Mozilla” 16,595 (42) 571,250 (350)
“based on (the) BSD” 15,810 (37) 369,890 (120)
“based on (the) zlib” 24,973 (16) 54,620 (110)
“based on (the) FreeBSD” 6,241 (14) 21,170 (130)
“based on (the) Berkeley” 1,386 (6) 69,800 (110)

Table 3.4: Number of results returned for Github search and Google search (using
site:github.com) sorted by the number of Github repositories.

. Reverse

Package Description dependencies
1 | libc6 GNU C library 14,721
2 | libstdc++6 GNU standard C++ library 4,089
3 python An interactive high-level object-oriented language 4,009
4 | libgcel GNU C compiler support library 3,811
5 libglib2.0 GLib library of C routines 2,758
6 | libx11-6 X11 client-side library 1,582
7 | libgtk2.0 GTK+ graphical user interface library 1,464
8 libgtcore4 Qt 4 core module 1,221
9 | zliblg Compression library (runtime) 1,205
10 | python-support | Automated rebuilding support for Python modules 1,017

Table 3.5: Libraries with the most reverse dependencies in Ubuntu 11.10. If a package A
is dependent on B, B is reverse dependent on A.

The libboost library was popular among C++-based projects. Given that the g++
compiler and libboost were mentioned about 2,000 and 260 times respectively, it is
estimated that libboost was used in about 13% of C++ projects. The term “boost”
was found in 2,816 C++ repositories, which is about 14% of C++ repositories. Another
popular C++ library was 1ibqt4, which is a cross-platform application framework.

More specialised libraries in the list were 1ibusb and 1ibsdl. The 1ibusb library provides
an interface that gives applications access to USB-enabled embedded devices. Popular
devices included the Microsoft Kinect, Android devices and Apple iPhones. The 1ibsdl

32 3.6. Code reuse in malicious software

Package (hthqb . Package (}mhgb .
repositories repositories
make 5,620 | dpkg 329
git 4,506 | automake 266
g+—+ 1,994 | libxslt 265
ruby 1,785 | libboost 263
python-dev 1,414 | libsqlite3 261
build-essential 1,158 | subversion 261
curl 1,043 | libtool 260
wget 1,036 | bison 223
python-support 970 | python2.7 194
gee 966 | ant 179
tar 939 | libqt4 173
mysql 924 | flex 169
php 810 | aptitude 163
libxml2 564 | libc6 139
openssl 504 | python2.6 139
apache2 501 | rsync 139
rubygems 486 | libusb 138
postgresql 442 | locales 133
libssl 384 | libsdl 133
nginx 381 | openjdk-6-jdk 126
zlib 348 | adduser 122
autoconf 330 | libpng 122

Table 3.6: Number of occurances of common library names returned by Github search
using “apt-get install jlibrary;”.

library is a multimedia-focussed library that exposes an interface to graphics, sound and
input devices for game development.

3.6 Code reuse in malicious software

Analysis of the ZeuS source code suggests that code reuse is prevalent in malware devel-
opment.

Studying code reuse in malware development is interesting because, at first surprisingly,
companies producing malware operate like standard commercial software firms. One such
company, Innovative Marketing Ukraine, was reported to have reaped US$180 million in
profits in 2008 [130].

The ZeuS trojan is a well-known malware family specialising in stealing on-line banking
credentials and automating parts of the money-laundering process. ZeusS is not used by its
developers but is sold as a toolkit to cybercrime rings doing the actual money laundering.
Groups working on toolkits like ZeuS adopt a normal software development lifecycle and
employ QA staff, project managers and developers for specialised components such as
kernel drivers, sophisticated packers and graphical user interfaces [131]. In May of 2011,
a version of the source code for the ZeuS toolkit, worth as much as US$10,000 per copy,
was leaked [132, 133]. A copy of the source code is available on Github?. Two aspects of
the source code were studied, namely, the amount of actively developed software within

’https://github.com/Visgean/Zeus

3. Decompilation as search 33

the ZeuS source code and the extent to which software was obtained from external sources.
The amount of actively developed software components was studied by looking at the “last
modified” dates in the file metadata; a list of externally obtained software was obtained
via a search for the string “http://” in the source code.

Analysis of the ZeuS source code suggests that 6.3% of the files, or 5.7% of the code, was
worked on post-October 2010. If work did indeed begin in October 2010, then 94.3% of
version 2.0.8.9 was “legacy” code. The 5.7% that was new involved functionality such as
data interception, encryption and storage in the client component. A study of the web
references embedded in the comments throughout the entire source code tree revealed a
total of 3,426 lines (3.7%) of white-box code reuse throughout the whole code base, and
8,180 out of 140,800 bytes (5.8%) of black-box code reuse considering only the 32-bit client
executable. However, this is a conservative estimate. Categories of software components
reused in ZeuS 2.0.8.9 included: keyboard symbols-to-unicode encoding (xterm), VNC
(UltraVNC), random number generation (Mersenne Twister), data compression (info-zip,
UCL) and binary analysis (BEAEngine).

The leaked ZeuS source code was version 2.0.8.9 of the toolkit, and is made up of 68,975
lines of C++ and 22,914 lines of PHP. The toolkit is divided into six components: bcserver,
builder, buildtools, client, common and server. Comments are in Russian encoded using
the Windows-1251 Cyrillic code page. The client has three main functions: obtaining
login credentials, transferring the credentials to the botmaster’s server and ensuring its
continued presence on the host. The beserver component stands for the “back connect
server”, and it also exists as a Microsoft Visual Studio 2003 C++ project. The server

component, which is written in PHP, is responsible for storing stolen credentials in a
MySQL database.

3.6.1 Analysis of “last modified” dates

The oldest and newest “last modified” dates were “14 October 2010” and “10 May 2011”
respectively. Out of the 126 C++ and PHP files in the source code, 118 or 93.7% had the
same oldest last-modified date. In terms of code, these files made up 94.3% of the code
base. It is possible that these files were unmodified from the previous release when the
timestamps were last updated. The breakdown of these files was as follows.

beserver (3 out of 3 or 100%),
builder (7 out of 9 or 77.8%),
buildtools (4 out of 4 or 100%),
client (28 out of 32 or 87.5%),
common (32 out of 34 or 94.1%) and

server (44 out of 44 or 100%).
The files that had modified-by dates after October 2010 were:

source/builder/buildconfig.cpp (sets parameters such as the encryption key
and server URL in the client, last modified 4 November 2010),

34 3.6. Code reuse in malicious software

source/builder/info.cpp (information dialog box in builder, last modified 2 April
2011),

source/client/core.cpp (core functionality of the client, last modified 29 October
2010),

source/client/cryptedstrings.cpp (list of hard-coded obfuscated strings, last
modified 14 April 2011),

source/client/httpgrabber.cpp (HTTP/HTTPS data interception, last modi-
fied 5 November 2010),

source/client/wininethook.cpp (Hooking of wininet.d11, last modified 3 Novem-
ber 2010),

source/common/binstorage.cpp (Encrypted file management on the client, last
modified 5 November 2010) and

source/common/crypt. cpp (Functions dealing with cryptography and random num-
ber generation, last modified 5 November 2010).

Most of the development on the client appears to have been from October to November
2010; the builder component was worked on up until 2 April 2011.

A 30-line function in client/core.cpp, -getKernel32Handle, was found to contain com-
ments in English (Figure 3.1). This was unusual given that most of the comments were
in Russian. A search on Google for the comment string “clear the direction flag for the
loop” revealed a post on a software security-related blog dated 19 June 2009 entitled
“Retrieving Kernel32’s Base Address” [134]. The blog post described three methods of
retrieving the base address of the kernel32.d11 image in memory. The code snippet
which was copied was the third of these methods and this method was, according to the
blog post, “more robust” in dealing with Windows 2000 up to Windows 7 RC1.

Analysis of the files modified post-October 2010 seemed to suggest that the changes
focussed on the client, and concentrated in the areas of data interception, encryption
and storage, possibly to deal with newer versions of Windows. The files belonging to the
server were untouched.

3.6.2 Search for “http://” string

The second method used to study code reuse was to search for the “http://” string in
the source code as an indicator of publicly available information used by the developers
of ZeuS. The results are listed in Table 3.7.

Web references were found in the client (1-4), server (5-6) and common components (7—
11), and can be classified into four categories—network connectivity and communications
(1-4,6,10-11), data compression (5,9), binary analysis (7) and random number generation

(8).

SOCKS The two SOCKS-related URLs found in the source code referred to the SOCKS
RFC specification, not to actual source code. A quick search for the file name socks5-
server.cpp and a variable name S5_CLIENT_IS_IPV6 yielded no results on Google.

3. Decompilation as search 35

HMODULE _getKernel32Handle(void)
{
#if defined _WIN64
return NULL; //FIXME
#else
asm

{
cld //clear the direction flag for the loop

mov edx, fs:[0x30] //get a pointer to the PEB
mov edx, [edx + 0xOC] //get PEB->Ldr
mov edx, [edx + 0x14] //get the first module from the InMemoryOrder module list

next_mod:
mov esi, [edx + 0x28] //get pointer to modules name (unicode string)
mov ecx, 24 //the length we want to check
xor edi, edi //clear edi which will store the hash of the module name

loop_modname:
Xor eax, eax //clear eazx
lodsb //read in the next byte of the name
cmp al, ’a’ //some versions of Windows use lower case module nmames
j1 not_lowercase
sub al, 0x20 //if so normalise to uppercase

not_lowercase:
ror edi, 13 //rotate right our hash value
add edi, eax //add the next byte of the name to the hash
loop loop_modname //loop until we have read enough

cmp edi, Ox6A4ABC5B //compare the hash with that of KERNEL32.DLL
mov eax, [edx + 0x10] //get this modules base address
mov edx, [edx] //get the next module
jne next_mod //if it doesn’t match, process the next module
s
#endif
}

Figure 3.1: The code listing for function getKernel32Handle, which was posted on a blog
in June 2009 [134].

xterm The xterm reference was an indication that the source code of the terminal
emulator for the X Windows system was used in the VNC server implementation in the
client. On inspection of the source code of xterm, it was discovered that the keysymtab[]
array from key2symucs.c, which occupied 800 lines of C, was reproduced verbatim in
client/vnc/vnckeyboard.cpp. The keySymToUnciode (sic) function in the same file,
comprising 45 lines of C, was a close derivative of the keysym2ucs function. Attribution
to the original author (Markus G. Kuhn jmkuhn@acm.org;, University of Cambridge,
April 2001) had been removed, presumably to obscure the origins of the code.

UltraVNC Based on the reference to UltraVNC in the ZeuS VNC module, the source
tar archives of UltraVNC versions 1.0.2, 1.0.8.2 and 1.1.8.0 were analysed for signs of reuse.
Although the header file in which the reference was found, rfb.h, bore resemblance to

36 3.6. Code reuse in malicious software
URL Description
1 | http://www.opennet.ru/base/net/socks5_ | Specification for the SOCKS5 protocol (client)
rfc1928.txt.html
2 | http://wuw.sockschain.com/doc/socks4_ Specification for the SOCKS4 protocol (client)
protocol.htm
3 | http://invisible-island.net/xterm The xterm emulator used by the VNC server
(client)
4 | http://www.uvnc.com UltraVNC (client)
5 | http://www.info-zip.org/Zip.html A data compression program used to archive
files (server)
6 | http://etherx. jabber.org/streams Part of the Jabber API to interact with the
Jabber Instant Messenging network (server)
7 | http://beatrix2004.free.fr/BeaEngine An x86 disassembler (common)
8 | http://www.math.sci.hiroshima-u.ac.jp/ | Mersenne Twister random number generator
~m-mat/MT/MT2002/emt19937ar .html (common)
9 | http://www.oberhumer.com/opensource/ A data compression library (common)
ucl
10 | http://www.google.com/webhp URL used to test network latency (common)
11 | http://www.winehq.org/pipermail/ A description of a bug in the way WINE han-
wine-bugs/2008-January/088451.html dles the WriteConsole Windows API call (com-
mon)

Table 3.7: Results of a search for “http://” in the source code of ZeuS version 2.0.8.9.

the rfb/rfbproto.h file in the source tree, there was no evidence of verbatim copying
of UltraVNC code. If it is assumed that ZeuS’ RFB implementation was based on the
UltraVNC version, the number of lines reused was 1,216.

info-zip With regards to the reference to http://www.info-zip.org/Zip.html, on
inspection of the PHP script in question, server/php/fsarc.php (server file system
archival), the following code was found.

$cli = ’zip-ru-9u-qu-Su"’.$archive.’" "’ .implode(’" ">, $files).’"’;
exec($cli, $e, $r);

A copy of zip.exe, with an MD5 hash of 83af340778e7c353b9a2d2a788c3a13a, corre-
sponding to version 2.3.2,was found in same directory.

Jabber To investigate the implementation of the client for the Jabber instant messaging
protocol, two searches were made: firstly for the file name in question, jabberclass.php,
then for unique strings in the script. Both searches came up with nothing pointing to
earlier, public versions of the script. Thus, it was concluded that the Jabber client was
implemented from scratch.

BEAEngine The reference to the BEAEngine was found in common/disasm.h, which
contained three functions: Disasm::init, Disasm::uninit, and Disasm::_getOpcode
Length. An external call to an LDE function was found in the last of these functions.
The external call to LDE, or Length Disassembler Engine (LDE), is statically linked to the
object file 1ib/x32/1de32.11b.

3. Decompilation as search 37

Mersenne Twister A URL was found in common/crypt.cpp which made reference to
the Mersenne Twister pseudo-random number generator developed by Makoto Matsumoto
and Takuji Nishimura. The C source code of the Mersenne Twister was available from
the website. Comparison of the two sets of code revealed that 62 lines of C was copied
verbatim from the original source code, namely the init_genrand and genrand int32
functions.

UCL The next file that was investigated was common/ucl.h. Both the URL for the
UCL data compression library and the string “1.03” were found. Manual analysis of both
implementations suggests that the ZeuS was a syntactically-modified version of the origi-
nal. Examples of syntactic changes included: replacement of the ucl uint and ucl_bytep
types with DWORD and LPBYTE respectively, replacement of calls to ucl_alloc and ucl_free
with Mem: :alloc and Mem: : free respectively, removal of all calls to assert and removal
of all statements defined by the UCL_DEBUG preprocessor directive variable. The ZeuS-
variant of the UCL library included a total of 1,303 lines of C. This was an example of
large-scale white-box reuse in ZeuS.

Google/webhp, WINE The last two references were not directly related to code reuse.
Requests to www.google. com/webhp were used to test the latency of the network connec-
tion as part of the client report back to the server. The reference to the WINE bug
suggests that at least one developer was using a Linux machine to test the buildtools or
beserver.

3.7 Summary of findings
The findings of the four surveys may be summarised as the following.

Software reuse is widely practised in open-source projects, commercial projects and
malware development alike, with black-box reuse favoured over white-box reuse.
The exception is web-related projects, which are more likely to perform white-box
than black-box reuse.

Reused software can make up between 30-90% of the final product.

Widely reused software include operating systems software, such as the Linux kernel,
software development tools and libraries, such as the GNU C library, database
software, encryption libraries and compression libraries.

This trend is likely to continue, bolstered by factors such as market competitiveness,
the growing complexity of software products and the availability of high quality,
public source code.

3.8 Proposed approach: Search-based decompilation

Building upon the observation that code reuse is prevalent, this thesis proposes framing
decompilation as a search problem. It is noted that a similar shift occurred in machine

38 3.8. Proposed approach: Search-based decompilation

translation from a rule-based approach to statistical machine translation (SMT). What
follows is an examination of the factors leading to the emergence of SMT, its benefits as
well as its challenges and a research agenda for search-based decompilation is proposed.

3.8.1 Case study: Statistical machine translation

Statistical machine translation provides valuable insight into the benefits as well as the
challenges that search-based decompilation can learn from.

In April of 2006, Google switched its Translate system from Systran to its own machine
translation system. Google’s Franz Och explained the switch.

“Most state-of-the-art commercial machine translation systems in use today
have been developed using a rule-based approach and require a lot of work
by linguists to define vocabularies and grammars. Several research systems,
including ours, take a different approach: we feed the computer with billions
of words of text, both monolingual text in the target language, and aligned
text consisting of examples of human translations between the languages. We
then apply statistical learning techniques to build a translation model.”[135]

Although the idea of applying statistics and cryptanalysis to language translation was first
proposed by Weaver in 1949 [136], it was only in 1990 that Brown et al. [137] described the
main ideas for statistical machine translation (SMT) in what is now widely considered
to be the seminal work of the field. The re-emergence of SMT could be attributed to
several factors, including: the growth of the Internet, which caused a spike in demand
for the dissemination as well as the assimilation of information in multiple languages,
the availability of fast and cheap computing hardware, the development of automatic
translation metrics, the availability of several free SMT toolkits and the availability of a
corpus of parallel texts [138].

A similar situation exists for a proposed search-based decompilation (SBD) approach:
there is a pletora of open-source projects such as GNU, the Apache foundation, Linux,
BSD distributions, as well as public code repositories such as Google Code, Github,
Sourceforge; the corpus of parallel “texts” can be obtained through compilation using the
most widely used gcc and g++ GNU compilers. What is needed, therefore, is an SBD
methodology, and a quality metric for the decompiled output. As demonstrated in the
Cisco v. Huawei case, software bugs form a fingerprint which can uniquely identify a
software component and thus provide legal evidence in court. Such fingerprinting could
prove useful also as a quality metric for SBD and is thus an interesting line of research to
pursue.

The goal of SMT is to take a sentence in the source language and transform it into a
linguistically equivalent sentence in the target language using a statistical model. Broadly
speaking, this model is composed of three components: a language model, which given an
English string e assigns P(e), the probability of occurrence of e in the corpus; a translation
model, which given a pair of strings f,e assigns P(f e), the conditional probability that
f occurs given e; and a decoding algorithm, which given a language model, translation
model and a new sentence f, finds a translation e that maximises P(e) P(f e). The

3. Decompilation as search 39

translation model may be word-based or phrase-based with the word-to-word or phrase-
to-phrase correspondences modelled using an alignment procedure. Phrase-based SMT is
considered to be superior to word-based SMT [139).

One benefit of SMT is its non-reliance on linguistic content. Unlike rule-based translation,
SMT systems are not tailored to any specific pair of languages, and developing a new SMT
system can be as short as a day [140]. Oard and Och reported constructing a Cebuano-
to-English SMT system in ten days [141].

Secondly, SMT systems tend to produce natural translations instead of literal translations.
For example given “Schaukelstuhl”, the intuition is that “rocking chair” has a higher
P(e) P(f e)than “rockingstool”.

A fundamental research question for SBD is “What constitutes a token?”, since binary
code is different and possibly more complex, as it can include, for example, conditional
control flow and recursion. For text, tokens are typically words or phrases; for binary
code, potential candidates are instructions, instruction sequences or even graphs.

One challenge faced by phrase-based SMT is that statistical anomalies may occur, e.g.
“train to Berlin” may be translated as “train to Paris” if there are more occurrences of the
latter phrase. Out-of-vocabulary words are words that do not occur in the training set,
such as names, and hence cannot be translated. Koehn suggested that nouns be treated
separately with more advanced features and modelling [142].

Another challenge for phrase-based SMT is the inability to produce correct syntax at
the sentence level whilst having correct local structure, sometimes resulting in incoherent
sentences. This is due in part to the inability of phrase-based SMT to handle large-scale
reordering. One proposed solution is to perform syntax transformation prior to phrase-

based SMT [142].

A third challenge for SMT is its dependence on the corpus and results can be poor for a
corpus that is sparse, unrepresentative or of poor quality [143]. This problem can only be
addressed by including more training data.

The corresponding potential challenges for SBD are in dealing with possible “out-of-
vocabulary” instructions or instruction sequences, the ability to perform large-scale re-
ordering of decompiled source-code, and its dependence on the quality of the “corpus”,
which can vary with the platform and compiler used. It is perhaps still premature to con-
sider these issues at the onset without an initial SBD methodology. Given that external
software components can make up as much as 90% of the final product, it is practical to
initially focus on whole-function matching. Moreover, function-level decompilation is the
default use-case of both the Boomerang [8] and Hex-Rays [7] decompilers.

3.8.2 Proposed research agenda

To summarise, the following research agenda for SBD is proposed.

Drawing inspiration from SMT, one possible starting point is to investigate a token-
based approach to SBD, and address the question “What constitutes a token?”, in
the context of binary code.

40 3.9. Related work

It is natural to focus on whole-function matching as a starting point. Depending
on its success, other forms of matching, such as basic block matching or call-graph
matching, may be subsequently considered.

Based on the observation that software bugs form a fingerprint that uniquely iden-
tifies software, investigating software testing as a means to fingerprint and evaluate
the quality of the decompiled output is a viable avenue of research.

The GNU C library and the Linux kernel are useful as an initial SBD corpus, since
it is widely used by open source and commercial projects alike.

3.9 Related work

Search-based software engineering (SBSE). SBSE considers the forward problem
of using search techniques, such as operations research and evolutionary computation, to
generate programs, often in a high-level language, that meet one or more success crite-
ria [144]. Harman et al. provide two comprehensive surveys of the field [145, 144]. SBSE
considers two main components in its methodology: a suitable abstraction for the problem
that lends itself to search, and a fitness function through which solutions can be evalu-
ated [145]. The applications of SBSE are wide-ranging and include testing and debugging,
maintenance, software design and requirements and specification engineering [144]. The
SBSE community has thus far not considered decompilation as one of its focus areas. It is
noted, however, that the abstraction-fitness framework of SBSE is also relevant for SBD.

Binary code provenance. Davies et al. coined the term “Software Bertillonage” to
refer to the problem of determining the origin of software components, in their case Java
class archives. Analogous to human fingerprints and mugshots, their index, called an-
chored class signatures, comprised the type signatures of the class, its default constructor
and its methods [146]. Rosenblum et al. studied software authorship attribution using
instruction- and control flow-based representations of binary code. They were able to
correctly identify the author out of a set of 20 with 77% accuracy, and rank the correct
author among the top five 94% of the time, showing that programmer style is preserved
through the compilation process [147]. Using similar techniques, Rosenblum et al. were
also able to jointly infer source language, compiler family and version, and optimisation
level options used to produce a binary with 90% accuracy [148]. While the approaches
to provenance are relevant to SBD, the goals are different in that the focus of SBD is on
matching functionality, rather than artefacts. Unlike the work of Davies et al., focussing
on machine code, rather than on Java bytecode, is favoured.

Binary code clone detection. Unlike determining provenance, which aims to track
software across multiple applications, the aim of binary code clone detection is to track
duplicated code within the same application, or between closely related versions of the
same application. The Binary Matching tool (BMAT), developed by Wang et al., was
able to successfully match different versions of the same dynamically linked library (DLL)
using branch prediction and code coverage information [149]. Dullien and Rolles extracted
vulnerability information by performing a “diff” on the patched and unpatched versions of
the same executable. Their technique relied on iteratively determining pairs of fixpoints

3. Decompilation as search 41

in the call graph and control-flow graph. Basic blocks were matched using the method of
small primes product to overcome the problem of instruction reordering [150]. Szebjgrnsen
et al. developed a technique that performed fast matching of binary code clones using
an instruction-based representation [151]. Hemel et al. used string literals to identify
binary code clones. The advantage of this method was that, unlike instruction- and con-
trol flow-based techniques, disassembly was not required [152]. Like software provenance,
the approaches here are also relevant to SBD, but the goal is to match the same func-
tion across different applications. A key issue that SBD faces is compiler-related code
transformations, which binary clone detection does not traditionally deal with.

As a starting point for investigating search-based decompilation, the next chapter ad-
dresses the question ”What constitutes a token?”, and explores a token-based approach
to code search.

42

4

Token-based code indexing

“Sometimes even a truly awesome n-gram might just not been said yet. Just
the other day I asked the Google about the sentence ‘Batman high-fived Super-
man’ and the Googs found nothing! I DO NOT TRUST ANY MODEL THAT
DOUBTS THE GRAMMATICALITY OF THAT SENTENCE.”

— T-Rex, in a comic by the Berkeley NLP group'

4.1 Introduction

This chapter describes the design of a token-based method for code indexing and search.
It first describes the motivation and design goals, followed by an exploration of the design
space; finally the chosen technique is evaluated on a real-world data set. As seen in
Chapter 3, code reuse is common practice in open source and commercial projects alike,
fueled by market pressures, the need for highly complex software and the availability of
high-quality reusable software such as the GNU C library and the Linux kernel.

Currently, an auditor seeking to identify reused components in a software product, such as
for GPL-compliance, has two main approaches available: source code review and software
reverse engineering. However, source code availability is not always guaranteed, especially
if the code was developed by a third party, and understanding machine code is at present
rather challenging.

This thesis proposes search-based decompilation, a new approach to reverse engineer soft-
ware. By relying on open-source initiatives such as GNU, the Apache foundation, Linux
and BSD distributions, and public code repositories such as Github.com and Google Code
(code.google.com), identifying code reuse can be framed as an indexing and search prob-
lem.

As of February 2013, the GNU C library has an estimated 1.18 million lines of code, the
GNU core utilities tool suite has an estimated 57,000 lines of C, and the Linux kernel
has 15.3 million lines according to the open-source project tracker Ohloh [153]. With this
many lines of code on the web today, it is clear that a scalable method for indexing and
search is needed. Ideally both speed and accuracy are desirable, so a reasonable approach

"http://nlp.cs.berkeley.edu/Comics.shtml

43

44 4.2. Design space

is to initially approximate using several existing methods that are fast, then optimise
and evaluate for accuracy. Another viable approach is to have accuracy as a goal, then
optimise for speed. The former approach is adopted here.

Thus, the primary goal is performance: What is needed is a fast information retrieval
scheme for executable code. Like a text search engine, having speedy response times is
key for usability.

The secondary goals are precision (few false positives) and recall (few false negatives).
Since there is no control over the compiler or the options used, the model has to be robust
with respect to compilation and their various optimisations.

This chapter makes the following contributions.

1. The problem of identifying large code bases generated by different compilers and
their various optimisations is addressed, which has not been done before.

2. A prototype search engine for binary code called Rendezvous was implemented,
which makes use of a combination of instruction mnemonics, control-flow subgraphs
and data constants (Section 4.3). Experiments show that Rendezvous is able to
achieve a 86.7% F, measure (defined in Section 4.7) for the GNU C library 2.16
compiled with gcc -01 and -02 optimisation levels, and an 83.0% F; measure for
the coreutils 6.10 suite of programs, compiled with gcc -02 and clang -02 (Sec-
tion 4.10).

3. As an early prototype, the time-to-index is about 0.4 seconds per function in the
worst case, but could be speeded up further in a production system. (Section 4.10.8).

4.2 Design space

Recall the evidence in Chapter 3 that code is largely copied then modified. Since code
presented to the retrieval system may be modified from the original, one of the goals is
to be able to identify the invariant parts of it, such as certain unique functions. This can
be accomplished by approximating executable code by a statistical model. A statistical
model comprises breaking up code into short chunks, or tokens, and assigning a probability
to their occurrence in the reference corpus.

What should the tokens consist of? For natural language, the choice of token is a word
or phrase; machine code is more complex in comparison. The decision space of program
features is not unexplored, and the typical choice to make is between static and dynamic
methods. Static analysis was the favoured choice primarily for its relative simplicity.
Dynamic analysis has the disadvantage that it requires a virtual execution environment,
which is costly in terms of time and resources [154]. Static disassembly is by no means
a solved problem in the general sense [155], but there are well-known techniques for it,
such as linear sweep and recursive traversal [9], and they work well for a wide range of
executables.

Three candidate features, or representations, were considered—instruction mnemonics,
control-flow subgraphs, and data constants. Instruction mnemonics, refers to the machine
language instructions that specify the operation to be performed, for example mov, push

4. Token-based code indexing 45

and pop instructions on the 32-bit x86 architecture. A control-flow graph (CFG) is a
directed graph that represents the flow of control in a program. The nodes of the graph
represent the basic blocks; the edges represent the flow of control between nodes. A
subgraph is a connected graph comprising a subset of nodes in the CFG. Data constants
are fixed values used by the instructions, such as in computation or as a memory offset.
The two most common types of constants are integers and strings. These features were
chosen as they are derived directly from a disassembly. Instruction mnemonics was chosen
as the simplest representation for code semantics; the control-flow graph was chosen as the
simplest representation for program structure; data constants were chosen as the simplest
representation for data values. A summary of the features considered is given in Table 4.1.

Feature

Instruction mnemonic n-grams [156]
Instruction mnemonic n-perms [157]
Control-flow subgraph [158]
Extended control-flow subgraph
Data constants

Table 4.1: A summary of the different features considered.

Executable X Functions . Tokens Term—speciﬁc Query terms
— | Disassemble Tokenise .
processig

Figure 4.1: Overview of the feature extraction process.

4.3 Feature extraction

The feature extraction procedure involves three steps (Figure 4.1). The executable is
first disassembled into its constituent functions. The disassembled functions are then
tokenised, that is, broken down into instruction mnemonics, control-flow subgraphs and
constants. Finally, tokens are further processed to form query terms, which are then used
to construct a search query.

The extraction process for the three different features will now be described in detail using
a running example. Figure 4.2 shows the sorting algorithm bubblesort written in C.

4.4 Instruction mnemonics

The Dyninst binary instrumentation tool [159] was used to extract the instruction mnemon-
ics. An instruction mnemonic differs from an opcode in that the former is a textual de-
scription, whilst the latter is the hexadecimal encoding of the instruction and is typically
the first byte. Multiple opcodes may map to the same mnemonic, for instance, opcodes
0x8b and 0x89 have the same mnemonic mov. Dyninst recognises 470 mnemonics, in-
cluding 64 floating point instructions and 42 SSE SIMD instructions. The executable
is disassembled and the bytes making up each instruction are coalesced together as one

46 4.5. Control-flow subgraphs

01 // a: array, n: size of a

02 void bubblesort(int *a, int n)
03 int i, swapped = 1;

04 while(swapped)

05 swapped = 0;

06 for(i =0; i < n-1; i++)
07 if(ali]l < ali+1])

08 int tmp = alil;

09 ali] = al[i+1];

00 ali+1] = tmp;

11 swapped = 1;

12

13

14

15

Figure 4.2: Source code for our running example: bubblesort.

block. Subsequently, the n-gram model is used, which assumes a Markov property, that
is, token occurrences are influenced only by the n 1 tokens before it. To form the first
n-gram, mnemonics 0 to n 1 are concatenated; to form the second n-gram, mnemonics
1 to n are concatenated and so on. The n-grams are allowed to run over basic block
boundaries. A basic block is an instruction sequence that does not contain incoming or
outgoing control flow, and usually ends with a jump instruction.

One disadvantage of using mnemonic n-grams is that some instruction sequences may
be reordered without affecting the program semantics. For example, the following two
instruction sequences are semantically identical and yet they give different 3-grams.

mov ebp, esp mov ebp, esp
sub esp, 0x10 movl -0x4(ebp), Oxl
movl -0x4(ebp), Oxl sub esp, 0x10

An alternative to the n-gram model is to use n-perms [157]. The n-perm model does
not take order into consideration, and is set-based rather than sequence-based. So in
the above example, there will be only one n-perm that represents both sequences: mov,
movl, sub. The trade-off in using n-perms, however, is that there are not as many n-
perms as n-grams for the same n, and this might affect the accuracy. The instruction
mnemonics and 1-, 2- and 3-grams and corresponding n-perms for bubblesort are shown
in Figure 4.3.

4.5 Control-flow subgraphs

The second feature considered was control flow. To construct the control-flow graph
(CFQG), the basic blocks (BBs) and their flow targets are extracted from the disassembly.
A BB is a continuous instruction sequence for which there are no intermediate jumps into
or out of the sequence. Call instructions are one of the exceptions as they are assumed to

4. Token-based code indexing 47

80483c4: push ebp

80483ch5: mov ebp, esp
80483c7: sub esp, 0x10
80483ca: movl -0x4(ebp), Ox1
80483d1: jmp 804844b
80483d3: movl -0x4(ebp), 0x0
80483da: movl -0x8(ebp), Ox1
80483el: jmp 8048443
80483e3: mov eax, -0x8(ebp)

1-grams push, mov, sub, movl, jmp,...

push mov, mov sub, sub movl,
2-grams . .

movl jmp, jmp movl,...

push mov sub, mov sub movl,
3-grams sub movl jmp, movl jmp movl,

jmp movl movl,...

1-perms push, mov, sub, movl, jmp,...

push mov, mov sub, sub movl,

2-
Pertis movl jmp,...

push mov sub, mov sub movl,

3_ 3
perms sub movl jmp, movl jmp movl,...

Figure 4.3: Instruction mnemonics and 1-, 2-, and 3-grams and corresponding n-perms
for bubblesort (bottom) based on the first six instructions (top).

@ 2 5 3 1
@ 210 0 1 0
5(1 0 0 0

/CQ\ @\é 3/0 1 0 0
@ 11 0 0 0
@ 6 8 7 5

60 1 1 0

810 0 0 1

710 1 0 0

5(1 0 0 0

Figure 4.4: CFG of bubblesort, two k-graphs, k& = 4, and their canonical matrix ordering.
Each matrix is converted to a 16-bit number by concatenating its rows. Element (0,0) is
bit 0; element (3,3) is bit 15. Thus the first subgraph, 1-2-3-5, corresponds to 0x1214,
and the second, 5-6-7-8, to 0x1286.

return. Conditional instructions, such as cmov and loop are another exception. The BBs
form the nodes in the graph and the flow targets are the directed edges between nodes.

48 4.6. Data constants

1 2 3 1 2 3 V*
110 1 0 1]/0 1 0 0
200 0 1 210 0 1 1
310 0 0 310 0 0 1

vVio 1 0 0

3 5 6 3 5 6 V*
310 1 0 3101 0 o0
500 0 1 510 0 1 0
610 0 0 6 |0 0 0 1

Vi1 1 0 0

Figure 4.5: Differentiating bubblesort’s 3-graphs 1-2-3 and 3-5-6 with extended k-
graphs. The left column shows the adjacency matrices for the k-graphs; the right column
shows the corresponding extended k-graphs. The V* node represents all nodes external
to the subgraph.

The CFG, which can be large, is not indexed as it is. Instead, subgraphs of size k, or
k-graphs, are extracted. The approach used is similar to the one adopted by Kriigel et
al. [158]. Firstly, a list of connected k-graphs are generated from the CFG. This is done
by choosing each block as a starting node and traversing all possible valid edges beginning
from that node until £ nodes are encountered.

Next, each subgraph is converted to a matrix of size k by k. The matrix is then reduced
to its canonical form via a pre-computed matrix-to-matrix mapping. This mapping may
be computed off-line via standard tools such as Nauty [160], or by brute force since k is
small (3 to 7).

Each unique subgraph corresponds to a k2-bit number. For k = 4, a 16-bit value is
obtained for each subgraph. Figure 4.4 shows the CFG of bubblesort, two k-graphs,
1-2-3-5 and 5-6-7-8, and their canonical matrix forms 0x1214 and 0x1286 respectively.
The canonical form in this example is the node labelling that results in the smallest
possible numerical value when the rows of the matrix are concatenated. Matrix element
(0,0) is the Oth bit and (3,3) the 15th bit.

One shortcoming of using k-graphs is that for small values of k, the uniqueness of the
graph is low. For instance, if considering 3-graphs in the CFG of bubblesort, graphs 1-2-4,
1-2-3, 3-5-6 all produce an identical k-graph. To deal with this issue, an extension to
the k-graph is proposed, called extended k-graphs. In addition to the edges solely between
internal nodes, an extended k-graph includes edges that have one end point at an internal
node, but have another at an external virtual node, written as V*. This adds a row and
a column to the adjacency matrix. The additional row contains edges that arrive from an
external node; the extra column indicates edges with an external node as its destination.
This allows us to now differentiate between the 3-graphs mentioned before.

4.6 Data constants

The motivation for using constants is the empirical observation that constants do not
change with the compiler or compiler optimisation. Two types of constants were con-

4. Token-based code indexing 49

804eab5: movl 0x8(esp),0x5

804eabd: movl 0x4(esp),0x805b8bc
804eac5: movl (esp),0

804eacc: call 804944c <dcgettext@plt>

805b8bc: "Try ‘%s --help’..."

Constants 0x5, 0x0, "Try ‘%s --help’..."
Figure 4.6: Data constants for a code snippet from the usage function of vdir.

sidered: 32-bit integers and strings. Integers considered included immediate operands,
displacements and scalar multipliers; the strings considered were ANSI single-byte null-
terminated strings.

The extraction algorithm is as follows: all constants are first extracted from an instruction.
Explicitly excluded are displacements associated with the stack and frame pointers, or
ESP and EBP, as these depend on the stack layout and hence vary with the compiler, and
immediate operands associated with conditional branch instructions.

The constants are then separated by type. Since a 32-bit instruction set is assumed, the
data could either be a 32-bit integer or a pointer. An address lookup is made to determine
whether the value v corresponds to a valid address in the data or code segment, and if
so the data d, is retrieved. Since d, can also be an address, the procedure stops at the
first level of indirection. If d, is a valid ANSI string, that is, it consists of valid ASCII
characters and terminated by a null byte, it is assigned type string, otherwise d, is not
used. In all other cases, v is treated as an integer. Figure 4.6 shows the constants extracted
from the usage function of the vdir program compiled with gcc default options.

4.7 What makes a good model?

How do we know when we have a good statistical model? Given a corpus of executables
and a query, a good model is one with high precision and recall. A true positive (tp) refers
to a correctly retrieved document relevant to the query; a true negative (¢n) is a correctly
omitted irrelevant document; a false positive (fp) is an incorrectly retrieved irrelevant
document; and a false negative (fn) is a missing but relevant document. The precision
and recall are defined as

ip _ _tp
tp+fp recall = tp+fn

precision =
In other words, a good model will retrieve many relevant documents, omitting many other
irrelevant ones. A measure that combines both precision and recall is the F' measure,
defined as the following.

recision recall
Fy=(1+8) —"

(B2 precision) + recall

50 4.8. Indexing and querying

i | I
' Indexing ' Querying i
l | ! |
| | | |
: L l
| ! |
| | ! I
1 . 1
! l ! l
| | Term L j Unknown
| Freq. o Query .exe
| | ! I
| |
' | Inverted | j Query i
! Index | ' | Engine |
e B N B o
Search
results
/\/

Figure 4.7: Setup for indexing and querying.

When § = 1, the formula is known as the F; measure and both precision and recall are
weighted equally. However, the F, measure is more favoured:

5 (precision recall)

F, =
7 (4 precision + recall)

The reason that the F; measure is used and not the F; measure is that retrieving relevant
documents is the main priority; false positives are less of a concern. Thus recall is of
higher priority than precision, and F; weights recall twice as much as precision.

4.8 Indexing and querying

What we have discussed so far covers the extraction of terms from an executable. In this
section, the process of incorporating the tokens into a standard text-based index will be
described, along with how queries are made against this index that lead to meaningful
search results.

Figure 4.7 shows a summary of the indexing and querying process. Since there are 52
different symbols, we can encode a 32-bit integer as a 6-letter word for an alphabetic
indexer. The indexing process is a straight-forward one—the corpus of binaries retrieved
from the web is first processed to give a global set of terms Syop;. The terms are processed
by an indexer which produces two data mappings. The first is the term frequency mapping
which maps a term to its frequency in the index; the second is the inverted index which
maps a term to the list of documents containing that term.

Two query models were considered—the Boolean model (BM), and the vector space model
(VSM). BM is a set-based model and the document weights are assigned 1 if the term
occurs in the document, or 0 otherwise. Boolean queries are formed by combining terms
with Boolean operators such as AND, OR and NOT. VSM is distance-based and two docu-
ments are similar if the inner product of their weight vectors is small. The weight vectors

4. Token-based code indexing o1

are computed via the normalised term frequencies of all terms in the documents. The
model is based on the combination of the two: documents are first filtered via the BM,
then ranked and scored by the VSM.

Given an executable of interest, it is firstly decomposed into a set of terms and encoded
as strings of alphabetic symbols to give a set of terms S. For example, the mnemonic se-
quence push, mov, push, push, sub corresponds to the 4-grams 0x73£97373, 0x£9737-
3b3, which encodes as the query terms XvxFGF, baNUAL.

A Boolean expression @) is then constructed from the set of terms S. Unlike a typical
user-entered text query, the problem is that the length of) may be of the order of
thousands of terms long, or, conversely, too short as to be too common. Three strategies
were employed to deal with these two issues, namely term de-duplication, padding and
unique term selection.

Term de-duplication is an obvious strategy that reduces the term count of the query. For
a desired query length [p, the first term ¢, is selected and other occurrences of ¢, up to
length 2§ removed. This process is repeated until lg terms are reached. The (Ig + 1)
and subsequent terms are truncated.

Another problem which may arise is if () is too short it may result in too many matches.
To deal with this issue terms of high frequency that are not in S are added, negated with
the logical NOT. For example, if g is 3, and our query has two terms, A and B, the third
term NOT C is added, where C is the term with the highest term frequency in Sgope. This
eliminates matches that may contain) in addition to other common terms.

At the end of these steps, what is obtained is a bag of terms for each term category. The
terms are firstly concatenated with AND, e.g. XvxFGF AND baNUAL, which constructs the
most restrictive query. The rationale for using AND first is so that the query engine will
find an exact match if one exists and return that one result purely based on BM. This
query is sent to the query engine, which in turn queries the index and returns the results
in the form of a ranked list. If this query returns no results, a second query is constructed
with unique term selection.

The aim of unique term selection is to choose terms with low document frequency, or rare
terms. This is done if the size of S is larger than the maximum query length, lg. The
document frequency is defined as the number of documents in the corpus in which a term
occurs. The terms in S that remain in or are removed from the query are determined
by the document frequency threshold, df;,, cspoq- The document frequency threshold is the
maximum allowed document frequency for a term to be included in the query. In other
words, only terms whose frequency is below df,;,, .snoq are included. If df,;,,...n0q 1S s€t too
low, not enough terms will make it through, and conversely if df;},csnoq 1S Set too high,
too many will be included in). The resulting terms are then concatenated with OR to
form @), e.g. XvxFGF OR baNUAL. The second OR query is to deal with situations where
an exact match does not exist, and VSM is relied upon to locate the closest match.

Search results are ranked according to the default scoring formula used by the open source
CLucene text search engine. Given a query () and a document D, the similarity score
function is defined as the following.

Score(Q, D) = coord(Q, D) C

52 4.9. Implementation

where coord is a score factor based on the fraction of all query terms that a document
contains, C' is a normalisation factor, V(Q) V(D) is the dot product of the weighted
vectors, and V(@) is the Euclidean norm. Comparing the scoring function with the
cosine similarity measure:

Vv V(D
o)~ V(Q V(D)

V(@) V(D)
the V(D) term is not used on its own in the scoring function as removing document length
information affects the performance. Instead, a different document length normalisation
factor is used. In our equation this factor is incorporated into C' [161].

4.9 Implementation

The tasks of disassembly, extracting n-grams, n-perms, control-flow k-graphs, extended k-
graphs and data constants were performed using the open source dynamic instrumentation
library Dyninst version 8.0. The Nauty graph library [160] was used to convert k-graphs
to their canonical form. The tasks of indexing and querying were performed using the
open source text search engine CLucene 2.3.3.4. The term frequency map which was
used in unique term selection was implemented as a Bloom filter [162] since it is a test
of membership. In other words, the Bloom filter consisted of all terms below df;;,csnord-
The maximum term length was fixed at six, which is sufficient to encode a 32-bit integer
using 52 upper- and lower-case letters. Instruction mnemonics were encoded using 8
bits; higher-order bits are truncated. Mnemonic n-grams up to n = 4 were considered.
Control-flow k-graphs and extended k-graphs were encoded as 32-bit integers. Integer
constants were by definition 32-bit integers; strings were truncated to six characters. A
total of 10,500 lines of C++ were written for the implementation of disassembly and
feature extraction, and 1,000 lines of C++ for indexing and querying.

4.10 Evaluation

This section describes the experiments that were performed to answer the following ques-
tions.

What is the optimal value of df}, .onoia”

What is the accuracy of the various code features?
What is the effect of compiler optimisation on accuracy?
What is the effect of the compiler on accuracy?

What is the time taken for binary code indexing and querying?

The first evaluation data set used consisted of 2,706 functions from the GNU C library ver-
sion 2.16 comprising 1.18 million lines of code. The functions were obtained by compiling

4. Token-based code indexing 53

the library under gcc -01 and gcc -02 commands, or GCC1 and GCC2 respectively. All
initialisation and finalisation functions generated by the compiler, such as _init, _fini
and __i686.get_pc_thunk.bx, were excluded. The evaluation on this set, referred to as
the glibc set, consisted of two experiments. In the first experiment, GCC1 is indexed and
queries are formed using GCC1 and GCC2. This procedure is then repeated with GCC2
indexed in the second experiment, and the results from both experiments are summed up
to obtain the combined precision, recall and F» measures.

The second data set was the coreutils 6.10 suite of tools, or the coreutils set, which was
compiled under gcc and clang default (-O2) configurations. This data set contained 98
binaries, 1,205 functions, comprising 78,000 lines of code. To obtain the precision, recall
and F, values one set of functions is similarly indexed and the other used to form queries
as with the glibc set. All experiments were carried out on a Intel Core 2 Duo machine
running Ubuntu 12.04 with 1 GB of RAM.

The results at a glance is summarised in Table 4.2. The composite model comprising 4-
grams, 5-graphs and constants gave the best overall performance for both datasets. This
suggests that n-grams, k-graphs and constants are independent, and thus all three are
useful as features.

glibc coreutils

Model F2 F2

Best n-gram (4-gram) 0.764 0.665
Best k-graph (5-graph) 0.706 0.627
Constants 0.681 0.772
Best mixed n-gram (1+4-gram) 0.777 0.671
Best mixed k-graph (5+7-graph) 0.768 0.657
Best composite (4-gram/5-graph/constants) | 0.867 0.830

Table 4.2: Results at a glance.

4.10.1 Optimal dfthreshold

Recall that the query model is based on BM first, then ranked by VSM. However, the
input terms to the BM can be further influenced by varying df ,;,,csnoq: Which determines
the terms to include in the query.

To investigate the optimal value of df,;,, conog, a0 €xperiment was performed using glibc
and 4-grams as the term type. The df,,, .0 Was varied and the resulting performance
measured. The ranked list was restricted to at most five results, that is, if the correct
match occurred outside of the top five results, it was treated as a false negative. Table 4.3
shows the results of this experiment. For example, df;,conoq 1 means that only terms
having a document frequency less than or equal to 1 were included, and df,;,,csnord
means that all terms were included.

Although there is an initial increase from df,conoig 1 10 df threshora 4, this was not
sustained by increasing the value of df,;, ..,.q further, and F5 changes were insignificant.
Since there was no gain in varying df,,,.shoas it Was fixed at in all experiments.

o4

4.10. Evaluation

df threshold

Precision Recall

Fy

1

O 1 O O i W N

9
10
11
12
13

0.202
0.177
0.165
0.161
0.157
0.160
0.159
0.157
0.157
0.155
0.151
0.152
0.153

0.151

0.395
0.587
0.649
0.677
0.673
0.702
0.709
0.708
0.716
0.712
0.696
0.702
0.705
0.709

0.331
0.401
0.410
0.413
0.406
0.418
0.419
0.415
0.418
0.414
0.405
0.408
0.410
0.408

Table 4.3: Performance using various values of df;;,,.snoq O0 the glibc set using 4-grams.

oe

F-2 measure

ki

0E
o4
o
o
1 2 3 4

rigrarm I
npenm |

n {Size of n-gram|

Figure 4.8: The F; measures for n-grams and n-perms (glibc data set).

4.10.2 Comparison of n-grams versus n-perms

Firstly, the accuracy of n-grams was compared with n-perms, with n taking values from 1
to 4. Values of n larger than 4 were not considered. The glibc test set was used to ascertain
the accuracy of these two methods in the presence of compiler optimisations. The results
are shown in Figure 4.8. The overall best F, measure was 0.764, and was obtained using
the 4-gram model. Both 1-gram and 1-perm models were identical by definition, but the
n-gram model out-performed n-perms for n > 1. One explanation for this difference was

n | n-gram n-perm
1 121 121
2 1,483 306
3 6,337 542
4 | 16,584 889

Table 4.4: The number of unique terms for n-grams and n-perms (glibc data set).

4. Token-based code indexing 55

Z-gram precision —&— ZgramF2 —8— d-parm precision —&— d-perm F2 —&—
2-gram recall —fi— 4 perm recall —{fil—

1 1

oe

SUSSEsewe
T

o o

Precision | Becall | F-2 messure
=] =]
] =
—
//
Precision | Becall | F-2 messure

Highest reranked results Highestr-ranked results

(a) 2-gram (b) 4-perm

Figure 4.9: The precision, recall rates and the F, measures for 2-grams and 2-perms of
instruction mnemonics (glibc data set).

that the n-perm model produced too few terms so that irrelevant results affected recall
rates, and this is evident looking at the number of unique terms generated by the two
models (Table 4.4). The 2-gram model generated 1,483 unique terms whilst the 4-perm
model generated only 889.

Next, 2-grams and 4-perms were analysed in more detail. The precision and recall rates
were varied by adjusting the threshold of the r highest ranked results obtained. For
example, if this threshold was 1, only the highest ranked result returned by the query
engine was considered; the rest of the results were ignored. The value of r was varied
from 1 to 10. Figures 4.9a and 4.9b show that the maximum F, measure obtained for
2-grams was 0.684 at » = 1, and the precision and recall rates were 0.495 and 0.756
respectively. The corresponding maximum F» value was 0.585 for 4-perms also at r = 1.

There is an observed tension between precision and recall. As r increases, the number of
successful matches increases causing the recall to improve, but this also causes the false
positives to increase, reducing precision.

The second larger coreutils data set was similarly tested with the n-gram and n-perm
models, with n = 1,2,3,4. Similar observations were made—n-grams out-performed
n-perms for all n.

4.10.3 Mixed n-gram models

Next, mixed n-gram models were considered to see if combining n-grams produced better
results. If we consider combining 1-gram to 4-gram models, there are a total of 6 possible
paired permutations. These combined models were tested on the glibc and coreutils set
and the results are shown in Table 4.5. The two highest scores were obtained using 1-
and 4-grams (1+4-gram) and 2- and 4-grams (2+4-gram) for the two data sets. This
was surprising since 1-grams generated a small fraction of terms, e.g. 121, compared to
4-grams, e.g. 16,584. Also notable was the fact that almost all mixed n-gram models
performed better than the single n-gram models.

56 4.10. Evaluation

glibc coreutils
14+2-gram | 0.682 0.619
14-3-gram | 0.741 0.649
1+4-gram | 0.777 0.671
243-gram | 0.737 0.655
244-gram | 0.777 0.675
3+4-gram | 0.765 0.671

Table 4.5: Performance of mixed n-gram models by F; measure.

glibc
k-graph extended k-graph
Precision Recall F, Precision Recall I
3-graph | 0.070 0.133 0.113 | 0.022 0.062 0.046
4-graph | 0.436 0.652 0.593 | 0.231 0.398 0.348
5-graph | 0.730 0.700 0.706 | 0.621 0.600 0.604
6-graph | 0.732 0.620 0.639 | 0.682 0.622 0.633
7-graph | 0.767 0.609 0.635 | 0.728 0.610 0.631

coreutils
k-graph extended k-graph
Precision Recall F, Precision Recall I
3-graph | 0.110 0.200 0.172 | 0.042 0.080 0.068
4-graph | 0.401 0.586 0.537 | 0.218 0.360 0.318

5-graph | 0.643 0.623 0.627 | 0.553 0.531 0.535
6-graph | 0.617 0.527 0.543 | 0.660 0.602 0.613
7-graph | 0.664 0.560 0.578 | 0.663 0.566 0.583

Table 4.6: Results for k-graphs and extended k-graphs.

4.10.4 Control-flow k-graphs versus extended k-graphs

In the next set of experiments, control-flow k-graphs and extended k-graphs for £ =
3,4,5,6,7 were evaluated. The results are summarised in Table 4.6. The model which
gave the highest Fy was 5-graphs for the glibc data set at 0.706, and also for the coreutils
data set at 0.627. This consistency was surprising given that there were thousands of
different functions being considered.

The second observation was that the performance of extended k-graphs was lower than
that of regular k-graphs. This difference was more marked for glibc than for coreutils, at
7 and 1.4 percentage points respectively. The implication is that k-graphs were in fact a
better feature than extended k-graphs.

4.10.5 Mixed k-graph models

As with n-grams, mixed k-graph models were considered as a possible way to improve
performance on single k-graph models. The mixed models were limited to a combination
of at most two k-graph models, giving a total of ten possibilities.

4. Token-based code indexing o7

glibc | coreutils
Fy Fy
3+4-graphs | 0.607 0.509
3+5-graphs | 0.720 0.630
3+6-graphs | 0.661 0.568
3+T7-graphs | 0.655 0.559
4+5-graphs | 0.740 0.624
4+6-graphs | 0.741 0.624
4+7-graphs | 0.749 0.649
5+6-graphs | 0.752 0.650
5+7-graphs | 0.768 | 0.657
6+7-graphs | 0.720 0.624

Table 4.7: Results for mixed k-graph models.

Precision Recall I
glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

Table 4.8: Results of using data constants to identify functions in the glibc and coreutils
data sets.

Again, the best mixed model was the same for both data sets. The 5+47-graph model
gave the best F; value for both glibc (0.768) and coreutils (0.657) (Table 4.7). Lastly, the
mixed k-graph models performed better than the single k-graph models.

4.10.6 Data constants

Table 4.8 shows the results of using the third feature, data constants, to match functions
compiled using different optimisations (glibc) and different compilers (coreutils). The
performance was better for coreutils at 0.772 compared to glibc at 0.681. One possible
explanation for this difference is the fact none of the functions in the g¢libc contained
strings, whilst 889 functions, or 40.3% of functions in the coreutils did.

4.10.7 Composite models

Building upon the observation that mixed models were more successful than single models,
the last set of models considered were composite ones, i.e. models that combined n-grams,
k-graphs and constants. The terms from each individual model, for example 4-grams, were
extracted then concatenated to form a composite document for each function.

Two composite models were considered; the first composite model was made up of the
highest performing single model from each of the three categories; the second composite
model was made up of the highest performing mixed model, except for constants. Thus,
the models for the glibc set that were tested comprised 4-gram/5-graph/constants and
1-gram/4-gram/3-graph/5-graph/constants. The corresponding models for the coreutils
set were 4-gram/5-graph/constants and 2-gram/4-gram/5-graph/7-graph/constants. The
results are listed in Table 4.9.

58 4.10. Evaluation

Overall, the best composite model out-performed the best mixed models, giving an F,
score of 0.867 and 0.830 for glibc and coreutils respectively. The highest scores for mixed
models were 0.777 (1-gram/4-gram) and 0.772 (constants). One observation was that
including more models did not necessarily result in better performance. This was evident
from the fact that the composite models with three components fared better than the
model with five.

In addition to maximising F5, the recall rates for » = 10 were of interest, since users of the
search engine are not expected to venture beyond the first page of results. Considering
only the top ten ranked results, the recall rates were 0.925 and 0.878 respectively for glibc
and coreutils.

Of the 342 false negatives from the glibc set, 206 were found to be small functions, having
6 instructions or less. Since Rendezvous uses a statistical model to analyse executable
code, it is understandable that it has problems differentiating between small functions.

One of the largest functions in this group was getfsent from g¢libc (Figure 4.10). The
compiled executables, or getfsent01 and getfsent02 respectively, differed significantly
due to several factors. Firstly, the function fstab_fetch was inlined, causing the mov and
call instructions in getfsent01 to be expanded to eight.

Secondly, there were two instruction substitutions: instruction mov eax, 0x0 in getfsent-
01 was substituted by the xor eax, eax instruction which utilises two bytes instead of

five; the call to fstab_convert was substituted by an unconditional jump. In the latter

substitution, the call was assumed to return, whereas the jump did not. This was evident

from the fact that the stack was restored immediately prior to the jump. This altered the

control-flow graph since the edge from the jmp instruction to the final BB was no longer

there in getfsent02.

Thirdly, there were two occurrences of instruction reordering: The first being the swapping
of the second and third instructions of both functions; the second was the swapping of
the test and mov instructions following the call to fstab_init.

The sum of these changes resulted in the fact that there were no 3-grams, 4-grams nor
data constants in common between the two functions, and the two 4-graphs did not match.
In such cases, the matching could benefit from a more accurate form of analysis, such as
symbolic execution [163]. This is left to future work.

struct fstab *getfsent(void)
struct fstab_state *state;

state = fstab_init(0);

if(state == NULL)
return NULL;

if (fstab_fetch(state) == NULL)
return NULL;

return fstab_convert(state);

Figure 4.10: Source code of getfsent

4. Token-based code indexing 59

Precision Recall F,
4-gram /5-graph/constants 0.870 0.866 0.867

glibe 1-gram/4-gram/5-graph/ 0.850 0.841 0.843
7-graph/constants
4-gram /5-graph/constants 0.118 0.925 0.390
(r = 10)
coreutils 4-gram/5-graph/constants 0.835 0.829 0.830
2-gram/4-gram/5-graph/ 0.833 0.798 0.805

7-graph/constants
4-gram/5-graph/constants 0.203 0.878 0.527
(r =10)

Table 4.9: Results of the composite models. Where indicated, variable r is the number of
ranked results considered, otherwise r = 1.

Average (s) | Worst (s)

n-gram 46.684 51.881

k-graph 110.874 114.922

Feature | omts | 627,656 | 650.148
null 11.013 15.135
Query construction 6.133 16.125

Query 116.101 118.005

Total (2,410 functions) | 907.448 981.081

Total per function 0.377 0.407

Table 4.10: Average and worst-case timings for coreutils set.

4.10.8 Timing

The final set of experiments was performed to determine the time taken for a binary
program to be disassembled, for the terms to be extracted and for the query to return
with the search results. The coreutils set was timed for this experiment, and the timing
included both the gcc-compiled code and the clang-compiled code to give a total of 2,410
functions. Table 4.10 shows the average case as well as the worst-case timings for each
individual phase. The “null” row indicates the time taken for Dyninst to complete the
disassembly without performing any feature extraction. The total time was computed
by summing the time taken to extract each of the three features. Strictly speaking,
this time is an overestimate since the binary was disassembled two more times than was
necessary in practice. On the other hand, no end-to-end timings were done to take into
consideration the computational time required for the front-end system, so the timings
are an approximation at best.

It was found that a significant portion of time was spent in extracting constants from the
disassembly. The reason is because the procedure is currently made up of several different
tools and scripts, and there are plans to streamline this procedure in future.

60 4.11. Discussion

4.11 Discussion

4.11.1 Limitations

An important assumption made in this chapter is that the binary code in question is not
deliberately obfuscated. The presence of code packing, encryption or self-modifying code
would make disassembly, and therefore feature extraction, difficult to perform. In practice,
Rendezvous may require additional techniques, such as dynamic code instrumentation and
symbolic execution, to analyse heavily obfuscated executables. However, as mentioned,
static analysis was considered primarily for its performance. Including dynamic methods
in Rendezvous is left to future work.

4.11.2 Threats to validity

Threats to internal validity include the limited software tested, and the limited number
of compilers and compiler optimisation levels used. The high accuracy observed may be
due to a limited sample size of software analysed, and future work will involve analysing
larger code bases. It is possible that the gcc and clang compilers naturally produce
similar binary code. Likewise, the output of gcc -01 and gcc -02 could be naturally
similar. Optimisation level gcc -03 was not considered.

The most important threat to external validity is the assumption that there is no active
code obfuscation involved in producing the code under consideration. Code obfuscation,
such as the use of code packing and encryption, may be common in actual binary code in
order to reduce code size or to prevent reverse engineering and modification. Such tech-
niques may increase the difficulty of disassembly and identification of function boundaries.

4.11.3 Mnemonic n-grams and basic block boundaries

In this chapter, n-grams were allowed to run over BB boundaries. The implication of
this is that functions which have short BBs, e.g. three instructions or less, might not be
correctly detected using 4-grams alone, especially if there is BB reordering during com-
piler optimisation. This could explain why 1+44-grams performed better than the 4-gram
model. The alternative approach is to disallow n-grams from running over BB boundaries.
However, this comes with the penalty of having fewer unique n-grams available. Further
experiments are needed to determine if this alternative approach does indeed perform
better.

4.12 Related work

The line of work that is most closely related is that of binary code clone detection.
Seebjgrnsen et al. [151] worked on detecting “copied and pasted” code in Windows XP bi-
naries and the Linux kernel by constructing and comparing vectors of features comprising
instruction mnemonics, exact and normalised operands located within a set of windows
in the code segment. The main goal was to find large code clones within the same code
base using a single compiler and hence their method did not need to address issues with

4. Token-based code indexing 61

multiple compilers and their optimisations. In contrast, since the goal of Rendezvous is
to do binary code clone matching across different code bases, it was necessary to address
the compiler optimisation problem and the proposed technique has been demonstrated
to be sufficiently accurate to be successful. Hemel et al. [152] looked purely at strings
in the binary to uncover code violating the GNU public license. The advantage of their
technique was that it eliminated the need to perform disassembly. However, as the ex-
periments show, between 60-70% of functions were identified using only string constants.
Other approaches include directed acyclic graphs [156], program dependence graphs [164]
and program expression graphs [165]. None of these approaches were considered as the
computational costs of these techniques are higher than what Rendezvous currently uses.

A closely related area is source code clone detection and search, and techniques may be
divided into string-based, token-based, tree-based and semantics-based methods [166].
Examples include CCFinder [167], CP-Miner [168], MUDABIlue [169], CLAN [170] and
XTAO [171]. Rendezvous, however, is targeted at locating code in binary form, but
borrows some inspiration from the token-based approach.

A related field is malware analysis and detection, whose goal is to classify a binary as
being malicious, or belonging to a previously known family. Code features that have
been studied include byte values [172], opcodes [173], control-flow subgraphs [158], call
graphs [150], as well as run-time behavioural techniques [174]. Even though Rendezvous
borrows techniques from this field, the aim is to do more fine-grained analysis, and identify
binary code at a function level. At the moment, only code obfuscation up to the level of
the compiler and its different optimisations is considered.

62

5

Perturbation analysis

“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”

— Title of chaos theory pioneer Edward Lorenz’s 1972 talk

Search-based decompilation is premised on being able to match machine code with its
functional equivalent in a reference corpus. Token-based matching (Chapter 4) is one such
approach to accomplish this task. However, a problem arises when different compilers or
compiling options are used, resulting in the failure to match, say, syntactically different
instruction sequences, such as xor EAX, EAX and mov EAX, O, or to deal with basic block
reordering.

Performing symbolic execution with theorem proving as advocated by Gao et al. [175] in
a tool called BinHunt is one possible solution. BinHunt first tries matching basic blocks
for semantic equivalence by generating the symbolic expressions for all basic-block output
variables. Since the compiler may use different registers and variables, BinHunt tries
all possible permutations of symbolic expressions to obtain a match, if one exists. The
matching strength of two basic blocks is defined to be 1.0 if the matching permutation
uses the same registers; otherwise the matching strength is assigned the value 0.9 if
different registers are used. This is to deal with context mismatch. The second mechanism
implemented by BinHunt is backtracking-based subgraph isomorphism that relies on the
results of basic-block matching.

However, BinHunt does not differentiate between different implementations of the same
algorithm, e.g. bubblesort and quicksort, or independently developed code not due to copy
and paste. Performing structural analysis is important for search-based decompilation,
since one hardly expects an implementation of bubblesort to decompile to quicksort, or
vice versa. Existing approaches to binary code clone detection assume that the underlying
application is closely related [149, 150, 175], or that the clone is a result of copy and
paste [176, 152].

The rest of this chapter makes the following contributions.

This chapter addresses the problem of differentiating between different implemen-
tations of the same algorithm, which has not been addressed before.

This chapter describes perturbation analysis, a technique that can identify structural
similarity. It is able to distinguish between 11 subtle variants of 5 sorting algorithms
(Section 5.3).

63

64 5.1. Overview

f1: mov ECX, EAX gl: int g(int x)

£2: add ECX, 2 g2:

£3: imul EAX, ECX g3: return x*x + 2*%x + 1;
f4: add EAX, 1 ga:

£5: retn

Figure 5.1: Our running example. Assembly program f, which computes z(x + 2) + 1, is
the compiled version of the C program ¢, which computes x? + 2z + 1.

A source-binary indexing scheme based on test-based indexing (TBI, Section 5.4)
and perturbation-based indexing (PBI, Section 5.8) is proposed. Experiments con-
ducted on 100 functions in coreutils 6.10, compiled with 5 different configurations
(gcc -02, gcc -03, gcc -0s, clang -02 and clang -03), show that the total pre-
cision and recall achieved is 68.7% and 95.2% respectively for TBI and PBI combined
(Section 5.10.4).

5.1 Overview

Consider the equivalent functions, f and ¢, in Figure 5.1 and their corresponding listings
(gcc default options were used). The argument z is stored in register EAX at the start
of f. It is not immediately obvious that the two functions are semantically equivalent.
Indeed, different compilation optimisations may, and often do, yield significant syntactic
differences in the binary. The goal is to match the source code of g to that of the binary
code of f.

There are at least three possible approaches to accomplish this. The first method is to
compile the source code down to binary form and do the comparison at the machine
code level. The second method is to decompile g up to the higher-level language of f.
A third approach is to do both—compile f and decompile g to a suitable intermediate
representation. The second approach was chosen since, as a programming language, C has
been, and continues to be, widely used in the compiler, decompiler and software testing
communities. This is evident from the fact that tools continue to be written for it, many
more than those targeting binaries and intermediate representations. For the purposes
of this chapter, it is assumed that the source code to match against is in C, since the
tools used are written to analyse C, as are many of the functions in the reference corpus,
including the GNU C library and the coreutils tool set.

The first step in the process is obtaining a disassembled version of the binary. The disas-
sembly is then lifted to C via an assembly-to-C translator. Two source-binary matching
techniques are used: test-based indexing (TBI) and perturbation-based indexing (PBI).
TBI tests two functions for input-output congruence (Section 5.4); PBI, which makes
use of perturbation analysis (Section 5.6), tests two functions for structural similarity
(Section 5.8). We first discuss the implementation of the assembly-to-C translator.

5. Perturbation analysis 65

unsigned int eax;
bool cf, pf, af, zf, sf, of;

cf = (eax + 2) < eax;

pf = parity_lookup[(char)(eax + 2)];

af = (((char)eax =~ 2 "~ (char) (eax + 2))
& 0x10) !'= 0;

zf = (eax + 2) == 0;

sf = (eax + 2) >> 31;

of = ("(eax ~ 2) & (2 = (eax + 2))
& 0x80000000) !'= 0;

eax = eax + 2;

Figure 5.2: The assembly-to-C translation of add eax, 2.

5.2 Assembly-to-C translation

The aim of doing assembly-to-C translation is solely to express the semantics of the
disassembled instructions in valid C syntax, since analysis is done in C. Readability is
not a concern here, so it is sufficient to perform direct per-instruction translation. The
CPU registers, flags and the stack are treated as local variables. A 32-bit Intel x86 CPU
is assumed, and each instruction in the function is decoded to determine three things:
the operands, the operating width, i.e. 8-, 16- or 32-bits, and the operations to perform
on the simulated CPU and stack. Memory locations are dereferenced as indicated by the
operating width. For example, mov AL, [ECX] is translated as al = x(char *)ecx;.

The output of the translation is a sequence of C statements implementing the semantics
one instruction at a time. For example, add EAX, 2 is translated as shown in Figure 5.2.
From the translation, we can see that the carry flag (cf) is set when an unsigned overflow
occurs, while the overflow flag (of) indicates a signed overflow when eax = Ox7FFFFFFE.

The layout of the basic blocks in the disassembled function is preserved in the C version.
Jumps in the program are translated as goto statements; calls are implemented as per
calls in C syntax, with the appropriate registers or stack locations as input parameters
and return variables. The target of indirect jumps and calls, e.g. jmp [EAX], need to be
determined before translation, and at the moment this is done manually. External calls
to libraries and system calls are currently unsupported.

5.3 Source-binary matching for functions

Before describing the algorithm for source-binary matching, we briefly define some nota-
tion.

Definition (State) A state, s, is represented by the tuple

S= GyevvyQuy Ty Ty, U

where a; are the input parameters, z; are the program variables, including stack and
global variables, and v is the output variable. A valid state s is one which belongs to a

66 5.4. 'Test-based indexing

global finite non-empty set of states . At the initial state, sy, only a; are defined. At a
final state, sf, v is defined.

Definition (Program) A program is a finite set of pairs of the form (C;,T;) where i is
the location and Cj is the computation to perform on the current state s; 1 to generate a
new state s; = C;(s;_1). T; is a predicate that determines (C;y1,T;41) based on s;.

Definition (Path) A path is a finite sequence of (C;, T;) pairs constituting a legal path
through the program applying successive transformations to the program state. For ex-
ample,

s, =0k Go1...0y 01(80)

where denotes the composition of functions.
For brevity only the output variable defined in the post-computation state s, is listed.

Definition (Congruence) For two procedures f and g, we say f and g are congruent if
all terminating paths of f and g starting from the same global input state sg, return the
same global output state s§ = 3“;70.

5.4 Test-based indexing

The problem of determining congruence can be reduced to one of code coverage testing:
simply call the two procedures with equal inputs, and assert that they return the same
output. Existing test cases can provide this input. Alternatively, automated software
testing tools [177, 178, 179] can help.

A possible third approach is to perform random testing in what is termed in this chapter
as test-based indering. The main premise is that given random input, a function should
produce an output that is unique regardless of the implementation.

The first step is to infer the prototype of a function f. It is assumed that the function
prototype is known. In practice, there are methods to perform function prototyping, such
as through reaching definitions [180] and liveness analysis [11]. The prototype determines
its test harness, which is used to initialise the state of a function with a pre-determined
pseudo-random input I, and retrieve the outputs O. The test harness is itself a C program
that calls f as a sub-routine. The arguments are initialised according to their type. For
instance, a char is assigned a random 8-bit number, a short a random 16-bit number
and so on; pointer-types such as char * and char ** are assigned a pointer to the
appropriately populated data structure. The void * type is ambiguous, and is treated
as a char *. The compound data type, or a struct, is initialised according to their
constituent types. Similarly, the return type is treated according to its type.

Secondly, f(I) is executed with the help of the test harness to obtain O. To produce a
test-based index, an I, O pair is hashed to give H(1,0). The procedure for retrieval is
then a matter of matching hashes with the reference index, which can be done efficiently.
We define the variable npg; which determines the number of

5. Perturbation analysis 67

f sg = (eaxo = a) h st =(zo =a)
fl: mov ECX, EAX si: = (ecx1 = a) hl: x = x*x(x+2); sh = (x1 = a(a +2))
f2: add EAX, 2 55 = (eaws = a +2) h2: x++; sh=(v2=ala+2)+1)
f3: imul EAX, ECX s:); = (eax3 = a(a + 2)) h3: return x; s? =@w=ala+2)+1)
f4: add EAX, 1 55; = (eaxqg = ala+2) + 1)
f5: retn sy = (v=uala+2)+1) k sk = (z0 = a)

kl: y=1; sF=(y1=1)

g s5 = (zo = a) k2: y += xx(x+2); | s§ = (y2 = ala+2)+1)
gl: x++; s =(r1=a+1) k3: return y; slfc =(w=ala+2)+1)
g2: return x*x; sfc ={w=(a+1)*(a+1))

Figure 5.3: Functions f, g, h and k are congruent as they have common input and output
states. Functions f and h share a common intermediate state at (s}, s?). However, h
and k do not share any intermediate states even though they comprise the addition of

otherwise identical terms.

H(1,)H(1,@),....,H(1,Q,,)

hashes to use as an index.

5.5 Identifying structural similarity

The problem, however, is that the above technique is external and nothing is known
about the internal algorithm of the procedure. For instance, under this matching scheme,
if f was bubblesort and g was mergesort, a reasonable conclusion is that the procedure
was a sorting function, nothing more. This is insufficient if the goal of the analyst is to
retrieve the algorithm from the binary. Moreover, in the case where two or more congruent
matches are found, a way of further narrowing the search is clearly needed. In short, a
higher-fidelity matching scheme is called for.

A simple approach to include more internal distinction, i.e. identify structural similarity,
is to locate common intermediate states. This can be done by tracking the states and
comparing them path by path. We revisit our running example of Figure 5.1, and have
annotated it with state information in Figure 5.3. The states are expressed in terms of
the input parameter, a. We observe that since function f shares more common states
with A, we say that f is structurally more similar to h than g.

Determining structural similarity using intermediate state, however, is sensitive to instruc-
tion reordering. Suppose that the addition of the two terms in function h were reordered
as in function k in Figure 5.3. Function k does not share any common intermediate states
with f even though their algorithms comprise the addition of otherwise identical terms.

5.6 Perturbation analysis

In this section, a better structural comparison algorithm is presented, called perturbation
analysis. A perturbation function P : is a localised state transformation that
given a state s returns P(s) . A perturbation is localised in the sense that the
transformation is applied to a single variable in a state. If unambiguous, P(s;) is taken to
mean P is applied to the variable used or defined in state i, otherwise an index is added,

68 5.6. Perturbation analysis

Figure 5.4: An illustration of two congruent procedures f and g perturbed at states i, 7,
m and n, resulting in new final states for which Pi(sfc) = P;(s%) and Pm(s}c) = Pu(s%).

e.g. P(s1,). The intuition is that perturbation induces a sufficiently distinct final state,
and two structurally similar procedures should, for some variable pair, result in the same
deviant state. The more such variable pairs there are, the more structurally similar the
procedures. This may be thought of as an analogue of differential fault analysis [181, 182].
A more formal definition is as follows.

Definition (State congruence) Given two congruent procedures f and g, and a pertur-
bation function P that is applied at state ¢ in f resulting in the final state Pi(s}f) such

that Pi(s}f) :;3 and there exists a state j in g that results in the final state P;(s%) such

that Pi(sjf) = Pj(s}), then we say that states i and j are congruent in P. Alternatively,
we say that ¢ and j are in a congruent set of P. The expression P;(sy) is used to refer to
the final state when P is applied to s;, that is

Pl<8f) :Cn G’L*l Q+1 P G...CH(S())

Figure 5.4 shows an example of procedures f and g that are congruent as they have the
same final state from a common input state. In addition, when P is applied to states ¢
in f and j in g, they reach the same deviant output state denoted by Pl-(s}f) = Pj(s%).
Thus, states ¢ and j are congruent in P. Similarly, states m and n are congruent in P.
Note also that ¢ and j are in a different congruent set as m and n as the final states are
distinct.

An example of a perturbation function is the definition-increment operator, P%/(x) =
r+1 . Applying P¥(s;) is taken to mean “post-write increment the variable defined
at s;”. Applying this to our example, Pdef(sf;) results in the final state (in terms of the

input parameter a)

5. Perturbation analysis 69

Congruence set

wes PuSE(sf) =(w=a(a+3)+1) 1
Pd (S)=@w=(a+1)(a+2)+1) Puse(sf)_ (v=ua(a+3)+1) 1
szj;(s)= (w=uala+3)+1) Puse(sf) (w=(a+1)(a+2)+1) 2

5 (f)—<v—a(a+2)+2> Ppee(sh) = (v =a(a+2) +2) 3

P (sT) = (v=a(a+2)+2) Puse (s f)=(v—(a+2)(a+1)>

def(s)=(v={(a+2)*(a+2) Pgee(s f) == (a+1)(a+2)

"ef(sh) (v =a(a+2) + 2) Ppse(s ﬁ =(w=(a+1)(a+2)+1) | 2

def(s'w (v=a(a+2)+2) Pie(sp) = (v =a(a+3)+1) 1
P (o) = (0 — ala +2) + 2 e ; “osetaty s

def / ky _ _ PYsc(s%) =(v=a(a+2)+ 2 3
R = =aatn Puse(s £ ==t | 2

(a) P of Proe(s3) = (v=a(a+3)+1) 1
(b) Ppuse
Figure 5.5: a. Perturbation function P (z)= x+1 applied to our running example.

Instructions £3, £4, hi1, h2, k1 and k2 are congruent in P%/. b. Perturbation function
Pvs¢ applied to our running example produces three congruent sets: £2, £3, hl, k2 |

£3, h1, k2 and f4, h2 k1 | corresponding to the two x terms and the constant 1
term.

Pt = v=a(a+2)+2

The same perturbation applied to P4/ (s%) and P%/(s}) produces a matching final state

Pl (o) = PR () = P (s5) = v =ala+2) +2

Extending this to the rest of the states, we obtain the congruent set under P9/ comprising
£3, f4, h1, h2, k1 and k2. On the other hand,

P (s)= v=(a+2) (a+2) = v=ala+2)+2

implying that instruction gl is not in that set. The other possible final states P*(s;)
are shown in Figure 5.5a.

The second perturbation function is the use-increment operator, P"*¢, which is similar
to P9 except that P“* operates on variable uses instead of definitions. Informally,
PU¢(s;;) can be described as “pre-read increment the k' variable used in state i”. A
subscript is appended to the state index as a state may use more than one variable. If
P"#¢ is applied to our example again, the final states in Figure 5.5b are obtained.

Undefined behaviour may occur when the domain of a transformed variable x, written
dom(z'), is undefined. Since our example consists solely of integers it is easy to see that
if dom(x) is defined, then dom(z') is also defined. However, if x were to be used as an
index into an array, then the validity of dom(z’) depends on whether it exceeds the array
bounds.

5.7 Guard functions

Perturbation analysis is performed by instrumenting, that is, adding additional instruc-
tions to, all possible perturbation sites in a function, one per variable of interest according

70 5.8. Perturbation-based indexing

to the perturbation function P. The program is modified to add a guard input parameter
guard which is of int type, and each site is guarded with a guard function Gj : int bool
that activates the transformation P; if it evaluates to true. The function G*™9¢ which
activates one guard at a time, is defined as

single | true, guard =1
G (guard) = { false, otherwise
A second guard function is defined for when more than one active site is desired. The
following guard function, G¥*¢ct" allows this.

; true, (guard >>i)&1 =1

bitvector o)
Gi (guard) = { false, otherwise
Guard G¥*vector allows the matching of variables that are split or merged as a result of
compilation, for example in partial loop unrolling optimisations.

Given an existing test suite, the congruent sets can be automatically derived by iterating
through all values of the guard variable and solving for fg(x, guard) = hg(x, guard) where
fa and hg are the guarded versions of f and h, and = are the test cases.

Solutions are of the form (guard;, guard;) which, if G*™9' is used, imply the pair of
sites (7,7) are congruent. The set of congruent pairs for our example in Figure 5.5b is

(3,5),(2,2),(1,3) . The Jaccard coefficient is used to measure the structural similarity
between f and h. Let S S" be the set of congruent pairs and S¥ S" be the set of
perturbation sites, then the structural similarity of f and h is given by

g St 6

5.8 Perturbation-based indexing

Perturbation-based indexing (PBI) follows from perturbation analysis and is similar to
test-based indexing (TBI), except that f is transformed to its guarded form, fg. Output
Og, which consists of an output state for each active perturbation site in S, is then
obtained by executing fo (I, guard). As with TBI, npp; is defined to be the number
of hashed input-output pairs H(1,Q,),...,H(I,Q,) tobe included in the index.
Because the search space of variables whilst performing perturbation analysis can be large,
the number of perturbation sites explored is restricted by npg;.

To evaluate TBI and PBI, the definitions of precision, recall and the Fy-measure in Sec-
tion 4.7 are reused.

5.9 Implementation

Disassembly was performed using the Dyninst binary instrumentation framework.The
assembly-to-C translator was based on the Bochs CPU emulator [183] and was imple-
mented as a Dyninst plugin in 1,581 lines of C. The compile-time library that implements

5. Perturbation analysis 71

Gbitvector Gsingle
Pdef Puse Pdef Puse

B vsB 122/143 (85.3%) 145/167 (86.8%) 8/8 (100%) 12/12 (100%)
B vsI 46/129 (35.7%) 36/179 (20.1%) 4/9 (44.4%) 4/13 (30.8%)
B vsS 0/129 (0%) 0/167 (0%) 0/9 (0%) 0/13 (0%)

I vsB 63/143 (44.1%) 58/162 (35.8%) 4/7 (57.1%) 4/11 (36.4%)
I vsI 113/129 (87.6%) 147/174 (84.5%) 8/8 (100%) 12/12 (100%)
I vsS 0/129 (0%) 0/162 (0%) 0/8 (0%) 0/12 (0%)

S vsB 0/143 (0%) 0/162 (0%) 0/8 (0%) 0/11 (0%)

S wvsI 0/129 (0%) 0/174 (0%) 0/9 (0%) 0/12 (0%)

S ((((

vs S 128/129 (99.2%) 155/162 (95.7%) 9/9 (100%) 12/12

Table 5.1: Structural similarity between three sorting algorithms bubblesort (B), inser-
tionsort (I) and selectionsort (S). The comparison is between source and the binary com-
piled with gcc -00 using the perturbation functions P** and P9/ and the two guard
functions G*9'e and GYitvecter,

the x86 instruction semantics was written in 1,192 lines of C. Function prototypes were
obtained using the output of gcc -aux-info. All experiments were carried out on an
Intel Core 2 Duo machine running Ubuntu 12.04 with 1 GB of RAM.

5.10 Evaluation

The most important questions appear to be the following.

1. What is the accuracy of perturbation functions P, P%¢ and guard functions
Gsz’ngle Gbitvector?

2. Do compiler optimisations or the compiler affect accuracy?

3. What are the optimal values for the number of test-based and perturbation-based
indices, or nyg; and npgy respectively?

4. What is the accuracy of test-based and perturbation-based indexing?

Two data sets were used in the evaluation. The first set, or the sorting set, comprised
five well-known sorting algorithms — bubblesort, insertionsort, selectionsort and quicksort.
The algorithms as listed in Wikipedia.org and the Rosetta.org code repository were used.
The second data set consisted of 100 internal functions, and comprising 172,648 instruc-
tions, from coreutils 6.10, also called the coreutils set. These functions were chosen
as they did not make system or API calls.

5.10.1 Perturbation and guard functions

As a first test, structural similarity analysis was performed on three sorting algorithms:
bubblesort, insertionsort and selectionsort. The functions were compiled with gcc -00,
then translated to C and instrumented with the two perturbation functions, P9/ and
Pus¢ using the two guard functions, G*™9 and G¥ector giving a total of four possible
combinations. A randomly initialised array of 100 integers was used as input, and the

72 5.10. Evaluation

B R-BO R-I
W-BO | 4/8 (50%) 4/8 (50%) 2/7 (28.6%)
W-I | 2/7(28.6%) 2/7 (28.6%) 6/6 (100%)

(a) Bubblesort/Insertionsort

W-Half W-First ‘W-Last R-Half R-First R-Last

W-Half | 16/16 (100%) - _ 5 - -
W-First | 0/16 (0%) 16/16 (100%) - . -]
W-Last | 0/16 (0%) 0/16 (0%) 16/16 (100%) - - -
R-Half | 0/13 (0%) 0/13 (0% 0/13 (0%) 10/10 (100%) - -
(0%)
(0%)

)
R-Last | 0/13 (0% 0/13 (0% 0/13 (0%) 0/10 (0%) 2/10 (20%) 10/10 (100%)

(
(0%) (
R-First | 0/13 (0% 0/13 (0%) 0/13 (0% 0/10 (0%) 10/10 (100%)
(0%) (
)

(b) Quicksort

Figure 5.6: a. Structural similarity between Wikipedia-Bubblesort (W-B), Wikipedia-
Bubblesort-optimised (W-BO), Wikipedia-Insertionsort (W-I), Rosetta-Bubblesort-
optimised (R-BO), and Rosetta-Insertionsort (R-I). b. Structural similarity of quicksort
with different pivot points for the Wikipedia and Rosetta implementations. Half - Pivot is
the (n/2)" element, First - Pivot is the 0 element, Last - Pivot is the (n 1) element.

structural similarity between the three functions was measured using the method described
in Section 5.7. The results are listed in Table 5.1.

If the threshold for structural similarity was set at 50%, all combinations except for G*"9'
and P had a 100% detection rate. Looking at the results for G¥ector the similarity
was never 100% when it should have been. The reason was because G¥ect" allows all
possible combinations of perturbations, some of which could not be matched.

It was also observed that the similarity between bubblesort and insertionsort obtained
using Gt was not 0%. The spurious match was found to be due to the “swap block”
in bubblesort and the innermost a[iHole] = al[iHole-1] assignment of insertionsort.
Because this assignment was executed the same number of times as the swap block in
bubblesort, they were found to be congruent.

To conclude, P“*¢ performed better than P%/. Apart from the results, G¥“" has a
severe disadvantage in the number of perturbation sites it can accommodate, which in
this case is 32. In contrast, G*"9 is able to accommodate up to 232 sites. These two
observations motivated the decision to use G*™9'¢ and P“*¢ for the rest of the experiments.

5.10.2 Comparison of different implementations

The aim of the next set of experiments was to test the ability of perturbation analysis
to differentiate between implementations of the same algorithm, in this case the imple-
mentations of bubblesort and insertionsort from Wikipedia (W-BO, W-I) as well as the
Rosetta.org code repository (R-B, R-BO, R-I). The difference between R-B and R-BO
was: the number of iterations of the inner loop decreased with each successive iteration
of the outer loop of R-BO. In addition, the quicksort algorithm was varied by tuning it
to use different pivots (W-Half, W-First, W-Last, R-Half, R-First and R-Last).

Perturbation analysis found no difference between the insertionsort implementations (Ta-
ble 5.6a). On manual inspection, the only noticeable difference was the starting index
of the outer loops; the outer loop of the Rosetta algorithm started from index 1, and

5. Perturbation analysis

73

nrpr

Precision

Recall

1

105/169 (62.1%

105/105 (100%
105/105 (100%

() (100%)
2 105,165 (63.6%) (100%)
5 105/165 (63.6%) | 105/105 (100%)
10 | 105/165 (63.6%) | 105/105 (100%)
100 | 105/165 (63.6%) | 105/105 (100%)

Table 5.2: The precision and recall rates for self-test gcc -02 versus gcc -02, using TBI
with nrgr = 1,2, 5, 10, 100, the number of input-output pairs.

that of Wikipedia started from index 0. Not surprisingly, when compared with the bub-
blesort algorithms, the Rosetta insertionsort gave the same result as the Wikipedia one.
The Rosetta bubblesort (R-BO), however, was not the same as its Wikipedia counterpart
(W-BO), due to the outer loop. While the number of iterations of the R-BO inner loop
decreased by one at each successive outer loop iteration, the W-BO algorithm was more
optimised, with each successive inner loop limit determined by the last swap encountered
in the previous iteration. Despite this difference, the total number of executions of the
swap block was the same amongst all bubblesort algorithms. As a result, perturbation
analysis still found their similarity to be 50%.

In contrast, perturbation analysis was not able to find any similarity between the same
quicksort implementation given three different initial pivots, resulting in almost no matches
(Table 5.6b). The choice of pivot affected the dynamic behaviour of the algorithm too
much. As to the different quicksort implementations, the Wikipedia-Quicksort (W-Q)
partitions the array into two with a single pointer in an ascending for-loop, swapping
elements less than the pivot towards the bottom indices. The Rosetta-Quicksort (R-Q)
algorithm does the partitioning using two pointers in a two-nested while loop, one pointer
starting from index 0, the other from index n 1, and completing the partition when
the two pointers cross each other. Moreover, the W-Q algorithm had three swap blocks,
while R-Q had only one. As a result the number of perturbation sites was less in the
R-Q case—5 versus 8—and perturbation analysis could not find any similarity between
the two implementations.

5.10.3 Coreutils data set

In this set of experiments, the accuracy of test-based indexing as described in Section 5.4
was evaluated. The first step was to study the effect of nrg;, the number of TBI input-
output pairs, on performance. Table 5.2 shows that the precision and recall increased as
nrpgr increased, peaking at nppr = 2. The maximum precision and recall rates obtained
for TBI was 63.6% and 100% respectively. TBI generated 84 unique MD5 hashes for the
105 functions analysed.

Keeping np; constant at 10, a further experiment was performed to study the effect of
including nppgr, the number of perturbation-based input-output pairs. The value of npg;
which gave the best performance was found to be 1, with precision and recall at 70.9%
and 100% respectively (Table 5.7a).

The largest group giving the same input-output hash consisted of a group of four func-
tions dealing with comparisons of data structures (Table 5.7b). On manual analysis,
it was discovered that 1ls.c:dev_ino_compare and du.c:entry_compare were in fact

74 5.10. Evaluation

exact copies of each other. The reason for the unexpected match between functions
fts-cycle.c:AD_compare and src_to_dest_compare was: both functions dealt with data
structures that happened to have the same pointer offsets.

5.10.4 Compilers and compiler options

The aim of this set of experiments was to test the accuracy of TBI and PBI to detect the
coreutils functions compiled with two compilers, gcc and clang, using different compile
options. The results are shown in Table 5.3.

The first observation was that TBI, or npg; = 0, was out-performed by TBI/PBI in all
data sets. The F, measure of PBI peaked at npg; = 2 for gcc and overall. This was
surprising since the performance was expected to improve with larger values of npg;, and
with more perturbation sites in use. One possible explanation is that certain compiler
optimisations created variables that had unique perturbation behaviour. There was ten-
sion observed between precision and recall, especially in the two sets of clang-compiled
functions; higher precision was accompanied by lower recall, and vice-versa.

False negatives were partly due to “function clones”—variants of a frequently-called rou-
tine that the compiler creates to optimise run-time performance. As a result of cloning,
the parameters and their number can change, so that the function prototype given by gcc
—aux-info no longer matches and thus the input state was not initialised correctly. Other
false negatives were due to invalid pointer dereferences, resulting in undefined behaviour.

npgr | Precision Recall
1 105/148 (70.9%) | 105/105 (100%)
2 105/149 (70.5%) | 105/105 (100%)
3 105/149 (70.5%) | 105/105 (100%)
4 105/153 (68.6%) | 105/105 (100%)
5 105/153 (68.6%) | 105/105 (100%)
10 105/150 (70.0%) | 105/105 (100%)
20 105/150 (70.0%) | 105/105 (100%)
100 | 105/149 (70.5%) | 105/105 (100%)
(a) Precision/Recall
Function Num.
insns
fts-cycle.c:AD_compare 30
cp-hash.c:src_to_dest_compare | 30
du.c:entry_compare 30
1ls.c:dev_ino_compare 30

(b) Hash collisions

Figure 5.7: a. The precision and recall rates for PBI for npg; = 1,2,...,5,10, 50, 100, the
number of perturbation input-output pairs keeping nrg; = 10. b. The largest group with
hash collisions consisting of functions that compare between data structures. The last
two functions, entry_compare and dev_ino_compare, were found to be copy-and-pasted
code clones. The other false matches were due to insufficient code coverage.

5. Perturbation analysis 75

Data set | npgr Precision Recall F,
0 88/146 (60.3%) 88/90 (97.8%) 87.0
1 87/133 (65.4%) 87/88 (98.9%) 89.7
gcc03 2 87/128 (68.0%) 87/88 (98.9%) | 90.7
5 87/132 (65.9%) 87/88 (98.9%) 89.9
10 86/128 (67.2%) 86/88 (97.7%) 89.6
0 91/151 (60.3%) 91/98 (92.9%) 83.8
1 91/138 (65.9%) 91/98 (92.9%) 85.9
gccels 2 91/135 (67.4%) 91/98 (92.9%) | 86.4
5 91/139 (65.5%) 91/98 (92.9%) 85.7
10 91/139 (65.5%) 91/98 (92.9%) 85.7
0 85/139 (61.2%) 85/86 (98.8%) 88.0
1 80/111 (72.1%) 80/86 (93.0%) 87.9
clang02 | 2 83/114 (72.8%) 83/86 (96.5%) | 90.6
5 84/122 (68.9%) 84/86 (97.7%) 90.2
10 80/106 (75.5%) 80/86 (93.0%) 88.9
0 80/134 (59.7%) 80/85 (94.1%) 84.4
1 75/106 (70.8%) 75/85 (88.2%) 84.1
clang03 | 2 79/115 (68.7%) 79/85 (92.9%) 86.8
5 81/121 (66.9%) 81/85 (95.3%) | 87.8
10 76/104 (73.1%) 76/85 (89.4%) 85.6
0 344 /567 (60.7%) 344/359 (95.8%) 85.9
1 333/485 (68.7%) 333/357 (93.2%) 87.0
Overall 2 340/495 (68.7%) | 340/357 (95.2%) | 88.4
5 343/515 (66.6%) 343/357 (96.1%) 88.3
10 333/477 (69.8%) 333/357 (93.3%) 87.4

Table 5.3: Precision and recall for coreutils compiled with gcc -03 (gcc03), gcc -0s
(gccls), clang -02 (clang02) and clang -03 (clang03), keeping nrpr = 10. The ref-
erence set used was coreutils compiled with the default setting gcc -02.

5.11 Discussion

5.11.1 Undefined behaviour

Since perturbing variables has the potential to produce undefined behaviour in code,
the ways in which undefined behaviour occurred in practice were examined. Numerous
instances of segmentation faults and three instances of an infinite loop were observed
as a result of perturbation. The segmentation faults were caused by invalid memory
dereferences, either because of an invalid pointer, or an invalid array index.

Two solutions were adopted to deal with this issue. The first was to instrument a simple
check before each memory dereference to see if the address was a valid one. If this check
failed, the function was made to immediately exit. The 9 most significant bits of ESP was
used as the definition of the valid address space, and it was found that this worked for
all but one case. For this last case, the array index slightly exceeded the array bounds
whilst being updated in a for-loop. This was not caught by the pointer check and this
perturbation site was removed.

76 5.11. Discussion

In the second approach, it was observed that the array size was often passed as a param-
eter. Thus, to prevent the size from being too large, whenever an array was found to be
one of the function parameters, the value of all integer parameters was capped to that
of the array size. A more rigorous approach to deal with the problem of invalid memory
dereferences is to use fat pointers [184, 185]. However, it was observed that, thus far,
undefined behaviour was sufficiently mitigated by the above-mentioned simple techniques
so as not to have it severely affect the detection rate.

The infinite loops were all caused by perturbations, in the form of increment statements
++i, made to a decrementing loop counter, e.g. i, causing non-termination of the
loop. The solution was to manually remove the affected perturbation sites.

5.11.2 Indirect jumps and external code

An assumption that was made in this chapter was that the control-flow is statically known.
In reality, there exists indirect jumps, for example due to virtual functions, as well as the
use of function pointers whose targets are not statically known. One possible solution is
to collect and perform analysis on execution traces instead of a static disassembly, relying
on automated code coverage tools to fill in gaps in the control flow.

At the moment, what has been considered are internal functions, that is, functions that
do not rely on external code. Analysing functions that, for example, make system calls
is more involved and the approach used by KLEE [177] is to use the uClibc C library,
or micro-Controller C library. Another approach used by Jiang and Su [176] is to treat
the return value of a system call as another input to the function, eliminating the need
to implement the call.

5.11.3 Function prototyping

As mentioned, the function prototypes were determined using the output of gcc -aux-
info. However, approximating void * with char * caused segmentation faults in some
cases, as they pointed to a data structure and had to be dealt with as such. The solution
was to edit the function prototypes and replace void * with the appropriate struct
pointer.

As a matter of practical consideration, three data types were found to be sufficient:
int, char[] and char **. All bool, char and short variables could be approximated
by an int, since they are passed as a 32-bit value on the stack; all long long 64-bit
arguments could be approximated with two ints; arrays, both one and two dimensional,
could be approximated by a large enough char array; finally all array of pointers could be
approximated by the use of char ** initialised to point to a pre-determined number of
char arrays. In most cases, a struct could either be approximated with char[] or a char
x of the appropriate size, with the exception of seven cases which had to be initialised as
per its constituent member types to prevent segmentation faults. The overall implication
of this is that three type categories: non-pointers, pointers and arrays of pointers, are
sufficient for matching and indexing the majority of variables.

5. Perturbation analysis 7

5.12 Related work

The work that is closely related to TBI/PBI is that of EqMiner [176], which also makes use
of randomised input to find functionally equivalent code using input-output behaviour.
EqgMiner does not deal with intermediate state; instead, it extracts consecutive subse-
quences of statements, which allows it to match, for instance, fragments of bubblesort
and selectionsort. Matching statement subsequences is a complementary technique to
perturbation analysis, although perturbation analysis can match at the granularity of
variables while that of subsequence matching is limited to matching between statements,
which may involve more than one variable. BinHunt [175] performs semantic matching
on basic blocks using symbolic execution and a theorem prover. Matching is done via
pair-wise comparisons of all symbolic formulae generated. However, symbolic execution
is a computationally expensive technique to apply on whole functions [175].

A related problem is software plagiarism and code clone detection. This has been an issue
since at least the 1980s, when IBM brought lawsuits against firms that had cloned the
PC-AT ROM based on ‘software birthmarks—the order in which registers were pushed
and popped [186]. Several techniques have been proposed since, most notably program de-
pendence graphs [164], directed acyclic graphs [187] and program expression graphs [165].
The commercial tool BinDiff [188, 150] does binary similarity analysis, first at the call-
graph level, then at the procedure level by performing graph matching, then at the basic
block level using instruction mnemonics. Another binary matching tool is Pierce and Mc-
Farling’s BMAT [149], originally designed to propagate profile information from an old,
well-documented build to a newer one for testing purposes.

78

6

Prototype recovery via inlined data
source tracking

“Type information encapsulates much that distinguishes low level machine code
from high level source code.”

— Mike Van Emmerik [13]

As opposed to high level source code, type information is non-existent in machine code.
Type recovery for machine code is thus an important problem in decompilation and in
reverse engineering in general, as evident from the numerous papers that have been written
on the subject [12, 26, 39, 13, 29, 189, 190, 36].

A sub-problem in this domain is the recovery of function prototypes. Prototype recovery
is important for at least two reasons. Firstly, prototypes are important for interprocedural
analysis [11]; secondly, prototypes are needed for determining valid input to a procedure.
In our context, prototype recovery is needed to perform perturbation analysis, discussed in
the previous chapter (Chapter 5), so that the appropriate number and type of arguments
can be placed on the stack or in the registers.

Previous work in prototype recovery has focussed on static methods and on basic types
such as integers and string constants [11]. However, static methods have to deal with at
least two issues. Firstly, pointers in machine code induce aliasing problems, more so than
in high-level source code, due in part to complex pointer expressions. This problem is
further aggravated by the stack, which must first be logically split into local variables,
register spills, parameters, caller and callee saves and compiler-generated storage such as
return addresses and frame pointers. Secondly, variables with more than one live range
can either be split into separate variables or united as one. This decision to split or to
unite, which can affect the precision of the type assignment, is undecidable in general [13].

This chapter adopts an approach to prototype recovery that is based on dynamic analysis
and differs from previous approaches in two fundamental ways. Firstly, it does not make
the assumption that an existing set of test input is available. Indeed, dynamic analysis
will not be meaningful without first inferring valid input to the procedure. Secondly, the
approach exploits the fact that in practice function prototypes congregate into a finite
and manageable number of categories, enabling a simpler type system to be used, yet still
being able to recover complex parameter types such as recursive data structures. As a

79

80

6.1. Survey of prototypes in coreutils and linux

coreutils linux

Freq. Argslist Percentage | Freq. Argslist Percentage
758 N 18.4% | 83,845 P 31.3%
697 P 16.9% | 38,438 PP 14.4%
372 PP 9.0% | 31,019 - 11.6%
351 - 8.5% | 27,124 PN 10.1%
272 PN 6.6% | 12,469 PPP 4.7%
267 NN 6.5% | 9,356 PNN 3.5%
141 PPN 3.4% | 8,977 PPN 3.4%
132 NP 3.2% | 8,774 N 3.3%
107 NQ 2.6% | 4,959 PNP 1.9%
88 PNN 2.1% | 3,598 PPPN 1.3%

Table 6.1: The frequency and percentage of the most common function arguments
(argslists) in coreutils and linuz (N refers to a non-pointer, P represents a pointer, Q
represents a pointer to pointers).

side note, an additional benefit of performing dynamic analysis is it naturally fits with
perturbation analysis.

This chapter makes the following contributions:

Of the function prototypes in the GNU coreutils tool suite 6.10 and the Linux
kernel 3.0.1 surveyed, 99.0% had 6 parameters or fewer. Pointers to user-defined
data structures, i.e. struct X *, was the most common parameter type. The
majority of data structures was found to be either consisting of all non-pointers
or all pointers, allowing them to be approximated by char * and char *x* types
respectively (Section 6.1).

The algorithm for prototype recovery is inspired by software exploit detection and
software testing. Inlined data source tracking (Section 6.6), the primary type in-
ference mechanism, was inspired by the principle of conformant execution; proba-
bilistic branch negation is an additional technique used to improve code coverage
(Section 6.7).

Unlike prior prototype recovery algorithms, the algorithm is able to recover complex
types, such as recursive data structures.

The algorithm is able to correctly recover 84% of function prototypes from coreutils,
and 62% of function prototypes from glibc, out-performing the current state-of-the-
art prototype recovery algorithm. The worse case timing is 0.4 seconds per function
for coreutils and 1.65 seconds for glibc (Section 6.11).

6.1 Survey of prototypes in coreutils and linux

Two data sets were surveyed: 4,115 functions from the coreutils 6.10 tool suite, and
267,463 functions from the linux kernel version 3.0.1.

6. Prototype recovery via inlined data source tracking 81

A prototype can be divided into the list of arguments, the argslist, and the return type. By
grouping all data types into three categories—mnon-pointers (N), pointers (P) and pointer
to pointers (Q)—the first task was to count the frequency of argslist categories expressed
in terms of N, P and Q. The prototypes were obtained using the gcc compiler option
——aux-info. The most commonly occurring argslist categories are listed in Table 6.1.
There were differences in the order of the most common arglists, although the single
pointer (P), double pointer (PP) and void argument categories (=) were among the most
common in both data sets. What was interesting was that the frequency order: P, PP, -
was the same for both sets of functions.

There was, however, more consistency in the number of parameters per function. Approx-
imately 35% of functions had one parameter; about 28% had two; 15% had three; and
about 10% had no function parameters (Figure 6.1). The function with the most param-
eters was the cq-enet_rq-desc_dec (Cisco ethernet receive descriptor decode) function
from linuz with 29. Function prototypes with six or fewer parameters accounted for 99.0%
of all prototypes for both data sets.

40

coreutl s I
| 1
5 .

20
25
20

15

Percentage | %|

1o

o 1 2 2 4 5 E T B % 10 11 12 1% 14 15

Humber of parameters

Figure 6.1: Number of parameters for functions in coreutils and linuz.

In terms of individual parameter types (500,000 in total), there were 354,248 occurrences
of a pointer type, or 70.0%, among all parameters; 149,966, or 29.7%, were non-pointers;
pointer to pointers numbered 1,565, or 0.3% of all parameters. Among the pointer types,
pointers to user-defined data structures, or struct types, were the most common (55.2%),
followed by pointers to a basic type, for example char * or int * (13.9%), then by union
types (0.3%) and finally function pointers (0.1%).

Next, a closer examination of the struct types in use was performed, since struct
pointers were the most popular parameter type overall. Pointer types were similarly
mapped to P, non-pointers to N and pointer to pointers to Q. There were a total of 39 and
11,256 different struct types in coreutils and linuz respectively. The ten most popular
struct layouts are listed in Table 6.2. Interestingly, the two most frequently occurring
structs consisted of two and six non-pointers, accounting for 27% and 32% of all structs
in coreutils and linux respectively. Aside from a few exceptions, the most frequently
occurring data structures consisted of either all non-pointers or all pointers, accounting
for more than 50% of all structs.

82 6.2. Algorithm design

coreutils linux
Freq. Members Percentage | Freq. Members Percentage
6 NN 15.4% | 2,333 NNNNNN 20.7%
5 NNNNNN 12.8% | 1,241 NN 11.0%
3 PPPPPP 7.7% | 934 NNN 8.3%
3 PPP 7.7% | 746 NNNN 6.6%
2 PPPPPN 51% | 664 N 5.9%
2 PPPPP 5.1% 541 PPPPPP 4.8%
2 NP 51% | 480 NNNNN 4.3%
2 NNP 5.1% 294 PP 2.6%
2 NNNNN 5.1% 244 P 2.2%
1 PPPP 2.6% 191 PNNNNN 1.7%

Table 6.2: Most common constituent member types of user-defined struct types found
in coreutils and linuz.

The implication of Table 6.2 is that from the perspective of performing type recovery, the
majority of data structures can be approximated with either a large representative char
array, for structures of the form NNNN. .., or a pointer to pointers, for structures of the
form PPPP. ... This simplifies the type recovery process significantly since we need only
consider three type categories: P, N and Q.

6.2 Algorithm design

We observe that it is rarely intentional for a function to use memory that has not been
uninitialised by its caller or access memory addresses that are out-of-bounds. Hence,
one approach is to use these two criteria, uninitialised memory and invalid pointers, to
validate candidate prototypes: invalid solutions should fail to meet one or both conditions;
conversely, valid solutions should satisfy both conditions. This is analogous to a valid type
assignment satisfying all of its type constraints.

This chapter makes the following assumptions.

1. It is assumed that f does not contain uninitialised memory errors.

2. Tt is assumed that complete control-flow information is available. Control-flow re-
construction is considered to be a separate problem from prototype recovery.

3. It is assumed that standard x86 calling conventions, such as stack-based and fastcall
conventions, are used.

The proposed algorithm is based on conformant execution, which is described now.

6.3 Conformant execution for type recovery

A concept recently coined by Jacobson et al., an execution trace of a program is said to
be conformant to a policy, which is a set of requirements, if it satisfies that policy for

6. Prototype recovery via inlined data source tracking 83

all its program states [191]. The aim of enforcing a conformant execution policy is to
stop an attacker from exploiting a software vulnerability in a program in order to execute
his or her code. For example, in the context of preventing code injection-based exploits
such as buffer overflow exploits, an appropriate policy is to require that the instruction
pointer cannot point to memory that has both the write and execute bits set. This is also
known as the W X data execution prevention policy [192]. As a second example, in the
context of preventing code-reuse attacks, such as return-oriented programming in which
an exploit populates the call stack with a list of addresses in order to execute several short
instruction sequences that end with a retn instruction, an appropriate policy is to check
the validity of all control-flow source-target pairs, also known as maintaining control-flow
integrity [193].

While conformant execution is useful for detecting unintended code execution, in this
chapter it is adapted for the purposes of type recovery. The main premise is that a
valid prototype, when translated to an execution trace, should conform to certain validity
policies, for example those defined in Sections 6.4 and 6.5.

The goal is to infer the prototype of a function, which involves inferring the argslist
and the return type. An argslist defines an input state, and the two terms are used
interchangeably. A program state, s, is represented by the tuple

S= GyevvyQuy Ty Ty,

where a; are the input parameters, x; are the program variables and v is the output
variable. At the input state, s, only a; are defined. At the final state, sy, v is defined.
Given an input state sg and a policy F', s is valid if and only if subsequent states conform
to F,ie. F(s1) F(s2) ... F(sy) is satisfied. Policy F' determines the precision of
the analysis: if F' contains too many requirements, or is too restrictive, then no valid s
may be found; conversely, if ' contains too few requirements, or is too permissive, then
too many sg are valid solutions. Our policy for prototype recovery is made up of two
components, namely memory validity, F,cn, and address validity, F,qq4:-

6.4 Memory validity, F},..,

The goal of the memory validity policy, Fj,em, is to ensure that no uninitialised memory
is used by the function. Although the use of uninitialised memory may be an error in the
function, this is rarely intended and the assumption made is that a function given valid
input does not contain such errors.

Consider the following caller-callee code snippet which follows a typical stack-based calling
convention. The dereferencing of pointer EBP + 8 at line g3 is of interest, as it may cause
an uninitialised value on the stack to be used. Assuming the stack is empty at instruction
f1, there are three items on the stack by the time execution reaches instruction g3: the
constant 3, the return address £3 and the saved EBP from g1. Therefore, EBP + 8 logically
points to a value placed by the caller function f, in this case 3.

84 6.5. Address validity, Fyqq,

fi: push 3

f2: call g
£3:
g:

gl: push EBP
g2: mov ESP, EBP
g3: mov EDX, [EBP + 8]

However, given only instructions g1, g2 and g3, what is inferred is that the four bytes
located at EBP + 8 are in use in g, but their type is not known.

To implement F),.,,, the heuristic that the contents of uninitialised memory remains the
same before and after the arguments are written by the caller is used. Therefore, in-
strumentation is inserted before the first instruction so that the stack and CPU registers
(excluding the stack and frame pointer) are populated with a predefined known magic
value, say MAGIC (lines g0i and gOii in Figure 6.2). The initInputState function
simulates the caller function, which populates the input parameters (line g0). For instru-
mentation inserted before an instruction, we use the Roman numerals i, ii, For
instrumentation inserted after an instruction, we use the suffixes a, b, We use the
_C ... notation to indicate inlined C, analogous to the__ asm ... notation for inlined
assembly.

Next, before every pointer dereference or register use an assertion is inserted to test if
the memory pointed to or the register contains the magic value. Where the register read
is a sub-register, e.g. AL, the test is made to the whole register, i.e. EAX. Suppose the
prototype, x, was the empty argslist, -. Upon execution, the assertion fails at line g3i
since the address location EBP + 8 is uninitialised, F;,.,, is violated and thus z is not
valid. On the other hand, if x was the argslist N consisting of a single integer, then the
four bytes at location EBP + 8 is populated and the assertion evaluates to true. Note
that the argslist NN will similarly be valid since it also produces a conformant execution
trace. Here the principle of Occam’s razor is used and N is chosen over NN since it is the
simpler explanation.

There is, however, the issue of false positives since some registers are used as temporary
local variables and have their contents read to be stored on the stack at the beginning
of the function. The process of reading and storing these registers will be flagged as
violating Fj.en. Instructions such as xor EAX, EAX also generate false positives, since
although syntactically register EAX is read, semantically its value is over-written. To deal
with the first case, only the fastcall registers, EAX, ECX and EDX are pre-populated with
MAGIC. To deal with the second case, these instructions are not instrumented.

6.5 Address validity, Fi .4

As mentioned, it is assumed that a function, given valid input, should not access out-of-
bounds memory. The code snippet in Figure 6.3 gives an example of a potential out-of-
bounds memory read. In instruction g4, the memory address being dereferenced is EDX.

6. Prototype recovery via inlined data source tracking 85

g:
_C
g0i: int stack[max];
g0ii: for(i=0;i<max;i++) stack[i] = MAGIC;
g0: initInputState();
gl: push EBP
g2: mov ESP, EBP
_C
g3i: assert(*(int *)(EBP + 8) != MAGIC, "F,,., violated");

g3: mov EDX, [EBP + 8]

Figure 6.2: An example of instrumenting a function to implement policy Fjep,.

g:

_C
g0i: int stack[max];
g0: initInputState();

gl: push EBP
g2: mov ESP, EBP
g3: mov EDX, [EBP + 8]
_C
gli: assert(EDX >= &stack[0] &&
EDX <= &stack[max], "F,44 violated");

gd: mov EAX, [EDX]

Figure 6.3: An example of checking address validity, which constitutes policy F,q4q,

Policy F,44- constrains memory addresses to be within the bounds of the stack, and this
is asserted prior to executing g4 in instruction g4i. If this assertion fails for argslist x,
FLqq4r is violated and z is not a valid solution. In practice, this policy will not infer any
valid solutions for some functions since global variables lie outside of the local stack frame.
This issue is addressed by inlined data source tracking (Section 6.6).

The implementation of both F,.,, and F,44 enforces the policy that uninitialised memory
is not read and out-of-bounds memory access is not permitted.

However, there are two aspects to finding a valid z: firstly, the data structures involved
need to be inferred; secondly, there is also a need to infer the appropriate values with
which to populate those data structures. While simple, the downside of using only F,.,,
and Fqq- is that many executions of f are potentially required to find a valid . In the
next section, a technique, called inlined data source tracking (IDST), is proposed. IDST
addresses these two issues and quickly finds candidate data structures from only one or a
few executions, accelerating the process of reconstructing a valid x.

86 6.6. Inlined data source tracking

6.6 Inlined data source tracking

It is observed that traversing a data structure consists of pointer dereferences and pointer
arithmetic. The addressing modes used in pointer dereferences tend to be one of the fol-
lowing four types: base-only, e.g. [EAX], base-immediate, e.g. [EAX + 4], base-indexed,
e.g. [EAX + EDX], and base-scaled, e.g. [EAX + 4 * EDX]. Pointer arithmetic tends to
be simple addition involving small constants. Pointer subtraction is rare in practice and
is currently not dealt with, but it is not difficult to implement.

The key idea of inlined data source tracking (IDST) is to exploit the fact that the base
pointer of a data structure is likely to be constant in its upper, or most significant, bits,
with its lower bits updated to point to the various data structure components. Thus a
data structure can be tracked by storing its source information in the upper bits of the
base pointer, and only rewriting the pointer with a proper address immediately prior to
an dereference.

The requirements for the tracking scheme were the following.

1. The data sources to be tracked include all input parameters and global variables.

2. The number of successive pointer dereferences made using the same base pointer
needs to be tracked, thus allowing the separation of numbers, arrays, pointer-to-
pointers and recursive data structures.

3. The scheme has to allow pointer arithmetic, particularly the addition of small offsets
to the base pointer.

4. The scheme should not track variables that are not data structures. Thus tracking
is to cease when the variable is not used as a pointer, for example when it is used
in multiplication, division or logical operations.

Two schemes were considered: an inlined scheme and a shadow tracking scheme. The
latter scheme was envisaged to use shadow registers and shadow memory. The advantage
of such a scheme is the strict non-interference between tracking data and the actual
computation data. However, the main disadvantage of this scheme is the complexity of
implementing the shadow memory and the shadow computation to be performed for all
the different instruction types in use.

Compared to a shadow tracking scheme, inline tracking is more expedient. The potential
downside, however, is the possible interference between the tracking data and the actual
computation data which could cause incorrect tracking information to be reported. To
deal with requirement 3, all tracking information is encoded in the upper most significant
16 bits, leaving the lower 16 bits for pointer arithmetic. To deal with requirement 4, 8
bits are reserved for use as a “tamper” seal which would be destroyed should the variable
be used in multiplication, division or logical operations. This 8-bit magic number could
be placed altogether, or interspersed with tracking data. The choice was made to place
the magic number the beginning and at the end of the upper 16 bits.

The tracking scheme consisted of the following components (Figure 6.4).

An 8-bit magic value, MAGIC, split into two groups, which indicates that this variable
is still being tracked.

6. Prototype recovery via inlined data source tracking 87

MAGIC |Petoenee| Sowe | AAGIC Offc

Figure 6.4: The encoding scheme for inlined data source tracking.

A 4-bit dereference counter, deref_count which tracks the number of successive
dereferences made with a pointer.

A 4-bit data source identifier, source_ID.

A 16-bit base pointer offset value which allows pointer arithmetic to be performed
without interfering with the tracking. Offsets are assumed to be 2'¢ or smaller.

To implement this scheme, the function is instrumented at four different sets of locations:
at the start of the function, before every register use, before every pointer dereference and
after every pointer dereference. In addition, a segment of the stack is set aside as scratch
space, scratch[smax], and a saved slot is reserved for saving and restoring base address
pointers.

1. At the start of the function, all data sources are initialised, that is, the 8-bit magic
value is set, the dereference counter is set to 0, the source identifier is set to the
unique value assigned to that source.

2. Before every register use, a check is made to see if the 8-bit magic value is present.
If so, the entire 32-bit value of the register is recorded.

3. Before every pointer dereference, the base address register is checked for the 8-bit
magic value. If it is present, its value is copied to the saved slot, its dereference
counter is incremented by one, the 32-bit value is recorded, its 32-bit value is written
to every element in scratch, and lastly the base address is assigned the value of
&scratch. Since the base address now points to &scratch, future dereferences will
use the new encoded value.

4. After the pointer dereference, the base address register is restored with the value in
the saved slot.

In the final implemented scheme, instead of having both F),.,, and F,q4. policies, the
F,em policy is replaced by inlined tracking, while the F 44 policy is retained.

An example of inlined data source tracking is given in Figure 6.5. The output log indicates
that register EAX is an input parameter from instruction g3 and is a pointer since its
dereference counter is one. Register EDX is not an input parameter, since it is not read.
Since EDX is overwritten in instruction gév, it is no longer tracked after instruction g4,
but future reads from the scratch array will continue to track the data structure.

One can leverage this scheme to also infer recursive data structures, such as linked lists
and trees. We say a data structure A is recursive if A contains a member that is a pointer

88 6.6. Inlined data source tracking

g:
-C
g0i: int scratch[smax];
g0ii: EAX = 0xAOOA0000; /* source_ID = 0 */
g0iii: EDX = 0xA01A0000; /* source ID = 1 x/
g0: initInputState();
gl: push EBP
g2: mov ESP, EBP
-C
g3i: if(contains magic(EAX))
g3ii: log("%x n", EAX);
g3: mov EDX, EAX
-C
gli: if(contains magic(EDX))
glhii: EDX = increment_deref(EDX);
ghiii: log("%x n", EDX);
gdiv: for(i=0;i<smax;i++) scratch[i] = EDX;
glv: EDX = (int)&scratch;
glvi:
gh: mov EDX, [EDX]
Expected output:
10: AOOAO000
11: A10A0000

Figure 6.5: An example of inlined data source tracking and the expected output after
execution. The MAGIC bits, which occupy bits 16 to 19 and 28 to 31 are 0xA0O0A0000.
Line 10 indicates that the EAX register (source_ID = 0) is an input parameter and line
11 indicates that EAX is a pointer (with deref_count = 1), while EDX (source_ID = 1) is
unused.

to A. In practice, it is rare for non-recursive data structures to have 2¢ 1 or more nested
levels of pointer indirection. Thus, if the dereference counter for a structure X reaches
24 1, it is likely due to the iterative and recursive procedures required for enumerating a
recursive data structure, and X is assigned the recursive type R. The corresponding data
source is subsequently assigned the NULL value so that it is no longer tracked.

The return variable type is inferred using the heuristic that the return variable, v, is
stored in EAX.

If v is still tracked, i.e. it contains a valid MAGIC value, the type of a parameter or return
variable is derived from the value of deref_count in the following manner.

6. Prototype recovery via inlined data source tracking 89

N, deref count =0

P, deref_count =1

Q, deref_count 2 deref _count <2? 1
R, otherwise

Otherwise, v is assigned type N.

6.7 Probabilistic branch negation

One shortcoming of using a dynamic approach is the inability to reach all code. Two tech-
niques have been proposed in the past to increase code coverage, which can be described
as input data manipulation, also known as automated test-case generation [194, 177], and
control-flow manipulation, used in tools such as Flayer [195]. The former approach was
not considered as input data was used to store tracking information. On the other hand,
the instruction semantics could be modified.

The technique adopted by Drewry and Ormandy is to manually convert one or a few
conditional branches to unconditional ones [195]. A similar approach, called probabilistic
branch negation, is proposed here. However, instead of one or a few conditional branches,
all conditional branches are modified and we define the probability P, [0, 1] that the
branch is negated. For example, let

B:JNZ T,

which is equivalent to

B :if (IZF) goto I;

in C, where ZF is the zero flag and I is the branch target. The negation of B is

B :if (ZF) goto I

Given a random number r [0, 1], the branch is negated with probability P, [0, 1], i.e.

if (r Pyp) B else B.

If P, = 0, the instruction is unmodified from the original. If P, = 1, the branch is always
negated.

6.8 Type system

The six types in the type system are: | N, P, Q, R and . The partial order is given by

>N:>P:>Q:>R:>

90 6.9. Distance metric

C type Maps to
bool, char, short, int N
long long int NN
char *,...,int x* P
void x* P
char(],...,int[] P
char[1[],...,int[]1[] P
char **,...,int *x* Q
void *x* Q
Data structure pointers whose largest type member =N | P
Data structure pointers whose largest type member <: N | Q
Recursive data structures R

Table 6.3: Mapping of C types to the type system.

where :> is the subtype relation. The maximal element is “type not yet inferred”;
the minimal element represents “type conflict”, but it is unused in practice; type N
represents “either a number or pointer-type”; type P, or “pointer-type”, and is a subtype
of N; type Q is a subtype of P, for example a pointer to a structure containing at least one
pointer; finally the recursive data structure R is a subtype of Q.

The mapping of C types to this type system is as follows. Basic C types, such as bool
and char, map to N. Arrays, both one and two dimensional, map to P. Pointer to pointers,
such as char **, map to Q. For a data structure pointer struct A *, the member with
the largest value in this lattice is used. If that member is N, then struct A * maps to P.
Otherwise, if that member is P or higher, then struct A * maps to Q. For example, given
a data structure telephone that has two members, char *name and int number, and a
function that has the prototype int getTelephoneNumber(struct *telephone), the
first argument for getTelephoneNumber will be mapped to Q according to this mapping,
since the parameter is a pointer to a telephone structure and the largest element of
telephone is a pointer. The mapping of C types to this type system is summarised in
Table 6.3.

We define the meet operator, as

o, <y
Ty _{ y, otherwise

The operator is used when combining solutions from multiple runs of the probabilistic
branch negation algorithm.

6.9 Distance metric

The goal is to infer a type that is close to the actual type. For the purposes of evaluation,
the distance metric is defined to evaluate the performance of the recovery.

Let the inferred prototype be x = v, %,x1,... , where v is the return type and %, x4, . ..
are the parameter types. Let the actual prototype be y = u,%,y1,... and the number of
parameters in a prototype p be denoted by p . Let [the lattice distance between element

6. Prototype recovery via inlined data source tracking 91

x; and y;, be equal to their relative positions on the lattice. For example, D;(N,P) = 1.
Let the maximum distance between two elements on the lattice be Djy.x = Di(,R) = 4.
If x contains a different number of parameters than y, then D; ., is added to the distance
for every parameter incorrectly missed or added. Thus, the distance is defined as

D(x,y) = Dimax abs(x Y [i%: Dl(:cl-,yl-)> + Dy(v, u)

where i =min(=z , y).

For example, if t = P and y = NN | then their distance is given by

D(P, NN) = 4 abs(l 2)+(,N)
= 4+1
~ 5

6.10 Implementation

.exe . .asm .C .C’ . .exe’ log
%[Dlsassemble}—{Translate}—{lnstrumen‘c}—{(}omplle

Figure 6.6: Overview of the IDST work flow.

Inlined data source tracking is implemented in five phases—disassembly, translation, in-
strumentation, compilation and execution (Figure 6.6). Disassembly and translation are
performed using the Dyninst binary instrumentation framework. The translated program
comprises two parts: a C file containing the assembly instructions written as macros,
e.g. MOV32(EAX, 0), and a header file containing the macro definitions, e.g. #define
MOV32(dst, src) dst = src;. More details of the assembly-to-C translator, which
consists of 1,546 lines of C++, can be found in Section 5.2. Compilation is performed
using clang. Probabilistic branch negation was implemented as a second header file,
with the conditional branch instructions modified to include the P, variable and negated
branch instructions. The following data sources were tracked: Fastcall CPU registers EAX,
ECX, EDX, stack locations [ESP + NJ, for N= 4,8 12,16,20,24 and global variables.

6.11 Ewvaluation

The prototype recovery technique was evaluated on two data sets: 99 functions from
coreutils 6.14, coreutils, and 343 functions from GNU C library 2.17, glibc. Both sets
of functions were compiled with gcc -02. Function prototypes were obtained using gcc
-aux-info. All experiments were conducted on an Intel Core i5 2.5 GHz with RAM size
of 4 GB. The results obtained were compared with the current state of the art algorithm
used in the SecondWrite binary rewriting tool [46].

The pertinent research questions are the following.

92 6.11. Evaluation

How accurate is basic inlined data source tracking (IDST) in inferring function
prototypes?

How effective is probabilistic branch negation (BN) in improving the performance
of IDST?

What is the run-time cost of performing IDST?

6.11.1 Basic inlined data source tracking
In the first set of experiments, the accuracy of basic inlined tracking algorithm as per
Section 6.6 was evaluated using the distance metric described in Section 6.9. The results

for the coreutils and glibc data sets are shown in Figure 6.7.

BD

coreutls I
0 ghbc

=t
S0
40

20

Percentage | %)

20

16

o N = —
01 2 2 4 5 6 7 B 9 1011 121314151617 18 19 20
Type distance

Figure 6.7: Type distance for functions in coreutils and glibc using basic inlined data
source tracking with Fjqq, .

The number of prototypes correctly inferred, i.e. having a type distance of zero, was 78
out of 99 (78.8%) for coreutils and 202 out of 343 (58.9%) for glibc. The number of
prototypes having a distance of at most four, equal to the distance of Djy.x, was 95 out

of 99 (96.0%) for coreutils and 302 out of 343 (88.0%) for glibc.

On manual analysis, one of the reasons for the incorrect types inferred was due to poor
code coverage. For example, string manipulation functions had switch constructs that
only dealt with ASCII values, parameters that were incorrect buffer lengths and so on.
Code coverage was addressed in the next set of experiments.

6.11.2 Adding probabilistic branch negation

Two schemes were considered: A purely probabilistic branch negation scheme (BN), and
a hybrid scheme that combined the basic approach with probabilistic branch negation
(Basic + BN). For the BN scheme, the function was executed eight times, and the overall
solution was the over all eight solutions. For the Basic + BN scheme, the overall

6. Prototype recovery via inlined data source tracking 93

o
BH = ===

o7 Basic + BN ——-—--

e
Y

0.4 -,

03

Average type distance
¢
1
|

oz

ol

o 0.1 0.2 0.z 0.4 0.5
Eranch negation probabalty 1P_b|

Figure 6.8: Branch negation probability, P, versus average type distance for functions in
coreutils, for BN only and Basic + BN.

solution was the of the basic solution and the eight BN solutions. Values of P, from
0 to 0.5 were tested. When P, = 0, there was no branch negation, and the BN scheme
was equivalent to the Basic scheme. When P, = 0.5, there was a 50% probability of the
branch being negated. The results obtained for coreutils are shown in Figure 6.8.

At P, = 0, there was no difference between the BN and Basic schemes, which was to be
expected. However, for P, > 0, the BN scheme had a performance that was worse than
the Basic scheme, with an average type distance of 0.56 at P, = 0.2, which increased to
0.57 for P, > 0.2. This was surprising as it appeared that the code coverage seemed to be
poorer compared to the Basic scheme. One explanation is that the paths executed when
using BN were different from the ones executed otherwise.

When combined with the Basic scheme, Basic + BN inferred prototypes that had an
average type distance of 0.354 for coreutils, peaking at P, = 0.2 and identifying 84%
of prototypes. This confirmed our hypothesis that the paths executed were mutually
exclusive under the two schemes. Thus Basic + BN was an improvement over the basic
algorithm, which only managed an average type distance of 0.495, and was able to identify
78.8% of prototypes.

Similar results were obtained for glibc. The Basic + BN scheme outperformed both BN
and Basic schemes, with its performance peaking at P, = 0.2 and inferred prototypes
having an average type distance of 1.33. A total of 62.4% of prototypes were inferred
correctly. In contrast, the basic scheme only managed an average type distance of 1.52
and inferred 58.9% of prototypes correctly (Figure 6.9).

Comparing our results with that of SecondWrite, the false positive rate reported by El-
Wazeer et al. was 0.2 for arguments and 0.44 for return variables [46]. The false positive
rate was defined to be the difference between the number of arguments or return variables
inferred and the actual number, i.e. the abs(=z y) component of the distance metric
defined in Section 6.9. In comparison, the false positive rate for the Basic + BN method
was 0.175 for coreutils and glibc combined.

94 6.12. Discussion

90

coreutils |Basic+BH|
coreutll s |Basic)
ghbc 1B asic+BH|

ghbc {Basic| |

Bl

TO

=t

S0

40

20

Percertage of funchions {%|

20
10 I‘
o | .l Rl I il

01 2 2 4 5 6 7 B 9 1011 121314151617 18 19 20
Type distance

Figure 6.9: A comparison of the Basic approach versus Basic + BN.

coreutils coreutils glibc
Basic Basic + BN Basic + BN

Phase Average (s) | Worst (s) | Average (s) | Worst (s) | Average (s) | Worst (s)
Disassembly
Translation 16.4 16.6 17.3 17.3 470.7 483.0
Instrumentation
Compilation 10.2 10.7 20.4 20.4 50.7 51.8
Execution 0.56 0.69 3.0 3.1 30.2 31.1
Total for all functions 27.2 28.0 40.7 40.8 551.5 565.9
Average per function 0.275 0.283 0.411 0.412 1.61 1.65

Table 6.4: Average and worst case timing for the Basic and Basic + BN algorithms.

6.11.3 Timing

The timing of the Basic + BN algorithm can be split into three phases—disassembly to
instrumentation, compilation and execution of the instrumented binary.

The average and worst case timings for three configurations are listed in Table 6.4. Com-
paring Basic and Basic + BN, the disassembly phases did not differ significantly. However,
compilation took twice as long in Basic + BN since the instrumented C program is com-
piled once with P, defined and once without. Overall, Basic was about 30% faster than
Basic + BN, but about 12-28% less accurate in terms of average type distance.

The per function timing for coreutils was a quarter that for glibe, but both were well under
two seconds. The function that took the longest time to analyse was sha256_process_-
block, which contained 3,366 instructions and took 8.2 seconds of otherwise reasonable
processing time.

6.12 Discussion

While the aim of IDST is to recover the function prototype, it is the first step in the
larger goal of recovering the types of other variables. One approach to extend the current

6. Prototype recovery via inlined data source tracking 95

static const char *file_name;

/* Set the file name to be reported in the event an error is detected
by close_stdout. */

void
close_stdout_set_file_name (const char *file)
{
file_name = file;
}

Figure 6.10: IDST was unable to correctly infer file as a pointer as it was never used as
one.

implementation to perform type inference is to use IDST to obtain valid input. The
rest of the variables can then be recovered via techniques such as REWARDS [189] or
Howard [190].

IDST failed to find the right type in a few cases. IDST was unable to infer parameters
that were never read, in which case IDST assumed fewer parameters than were actually
present. For example, a parameter that was read but never used as a pointer was assigned
the type N. Similarly, a pointer-to-pointers that was only used as a pointer, was assigned
the type P. For instance, the function close_stdout_set_file_name had a pointer type
P as its parameter, but IDST assigned N due to the fact the parameter char *file was
read and assigned to the global variable char *file_name but was never dereferenced
(Figure 6.10).

A related issue was the approximation of data structures to its largest type. Functions
with parameters that were data structures did not always use all of its members, in
particular its largest type. In such cases IDST inferred a type that differed from its
mapped type.

Another case where IDST had difficulty involved the void * C type. A void * is type
ambiguous in that it “can be converted to or from a pointer to any incomplete or object
type” [196]. An example is the function insque that inserts an element into a doubly-
linked list. It has two parameters, declared void * type but cast to struct qelem *,
which is a recursive data structure. Another example is obstack allocated p which
determines whether an object has been allocated from an object stack data structure.
The object parameter is declared as a void * as it can be of any object type. IDST
inferred the object as type N since it is merely used as an address and not dereferenced.

Thus far only leaf functions have been considered. Extending this technique to other
functions requires dealing with API and system calls. For POSIX system calls, there is
uClibc, which is a small C library optimised for embedded platforms. However, this is not
possible for API calls that are not open sourced. Another option is to perform execution
environment modelling [197] which uses program synthesis methods to construct a model
given a specification for an API call.

96 6.13. Related work

6.13 Related work

Previous work on type recovery in machine code can be categorised into four main
groups—the constraint-based approach [12, 29, 36], the data-flow analysis approach [13],
the REWARDS information-flow approach [189] and the Howard method, which uses
dynamic memory usage modelling [190]. The first two approaches are primarily static
whilst the latter two are dynamic in nature. The exception is TIE [36], which can be
used statically or dynamically. The approach proposed here is based on the principle of
conformant execution, which hitherto has not been used in the context of type recovery.
The difference between IDST and that of REWARDS, Howard and TIE is that IDST does
not assume to receive valid input, whereas they do. The goal is thus also different—IDST
seeks to infer the function prototype, although like Howard and TTE the aim is to recover
higher level data structures.

Inferring function prototypes is a sub-problem to type recovery. The method of Cifuentes
is based on liveness analysis and reaching definitions. Parameter types considered included
basic types, such as 8-, 16- and 32-bit integers, and string constants where API call
parameter type information was available [11]. Zhang et al. observed that a parameter is
defined by an ancestor function and used by its descendent. Conversely, return variables
are defined by a descendent function and used by its ancestor. Thus identifying parameters
and return variables is framed as identifying data dependence edges that cross function
boundaries. Arrays and structures are not supported [198]. BCR is a binary code reuse
tool that identifies parameters and return variables from multiple execution traces using
a combination of instruction idiom detection, taint analysis and symbolic execution. The
availability of one valid input is assumed; types up to a pointer to a single-level data
structure are supported [63]. Anand et al. framed the problem of recovering function
parameters as one of determining value ranges of address expressions, using value-set
analysis (VSA). Where VSA is too imprecise, run-time checks are instrumented in the
binary. However, it is unclear how valid input is obtained to enable run-time analysis [45,
46]. Unlike prior prototype recovery approaches, IDST is able to recover recursive data
structures and no valid input is assumed.

Conformant execution was recently coined by Jacobson et al. as a means to stop code reuse
attacks [191]. However, the same term can be generalised to other memory corruption er-
ror detection and prevention mechanisms. Memory corruption protection techniques may
be grouped according to what they protect, which can be data integrity, code integrity,
data-flow integrity or control-flow integrity [199]. For example, data-execution preven-
tion [192] is an example of protecting data integrity. In this framework, IDST maintains
data-flow integrity by pointer rewriting and instrumented bounds checking.

Improving code coverage is an important problem in software testing. Two main ap-
proaches have emerged from this research, namely automated test-case generation and
control-flow modification. The goal of the former approach is to generate test cases
to maximise the code covered. Examples of this approach include random testing or
fuzzing [200, 201], symbolic execution, e.g. [202], and concolic execution [203, 194, 177].
On the other hand, control-flow modification takes a different approach by forcibly alter-
ing execution flow at one or more conditional branches, for example to skip calculation
of checksums which are expensive to solve symbolically [195, 204]. Control-flow modifica-
tion so far has only been applied in a limited number of contexts. This chapter proposes
probabilistic branch negation as a technique for aiding type recovery and decompilation

6. Prototype recovery via inlined data source tracking 97

in general. The average type distance was optimal when P, = 0.2, implying that the code
coverage is maximised under this condition. Further work is needed to understand this

phenomenon better.

98

7

Rendezvous: a prototype search
engine

The token-based approach, described in Chapter 4, was implemented as a search en-
gine, currently hosted at http://www.rendezvousalpha.com. This chapter discusses its
architecture, results, storage requirements and performance.

7.1 System architecture

The front-end was implemented in 1,655 lines of GO; the back-end comprised a disassem-
bler, which relied on the Dyninst binary instrumentation tool and the text search engine
CLucene. As a proof-of-concept prototype, code indexing in Rendezvous was focussed on
32-bit x86 executables in the Ubuntu 11.04 base distribution using instruction mnemonic
2- and 4-grams.

The matching process in Rendezvous was performed at the binary level, i.e. the binaries
in the corpus were matched against the binary under consideration. The mapping of the
search results back to the source was done using the —aux-info <output> option in gcc,
which provided the locations of all function declarations in the source code. However,
—aux-info <output> overwrites the output file with every call to gcc. Since the output
file for logging the auxiliary information is the same for all source files, that information
is lost with every new file compiled. To overcome this issue, gcc was modified so that the
call to fopen for the ~aux-info option was append (a) rather than write (w).

7.2 Results and performance

Two levels of search were implemented: queries could be made at either the executable
level or the function level. Executable-level queries are automatically made when the
binary is uploaded to the Rendezvous server. The results page for executable-level searches
displays the ranked results list in the top pane, with the bottom pane showing the list
of functions on the left, the list of files in the source package, if any, in the centre and
the contents of the READVME file, if any, on the right (Figure 7.1). This example shows two
results returned, namely cat from the 11.04 and 11.10 Ubuntu distributions.

99

100

7.2. Results and performance

v.rendezvousalpha.com

Rendezvous About

cat_86bcbeaa

2 results Search took 0.0 s

@ ubuntu-11.04-desktop-i386 cat
& ubuntu-11.10-dvd-i386 cat

Functions:
init
start

targ8049090
targ80490f0
targ8049120
targ8049190
main
targ804a0e0
targ804al40
targ804a200
targ804aa50
targ804ab00
targ804adc0
targ804ae00
targ804b330
targ804b830
targ804b880
targ804b8d0
targ804b900
targ804b9b0

DBt Bt B¢ B< B 4 34 B4 3¢ B¢ B¢ B2 Bd >3 bd b4 34 Be B

Index of src/coreutils 8.5-1ubuntu6

.prev-version
.tarball-version
.version
.¥g-suppressions
.x-sc_GPL_version

-SC_error_message_uppercase
-sc_file_system
-sc_obsolete_symbols
-sc_po_check
-SC_program_name
-sc_prohibit_atoi_atof
-sc_prohibit_empty_lines_at EOF
-sc_prohibit_fail ©
-sc_prohibit_magic_number exit
-sc_prohibit_stat_st blocks
-sc_prohibit_stremp
-sc_prohibit_tab_based_indentation
-sc_require_config_h
-sc_require_config_h_first
-sc_space_tab
-sC_sun_os_names
-sc_system_h_headers
-sc_trailing_blank
-sc_unmarked_diagnostics

i

-

B~ coogle

README

These are the GNU core utilities. This package is the union of
the GNU fileutils, sh-utils, and textutils packages.

Most of these programs have significant advantages over their Unix
counterparts, such as greater speed, additional options, and fewer
arbitrary limits.

The programs that can be built with this package are:

[arch base64 basename cat chcon chgrp chmod chown chroot cksum comm cp
csplit cut date dd df dir dircolors dirname du echo env expand expr
factor false fmt fold groups head hostid hostname id install join kill
link 1n logname ls mdSsum mkdir mkfifo mknod mktemp mv nice nl nohup
nproc od paste pathchk pinky pr printenv printf ptx pwd readlink rm rmdir
runcon seq shalsum sha224sum sha2S6sum sha384sum shaSl2sum shred shuf
sleep sort split stat stdbuf stty su sum sync tac tail tee test timeout
touch tr true truncate tsort tty uname unexpand uniq unlink uptime users
vdir wc who whoami yes

See the file NEWS for a list of major changes in the current release.
If you obtained this file as part of a "git clone”, then see the

README-hacking file. If this file came to you as part of a tar archive.

then cee the file TMSTAIl fnr romnilatinn and installatinn instructinneg

Figure 7.1: The results page for an executable-level query for cat.

\73 www.rendezvousalpha.com/F, +@| B~ Gooc
Rendezvous About
bash d596c169 > disable_priv_mode
2 results Search took 0.0 s
@ ubuntu-11.04-desktop-i386 bash disable_priv_mode
© ubuntu-12.04.1-desktop-i386 gdb add_internal_function
Functions: Disassembly: Source:
?:%t__ disable_priv_mode src/bash_4.2-Bubuntu3sshell.c:1203
start 1oc_8657280:
targ805e950 BOSf280 PUSH EBP; return (current_user.uid != current_user.euid) ||
targgo5egb0 8057281 MOV EBP, ESP; (current_user.gid != current_user.egid);
805f283 SUB ESP, 0x18; }
Reliigjos - witten) 805286 MOV EAX, [810d348];
targ805ea40 gosfash MOV [ESP], EAX; void
targ805ed80 805f28e CALL loc_805e240; disable priv_mode ()
\araulbaddo ég;?gggfggg;qov EAX, [810d3s50] ¢ tuid (t d)
" H setul current_user.uld);
tar98059940 8057298 MOV [ESP], EAX; setgid (current_user.gid);
tar98059f4'0 865f29b CALL loc_805e7b0; current_user.euid = current_user.uid;
exit shell loc_805f2a0: current_user.egid = current_user.gid;
sh exit 805f2a0 MOV EAX, [8lod34g]; }
— " . 805f2a5 MOV [81Gd34c], EAX:
shell is restricted 805f2aa MOV EAX, [810d350]; #if defined (WORDEXP_OPTION)
maybe make restricted so5f2af MOV [8108d354], EAX; static int
disable priv_mode 805f2b4 LEAVE: run_wordexp (words)
= 805f2b5 RETN; char *words;

unbind args

mmeat hach innnt

{ .

Figure 7.2: The results page for a function-level query for disable_priv_mode.

Function-level queries are embedded as links in the function list in the bottom left pane of
both types of results page. The results page for function-level searches similarly displays
the ranked results in the top pane and the function list in the bottom left. The centre
pane displays the disassembly of the function under consideration and the right pane the
source code of the chosen search result, if any (Figure 7.2). The search result for the

7. Rendezvous: a prototype search engine

101

Disassembly:

with_input from_string
loc_8062350:

Source:

src/bash_4,2-0ubuntu3/variables.c: 4766

8062350 PUSH EBP; array_dispose (a2);

8082351 MOV EBP, ESP:

8062353 SUB ESP, 0x28; #endif

8062356 MOV EAX, [EBP + Ox8];

8062359 MOV [ESP + 0x8], Ox3; void

BO62361 MOV [ESP + 0Ox4], 0xB0615a0; set_pipestatus from exit (s)
8062369 MOV [ESP], 0xBOG1570; int s;

8062370 MOV [ESP + 0x10]. EAX; {

8062374 MOV EAX, [EBP + Oxcl; #1f defined (ARRAY_VARS)
8062377 MOV [ESP + Oxcl, EAX; static int v[2l ={ 0, -1 };
806237b CALL loc_8062240;

loc_8062380: v[o] = s;

8062380 LEAVE; set_pipestatus_array (v, 1);
8052381 RETN; #endif

:

Figure 7.3: Function under consideration, with_input_from string (left), with the clos-
est match set_pipestatus_from exit (right).

Disassembly: Source:

cmd 1nit src/bash_4.2-Oubuntu3/make_cmd.c:166
loc_806d700:

806d700 PUSH EBP;

806d701 MOV EBP, ESP; return (make_word (tokenizer)):
806d703 SUB ESP, 0Ox18; ¥

806d706 MOV [ESP + 0Ox8], Oxdc;

806d70e MOV [ESP + Dx4], 0xB0f2ff8; WORD_LIST *

806d716 MOV [ESP]. Oxfo: make_word_list (word, wlink)
806d71d CALL loc_80blb20; WORD_DESC *word;
loc_806d722: WORD LIST #wlink;

Bosd722 MOV [ESP + 0x8], Ox4d; {

806d72a MOV [ESP + Ox4], 0xBof2ffs; WORD _LIST *temp:

806d732 MOV [ESP]., 0xf0;

806d739 MOV [8112b44], Ox3c; ocache_alloc (wlcache, WORD_LIST, temp):
806d743 MOV [8112b4B], Ox0;

806d74d MOV [8112b40], EAX: temp->word = word;

806d752 CALL loc 80blb20; temp-=next = wlink;
loc_806d757: return (temp);

BOBd7S7 MOV [8112b50], Ox3c; I

806d761 MOV [8112b54]. OxO:

806d76b MOV [8112bd4c], EAX; COMMAND *

B06d770 LEAVE; make_command (type, pointer)
806d771 RETN; enum command_type type;

SIMPLE COM *pointer;

Figure 7.4: Function under consideration, cmd_init (left), with the closest match

make_word_list (right).

disable_priv_mode function lists the correct match as the first entry.

Based on a random sample of thirty queries, the precision and recall rates were 40.7%
and 88.9% respectively, giving an Fy-measure of 71.9%. This is in the same ballpark as
the results predicted by Table 4.5. Exact matches, or instances where the correct match
was the only one returned, occurred 63.0% of the time.

Occasionally where inexact matches were returned by Rendezvous, these functions were
still useful from an analyst’s perspective since they bore some resemblance to the query
function. For example, the closest solution for with input_from string was set_pipe-
status_from_exit which, on manual inspection, was not an exact match (Figure 7.3).

102 7.2. Results and performance

Average (s) | Worst (s)
Disassembly 0.773 0.827
CLucene query 0.148 1.317
Total (results uncached) | 2.30 9.88
Total (results cached) 0.381 0.964

Table 7.1: Time taken for the back-end disassembly and query phases, and for uncached
and cached timings including the front-end.

Nevertheless, the higher-order behaviour was similar: the initialisation of a structure
which is passed as a parameter to a callee function.

Another example of an incorrect match was the query for cmd_init which returned
make_word_list as the closest matched function (Figure 7.4). Here too, the higher-
order behaviour was similar: a function call followed by writing to a data structure and
returning, although there was disagreement as to whether one or two calls were made.
This could in theory be resolved by including 5-grams, since, assuming the mnemonic se-
quence for make word_list was PUSH, MOV, SUB, MOV, MOV, MOV, CALL, MOV, MOV,
MOV, LEAVE, RETN, the presence of the 5-gram CALL, MOV, MOV, MOV, MOV in cmd_init
would eliminate make word_list as a candidate.

Although an exact match was not always obtained, a partial match provides the basis for
further refinement, and is a topic for further research (see Future work).

7.2.1 Storage requirements

A total of 40,929 executables from five distributions—Ubuntu 11.04, Ubuntu 11.10, Free-
BSD 9.0, Debian 5.0.5 and Fedora 18—and 192,239 functions from executables in the
Ubuntu 11.04 base distribution were indexed by Rendezvous. The “executables” indices
required 5.6 GB and the “functions” index 126 MB. In all, the size of the server was a
manageable 11 GB, with the CLucene indices taking up half of the disk space and the
source code of Ubuntu 11.04 taking up the other half.

CLucene initially generated an EFBIG (File too large) error when trying to generate an
index that was larger than 2 GB, due to the 2 GB file size limit imposed in 32-bit Linux.
This was overcome by generating multiple CLucene indices and having the front-end
combine the results of multiple queries. Porting the server to a 64-bit operating system
should solve this issue.

7.2.2 Performance

The time taken to generate the six CLucene indices on an Intel Duo Core 2 machine with 1
GB of RAM was about two hours. The current version of Rendezvous takes between 1-10
seconds to disassemble, query and return if the results are uncached. Otherwise, requests
are handled within 0.3-0.9 seconds. The disassembly phase is the main bottleneck at
the moment, consistently taking between 0.7-0.9 seconds (Table 7.1) and improving the
disassembler is a topic for future work.

8

Conclusions and future work

Decompilation has been viewed as trying to reconstruct “pigs from sausages” [51]. On
the other hand, the need for reverse engineering tools has increased and the research
community has responded with better tools and techniques. The goals of decompilation
can be summarised as producing compilable, equivalent and readable code. Current tools
focus on one or two of these goals at a time.

This thesis has argued for search-based decompilation (SBD) based on empirical evidence
that code reuse is prevalent. With SBD, the goals of obtaining compilable, equivalent and
readable code are simultaneously met when a suitable match is found. Two techniques
were proposed. The first, token-based code indexing, was shown to scale to at least a
real-world corpus consisting of 40,929 executables and 192,239 functions, having an Fj-
measure of 83.0-86.7% for programs compiled with two different configurations.

The second, test- and perturbation-based indexing, was shown to have high precision and
recall (88.4% Fy-measure) for a smaller data set of internal functions compiled with five
different configurations. The effectiveness of perturbation analysis was demonstrated by
its ability to distinguish between eleven variants of five sorting algorithms. The main task
ahead for TBI/PBI is in dealing with API and system calls.

Prototype recovery is a prerequisite for perturbation analysis, and the proposed approach,
inlined data source tracking with probabilistic branch negation, was demonstrated to have
a 62-84% success rate on a dataset of 443 leaf functions. Its accuracy (0.175 false positive
rate) was higher than the current state-of-the-art prototype-recovery algorithm in terms
of inferring the correct number of parameters.

8.1 Future work

Work on the SBD approach is certainly by no means complete, and SBD can benefit from
further research in the following areas.

Development of decompilation evaluation metrics Metrics are an important as-
pect of SBD, and indeed for decompilation research on the whole. At the moment, evalu-
ation centres around comparisons with the output of existing decompilers, some of which
are proprietary or closed-source. Having a corpus of source and binary programs is help-
ful, but an evaluation metric that can add finer-grained details, such as source-binary

103

104 8.1. Future work

variable alignment, will be more beneficial. Perturbation analysis (Chapter 5) is a pos-
sible candidate, but more work needs to be done to address the handling of system and

API calls.

Sparse/Specialised disassembly As noted in Chapter 4 and in the Rendezvous pro-
totype, disassembly is currently a performance bottle-neck, especially for large binaries.
Possible research questions to ask here are: what is the trade-off like in terms of perform-
ing complete disassembly versus a “sparse” disassembly? What specialised disassembly
methods can/should be adopted for lightly obfuscated binaries, e.g. XOR-encrypted or
UPX-packed! binaries?

Partial matching Thus far the primary consideration has been function-level matching—
either there is a match for the whole function or not at all. What is to be done in cases
where a function is partially modified from the original? One possible approach is to first
find the closest match, then patch the source code until it is an exact match.

This thesis has demonstrated beyond a reasonable doubt that search can be an enormous
enabler in decompiling programs that are getting larger, more complex and reusing more
software. The challenge now is to transition from a prototype to a production system,
and scaling up to index and match more software. That is a matter of engineering; the
feasibility of search-based decompilation is no longer in question.

"http://upx.sourceforge.net

Bibliography

1]

[10]

[11]

[12]

[13]

K. Thompson, “Reflections on trusting trust,” Commun. ACM, vol. 27, no. 8, pp.
761-763, Aug. 1984.

D. A. Wheeler, “Fully countering Trusting Trust through diverse double-compiling,”
Ph.D. dissertation, George Mason University, 2009.

K. Zetter, “How digital detectives deciphered Stuxnet,” http://www.wired.com/
threatlevel /2011/07/how-digital-detectives-deciphered-stuxnet/, 2011.

F. Lindner, “Targeted industrial control system attacks,” in Hashdays security con-
ference, 2011.

G. Balakrishnan and T. Reps, “WYSINWYX: What you see is not what you exe-
cute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, pp. 23:1-23:84, Aug. 2010.

A. Cox and T. Smedley, “Reverse engineering in support of litigation: Experiences
in an adversarial environment,” in Proceedings of the 13th Working Conference on
Reverse Engineering, ser. WCRE ’06. IEEE Computer Society, 2006, pp. 288-292.

Hex-Rays SA, “The Hex-Rays decompiler,” http://www.hex-rays.com/products/
decompiler/index.shtml.

“Boomerang decompiler,” http://boomerang.sourceforge.net.

B. Schwarz, S. K. Debray, and G. R. Andrews, “Disassembly of executable code
revisited,” in Proceedings of the 2002 9th Working Conference on Reverse Engi-
neering, ser. WCRE 02, A. van Deursen and E. Burd, Eds. IEEE Computer
Society, 2002, pp. 45-54.

J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based framework
for control flow reconstruction from binaries,” in Proceedings of the 10th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, ser.
VMCAI ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 214-228.

C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation, University of
Queensland, 1994.

A. Mycroft, “Type-based decompilation (or program reconstruction via type recon-
struction),” in Proceedings of the 8th European Symposium on Programming, ser.
ESOP 99, S. D. Swierstra, Ed. Springer, 1999, pp. 208-223.

M. J. Van Emmerik, “Static single assignment for decompilation,” Ph.D. disserta-
tion, University of Queensland, 2007.

105

106

Bibliography

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

23]

[24]

[25]

[26]

W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search engine for
binary code,” in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR 13, T. Zimmermann, M. D. Penta, and S. Kim, Eds. IEEE
/ ACM, May 2013, pp. 329-338.

A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “SmartDec: Approaching
C++ decompilation,” in Proceedings of the 2011 18th Working Conference on Re-
verse Engineering, ser. WCRE 11, M. Pinzger, D. Poshyvanyk, and J. Buckley,
Eds. Washington, DC, USA: IEEE Computer Society, 2011, pp. 347-356.

M. H. Halstead, “Machine-independent computer programming,” Chapter 11, pp.
143-150, 1962.

M. H. Halstead, “Machine-independence and third-generation computers,” in
AFIPS Fuall Joint Computing Conference, 1967, pp. 587-592.

W. A. Sassaman, “A computer program to translate machine language into FOR-
TRAN,” in American Federation of Information Processing Societies: Proceedings
of the Joint Computer Conference, ser. AFIPS ’66 (Spring). New York, NY, USA:
ACM, April 1966, pp. 235-239.

C. R. Hollander, “Decompilation of object programs,” Ph.D. dissertation, Stanford
University, 1973.

V. Schneider and G. Winiger, “Translation grammars for compilation and decom-
pilation,” BIT Numerical Mathematics, vol. 14, no. 1, pp. 7886, 1974.

S. T. Hood, “Decompiling with definite clause grammars,” Defence Science and
Technology Organisation, Electronics Research Laboratory, Salisbury, South Aus-
tralia, Tech. Rep. ERL-0571-RR, September 1991.

J. J. O’Gorman, “Systematic decompilation,” Ph.D. dissertation, University of Lim-
erick, 1991.

F. Chen and Z. Liu, “C function recognition technique and its implementation in
8086 C decompiling system,” Mini-Micro Systems, vol. 12, no. 11, pp. 33-40,47,
1991.

F. Chen, Z. Liu, and L. Li, “Design and implementation techniques of the 8086 C
decompiling system,” Mini-Micro Systems, vol. 14, no. 4, pp. 10-18,31, 1993.

S. Kumar, “DisC - decompiler for TurboC,” http://www.debugmode.com/
dcompile/disc.htm, 2001.

. Guilfanov, “Simple type system for program reengineering,” in Proceedings of the
8th Working Conference on Reverse Engineering, ser. WCRE ’01. Los Alamitos,
CA, USA: IEEE Computer Society, 2001, pp. 357-361.

[. Guilfanov, “Decompilation gets real,” http://www.hexblog.com/7p=>56.

A. Fokin, K. Troshina, and A. Chernov, “Reconstruction of class hierarchies for
decompilation of C++ programs,” in CSMR, 2010, pp. 240-243.

Bibliography 107

[29]

[30]

[31]

E. N. Dolgova and A. V. Chernov, “Automatic reconstruction of data types in the
decompilation problem,” Programming and Computer Software, vol. 35, no. 2, pp.
105-119, 2009.

B. C. Housel, “A study of decompiling machine languages into high-level machine
independent languages,” Ph.D. dissertation, Purdue University, 1973.

B. C. Housel and M. H. Halstead, “A methodology for machine language decom-
pilation,” in Proceedings of the 1974 annual conference - Volume 1, ser. ACM '74.
New York, NY, USA: ACM, 1974, pp. 254-260.

C. Cifuentes and K. J. Gough, “Decompilation of binary programs,” Softw. Pract.
Ezper., vol. 25, no. 7, pp. 811-829, Jul. 1995.

C. Cifuentes, “Interprocedural data flow decompilation,”

no. 2, pp. 77-99, 1996.

J. Prog. Lang., vol. 4,

A. Johnstone, E. Scott, and T. Womack, “Reverse compilation for digital signal
processors: A working example,” in Proceedings of the 33rd Hawaii International
Conference on System Sciences - Volume 8, ser. HICSS 00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 8003—.

C. Cifuentes and M. V. Emmerik, “Recovery of jump table case statements from bi-
nary code,” in 7th International Workshop on Program Comprehension, ser. IWPC
'99. IEEE Computer Society, 1999, pp. 192-199.

J. Lee, T. Avgerinos, and D. Brumley, “TTE: Principled reverse engineering of types
in binary programs,” in Proceedings of the 18th Annual Network and Distributed
System Security Symposium, ser. NDSS "11. The Internet Society, 2011.

P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, ser. POPL "77, R. M. Graham, M. A. Harrison, and R. Sethi, Eds. New
York, NY, USA: ACM, 1977, pp. 238-252.

G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” in
Proceedings of the 13th International Conference on Compiler Construction, 2004.

G. Balakrishnan and T. W. Reps, “DIVINE: Discovering variables in executables,”
in Proceedings of the 8th International Conference on Verification, Model Checking,
and Abstract Interpretation, ser. VMCAI ’07, B. Cook and A. Podelski, Eds., vol.
4349. Springer, 2007, pp. 1-28.

T. W. Reps and G. Balakrishnan, “Improved memory-access analysis for x86 ex-
ecutables,” in Proceedings of the 17th International Conference on Compiler Con-
struction, ser. CC ’08, L. J. Hendren, Ed., vol. 4959. Springer, 2008, pp. 16-35.

T. W. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum, “A next-generation plat-
form for analyzing executables,” in Proceedings of the 3rd Asian Symposium on Pro-
gramming Languages and Systems, ser. APLAS ’05, K. Yi, Ed., vol. 3780. Springer,
2005, pp. 212-229.

108

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

B.-Y. E. Chang, M. Harren, and G. C. Necula, “Analysis of low-level code using
cooperating decompilers,” in Proceedings of the 13th international conference on
Static Analysis, ser. SAS’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 318—
335.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong progrm
analysis & transformation,” in Proceedings of the 200/ International Symposium on
Code Generation and Optimization (CGO’04), 2004.

K. Anand, M. Smithson, K. Elwazeer, A. Kotha, and R. Barua, “Decompilation to
high IR in a binary rewriter,” University of Maryland, Tech. Rep., 2010.

K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and R. Barua,
“A compiler-level intermediate representation based binary analysis and rewriting
system,” in EuroSys, 2013, pp. 295-308.

K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable variable
and data type detection in a binary rewriter,” in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implementation, ser.
PLDI '13, H.-J. Boehm and C. Flanagan, Eds. New York, NY, USA: ACM, 2013,
pp- 51-60.

J. P. Bowen, “From programs to object code using logic and logic programming,”
in Code Generation — Concepts, Tools, Techniques, Proc. International Workshop
on Code Generation, Dagstuhl. Springer-Verlag, 1992, pp. 173-192.

J. Bowen, “From programs to object code and back again using logic programming;:
Compilation and decompilation,” Journal of Software Maintenance: Research and
Practice, vol. 5, no. 4, pp. 205-234, 1993.

P. T. Breuer and J. P. Bowen, “Decompilation: The enumeration of types and
grammars,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1613-1647, Sep.
1994.

M. P. Ward, “Reverse engineering from assembler to formal specifications via pro-
gram transformations,” in Proceedings of the 7th Working Conference on Reverse
Engineering, ser. WCRE '00. Washington, DC, USA: IEEE Computer Society,
2000, pp. 11—

M. P. Ward, “Pigs from sausages? Reengineering from assembler to C via FermaT
transformations,” Science of Computer Programming Special Issue: Transforma-
tions Fverywhere, vol. 52, no. 1-3, pp. 213-255, 2004.

S. Katsumata and A. Ohori, “Proof-directed de-compilation of low-level code,” in
Proceedings of the 10th European Symposium on Programming Languages and Sys-
tems, ser. ESOP 01, D. Sands, Ed. London, UK: Springer-Verlag, 2001, pp.
352-366.

A. Mycroft, A. Ohori, and S. Katsumata, “Comparing type-based and proof-directed
decompilation,” in Proceedings of the 2001 S8th Working Conference on Reverse
Engineering, ser. WCRE ’01. TEEE Computer Society, 2001, pp. 362-367.

Bibliography 109

[54]

[58]

[59]

[66]

M. Myreen, M. Gordon, and K. Slind, “Machine-code verification for multiple ar-
chitectures - an application of decompilation into logic,” in Formal Methods in
Computer-Aided Design, ser. FMCAD 08, 2008, pp. 1-8.

M. Myreen, M. Gordon, and K. Slind, “Decompilation into logic — improved,” in
Formal Methods in Computer-Aided Design, ser. FMCAD ’12, 2012, pp. 78-81.

N. Ramsey and M. F. Fernandez, “The New Jersey machine-code toolkit,” in Pro-
ceedings of the USENIX 1995 Technical Conference Proceedings, ser. TCON ’95.
Berkeley, CA, USA: USENIX Association, 1995, pp. 24-24.

C. Cifuentes, M. V. Emmerik, and N. Ramsey, “The design of a resourceable and
retargetable binary translator,” in Proceedings of the 1999 6th Working Conference
on Reverse Engineering, ser. WCRE '99. TEEE Computer Society, 1999, pp. 280—
291.

C. Cifuentes and M. V. Emmerik, “UQBT: Adaptable binary translation at low
cost,” Computer, vol. 33, no. 3, pp. 60-66, Mar. 2000.

J. Troger and C. Cifuentes, “Analysis of virtual method invocation for binary trans-
lation,” in Proceedings of the 2002 9th Working Conference on Reverse Engineering,
ser. WCRE 02, A. van Deursen and E. Burd, Eds. IEEE Computer Society, 2002,

pp- 65—.

N. Ramsey and C. Cifuentes, “A transformational approach to binary translation of
delayed branches,” ACM Trans. Program. Lang. Syst., vol. 25, no. 2, pp. 210-224,
2003.

V. Chipounov and G. Candea, “Reverse engineering of binary device drivers with
RevNIC,” in EuroSys, 2010, pp. 167-180.

V. Chipounov and G. Candea, “Enabling sophisticated analyses of x86 binaries
with RevGen,” in Dependable Systems and Networks Workshops (DSN-W), 2011
IEEE/IFIP 41st International Conference on, 2011, pp. 211-216.

J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary code extraction
and interface identification for security applications,” in Proceedings of the 17th
Annual Network and Distributed System Security Symposium, ser. NDSS ’10. The
Internet Society, 2010.

B. Feigin and A. Mycroft, “Decompilation is an information-flow problem,” in Pro-
ceedings of the 4th International Workshop on Programming Language Interference
and Dependence (PLID 2008), Valencia, Spain, July 2008.

R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new approach
to optimization,” in Proceedings of the 36th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of Programming Languages, ser. POPL ’09, Z. Shao and B. C.
Pierce, Eds. New York, NY, USA: ACM, 2009, pp. 264-276.

B. Feigin, “Interpretational overhead in system software,” Ph.D. dissertation, Uni-
versity of Cambridge, 2011.

110

Bibliography

[67]

[81]

[82]

D. Vermoen, M. Witteman, and G. N. Gaydadjiev, “Reverse engineering Java card
applets using power analysis,” in Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2
international conference on Information security theory and practices: smart cards,
mobile and ubiquitous computing systems, ser. WISTP’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 138-149.

T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a side channel based disas-
sembler,” Transactions on Computational Science, vol. 10, pp. 78-99, 2010.

M. D. Preda and R. Giacobazzi, “Semantic-based code obfuscation by abstract
interpretation,” in ICALP, 2005, pp. 1325-1336.

M. V. Emmerik and T. Waddington, “Using a decompiler for real-world source
recovery,” in Proceedings of the 11th Working Conference on Reverse Engineering,
ser. WCRE '04. IEEE Computer Society, November 2004, pp. 27-36.

R. P. Diaz, “Status report: Software reusability,” IEEFE Software, vol. 10, no. 3, pp.
61-66, 1993.

J. C. Knight and M. F. Dunn, “Software quality through domain-driven certifica-
tion,” Ann. Softw. Eng., vol. 5, pp. 293-315, Jan. 1998.

T. Ravichandran and M. A. Rothenberger, “Software reuse strategies and compo-
nent markets,” Commun. ACM, vol. 46, no. 8, pp. 109-114, Aug. 2003.

B. Meyer, Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997.

B. Jalender, A. Govardhan, and P. Premchand, “A pragmatic approach to software
reuse,” J. Theoretical and Applied Information Technology, vol. 14, no. 2, pp. 87-96,
2005.

M. E. Fayad and D. C. Schmidt, “Lessons learned building reusable OO frameworks
for distributed software,” Commun. ACM, vol. 40, no. 10, pp. 85-87, Oct. 1997.

D. C. Schmidt, “Why software reuse had failed and how to make it work for you,”
2006. [Online]. Available: http://www.cs.westl.edu/~schmidt/reuse-lessons.html
[Accessed: 4/3/2013]

S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open source software,”
Management Science, vol. 54, no. 1, pp. 180-193, January 2008.

J. S. Poulin, “Populating software repositories: Incentives and domain-specific soft-
ware,” J. Syst. Softw., vol. 30, no. 3, pp. 187-199, Sep. 1995.

A. Mockus, “Large-scale code reuse in open source software,” in First International
Workshop on Emerging Trends in FLOSS Research and Development, ser. FLOSS
‘07, may 2007, p. 7.

M. A. Cusumano, Japan’s software factories: A challenge to U.S. management.
New York, NY, USA: Oxford University Press, Inc., 1991.

GNU Foundation, “GNU Public License version 2,” http://www.gnu.org/licenses/
gpl-2.0.html, June 1991.

Bibliography 111

[83]

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

[96]

Software Freedom Law Center, “Software Freedom Law Center,” http://www.
softwarefreedom.org.

Free Software Foundation, Inc., “Free software foundation,” http://www.fsf.org.

H. Welte, “Current Developments in GPL Compliance,” http:taipei.freedomhec.
org/dlfile/gpl_compliance.pdf, June 2012, freedomHEC Taipei 2012 conference.

B. Kuhn, “GPL enforcement: Don’t jump to conclusions, but do report violations,”
http://ebb.org/bkuhn/blog/2009/11/08/gpl-enforcement.html, 11 2009.

“Progress Software Corporation v MySQL AB,” February 2002, 195 F. Supp.
2d 238, D. Mass. [Online]. Available: http://www.leagle.com/xmlResult.aspx?
xmldoc=2002523195F Supp2d238_1505.xml [Accessed: 27/02/2013]

H. Welte, “Allnet GmbH resolves iptables GPL violation,” February 2004. [Online].
Available: http://lwn.net/Articles/71418 [Accessed: 28/2/2013]

H. Welte, “Netfilter/iptables project concludes agreement on GPL licensing with
Gigabyte,” October 2004. [Online]. Available: http://www.gpl-violations.org/
news,/20041022-iptables-gigabyte.html [Accessed: 27/2/2013]

“Welte v. Sitecom Deutschland GmbH,” March 2004, District Court of Munich,
case 21 O 6123/04. [Online]. Available: http://www.jbb.de/fileadmin/download/
urteil_lg_muenchen_gpl.pdf [Accessed: 28/2/2013]

“Welte v. Sitecom Deutschland GmbH,” March 2004, District Court of Munich,
case 21 O 6123/04 (English translation). [Online]. Available: http://www.jbb.de/
fileadmin/download /judgement_dc_munich_gpl.pdf [Accessed: 28/2/2013]

H. Welte, “Gpl-violations.org project was granted a preliminary injunction against
Fortinet UK Ltd.” April 2005. [Online]. Available: http://www.gpl-violations.org/
news,/20050414-fortinet-injunction.html [Accessed: 28/2/2013]

H. Welte, “Gpl-violations.org project prevails in court case on GPL violation
by D-Link,” September 2006. [Online]. Available: http://www.gpl-violations.org/
news,/20060922-dlink-judgement_frankfurt.html [Accessed: 28/2/2013]

“Welte v. D-Link,” September 2006, 2-6 0 224/06, Landgericht Frankfurt AM
Main. [Online]. Available: http://www.jjb.de/urteil lg_frankfurt_gpl.pdf [Accessed:
28/2/2013]

Software Freedom Law Center, Inc., “BusyBox Developers and Monsoon Multimedia
agree to dismiss GPL lawsuit,” October 2007. [Online]. Available: http://www.
softwarefreedom.org/news /2007 /oct /30 /busybox-monsoon-settlement/ [Accessed:
28/2/2013]

Software Freedom Law Center, Inc., “BusyBox Developers and High-Gain Antennas
agree to dismiss GPL lawsuit,” March 2008. [Online]. Available: http://www.
softwarefreedom.org/news/2008 /mar/06/busybox-hga/ [Accessed: 28/2/2013]

112

Bibliography

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

Software Freedom Law Center, Inc., “BusyBox Developers and Xterasys Corpora-
tion agree to dismiss GPL lawsuit,” December 2007. [Online]. Available: http://
www.softwarefreedom.org/news/2007 /dec/17 /busybox-xterasys-settlement/ [Ac-
cessed: 28/2/2013]

Software Freedom Law Center, Inc., “BusyBox Developers agree to end
GPL lawsuit against Verizon,” March 2008. [Online]. Available: http://www.
softwarefreedom.org/news/2008 /mar/17 /busybox-verizon/ [Accessed: 28/2/2013]

Software Freedom Law Center, Inc., “BusyBox developers and Supermicro agree
to end GPL lawsuit,” July 2008. [Online]. Available: http://www.softwarefreedom.
org/news,/2008/jul /23 /busybox-supermicro/ [Accessed: 28/2/2013]

“Andersen v. Bell Microproducts, Inc.” October 2008, No. 08-CV-5270, Doc. No.
16, S.D.N.Y., notice of voluntary dismissal.

“Andersen v. Bell Microproducts, Inc.” June 2008, Civil Action No. 08-CV-5270.
[Online]. Available: http://www.softwarefreedom.org/news/2008/jun/10/busybox/
bell-complaint.pdf [Accessed: 28/2/2013]

“Erik Andersen and Rob Landlet v. Super Micro Computer, Inc.” June 2008,
Civil Action No. 08-CV-5269. [Online|. Available: http://www.softwarefreedom.
org/news,/2008/jun/10/busybox/supermicro-complaint.pdf [Accessed: 28/2/2013]

“Welte v. Skype Technologies S.A.” July 2007, District Court of Munich,
case 7 O 5245/07. [Online|. Available: http://www.ifross.de/Fremdartikel/
LGMuenchenUrteil.pdf [Accessed: 28/2/2013]

“Free Software Foundation, Inc. v. Cisco Systems, Inc.” December 2008,
Civil Action No. 08-CV-10764. [Online]. Available: http://www.fsf.org/licensing/
complaint-2008-12-11.pdf [Accessed: 28/2/2013]

B. Smith, “FSF settles suit against Cisco,” May 2009. [Online|]. Available:
http://www.fsf.org/news/2009-05-cisco-settlement [Accessed: 28/2/2013]

J. Klinger, “Jin vs. IChessU: The copyright infringement case (settled),” October
2008. [Online|. Available: http://www.jinchess.com/ichessu/ [Accessed: 28/2/2013]

“Software Freedom Conservancy, Inc. and Erik Andersen v. Best Buy Co., Inc. et al.”
December 2009, Civil Action No. 09-CV-10155. [Online]. Available: http://www.
softwarefreedom.org/resources/2009/busybox-compliant-2009-12-14.pdf [Accessed:
27/2/2013)]

“Software Freedom Conservancy, Inc. and Erik Andersen v. Best Buy Co.,
Inc. et al.” http://www.softwarefreedom.org/resources/2010,/2010-06-03-Motion_
against_Westinghouse.pdf, June 2010, No. 09-CV-10155, Motion for default judg-
ment against Westinghouse Digital Electronics LLC. and associated documents.

M. von Willebrand, “A look at EDU 4 v. AFPA, also known as the “Paris GPL
case”,” IFOSS L. Rev., vol. 1, no. 2, pp. 123-126, 2009.

“AVM Computersysteme Vertriebs GmbH v. Bybits AG,” November 2011, 16 O
255/10, Landgericht Berlin.

Bibliography 113

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

P. Galli, “Free Software Foundation targets RTLinux
for GPL violations,” September 2011. [Online]. Avail-
able: http://www.eweek.com/c/a/Application- Development /
Free-Software- Foundation-Targets- RT Linux-for- GPL-violations/ [Accessed:
28/2/2013]

T. Gasperson, “FSF: Lindows OS moving toward GPL compliance,” June

2022. [Online]. Available: http://archive09.linux.com/articles/23277 [Accessed:
28/2/2013)]

S. Shankland, “GPL gains clout in German legal case,” April 2044. [Online].
Available: http://news.cnet.com/2100-7344-5198117.html [Accessed: 1/3/2013]

H. Welte, “13 Companies at CeBIT receive warning letter regarding their alleged
GPL incompliance,” March 2005. [Online]. Available: http://gol-violations.org/
news,/20050314-cebit-letter-action.html [Accessed: 1/3/2013]

R. Rohde, “Rohde v. Viasat on GPL/LGPL,” 2009. [Online]. Available:
http://duff.dk/viasat [Accessed: 28/2/2013]

E. Sandulenko, “GPL, ScummVM and violations,” June 2009. [Online].
Available: http://sev-notes.blogspot.co.uk/2009/06/gpl-scummvm-and-violations.
html [Accessed: 28/2/2013]

S. Olsen, “Cadence, Avast settle trade-secret suit,” November 2002. [On-
line]. Available: http://news.cnet.com/Cadence,- Avast-settle-trade-secret-suit/
2100-1025-3-965890.html [Accessed: 1/3/2013]

W. Curtis, “Green Hills Software collects $4.25 million from Microtec
Research to settle trade secret lawsuit,” July 1993. [Online]. Available:
http://www.ghs.com/news/archive/01jul93.html [Accessed: 1/3/2013]

“Cisco Systems v. Huawei Technologies,” January 2003, Civil Action No. 2-03C-
027, Eastern District of Texas. [Online]. Available: http://miltest.wikispaces.com/
file/view/Cisco_Huawei_Complaint.pdf [Accessed: 1/3/2013]

J. Leyden, “Cisco drops Huawei lawsuit,” July 2004. [Online]. Available: http:
//www.theregister.co.uk/2004/07/29/cisco_huawei_case_ends [Accessed: 1/3/2013]

“Compuware Corp. v. International Business Machines Corp.” December 2002,
Case 2:02-CV-70906-GCS, Eastern District of Michigan. [Online]. Avail-
able: http://miltest.wikispaces.com/file/view /Compuware_IBM_Complaint.pdf
[Accessed: 1/3/2013]

S. Cowley and S. Larson, “IBM, Compuware reach $400M settlement,” March
2005. [Online]. Available: http://www.computerworld.com/s/article/100622/
IBM_Compuware_Reach_400M _Settlement?taxonomyld=070 [Accessed: 1/3/2013]

J. N. Hoover, “Symantec, Microsoft settle Windows suit,” April 2008. [On-
line]. Available: http://www.informationweek.co.uk/windows/operating-systems/
symantec-microsoft-settle-windows-suit /207001547 [Accessed: 1/3/2013]

114

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

“Veritas Operating Corp. v. Microsoft Corp.” May 2006, CV06-0703, Western
District of Washington. [Online]. Available: http://niltest.wikispace.com/file/
view /Veritas . MSFT_Complaint.pdf [Accessed: 1/3/2013]

S. Cowley, “Quest pays CA $16 million to settle lawsuit,”
March 2005. [Online]. Available: http://www.infoworld/com/t/busincess/
quest-pays-ca- 16-million-settle-lawsuit-299 [Accessed: 1/2/2013]

“CA v. Rocket Software,” September 2008, Case 1:07-CV-01476-ADS-MLO,
Eastern District of New York. [Online]. Available: http://miltest.wikispace.com/
file/view /CA_Rocket_ruling.pdf [Accessed: 1/3/2013]

R. Weisman, “CA and Rocket Software reach settlement,” February 2009. [Online].
Available: http://www.boston.com/business/ticker/2009/02/ca_and_rocket_s.html
[Accessed: 1/3/2013]

“McRoberts Software, Inc. v. Media 100, Inc.” May 2003. [Online|. Available:
http://miltest.wikispaces.com /file/view /McRoberts_Medial00_7thCit_Op.pdf [Ac-
cessed: 1/3/2013]

K. Finley, “Github has passed SourceForge and Google Code in popularity,” http:
//readwrite.com/2011/06,/02/github-has-passed-sourceforge, June 2011.

J. Finkle, “Perks and paintball: Life inside a global cy-
bercrime ring,” http://www.pcpro.co.uk/features/356737/
perks-and-paintball-life-inside-a-global-cybercrime-ring, 2010.

J. A. Kaplan, “Software theft a problem for actual thieves,” http://www.foxnews.
com/tech/2010/10/01 /software-theft-problem-zeus-botnet/, 2010.

D. Fisher, “Zeus source code leaked,” http://threatpost.com/en_us/blogs/
zeus-source-code-leaked-051011, 2011.

D. Goodin, “Source code leaked for pricey ZeuS crimeware kit,” http://www.
theregister.co.uk/2011/05/10/zeus_crimeware_kit_leaked/, 2011.

S. Fewer, “Retrieving Kernel32’s base address,” http:/blog.harmonysecurity.com/
2009_06_01_archive.html, June 2009.

F. Och, “Statistical machine translation live,” http://googleresearch.blogspot.co.
uk/2006/04 /statistical-machine-translation-live.html, 2006.

W. Weaver, “Translation (1949),” in Machine Translation of Languages. MIT
Press, 1955.

P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty,
R. L. Mercer, and P. S. Roossin, “A statistical approach to machine translation,”
Comput. Linguist., vol. 16, no. 2, pp. 79-85, Jun. 1990.

A. Lopez, “Statistical machine translation,” ACM Comput. Surv., vol. 40, no. 3,
pp- 8:1-8:49, August 2008.

Bibliography 115

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

M. R. Costa-Jussa, J. M. Crego, D. Vilar, J. A. R. Fonollosa, J. B. Marino, and
H. Ney, “Analysis and system combination of phrase- and n-gram-based statistical
machine translation systems,” in HLT-NAACL (Short Papers), 2007, pp. 137-140.

Y. Al-onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty, D. Melamed, F.-J. Och,
D. Purdy, N. A. Smith, and D. Yarowsky, “Statistical machine translation,” Final
Report, JHU Summer Workshop, Tech. Rep., 1999.

D. Oard and F. Och, “Rapid-response machine translation for unexpected lan-
guages,” in MT Summit 1X, 2003.

P. Koehn, “Challenges in statistical machine translation,” http://homepages.inf.ed.
ac.uk/pkoehn /publications/challenges2004.pdf, 2004, talk given at PARC, Google,
ISI, MITRE, BBN, Univ. of Montreal.

A. Way and H. Hassan, “Statistical machine translation: Trend and challenges,” in

Proceedings of the 2nd International Conference on Arabic Language Resources and
Tools, April 2009, keynote address.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:
Trends, techniques and applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 11:1—
11:61, Dec. 2012.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering;:
Trends, techniques and applications,” King’s College London, Department of Com-
puter Science, London, United Kingdom, Tech. Rep. TR-09-03, 2009.

J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software Bertillonage:
Finding the provenance of an entity,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR '11. ACM, 2011, pp. 183-192.

N. E. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this code? Identifying
the authors of program binaries,” in Proceedings of the 16th Furopean Symposium
on Research in Computer Security, ser. ESORICS 11, V. Atluri and C. Diaz, Eds.
Springer, 2011, pp. 172-189.

N. E. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain provenance
of binary code,” in Proceedings of the 20th International Symposium on Software
Testing and Analysis, ser. ISSTA 11, M. B. Dwyer and F. Tip, Eds., 2011, pp.
100-110.

Z. Wang, K. Pierce, and S. McFarling, “BMAT - a binary matching tool for stale
profile propagation,” J. Instruction-Level Parallelism, vol. 2, 2000.

T. Dullien and R. Rolles, “Graph-based comparison of executable objects,” in Pro-

ceedings of Symposium sur la sécurité des technologies de l’information et des com-
munications (SSTIC’05), 2005.

A. Szbjornsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting code
clones in binary executables,” in Proceedings of the 18th International Symposium
on Software Testing and Analysis, ser. ISSTA ’09, G. Rothermel and L. K. Dillon,
Eds. ACM, 2009, pp. 117-128.

116

Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding software license
violations through binary code clone detection,” in Proceedings of the 8th Interna-
tional Working Conference on Mining Software Repositories, ser. MSR 11, A. van
Deursen, T. Xie, and T. Zimmermann, Eds. [EEE, 2011, pp. 63-72.

Ohloh, “The open source network,” http://www.ohloh.net/.

M. Mock, “Dynamic analysis from the bottom up,” in Proc. 1st ICSE Int. Workshop
on Dynamic Analysis (WODA). TEEE Computer Society, 2003, pp. 13-16.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detec-
tion,” in Proceedings of the 21st Annual Computer Security Applications Conference,
ser. ACSAC '07. IEEE Computer Society, Dec 2007, pp. 421-430.

G. Myles and C. Collberg, “K-gram based software birthmarks,” in Proceedings of
the 2005 ACM Symposium on Applied Computing, ser. SAC ’05. ACM, 2005, pp.
314-318.

M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phylogeny
generation using permutations of code,” Journal in Computer Virology, vol. 1, no.
1-2, pp. 13-23, 2005.

C. Kriigel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vigna, “Polymorphic worm
detection using structural information of executables,” in Proceedings of the Sth
International Conference on Recent advances in intrusion detection, ser. RAID’05,
2005, pp. 207-226.

B. Buck and J. K. Hollingsworth, “An API for runtime code patching,” Int. J. High
Perform. Comput. Appl., vol. 14, no. 4, pp. 317-329, Nov. 2000.

B. D. McKay, “Practical graph isomorphism,” Congressus Numerantium, vol. 30,
pp. 45-87, 1981.

Apache Software Foundation, “Similarity (Lucene 3.6.2 API),” http://lucene.
apache.org/core/3.6_2/api/core/org/apache/lucene/search /Similarity.html.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Combining symbolic
execution with model checking to verify parallel numerical programs,” ACM Trans.
Softw. Eng. Methodol., vol. 17, no. 2, pp. 10:1-10:34, May 2008.

C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of software plagiarism
by program dependence graph analysis,” in Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ser. KDD ’06.
ACM, 2006, pp. 872-881.

C. Gautier, “Software plagiarism detection with PEGs,” Master’s thesis, University
of Cambridge, 2011.

Bibliography 117

[166]

[167]

[168]

[169)]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and accurate
tree-based detection of code clones,” in Proceedings of the 29th International Con-
ference on Software Engineering, ser. ICSE 07. IEEE Computer Society, 2007, pp.
96-105.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based
code clone detection system for large scale source code,” Software Engineering,
IEEE Transactions on, vol. 28, no. 7, pp. 654 — 670, jul 2002.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for finding copy-paste
and related bugs in operating system code,” in Proceedings of the 6th USENIX Sym-
posium on Operating Systems Design and Implementation, ser. OSDI '04. USENIX
Association, 2004, pp. 20-20.

S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABIlue: An auto-
matic categorization system for open source repositories,” J. Syst. Softw., vol. 79,
no. 7, pp. 939-953, Jul. 2006.

C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar software ap-
plications,” in Proceedings of the 2012 International Conference on Software Engi-
neering, ser. ICSE "12, M. Glinz, G. C. Murphy, and M. Pezze, Eds. Piscataway,
NJ, USA: IEEE, 2012, pp. 364-374.

Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “XIAQO: Tuning code clones
at hands of engineers in practice,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ser. ACSAC 12, R. H. Zakon, Ed. New York,
NY, USA: ACM, 2012, pp. 369-378.

W.-J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: Identifying file types by
n-gram analysis,” in Information Assurance Workshop, 2005. IAW ’05. Proceedings
from the Sizth Annual IEEE SMC, june 2005, pp. 64 — 71.

D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur. Digit. Foren-
sic, vol. 1, no. 2, pp. 156-168, Jan. 2007.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kriigel, and E. Kirda, “Scalable,
behavior-based malware clustering,” in Proceedings of the 16th Annual Network

and Distributed System Security Symposium, ser. NDSS ’09. The Internet Society,
20009.

D. Gao, M. K. Reiter, and D. X. Song, “BinHunt: Automatically finding semantic
differences in binary programs,” in ICICS, 2008, pp. 238-255.

L. Jiang and Z. Su, “Automatic mining of functionally equivalent code fragments via
random testing,” in Proceedings of the 18th International Symposium on Software
Testing and Analysis, ser. ISSTA 09, G. Rothermel and L. K. Dillon, Eds. ACM,
2009, pp. 81-92.

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs,” in Proceedings of the 8th

USENIX Symposium on Operating Systems Design and Implementation, ser. OSDI
‘08, R. Draves and R. van Renesse, Eds. USENIX Association, 2008, pp. 209-224.

118

Bibliography

[178]

[179]

[180]

[181]

[182]

[183]

184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in ASE,
2008, pp. 443-446.

D. Kroening, E. Clarke, and K. Yorav, “Behavioral consistency of C and Verilog
programs using bounded model checking,” in Proceedings of DAC 2003. ACM
Press, 2003, pp. 368-371.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer,
1999.

E. Biham and A. Shamir, “Differential fault analysis: Identifying the structure of
unknown ciphers sealed in tamper-proof devices,” preprint, 1996.

R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant devices,”
in Proceedings of the 5th International Workshop on Security Protocols. London,
UK, UK: Springer-Verlag, 1998, pp. 125-136.

“Bochs: The open source 1A-32 emulation project,” http://bochs.sourceforge.net.

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” in Proceedings of the General Track of the 2002
USENIX Annual Technical Conference, ser. ATEC 02, C. S. Ellis, Ed. Berkeley,
CA, USA: USENIX Association, 2002, pp. 275-288.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound: Highly
compatible and complete spatial memory safety for C,” in Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation,
ser. PLDI ’09, M. Hind and A. Diwan, Eds. New York, NY, USA: ACM, 2009, pp.
245-258.

R. Anderson, Security Engineering, Second Edition. Wiley, 2008.

G. Myles and C. S. Collberg, “Detecting software theft via whole program path
birthmarks,” in Information Security, 7th International Conference, ISC 200/, Palo
Alto, CA, USA, September 27-29, 200/, Proceedings, ser. Lecture Notes in Com-
puter Science, K. Zhang and Y. Zheng, Eds., vol. 3225. Springer, 2004, pp. 404—415.

zynamics, “BinDiff,” http://www.zynamics.com/bindiff.html.

Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures
from binary execution,” in Proceedings of the 17th Annual Network and Distributed
System Security Symposium, ser. NDSS '10. The Internet Society, 2010.

A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for re-
verse engineering data structures,” in Proceedings of the 18th Annual Network and
Distributed System Security Symposium, ser. NDSS '11. The Internet Society, 2011.

E. R. Jacobson, A. R. Bernat, W. R. Williams, and B. P. Miller, “Detecting code
reuse attacks with a model of conformant program execution (poster),” in Pro-
ceedings of 16th International Symposium on Research in Attacks, Intrusions and
Defenses, ser. RAID’13, October 2013.

Bibliography 119

[192]

193]

[194]

[195]

[196]

197]

[198]

[199]

200]

[201]

202]

[203]

[204]

A. van de Ven, “Limiting buffer overflows with ExecShield,” http://www.redhat.
com/magazine/009jul05 /features/execshield/, 2005.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity prin-
ciples, implementations, and applications,” ACM Trans. Inf. Syst. Secur., vol. 13,
no. 1, pp. 4:1-4:40, Nov. 2009.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random test-
ing,” in Proceedings of the 2005 ACM SIGPLAN conference on Programming lan-
guage design and implementation, ser. PLDI ’05, V. Sarkar and M. W. Hall, Eds.
New York, NY, USA: ACM, 2005, pp. 213-223.

W. Drewry and T. Ormandy, “Flayer: Exposing application internals,” in Pro-
ceedings of the first USENIX workshop on Offensive Technologies, ser. WOOT '07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 1:1-1:9.

ISO, ISO/IEC 9899-1999: Programming Languages — C. International Organiza-
tion for Standardization, Dec 1999.

D. Qi, W. N. Sumner, F. Qin, M. Zheng, X. Zhang, and A. Roychoudhury, “Mod-
eling software execution environment,” in Proceedings of the 2012 19th Working
Conference on Reverse Engineering, ser. WCRE ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 415-424.

J. Zhang, R. Zhao, and J. Pang, “Parameter and return-value analysis of binary
executables,” in 31st Annual International Computer Software and Applications
Conference, ser. COMPSAC 07, vol. 1. TEEE Computer Society, 2007, pp. 501—
508.

L. Szekeres, M. Payerz, T. Wei, and D. Song, “SoK: Eternal war in memory,” in
Proceedings of the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13.
IEEE Computer Society, 2013, pp. 48-62.

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32—44, Dec. 1990.

J. D. DeMott, “Enhancing automated fault discovery and analysis,” Ph.D. disser-
tation, Michigan State University, 2012.

W. Visser, C. S. Pasareanu, and S. Khurshid, “Test input generation with Java
PathFinder,” in Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA ’04, G. S. Avrunin and G. Rothermel,
Eds. New York, NY, USA: ACM, 2004, pp. 97-107.

K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for C,” in
Proceedings of the 10th Furopean software engineering conference held jointly with
18th ACM SIGSOFT international symposium on Foundations of software engi-
neering, ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263-272.

T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy, ser. SP "10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 497-512.

