
Technical Report
Number 845

Computer Laboratory

UCAM-CL-TR-845
ISSN 1476-2986

Black-box composition of
mismatched software components

Stephen Kell

December 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2013 Stephen Kell

This technical report is based on a dissertation submitted
December 2010 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Christ’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Black-box composition of mismatched software components

Stephen Kell

Summary

Software is expensive to develop. Much of that expense can be blamed on difficulties
in combining, integrating or re-using separate pieces of software, and in maintaining such
compositions. Conventional development tools approach composition in an inherently
narrow way. Specifically, they insist on modules that are plug-compatible, meaning that
they must fit together down to a very fine level of detail, and that are homogeneous,
meaning that they must be written according to the same conventions and (usually) in
the same programming language. In summary, modules must have matched interfaces to
compose. These inflexibilities, in turn, motivate more software creation and concomitant
expense: they make programming approaches based on integration and re-use unduly
expensive. This means that reimplementation from scratch is often chosen in preference
to adaptation of existing implementations.

This dissertation presents several contributions towards lessening this problem. It
centres on the design of a new special-purpose programming language, called Cake. This
language is specialised to the task of describing how components having mismatched in-
terfaces (i.e. not plug-compatible, and perhaps not homogeneous) may be adapted so
that they compose as required. It is a language significantly more effective at captur-
ing relationships between mismatched interfaces than general-purpose programming lan-
guages. Firstly, we outline the language’s design, which centres on reconciling interface
differences in the form high-level correspondence rules which relate different interfaces.
Secondly, since Cake is designed to be a practical tool which can be a convenient and
easily-integrated tool under existing development practices, we describe an implementa-
tion of Cake in detail and explain how it achieves this integration. Thirdly, we evaluate
Cake on real tasks: by applying it to integration tasks which have already been performed
under conventional approaches, we draw meaningful comparisons demonstrating a smaller
(quantitative) size of required code and lesser (qualitative) complexity of the code that is
required. Finally, Cake applies to a wide range of input components; we sketch extensions
to Cake which render it capable of composing components that are heterogeneous with
respect to a carefully identified set of stylistic concerns which we describe in detail.

Acknowledgments

Research is never finished. Rather than thanking people for anything they helped me
complete, I’d like to thank a lot of people without whom I either couldn’t have started or
couldn’t have continued.

Firstly, I thank my supervisor, David Greaves, for the keen interest he showed in my
research goals, balanced with a quiet faith in letting me find out where they led. I am
grateful for his patient feedback when it became time to put this dissertation together.

I thank Steven Hand for letting me through the door, finding funding, and always
being available to offer honest and insightful feedback. Jon Crowcroft deserves special
thanks, for his boundless positivity and ability to give sound feedback at a moment’s
notice. Alan Mycroft also provided generous feedback at several decisive points. I also
thank Sandy Fraser for his generosity and encouragement during a valuable summer in
Princeton.

Certain people deserve special mention. Michael Dales, Alastair Reid and Simon Ford
gave me early encouragement which, unbeknownst to them, was essential in convincing
me that I could and should pursue my research ambitions. Michael Hicks appeared at a
critical time; his insight and positivity were vital in keeping me going. Somewhat later,
Yvonne Coady rescued me from a trough out of which I might otherwise not have emerged.

My many hugely talented colleagues and friends in the Atlas Room have indulged my
eccentricities on a daily basis over the years. In particular, I thank Chris Purcell, Henry
Robinson, Steven Smith, Theodore Hong, Mark Williamson, Derek Murray, Nishanth
Sastry, Periklis Akritidis, Chris Smowton, Malte Schwarzkopf and Malcolm Scott. I also
thank all the other members of the Networks and Operating Systems group for their
willingness to listen to my increasingly off-topic ideas, and the Cambridge Programming
Research Group, especially Dominic Orchard, Robin Message, Max Bolingbroke and Boris
Feigin, for letting me pretend to belong to their group when it suited me. Finally, a PhD
student needs post-docs: Scott Owens, Kathy Gray, David Evans, David Eyers, Mike
Dodds and Alan Lawrence all gave vital advice and encouragement. Vaughan Wittorff,
while not a post-doc, belongs in this list too.

I thank the Computer Laboratory support staff for the department’s efficiency and
generous resourcing; EPSRC and Cambridge Philosophical Society for essential funding;
Christ’s College, ACM SIGPLAN, ACM SIGSOFT, EuroSys and the Royal Academy
of Engineering for equally essential travel funding. I also thank various constituencies
of Christ’s College for enhancing my life in various ways, with special mentions to the
Graduate Society, the porters and the catering staff. Finally, I thank my family and friends
for their support, for providing distractions, and generally for being more important than
the contents of this dissertation.

‘If we succeed in making an Intergalactic Network, then our

main problem will be learning to communicate with Aliens.’

J.C.R. Licklider

Contents

1 Introduction 23

1.1 Diversity and change . 23

1.2 Existing practice . 25

1.2.1 Library-based development . 25

1.2.2 Abstraction layers . 27

1.2.3 Reimplementation . 27

1.2.4 Non-implementation . 28

1.2.5 Standardisation . 29

1.2.6 Information hiding and modular programming 29

1.2.7 Porting . 30

1.2.8 Automated source code transformation 31

1.2.9 Glue coding . 31

1.3 Examining tool support for glue coding . 32

1.3.1 Aptitudes of conventional languages 32

1.3.2 Plug-compatibility assumptions . 34

1.3.3 Homogeneity assumptions . 35

1.3.4 The separation of functionality from integration 35

1.4 Research approaches . 36

1.4.1 Clean-slate versus adoptable solutions 36

1.4.2 White-box versus black-box approaches 36

1.5 Goals . 39

1.5.1 List of goals . 39

1.5.2 Non-goals . 39

1.6 Thesis statement . 40

1.6.1 State of the art . 41

CONTENTS CONTENTS

1.7 Approach . 42

1.8 Contributions . 43

1.9 Technical background . 44

1.9.1 Challenges of C and C++ programs 44

1.9.2 Tools manipulating binaries . 45

1.10 Outline of subsequent chapters . 47

2 The Cake language 49

2.1 Motivation . 49

2.2 The design of Cake . 51

2.2.1 Design approach . 52

2.2.2 High-level view . 52

2.2.3 Introducing the running example 53

2.2.4 Insights . 54

2.2.5 Requirements . 55

2.2.6 Characterising Cake-generated code as a transducer 56

2.2.7 Toolchain context . 56

2.2.8 Syntactic conventions . 58

2.2.9 Simple correspondences . 58

2.2.10 Remarks on simple Cake usage . 59

2.2.11 Correspondences for free: name matching 61

2.3 More powerful features of Cake . 62

2.3.1 Corresponding sequences of events: event context 62

2.3.2 Generating data-dependent call sequences: stubs 64

2.3.3 Practicalities . 65

2.3.4 Many-to-many value correspondences 68

2.3.5 Quantification and guards . 71

2.3.6 Relating individual values . 71

2.3.7 Input and output parameters . 72

2.3.8 Arrays and lists . 73

2.3.9 Function pointers . 74

2.3.10 Completing the example . 75

2.4 Semantic questions . 76

2.4.1 Component-managed state . 76

CONTENTS CONTENTS

2.4.2 Run-time errors . 76

2.4.3 Dynamic matching and binding . 78

2.4.4 Rule precedence . 80

2.5 Summary . 81

3 Limitations of the Cake language 83

3.1 Event context predicate connectives . 83

3.2 Cake and classes of formal language . 84

3.3 Cross-cutting logic . 85

3.4 Calling conventions . 85

3.5 Control structures . 86

3.5.1 Procedural bias . 86

3.5.2 Threaded control models . 86

3.5.3 Blocking versus nonblocking calls 86

3.5.4 Conversational adaptations . 87

3.5.5 Call sequencing constraints . 87

3.5.6 Generalised sequence mappings . 87

3.5.7 Partial event handling . 89

3.5.8 Caller–callee mismatch . 89

3.5.9 Realising mailboxes . 90

3.5.10 Realising a pump . 93

3.6 Component structure . 93

3.7 Bidirectionality . 93

3.8 Recursive and side-by-side application of Cake 94

3.9 Summary . 94

4 Cake implementation 95

4.1 Strategic decisions . 95

4.2 The compiler . 96

4.2.1 Assumptions . 96

4.2.2 Outline implementation . 97

4.2.3 Interacting with object code . 97

4.2.4 Compiler overview . 99

4.2.5 Output of a Cake invocation . 99

CONTENTS CONTENTS

4.2.6 Anatomy of a wrapper . 99

4.2.7 Notes on the blackboard . 103

4.2.8 Generated value conversions . 105

4.2.9 Cake and dynamic linking . 107

4.2.10 Interaction with compiler-optimised code 107

4.3 Implementing dynamic binding . 108

4.3.1 Admissible reinterpretations . 109

4.3.2 Discovering precise object descriptions 111

4.4 Adapting objects . 113

4.4.1 Object identity . 113

4.4.2 Object lifetime . 115

4.4.3 Dealing with function pointers . 115

4.4.4 Sharing objects . 116

4.4.5 Limitations of object graph exploration 118

4.4.6 Optimisations to object sharing . 119

4.4.7 Object sharing between multiple threads 120

4.5 Status of the implementation . 120

4.6 Implementing recursive application of Cake 121

4.7 Summary . 122

5 Evaluating the Cake language 123

5.1 Approach . 123

5.2 Null cases . 124

5.2.1 No mismatch . 124

5.2.2 Renaming functions . 125

5.2.3 Renaming data types . 125

5.2.4 More complex cases . 125

5.3 Gtk+ case study . 126

5.3.1 Outline . 126

5.3.2 Relationship to the main Cake implementation 127

5.3.3 Performance . 128

5.3.4 Shareability . 131

5.4 Measurement methodology . 132

5.5 Bridging related components: libp2k . 133

CONTENTS CONTENTS

5.5.1 Performance . 138

5.6 Migration between support libraries: ephy–webkit 140

5.6.1 Objects, associations and their construction 140

5.6.2 Method dispatch . 141

5.6.3 Minor benefits . 142

5.6.4 Handling the history list . 143

5.6.5 API influence and anticipation . 146

5.7 Evolving interfaces in distributed systems: XCL 148

5.7.1 Main pattern rules . 148

5.8 Relation to thesis statement . 152

5.9 Closing remarks . 153

6 Extending Cake with component styles 155

6.1 Introduction . 155

6.2 Motivation and simple examples . 156

6.2.1 Simple example . 156

6.2.2 Examples from earlier chapters . 157

6.3 Dimensions of stylistic variation . 157

6.3.1 Properties of interest . 158

6.3.2 Abstract concerns . 158

6.4 Understanding styles . 163

6.4.1 Lack of context . 164

6.4.2 Styles as relations . 164

6.4.3 Composition of styles . 164

6.4.4 Reversibility of styles . 165

6.5 Expressing and applying styles . 165

6.6 Elaboration of styles . 166

6.6.1 Elaboration disambiguated using annotation 167

6.6.2 Semantics of elaboration . 167

6.6.3 Adding annotation using quantification 168

6.7 Reversibility . 170

6.7.1 Event style rules . 170

6.7.2 Abstraction as normalisation . 171

6.7.3 A multi-call example . 171

6.7.4 Other concerns . 173

6.8 Summary . 175

CONTENTS CONTENTS

7 Related work 177

7.1 Conventional programming practice . 178

7.2 Scripting languages . 178

7.2.1 Piccola . 178

7.2.2 Other scripting approaches . 179

7.3 Adaptation described as such . 180

7.3.1 Early work . 180

7.3.2 Protocols with dynamic communication structure 182

7.3.3 Automatic, purely functional adaptation 182

7.3.4 Other recent systems . 183

7.4 Adaptation, evolution and refactoring . 184

7.4.1 Twinning . 184

7.4.2 Adaptation as horizontal extension 185

7.5 Open classes and horizontal extension . 185

7.6 Linking and interconnection languages . 186

7.7 Megaprogramming and mediators . 187

7.8 Decentralised modularisation . 189

7.8.1 Patch-based systems . 189

7.8.2 Subject-oriented composition . 189

7.8.3 Aspect-oriented programming . 190

7.8.4 Remodularization . 191

7.9 Program transformation . 192

7.10 Software connectors . 192

7.10.1 UniCon . 193

7.10.2 COMPOST . 193

7.11 Packaging . 194

7.11.1 Polygen . 194

7.11.2 Flexible Packaging . 195

7.12 Coordination . 196

7.13 Specialised code generators . 197

7.14 Data-only techniques . 198

7.15 Concluding remarks . 199

CONTENTS CONTENTS

8 Summary and Conclusions 201

8.1 Summary of the thesis and its substantiation 201

8.2 Future work . 202

8.3 Summary . 204

A Glossary 205

B Cake recipes 209

B.1 Pairwise features . 209

B.2 Annotations . 211

C Grammar of the Cake language 213

C.1 Lexical structure . 213

C.1.1 Skipped lexemes . 213

C.1.2 Other lexemes . 213

C.2 Interface description syntax . 213

C.3 Cake annotations . 215

C.4 Literal values and compile-time constant expressions 215

C.5 Cake language syntax proper . 216

C.6 The stub language . 218

D Case study code 221

D.1 p2k . 221

D.2 ephy . 223

D.3 xcl . 226

E Simple dynamic points-to analysis 231

E.1 The problem . 231

E.2 Approach . 232

E.2.1 Allocator instrumentation . 233

E.2.2 Enumerating possible typings . 234

E.2.3 Constraints . 234

E.3 Cake’s tolerance of imprecision . 236

E.4 Difficult cases . 237

E.5 Summary . 237

CONTENTS CONTENTS

List of Figures

1.1 Software growing in vertically-dependent silos over time 26

1.2 Some example silos: web-based content management systems 27

1.3 An abstraction layer design . 28

1.4 Example filesystem wrapper code . 34

1.5 Contrasting black- versus white-box approaches 38

2.1 Example filesystem wrapper code (repeated) 50

2.2 Cake rules generating equivalent wrappers 51

2.3 High-level view of an application of Cake 53

2.4 Example comparable usage patterns for libraries libmpeg2 and ffmpeg . . . 54

2.5 Example trace of a libmpeg2 client (libmpeg2 calls only) 55

2.6 Cake’s tool flow . 57

2.7 Skeleton of a simple Cake composition . 57

2.8 Some simple Cake correspondence rules . 58

2.9 Matching families of related function calls in a single rule 62

2.10 Implicit use of enumerations in C code, and Cake names annotation 63

2.11 Matching calls in the context of preceding calls 63

2.12 Describing data-dependent call sequences in Cake’s stub language 64

2.13 Interface description syntax . 67

2.14 A sophisticated value correspondence . 69

2.15 Enabling allocation adaptations on strncpy() and strndup() 72

2.16 Uses of in args and out args . 74

2.17 Adapting callbacks . 75

2.18 Remaining rules in the libmpeg2–ffmpeg example 77

2.19 Rules sensitive to static versus dynamic binding 78

3.1 Non-obvious context matching precedence 83

LIST OF FIGURES LIST OF FIGURES

3.2 Trace showing subtle rule matching behaviour 84

3.3 Sketched extension to sequence matching 88

3.4 Cross-cutting sequencing constraints causing rule blow-up 89

3.5 Describing a mailbox in Cake . 91

3.6 Tatham’s coroutines example . 91

4.1 Cake’s tool flow (repeated) . 97

4.2 Detailed common-case toolflow . 98

4.3 Simplified view of Cake compiler internals 100

4.4 Anatomy of a Cake-generated wrapper . 101

4.5 Data dependency risking unbounded blackboard growth 104

4.6 Rules sensitive to static versus dynamic binding (repeated) 108

4.7 Abstraction-violating pointer adjustments 110

4.8 Object exchange in a wrapper, using the co-object relation 114

4.9 Umbrella objects in the co-object relation 114

5.1 Linker-like usage of Cake . 124

5.2 Function renaming . 125

5.3 The Gtk+ client linked against the 1.2 (left) and 2.0 (right) library 127

5.4 A description of the Gtk+ callback function signatures 128

5.5 A wrapper function generated by scripts in the Gtk+ study 129

5.6 Fragments of the table describing object layouts 130

5.7 Basic event correspondences for p2k . 134

5.8 Basic value correspondences for p2k . 134

5.9 Special value correspondences (1) for p2k 135

5.10 Special value correspondences (2) for p2k 135

5.11 Annotations for enabling special value correspondences in p2k 136

5.12 Special value correspondences (3) for p2k 136

5.13 Special value correspondences (4) for p2k 136

5.14 Final correspondences for p2k . 137

5.15 Associating corresponding objects in Cake 141

5.16 Subclassing-like containment and pointer-based association in C 141

5.17 Interposing new dispatch tables in Epiphany 142

5.18 Simple rules mapping from Epiphany to Webkit calls 143

LIST OF FIGURES LIST OF FIGURES

5.19 C code for transferring WebKit history items to Epiphany 144

5.20 Cake rules for transferring WebKit history items to Epiphany 145

5.21 Basic pattern-based correspondences in XCL 149

5.22 Value correspondences between Xlib and XCB 150

5.23 Annotating interfaces to use artificial data types’ value correspondences . . 151

5.24 String handling . 151

5.25 Cross-rule commonality repeated in Cake yet captured in C 152

6.1 Two stylistic variants of the same component 156

6.2 Styles as interpretations underlying familiar Cake coding 157

6.3 Two styles and an applying exists block . 166

6.4 Alternative flows enabled by styles . 167

6.5 A style with guard predicate . 169

6.6 A style using a metavariable-based guard predicate 169

6.7 A simple stylistic event correspondence . 170

6.8 JNI C code, such as could be abstracted as in Fig. 6.9 172

6.9 Recognising and abstracting a concrete sequence of calls 172

6.10 An empty right-hand side rule for enabling reversibility 173

6.11 Extract from an experimental definition of the default style 174

E.1 Examples of a heap allocation with complex internal structure 235

LIST OF FIGURES LIST OF FIGURES

List of Tables

1.1 Brief comparison of prior research approaches 41

2.1 Algebra of component derivation operators 57

3.1 Cases of procedural control-flow mismatch for a simple data flow 90

5.1 Wrapper overheads in the Gtk+ study . 131

5.2 Shareability results for successive versions of Gdk 132

5.3 Comparing p2k implementations in Cake and C. 138

5.4 Execution time of the fs sync call . 139

5.5 Comparison of ephy–webkit in Cake and C. 146

5.6 Comparison of an XCL subset in Cake and C. 152

6.1 Dimensions of stylistic variation, with examples 161

LIST OF TABLES LIST OF TABLES

Chapter 1

Introduction

Software systems are among the most complex artificial systems in existence. This com-
plexity is the root of the the notorious expense of software. One of the most economically
significant costs of software, aside from the machines that run it, is the human cost of
software construction and maintenance, measured in human programmer hours. Reduc-
ing this cost is the motivation of a great proportion of research in programming languages
and software engineering, including the work presented in this dissertation.

Compositionality has long been recognised as a powerful approach to managing the
complexity of software construction and maintenance. The idea of software components

has been established for over forty years, following McIlroy’s influential presentation [McIl-
roy 1969]. Unfortunately, the extent of composition practised in development reality
continues to fall short of its apparent potential. Following several waves of optimistic
research and other literature proclaiming the potential of software re-use, throughout the
1980s and 1990s, more pessimistic commentaries have emerged, claiming that re-use is
only feasible for certain classes of component [Lampson 2004], or certain problem domains
[Veldhuizen 2005] or under limited temporal variation in requirements [Glass 1998].

Considered with the benefit of forty years’ hindsight, McIlroy’s vision of a software
component catalogue is optimistic in at least two senses. Specifically, the collected expe-
rience gathered over the intervening years has refuted McIlroy’s suppositions concerning
both diversity and change.

1.1 Diversity and change

Diversity in general McIlroy’s envisaged reality assumes that whatever the developer’s
requirement might be, a precise match would be available in some large and well-known
catalogue of pre-existing components. This component would be matched not only in
desired performance characteristics and hardware compatibility, but also in interface de-
tails such as error-reporting conventions, robustness preconditions, the concrete form of
input and output data structures, and so on. In other words, it envisages that sheer
diversity in the available provision of components would be sufficient to satisfy diverse
requirements. In particular, this diverse provision would satisfy diverse requirements not

24 1.1. Diversity and change

only of the functional and extra-functional kinds, but also of interfacing requirements:
how components interact with the wider system.

Interface diversity specifically Concerning diversity, McIlroy lists several dimensions
over which components may differ, other than their function. These dimensions can be
grouped into two sets: performance characteristics (e.g. time–space complexity of a par-
ticular operation) and interface details (including error-reporting style, input and output
data structures, input checking contracts, and so on). This is not a disjoint grouping, in
that many interface details also have a systematic effect on performance. For example,
adding input validation reduces speed, while choosing a different input data structure
might allow more efficient processing. However, it is convenient to treat these classes of
diversity as separate problems, for two reasons. Firstly, differing interface details rarely
imply radical differences in the core of a component’s implementation. By contrast, major
performance differences usually result from at least moderately deep changes. Interfaces
are superficial, and it is often possible to make one interface look like another without
profound changes to component implementations (and indeed, several contemporary prac-
tices exploit this possibility, as we will see in §1.2). A second reason is that performance
dimensions are relatively simply described: usually only a few dimensions of performance,
such as processing time, throughput, memory requirements or power consumption, are
of interest. It follows that the effective diversity in performance requirements is low. By
contrast, interfaces model some abstract domain, and as illustrated by Kent [1989], the
potential diversity among models of the same domain is huge. Therefore, interface diver-
sity appears both especially significant and especially tractable: there is a lot of diversity
to mitigate, and at the same time, a lot of that may be mitigated by relatively superficial
changes to components.

Change in general As with diversity, McIlroy’s vision includes no consideration of
change. Changing requirements are commonplace in software [McConnell 1996]. Change
in provision, among the available population of software components, is also a familiar
phenomenon. As new components are developed and others cease to be maintained, a com-
ponent which was previously a good choice may soon become a candidate for replacement.
Unfortunately, such changes cannot always be anticipated. As a result, surrounding code
embodies commitments to components selected earlier. Reversing these commitments is
an expensive process, because they easily permeate large quantities of code.

Interface change specifically As with diversity, change in interfaces is both a more
significant and a more tractable problem than change in functional or extrafunctional
properties of software components. In general, reliability and performance of a given
actively-maintained component will improve over time, as bug-fixes are incorporated and
optimisations made. These changes are invariably welcomed by users of the component,
and need not entail any changes to the user’s code. Rather, users only need to change their
code if interface details, rather than implementation internals, are changed. However, such
changes do occur often—perhaps to accommodate those same bug-fixes or performance
improvements, but perhaps simply to improve the interface’s design for future users.

Chapter 1. Introduction 25

When summed over a prolonged stretch of a component’s lifetime, this kind of ongoing
change constitutes a very significant effort.

Integration effort Developers are used to diversity and change in interfaces. They are
aware that available alternatives among candidate components will be limited, so rather
than finding pre-existing components which exactly match requirements, some amount
of integration effort will be necessary when using any preexisting component. Similarly,
developers are familiar with the ongoing maintenance effort required to accommodate
changing requirements and changing provision. Our goal in this dissertation is to reduce
the human effort which must be expended on both of these kinds of task.

Interface mismatch By focussing on interface details and avoiding direct consideration
of other extrafunctional concerns such as performance, we can treat both interface diver-
sity and interface change as instances of the same underlying abstract problem: interface
mismatch. Stated simply, this includes any problem where composition of components is
required, but where their interfaces do not match. Conventional means of tackling such
problems are laborious. This means that integration remains expensive, as described in
the next section.

1.2 Existing practice

Practitioners have adopted a number of techniques for building software in a componen-
tised fashion in the presence of (or risk of) interface mismatch. Unfortunately, these
techniques have many shortcomings. We now briefly survey these techniques.

1.2.1 Library-based development

The concept of software libraries has existed for almost as long as the stored-program
computer. McIlroy’s vision can be understood as the realisation of a complete and cate-

gorised suite of libraries for any recurring programming task. By contrast, reality thus far
has provided an incomplete and ill-organised collection of libraries. Programmers make
use of this opportunistically rather than systematically.

Standard libraries In the last fifteen years, popular programming languages have of-
fered ever-larger standard libraries. For example, the standard libraries provided by the
Java [Arnold et al. 2005] or Python [Van Rossum and Drake Jr. 2003] languages are many
times the size of those defined by older languages including C [Kernighan and Ritchie
1988], C++ [Stroustrup 1997] or Fortran. Correspondingly, programmers in these more
modern languages generally write less utility code and concentrate more on application-
domain concerns. Using standard libraries is convenient because they are well-known,
slow to change, and unique with respect to their host language. In other words, having

26 1.2. Existing practice

t ime

apache

mod_ruby

wsgi

django

rails
2003

1993

1996
ruby python

2001

2005

Figure 1.1: Software growing in vertically-dependent silos over time

adopted a particular programming language, using its library represents no greater com-
mitment for the programmer, who may adopt it from the outset, be confident that it will
remain well-supported for decades, and have little motivation to seek alternatives.

Application-domain libraries Libraries also exist in the application domain. In con-
trast with languages’ standard libraries, application-domain libraries represent a popula-
tion of changing components, in which many alternative choices are available. Committing
to a particular choice of library at development time, and writing code against its appli-
cation programming interfaces (APIs), means accepting that should a different library
represent a better alternative later, considerable integration effort will be required to
make the switch, since details of the original library’s APIs will be scattered throughout
the code.

Emergent behaviour An emergent consequence of library-based development is that
software grows “upwards” to form dependency structures often called “stacks” or silos.
“Upwards” here implies a vertical axis encoding both dependency and time, with higher-
positioned components both depending on lower ones and being developed after them, as
in Fig. 1.1. Within a silo, each piece of software is written “for” some specific pre-existing
underlying piece—that is, targetting its interfaces directly. Frequently, users or develop-
ers wishing to add a particular feature to their chosen stack of code observe that code for
the feature is already available in some other stack, but is effectively unusable because
it is “trapped”: the integration effort of linking it with the intended target codebase is
infeasibly great. (This phenomenon is particularly easily observed when looking at how
the availability of any given application-level software is commonly restricted to a narrow
range of candidate infrastructure software—such as a particular operating system, win-
dowing toolkit, desktop suite, text editor, programming language, database management
system, and so on.)

Chapter 1. Introduction 27

(any OS)

JVM

Tomcat

(container)

Unix-like OS Windows OS

DSpace

Mod_python

Apache web

server
IIS web server

Microsoft .NET

runtime

ASP.NET

CPython

Zope

Plone
DotNetNuke

Tomcat (libraries)

Figure 1.2: Some example silos: web-based content management systems

1.2.2 Abstraction layers

Software architects who foresee the need to support multiple or changing selections of
libraries often incorporate an abstraction layer into their design. This is useful for accom-
modating both diversity and change. By writing most code against an abstract interface
agnostic to a particular underlying API, that code is insulated from details of that API—
from changes to those details and from diversity among candidate selections of that API.
Fig. 1.3 illustrates this design.

Unfortunately, abstraction layers are often an incomplete solution, for two reasons.
Firstly, abstraction layers require anticipation. It may only become apparent later that
multiple or changing selections of libraries need to be accommodated—in which case it
is too late to incorporate an abstraction layer. Secondly, abstraction layers represent
an up-front design overhead which expedience often overrules, even if the possibility of
requiring one in future is anticipated. Programmers are notoriously prone to optimism
and wishful thinking [Beck and Andres 2004; McConnell 1996]. Abstraction layers cannot
be incorporated in an evolutionary fashion: since their purpose is to isolate specific API
details from leaking into a wider codebase, they rely on disciplined adoption from the
start. Where this discipline is not applied, laborious programming effort may be required
later.

“Plug-in” systems found in many applications (such as most popular web browsers)
are an extension of the abstraction layer design: an application presenting its abstraction
layer interface through a level of run-time indirection (e.g. a dispatch table) can then load
“plug-in” implementations of this interface dynamically into the running program. For
our purposes, this dynamic loading does not affect the problem of interface mismatch.

1.2.3 Reimplementation

When integration of existing code is not a practical option, reimplementation of the desired
functionality from scratch is often the chosen fallback. This brings obvious expense. In

28 1.2. Existing practice

library 1

client

library 2

abstraction layer

implementations

Figure 1.3: An abstraction layer design

cases of simple components or large degrees of mismatch, it may nevertheless be the
cheapest option. This dissertation’s contributions will effectively shift this calculation
somewhat in favour of integration, by reducing the associated cost.

We mention reimplementation because it is unquestionably a reality of software devel-
opment and a source of much avoidable expense. However, it is very difficult to quantify
the extent of “avoidable” reimplementation. Programmers rarely document their moti-
vation, and invariably no reimplementation is identical to pre-existing code feature-for-
feature, nor exactly matched in its performance characteristics and other extrafunctional
properties. The availability of a few competing implementations of the same functional-
ity is often a beneficial force, whether for marketplace competition between commercial
software houses or as a source of competitive incentive among open-source coders.

Anecdotally, however, avoidable reimplementation appears common. It can be ob-
served in the same way as the silo phenomenon (§1.2.1): parallel implementations of
similar functionality are often evidenced in the contexts of different supporting libraries.
Fig. 1.2 illustrates this with three example silos, each implementing a web-based content
management system headed by popular software packages (DSpace1, Plone2 and DotNet-
Nuke3). The key observation is that portability between silos is extremely limited: with
a few exceptions, pieces of any silo cannot be transposed into either of the other silos
without substantial development effort.

1.2.4 Non-implementation

Non-implementation is another common fallback when integration effort is prohibitive.
Developers simply avoid providing some desired functionality hence saving implementa-
tion effort. Again, non-implementation is easier to observe by anecdote than by rigorous
measurement. Among open-source projects, despite free availability of code, we neverthe-
less frequently observe features present in one software package which are not found in a

1http://www.dspace.org/
2http://plone.org/
3http://www.dotnetnuke.com/

Chapter 1. Introduction 29

competitor. Moreover, we often see requests for the missing features in the relevant bug
tracker. Many such requests go years without being satisfied, despite the availability of
an implementation of the feature in the other project’s codebase. This is an indication of
the significant integration effort involved.

1.2.5 Standardisation

One approach to coping with diversity and change is to rule them out. This is the essence
of standardisation [Kuhn 1990]. There are many well-known successful examples of stan-
dardisation in software interfaces: programming languages’ standard libraries, standard
operating system interfaces such as POSIX [IEEE POSIX, 1988], long-lived network pro-
tocols and client APIs such as the X11 Window System [Scheifler and Gettys 1986].

Unfortunately, the weaknesses of standardisation are also well-known. While it may
succeed in cutting out whimsical diversity, or ill-considered changes, many occurrences
of diversity and change originate from highly justified desires to improve and innovate.
For this reason, it is commonplace for a domain to offer many competing “standards”, as
well as many revisions or extensions of a given standard. Most software interfaces are not
standardised at all, as this enables the greatest freedom to innovate and improve. Rather,
they are peculiar to a single implementation and offer no guarantees of stability.

1.2.6 Information hiding and modular programming

We have seen how dealing with interface diversity and change can make development
tasks expensive. For these reasons, both folklore and research in software engineering
have often advocated keeping interfaces small. This is the basis of information hiding

[Parnas 1972]: developers consciously limit what interface details should be visible from
other components, in order to restrict the “surface area” of interdependency between
components to a small and less change-prone set of details.

Most programming languages espouse some form of “modular programming”. Invari-
ably this means that input programs can be split into multiple constructs or files, where
language-defined rules enforce restrictions on the permitted inter-reference between com-
ponents. These rules partially derive from implementation concerns, but also encompass
information hiding features. For example, Java and C++ have private and protected mod-
ifiers for class members, which exist only to hide change-prone members that should not
be included in the interface. CLU [Liskov et al. 1977], with its notion of abstract data
types—data structures whose concrete representation is hidden from their clients—was
the first language to explicitly emphasise this principle.

Unfortunately, even small interfaces can suffer mismatch. Moreover, interfaces cannot
be smaller than the domain that they model. Somehow, the programmer must choose a
concrete expression of their domain. Any such concretion is an opportunity for introducing
mismatch with a concretion chosen by another programmer. Therefore, information hiding
is useful but not sufficient to address the problem of interface mismatch.

Another sense of “modularity” is the different but related issue of modular reasoning—
the ability to scalably reason about large systems. Type systems are by far the most

30 1.2. Existing practice

popular example: they abstract programs by considering the sets of values which each
program fragment might yield [Pierce 2002], and use these abstractions to reason about
compositions of program fragments. Just as modular programming concerns limiting the
changes which can invalidate compositions, so modular reasoning is concerned (in part)
with limiting the changes which can invalidate prior reasoning about a composition. These
issues are separate from our work, except for an indirect practical relevance: the machine-
readable interface specifications available in real code reflect certain biases in conventional
programming languages. Specifically, most languages provide type annotations, but little
about control properties of interfaces (such as their protocol specifications [Yellin and
Strom 1997]).

1.2.7 Porting

Developers sometimes port code written for one environment (say, targetting a partic-
ular library, as in §1.2.1) to run in a different environment. This means editing the
code to change the details that differ between the two interfaces. The result is either a
patch, detailing the changes to the original code, or perhaps a fork, meaning a separately-
maintained copy of an entire modified codebase.

Patches record source-level differences, usually in the form of line-by-line differencing
(as provided by the Unix diff command [Hunt and McIlroy 1976]). Since patches identify
locations in source code using fragile contextual details (usually a combination of line
numbers and unmodified surrounding lines), they must be meticulously maintained as
the original codebase evolves through independent modifications. Otherwise, the patch
will no longer apply. In the case of a fork, the porting programmer has decided to
avoid this maintenance effort, at the expense of foregoing the benefits of any independent
modifications. (He may choose to backport those changes himself, effectively patching in
the opposite direction.) Among open-source code, “rotted” patches are common: these
are patches that have not been maintained, so no longer apply to current versions of their
target codebase.

Since porting involves modifying existing code, it presents a high risk of introducing
unrelated bugs in adjoining nearby code, causing regressions in potentially unrelated fea-
tures. These problems arise because patchsets and source-level edits are overly invasive—
they modify and duplicate code which could be left alone—and overly syntactic—meaning
that they can be broken by irrelevant or superficial changes which have no semantic effect
on the program (such as renaming an identifier, or simply changing code layout).

Porting-based migration of code from one infrastructure to another is occasionally
undertaken, but at huge cost. For example, during 2006–08 the KDE desktop suite
migrated from using the DCOP inter-process messaging infrastructure to the broadly
similar D-BUS, entailing modifications to dozens of applications, in most case impacting
hundreds or even thousands of lines of code.4 It is notable also that the motivation for
this move was to improve integration between KDE and GNOME desktop suites, which

4See revision 546826 of the KDE Subversion repository, available at

http://websvn.kde.org/?revision=546826&view=version as of 22 September 2010, or in the e-mail

with message ID 1149060043.312648.25096.nullmailer@svn.kde.org.

Chapter 1. Introduction 31

prior to this porting effort had been classic instances of the silo phenomenon described in
§1.2.1.

1.2.8 Automated source code transformation

Many development environments, such as Eclipse [Holzner 2004] or Microsoft’s Visual
Studio [Johnson et al. 2002], offer automated “refactorings” on source code. Refactorings,
as originated by Opdyke [1992] and popularised by Fowler [1999] are systematic source-
level transformations, designed to automate non-localised changes which are laborious and
error-prone to perform by hand. In this sense, they address a problem which generalises
from some of the difficulties of porting: the laborious, non-localised nature of source-level
changes. Refactorings may be used to make the editing process somewhat quicker and less
error-prone than hand porting. However, they do not address the problem maintaining a
forked or patched version of the original code. If a codebase has been refactored to target
some different interface, or provide some different interface, then unless support for the old
interfaces is no longer required, the same maintenance issues emerge. Current refactoring
systems also require careful testing or manual checking of generated code, since they lack
precise specifications and are frequently implemented incorrectly [Schaefer and de Moor
2010].

1.2.9 Glue coding

An alternative to porting is provided by the adapter pattern [Gamma et al. 1995] and
other “glue coding” approaches. Here, the aim is to avoid modifying existing code, but
instead to implement the desired interface by a thin layer of code which consumes an
alternative interface provided by some available component. This is done by coding
“wrapper” functions which effectively map from one interface to another.

This approach has several desirable properties. Unlike porting, it does not involve
dangerous modifications to existing code, since it involves only adding new code. Unlike
patching, it does not introduce fragile dependencies on the surface form of existing code,
since it composes using the language-level composition mechanisms rather than textual
or syntactic substitution. Unlike porting and patching, it is compositional in the sense
that many different adapters can be linked against the same underlying interface without
copying or modifying code. This means that adapters could be used to link a given
client against multiple different libraries within the same program. (By contrast, applying
multiple patchsets to the same underlying code is in general infeasible, except perhaps by
replicating the target code multiple times in the codebase.)

The latter class of system, in which the same client links against many libraries within
the same program, resembles very much a plug-in system, and indeed, abstraction layers
(§1.2.2) can be seen as a kind of adapter—albeit one that is usually simplified by the fact
that the adaptation was foreseen. This foresight allows the adapted-from interface to be
carefully designed in a highly abstract way, in order to accommodate multiple conforming
implementations with a minimum of subsequent effort. By contrast, unforeseen adap-
tation tasks are more likely to suffer complexity associated with “undoing” concretions
introduced by the adapted-from interface.

32 1.3. Examining tool support for glue coding

Glue coding shares the main benefit of information hiding that dependency is limited
to interface details, so glue code is fragile only to the extent that the glued interfaces are
change-prone. Nevertheless, since one of our motivations is that interfaces can and do
change over time, this still represents a nontrivial cost.

Other than this unavoidable maintenance cost, there are two key limitations of the glue
coding approach. The first is simply that it is not always possible to avoid modifications
to target code, because the necessary points of interposition may not be available. For
example, if the adapted-to interface specifies that the client can supply a notification
callback to be called when some internal event occurs, and the adapted-from interface
does not generate any such call, it is not possible for an adapter to generate the call
because it simply will not receive control when the relevant event occurs. To satisfy these
compositions, some sort of invasive modifications are clearly required. Simple patching
to insert the relevant notification (often called “hooks” or “instrumentation”) can suffice;
once this is done, the adaptation can be resumed in the usual glue coding fashion.

The second limitation is that glue coding is notoriously tedious and error-prone. Reifer
et al. [2003] estimate that a line of glue code costs three times as much to maintain as a line
of code in a version of the same system coded from scratch. Although this says nothing
about the relative quantities of code required for glue-based implementation versus a
custom reimplementation—and we would hope the former would require far less—it still
suggests that glue code presents some specific difficulties.

Despite these limitations, the modular and compositional nature of glue coding make it
an appealing approach for tackling interface mismatch tasks. The rest of this dissertation
considers how to address some of its drawbacks, by making it a more efficient option for
the programmer.

1.3 Examining tool support for glue coding

We now make some simple observations, familiar to most developers, which motivate the
subsequent direction of the dissertation.

1.3.1 Aptitudes of conventional languages

Many tool developers have questioned whether general purpose programming languages
are a good tool for creating various kinds of glue code. This is evidenced by the many
domain-specific tools that have emerged for assisting with special cases of glue coding—
particularly for generating marshalling code between network- and program-oriented en-
codings of the same data [O’Malley et al. 1994] and for foreign function interfaces in
language implementations [Beazley 1996]. However, none is so general as to cater to a
wide variety of interface mismatch scenarios.

It is generally understood that conventional languages are designed to abstract algo-
rithmic, data-transforming or domain-modelling code. By contrast, we can observe that
most glue code is algorithmically simple, defining few or no new data types, few new
functions except for wrappers and occasional utility code, and making relatively little use

Chapter 1. Introduction 33

of looping or recursion. Rather, it is concerned with recognising and relating the interac-
tions defined by two existing mismatched interfaces. (These observations are illustrated
by a great many examples throughout the rest of this dissertation, beginning shortly with
Fig. 1.4.)

Glue code is often fragile in that its correctness depends on consistency with the
external interfaces which it is adapting between. It is doubly fragile in that the same or
similar patterns of glue are often repeated across many wrappers, frequently making it
easy for the programmer to introduce errors, either by under-application of these patterns
(applying logic at only a subset of the appropriate locations) or over-application (applying
logic at inappropriate locations).

As illustration, consider the two example wrapper functions in Fig. 1.4. These form
part of an adapter (discussed fully in Chapter 5) between a pair of filesystem interfaces,
puffs (here the interface provided) and rump (the interface consumed). The seek call
repositions an open file cursor, while remove deletes a directory entry; we have added
comments, but the details of the code’s function are not important. Instead, notice four
problems with this style of code.

Firstly, there is a high volume of similar code: these functions show only two out of
28 wrapper functions in the complete adapter. Most of these 28 wrappers are of similar
form, but different in detail, to the two shown. Overall, a large volume of similar code is
required for what is a conceptually simple task.

Secondly, however, notice that the code is not trivially repetitive. Each wrapper
applies a different subset of (implied) rules, e.g. for treatment of arguments. Consider the
opc parameters in the figure: one case requires a bumped reference count and has different
unlocking semantics from the other. The programmer must juggle these rules correctly
amid this large quantity of similar code. The fact that these rules are not stated once,
but rather are expanded into each wrapper function, represents a failure of modularity.

Thirdly, readability is poor: while the exported (“provided”) interface is clearly marked
out by the wrappers’ signatures, the imported (“required”) interface is buried inside the
wrapper function bodies. This obscures what are in fact quite simple abstract correspon-
dences between the two interfaces.

Fourthly, wrappers are inconvenient for developers: among other headaches, to com-
pile this code the programmer must construct a hybrid build environment supporting
compilation against both interfaces’ data-types and helper functions. In the C language,
for example, this is often nontrivial because of limited support for identifier scoping (i.e.
lack of user-defined namespaces). In general, we claim that component implementa-
tion languages may not be accommodating of the peculiarities of adaptation tasks—
unsurprisingly, because support for such tasks is not a design priority for conventional
programming languages.

This example shows a relatively simple case of adaptation. In more complex cases,
these difficulties escalate further. For example, in this particular case, functions across
the two interfaces correspond one-to-one. In others, where functions have some more
complex correspondence, the programmer might be forced to create a state machine in
order to catch a particular temporal pattern of calls requiring special treatment. (We will
see examples of this in Chapter 2.)

34 1.3. Examining tool support for glue coding

int p2k_node_seek(struct puffs_usermount *pu,

puffs_cookie_t opc, off_t oldoff, off_t newoff,

const struct puffs_cred *pcr)

{

kauth_cred_t cred;

int rv;

cred = cred_create(pcr); // convert auth token

VLE(opc); // lock vnode ptr

rv = RUMP_VOP_SEEK(opc, oldoff, newoff, cred); // call

VUL(opc); // unlock vnode ptr

cred_destroy(cred); // destroy temp auth token

return rv;

}

int p2k_node_remove(struct puffs_usermount *pu,

puffs_cookie_t opc, puffs_cookie_t targ,

const struct puffs_cn *pcn)

{

struct componentname *cn;

int rv;

cn = makecn(pcn); // issue temp name

VLE(opc); // lock vnode ptr

rump_vp_incref(opc); // bump refcount

VLE(targ); // lock target vnode

rump_vp_incref(targ); // bump that refcount

rv = RUMP_VOP_REMOVE(opc, targ, cn); // call rump

AUL(opc); // this time, vnodes were unlocked

AUL(targ); //... by rump, so just assert this

freecn(cn, 0); // free temp name

return rv;

}

Figure 1.4: Example filesystem wrapper code

1.3.2 Plug-compatibility assumptions

All conventional programming languages and linkers use a plug-compatible model of com-
position: they compose partial programs whose interfaces are assumed to match exactly.
This design follows naturally from the popular conception of programming as a precise
mathematical activity, advanced by influential texts such as Dijkstra’s Discipline of Pro-

gramming [Dijkstra 1976]. Parnas observed that Dijkstra’s idealised approach contrasted
with the reality that programs are in fact not written to solve a definitive single problem
but rather families of problems [Parnas 1978]. Analogously, our observations so far have
shown that software components are not written for a single unchanging composition
context but must integrate with diverse and changing interface requirements.

There is a gap in the support offered by tools assuming plug-compatibility: they
provide no support for describing how to make a compatible composition out of a plug-

Chapter 1. Introduction 35

incompatible one. For example, a typical compiler will include a type-checker to tell the
programmer explicitly when a composition might be type-incorrect, but will not do any
work on the programmer’s behalf to make a correct composition out of an incorrect one,
nor accept any special instruction from the programmer about how to do this. Rather,
traditional thinking holds that doing so is “just another programming exercise”, most
likely to be done by modifying the input components. By contrast, since we know that
such incompatibilities arise from diversity and change in interfaces, we can observe two
things. Firstly, this kind of programming task is qualitatively different from others, and
so might benefit from different tools and languages. Secondly, such programming should
be modularised separately from the input components, since it relates not to either com-
ponent individually, but rather to their combination.

The closest to effective tool support for these scenarios lies in refactoring support in
integrated development environments (IDEs), as outlined in §1.2.8. However, it works only
when the relevant changes are made using the automated refactoring support of the tool,
whereas many edits will lie outside the tool’s repertoire. Moreover, it assumes that changes
affect only code that is local and can therefore be automatically updated by the tool. By
contrast, precisely the kinds of changes most in need of tool support are those whose
effects cross project boundaries, since the developers who must deal with the changes
are not the same developers who made them. These are not addressed by refactoring.
(That is not to deny that other IDE features, such as incremental error-checking and
autocompletion, do make the manual editing process somewhat more efficient.)

1.3.3 Homogeneity assumptions

Continuing development of new programming languages, libraries and other software in-
frastructure entails that components may also be mismatched in their expectations of
styles or packagings of the components with which they are to be linked [Shaw 1995].
Even if two independent programmers devise what are effectively identical interfaces to
some functionality, their code might nevertheless not be composable using conventional
tools (such as a linker), owing to the concrete differences emerging from their choice
of infrastructure (including programming language, libraries, operating system and so
on). Effectively, each piece of infrastructure creates its own silo (§1.2.1). Since many
abstractly similar infrastructures exist (e.g. similar programming languages, similar de-
velopment frameworks, etc.), we would like the ability for tools to compose heterogeneous
software. We currently lack this ability. Gaining it could hugely increase the degree of
available compositionality by effectively breaking apart the silos defined by each separate
piece of infrastructure.

1.3.4 The separation of functionality from integration

We can paraphrase the foregoing critical appraisal of tool design by saying that conven-
tional tool designs do not separate functionality from integration. Composition-specific de-
tails are an integration concern, but owing to the plug-compatibility assumption, conven-
tional tools force them to be addressed within components themselves—the same medium

36 1.4. Research approaches

used for functionality. Similarly, by composing only homogeneous components, tools in-
duce dependencies between raw functionality and the packaging- or infrastructure-specific
details which ought only to be an integration concern. The desire to separate function-
ality from integration has been motivated by prior work [Dellarocas 1997; DeLine 2001].
However, much work remains on realising this separation in a practical tool.

1.4 Research approaches

Here we briefly characterise the classes of approach found in existing research literature,
with approximate comparisons. A complete discussion of related work is left until Chap-
ter 7.

Roughly, we may divide research approaches to this problem along two dimensions.
The first is applicability: clean-slate solutions allow a broad re-imagining of the software
development process, but require that any participant components are rewritten from
scratch according to new practices, whereas solutions designed for incremental adopt-

ability offer an approach which can be applied to existing code, invariably making some
compromises to do so. The second dimension concerns the abstractions in whose terms
compositions are described, which we divide into white-box and black-box categories.

1.4.1 Clean-slate versus adoptable solutions

Flexible Packaging [DeLine 2001] is an example of a clean-slate approach. It proposes
developing software components in two parts: a ware describing the functionality, and
a packager describing its interaction with external components. Different packagers can
adapt the same ware to different sets of concrete operations, and can support a wide
variety of interface mechanisms and conventions. This approach is extremely appealing,
since it successfully achieves a separation between functionality (wares) and integration
details (packagers). However, the work leaves open the question of how to apply the
underlying principles to existing software in an adoptable way, without redeveloping all
software in the form of wares and packagers. Answering this question is a primary goal
of this dissertation.

1.4.2 White-box versus black-box approaches

We can generalise from our discussions of the relative merits of patching, porting and glue
coding (§1.2) to classify research approaches.

“White-box” refers to any tool design which abstracts software components as struc-
tured artifacts whose entire internals are exposed to the tool. Such tools might perform
conventional modular programming, or be specialised for expressing extensions, compo-
sitions or specialisations of software. Porting is a white-box approach, often supported
using the Unix patch tool, which is applied to software by interpreting arbitrary pieces
of software source code as lines of text, any of which may be replaced or deleted. Aspect-
oriented programming [Kiczales et al. 1997], refactoring tools [Opdyke 1992], “semantic

Chapter 1. Introduction 37

patching” tools [Fiuczynski et al. 2005; Padioleau et al. 2008], instrumentation tools such
as Pin [Luk et al. 2005] and similar fall into this category. White-box tools often adopt
source-level abstractions of components—such as lines of code, program statements, nodes
in an abstract syntax tree, data structure representations, and so on. However, they do
not always do so; Pin is one notable exception. Instead of a source-level view, its inter-
face is based on control-flow information reconstructed from the binary image of a running
component. Despite targetting binaries, it remains white-box.

By contrast, the black-box approach provides tools which only inspect and modify
components up to some limited extent, circumscribed by the component’s logical interface.
An interface is an abstraction of a component intended to be both less change-prone than
the component’s internal implementation5 yet nevertheless compositionally useful as a
“contract” or point of agreement with other components. In other words, the essence
of black-box models is precisely that of Parnas’s information hiding [Parnas 1972], as
embodied in most conventional programming languages’ notions of interface or abstract
data type. The adapter pattern [Gamma et al. 1995] represents a black-box approach
to adaptation in conventional practice. Signature- and behaviour-oriented adaptation
techniques, such as Nimble [Purtilo and Atlee 1991] or the work of Bracciali et al. [2005],
constitute black-box approaches. Configuration and coordination languages like Knit
[Reid et al. 2000] or Reo [Arbab and Mavaddat 2002] also present a black-box component
abstraction to the programmer.

Both kinds of technique are capable of supporting a separation between functional-
ity and integration. For example, an aspect-oriented pointcut language can identify the
points in a component’s execution where it should interact with some external compo-
nent, while aspect advice can supply relevant integration code. Alternatively, a black-box
approach could use a coordination language like Reo to describe logic or data-flows to be
inserted between existing call sites and entry points, interpreted as message ports. The
key difference between black- and white-box techniques may be summarised as follows.
Black-box notations restrict what aspects of components are visible and limit what can be
expressed, thereby constraining the programmer in order to protect modularity. Mean-
while, white-box techniques provide unconstrained, powerful primitives enabling a wide
range of adaptations to be expressed, but in so doing, place a burden on programmer
discipline to maintain a well-modularised system.

Fig. 1.5 highlights pictorially the contrast between white- and black-box descriptions
of adaptation techniques.

Since black-box techniques more actively enable a modular separation between func-
tionality and integration, and allow for more language-independent (and hence more
widely adoptable) tool support, we pursue this approach within the scope of this dis-
sertation. However, doing so makes the initial assumption that the necessary points of
interposition—call-sites, join points, entry points and so forth—are exposed on the target
components. If not, then white-box techniques must be employed to expose them. We
will call this property of a compositional task “well-abstractedness”.

5. . . or “diversity-prone”, in the case of reimplementations, e.g. of a standard interface.

38 1.4. Research approaches

Component A Component B

Component C

xxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxxxx

xxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxx

adaptation logic

xxxxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxx

xxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

adaptation logic

Component A Component B

Component C

white-box adaptation logic

is free to reference

internals of component

implementations

black-box adaptation logic

is constrained to

referencing interface

details only

Figure 1.5: Contrasting black- versus white-box approaches

Chapter 1. Introduction 39

1.5 Goals

Having considered contemporary practices and prior research approaches, we now set out
a list of goals which the work presented in this dissertation was conceived to satisfy. These
are motivated by the identified weaknesses in prior work; no prior work simultaneously
satisfies them.

1.5.1 List of goals

1. Black-box abstraction of adaptation tasks We require a solution which does
not involve modifying the source code of input components, and preserves the ben-
efits of information hiding between component implementations and their exported
interfaces. This is a goal which can be satisfied by construction, but will constrain
the design of our system in significant ways.

2. Practicality The contribution of this work is inherently practical; its success
requires the outcome to be a useful development tool. We make this objective more
precise by defining three sub-goals: implementability, adoptability and convenience.
Our solution must permit a working implementation. Furthermore, in the interest in
maximising the gains of compositionality, we require a solution which is adoptable in
that it applies to a large volume of existing components (cf. clean-slate approaches,
§1.4.1). Finally, we wish to ensure that our system constitutes a convenient tool,
by minimising the extent of time-consuming overhead imposed on the developer.
The particular inconveniences which our design avoids derive from its composition
of binary components, as detailed in Chapter 2. All these goals are satisfied by the
construction of a system according to our design.

3. Sufficient expressiveness Since we intend to make a contribution to practical

software engineering problems, it does not suffice to demonstrate isolated individual
ideas at a conceptual or theoretical level. Instead, we wish to design and implement
a practical tool which, by a combination of features, has sufficient expressiveness to
realise a reasonably broad selection of real or realistic programming tasks.

4. Support heterogeneous components Software is developed in a multitude of
languages and coded in a multitude of styles. To maximise compositionality, we must
make few assumptions about the nature or origins of components, with regard to
the languages, libraries or coding styles with which they were developed. Moreover,
we must provide means of describing or capturing these stylistic differences on a
per-component basis, such that these recurring per-component characteristics may
be abstracted separately from concerns arising from combinations of components.

1.5.2 Non-goals

As a matter of practicality, we must focus attention on some goals at the expense of
others. It is important to state these explicitly. We will not pursue any specific targets
in respect of the following criteria.

40 1.6. Thesis statement

Safety Statically-assured freedom from various classes of run-time error is a common
goal of much programming research. Since we target programmer productivity, rather
than reliability per se, we do not set any goals in respect of reliability. (Of course, more
productive programmers can spend longer on finding and fixing bugs in their code.) We
add that while at first glance it may appear risky to perform programming tasks at the
binary level, we firmly believe that it need not be less safe than any existing source-
level approach. For reasons of simplicity, this dissertation does not address provision
of guaranteed safety. However, binaries admit exactly the same sorts of type-checking
and other compositional reasoning as source-level representations do (given appropriate
metadata, in certain cases), so this problem may be tackled separately. This is discussed
further in §1.7.

Performance We will not attempt to evaluate our solution based on the performance
of the code it generates. Rather, it will suffice to identify the added costs in execution
time and memory, discuss to what extent they are avoidable, and present approaches for
reducing the overhead relative to that of an initial implementation.

Automation We are not seeking a tool for producing compositions automatically. Our
requirement of working with existing codebases, which may have a highly limited extent of
machine-readable specification, means that achieving semantically correct compositions
requires human guidance. Therefore, we focus on techniques for reducing the inciden-
tal complexity of providing this guidance, relative to current language and tool designs.
Future work could certainly build on this towards a more automated approach, by com-
bining techniques for inferring likely composition logic with appropriate automatic testing
or verification infrastructure.

1.6 Thesis statement

Having stated our goals, we can now state the thesis which the remainder of this disser-
tation will substantiate. The thesis of this dissertation is as follows.

Using a special-purpose language, based on relations, to compose heteroge-
neous mismatched software components, is significantly more effective in prac-
tice than conventional programming languages.

We introduce the abstraction of relations in §1.7, and develop it throughout Chap-
ter 2. Section 1.7 also more precisely defines the evaluation criteria, denoted above by
“effectiveness in practice”; these are fully detailed in Chapter 5.

The substantiation of this thesis represents an advance in the state of the art. To
explain this advance, we now summarise prior research work sharing some or all of this
thesis’s goals.

Chapter 1. Introduction 41

system ref. b/w existing het’ous expressive

Nimble [Purtilo and Atlee 1991] black yes some low

subject composition [Ossher et al. 1995] black some some low

Yellin & Strom [Yellin and Strom 1997] black some some mid

BCA [Keller and Holzle 1998] black yes some low

COMPOST [Assmann et al. 2000] white yes some mid

Flexible Packaging [DeLine 2001] black no yes high

Bracciali [Bracciali et al. 2005] black some some mid

Object expanders [Warth et al. 2006] black yes some low

Concept Maps [Järvi et al. 2007] black some no high

Twinning [Nita and Notkin 2010] white yes no mid

Cake this dissertation black yes yes high

Table 1.1: Brief comparison of prior research approaches

1.6.1 State of the art

We briefly summarise how these goals compare with the achievements of related research
work. For brevity, here we consider only the most directly comparable work, meaning that
which presents new linguistic abstractions useful for adaptation tasks (hence the absence
of the adapter pattern and other conventional techniques).

The substantiation of these comparisons can be found in Chapter 7, which also fea-
tures a wider range of prior work. In summary, however, we can highlight the following
shortcomings of prior work.

Limited expressiveness Many systems provide only features capable of expressing a
few simple classes of adaptations. A common weakness is the lack of support for
context-sensitive or many-to-many adaptation requirements [Purtilo and Atlee 1991;
Keller and Holzle 1998; Warth et al. 2006; Nita and Notkin 2010]. Conversely, sys-
tems focussing on protocol adaptation [Yellin and Strom 1997; Bracciali et al. 2005]
focus on such requirements at the exclusion of others—notably, little consideration
of data structures and other decompositions of data—which are necessary to build
a practical tool.

Lack of practical demonstration Some systems which aspire to relatively high ex-
pressiveness have not been applied to substantial case studies. Sometimes this is
because no implementation is available, perhaps because the work’s contribution is
primarily a model or a formalism [Ossher et al. 1995; Bracciali et al. 2005].

Limited applicability to existing code Clean-slate solutions [DeLine 2001] are con-
ceptually useful but of limited practical use unless a significant volume of code is
written according to their approach. Other approaches which target specific pro-
gramming languages [Keller and Holzle 1998] or subsets of programming languages
[Haack et al. 2002] also bring analogous restrictions, although less severe.

Low tolerance of heterogeneity Many solutions target very specific notions of com-
ponent, such as code written in a particular language [Keller and Holzle 1998; Järvi

42 1.7. Approach

et al. 2007; Nita and Notkin 2010]. Since this reduces the selection of candidate com-
ponents available for composition, it is less desirable than solutions which accept a
wide range of input components.

White-box techniques White-box or “grey-box” techniques [Assmann et al. 2000; Nita
and Notkin 2010] are easier to design with a high degree of expressiveness (since
the ability to transform program internals naturally permits powerful adaptations),
and often more straightforward to implement (since they can be compiled by direct
syntactic manipulation). However, we have surveyed well-established arguments for
the benefits of black-box solutions where they can be applied (§1.4.2).

For further discussion, the reader is referred to Chapter 7.

1.7 Approach

The following paragraphs summarise the key aspects of the approach adopted by our
work.

Rule-based design We devise a rule-based language, called Cake, for describing adap-
tation logic. Rather than forcing the programmer to write wrappers, rules form a higher
level and more declarative abstraction. Each rule localises (in the ideal case) a single piece
of application-domain knowledge about the adaptation task. The burden of composing
rules into wrappers falls on the compiler for our language, not on the programmer.

Computational simplicity Our solution should not incorporate expressiveness beyond
that required for realisation of real use-cases. This complements the declarative rule-
based approach: the expressiveness of our rules should not need to be extended to the
point where it gains the feature-set of a general-purpose programming language. The
motivation for this is that a more constrained domain is both simpler for the human
programmer to use, and simpler for automated tools to reason about. Although neither
automatic reasoning nor automatic generation of adapters are goals of this work, we aim
for a solution amenable to future work towards these goals.

Emphasise open-source components This dissertation chooses (somewhat arbitrar-
ily) to focus on components produced in the open-source community. These are often
written in C, C++ and other unsafe languages with explicit storage management. This
presents additional complexities in both tool design (e.g. the requirement to support mis-
matches arising from memory deallocation obligations, which would not be found in a
fully garbage-collected environment) and implementation (e.g. to work around the lack
of precise object metadata at run time). However, the core problem being addressed,
namely interface mismatch among components, is specific neither to binaries nor to un-
safe languages.

Chapter 1. Introduction 43

Target binaries Development tools should aspire to convenience of use. One source of
inconvenience often encountered in composition-based development tasks is that the pro-
grammer must construct build environments capable of compiling and linking each target
codebase. Moreover, an environment that can compile and link all target codebases to-

gether is required. This is nontrivial for various reasons. For example, some codebases
may demand particular versions of compilers or header files, potentially in a conflicting
fashion. Source-level approaches to composition tasks often involve slow edit–run–debug
cycles because they entail frequent rebuilding of large portions of the codebase (for ex-
ample when editing header files). Our approach is designed to avoid these complexities
by working directly with compiled code. This also limits recompilation delays to that for
the tool-generated code.

Evaluate against prior coding One way to ensure that a tool is practically useful is
to use it to repeat tasks already tackled by conventional means. This also provides a use-
ful like-for-like point of comparison. To evaluate our approach we apply it to tasks having
available conventionally-coded solutions drawn from the open-source development com-
munity. By comparing both aggregate properties (measurements) and detailed properties
(features of the resulting code) across the two solutions, we can gain confident assurances
of the relative merits of our tool.

1.8 Contributions

In summary, this dissertation presents the following contributions.

Requirements By example, we present a set of expressiveness requirements for a black-
box adaptation tool, as a step towards Goals 1 (black-box composition) and 3 (ex-
pressiveness).

Relation-based language design We then presents the design of a language, Cake,
which abstracts adaptation logic as a set of rules describing interface relations,
applying in a black-box fashion to existing binary code. This is a further step
towards Goal 1 (black-box composition) and a step towards Goal 2 (practicality).

Code generation We describe how our implementation of Cake compiles abstract rules
into wrapper code, which composes with existing binaries in a black-box fashion.
This completes the satisfaction of Goal 1 (black-box composition), and is a step
towards Goal 2 (practicality).

Run-time support We detail the run-time support required to execute Cake-generated
compositions. This support consists primarily of the combination of several known
dynamic analysis techniques. This completes the satisfaction of Goal 2 (practical-
ity).

Application to found use-cases We describe experiences applying Cake to three real-
world adaptation tasks drawn from well-known open-source codebases. We demon-
strate material simplifications conferred by Cake, relieving the programmer of vari-
ous coding obligations. This is a step towards satisfying Goal 3 (expressiveness).

44 1.9. Technical background

Measurement In summary of our experiences, we present aggregate measurements of
the existing implementations versus the equivalent Cake code, making certain cor-
rections for syntactic disparities between the languages used. This completes the
satisfaction of Goal 3 (expressiveness).

Extension to support styles We outline an extension to the basic Cake language which
accommodates a class of stylistic variations among component interfaces. This class
is surveyed in detail, and shown to encompass a wide variety of concerns arising from
choices of programming language, implementations thereof, and coding style. This
completes the satisfaction of Goal 4 (heterogeneity).

Related work We survey related work, explaining how existing research tools are not
adequate for realising the tasks to which Cake has been successfully applied.

Future directions We describe several plausible extensions to Cake which could yield
additional benefits.

By these contributions, we have shown that black-box adaptation using Cake is ab-
stracted in a language which is sufficiently expressive to capture many real use-cases, is
implementable, caters to heterogeneous input components, and results in code which is
shorter overall and simpler in numerous details. The thesis is therefore substantiated.
The remainder of this dissertation describes each of the listed contributions in detail.

1.9 Technical background

Out of necessity, the work presented in this dissertation illustrates general ideas in a
specific technical context. In particular, it builds heavily on two pieces of technical back-
ground: firstly, common programming practices within open-source codebases, particu-
larly their use of the C and C++ languages; secondly, on the composition specifically of
compiled native binary code. We briefly discuss the peculiarities of these here.

1.9.1 Challenges of C and C++ programs

In the open source world, much software continues to be written in C or C++. This
contrasts with much contemporary software engineering research into composition and
adaptation tools, which, to a first approximation, mostly targets source- or bytecode-level
representations of Java-like languages. Open-source software is also, by its nature, among
the most likely to display the kind of decentralised, evolving or unanticipated composition
practices for which the new tool support we have motivated is intended. There is therefore
currently a significant gap in the existing research work towards supporting these activities
on open-source and similar code.

C and C++, with their explicit resource management and direct-to-machine compila-
tion, introduce two major difficulties to implementation: firstly in the direct access to
untagged memory, and secondly in the variety of mechanisms determining object lifetime

Chapter 1. Introduction 45

(deallocation). Untagged memory implies that it is nontrivial to discover a valid high-
level interpretation for a given piece of memory. This is the same complication underlying
conservative garbage collection [Boehm and Weiser 1988], which must conservatively in-
terpret stored words as addresses even if user code happens only to interpret them as (say)
integers. This also complicates several other dynamic analyses on C and C++ programs.
We discuss our approach to this problem in Chapter 4. (Note that our approach is not

afflicted with the various classic difficulties of statically analysing C and C++ code, such
as unconstrained aliasing or implementation-defined ordering of side effects.)

C and C++ also share the property that their standard libraries are relatively small
in size, compared with more recently defined languages such as Java and Python whose
standard libraries are explicitly intended to be extensive. In turn, this means that many
third-party libraries for recurring utility functionality have gained popularity among dif-
ferent groups of C and C++ programmers. Consequently, there is particularly great diver-
sity visible in C and C++ code: even relatively simple programmatic abstractions, such
as strings and lists, have multiple concrete realisations in different libraries, and this can
be a source of interface mismatch.

1.9.2 Tools manipulating binaries

This dissertation proposes a tool which performs composition of binaries, in the form of
relocatable object code compiled for some concrete machine-level architecture. Binaries
offer the advantage of unifying many source languages. They also offer convenience ben-
efits, originating in the fact that binaries are the form in which software is deployed and
executed. We briefly survey the existing tools and practices for working with binaries.

Debuggers Symbolic debuggers are a well-established programming tool. They perform
an impressive feat: recovering a source-level view of a running binary program. There are
many benefits to this. Programs can be run “for real” in their intended environment while
still providing the developer with source-level backtraces, interactive state inspection,
step-through, breakpoints and so on. On discovering a bug, the problem can be tackled in

situ. Debuggers are built on considerable infrastructure, stretching from hardware (which
must support single-step, breakpoints, etc.) through operating systems to compilers and
runtimes; our implementation approach actively exploits this established infrastructure.

Binary composition Tools for producing compositions of binaries offer convenience
benefits analogous to those of symbolic debugging.6 Existing deployed code can be in-
corporated into novel compositions “as is”, without recompiling entire codebases. The
developer’s edit–run–debug work cycle is shorter as a result, and composition tools can
be placed at the hands of the end user, maximising the potential for user-led innovation.
The philosophy is longstanding: Unix [Ritchie and Thompson 1974] espouses much the
same principle in the design of its stream-processing tools, where the user is invited to
compose novel pipelines specialised to their particular tasks. More recently, interest in

6They may also borrow much of the same infrastructure, in the form of compiler-generated debugging

information, in their implementation.

46 1.9. Technical background

“mash-ups” of web-based application has provoked research into supporting infrastructure
[Wang et al. 2007].

Established tools The evidence for the tractability of binaries does not end with sym-
bolic debuggers. In recent years there has been considerable documented success of other
binary tools including link-time optimisers [De Sutter et al. 2005], binary instrumentation
tools [Luk et al. 2005], binary-rewriting virtual machine monitors [Devine et al. 2002] and
reverse-engineering tools [Balakrishnan et al. 2005]. The convenience of binary techniques,
in avoiding recompilation when producing a new composition, may also be seen analo-
gously to the convenience of dynamic software update [Neamtiu et al. 2006] in avoiding
restarts when deploying a new software revision, and offers similar benefits to both users
and developers.

Reliability concerns A potential disadvantage of working with binaries concerns reli-
ability. Since binaries are manipulated after compilers have performed semantic analysis
on source code, various safety or correctness properties previously enforced by the com-
piler could be violated by errors introduced at the binary level. A typical example is
type-unsafe linking: since conventional linkers do no type checking, they will happily link
code with mismatched binary interfaces. Many programmers are familiar with bugs that
can be introduced in this way, for example when linking version-skewed object code. This
can easily cause crashes and unpredictable run-time behaviour.

Reliability solutions Fortunately, reliability fears can easily be mitigated. Previous
work has addressed the specific problem of link-time type-checking [Stroustrup 1988;
Banavar et al. 1994]. Meanwhile, well-engineered binary manipulation tools have been
demonstrated to show high degrees of reliability. The popular VMWare virtual machine
monitor [Devine et al. 2002] rewrites binaries dynamically at instruction-level granularity,
yet is routinely used in mission-critical enterprise deployments. Other tools, such as
Valgrind [Nethercote and Seward 2007] and Pin [Luk et al. 2005] perform similar feats
with high standards of robustness. In a black-box approach such as the one adopted in
this dissertation, binaries need not be modified internally, but instead may be simply
linked with new intermediate code. The risks are therefore correspondingly fewer. With
appropriate metadata—which may include debugging information—programs targetting
binary abstractions of software are amenable to exactly the same classes of automatic
checks as source-level code.

Relationship to black-box approaches Binary and black-box approaches are ideal
complements. Since internals need not be modified or inspected, absence of source-level
descriptions is not a problem. In fact, such approaches can often be safer than source-level
coding, in that they avoid the need for the programmer to disturb the source-level internals
of well-tested code. Instead, by coding against the code’s interface, the programmer only
risks incorrect behaviour in his own code.

Chapter 1. Introduction 47

1.10 Outline of subsequent chapters

Chapter 2 answers the key questions about the design of the Cake language. What are the
requirements for such a language? What form does such a language take? This includes
syntax and informal semantics.

Chapter 3, as an interlude, discusses open limitations and possible extensions to the
Cake language.

Chapter 4 addresses how to implement such a language for native binaries, both in
compilation and at run time.

Chapter 5 demonstrates the application of Cake to real tasks, and the extent to which
the Cake language results in simpler, better-modularised code.

Chapter 6 describes extensions Cake to support a heterogeneous variety of input com-
ponents, as motivated by the design discussion in Chapter 2 and experiences in Chapter 5.

Chapter 7 presents a comparison between Cake and related work.

Chapter 8 summarises the earlier chapters, draws conclusions in substantiation of the
thesis, and outlines directions for future work.

48 1.10. Outline of subsequent chapters

Chapter 2

The Cake language

We have established the problem of interface mismatch, and motivated improved tool
support for the integration tasks which emerge from it. This chapter introduces a special-
purpose programming language designed to fill the gap in tool support. This language is
called Cake.

Cake is a language designed to make black-box adaptation a more effective option for
the programmer than manual glue coding (in the style of the adapter pattern [Gamma
et al. 1995]). We begin by motivating the language design by example, then survey its
features.

2.1 Motivation

Currently, non-invasive adaptation is often eschewed by developers faced with integration
tasks, in favour of invasive editing or from-scratch redevelopment. To understand why,
recall that adapters currently consist of wrapper functions like the two in Fig. 1.4. For
convenience we repeat the code here (Fig. 2.1). As before, the details are not important.
Instead, observe several difficulties with this style of coding, summarised as follows.

Repetition A large volume of similar code is required for a conceptually simple task.

Poor modularity The code is not trivially repetitive. Each wrapper embodies overlap-
ping sets of underlying logical rules for how certain kinds of value must be treated
in certain contexts, e.g. how particular arguments must be treated. Consider opc in
the figure: one case requires a bumped reference count and has different unlocking
semantics from the other. The programmer must elaborate these rules correctly into
what becomes a large volume of similar code, rather than expressing them directly
and individually.

Inconvenience Among other headaches, to compile this code the programmer must con-
struct a hybrid build environment supporting compilation against both interfaces.

Complexity This shows a very simple case, where functions correspond one-to-one. In
others, complexity of the task easily escalates further.

50 2.1. Motivation

int p2k_node_seek(struct puffs_usermount *pu,

puffs_cookie_t opc, off_t oldoff, off_t newoff,

const struct puffs_cred *pcr)

{

kauth_cred_t cred;

int rv;

cred = cred_create(pcr); // convert auth token

VLE(opc); // lock vnode ptr

rv = RUMP_VOP_SEEK(opc, oldoff, newoff, cred); // call rump

VUL(opc); // unlock vnode ptr

cred_destroy(cred); // destroy temp auth token

return rv;

}

int p2k_node_remove(struct puffs_usermount *pu,

puffs_cookie_t opc, puffs_cookie_t targ,

const struct puffs_cn *pcn)

{

struct componentname *cn;

int rv;

cn = makecn(pcn); // issue temp name

VLE(opc); // lock vnode ptr

rump_vp_incref(opc); // bump refcount

VLE(targ); // lock target vnode

rump_vp_incref(targ); // bump that refcount

rv = RUMP_VOP_REMOVE(opc, targ, cn); // call rump

AUL(opc); // this time, vnodes were unlocked

AUL(targ); //... by rump, so just assert this

freecn(cn, 0); // free temp name

return rv;

}

Figure 2.1: Example filesystem wrapper code (repeated)

In short, wrappers are an unnecessarily complex approach to adaptation. Cake is a
language designed to fix this problem. Figure 2.2 shows some Cake rules sufficient to
generate the wrappers in Figure 1.4. Again the details are not important, but notice
several advantages.

Separation of concerns The Cake programmer writes rules which we call correspon-
dences. Each rule localises a particular piece of domain-specific knowledge about the
adaptation task. The compiler is responsible for composing rules into wrappers. In par-
ticular, notice here that rules concerning functions are kept separate from rules concerning
values. Such rules form the basic Cake language (to be described in Section 2.2).

Chapter 2. The Cake language 51

// rules concerning functions

p2k node seek(, vn, oldoff, newoff, cred) −→ RUMP VOP SEEK(vn, oldoff, newoff, cred);

p2k node remove(, vn as vnode bump, tgtvn as vnode bump, cn) −→

RUMP VOP REMOVE(vn, tgtvn, cn);

// rules concerning values

values puffs cookie t −→ ({VLE(that); that}) vnode;

values puffs cookie t ←−({VUL(that); that}) vnode;

values vnode bump −→({VLE(that); rump vp incref(that); that}) vnode; // also bump refcount

values vnode bump ←−vnode; // unlock not required

values puffs cred (cred create(this))−→ kauth cred;

values puffs cred ←− (cred destroy(this)) kauth cred;

values puffs cn (makecn(this))−→ component name;

values puffs cn ←− (freecn (this , 0)) component name;

Figure 2.2: Cake rules generating equivalent wrappers

Expressiveness Cake rules advance on prior work by supporting context-sensitive and
many-to-many relations between interface elements. For example, a single function may
map to different calls on the opposing interface (depending on what calls have come
before), or to a sequence of calls (perhaps with later calls’ arguments depending on earlier
results). Similarly, sets of values or objects occurring together may be treated as a group,
and corresponded by a single rule. These and other advanced features greatly extend the
power of the Cake language (and will be described in Section 2.3).

Object structures The example in Fig. 2.2 passes only isolated objects across the
interface. However, Cake can handle the exchange of arbitrary object graphs across
mismatched interfaces. This can eliminate considerable code. For example, consider
writing adaptation logic to walk a linked list, converting each element in turn. The Cake
programmer need only specify how separate classes of objects relate; the Cake runtime
automatically explores the graph, applying rules to the objects it finds (as described in
Chapter 4).

Simpler, shorter code The rules in Fig. 2.2 may appear to be only a little shorter
than the wrapper code. However, the entire p2k adapter contains not two but 28 wrapper
functions. Each rule above contributes to many of these wrappers, and often many
wrappers can be generated from a single rule. The result is shorter and simpler code, as
we show in three case studies (as described in Chapter 5).

2.2 The design of Cake

The bulk of this section concerns the features found in the Cake language. However,
before describing what the design of Cake looks like, we add a brief note about how the
design has come about.

52 2.2. The design of Cake

2.2.1 Design approach

Cake is a relation-based declarative language that is deliberately special-purpose: it does
not attempt to replicate the feature-set of conventional languages. Given this vague
description, however, it is not clear what the limits of the tool’s application might be. For
example, for what kind of adaptation task would the programmer be advised to abandon
Cake and resort to a more conventional language?

Answering this question appears difficult because there are no pre-existing formalisms
that capture a well-defined space of interface mismatch. Without defining one—which
we deliberately do not attempt—we are not able to conclusively answer the question.
However, our motivation for not defining one is precisely that even if we did have one, we
would not be able to answer the question! A theoretically “complete” language can easily
be unusable for some class of task. For example, many special-purpose languages such
as Sed [Dougherty and Robbins 1997] or XSLT [W3C, 1999] are Turing-powerful [Kepser
2004], but in practice wholly unusable for tasks outside their narrow remit. With respect
to our goals (§1.5), a theoretical completeness result would not answer any useful question.

Therefore, the approach in designing Cake has taken an open-ended approach. We do
not seek to define a “complete”, finished language. Rather, we allow examples to guide
us towards a design that is sufficient for a large number of use-cases. Much later we will
reflect (in Chapter 8) on future avenues towards retrospectively formalising these features;
this ordering, of placing use-case discovery firmly before definition of any formalism, is
consistent with our practical approach.

2.2.2 High-level view

Fig. 2.3 gives a high-level view of an application of Cake. The original components are
bridged by some adaptation logic generated from Cake code. Note that while our examples
show only two components, Cake applies equally well to compositions of arbitrarily many
components, by decomposing the problem into the relevant set of pairwise interactions.

The Cake language consists of the following parts:

• top-level constructs for introducing modules which exist, and identifying modules
which should be derived (§2.2.2);

• an interface description and annotation language for supplementing the de-
scriptive information contained within modules (§2.3.3);

• a very small algebra of composition operators for describing increments and
compositions of components (§2.2.2);

• within the algebra’s link operator, a rule-based syntax for drawing correspon-
dences between semantically similar or equivalent elements in mismatched interfaces,
from which the bulk of adaptation logic is derived (§2.2.9 onwards);

Chapter 2. The Cake language 53

A.o B.o

generated

adapter

Cake

rules

compile

... ...

... ...

Figure 2.3: High-level view of an application of Cake

• an imperative “stub” language with generally familiar C-like syntax, late-bound
semantics and deliberately constrained expressiveness (§2.2.9 onwards), used to de-
scribe sequences of calls (possibly with data dependencies) and “helper” computa-
tions;

• a reactive execution model in which Cake-generated code runs only in response
to certain events (§2.2.10 onwards).

These are described in incremental fashion by means of a running example, which we
now begin. A discussion of more subtle semantic issues is left until §2.4.

Our discussion of Cake develops a fairly large terminology; Appendix A provides
a glossary which the reader may find useful. We will also see a variety of language
features, the most important of which are summarised in Appendix B for subsequent ease
of reference. A full grammar is in Appendix C.

2.2.3 Introducing the running example

We use a relatively ambitious running example to illustrate the design of Cake as a tool and
a language. Can we take a client and library implementing hitherto unrelated interfaces
and, by writing a succinct description of their corresponding features, glue the unmodified
binaries together?

Consider a simple program which uses a library to decode some video. There are many
possible choices of library; we consider a client written against the libmpeg2 library1. Sup-
pose we wish to link this instead against the ffmpeg family of libraries2. There are many
plausible motivations for this: perhaps to reduce the dependency footprint of a larger
system, perhaps to exploit the larger feature-set of ffmpeg (which can decode video in

1http://libmpeg2.sourceforge.net/
2http://ffmpeg.org/

54 2.2. The design of Cake

fopen(fname, “rb”);

mpeg2_init();

mpeg2_get_info(dec);

mpeg2_parse(dec);

mpeg2_buffer(dec, bgn, end)

fread(buf, size, n, f);

fwrite(buf, size, n, f);

fwrite(buf, size, n, f);

fwrite(buf, size, n, f);

mpeg2_close();

avcodec_init();

av_register_all();

av_open_input_file(out ic,
fname, fmt, buf_size, params);

av_find_stream_info(ic);

avcodec_open(c_ctx, c_obj);

avcodec_find_decoder(c_id);

fwrite(buf, size, n, f);

fwrite(buf, size, n, f);

fwrite(buf, size, n, f);

avcodec_close();

av_read_frame(pkt, ic);

avcodec_alloc_frame();

avcodec_decode_video(c_obj,
frame, out got_pic, buf, size);

av_close_input_file();

av_free(frame);

av_free_packet(pkt);

FILE

mpeg2_dec_s

AVFormatContext

mpeg2_info_t

sequence

display_fbuf

mpeg2_sequence_t

width

height

display_width

display_height

chroma_width

chroma_height

id

buf[3]

uint8_t[]

codec_id

codec_type

uint8_t[]

streams[MAX]

AVFormatParameters

pix_fmt

AVStream

codec

time_base

AVCodecContext

width

height

AVCodec

size

AVPacket

linesize[4]

data[4]

AVFrame

mpeg2_fbuf_t

Open file and

initialize decoder

Discover streams

Read and decode

next frame

Write decoded

output

Release per-frame

resources

Release decoder

resources and close

input file

libmpeg2 client control flow ffmpeg client control flow

Figure 2.4: Example comparable usage patterns for libraries libmpeg2 and ffmpeg

other encodings than MPEG), or perhaps for differences in reliability or performance.
Fig. 2.4 shows equivalent usage patterns of the two interfaces. Note that the correspon-
dence between the two is nontrivial: in most cases there is no one-to-one correspondence
between either the objects or the function calls used by the two interfaces.

2.2.4 Insights

Cake takes a black-box approach to adaptation. This is reflected in how Fig. 2.4 describes
the two components only in terms of the function calls and data structures that they
exchange.

A convenient formalisation of this notion of interface is the trace of a component’s
interactions, of the sort displayed by tools such as ltrace3. Fig. 2.5 shows the ltrace output

3http://ltrace.alioth.debian.org/

Chapter 2. The Cake language 55

mpeg2_init() = 0x9cd6180

mpeg2_info(0x9cd6180) = 0x9cda380

mpeg2_parse(0x9cd6180) = 0

mpeg2_buffer(0x9cd6180, 0xbfd17d88, 0xbfd18d88) = 0x9cd6180

mpeg2_parse(0x9cd6180) = 1

--- snipped ---

mpeg2_parse(0x81bf180) = 0

mpeg2_buffer(0x81bf180, 0xbf9e2a58, 0xbf9e2a58) = 0x81bf180

mpeg2_close(0x81bf180) = 1

Figure 2.5: Example trace of a libmpeg2 client (libmpeg2 calls only)

for our client’s interaction with the libmpeg2 library. Abstractly, a trace is simply a
sequence of named calls or events, with each event communicating zero or more values from
the traced component to its environment, while in the reverse direction each event receives
an unnamed response optionally communicating a single value.4 Cake code consists largely
of rules which, abstractly, describe a transducer over this trace—that is, an automaton
which both recognises and generates. At run time, conceptually, Cake-generated code
feeds each component a trace generated from those output by the other components.
Note that our discussion of traces is purely conceptual; a Cake programmer never needs
to generate or manipulate traces in any way.

We note also from Fig. 2.5 that two orthogonal dimensions of structure exist in traces.
Firstly there is “spatial” structure within each call, appearing horizontally—this structure
includes the argument tuples, together with any substructure within those objects (and,
implicitly, any heap structure reachable from them). It is familiar as function signatures
and (concrete) data types in conventional languages. Secondly, there is a latent temporal

structure appearing vertically, manifested in the ordering and co-occurrence relationships
between calls over time. This is less commonly abstracted in programming languages, but
is usually called a protocol or channel contract [Hunt and Larus 2007] when it is.5 We
will exploit both kinds of structure when writing Cake rules, but make unusually strong
use of temporal structure. When referring to the context of an event in the trace, we will
mean its temporal context unless explicitly stating otherwise.

2.2.5 Requirements

What kinds of rules are required for realistic adaptation tasks like our video decoding
example? From Fig. 2.4 it is clear that simple mappings of function signatures and object
fields are not sufficient, for several reasons.

• Correspondences between events are not one-to-one. In ffmpeg there is usually more
than one call for each libmpeg2 call, so we require a way of mapping one call to many.
Sometimes this relationship is reversed, so we need to recognise a sequence of many
calls and map it back to a single call.

4This asymmetry in arity is of course the usual convention for procedural interactions, and indeed for

functions in mathematics.
5Temporal structure is often captured in state machines, in which case state-oriented descriptions such

as “typestate” [Strom and Yemini 1986] are used.

56 2.2. The design of Cake

• Arguments to one call may not be sufficient to perform the corresponding call. For
example, av find stream info() corresponds fairly closely to mpeg2 info(), but the
former needs a reference to the input file rather than the decoder object. Since only
the decoder is passed to mpeg2 info(), and not anything representing the input file,
we must somehow recover a reference to the file from the context of the mpeg2 info()
call rather than its content.

• Components differ in the shapes of their data structures. Single fields or single
objects may correspond to many fields or many objects. Moreover, objects may
be passed indirectly, perhaps over many levels of indirection from the immediate
arguments.

These imply that our transducer needs to be stateful, that it must support context-

sensitive adaptations (where “context” must include at least temporal sequences of calls)
and that it must be able to navigate object structures by following pointers. These re-
quirements are manifested in two key features of the Cake language: context predication
(to be described in §2.3.1) and its object graph semantics (to be described in §2.4.1).

2.2.6 Characterising Cake-generated code as a transducer

At run time, Cake-generated code maintains two kinds of state. Firstly, blackboard state

enables matching of calls in a context-sensitive fashion. Secondly, association state tracks
sets of semantically related objects collaborating across sequences of calls. These two
kinds of state are analogous respectively to state machines and to aggregate or associative
look-up structures that are often hand-coded in glue logic. In Cake, the programmer does
not manipulate this state directly, but embodies the necessary state transformations in
abstract declarative rules.

2.2.7 Toolchain context

Fig. 2.6 illustrates Cake’s place in the toolchain. The Cake compiler inputs a collection of
components (in the form of binaries) and some Cake code, and outputs Cake-generated
source code, build rules for assembling the output binary (out of this code and the original
binaries), and possibly some extended and relinked versions of the original binaries.

Fig. 2.7 shows the outline of a Cake source file. There are two main top-level con-
structs: exists and derive. The first of these identifies an existing component within the
host file system—typically a relocatable object file—and optionally adds descriptive in-
formation to supplement the debugging information already present. Cake’s interface
model is based on Dwarf 3 [Free Standards Group, 2005] and, in particular, its notions
of “types” and “subprograms”. The availability of debugging information is a huge con-
venience which we will assume when evaluating Cake as a practical tool. However, Cake
does not demand debugging information—all such information can be supplied within
the exists block. Certain annotations, beyond the expressiveness of Dwarf, may also be
added within the Cake source file (as described in §2.3.3).

Chapter 2. The Cake language 57

.o.o.o.o .o.so

input components

.cake

Cake source

.o.o

minor

rewrites

.cc

generated

code

.mk

generated

makefile

Cake compiler

conventional tools (ld, make, c++, …)

Figure 2.6: Cake’s tool flow

name function arguments

link link mismatched components list of component identifiers; block

of Cake correspondence rules

make exec generate executable from object file object identifier

instantiate link static data into object file object identifier; structure to in-

stantiate; name for instantiated ob-

ject; symbol prefix for object mem-

bers’ linkage names

Table 2.1: Algebra of component derivation operators

Cake’s other essential top-level construct is derive. This describes a new component
to be created by assembly and adaptation of existing ones. Derived components are
expressed in a simple algebra of built-in functions and operators. Table 2.1 lists the
operators supported. The most important of these is link, which applies to a list of
component names. Correspondences appear inside a block opened by a link keyword, and
these account for the vast bulk of any typical Cake source file. Since correspondence rules
always relate a pair of interfaces, rules appear in pairwise blocks, of which there may be
many (in cases where link is applied to more than two components).

exists elf reloc (”foo.o”) foo { /∗ optional info ... ∗/ };

exists elf reloc (”bar.o”) bar { /∗ optional info ... ∗/ };

derive elf reloc (”foobar.o”) foobar = link[foo, bar] {

foo ←→ bar

{

// your correspondences here...

}

};

Figure 2.7: Skeleton of a simple Cake composition

58 2.2. The design of Cake

1 fopen (fname, ”rb”)[0] −→ av open input file(

2 out , fname);

3

4 values FILE ←→ AVFormatContext {};

5

6 mpeg2 init() −→ { avcodec init ();

7 av register all (); }

8 ←−

9 (new mpeg2 dec s);

Figure 2.8: Some simple Cake correspondence rules

2.2.8 Syntactic conventions

Arrows in Cake signify correspondence rules, and point in the direction of data flow. In
Cake source code, correspondence arrows are rendered using angle brackets and double-
hyphens. For example, the bidirectional arrow is <-->. In this dissertation they are
typeset directly as long arrows (−→,←−,←→). Aside from this, Cake’s syntax is familiar
from other languages, and is mostly C-like. For ease of recognition, we typeset all arrow
operators specially: -> denotes indirect member selection as in C, and is typeset →֒;
meanwhile => denotes functional abstraction (as in ML [Milner et al. 1990]), typeset ⇒;
its converse <= (typeset ⇐) binds names to function return values (described in §2.3.1).

2.2.9 Simple correspondences

Corresponding events Lines 1–2 in Fig. 2.8 define an event correspondence, stat-
ing that a call to fopen() with second argument “rb” should be translated to a call to
av open input file().6 This is a pattern-matching construct; pattern-matching is central
to Cake’s design. The out keyword signifies that the first argument is an “output param-
eter” into which the logical “return value” of the call will be written; Cake automatically
maps this to the return value expected by fopen() (as explained more fully in §2.3.7).
Finally, the [0] qualifier matches only the first fopen() call in the client’s execution—since
it may want to open other files, for purposes other than video decoding. (A more flexible
means for this kind of selective matching can be found in the notion of slices, discussed
in §3.6.)

Corresponding values Line 4 says that a AVFormatContext object (on the ffmpeg side)
can be created from a FILE object (on the libmpeg2 side) and vice-versa. In this instance,
no further rules are specified and no fields are propagated between the two. This is
sufficient since the FILE object is completely opaque to the client. If the objects were not
opaque, we could add rules inside the braces to describe how their fields relate. If those
fields were to include pointers to other objects, the Cake runtime would explore these
and apply correspondences to construct and maintain the corresponding object graph as

6Readers familiar with the ffmpeg API may notice that we have simplified the arguments to the second

call, for clarity of exposition.

Chapter 2. The Cake language 59

pointers are passed around. In combination with the previous rule, Cake can now generate
a wrapper for fopen() which calls av open input file() with appropriate parameters and
substitutes the AVFormatContext object with a FILE object on return.7

Compound statements and return Lines 6–9 describe initialization of the library
state. The pair of ffmpeg initialization calls is given as a compound statement in Cake’s
“stub language”, a simple loop- and recursion-free imperative language. Although syn-
tactically C-like, this language is completely independent of the components’ source lan-
guages (recalling that Cake deals only with binaries). A special postfix arrow syntax is
provided to describe handling of a return event, on lines 8–9, saying that a new object
of class mpeg2 dec s should be allocated on return to mpeg2 init. Again, this object is
treated opaquely, so we do not need to describe treatment of its fields.

2.2.10 Remarks on simple Cake usage

We may remark on the usage seen so far.

Dual scoping As befits a language describing relations, Cake has dual scoping : dif-
ferent sides of an arrow denote different components, in whose respective scopes names
are resolved. The left-hand side of our rules always represent the libmpeg2 client, and
the right-hand side represent always the ffmpeg libraries. This means that arrows may
point left-to-right or right-to-left, according to which data flow the rule describes. Event
correspondences are described using pattern-matching: the arrow-tail side (the “source”)
represents an event pattern that the event matches, perhaps supplying names; these are
then bound on the other side (the “sink” side) to the elements they matched in the
call. We can bind events to stubs in cases, as in lines 6–7 above, where the function
correspondence is not one-to-one.

Rule selection Implicitly, for each event correspondence, the Cake compiler will select
appropriate value correspondences for the values being communicated by the event. In this
sense, value correspondences implicitly quantify over all event correspondences between
the target components (in the sense of Filman and Friedman [2005]). In this example the
Cake compiler can automatically deduce what value correspondences need to be applied;
occasionally it is necessary to manually instantiate a value correspondence (see §2.4.4).
Note also that these value correspondences only apply to interactions between our specific
pair of components; they say nothing about e.g. how to treat FILE objects passed across
other interfaces.

7Although these rules are called “value correspondences”, a better name would be “structural corre-

spondences”, since two other Cake constructs, formally speaking, define correspondences between values:

tables (§2.3.6), which handle enumerated data types and similar cases, and event correspondences, which

can implicitly define relationships between address-taken functions (§2.3.9).

60 2.2. The design of Cake

Execution model Cake’s execution is purely reactive: Cake-generated code runs only
when some event is triggered by one of the composed components. (We will discuss in
due course certain possible extensions which would relax this—§3.5.8, §4.4.6.)

Programmer knowledge Like any programming tool, Cake depends on the program-
mer to understand the semantics of the domain. In writing the above rule, the programmer
exploits two facts about the client’s usage of the libmpeg2 interface: that it is accompanied
by C library calls such as fopen() to do the file I/O, and that the first fopen() call opens
the video file—signified by the [0] suffix to the pattern.8 Similarly, the programmer is
responsible for writing rules which, in combination, access the ffmpeg interface correctly,
e.g. by inserting the av register all() call. A trade-off ubiquitous in all kinds of program-
ming task arises here: the programmer must choose how generic or how task-specific to
make his code. More general code is more likely to be reusable in future composition
tasks, but requires a greater initial investment of effort.

Bilateral design Our language is designed to specify adaptations bilaterally—that is,
with reference to a pair of interfaces at once and symmetrically. By contrast, many adap-
tation techniques have a unilateral nature: they describe adaptations performed on a
single interface or piece of code, in the implicit hope that this yields a correct composi-
tion with whatever other interfaces are implicitly being composed against. For example,
writing a wrapper function is a unilateral approach, since the wrapped interface is distinct
from the wrapping interface syntactically and semantically. Moreover, it is left implicit
that the wrapping interface is one actually consumed by some external code. By contrast,
a bilateral approach references both interfaces simultaneously and explicitly. Among
the motivations for bilaterality are readability, tool-checkability (since both interfaces
are available for the tool to check compatibility against) and safety (since the adapta-
tion is explicitly associated with all the interfaces for which it was intended). Greater
expressiveness is also possible, in that a bilateral approach can express bidirectional corre-
spondences with a single statement. (However, in the current Cake language, only simple
correspondences may be bidirectional.) On the other hand, sometimes bilaterality is an
unwanted constraint. For example, many adaptations are not specific to a single composi-
tion context but which rather present the underlying interface differently in some generic
way—perhaps turning a synchronous interface into an asynchronous one, or altering the
conventions for error reporting. Chapter 6 will describe extensions which allow Cake to
capture these cases.

Higher-order perspectives Cake makes a clear separation between code (handled by
event correspondences) and data (handled by value correspondences). Readers familiar
with higher-order programming languages might wonder why this distinction is necessary.
Surely functions can be treated as just another kind of object or value? Certainly they
can, but functions are nevertheless a distinct kind of object, at least in that they support

8We briefly describe a cleaner approach to this class of rule, based on a more dynamic notion of

components defined by slices of traces, as future work (§3.6).

Chapter 2. The Cake language 61

an “application” operation, and in other ways too.9 Cake’s provision of two different
kinds of correspondence is effectively a case analysis which exists to provide a set of
primitives tailored for the qualitatively differing requirements presented by different kinds
of object. It does not imply that functions may not be unified with other objects where
this treatment is the most expressive. Cake’s handling of function pointers (to be discussed
in §2.3.9 and §4.4.3) exploits exactly that view of functions.

2.2.11 Correspondences for free: name matching

Cake automatically draws implicit correspondences between compatible like-named el-
ements in linked interfaces. For example, if one module requires a function foo() and
another provides such a function, an event correspondence is automatically drawn be-
tween them. This reproduces the behaviour of a conventional linker. (Since our current
video decoding example is an instance of unanticipated composition, few names match,
so the gains from name-matching are modest at best. However, name-matching is very
helpful when applying Cake to interface evolution, where many interface elements can be
matched without programmer intervention.)

Cake extends name-matching to structured data types. If two interfaces both define
a class bar, then these will be corresponded; if one bar contains fields amplitude, breadth
and curvature, and the other breadth, curvature and density, Cake will correspond breadth
and curvature, and leave the others uncorresponded. This means that minor mismatches
in size or layout of structures are automatically adapted around. For example, the imple-
mentation of the C library call fstat() [Kernighan and Ritchie 1988] often needs to adapt
between kernel- and user-format stat structures, owing only to layout differences and ex-
tra fields. Cake could perform this adaptation automatically, assuming the corresponding
fields have matching names. In the rare case where a given name-matching is not wanted,
it can be overridden by mapping the name to an alternative element (if one exists) or
void.

Differing identifiers often mask similar underlying structures. A complementary name-
matching feature is the pattern construct, where a single rule can express multiple logical
rules that are identical up to identifier substitutions. Identifier patterns (not to be con-
fused with event patterns already described) and their rewritings are specified in a manner
reminiscent of the Unix sed tool’s s-command [Dougherty and Robbins 1997]. The fic-
titious example in Fig. 2.9 expresses three similar event correspondences in one rule.
Value correspondence patterns are also allowed, to capture corresponding families of data
structures in a single rule.

Conversely, meaningful identifiers are not always explicitly connected to their contexts
of use. For example, integer fields may implicitly model enumerations or (as bitvectors)
sets, whose elements are encoded as symbolic constants defined separately from field itself.
This is especially common in C, because it provides no set abstraction, and in its earliest
versions did not provide enumerated data types.) Function arguments may also be best

9Even in higher-order languages, functions are not usually modified or internally inspected at run

time. Functions are arguably not instantiated at run time either, under lambda-lifting [Johnsson 1985]

or similar approaches.

62 2.3. More powerful features of Cake

pattern /edit (cut|copy|paste)/ (w, sel , ctxt)

−→ clipboard op \1 (w, sel, ctxt);

Figure 2.9: Matching families of related function calls in a single rule

understood by their name rather than positionally, even though different declarations of
the function (e.g. in C) may supply different names or no names at all. Cake supports
a names annotation for applying a vocabulary of names to function arguments (to en-
able name-matching between provided and required functions) or integer fields (to enable
name-matching between symbolic integer values). The syntax is similar to that used for
selecting value correspondences: names may be supplied either in annotations within an
exists block, or immediately when describing correspondences in a link derivation. Fig. 2.10
shows a realistic example using the former option.

2.3 More powerful features of Cake

We saw in §2.2.5 that simple correspondences are insufficient for real tasks like our video
decoding example. This section discusses the features of Cake which make it sufficiently
powerful to tackle these real-world use-cases.

2.3.1 Corresponding sequences of events: event context

The problem Often when performing an adaptation, considering each call indepen-
dently is not enough: the correct action depends on what calls have come before. To this
end, Cake event patterns may be prefixed by a context predicate: the rule only applies
where certain preceding calls have occurred. Automatic management of the state neces-
sary to match such patterns is another way in which Cake saves programmer effort. In our
example, we use this facility when the client retrieves an object storing metadata about
the video file: Fig. 2.11 shows one side of a rule telling Cake that a call to mpeg2 info()
follows earlier calls to fopen() and mpeg2 init(), whose arguments and return values are
significant.

Name binding Since it may be necessary to refer to values passed or returned during
the preceding calls, context predicates can bind names to such values, just as event pat-
terns bind names to function arguments. The Cake programmer uses the let keyword to
bind names to return values and useful auxiliary values in this way. This does not denote
assignment, in that the same name may not be re-bound within a rule. In patterns like
Fig. 2.11 which bind names to return values of contextual calls, we can use the shorter
syntax varname ⇐ syntax instead of let. This appears in several subsequent examples.

Resolving ambiguity There is a potential ambiguity in context matching: which pre-
ceding call is relevant? When a call to mpeg2 info() occurs in our libmpeg2 client, the

Chapter 2. The Cake language 63

// ... from headers used by client

/* Window types */

typedef enum

{

GTK_WINDOW_TOPLEVEL, // == 0

GTK_WINDOW_POPUP // == 1

} GtkWindowType;

// ...

struct GtkWindow

{

// ... IMPLICITLY, this uses values from the enum

guint type: 4; /* GtkWindowType */

};

// ... hypothetical evolved headers used by library

/* Window types */

typedef enum

{

GTK_WINDOW_UNDEFINED,// == 0 --added a NEW element which CHANGES numbering

GTK_WINDOW_TOPLEVEL, // == 1

GTK_WINDOW_POPUP // == 2

} GtkWindowType;

// ...

struct GtkWindow

{

// ... IMPLICITLY using values from the enum

guint type: 4; /* GtkWindowType */

};

// Cake code linking the mismatched client and library

exists /∗ ... ∗/ client

{

declare { GtkWindow { type: guint { names GtkWindowType }; } }

};

exists /∗ ... ∗/ client

{

declare { GtkWindow { type: guint { names GtkWindowType }; } }

};

derive /∗ ∗/ program = link [client , library]

{

/∗ ... ∗/ // annotations above ensure that name-matching is done on GtkWindow.type

};

Figure 2.10: Implicit use of enumerations in C code, and Cake names annotation

// here ”...” matches any intervening call sequence

let f = fopen(fname, ”rb”), ...,

let dec = mpeg2 init(), ...,

mpeg2 get info(dec) −→// to be continued...

Figure 2.11: Matching calls in the context of preceding calls

64 2.3. More powerful features of Cake

/∗ ... continued ∗/ −→ {

av find stream info(f) // in-place update to f

;& let dec...vid idx = find(// Cake algorithm

f →֒streams, // among the file ’ s streams...

fn x ⇒ // lambda! find the video stream

x→֒codec→֒codec type == CODEC TYPE VIDEO)

;& let codec ctxt = f→֒streams[dec...vid idx]

;& let codec = avcodec find decoder(

codec ctxt→֒codec id)

;& avcodec open(codec ctxt, codec)

;& codec ctxt }

Figure 2.12: Describing data-dependent call sequences in Cake’s stub language

client has opened its input stream and created a decoder object, but not yet associated
the two with each other.10 However, in ffmpeg the corresponding av find stream info()
call requires an input stream as an argument, despite mpeg2 info() passing only a de-
coder object. Somehow, we must match the incoming call with the relevant preceding
fopen() call which opened the input stream. What if there have been many preceding
fopen() calls? Cake assumes that related calls occur close together: it matches the nearest
preceding fopen() (having appropriate arguments). This is expressed using the ellipsis
(. . .) to extend our event pattern over unspecified intervening calls. The ellipsis acts
much like “.*” within a regular expression [Dougherty and Robbins 1997], matching any
intervening sequence, but ellipsis matches the shortest such sequence, rather than the
longest as commonly matched by regular expressions. If we had left out the ellipsis, this
would match only if the two calls occurred in direct succession (among all calls across this
particular interface).

2.3.2 Generating data-dependent call sequences: stubs

Cake’s stub language offers some special features for handling complex data-dependent
sequences of calls. These are illustrated in Fig. 2.12, which provides the right-hand side
of the the mpeg2 info() rule begun in Fig. 2.11. This demonstrates several features of
Cake’s stub language. Stubs, being short snippets of sequential code, are ubiquitous in
Cake, but rarely contain more than a handful of statements. (Simple sink expressions,
such as line 1 in Fig. 2.8, are in fact singleton stubs consisting of a single call.)

Error discovery Manually determining the success or failure from every function call
can get very tedious. Every expression in the Cake stub language has a “success” or
“failure” outcome, logically separate from any result value it may yield. Cake determines
the success of a function call in a style-dependent way (as explained more fully in §2.3.3).
The default style assumes that functions returning signed integers are successful iff they
return zero, and that pointer-returning functions are successful iff they return non-null.

10By implication, the decoder object’s fields are not initialized by the library until some time later,

when the file header has been read.

Chapter 2. The Cake language 65

This style is typical of a majority of C APIs, and many APIs in other languages. Calls that
return neither a signed integer nor a pointer are considered always to succeed. Alternative
error-reporting conventions are generally best captured in alternative styles, as outlined
in Chapter 6.

Error handling Stubs are not expected to contain logic complex enough to warrant try–
catch exception handling. Instead, expressions can be joined with short-circuit boolean
connectives ;& and ;—, in an idiom similar to that found in Unix shell programming.
Unlike the shell, success exists independently of the result value, so the connectives are
distinct from the boolean operators && and ——. In the few cases where the style does
not detect error status correctly, the programmer can explicitly describe success conditions
using the success pseudo-variable and constants void (which yields no value but always
succeeds) and fail (which always fails).

Binding Just as let binds names to values in context-predicated event patterns, it can
bind names to values in stubs. These enable data dependencies between calls in a stub.
The out keyword also binds a name, and is used when calling functions have output
parameters (§2.3.7).

Associations Often, a stub must navigate a data structure to find relevant arguments
to a call. The dot (.) and short arrow (->, typeset →֒) have approximately C-like “access
member” semantics in Cake. Analogously, the . . . syntax is overloaded to denote “access
associated”: it enables formation and dereferencing of associations between objects or
values. Associations are the mechanism for many-to-many value correspondences in Cake,
and are discussed in §2.3.4.

Algorithms Traversal of data structures algorithmically is not something Cake is de-
signed to express. However, simple algorithms are often indispensable when performing
adaptation. Cake provides an effectively built-in selection of algorithms in the stub lan-
guage. Here we see find denoting linear search. Algorithms are defined outside of Cake
in an implementation-specific way. (Currently, we exploit the fact that Cake’s back-end
generates C++ code, and borrow most of the C++ standard library’s algorithms directly.
A style-dependent notion of lists and arrays, described further in §2.3.8, allows generation
of appropriate C++ iterators.)

Lambdas Since algorithms sometimes take functions or predicates as arguments, simple
functions may be defined as lambdas in the stub language. The expressiveness of this is
deliberately constrained: lambdas may not contain other lambdas, and cannot refer to
themselves, so cannot introduce recursion in the stub language.

2.3.3 Practicalities

We have now seen the basics of the Cake language. In this interlude we discuss several
practical issues arising in the use of Cake.

66 2.3. More powerful features of Cake

Target representation Our chosen binary representation is relocatable object code.
This means compiled native code, before linking, in a modern container format such as
ELF [System V, 1997]. Most of our work has applied Cake only to static linking, but its
approach applies equally to dynamic linking, in the sense that the necessary interposition
techniques are supported by dynamic linkers (and indeed, explicitly provided for in the
ELF standard).

Source languages Cake can compose components deriving from several source lan-
guages, limited primarily by the availability of implementations generating Dwarf infor-
mation. Until Chapter 6 we will target only components written in C; this is partly be-
cause our implementation currently lacks understanding of some incidental features found
in binaries originating in other languages (such as name-mangling, and various lesser-used
Dwarf constructs), and partly to save consideration of alternative component styles (as
just introduced in in §2.3.2) until later. Adding support for additional procedural lan-
guages is in most cases straightforward, although at run time, some cooperation with
memory allocators is required (as explained in Chapter 4).

Obtaining debugging information Compilers usually require a command-line flag to
enable generation of debugging information (typically -g for C compilers). Most software
builds released to end users do not contain debugging information, but distributors often
supply it as an optional extra.11 There is considerable value in providing debugging
information to users, for example in enabling generation of higher-quality bug reports. In
the worst case, reverse engineering tools for recovering debugging information [Slowinska
et al. 2010] may be useful, but commonly we envisage that compiler-generated information
will be available.

Interface description As described earlier (§2.2.2), Cake allows programmers to sup-
plement or replace available debugging information within exists blocks. For this, we
devised a simple textual syntax for the relevant subset of Dwarf, of which Fig. 2.13
shows a small fragment. Our textual syntax does not include “source-side” features of
Dwarf such as source code coordinates or line-number calculation tables.

Annotations The same syntax extends Dwarf by accepting certain annotations. For
example, attributes out or inout can be made to function arguments, affecting how Cake
applies value correspondences to values flowing into and out of a function call (to be
explained in §2.3.7). (Some of these annotations could be useful to debuggers as well as
to Cake, making them candidates for future versions of Dwarf.)

Checking interface prerequisites Interface description and annotations may be sup-
plied under three levels of qualification: check, which simply checks that the underlying
object file already satisfies the description; declare, the most common qualifier, which
merges programmer-supplied description with any existing debugging information, but

11This is currently the case in Debian and certain other GNU/Linux distributions

Chapter 2. The Cake language 67

// C declaration

// "foo is a function from int (call it ’a’) to int"

int foo(int a);

// "count_t is a synonym for int"

typedef int count_t;

// Cake description:

// ”foo is a function from int (call it ’a’) to int”

foo: (a: int) ⇒ int ;

// ”int is 4 bytes of the ’signed’ base type encoding”

int : class of base signed <4>;

// ”count t is a synonym for int”;

count t: typedef int ;

Figure 2.13: Interface description syntax

raises an error if contradictions are found; and override, which overrules any contradictory
information in the object file.

Comprehension As with any programming tool, we assume that the programmer un-
derstands the interfaces he is coding against. In addition to debugging information, the
programmer might use various means to gain this understanding: API documentation,
source code, other code exercising the same interfaces, patterns mined from such code
[Wasylkowski et al. 2007] or reverse-engineering tools [Balakrishnan et al. 2005]. The
latter is especially relevant when Cake is used to compose binaries for which source code
is not available. Although these means each have their shortcomings, we consider these
as separable problems; in this work we assume that the combination of these techniques
is sufficient to gain the necessary understanding.

Styles All components introduced by an exists block are interpreted according to a style.
Styles are an abstraction mechanism designed to seamlessly support mixing and matching
of object code adopting different sets of interface conventions, perhaps originating from
multiple packagings (e.g. component systems, application plugins, etc.), language imple-
mentations or coding styles. Styles determine various higher-level interpretations which
the Cake compiler applies to object code, including error-handling, treatment of lists,
string handling and so on. The examples in this chapter use only one style, the “default
style”, which corresponds to the conventions typically found in components written in
C. However, Cake is designed to accommodate multiple user-defined styles. These can
greatly simplify the rules required when composing components with differing systematic
ways of encoding common abstract meanings—such as list or set data-types, initialization
functions, error reporting, and so on. Cake’s support for styles is discussed in Chapter 6.

Instantiate Many clients dynamically load back-end components, such as plug-ins. To
use Cake across these interfaces requires a small extra feature. Since the client does not
call the back-end directly, but through an indirect dispatch table, we provide an instantiate
primitive in the algebra of component derivations (Table 2.1), used alongside link in derive

68 2.3. More powerful features of Cake

expressions. This constructs an instance of a given data structure—usually a dispatch
table—and creates a new symbol for each element in the structure. This lifts table entries
to first-class symbolic function names which can be used like any other in a link block.

Conveniences The inline construct is similar to exists, but allows a component to be
supplied not by reference to an existing file, but by inclusion of a snippet of foreign source
code embedded directly in a Cake source file. These snippets are lexed but not parsed
by the Cake compiler, so any language with compatible lexical structure (up to balanced
opening and closing braces) may be used; they are de-lexed and output as source files
alongside Cake’s other output, and compiled at the same time as Cake-generated code
(as described in §4.2).

2.3.4 Many-to-many value correspondences

In our running example of libmpeg2 and ffmpeg, the structures maintained during decoding
by the two libraries contain mostly the same information, but split differently among
various objects. In general, while objects or values need not correspond one-to-one among
different interfaces, we can often say that a group of objects corresponds to another group.
Many-to-many value correspondences describe how to create and update values in one
group from the various values in the other group. Fig. 2.14 illustrates this and some other
advanced features of value correspondences.

Associations Each many-to-many value correspondence creates associations at run
time. Each instantiated association is a tuple binding together several objects, optionally
supplemented by some primitive values stored in the tuple (e.g. the video stream index
vid idx, in Fig. 2.14). Bindings are formed in stubs by applying the let keyword in com-
bination with the “access associated” connective, written “. . . ”. These tuples constitute
a dynamic relation maintained at run time, analogously with join tables in a relational
database. A tuple persists as long as any bound object does. Association tuples may also
contain auxiliary values—as opposed to pointers to the associated objects. Association
tuples are the only state which may be explicitly mutated from Cake code, using the set
keyword (syntactically similar to the let keyword).

Initialization versus update Value correspondences may distinguish initialization

from update, as seen in the first rule in Fig. 2.14. When an object flows across an inter-
face for the first time, Cake may need to instantiate one or more corresponding objects

(co-objects). Initialization rules use an arrow suffixed with a question mark. When ini-
tializing the right-hand side in the figure, p will point to a new AVPacket object. Rules
without the question mark are called update rules. In Fig. 2.14, no update rule is needed
because the client never updates any state corresponding to AVPacket’s fields. Alterna-
tively, sometimes a co-object’s fields have no analogous fields in the original object. Cake
will initialize these fields (using the initialization rule), but will subsequently leave them
alone (since there are no update rules), avoiding repeatedly re-initializing the fields at
each traversal of the interface (which might clobber updates made earlier by code on the

Chapter 2. The Cake language 69

values (dec: mpeg2 dec s, info: mpeg2 info s,

sequence: mpeg2 sequence s, fbuf: mpeg2 fbuf s)

←→ (ctxt : AVCodecContext, vid idx: int , frame: AVFrame,

p: AVPacket, s: AVStream, codec: AVCodec)

{

// ensure an AVPacket exists on any flow L-to-R

void −→?(new AVPacket tie ctxt) p;

// picture dimensions are in sequence and ctxt

sequence ←→ ctxt {

// LHS ”width” and ”height” done by name-matching

display width ←− width;

display height ←− height ; // here we assume a

chroma width ←−width / 2; // 4:2:2 pixel format,

chroma height ←− height / 2; };

// info.sequence always points to sequence object

info.sequence (&sequence)←−? void;

// special conversion required for buffers

fbuf ←→ frame { // scanline treatment requires ” artificial data types”

buf [0] as packed luma line[height] ptr

←→ data[0] as padded line[ctxt.height] ptr ;

buf [1] as packed chroma line[chroma height] ptr

←→ data[1] as padded line[ctxt.height / 2] ptr ;

buf [2] as packed chroma line[chroma height] ptr

←→ data[2] as padded line[ctxt.height / 2] ptr ;

} };

// how to convert YUV ”scanlines” between framebuffer formats

// - - special correspondences for the artificial data types”

values packed luma line ←− padded line {

void (memcpy(this, that, display width))←− void; };

values packed chroma line ←−padded line {

void (memcpy(this, that, chroma width))←− void; };

Figure 2.14: A sophisticated value correspondence

co-object side). The separation is asymmetric: if there is no separate initialization rule,
an update rule will be used, whereas the reverse is not true.12

Primitive values Cake inherits from Dwarf an understanding of all the common
encodings of primitive values such as integers, booleans, characters or floating-point data.
It can therefore deduce meaning-preserving conversions when passing primitive values
between components.

12Initialization rules effectively define an object initialization or “construction” mechanism. Currently,

component-provided constructor functions must be manually invoked from initialization rules where ap-

propriate. Programmers could be relieved of this burden by pushing knowledge of constructors into styles,

much like treatment of other language-specific concerns, as described in Chapter 6.

70 2.3. More powerful features of Cake

Tying The tie keyword can be used when allocating objects in Cake, to specify that
the allocated object should be deallocated at the same time as the tied-to object. This
is a common requirement in Cake, since the lifetime of state created by adaptation logic
is often tightly dependent on some component-managed object. Tying therefore greatly
reduces the need for explicit object freeing in Cake. Tying may be thought of as a gener-
alisation of stack-allocated objects, contained subobjects, or the application of “resource
acquisition is initialization” to heap memory allocation in C++ [Stroustrup 1997]. In all
these cases, one object’s lifetime is tied to that of some other allocation. Implementation
of tying relies on the Cake runtime’s ability to interpose on object deallocation, which is
also used heavily by the Cake runtime internally (as described in §4.4.2).

Internal reference The unusual-looking rule describing info.sequence is used to de-
scribe the pointer structures within a group of objects. When creating an mpeg2 info s
structure, Cake needs to know that its sequence field should point to thempeg2 sequence s
structure that is also participating in the association. Since this does not depend on any
value from the right-hand side, void appears (to denote “no value”), but the syntax is
otherwise identical to any other correspondence. In this way associations allow, but do
not require, that each group of objects be related by internal pointer structures. Put
differently, associations can be used to abstract away the distinction between explicit
relationships between objects, using stored pointer structures, and implicit relationships
captured by external associative data structures.

Applying functions A bracketed stub-language expression on one side of an arrow
may be used to apply a function to the outcome of the source side, before it is propagated
to the sink side. This is provided for cases where some computation is required in order to
acquire the correct sink-side representation. To see why this is useful, consider a sink-side
field storing an index into a table. Suppose the source provides only a pointer to the
corresponding element; in this case, a search through the table is required to discover
the index that needs to be stored. We can perform the search in a bracketed call to a
helper function or Cake algorithm, effectively performing a conversion between pointer
and table-index representations of the value. Such functions may be applied either before
or after the conversions implied by other rules, according to which side of the arrow the
expression appears on. Similarly, position relative to the arrow also determines which
component’s scope is used to resolve the names appearing in the bracketed expressions.

This and that The this and that keywords denote pointers to the local and remote-side
representations of the value being described by a correspondence. These pointers can
be useful when applying functions as values traverse the interface. In the example of
Fig. 2.14, both interfaces describe some buffers containing the decoded data, but with a
subtlety: the layout of the buffers is not quite identical. In ffmpeg each line is padded,
whereas in libmpeg2 there is no padding. We supply special value correspondences for
these, overriding the default handling of uint8 t arrays, using memcpy() in a padding-
sensitive fashion on this and that to move the data.

Chapter 2. The Cake language 71

2.3.5 Quantification and guards

Fig. 2.14 has one more distinctive feature: it introduces artificial data types in its padding-
sensitive treatment of buffer copying. These describe special treatment for values occur-
ring in particular contexts (either spatial or temporal); in the example, the artificial data
types are packed luma line, packed chroma line and padded line. These are introduced
using the as keyword, and by default are assumed to be synonyms for the data types
they implicitly replace (char[] in the example). However, the purpose of defining these
synonyms is that can be given special value correspondences to change the handling of
particular data items. In effect, the use of artificial data types is a form of annotation, used
to select among alternative value correspondences (discussed further in §2.4.4). They are
unified with C typedefs and other type synonymy features encoded in Dwarf, meaning
that existing type synonyms may be used as artificial data types.

Value correspondences are implicitly universally quantified ; for a correspondence con-
cerning data types A (locally) and B (in the remote component), the correspondence
quantifies over all contexts where an A is passed into the remote component and a B is
required there. This “where” clause is said to be a guard condition restricting an other-
wise universally quantified statement. Similarly, we can say that event patterns quantify
over all matching call events, but are guarded by the argument pattern that must be
satisfied, and furthermore, may be temporally guarded by a context predicate. Artificial
data types are a technique for guarding quantification of value correspondences, by iden-
tifying special contexts with the as operator. This restriction can limit the selection of
both temporal contexts, by using the as annotation in a context-predicated event corre-
spondence, and also spatial (or “structural”) contexts, by using the as annotation in value
correspondences.

These guard mechanisms are sufficient for many applications of Cake. In Chapter 6,
where we write rules that apply more generally than to a specific pair of interfaces,
we will require a more general way to guard rules using explicit guard predicates and
metavariables (variables ranging over matched values, calls or data types). Although
these features logically belong in the core Cake language, we save discussing them until
they are actually needed in Chapter 6.

2.3.6 Relating individual values

The value correspondences we have seen so far have described structural and, in some
cases, computational relationships between whole classes of value at a time. In most
cases, we have not had to express mappings down at the level of individual values. Some-
times, however, we must write correspondences at this case-by-case level. Consider explic-
itly mapping the individual elements of two enumeration types, where these do not have
matching name vocabularies. Cake provides a table construct for this purpose. Syntacti-
cally this is much like a value correspondence, but containing mappings between constant
values (identified as literals or symbolically) rather than fields.

72 2.3. More powerful features of Cake

strncpy :

(dest : out char[len], buf: char ptr , len : size t)

⇒ void /∗ was: char[len] ptr - - see note in text ∗/;

strndup:

(buf: char [] ptr , max len: size t)

⇒ char [] caller free (free) ptr ;

Figure 2.15: Enabling allocation adaptations on strncpy() and strndup()

2.3.7 Input and output parameters

Pointers are used to perform certain forms of parameter-passing. Cake’s default style
assumes that singly-indirected arguments denote “in-place update”—a value passes out

of the call as well as in. Appropriate value correspondences will therefore run on both entry
to and exit from the called function. These semantics ensure that balanced operations
can be expressed (e.g. to insert locking and unlocking as an object traverses an interface).

A singly-indirected argument might also denote an output parameter (typically passing
an uninitialised location in the caller’s stack frame). Since the in direction may perform a
(meaningless) conversion on contents of the uninitialized stack location, the argument can
be annotated as out. Similarly, for objects no longer valid after a call (e.g. if deallocated
during the call), we can annotate the pointer as an in ptr argument, preventing any value
correspondence from running in the output direction.

Commonly, output values flow into caller-allocated memory. However, some interfaces
return callee-allocated results instead. Given simple annotations, Cake can automatically
adapt between simple mismatches in these caller-versus-callee allocation semantics. Con-
sider the C library functions strncpy() and strndup() (shown in Fig. 2.15). In the first,
a caller supplies its own buffer for output data to be placed in. The second instead re-
turns a pointer to a new buffer, which the caller must free when finished. Thanks to
the caller free annotation, Cake will adapt a call to the first function so that it instead
calls the second, by post-copying the callee-provided buffer into the caller-provided buffer
and then freeing the former. Cake can also adapt a call to the second function so that
it calls the first, by pre-allocating a buffer and returning it. Note that the real strncpy()
returns a pointer to the output buffer dest passed as one of the arguments; we explicitly
annotate the return value as void here because otherwise the Cake compiler would con-
sider the function to have two output arguments—the return value and the output buffer
parameter—and would flag an ambiguity, because it would not be clear which of these
two outputs should be matched against the caller free output of strndup().

The out keyword is used to bind names to output parameters of functions invoked by
stubs, as seen in §2.2.9. It is also used similarly to let, to capture the output value of
some expression and bind a name to it. Unlike let, out is used when the identifier is not
fresh, but has not yet been bound to a value. Specifically, out some ident = 42 implies
that some ident is an output parameter defined in the signature of the source function of
the enclosing event correspondence.

Chapter 2. The Cake language 73

When programmers design an API, the division between use of return values and
output parameters is a somewhat arbitrary choice. It is therefore a common source of
interface mismatch. Similarly, the ordering of function arguments is often arbitrary. In
simple cases where there is a single output value, but there is a disagreement in whether
it is passed as a return value or a pointer-based output parameter, the Cake compiler will
automatically correspond these appropriately. (This happens in our libmpeg2 example in
Fig. 2.8.) To allow stub code to straightforwardly overcome more complex cases of these
mismatches using name-matching, in stub code Cake defines the pseudo-variables, in args
and out args. These group the sets of input and output arguments (strictly, the set of
variable bindings extant at the start of the stub, and the set of output bindings expected
by the stub’s context) as if they were supplied as a single structure each. (Note that these
sets are overlapping in the case of inout parameters.)

These structures enable name-matching between arguments and structured values, by
effectively granting named collections of arguments the same status as structured values
(which are simply named collections of fields). Consider the fragment of Cake code in
Fig. 2.16.The exists blocks set up a simple mismatch between a client expecting to receive
a mean–variance pair in the form of a return value and an output parameter (respectively)
and a library providing a call that returns the two values in a structured return value. Our
first attempt at the simplest plausible Cake rule is incorrect, because Cake will not break
apart the structured return value without instruction to do so. The second rule provides
this instruction: the macro-like ellipsis after out args implies that out args should be
treated as a set of bindings. This is much like the multiple simultaneous assignments
supported by Python and other dynamic languages, of the form (var1, var2, ¡...¿) = expr
which implicitly destruct a right-hand side tuple.

The final two rules in the figure illustrate other uses of the pseudo-variables. In
the first, we see a pattern rule where in args is used in a macro-like fashion to pass
through unnamed parameters. Implicitly, structure elements are assigned to parameters
by name rather than positionally—Cake never performs implicit positional matching,
since this is inherently fragile. In the final rule, we see in args used simply as a structure:
some other function takes a single structure argument, and Cake will behave as if a value
correspondence were defined between this argument and in args.

2.3.8 Arrays and lists

Pointers may point to single objects or to arrays. As seen in Fig. 2.15 with char[], array
syntax can be used to name a local field or argument which holds the length of the array.
This effectively adds a data constraint annotation to the underlying Dwarf information.
Cake usually detects the size of arrays at run time (as described in Chapter 4) and applies
value correspondences to each discovered element; in rare cases, length annotations are
necessary to facilitate this discovery.

Cake also has a style-dependent notion of iterables. In the default style this in-
cludes arrays (either statically-sized, length-affixed, or explicitly terminated as with null-
terminated strings) and singly-linked lists (recognised as any single-recursive data struc-
ture; assumed to be linear, not cyclic). These allow algorithms (find seen in §2.3.2) to be
applied uniformly to any iterable data structure recognisable from the style’s definition.

74 2.3. More powerful features of Cake

/∗ an ”exists” block - - here simply for exposition, to define the signatures ∗/

exists client // ...

{ declare

{

get average : (arg : double, variance : out double) ⇒ average: double;

} // ˆˆˆ named return value

};

exists library // ...

{ declare

{

dist parms: class of structure { average: double; variance : double; };

get parms : (t : double) ⇒ dist parms;

}

};

/∗ in a ”link” block ∗/

client ←→ library

{

get average(arg,) −→ get parms(arg);

/∗ INVALID: this would require breaking apart the

∗ returned object into its constituent fields , but

∗ the programmer has tried to use the same syntax

∗ as if the return value were passed as a single

∗ struct. ∗/

get average(arg,) −→ { out out args... = get parms(arg) };

/∗ OKAY: the use of ”...” signifies expansion of out args

∗ to a set of name bindings. ∗/

// arguments in event patterns -- name-match collections of arguments

pattern /server (.∗) request/ (...) −→ dispatch \\1(in args...);

// use as a struct - - name match between collections of fields

some function(arg1, arg2) −→ { some other function(in args) };

/∗ some other function’s argument is a structured object,

∗ which Cake will put in correspondence with in args.

∗ This is valid Cake: we are just using in args as if it were

∗ an arbitrary structure type. ∗/

}

Figure 2.16: Uses of in args and out args

2.3.9 Function pointers

Functions are just another kind of object. Although their internal structure is opaque to
Cake, we already have a mechanism for describing correspondences between functions—
namely, event correspondences. Passing a function pointer is equivalent to giving the
recipient a capability to raise events across the interface between a pair of components.
Therefore, Cake will handle the flow of function pointers appropriately as long as event cor-
respondences are provided which specify a single unambiguous treatment of the pointed-to
function for all calls to it. This means there must be some event correspondence defined

Chapter 2. The Cake language 75

1 client ←→ library

2 { register callback (f , arg) −→ add handler(f, arg);

3 notify user cb(message, aux) ←− (message, aux); }

Figure 2.17: Adapting callbacks

across that interface whose sink expression is a simple invocation of the passed function
(rather than, say, a multi-expression stub).

Fig. 2.17 shows how the developer describes how a function pointer may be passed
from client to library by register callback(). Line 2 adapts a minor mismatch in the
callback registration interface: the client requires a call named register callback whereas
the library provides only a similar function called add handler.

The event correspondence in line 3 is unusual because it does not specify a name
for the called function, but simply uses the “ ” syntax, meaning “some call” . This is
because the call-site in the library is an indirect call, so does not statically name the
function it is calling. Without line 3, or some other rule calling notify user cb from
library, the Cake compiler would not generate code to interpose on the callback. This kind
of code is “wrapper code”, and is explained more fully in §4.2.6. The presence of this rule
enables function pointers (such as notify user cb) to be correctly adapted as they are
passed to the library, by substituting a pointer to Cake-generated wrapper code. (The
implementation of this substitution is described in §4.4.3.)

For simplicity, our example here assumes that the callback interface itself, i.e. the
signature of functions passed as the f parameter, is well-matched between the two inter-
faces. However, if additional adaptations are required on the function, they can be added
as a lambda expression, e.g. wrapped around f in add handler. Note that the range of
adaptations permitted in this way is strictly smaller than those permitted by the whole
of the Cake language—in particular, context-sensitive adaptations may not be expressed
here.

2.3.10 Completing the example

One hurdle remains in our running example, which is to match up the decoder loops of
the two interfaces. This requires no new Cake language features, so we present it as a
commented fragment of Cake code, in Fig. 2.18. This is an exercise in matching of control
structures. The key requirement addressed by these additional rules is the matching of
the calls in the decode loops embodied in the respective interfaces. Since the loop in the
called code proceeds strictly frame-by-frame, whereas our caller has a more general zero-
or-more-frames design, the rules ensure that each iteration yields exactly one frame—a
case supported by both client and library.

The question arises: what if we had been linking an ffmpeg client with the libmpeg2
library? This is the converse case of our example. Since the mpeg2 parse() function is
free to return STATE BUFFER an unbounded number of times, it would appear that
the only way to capture this would be to introduce some kind of looping into Cake, so
that the generated code could repeatedly buffer and parse new data until a frame was

76 2.4. Semantic questions

available. Section 3.5.6 discusses some possible solutions to this problem. In general, the
Cake language is richer in its support for adapting between different decompositions of
data, than in that for adapting between different control structures.

2.4 Semantic questions

Our examples so far have said little about Cake’s precise semantics. We have no for-
mal semantics for Cake, but here answer informally some questions raised by previous
examples.

2.4.1 Component-managed state

When control passes from one component to another, we define Cake’s semantics by
saying that the program should behave as if the component’s entire accessible object
graph is carried over and transformed into a graph suitable for the component receiving
control, according to the set of value correspondences defined. This is called the object

graph semantics. The graph remains in that form until control flows back out of the
component. This is an unsurprising behaviour for single-threaded components. Note that
since components may save pointers between invocations, this transformation must apply
to any object reachable from the component receiving control, and not only to objects
reachable from any pointers passed as arguments to the call.

This informal description makes sense for single-threaded programs. To address the
case of multithreaded programs, where control may be active in multiple components at
any one time, we add that concurrent access from multiple components is permitted,
and may occur at any time, just as if Cake were not being used. However, we give very
weak assurance about visibility of updates between components, except to say that when
some thread of control passes from component A to component B, all updates made by
A become visible to B. Our ideal semantics would make updates immediately visible
even without a control-flow crossing, but implementing this efficiently is not realistic on
conventional hardware, since interposition on memory access is only supported through
slow and coarse-grained memory protection techniques. We discuss these issues in the
context of our current implementation in §4.4.2.

Another question mark surrounding the semantics of multi-threaded Cake composi-
tions concerns the potential for conflicting updates. This follows from the practical concern
that the actual behaviour of our implementation does not perform complete transforma-
tion at each control-path crossing, but rather is optimised by performing replication of
objects which may be shared (logically speaking) across a mismatched interface. We
discuss these subtleties, again in the context of our current implementation, in §4.4.2.

2.4.2 Run-time errors

Cake has no type system, nor does the language define any other rules for statically
detecting the risk of undefined or abstraction-violating computation. Run-time failures

Chapter 2. The Cake language 77

/∗ The loop in ffmpeg proceeds frame-by-frame, whereas in libmpeg2 each iteration

∗ might yield zero frames (in the STATE BUFFER case) ∗or∗ one or more frames

∗ (in the STATE SLICE case). Solve this by ensuring that each iteration yields

∗ exactly one frame---a case supported by both library and client. ∗/

mpeg2 parse(dec)[0] −→ { void }

←−

STATE BUFFER;

/∗ Notice use of [0]: ”the first call to mpeg2 parse() returns STATE BUFFER” ∗/

/∗ Reading from the input file handle must also be mapped to an ffmpeg library

∗ call. Since success of fread() entails a return value of nmemb, we must return

∗ this , irrespective of the size of the frame actually read. ∗/

let f = fopen (fname, ”rb”)[0], ...,

let dec = mpeg2 init(), ...,

fread(, , nmemb, f) −→ { { av read frame(dec...packet, f) ;& nmemb } ;| 0; };

/∗ Since ffmpeg handles input for us, no action is required on mpeg2 buffer(). ∗/

mpeg2 buffer(, /∗buf∗/ , /∗buf + siz∗/) −→{ void };

/∗ The client calls mpeg2 parse() to request decoded frames. This translates to a

∗ call to avcodec decode video(). Since our earlier call to av read frame() may

∗ have returned a frame from a different stream (e.g. an audio stream in the

∗ same file), we have two cases to consider. These map directly to the libmpeg2

∗ constants STATE BUFFER (”must read more data”) and STATE SLICE

∗ (”one or more decoded frames available”), distinguished by an if - -then-- else. ∗/

f <- fopen (fname, ”rb”)[0], ...,

dec <- mpeg2 init(), ...,

size <- fread(, , nmemb, f),

mpeg2 parse(dec) −→{ let frame avail = (

if dec...packet.stream index == dec...vid idx

then { av free(dec...frame); // this is null - safe

set dec...frame = avcodec alloc frame();

avcodec decode video2(dec...codec ctxt, frame, out got picture, dec...packet);

true } else false)

}- -

←− // return event

- -{ if frame avail then STATE SLICE else STATE BUFFER };

/∗ Notice the special reverse-arrow syntax for returning. Moreover, the special

∗ ”--{” (”continuing”) syntax retains all name bindings from the preceding stub. ∗/

/∗ Finally , we relate the state tear-down calls of the two interfaces. ∗/

mpeg2 close(dec) −→ { av free(dec...picture); avcodec close(dec...codec);

av close input file(dec...ic) }

←−

{ delete dec };

Figure 2.18: Remaining rules in the libmpeg2–ffmpeg example

78 2.4. Semantic questions

widgets A ←→widgets B

{ // an event correspondence

find widget(descr) −→ get matching widget(descr);

values Widget ←→Widget

{ /∗ ... ∗/ };

values Window ←→Window

{ /∗ ... ∗/ };

}

Figure 2.19: Rules sensitive to static versus dynamic binding

in Cake-generated code, such as failures of event pattern matching or of field access (in
stubs) can occur as a result of programmer error. Future work could improve on this
using conventional type-checking techniques.

Field access may raise run-time errors in Cake rather differently from in, say, C code.
This is because member access in Cake is semantically different from that in C: it is
“dynamic”. In other words, the set of identifiers that may be used after a member
selection operator (“→֒” or dot “.”) depends not on static type information but on the
dynamic class of the object being accessed. The next section discusses dynamic binding
in Cake more fully.

2.4.3 Dynamic matching and binding

Suppose we write some Cake rules to adapt between two different implementations of a
similar windowing toolkit, as shown in Fig. 2.19. Consider what happens when a pointer
to a Widget flows across the interface, say as a parameter to some function. The pointer’s
target might be a Widget, or might be a Window, since we assume that Window is an
object that either is a Widget (as defined by language-level subtype polymorphism) or
contains a Widget at offset zero (implying that a pointer to a Widget might be usable as
a pointer to a Window, without any adjustment).

We might attempt to fix this by declaring that Cake has “static rule binding” seman-
tics, meaning only the rules of Widget would apply, because onlyWidget is used to describe
the pointer’s referent statically. However, this is unacceptable. Firstly, it assumes some
sort of static type system providing a bound on what the pointer points to (i.e. that it is
not simply a void pointer, in C terminology), whereas we wish to allow the possibility of
Cake implementations supporting many diverse languages. Secondly, if the object really
is a Window, the receiving component is entitled to reinterpret the pointed-to memory as
a Window, and will most likely see garbage in the extra fields defined by Window (since
the rules for handling those fields were not executed). (This betrays the fact that Cake’s
implementation necessarily involves deep copying.) Although we could attempt to shift
this burden to the programmer by obliging him to insert downcasts within Cake rules,
this would quickly become unworkable for the usual reasons: for many interfaces, the set
of subclasses is open, meaning that the Cake programmer cannot conveniently enumerate
them, e.g. in a switch-style construct, as would be required.

Chapter 2. The Cake language 79

Debugging information describes the layout of memory locally to any allocated struc-
ture in a running program, including not only statically allocated data structures but
also the local layouts of stack frames and structured values. However, the global layout
of memory (including both heap and stack structure) evolves dynamically, so cannot be
precisely described by metadata generated at compile time. This is the root of imprecision.

(We prefer not to call these Dwarf-provided descriptions type information because
they do not imply a static type system. However, Dwarf terminology uses the term
“type” pervasively to refer to data types, which in Dwarf effectively serve as memory
layout descriptions. Consequently we will occasionally use the word “type” in thisDwarf

sense.)

Cake has dynamic matching semantics. If the pointed-to object “is a” Window, then
Window’s rules must apply. For implementability purposes, we overcome this problem of
static imprecision by imposing well-behavedness criteria on the input components. Specif-
ically, we do so using the following steps.

• We define an “is a” relationship between Dwarf types, informed by common pro-
gramming idiom (such as object containment) as well as any explicit subtyping
relationships recorded in Dwarf information.

• We assume that the available Dwarf information may be imprecise, but not in-
correct. Most significantly, the allowable imprecisions are limited to the “is a”
relationship defined earlier.

• We assume the availability of a dynamic points-to analysis. This is discussed further
in Chapter 4.

We describe our algorithm in Chapter 4. However, we define our “well behavedness”
criteria more precisely here. The following must hold.

• We have debugging information available at run time, sufficient to describe any ob-
ject that our Cake-generated code or runtime might encounter (either as a function
argument or return value, or by pointer traversal from these). This need not cover
the whole program: code which shares no objects with Cake-composed components
need not be described. Note that this information, or parts of it, may be supplied
by the Cake programmer, as described in §2.2.7.

• GivenDwarf information describing an allocated region of storage, any information
about the encoding of data contained within that region must be sufficiently accurate
to select correctly among the defined correspondences which might apply to the data
stored in that region (but not necessarily to select correspondences for pointed-to

data). Clearly, this assumption would be invalidated by practices such as packing
pointers into integer fields. However, it does not require that pointers are precisely
typed (since pointers are handled by our next assumption). Undiscriminated C
unions are a problem, since debugging information is rarely sufficient to select what
correspondences to apply to the union’s contents. Additional annotation can address
this in some cases (as described in Appendix E).

80 2.4. Semantic questions

• AnyDwarf information describing memory outwith the information’s local region—
i.e. information describing pointed-to objects—may be imprecise (and not incorrect)
only up to the is-a relation, which we define fully in Chapter 4.

• Components which arithmetically adjust pointers to navigate within arrays must
only send and receive pointers to the array that are precisely typed (with respect
to the element type) or untyped (i.e. void), according to the debugging information
as augmented by any annotations added by the Cake programmer. This is not a
significant restriction, because the ability to perform correct pointer arithmetic rests
on knowing the precise array element size. We explain this restriction more fully in
Chapter 4.

These assumptions effectively bound what questions a Cake implementation must be
able to decide about the intended interpretation of data being passed around at run time.
In particular, it must be able to decide what correspondences should be applied to the
contents of some block of memory. In order to do so, it may assume that debugging
information is available, not incorrect, and not unreasonably imprecise. We describe how
our runtime implementation answers these questions in the next chapter.

The dynamic “is a” test is reified as an is operator, available for use in the Cake stub
language. For example, we can write the expression w is Window, yielding a boolean. Since
the Cake runtime takes care of common cases of exploring and copying object graphs, this
is used only occasionally, but we will see an example in Chapter 6.

2.4.4 Rule precedence

The final semantic issue we consider is of rule precedence. Clearly, rules may overlap in
the values or function calls which they match.

Event correspondence precedence

Currently, Cake takes the following approach to precedence in event correspondences.

• At most one event correspondence rule will be fired by any event occurring at
run time. (However, an event may advance the call sequence recognition state
with respect to more than one rule. These rules are the context-predicated event
correspondences described in §2.3.1.)

• The rule matched is the “most specific match”, as this is likely to be understood by
the programmer. For example, a rule that matches any value, in some position (say
a particular argument position) is less specific than an otherwise identical rule which
matches a single value in that position. Similarly, a rule matching in a specific call-
sequence context is more specific than a rule specifying no such context predicate.
It is an error if there is no unique such most-specific rule.

Chapter 2. The Cake language 81

• The Cake compiler will raise a compile-time error if ambiguous matching of event
patterns is specified by the programmer. Since event patterns only ever match argu-
ments in “match all” or “match specific value” forms, ambiguity is straightforward
for the compiler to detect. Therefore, no additional run-time errors are introduced
from pattern ambiguity.

• Incompleteness of rules is not addressed until run time. This means that unlike the
case of multiple ambiguous rules, which is detected by the compiler, omission of a
rule can introduce run-time errors. These errors most commonly occur on function
calls for which there is no correspondence defined.

Value correspondence precedence

Value correspondences need not be so strongly disambiguated at the point where they
are defined. This is because additional disambiguating context is usually available at the
point where they are applied. Specifically, all value correspondences are implicitly invoked
within an event correspondence or another value correspondence. In these contexts, both
a “from” and a “to” data type are usually available. Ambiguity in either one of these
may therefore be tolerated, if their pairing is sufficient to select a unique correspondence.
A second reason for tolerating ambiguous declarations is that it is usually convenient to
supply disambiguating annotations inline in the relevant Cake code, using the as keyword
(§2.3.5).

Initialization is a special case. When a value correspondences application requires
initializing a new object, no “to” object is available, so there is greater potential for
ambiguity. We rely on either unambiguous correspondences or explicit annotations in
these cases.

2.5 Summary

We have seen a tour of the Cake language, motivated by practical examples, and dis-
cussed its informal semantics. The next chapter is an interlude discussing the language’s
limitations and how it might usefully be extended to overcome them. Less curious readers
may skip directly to Chapter 4, for a discussion of implementation, or Chapter 5 for a
practical evaluation of the language.

82 2.5. Summary

Chapter 3

Limitations of the Cake language

As we would expect from a design originating in examples, currently Cake is a relatively
simple language which handles many common cases well, but has some apparent limita-
tions. In this interlude chapter, we briefly consider these. This is intended both to satisfy
the reader’s curiosity, and to help develop a more thorough understanding of the Cake
language. It will also serve as a source of ideas for plausible future extensions to Cake.

3.1 Event context predicate connectives

Event context predicates (§2.3.1) allow matching of function calls occurring in the con-
text of a particular temporal sequence of calls. The language describing such sequences is
particularly simple: apart from atomic event patterns, it provides only the comma con-
nective (concatenation) and the ellipsis (“any sequence”, a restricted form of iteration).
Alternation and negation would be useful additions to this language. To see why, consider
the rules in Fig. 3.1, adapting from an escape-coded character I/O interface (on the left)
to a non-escape-coded version (on the right).

Fig. 3.1 illustrates a recurring idiom in Cake, where sequences of events are matched
both immediately, individually (as in line 2) and also subsequently as context (lines 3–
4). This repetition is somewhat undesirable, but necessary: owing to the “most specific
match” rule, without the more specific rule on line 2, passing a backslash would fire line
1 and cause the character to be immediately emitted.

Alternation and negation in event patterns would be useful to eliminate subtleties
and ambiguities between rules. Consider a sequence of backslashes being emitted by the
left interface, as in the trace shown in Fig. 3.2. What determines whether the middle

1 putchar(a) −→ putchar(a); // common case

2 putchar (’\\’) −→ {}; // do nothing right now...

3 putchar (’\\’), ..., // ... but react in subsequent calls

4 putchar(a) −→ escapechar(a);

Figure 3.1: Non-obvious context matching precedence

84 3.2. Cake and classes of formal language

putchar(’\\’); # matches line 2, adding blackboard state

putchar(’\\’); # matches line 4, clearing blackboard state

putchar(’\\’); # matches line 2, adding blackboard state

Figure 3.2: Trace showing subtle rule matching behaviour

of the three calls matches line 4 (a contextful event pattern with universally quantified
argument) or line 2 (a context-free pattern with specific argument)? Currently this is
resolved by the “more specific” relation, which prefers to match contextful any-value rules
over context-free specific-value rules. Intuitively, this is justified by a desire to consume
pattern-recognition state as soon as possible, much like the shortest-sequence-match rule
(§2.3.1), rather than letting it accumulate. However, in general it would be preferable
not to leave the rules’ semantics down to this sort of tie-breaking. Additing negation and
alternation could allow the programmer to clearly resolve the ambiguity, much like in a
regular expression, by predicating the rule on line 2 on a context where the previous call
was not an unescaped backslash.

3.2 Cake and classes of formal language

The problem Cake’s event patterns solve is more complex than simply recognising a
sequence of calls. This is because in a procedural setting, execution cannot proceed
without somehow deriving a return value for each call in turn. For this reason, Cake
matches single calls, but optionally distinguished by their temporal context.

The contextual part of an event patterns—i.e. the qualifier, not the matched call—
can be seen as a restricted form of non-greedy regular expressions, extended with data-
dependent matching. Concatenation is the main connective; alternation and negation
could be added, and a limited form of iteration (as in regular expressions’ “*” metachar-
acter) is available in the ellipsis (...). However, note that the primary motivation for
capturing contexts in this way is to form bindings referencing specific values passed in
contextual calls (§2.2.5). In a hypothetical iteration-based rule A(), (B(x))*, C(), the vari-
able x lacks an unambiguous binding, because it is within an iterated subpattern matched
zero or more times. It is often acceptable to approximate this rule as A(), ..., C(), which is
supported by the current Cake language. Cases where only some patterns of intervening
calls should enable a match are sufficiently rare that we have omitted such support from
the current language, but it could be added straightforwardly. (Note that the nested
variable x effectively describes a list comprehension; specifying the binding of x as the
output of a reduction operation on this list could make such variables useful.)

It is interesting that our event pattern language fails to express the full set of regular
languages; yet, its data-dependent matching features capture some languages that are
not context-free (e.g. in Fig. 2.11). This apparent incongruity need not indicate a flaw.
Instead, it is perhaps a reminder that, as recently expounded by Jim et al. [2010], these
classifications of formal languages are frequently a poor fit for real-world problem spaces
outside the narrow domain of programming languages. (Recall that the “language” we

Chapter 3. Limitations of the Cake language 85

are contrasting here is the language of call traces, not the Cake language itself, which is
context-free.)

As another example, consider the example by [DeLine 1999, p. 100] of procedurally
transmitting a set of data items split in two different ways: one-per-call versus many-in-
one-call. Handling mismatches between these in Cake requires an explosion of rules, since
there is no way of matching a context of n specific calls where these may have occurred
in any order without enumerating all possible orders. This reaffirms our observation that
traditional abstractions of formal languages are not necessarily the best guide as to what
connectives Cake should have. The join calculus [Fournet and Gonthier 1996] provides
just such an order-independent conjunction and might be a useful basis for extensions to
Cake.

3.3 Cross-cutting logic

Cake’s grammar restricts code to a relatively rigid structure: adaptation logic consists of
a set of rules within a link block. The only supported reference between these rules is
reference to value correspondences, either from event correspondences or from other value
correspondences.

Therefore, Cake will fail to capture commonality between rules if that commonality
cannot be captured by a value correspondence. This is particularly significant in stubs. If
a recurring pattern of sequential logic is required in multiple stubs, that logic may need to
be repeated in-line in each stub. This may be avoided, by factoring the logic into a value
correspondence, in cases where the logic is associated with the flow of a particular class
of value across the interface. Typically, such rules would use bracketed stub expressions
attached to the correspondence arrow (§2.3.4).

3.4 Calling conventions

“Calling conventions” refers to machine-level protocols for making procedure calls using
a combination of stack, register and static storage. Cake is capable of adapting across
mismatches in many standard calling conventions. Here “standard” means calling conven-
tions defined by languages. This limitation is practically motivated: information about
the language of a given function is available in Dwarf, and most host systems will fea-
ture a C++ compiler that supports many such conventions. (Recall from §2.2.7 that Cake
depends on a conventional toolchain on the host system; our implementation emits C++

code, as described in Chapter 4.) For example, the Cake compiler could automatically
detect and adapt around the mismatch between a Pascal-style caller and a C-style callee,
using the host C++ compiler’s extern "C" and extern "Pascal" declarations. By con-
trast, neither Cake nor Dwarf has any means of explicitly describing alternative calling
conventions, so cannot be used to describe adaptations between arbitrary mismatched
calling conventions.

86 3.5. Control structures

3.5 Control structures

Cake’s features mainly address data flow. Event correspondences describe the flow of data
through calls, and value correspondences describe structural transformations on that data.
Cake has considerably less expressiveness in resolving mismatched control structures. We
discuss these limitations now.

3.5.1 Procedural bias

Although the abstract design of Cake is phrased in terms of events rather than procedure
call and return, concretely the current language is biased towards procedural interaction.
Specifically, there is distinct syntax for procedure return, in the form of the “return syn-
tax” (§2.2.9). Moreover, the current implementation (as detailed in Chapter 4) interprets
object code in a particular way, such that only outgoing calls are matched by event pat-
terns, and return syntax is the only way to describe treatment of return events. In C-like
languages, this is not a practical limitation of expressiveness. However, languages with
more general control structures, such as coroutines or generators, will require an extended
implementation.

3.5.2 Threaded control models

To support a wide range of mismatches arising from multithreaded control models, thread-
ing support could be added to Cake’s stub language—for example to allow spawning of
threads to satisfy asynchronous interface requirements given a synchronous implementa-
tion. Note that at present, these use-cases can be tackled simply by calling the thread
management API like any other function from a Cake stub.

3.5.3 Blocking versus nonblocking calls

A likely mismatch between control structures is between nonblocking and blocking variants
of the same interface. To relieve the programmer of the burden of performing these adapta-
tions, in a manner similar to the handling of allocation expectations (§2.3.7), annotation-
enabled detection of mismatches and generation of appropriate glue logic would be possible
in at least some cases. For example, adapting from a nonblocking implementation to a
blocking one could be achieved by inserting a polling loop, and Cake could insert such
logic automatically given appropriate interface annotations. In the reverse direction, we
could adapt a cancellable blocking implementation to a nonblocking one by spawning a
thread and aborting it if no input was returned within some short time interval. If only
a non-cancellable blocking interface were available, more invasive adaptation would be
necessary—for example, instrumenting the blocking call’s implementation to exit early
rather than waiting.

Chapter 3. Limitations of the Cake language 87

3.5.4 Conversational adaptations

The combination of Cake’s reactive execution model and the syntactic form of event cor-
respondences constrains the control flow that can occur when responding to an event.
When a call event occurs, some caller-side logic may run (in a bracketed stub expression
preceding the arrow), followed by some callee-side logic (usually in a sink-side stub ex-
pression) and optionally some further logic on the return path (using the return syntax
from §2.2.9). In this way, at most two transitions between caller and callee context are
permitted. Further alternation of control between caller and callee components cannot be
expressed in a single rule. We call these unsupported cases “conversational adaptations”
after their back-and-forth nature. This lack of support is rarely a limitation in practice,
since any need to invoke alternative caller-side functions can usually be factored into the
value correspondences pertaining to the call.

3.5.5 Call sequencing constraints

Many interfaces contain call sequencing constraints. Cake supports call context match-
ing (§2.3.1) which provides the theoretical expressiveness necessary to tackle finite-state
cases of call sequencing mismatch, much like various prior work [Yellin and Strom 1997;
Passerone et al. 2002; Bracciali et al. 2005]. However, Cake is somewhat less usable, be-
cause a greater amount of work is pushed to the programmer. Specifically, since Cake does
not assume any description of the behavioural constraints to be available in the debug-
ging information, the programmer must provide a full elaboration of the sequencing rules
in the correspondences he writes. By contrast, the same prior work assumes that input
components are annotated with sequencing constraints; from these they algorithmically
synthesise a full adapter from a specification consisting, in effect, of only a subset of the
rules that a Cake programmer would need to write. The motivation for this omission is
purely practical: Dwarf does not include any behavioural descriptions.

3.5.6 Generalised sequence mappings

We saw in §2.3.10 that adding some sort of looping construct within Cake appears nec-
essary to handle some use-cases, e.g. where a single call in the caller’s interface requires
an unbounded number of repetitions in the callee, as in the converse case of our video
decoding example.

Rather than adding explicit looping or recursion constructs to the stub language, a
better approach would be to generalise event correspondences so that both sides of a rule
can describe sequences of calls. This implies that Cake-generated code could generate
sequences of calls as well as consume them. For example, we might write something
resembling the rule shown in Fig. 3.3.

The right-hand side of this rule introduces a sequence-matching operator * for match-
ing a specific sequence of calls, and use of boolean operators (here &&) to allow matching
to be predicated on return values. Sub-patterns are grouped using braces; note that both
sides of the rule use event-pattern syntax, so despite the braces, there is no stub. Thanks

88 3.5. Control structures

f ⇐ av frame new(), ...,

av read frame(dec...packet, f),

(dec...packet.stream index == dec...vid idx) &&

avcodec decode video2(dec...ctxt, , ,)

←→ { nmemb ⇐fread(buf, size , nmemb,),

mpeg2 buffer(dec, buf, buf + nmemb ∗ size),

state ⇐ mpeg2 parse(dec)

&& state == STATE BUFFER }∗,

state ⇐ mpeg2 parse(dec)

&& state == STATE SLICE;

Figure 3.3: Sketched extension to sequence matching

to this, the rule is bidirectional—it could be used in compositions where either compo-
nent is the caller. In the left-to-right direction, a simple pattern of calls from some ffmpeg
client triggers the Cake-generated code; the compiler-generated code is then obliged to
generate a sequence satisfying the pattern on the right.

Since the right-hand pattern is guarded on return values—only particular values of
state will do—the code must exploratorily generate calls to mpeg2 parse() in the hope
that these will eventually satisfy the right-hand pattern. In this way, elaboration of
looping is managed by the Cake compiler and runtime, and described by the programmer
only declaratively (using the * operator).

The main problem here is that this exploration process could fail—for example, if a
call to mpeg2 parse() returned neither STATE BUFFER nor STATE SLICE. It is not clear
what should happen in this case. An extreme solution would perform the exploration in a
transactional memory, and roll back if a conflicting pattern emerged. At this point, other
rules for handling avcodec decode video2() could be attempted, or else no action taken.
However, the performance cost of such an approach could be great.

There is another problem with implementing this rule: the rule leaves treatment of
return values and error-handling underspecified. For example, how should the call to
av frame new() be handled within libmpeg2? Similarly, in the right-to-left direction, our
pattern is predicated on the return values of the mpeg2 parse() calls, but we have no
rules to specify how these calls should be handled. It would be unwieldy to incorporate
all these details into a single rule. There is also insufficient description of error handling—
what if the fread() call failed? These problems of underspecification suggest that the kind
of rule shown could only work when treated as partial specifications, effectively acting
as constraints on a synthesis process within the Cake compiler. Other rules could be
provided alongside, entailing additional constraints. This implies an extra compilation
step in which partial rules are combined into complete descriptions of the handling of
each particular event; this process could fail if the collection of rules proved under- or
over-constrained. By contrast, in the current design of Cake, these issues are avoided
by requiring that a given event pattern, once triggered, is associated with a complete

description (usually a stub) of the behaviour it generates in the facing component. We
consider other facets of this limitation next.

Chapter 3. Limitations of the Cake language 89

client ←→ lib // simple case

{

a() −→ x (); // no initialization rule

b() −→ y (); // ... makes for simple code

c() −→ z ();

};

client ←→ lib // initialization causes blow-up:

{

a() −→ { init (); x() }; // match uninitialized

(...),

a() −→ x (); // match initialized

// ” (...)” means ”any call”

b() −→ { init (); y() };

(...),

b() −→ y (); // repeat for each call

// that might come first !

c() −→ { init (); z() };

(...),

c() −→ z ();

};

Figure 3.4: Cross-cutting sequencing constraints causing rule blow-up

3.5.7 Partial event handling

A semantic limitation of Cake is that each rule is “fired” by exactly one event at run
time, and moreover, each event fires at most one rule. Put differently, the handling of
one run-time event—excluding updates to sequence-recognition state—must be described
totally, by a single event correspondence. This is sometimes a limitation, as we just saw
in Fig. 3.3.

A simpler yet ubiquitous example is the initialization call. Suppose that a particular
library requires an initialization call, but a mismatched client does not make any such
call. In semi-automatic systems, a synthesis algorithm would infer the need to insert
initialization calls before any library call, simply from the presence of a “happens be-
fore” constraint edge from the initialization call to other library calls. By contrast, in
Cake this is a highly awkward case, because of the nonlocal (cross-cutting) nature of the
initialization constraint. Since every call in the interface is affected, every Cake event
correspondence consequently needs to incorporate knowledge of the constraint. Fig. 3.4
shows this difficulty for a simple pair of three-call interfaces of which one features an
additional initialization call. An improved Cake language could factor the initialization
logic out cleanly by allowing each event correspondence to provide a partial description
of the event’s handling, using call sequencing constraints within an interface to schedule
the partial handling logic.

Note that by contrast, capturing non-crosscutting sequencing constraints in Cake does
not present this problem; this is simply the normal case of sequence-based event context
predicates, of which our video decoding example from Chapter 2 contains several occur-
rences.

3.5.8 Caller–callee mismatch

One kind of mismatch in control structures arises from asymmetries in the procedural
execution model. Data can pass between components both during procedure call and

90 3.5. Control structures

producer polarity /

out-port mechanism

data flow consumer polarity /

in-port mechanism

adaptation

caller / call-site −→ caller / resume-site mailbox

caller / call-site −→ callee / entry point none (passes by call)

callee / exit surface −→ caller / resume-site none (passes by return)

callee / exit surface −→ callee / entry point pump

Table 3.1: Cases of procedural control-flow mismatch for a simple data flow

procedure return; components may be mismatched in the ways in which they render a
particular data flow procedurally.

To map the space of these mismatches, consider a calling component—we say it con-
tains a call site (the instruction making the call) and a resume site (the place where
control resumes after the call, usually the following instruction). The call site is a out-

port for data—the arguments are “sent” by the component, whereas the resume site is
an in-port in that it is where the component “receives” the return value. The respective
converses of these for a called component are entry points (which “receive” a function’s
arguments, hence being an in-port) and exit points (which “send” a function’s return
value, so are out-ports).

Now imagine a simple producer–consumer relationship between two components A and
B. For simplicity we consider only a single direction of data flow. Table 3.1 summarises
the ways in which this can be programmed procedurally, including mismatched cases,
and the adaptation requirements arising. Note that the source and sink mechanisms are
determined entirely by the pairing of caller-versus-callee distinction (i.e. the style in which
the components’ control flow is coded) and data flow direction (which is always from a
source to a sink, and from A to B). The “mailbox” and “pump” adaptation requirements
were previously identified by Black [1983].

The first problem with expressing the “mailbox” and “pump” cases in Cake is that
there is no syntax for “cross-wiring” call events with return events—respectively, wiring
a call-output to a return-inport (mailbox) or return-outport to call-inport (pump). As a
syntactic limitation, it is easily addressed.

Both mailbox and pump have more significant problems than providing appropriate
syntax within Cake. In the case of mailboxes, the complication amounts to stack man-
agement complexity at run time. In the case of a pump, it amounts to looping. Both of
these are omitted from Cake currently; we discuss these briefly now.

3.5.9 Realising mailboxes

Considering data-flow only, a mailbox can be expressed in Cake, albeit somewhat clumsily,
using an association. Fig. 3.5 shows an example. The clumsiness arises because each side
needs an object to “hang” its association state off: recall that association tuples are
the only kind of mutable state that may be directly manipulated in Cake (§2.3.4). Since
association tuples can only be created from component-managed objects, we suppose that
object-returning functions someLeftFunction() and someRightFunction() are available.

Chapter 3. Limitations of the Cake language 91

values (o: someLeftObject, buf: char) ←→ (o: someRightObject);

// LHS puts items in the mailbox

obj ⇐ someLeftFunction(), ...,

putchar(a) −→ { set obj...buf = a; };

// RHS retrieves items from the mailbox

{ obj...buf ; } ←− obj ⇐ someRightFunction(), ...,

getchar(a);

Figure 3.5: Describing a mailbox in Cake

/* Decompression code */

while (1) {

c = getchar();

if (c == EOF)

break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--)

emit(c);

} else

emit(c);

}

emit(EOF);

/* Parser code */

while (1) {

c = getchar();

if (c == EOF)

break;

if (isalpha(c)) {

do {

add_to_token(c);

c = getchar();

} while (isalpha(c));

got_token(WORD);

}

add_to_token(c);

got_token(PUNCT);

}

Figure 3.6: Tatham’s coroutines example

Such a mailbox is not sufficient, however, because it does not ensure a correct interleav-
ing of control flow between producer and consumer. For example, there is nothing to stop
the consumer reading the same character repeatedly, or the producer from overwriting a
character before it has been read.

One solution, currently supported by Cake, is to realise the mailbox as a synchro-
nised single-cell buffer, with the help of a threading library. The producer and consumer
functions can simply be bound to the buffer’s accessors.

However, this introduces additional run-time complexity, in the form of a threading
library, and additional programmatic complexity, since access to state which the two
components may incidentally share (that is, aside from the buffer) will require synchroni-
sation. It should be possible for Cake-generated code to ensure a well-matched interaction
without resorting to this kind of opaque solution. The rest of our discussion describes a
possible approach to this.

This kind of mailbox scenario is often used to motivate coroutines, as a minimally
invasive form of cooperative multi-threading. To illustrate, we use an example due to
Tatham [2000] and reproduced (with permission) in Fig. 3.6.

Considering these two snippets each as a separate component, we see that they are

92 3.5. Control structures

mismatched in their control structures: both expect to perform both input and output
by calling functions, then to regain control. Input calls—getchar()—pass no value, and
receive the input character by return. Output calls—emit()—pass a character value and
return no value. Suppose we want to link the parser component to the decompressor,
so that it inputs characters from the decompressor’s emit() output stream. We clearly
cannot link these two snippets directly; instead, we need to “cross-wire” them with respect
to calls and returns. A call to emit() must generate a return event resuming execution
of a corresponding getchar(), and conversely, the call to getchar() must activate the
decompressor at a position immediately after where it last emitted a character. This
precisely models the “mailbox” scenario in Table 3.1. (In this case, the “mailbox” is
small, containing only a single character, so can be implemented by the stack- and register-
variable locations used to pass data to and from coroutines.)

A deeper problem with mailbox adaptation is that of on-stack state. Each component
is a caller, so expects its local variables to persist across communication with its opposing
component. (This is one reason why Tatham’s mismatch example is more common than
the converse “pump” case—it arises precisely because the caller style of programming
is more convenient, in that it allows maintaining local state.) Traditional coroutine im-
plementations do this by a special control-transfer primitive which retains the yielding
coroutine’s stack frame for later resumption.

Can we compose the two components unchanged, without rewriting either into a callee
style? Tatham presents a portable source-level approach to this in C, by providing macros
allowing a called function to recover its state across successive calls using a combination of
macro-generated jump labels, goto statements and static local variables. (He also outlines
an extension to support reentrant and thread-safe state management.) Effectively the only
source-level changes required (other than “begin” and “end” macros and making local
variables static) are to identify which call-sites should resume a previously activated
coroutine, versus which should instantiate a new one; and conversely, which return-sites
should be resumable later, versus which should terminate the coroutine.

Cake would require support for an analogous adaptation at the binary level. There
are two particular challenges to performing this. Firstly, we require a way of supply-
ing analogous programmer guidance about which call- and return-sites should activate
coroutines—where this must now be specified separately from the original source code,
rather than by modifying it. Identifying call- and return-sites by source code coordinates
is one plausible approach, although fragile with respect to source edits. Secondly, we
require run-time support for saving the stack frame and program counter of a returning
function, and restoring it on resumption. This is straightforward to implement for simple
cases where stack frames do not contain pointers that need relocation on restoration. (By
contrast, relocation might be necessary if frames contain internal pointers or pointers into
other coroutines’ stack frames, since this state may have moved elsewhere by the time
a call is resumed. This may be implemented by dynamic analysis, assuming sufficient
debugging information is available at run time to identify which fields in the saved stack
frame are pointers.)

Chapter 3. Limitations of the Cake language 93

3.5.10 Realising a pump

Having considered mailboxes, there is the converse case to consider: instead of being the
caller, what if both components expected to be the callee? In these cases, a “pump” rather
than a buffer is required, in the form of a loop which repeatedly calls first the producer
and then the consumer. Since Cake’s stub language features no looping or recursion, this
cannot be expressed directly in Cake.

As with the mailbox scenario, a somewhat unsatisfactory solution is available already
in Cake, by use of a threading library. Specifically, the Cake programmer may code the
pump conventionally in the user’s language of choice, include it in an inline block in the
Cake source, and link it as a separate component. The pump could then be invoked
from event-correspondence stubs which coincide with availability of new data from the
consumer, or could be started in a separate thread from some stub invoked at initialization
time.

Alternatively, as an improvement on the use of inline, a generic pump could be coded in
C++ and added to the repository of Cake algorithms (§2.3.2). This remains unsatisfactory
because doing so requires implementation-specific knowledge of the Cake compiler.

As with mailboxes, the most satisfactory solution involves adding cross-wiring syntax
would allow the user to wire a callee out-port—i.e. an exit-site—with a callee in-port—i.e.
a call-site. This is sufficient to allow the Cake compiler to infer when a pump is required.
Unlike the mailbox case, there is no stack management concern—since both components
are callees, they must already explicitly save local state across invocations.

3.6 Component structure

Cake currently identifies “components” by interfaces visible statically in object code,
delineated by file boundaries. Often, however, the same static set of functions and data-
types can realise logically quite different components at run time. For example, two
FILE objects (and the traces of C library calls manipulating them) might each constitute
a distinct logical component to which different adaptation rules should be applied. A
refined notion of component interfaces as “slices” of a trace, where slices are identified by
event sequence patterns much like those already used to match events context-sensitively
(§2.3.1), could support such use-cases. Unlike existing sequence patterns, slice patterns
must accommodate potentially infinite sequences; as such, an iteration (star) operator as
sketched in §3.2 would be essential, in order to capture the entire slice (of unbounded
length).

3.7 Bidirectionality

Currently in Cake, only the simplest correspondences may easily be made bidirectional.
In future work we hope to unify stubs and patterns somewhat, so that more rules can be
naturally bidirectional. For instance, a stub which does a(); b() can be treated as a pattern

94 3.8. Recursive and side-by-side application of Cake

which matches the sequence a(), b() in the reverse direction. We saw a sketched example
of this sort of rule in Fig. 3.3. Stubs which restrict themselves to reversible programming
constructs could be interchangeably rendered as patterns in this way. This could yield
an analogue of the bidirectional lenses [Foster et al. 2005] supported for tree-structured
data, but effectively extending these to programmatic interfaces.

3.8 Recursive and side-by-side application of Cake

The output of Cake is simply another component, albeit with added dependencies on Cake
run-time services. Therefore, the Cake language may be applied multiple times in the
construction of any program, and no special support is required for this. However, doing
so presents several implementation complexities. We discuss these briefly in Chapter 4.

Motivating the design of Knit [Reid et al. 2000] was an observation that the basic
linking model in most toolchains is an unsophisticated “grab bag” which does not scale
well to large compositions or certain composition patterns. Instead, it demonstrates the
adoption of a pre-existing hierarchical linking model, Units [Flatt and Felleisen 1998].
The same arguments apply to Cake; Knit has shown that hierarchical linkage can be
implemented in a very similar practical context to Cake’s.

3.9 Summary

This chapter has facilitated a better understanding of the Cake language, primarily by
negative examples. In so doing, it has identified many areas for future work. The following
chapter returns to more immediate issues, by discussing the implementation of Cake.

Chapter 4

Cake implementation

In Chapter 2, we described the Cake language. To satisfy our goals, it must be possible
to implement a compiler and runtime for this Cake language. The compiler must oper-
ate on binaries (satisfying our convenience goal) and makes modest assumptions about
its input code (to enable a wide range of input code). The runtime must support the
dynamic semantics described in §2.4.3. Preferably, such an implementation should also
integrate well with existing toolchains, to further ensure the convenience, maintainability
and debuggability both of the resulting tool and of the code it generates.

In this chapter we present the technical details of such an implementation. We first
outline our implementation strategy, then discuss the compiler implementation, and finally
the Cake runtime.

4.1 Strategic decisions

Our language design brings several implementation constraints. In particular, we are com-
mitted to a black-box abstraction, to the use of binaries, and integrating as conveniently
as possible with existing toolchains. The use of binaries is the biggest constraint: these
already embody highly specific object layouts and encodings, and are described only by
the available Dwarf information, perhaps augmented by programmer annotation.

Interposition mechanisms Since Cake’s execution model is reactive, somehow we must
interpose on (or “hook”) events of interest during our components’ execution. Vari-
ous mechanisms are available for this: interposition support of the linker; generation
and handling of traps supported by the operating system; perhaps direct modifi-
cation of code in memory. Operating system traps are highly dynamic, and more
flexible than linker-based approaches, since availability of memory protection traps
could allow us to interpose on access to state as well as data. However, they are
also generally considered a “slow path” by implementors, and are also esoteric and
system-specific. Direct modification approaches have similar disadvantages. We will
therefore prefer to use linker-based mechanisms for interposition.

96 4.2. The compiler

Replication versus canonicalisation Our input components understand logically sim-
ilar (i.e. corresponding) data structures by many different in-memory representa-
tions. We could opt to store a unique “master” copy of this state, and re-encode it
on demand from mismatched components, perhaps using memory protection tech-
niques. On a trap, we could emulate the trapped instruction (although this would
be slow). Alternatively, we could give it a demand-generated re-encoded copy of the
data; this would need to live in memory long enough for a candidate component to
read from it, but not so long that the master copy is left unduly out-of-date, or that
the temporary copy constitutes a resource leak. It is unclear how to manage these
copies. Alternatively, we can use replication: replicate state in each of its alterna-
tive representations. This increases memory use, but provides faster access (since
no traps are handled). It also brings the usual questions surrounding replication:
how to handle conflicting updates, timing of update propagation, and consistency.
We choose the replication-based approach—it is straightforward in many simple
cases, which will be sufficient for proof-of-concept. For more complex cases, the two
approaches are likely to be complementary, as we discuss in §4.4.6.

Rewriting Even though our language presents a black-box abstraction, there is no reason
why its implementation should not use invasive techniques which actively consume
and rewrite the internal instruction sequences of our input components. Indeed,
such a technique could be used to improve the performance of a system considerably.
For example, we could avoid the need for replication by rewriting memory-access
and address-calculation instructions to reflect a changed object layout. Rewriting
approaches offer mainly performance benefits over simple interposition approaches.
Since high performance is not an immediate goal, we leave these for future work.

4.2 The compiler

Cake models a program as a set of communicating object files—or more properly, groups
of object files, which we call components. Communication occurs along the control path
of the program; an “event” between two components’ interfaces occurs when control flows
out of one component and into another. Cake is implemented by interposing on these
events: Cake-generated code runs when events occur. The defining characteristic of a
component is that it is internally well-matched—no interposition is necessary on events
within the component.

4.2.1 Assumptions

The current implementation of Cake assumes that inter-component data flow occurs only
through function calls, or through shared objects whose sharing was established at run
time through function calls (i.e. by passing a pointer in an earlier function call). This
“functions only” assumption allows us to implement Cake almost entirely by interposing
on function calls; we can interpose on object sharing by intervening at the point of the
function call during which sharing is established. We discuss the specific treatment of
objects further in §4.4.

Chapter 4. Cake implementation 97

.o.o.o.o .o.so

input components

.cake

Cake source

.o.o

minor

rewrites

.cc

generated

code

.mk

generated

makefile

Cake compiler

conventional tools (ld, make, c++, …)

Figure 4.1: Cake’s tool flow (repeated)

The “functions only” assumption might be violated by statically allocated shared
variables, where sharing is established at link time. In practice, globals shared among
components are rare, and mismatch in the usage of such globals is even rarer. (Where
shared globals do exist, their interface is usually that of a standard library, for example
the C library’s errno, which is highly unlikely to suffer mismatch.)

4.2.2 Outline implementation

Fig. 4.1 repeats the diagrammatic view of Cake’s tool flow shown in Chapter 2. The Cake
compiler accepts a Cake source file as input, which in turn references various pre-existing
object files and describes others which should be constructed according to correspondence
rules. The compiler’s execution consists of deriving a set of wrapper functions which
interpose on communication between these object files, and a set of helper functions which
implement the various value correspondences (defined in the Cake rules, jor implied by
name-matching).

Our compiler generates C++ code. Interaction with the existing object files is achieved
using a specially-created dwarfhpp tool. This tool generates specially-crafted C++ headers
which reproduce the ABIs described in Dwarf information. Fig. 4.2 provides a more
detailed view of the common-case toolflow (excluding use of shared objects and rewrites
to input objects).

4.2.3 Interacting with object code

Our tool dwarfhpp generates C++ headers which reproduce the binary interface exported
by an object file, such that C++ code can be generated and compiled against that binary
interface. The decision to generate C++ is helpful in supporting components written in
many source languages, since C++ is a particularly featureful language. In other words, its
feature set is sufficiently close to the union of most other procedural and object-oriented

98 4.2. The compiler

.o.o.o.o

.c

original component sources

.f.f .cc

original component sources

.c .cc .java.java

conventional compilers

.o.o.o.o

conventional compilers

Cake compiler

.o.o.o.hpp .o.o.o.hpp.cpp

conventional C++ compiler

output wrapper object

dwarfhpp dwarfhpp

(driven by compiler-output Makefile)

Figure 4.2: Detailed common-case toolflow

languages’ feature sets that generated C++ headers can provide a fairly direct rendering
of most Dwarf-described features.

Note that the dwarfhpp tool is not restricted to binaries generated by the host C++

compiler. Indeed, the headers it generates need not particularly resemble the source that
generated its input binaries. For example, the Cake compiler always generates structured
data types as C++ structs rather than classes. Another difference is that the generated
headers name as many definitions as possible: definitions left anonymous at source level,
such as anonymous structure types, will have autogenerated names in the output headers,
so that Cake-generated code can refer to them even if the component source happened
not to.

The C++ language also proves useful in supporting features in Dwarf that are not
native to C++. For example, primitive values of non-native encodings, sizes or endian-
nesses can be reconstructed by adding an appropriate C++ data type definition to the
compiler’s internal library. Thanks to C++’s comprehensive data abstraction support,
our Cake compiler can consume these using exactly the same code as it generates for
compiler-native objects; it suffices to provide a class definition describing the non-native
encoding up to all the operations which the Cake compiler might invoke on a variable
encoded in this way (i.e. all the operators in the Cake stub language).

In a few cases, standard C++ does not support quite the level of control necessary
to capture a Dwarf-described binary interface. In these cases, dwarfhpp uses compiler-
specific attributes, where available. In particular, attributes are required to ensure that
structured data types’ field padding and alignment match the Dwarf descriptions. Con-
sequently, currently our implementation supports the attributes of the GNU C++ com-
piler only, but many other compilers provide similar extensions; support for these could

Chapter 4. Cake implementation 99

be added straightforwardly.

There is no guarantee that a given Dwarf-described interface can be captured in
C++ headers. For example, functions whose calling conventions are not supported by
the host compiler’s extern "language " options would be problematic. Similarly, nested
subroutines would at least have to be rendered in some substantially different way (e.g.
non-nested subroutines passing a static link explicitly). However, we are yet to encounter
these limitations in practice. It is worth reiterating that our approach supports a vastly
wider range of compiled code than simply output of the host C++ compiler, and in par-
ticular, it applies to code written in languages other than C or C++ (even if this support
is limited in our proof-of-concept implementation).

4.2.4 Compiler overview

Fig. 4.3 shows a simplified view of the internal operation of the compiler, including its
internal control structure, data structures and internal data flows. This is mostly straight-
forward; the remainder of this section will focus on the output files and the details of their
generation.

4.2.5 Output of a Cake invocation

The Cake compiler outputs a set of wrapper functions, in the form of C++ code con-
suming dwarfhpp-generated headers, and a POSIX makefile containing linker invocations
to interpose these wrappers. Wrappers are interposed statically using the GNU linker’s
--wrap option [Free Software Foundation, 2009]. This redirects references to a named
symbol, so that instead they are relocated to a symbol wrap <symbol> , and renames
the definition of the named symbol, if any, to real <symbol> .

4.2.6 Anatomy of a wrapper

Wrapper functions are the primary mechanism for Cake’s implementation. Each wrapper
function structured in a particular way, as shown in Fig. 4.4.

Limitation to similar signatures Since the linker performs wrapping on a per-symbol
basis (§4.2.5), a single wrapper function must provide logic for handling all calls made to
a particular symbol name. To fit generated code within C++’s statically-typed function
call model, we also require that all such calls have compatible signatures, up to the data
type of all immediately-passed values; indirected values are reified as pointers to untyped
(void) memory.

Limitation to non-variadic functions Interposing on variadic functions is not cur-
rently supported. This is because discovering the interpretation of variadic function pa-
rameters at run time is not possible without some application-specific knowledge: even

100 4.2. The compiler

lex, parse

build initial module table

.cake

.c.oprocess “exists” blocks

merge annotations

build alias table

add “derived” entries

extract derivation blocks

process simple derivation
operators (all but “link”)

topological sort

.c.mk

exists

(annotations)

derive

link

[,]

AST of Cake file

exists

(annotations)

(rules)

for each “link”

for each pairwise block...

extract explicit corresps

first_existing

second_existing

derived

module table

name-match implicit c’s

enumerate wrappers + build
rule-to-wrapper tables

output per-pair declarations
(blackboard)

output wrapper file header

for each wrapper

output case split + event
dispatch logic, in rule

precedence order

for each value correspondence

output value conversion func.

analyse data-type shareability

output value conversion table +
shareability information

a(...) - x(...)

(per pair)

event

correspondences

table

derived

(per component)

wrappers table

(per pair)

value

correspondence

table

b(...) - y(...)

a(0) - z(...)

P - W { /* ... */ }

Q - V { /* ... */ }

a

b

.cpp

input components

output makefile

output C++ file

input

Cake source

Figure 4.3: Simplified view of Cake compiler internals

Chapter 4. Cake implementation 101

int __wrap_some_function(t1 arg1, t2 arg2 /* ... */)

{

update counters

append call to blackboard

if (blackboard matches a context- or counter-predicated rule)

{

dispatch to that rule

save return value on blackboard

}

else if (call matches a rule requiring specific arguments)

{

dispatch to that rule

save return value on blackboard

}

else // probably an error

{

dispatch to __real_some_call(arg1, arg2 ...);

}

update blackboard with call return value

purge obsolete blackboard state

(similar tests for other possible matches of this kind)

(similar tests for other possible matches of this kind)

else if (call matches a fully general rule)

{

dispatch to that rule

save return value on blackboard

}

synthesise return value from value saved by dispatch logic

}

Figure 4.4: Anatomy of a Cake-generated wrapper

102 4.2. The compiler

distinguishing an integer from a pointer is not possible in general. In contrast, the inter-
pretation of conventionally-passed arguments may be ambiguous across pointers, or in the
use of unions, but is otherwise precisely described by debugging information. Annotations
capturing common variadic argument encodings could be used to supplement debugging
information and allow the removal of this limitation. (For example, a Dwarf routine to
decode C-style format strings could be used to identify how many parameters had been
passed to a printf() call.)

Each wrapper function’s structure is explained by the following sequence of steps.

1. Update counter To support the count-based predicates (of the kind seen in §2.2.9,
involving fopen()), each invocation of a particular call must increment a counter.
These counters are simply declared as static C++ local variables within the wrap-
per functions, and incremented on each call. Counters are used rarely; primarily,
they exist as a more compact alternative to the blackboard, useful when only the
occurrence of a call, not its arguments or relative ordering, is significant.

2. Match and update call sequence (blackboard) state If the call matches a
pattern in some event correspondence containing a context predicate, then we must
update the call sequence state accordingly. Call sequence recognition state is kept on
a blackboard (one per component pair)—effectively a list of the previous calls that
are being remembered, including return values for those that have been completed.
We discuss this further in §4.2.7.

3. Dispatch to firing rule If the pattern state now matches some complete event
pattern with context, that rule becomes the fired rule. Name bindings are formed
to the relevant values stored in the pattern (by defining C++ references pointing
into the blackboard state). If the pattern state does not match a complete pattern,
we look for a context-insensitive matching rule, from most-specific to least-specific
pattern. The code dispatched to is always a Cake stub—simple event correspon-
dences described without using stub syntax are converted to single-expression stubs
in Cake’s abstract syntax. Stubs are emitted as C++ code generated straightfor-
wardly from their abstract syntax. Each subexpression is lifted to a statement, and
a name bound to its result. This means there is a strict and predictable sequential
execution order within stubs. A success value is extracted from the expression’s
result; unsuccessful subexpressions abort their containing expression.

4. Generate return value Evaluation of the stub will yield some output value
(perhaps void) and some success status. If no return rule was specified in the corre-
spondence, style-specific conversions are applied to synthesise an appropriate return
value from the yielded output and success status. Otherwise, another stub is gen-
erated according to the return event rule, and the return value and success status
synthesised from this stub’s output.

5. Update and clear blackboard entries The return value of the call, as seen from
the caller’s perspective (i.e. after synthesis) can now be written to the blackboard,
to allow the complete call to be matched by context patterns. However, we only
need to retain sufficient blackboard state to match the context predicates that were

Chapter 4. Cake implementation 103

actually used by the Cake programmer. These are finite by their nature. Therefore,
we here clear whatever sequence recognition state is no longer required. We discuss
this further in §4.2.7.

6. Return We return control, passing the synthesised return value (if any).

4.2.7 Notes on the blackboard

The blackboard can be thought of as a sliding window of call history. The window is only
as big as required to match the context predicates specified by the Cake programmer, so
it need not grow arbitrarily big as the call history grows.

Currently there is one blackboard per ordered pair of components. In a multithreaded
setting, this would be a thread-local structure.

The current implementation is based on a simple run-time predicate interpreter. The
blackboard is a queue of records. Each call pushes a record onto a queue, and each return
from a call updates the call record with the return value (if any). Wrapper functions
perform tests on the blackboard (see Fig. 4.4) by invoking the interpreter, passing as the
interpreter’s argument a predicate structure specific to the context predicates relevant
to the wrapper. This predicate structure is a direct encoding of the context predicate
expressed in the Cake code, and can be generated by the Cake compiler. The interpreter
then looks for a match by walking the queue. This approach is not optimised for execution
speed; applying efficient algorithms from the domains of language recognition or string
matching could be a worthwhile contribution towards a high-performance implementation
of Cake.

It is worth considering the growth of blackboard state. In the absence of rules which
match data values across calls within a context-predicated rule, the blackboard state is
finite: only finitely many context predicates are present in the Cake source file, and no
more than one instance of matching may be ongoing for a particular context predicate at a
time. In a multithreaded scenario, this becomes one instance per thread. The use of ellipsis
(“...”) in predicate rules does not worsen this, since any sequence of undistinguished calls
may be recorded in constant space using a special “marker” blackboard record.

However, the encoding of data dependencies in pattern rules does introduce the pos-
sibility of (effectively) unbounded growth of the blackboard, although such cases always
indicate buggy Cake code. Consider the rule we saw in §2.3.1, repeated in slightly sim-
plified form in Fig. 4.5. A client which repeatedly called mpeg2 init(), yet never called
mpeg2 get info(), would cause unbounded growth, because the wrapper is trying to
match calls to mpeg2 get info(dec) with some particular argument value, each of which
must be remembered separately. Without this data dependency, each mpeg2 init() call
would replace the preceding one on the blackboard, so the growth would not be un-
bounded.

This theoretical blow-up is effectively attesting to the fact that Cake can adapt in-
terfaces using dynamic allocation of objects: using these data-dependent predicates, each
object can define a call history which is matched independently of similar call sequences
happening on other objects in an interleaved fashion. This generalises to thread-level

104 4.2. The compiler

// recurrence of ”dec” introduces data dependency

let dec = mpeg2 init(), ...,

mpeg2 get info(dec) −→/∗ ... some sink expression ∗/

Figure 4.5: Data dependency risking unbounded blackboard growth

interleaving with the simple extension to a thread-local blackboard. However, note that
each interleaved “slice” of calls is subject to the same Cake rules. The notion of slices iden-
tified as future work in §3.6 would address this restriction, by supporting the adaptation
of interleavings where different rules should apply in each case.

A related issue is the detection of obsolete records. The obsolescence criterion for
a blackboard entry is that for all context-predicated rules, for all sequence elements in
that rule which might match the call denoted by the entry, an obsoleting entry exists
subsequently in the blackboard. A later entry obsoletes an earlier entry with respect to a
rule if it breaks the rule’s pattern when anchored at the earlier record. For example, in a
pattern A(), B(), supposing there is already an A() entry on the blackboard, any successive
entry that is not B() will obsolete A() because the pattern from A() is now broken (noting
that the ellipsis was not used). Later calls also obsolete earlier calls in cases where any
call which might extend a pattern, as anchored at the earlier blackboard record, would
also extend a later instance the same pattern, i.e. using an existing blackboard record
appearing more recently on the blackboard than the earlier call. In this way, if a sequence
is begun but not completed, and then begun over again, only the later instance can trigger
a match. This restricts the interleavings of patterns that may be matched, but since
patterns do not span multiple threads of execution, this is not a significant restriction.

As an example of the obsolescence rules, suppose rules exist for matching sequences:

1. A(),..., C(),

2. B(), ..., A() and

3. A(), ..., C(), ..., D()

. . . and the blackboard contains:

A(); B(); C(); A(); C(); D();

—this implies that rule (1) was fired after the third call and rule (2) after the fourth.
However, the calls matched in rule (1) were not yet obsoleted, because a call to D() might
fire rule (3) and hence match them again. By the second call to C(), however, these calls
have been obsoleted, because any subsequent D() would match the more recent calls to
A() and C() in preference to the earlier. Therefore, after the final D() call is made, the
earlier A() and B() calls may be removed from the blackboard. (In fact, so may the later
calls in this case, because no rules are defined that match a supersequence of the one just
matched.)

Chapter 4. Cake implementation 105

4.2.8 Generated value conversions

Besides wrapper functions, the other main ingredient of the Cake compiler’s output is
value conversion functions. We discuss various aspects of these functions in this subsec-
tion.

Generation

Value conversions as template specializations The Cake runtime’s header files
describe a value conversion as a C++ template class overloading the function application
operator operator(), defining a class of “function object” in C++ terminology.1 All value
conversions specialize this template. These templates are parameterised on the C++

argument types being converted, and on an additional integer rule identifier allowing
the same C++ types to be related by multiple different conversion functions in different
contexts (e.g. to support artificial data types, §2.3.5). These parameters are specified
whenever Cake generates code to invoke a value conversion (perhaps in a wrapper function,
or perhaps in another value conversion).

Prelude for default conversions A static “prelude” set of definitions provides vari-
ous default behaviours. This includes default value conversions between differently-sized
primitives values, and treatment of pointers (which invokes run-time logic to discover
the precise class of pointed-to objects, enabling Cake’s dynamic semantics described in
§2.4.3). The prelude also includes C++ template descriptions of Cake’s “default style”, in
the form of operations e.g. for extracting the success flag of a function call from its return
value, for encoding booleans, sets and lists, and other matters of style. These definitions
can be supplemented support alternative styles; Chapter 6 describes a way of doing this
within an extended version of the Cake language.

Dynamic dispatch

One complication of using C++ templates to describe value conversions is that our dynamic
matching semantics requires dispatching to a particular conversion at run time, rather
than at compile time when templates are elaborated. It follows that we must ensure
two things. Firstly, any value conversion template which might be required at run time
must be instantiated at compile time when the generated code is compiled. Secondly, we
must have a mechanism for dispatching to a particular template instance at run time.
To satisfy both of these requirements, we generate a table mapping from pairs of data
types (“from” and “to” conversion argument types) to the template function instances
which perform the value conversion. By including in the table all conversions defined
between all data types related in the Cake file, we ensure that all template instantiations
that might be required at run time are performed. Run-time dispatch to particular value
correspondences is then performed dynamically by table look-ups.

1See Stroustrup [1997], §18.4.

106 4.2. The compiler

Identifying data types at run time

In generated code, we identify data types by the C++ type names generated by dwarfhpp.
These directly reflect the component names given in the Cake source file, which then
prefixes the components’ internal namespacing structure. For example, if some component
named renderer in the Cake source code contained a C++ data type widgets :: surface,
the dwarfhpp-generated C++ name might be renderer ::widgets :: surface. However, the
runtime discovers a Dwarf typename relative to the run-time component structure of
the program. So if the renderer is linked statically into an executable browser, and its
Dwarf information mentions that it was defined in a file pane.o, the runtime might
identify it as browser -> pane.o -> widgets -> surface. To allow the runtime to
look up conversion routines from these run-time identities, our table of conversion routines
must be keyed using a naming scheme which unifies these two views. Erasing the unshared
prefix (i.e. preceding widgets) would be incorrect, because, perhaps when applying Cake
to interface evolution, we might be linking some client and library that use like-named
data types which are incompatibly defined.

To solve this problem, we choose a subset of identifying information that is invariant
under linking and deployment, and use this to prefix data type identities in both compiler
and runtime. Specifically, keys in the compiler-generated table of value conversions are
data type names prefixed with the full compile-time path of the source file containing the
data type definition (usually a header file, for C source code) and the identification string
of the compiler which generated the corresponding object code. Both of these strings
are invariant under linking and deployment, and available to both the Cake compiler
and the runtime (in Dwarf information). This scheme is not guaranteed to be free of
collisions (e.g. if Cake is composing code compiled against mismatched but like-named
headers), nor of false duplications (e.g. if multiple compilers were used to generate a
single component). However, problematic collisions are unlikely. Compositions which
share header files (up to their pathname) but which are nevertheless mismatched are
likely to derive from significantly different compilation environments, meaning that the
compiler itself is likely to be different (at least in a minor version number). Inclusion of
the compiler identity string therefore avoids a collision. Since keying a table on two long
strings is needlessly inefficient, our implementation actually uses a 64-bit hash of these
strings. Again, collisions of these 64-bit values are a theoretical possibility but highly
unlikely.

A final complication with handling data types in the runtime is that a single data type
definition (say struct A, defined in some C header) will be repeated in many locations in
Dwarf information (perhaps once for each source file that included the defining header).
The runtime therefore maintains a name-canonicalisation table for data types, where these
are grouped under an equivalence relation defined by prefix-stripped name equality and

representation-compatibility (defined in §4.4.4). Canonicalisation is applied before doing
conversion table look-ups.

Chapter 4. Cake implementation 107

4.2.9 Cake and dynamic linking

We have so far seen use of Cake as a static linking tool only. Since libraries are commonly
deployed on most modern operating systems as shared objects, linked dynamically, we
would like to be able to apply Cake to these. Interposing on dynamically linked symbol
references requires a slightly different mechanism, but the generated code is otherwise
identical. Wrapper functions are compiled into a shared object and loaded with the
dynamic linker’s LD PRELOAD. Original versions of any wrapped functions, analogous
to the real -prefixed symbols in static linking, are sourced using the dynamic loader’s
dlsym() API call.

4.2.10 Interaction with compiler-optimised code

Object code is a partially-specialised medium: the compiler has had opportunity to pre-
compose certain fragments of source code. The two main examples of this are cross-module
inlining and macro substitution. In both cases, code is embedded in locations remote from
its definition, possibly in many such locations.

We distinguish cross-module embedding from intra-module embedding because the
latter is both more common and unproblematic. For example, if a component uses an
inline function internally, this inlining does not affect Cake usage. By contrast, if inlining
or macro substitution occur across logical component boundaries—for example, a library
defining inline functions in its header files—this can affect Cake usage. In the example,
client binaries will embed inlined library code directly. This is a problem for a Cake
programmer wanting to interpose on the inlined call, since as far as Cake is concerned,
no such call occurs.

In general, we can say that inlining and macro expansion appear as binary interface
alterations—that is, changes relative to the interface that would have emerged if the calls
were left in functionally abstracted form in the object code. We consider two strategies
for handling these alterations: working with them, or undoing them.

Working with alterations Since only small functions are typically provided as macros
or inlines, only small alterations to the interface typically occur. For example, inlined
getter and setter functions mean that the resulting interface consists of field accesses
rather than function calls. Since Cake can adapt this class of mismatch, this is not
strictly speaking a problem—particularly when inlining can be considered a predictable
behaviour of the compiler (such as in C++, where member functions defined inside a class
definition are reliably inlined in all implementations). Other cases of inlining may be less
predictable, potentially causing a maintenance problem for the Cake programmer unless
inlining is turned off.

Undoing alterations Undoing of optimisations is a necessary task for debuggers, when
debugging optimised code. Accordingly, debugging information may be used to effect an
undoing of optimisations, not only by debuggers but also by Cake. Modern debugging
information, such as Dwarf [Free Standards Group, 2005] records places where functions

108 4.3. Implementing dynamic binding

widgets A ←→widgets B

{ // an event correspondence

find widget(descr) −→ get matching widget(descr);

values Widget ←→Widget

{ /∗ ... ∗/ };

values Window ←→Window

{ /∗ ... ∗/ };

}

Figure 4.6: Rules sensitive to static versus dynamic binding (repeated)

have been inlined, similar to “scope descriptors” in the Self compiler described by Hölzle
et al. [1992], and including descriptions of the parameters to the function from the local
state within the enclosing function’s code. Therefore, a tool such as Cake could rewrite
these instruction sequences to instead perform an out-of-line call, thereby recovering the
black-box view required by Cake. We have not implemented this rewriting, but this
technique would be necessary in a production implementation of Cake.

Of course, it is preferable to write Cake rules against a stable interface, meaning
one not dependent on some opaquely-chosen set of compiler optimisations. It is there-
fore best to disable inlining optimisations until link time, after Cake has done its work.
Link-time optimisation is supported by many toolchains, including recent versions of the
GNU toolchain. Since link-time optimisation allows whole-program analyses based on
a complete call-graph, it yields better results than inlining during separate compilation.
Specially-crafted link-time optimisations for Cake-generated code would make for inter-
esting future work.

4.3 Implementing dynamic binding

Objects in native code are generally not self-describing at run time. Moreover, as discussed
in §2.4.3, the debugging information available to describe them, much like static type
information, is inherently imprecise. As a summary of the problem, we repeat the example
from the previous chapter as Fig. 4.6.

Recall from §2.4.3 that we define well-behavedness criteria for input components.
These exist to limit the number of difficult cases that a Cake runtime implementation
has to address. Specifically, they limit the responsibilities of the runtime in three ways.
Firstly, they bound how much memory the runtime needs to explore as pointers are passed
across an interface—noting that a pointer might point to a single object or to an array
thereof. Secondly, they provide constraints on what the possible interpretations of that
memory will be, i.e. what data types it actually encodes (given that static type infor-
mation is imprecise). Thirdly, they allow the runtime to decide which objects may be
directly shared between mismatched components (according to an analysis we describe in
§4.4.4).

The imprecision of static metadata on pointers is compounded by arrays. Debugging
information does not reliably record whether a pointer points to an array or to a single

Chapter 4. Cake implementation 109

value only (owing largely to the C idiom of handling arrays implicitly using pointers).
Moreover, we cannot statically discover the size of many arrays. Cake’s semantics (§2.4.1)
nevertheless require that a receiving component may access the entire array. In summary,
the Cake runtime must be able to decide two questions.

• Given a pointer to an object, what byte-scale adjustments might a component rea-
sonably make, to reveal a pointer to a containing or inheriting object? (An adjust-
ment of zero is valid, in the case where the inner object is at offset zero within the
outer.)

• Given a pointer to an object, what block-scale adjustments might a component make,
to navigate among objects in the same array? We call these block-scale adjustments
because they are at least the size of a single object, whereas byte-scale adjustments
never take the pointer outside the original containing object.

The two are not independent: to apply pointer arithmetic, a component must know
the element size, so we assume that a component may not do both byte- and block-scale
adjustments (unless the Cake programmer provides a precise type by annotation). To do
both would be to navigate an array through a pointer whose static type did not reflect
the true element size. In practice this occurs only when a function receives an array
through a generic (untyped, void) pointer, and uses some prior knowledge to strengthen
that pointer before using it. That prior knowledge is typically fixed statically for the
receiving function, so can be described in a Cake annotation.

(Consider that these uses of void in C code occur because a caller often passes a pointer
through some more generic code which treats that pointer opaquely, such as a callback
registration function. The void typing therefore appears in header files, which must be
generic with respect to all callers of the API. This is sometimes called an “existential use
of void” [Neamtiu et al. 2006]. Since Cake allows caller and callee sides of an interface to
be annotated independently, it does not suffer this problem: the eventual recipient will
usually know a specific type for the pointer, even if intervening code is generic.)

4.3.1 Admissible reinterpretations

We call byte-scale adjustments reinterpretations. Cake’s well-behavedness rules define
criteria for what we call admissible reinterpretations. These criteria are designed to sep-
arate out common-case pointer adjustments, which can be treated automatically, from
uncommon cases requiring annotation by the Cake programmer.

For a pointer whose target is statically typed with type τ , admissible reinterpretations
are as follows.

• If τ is a Dwarf base type, no reinterpretations are admissible.

• If τ is structured, reinterpretations to any zero-offset containing type are admissible.
A zero-offset containing type is one which contains a subobject of type τ at offset

110 4.3. Implementing dynamic binding

struct Abstract

{

int val ;

struct Contained

{

float x;

float y;

} contained;

} abs;

struct LessAbstract /∗ logically a subtype of Abstract ∗/

{

Abstract base;

// ... more fields

} lessAbstract ;

void some code(void)

{

Abstract ∗abs alias1 = (Abstract∗) &lessAbstract ; /∗ admissible ! by zero- offset containment ∗/

Abstract ∗abs alias2 = (Abstract∗) &abs.val; /∗ not admissible ! can’t byte- scale adjust ptr to int ∗/

Abstract ∗abs alias3 = (Abstract∗) (// arithmetic to recover a pointer to the enclosing object ...

(char∗)&abs.contained // ... from &abs.contained

- offsetof (Abstract , contained)

); /∗ also not admissible ! but see text ∗/

}

Figure 4.7: Abstraction-violating pointer adjustments

zero. We allow this to support the idiom often found in C-language object systems2

which simulate inheritance by zero-offset containment.

• If τ is structured, reinterpretations to any Dwarf-recorded inheriting type are
admissible. This allows for downcasts using Dwarf’s special inheritance tag (which
supports single or multiple inheritance).

Fig. 4.7 shows two examples of uncommon cases in C code, not admissible by these
rules. The first is not admissible because pointers to Dwarf base types, such as int,
may not be reinterpreted. The second is not admissible because only pointers to contained
subobjects at offset zero may be reinterpreted to the containing object type.

The first adjustment is fragile, because it assumes val is the first field in abs. However,
we allow it because this kind of quasi-subclassing layout convention is commonplace (and
because it happens not to render our problem intractable). The second adjustment is less
useful because subtyping relationships are seldom defined on base types (and there is no
other benefit to having a pointer to an Abstract be statically typed as an int*), so we
disallow it.

The third adjustment is an attempt at more robustly coding the first. It would present
a problem for Cake if the inner expression (of type char*) were passed through a Cake-

2A popular example is GObject [Krause 2007].

Chapter 4. Cake implementation 111

interposed function, or stored in a Cake-explored object, before being interpreted as an
Abstract*, in that Cake would see a char* which was actually pointing at an Abstract.
Since there is no relationship between the char and Abstract data types, this case is not
admissible.

These uncommon cases have been described as “abstraction violating” in prior work
[Neamtiu et al. 2006], which also shows them to be rare in real code. Ruling them out
bounds how much memory the Cake runtime must dynamically explore, and also turns out
to make the problem of recovering precise object descriptions more tractable. The Cake
programmer can almost always use annotations to turn abstraction-violating cases into
admissible ones. For example, the second adjustment above could be rendered admissible
by redefining Abstract, within an exists block in a Cake source file, as inheriting the
contained structure type rather than containing it. We benefit from annotating in a
Dwarf-based language, because this supports the concept of inheritance (thanks to the
Dwarf feature DW TAG inheritance [Free Standards Group, 2005]) even where C does
not.

4.3.2 Discovering precise object descriptions

As described in §2.4.3, Cake’s semantics rely on discovering precise descriptions (or “type
information”) about objects at run time. The well-behavedness criteria have provided
useful constraints that will help us to do this. Here we briefly describes our approach.

Exploiting address-space layout To discover the most precise Dwarf type for a
given pointer, we use knowledge of address space layout to deduce whether the object
is in heap, stack or static storage. For the latter two cases, a precise type is found in
debugging information for the allocating stack frame or static variable definition. The
same information also reveals whether the object is part of an array. Static- and stack-
allocated storage is therefore easy to recover precise descriptions for; the heap-allocated
case is harder. (We assume no use of the alloca() function provided in some C libraries,
since this can introduce undescribed objects into the stack. However, such calls can be
replaced by a combination of malloc() and tying as described in §4.4.2. We also exploit
the assumption from §4.2.6 that we have no variadic functions to deal with.)

Debugging information and annotation We require that debugging information,
or equivalent annotation, be available not only during Cake compilation, but also at run

time. In practice this means that any annotations added to Dwarf information by the
Cake programmer have been stored on disk and can be found by the runtime. We could
do so by generating updated Dwarf information in output binaries. At present we take
a simpler approach of storing the annotations found in the Cake source code textually as
static string data in generated code, with a special name (prefixed cake). This data
can then be found by the runtime, which parses it and applies the relevant updates to its
in-memory Dwarf database.

112 4.3. Implementing dynamic binding

Heap difficulties Heap implementations differ in the metadata and bookkeeping in-
formation they maintain. However, most heap implementations are built on the host C
library’s implementation of malloc() and free(). In any case, to support components writ-
ten in C, we must support discovering precise descriptions of object on this heap. Doing
so is tricky because implementations do not store (nor indeed receive) any metadata about
allocated objects.

Instrumenting malloc() Almost all implementations of the C library allocator sup-
port run-time instrumentation of the allocator, sometimes called “malloc() hooks”. Any
implementation of Cake must exploit these hooks in order to collect the necessary meta-
data. Any allocators layered over the C library, such as arena allocators [Hanson 1990],
must also be instrumented to collect the same. The collected metadata must include the
original call site which performed the allocation.

Allocation site assumption As with conventional (static) points-to analyses, we as-
sume that the source code location where an allocation is “requested” by user code, in
some sense, is sufficient to determine its class. Therefore, the collected metadata must
include the call site, or more generally call chain of the malloc() invocation. These are
respectively the program counter value at the point of the call and the sequence of such
program counter values saved earlier in the call stack. The call chain is necessary in cases
where a chain of malloc()-like functions (“malloc() wrappers”) are defined, since these ob-
scure the “requesting” call-site identifying the specific class of object being instantiated.

Storing heap metadata This collected metadata is stored in an appropriate associa-
tive data structure—a wide B-tree, space-optimised hash table or other bucket-indexed
list structures provide sensible trade-offs. Storage and consumption of heap metadata
represents one of the significant performance overheads of Cake. Closer collaboration
with the host allocator could likely reduce this cost significantly—for example, storing
the allocation site in compact form within the existing allocation bookkeeping informa-
tion, and providing an efficiently indexed means of traversing allocated chunks of memory,
analogously with how the allocator necessarily indexes free chunks of memory.

Mapping to Dwarf Our assumptions entail that the allocation call-chains gathered
by our instrumentation can be mapped onto Dwarf types. However, discovering this
mapping is not straightforward. Most C code uses malloc(sizeof (T)) to allocate an object
of class T. However, sizeof (T) is reduced to an integer by the compiler. To recover the
allocated object’s class requires either explicit annotation (a user-provided mapping from
malloc()-sites to Dwarf types), or analysis. Source-level analysis is straightforward: we
use the debugging information to map the call site back to a source location, and extract T.
However, since Cake is designed to avoid assuming availability of source, binary analysis is
preferable. This can again exploit debugging information. We may follow data flow from
the return value of malloc() into a location for which a Dwarf type is available (typically
a local pointer on the stack, but perhaps also a statically-allocated or indirectly-reached
location).

Chapter 4. Cake implementation 113

Limitations This binary analysis is precise only when the static type of the written-to
location is itself precise. Being close to the malloc() call, this is reasonably likely. Devi-
ations can be flagged up in the vast majority of cases by a simple comparison between
the size of the written-to value’s type, as calculated from Dwarf information, and the
expected size, i.e. the malloc() argument or any factor thereof. However, this remains
somewhat unsatisfactory—it only reaffirms the inescapable fact that we are unable to
recover precise descriptions of heap objects without relying on either availability of source
code, explicit annotations, or tolerance of imprecision. This inability is not unique to
Cake: unsurprisingly, debuggers share precisely this limitation. The ability to automat-
ically downcast a pointer to its “most precise type” would be a valuable feature within
debuggers, so we regard this omission as a limitation of compiler and debugging infras-
tructure. It could easily be fixed in the compiler: perhaps by outputting a table mapping
allocation sites to Dwarf types, and emitting warnings where this could not be inferred
from the source.

Implementations We have avoided implementing the binary analysis approach so far,
in favour of a simpler option described in Appendix E. This avoids both analysis and
annotation, at the expense of allowing imprecision. Prior work [Mock et al. 2002] has
shown that a dynamic points-to analysis can be implemented efficiently and precisely
using source-level instrumentation, although clearly, this approach assumes availability of
source.

4.4 Adapting objects

We consider objects to be structured values with two key additional properties: identity
and lifetime.

4.4.1 Object identity

Cake understands objects’ addresses in memory as their identities. At run time, it main-
tains a table called the co-object relation which maps object identities to the identities of
corresponding objects in use by other components—we call these co-objects. As pointers
pass across an interface, Cake substitutes pointers to appropriate co-objects. Cake must
also allocate co-objects if they do not exist—usually, for a given tuple in the co-object
relation, exactly one object was allocated by user code; the others were allocated by Cake
when a pointer to the first object, or some subsequent co-object, was passed. Fig. 4.8
illustrates this object exchange process.

Associations (§2.3.4) are implemented by mapping each object to a Cake-generated
umbrella object which contains pointers to other objects in the association. The umbrella
object is the co-object of all participating objects other components. The co-object rela-
tion is therefore asymmetric in these cases, as Fig. 4.9 illustrates. The “access associated”
operator, “. . . ”, is implemented as field access on these umbrella objects.

114 4.4. Adapting objects

objects in componentA representations

objects in componentB representations ...

...

…
some_call (o , “…”);
...

void actual_call (o , t) {
o->field = new_value;
// …
return;

}

co = ensure_co_object(o,
REP_COMPONENT_B);

rep_sync(o, co);
actual_call(co, t);

co = get_co_object(e,
REP_COMPONENT_A);

rep_sync(co, o);

componentA binary componentB binary

interposed code

return to

client

arguments

substituted with co-

objects

call interposed on,

directed into

wrapper

“logical replication”

return to caller

Figure 4.8: Object exchange in a wrapper, using the co-object relation

objects in componentA representations

objects in componentB representations

co-object relationship

one-to-one

corresponding objects

map directly and

symmetrically

many-to-many

corresponding objects

map asymmetrically through

umbrella objects

umbrella objects

containing pointers

to participant objects

Figure 4.9: Umbrella objects in the co-object relation

Chapter 4. Cake implementation 115

At present this unparameterised co-object relationship constrains an object to be
participating in at most one association at a time. While this has been sufficient for us so
far, it seems inevitable that this will prove restrictive in some cases. We could allow each
object participate in one association (dynamically) per many-to-many correspondence rule
(statically in Cake source code), by giving each rule a run-time tag and a compile-time
identifier. The co-object relationship would then be parameterised on these tags. Since
some instances of the access-associated operator will be ambiguous, if multiple rules are
defined, a compile-time identifier can be used to select the rule, given a special syntax
object..ruleIdent..associatedObjectName.

4.4.2 Object lifetime

Object identity and lifetime are interdependent, in that lifetime governs the re-use of
identities. Therefore, any analysis making use of object identity must be sensitive to
object lifetime. In practice this means that when our runtime tracks objects by storing
pointers to them, we must also trap object deallocations, so that we can invalidate any
data associated with the deallocated object.

When applying value correspondences to produce transformed versions of objects,
Cake must allocate memory. We tie the lifetime of these allocations to the user-managed
objects that caused them. The Cake stub language also supports explicit tying, as a
convenient storage management mechanism—see §2.3.4.

Our interposition on deallocation must support not only heap-based deallocation (han-
dled by the instrumentation of free() and similar functions, as previously described in
§4.3.2) but also stack-based deallocation. To interpose on deallocation of stack-allocated
objects, Cake must interpose on cleanup of the allocating stack frame. This is imple-
mented by replacing the on-stack return address for the allocating frame with the address
of a handler. This handler uses the stack pointer to identify which frame is returning, deal-
locates any tied objects, and jumps back to the intended return address. Our application
of this technique is due to Amitabha Roy, who also provided an implementation.

4.4.3 Dealing with function pointers

In most respects, function pointers are not treated specially by Cake—they are simply
pointers to objects, which are allowed to flow between components provided that suitable
event correspondences are defined (§2.3.9). This means that functions are objects that
may have co-objects. However, functions are allocated statically, unlike other object
identities of concern to Cake, which we assumed could be discovered dynamically through
function interposition (§4.2.1). When passing a pointer to a function across a mismatched
interface for the first time, the Cake runtime cannot react by instantiating some new co-
object. Instead, it must simply substitute a pointer to the relevant corresponding function.

As a consequence, the Cake compiler must initialize the co-object relationship with
mappings between functions and their co-objects. In most cases, a function’s co-object
is a wrapper function. Specifically, for a function f in a component A, its co-object in
component B is the unique wrapper function, if it exists, which is linked with call-sites in

116 4.4. Adapting objects

component B and dispatches to function f (and no other function). Naturally, there will
only be any such function if event correspondences in component B dispatch to component
A. If there is no such unique function, f has no co-object in B and it is an error to pass
a pointer to f from A into B.

(Recall that this is only relevant for functions whose addresses are passed to other com-
ponents. Non-address-taken functions, or functions for which no event correspondences
are defined, will trivially not appear in the co-object relation.)

Since in general, the wrapper function might have a differing signature from f , and
indeed, changed semantics, it remains the programmer’s responsibility not to create com-
positions which pass the function into contexts where the wrapper will be invoked incor-
rectly. This amounts to understanding the semantics required by the indirect call sites

in the receiving component. The constraint described in §2.3.9, that an unnamed event
correspondence must be established from the receiving component back to the address-
taken function in the originating component, exists partly to require the programmer to
acknowledge this understanding.

The co-object relationships between functions and their wrappers is emitted as a static
data structure in the C++ code generated by the compiler.

4.4.4 Sharing objects

As described so far, each component appears to have its own heap, completely separate
from other components’. In fact, Cake allows sharing of objects between components,
subject to the invariant that each component can only reach objects whose representation
it understands. (We define this more precisely below.) The effect is a partially split heap—
some objects are shared, and others are replicated (perhaps in alternative representations).

Enforcing this invariant is nontrivial because of the transitivity of reachability. In
other words, given an object, it is not easy to tell whether it is safely shareable between
two components. Although it may be laid out in a manner understood by both compo-
nents, perhaps the same is not true of some objects reachable from it. Without analysing
the components to discover their memory access patterns, we must assume it may per-
form any “well-behaved” access, which might reach an incompatibly laid-out object. We
therefore must prevent these objects from being shared. We do so using a conservative ap-
proximation of this reachability relation. This is a static whole-program (or rather “whole
composition”) analysis, currently performed in the Cake compiler before generating code.

We start by partitioning the (infinite) set of run-time objects into equivalence classes
based on their “most precise Dwarf type” (§2.4.3). Our question then becomes whether
Cake can allow two components to share an object of a given Dwarf type. Firstly,
consider the Dwarf types of all objects which are related between each pair of interfaces.
We call this the master type relation for that pair, and it is enumerated by the set of
value correspondences established between the two components (including those made
by name-matching). Next, we define a binary relation representation compatibility on
Dwarf types, recursively as follows.

Chapter 4. Cake implementation 117

• For a structured type: if the two structures define identical sets of field names at
identical offsets, and for each like-named field the field’s type is representation-
compatible, then the structures are representation-compatible.

• For a pointer type: all pointers are representation-compatible. We account for
reachability in a separate step (below).

• For a primitive type, the types are representation-compatible if and only if size and
encoding match exactly.3

To incorporate sharing into Cake-generated code, we require a conservative approxima-
tion of safe sharing that can be computed statically. We begin with defining the “possibly
shareable” set. This is those pairs in the master type relation that are representation-
compatible (possibly after field renamings, originating from Cake rules, have been ap-
plied). Clearly, representation-incompatible objects should not be shared. However, not
all representation-compatible objects are shareable, because they might contain pointers
to objects which are not shareable (and we cannot be sure, without analysis, that the
sharing component will not follow these pointers).

We generate the “definitely shareable” from the “possibly shareable” set by removing,
until a fixed point, pairs where, given a pointer to some shared object, both components
could reach some piece of memory about which their expectations are not representation-
compatible.

For this, we require a conservative static approximation of reachability. For this, we re-
use our “admissible reinterpretations” definition from §2.4.3, again capturing the notion of
a “well-behaved” component. Define the type reachability graph as the connected digraph
(V,E) where E includes (v1, v2) iff a pointer to some object of data-type v1 can yield a
pointer to data-type v2 by either member selection or an admissible reinterpretation. We
label each edge to identify which member was selected or what interpretation was applied.

To calculate the definitely-shareable set, we proceed iteratively on a working set ini-
tialised equal to the possibly-shareable set. We then remove any (α, β) if there exist some
non-shareable α′ and β ′—i.e. a pair (α′, β ′) not in the working set—reachable respectively
from α and β by analogous paths in each component’s type reachability graph. Here
“analogous” means selecting the same member or performing the same reinterpretation,
again allowing for field renamings which might have been used to recover representation
compatibility (recalling that α and β are, by definition, representation-compatible in the
context of a set of such renamings). The idea here is that we are exploring the same object
from the point-of-view of both components, and stop once we discover a non-shareable
pair of objects: from our invariant, we should not be able reach this object, so it was
wrong to count the initial object as shareable. When selecting paths in the reachability
graph, we can limit ourselves to the finite number of acyclic paths, since a data type
whose shareability depends on only its own shareability (or more generally, on a cycle of
mutual dependencies of this form) is trivially shareable.

3A subtlety here is enumerations, bitfields and other encodings layered onto primitive types. We

rely on programmer annotation to interpret these, for example using the names construct (§2.2.11). If

non-identical interpretations are applied in this way, rep-compatibility is lost.

118 4.4. Adapting objects

Considering each component’s reachability graph separately is sufficient under the
assumption that for any memory access performed by a component, debugging information
records a Dwarf type describing that memory’s layout as understood by the component.
This is a reasonable assumption since it is also a necessary condition for a debugger to be
able to read that memory.

Shareability of pointer, array and function data types is defined in terms of the data
types from which they are constructed. An array type is shareable with its correspondent
if their ultimate element types (i.e. the element type after collapsing arrays of arrays)
are shareable. A pointer type is shareable with its correspondent if their target types are
shareable. A function type is shareable if every data type in its signature is shareable.
(This criterion can also be applied to omit wrapper generation, if all functions that would
otherwise need to be wrapped have shareable signatures. We discuss this special case in
§5.2.)

In practice, the effect of this shareability analysis is that utility data structures passed
between components can be shared most of the time, because they are likely both to be
representation-compatible locally and to reach few other objects. Meanwhile, completely
unanticipated compositions of client and library rarely recover any sharing, because they
rarely include representation-compatible data structures to begin with. Edge cases emerge
when, say, linking a client and library whose interfaces are similar but, perhaps from
interface evolution or compiler differences, are slightly incompatible at the binary level.
In these cases, reachability has a big influence. If mismatched data types cannot be
reached from most objects, then most objects may be shared and only a few incur the
overheads of copying. The situation is reversed if representation-incompatibility occurs
in pervasively-reachable data structures: few objects are shareable, because most of them
reach incompatible objects.

4.4.5 Limitations of object graph exploration

When selecting correspondence for objects found during object graph exploration, the
Cake runtime has relatively little contextual information available about those objects.
This contrasts with objects passed directly by function call—i.e. up to one level of indi-
rection from the actual arguments passed on stack—where treatment of objects may be
specified in detail through several different means. For example, the programmer might
specify using the as keyword (§2.3.4), or might either set up or traverse an association
using the ellipsis operator, or might otherwise treat the object specially using arbitrary
stub code. None of these are available during deeper object graph explorations—the
runtime must rely entirely on the set of defined value correspondences. We say it is
“context-impoverished”.

In turn, the correspondences expressible in Cake with respect to objects discovered
in this way are strictly fewer than for objects passed as parameters or return values. In
particular, since creation of associations is always done explicitly in stub code, many-
to-many correspondences may not currently be formed between objects reached only by
object graph traversal. A more advanced runtime could potentially automatically par-
tition the explored object graph and select appropriate many-to-many correspondences

Chapter 4. Cake implementation 119

based on what classes of object were found in each component’s view of the heap. Algo-
rithms for doing this predictably, unambiguously and safely are a topic of future work.
While Cake must handle graph-structured data, for tree-structured data this problem
is relatively well understood from tree transformation languages, familiar both in the
mainstream (e.g. through XML transformation languages XQuery [Boag et al. 2002] and
XSLT [Tidwell 2008]) and in recent research literature [Foster et al. 2005]. Potentially,
these languages could be generalised to support the graphs traversed by Cake, or perhaps
annotations could enable graphs to be treated as trees in most cases.

4.4.6 Optimisations to object sharing

One of the key run-time costs of Cake is maintaining multiple copies of data, to satisfy the
different object layouts in use by different components. This copying is no different from
the marshalling or replication which is often done in hand-written glue code. In our case,
copying is performed automatically by the Cake runtime. However, in the interests of
performance we would like to eliminate avoidable copying by sharing objects in memory.

By their nature, these optimisations are more likely to be useful in applications of
Cake to interface evolution, where many data structure definitions are similar or identical
and only a few differ significantly, than in unanticipated composition tasks where all data
structures are likely to be substantially different between the two interfaces.

Opaque and ignored pointers

One approach to minimising copying is to obtain more precise information about the inter-
pretations each component makes of its objects. This might reveal cases where although
the object layouts are concretely different, they are compatible up to the interpretations
that a given component makes of an object. For example, if a component always ignores
some field in an object, or treats a pointer opaquely, then it no longer matters whether
the relevant field contents or pointed-to object are representation-compatible in other
components. Our current Cake grammar allows the user to supply opaque and ignored
annotations, but we leave implementation and evaluation of this approach to future work.

Reducing the volume of updates propagated

The “partially split heap” is effectively a replication-based approach, in which sharing is
an optimisation. This means that our runtime must manage the propagation of updates
between replicas, in the case where objects are not shared. Specifically, we currently use a
policy of propagating updates between all replicas whenever control passes between com-
ponents; this is correct in the single-threaded case, although slow (because of potentially
high update volumes at each interface crossing). To reduce the update volume, points-to
analysis could produce a tighter bound on which objects’ updates may be needed during
a given call.

(The update propagation step occurs in wrappers during the “dispatch to firing rule”
step, as shown in Fig. 4.4.)

120 4.5. Status of the implementation

4.4.7 Object sharing between multiple threads

The “partially split heap” approach presents some familiar difficulties in the combination
of replication with concurrent access to objects.

Our current update propagation policy is not compatible with all multi-threaded pro-
grams. Specifically, programs that may share “logical objects” (i.e. objects related across
a mismatched pair of interfaces composed by Cake), and whose liveness relies on updates
made in one component becoming visible in another component before control flow occurs
between these components, will deadlock. This follows from our propagation policy: since
updates are only propagated when control passes across the interface, updates in this case
will never be propagated.

A background thread could ensure liveness, by propagating updates periodically. How-
ever, since this might gather an inconsistent snapshot of partially-updated objects, en-
suring safety is a problem. This problem is analogous to that found in dynamic software
update, when waiting for a safe instant to apply a patch which updates data structures to
new definitions. The existing annotation-based approaches of “quiescent update points”
[Neamtiu et al. 2006] and programmer-annotated “propagation points” [Neamtiu and
Hicks 2009] are likely to yield a solution. However, it is not clear whether the latencies
inherent in these approaches would be acceptable for applications of Cake, which generally
have stronger timeliness requirements than dynamic software update.

A final problem in the multithreaded case is conflicting updates to separate repli-
cas of logically shared state. In the absence of an abort-and-rollback operation, solving
this will likely require that shared-writable objects are managed using an alternative
replication-free approach. Specifically, we envisage using memory protection techniques
to trap updates to these objects. Shared-writable objects’ memory would be allocated
from a special range of the virtual address space which has no physical backing, but
generates traps. Then we handle traps by reading and writing a unique Cake-managed
representation of the shared state. Higher read performance could be gained by main-
taining read-only replicas in each component’s native representation, while continuing to
trap writes.

4.5 Status of the implementation

The compiler is a C++ program of (currently) around 20,000 lines, not counting the
grammar definition or generated parser code. The compiler is the least fully implemented
part of Cake; the basic structure as shown in Fig. 4.3, is implemented, and code for many
kinds of correspondences is supported. Code generation for a few advanced Cake language
features continues to be a work in progress. However, every major technique discussed in
this dissertation has at least been implemented to proof-of-concept level in hand-coded
mock-up form, where not already generated by the compiler.

However, it does mean that when we evaluate Cake on real code, the Cake code we
write is not always compilable and executable, but is partly a by-hand translation. In
particular, of the three Cake-language case studies presented in Chapter 5, only the first
is currently fully supported by the compiler.

Chapter 4. Cake implementation 121

In turn, the compiler is built on a Dwarf abstraction layer (written primarily for
the construction of the Cake compiler, but separately re-usable) of around 13,000 lines
of C++, not counting the third-party libdwarf4) on which it builds. The Cake runtime is
around 2,600 lines of C and C++, and a few of assembly language.

4.6 Implementing recursive application of Cake

We described previously (§3.8) how the Cake language design accommodates the possi-
bility of multiple applications of Cake within the construction of a single ultimate output
object or executable. We briefly discuss a possible implementation of this.

Non-interfering cases First, we must distinguish interfering from non-interfering

pairs of Cake applications. Two applications of Cake are interfering if the sets of symbol
names they interpose on have a nonempty intersection. Non-interfering compositions are
straightforward to support in our current implementation, as they affect unrelated inter-
faces. At present, the only barrier to supporting this in our implementation is that our
encoding of the initial co-object relation (§4.4.3) is assumed to be unique by the Cake
runtime, so at most one application of Cake can define such a relation within any one
executable.

Procedural fan-in is non-interfering It is worth noting that wrappers attach to call
sites, not their callees. Therefore, any code that is linked in to the program using Cake
still retains its original set of procedural entry points, which are available for subsequent
linking with or without Cake. This allows, say, two different client codebases to be linked
against the same library in different ways within a single application (e.g. one mismatched
case linked by Cake, another well-matched case linked directly).

Wrapper-chaining for interfering cases Interference occurs when different Cake ap-
plications are defining conflicting ways of handling calls to the same interface. Fortunately,
interfering cases can nevertheless be resolved successfully, using wrapper chaining. If a
wrapper receives calls which do not match any of the event correspondences defined in
the originating Cake code, it tests for the definition of a “weak” (i.e. optionally defined)
symbol prefixed by real and if so, passes the call to it (as shown earlier, towards
the bottom of Fig. 4.4). This pass-through is useful when the earlier-linked Cake rules
match only a subset of the possible argument values (by pattern-matching) or in a sub-
set of contexts (as matched by context predicates). One example is fopen() in Fig. 2.8:
other unrelated fopen() calls will be passed through. To implement wrapper chaining,
the Cake compiler needs to detect cases where a real -prefixed symbol is found in
the place of the expected name; it can then wrap this prefixed symbol name, forming a
chain. Although we have not yet implemented this compiler extension, doing so would
be straightforward. Multiple chainings can be supported by suitable symbol renamings.
The effect is of defining a priority ordering of Cake applications, where earlier-linked
applications of Cake get the first opportunity to handle a call.

4David Anderson’s libdwarf is available at http://reality.sgiweb.org/davea/dwarf.html as of 2010/12/7.

122 4.7. Summary

Dynamic wrapper chaining Indirect call sites’ targets are governed by dynamic data
flow, as described in §4.4.3. Since dynamic flow of function pointers is governed by the
co-object relation, which defines different relations for each pair of interfaces, a context-
aware choice of wrapper is made at run time, and no problems analogous to wrapper
chaining arise. This relies on the fact that later applications of Cake define new component
identities as understood by the runtime—determined by their name within Cake source.
Some care must therefore be taken to ensure these names are unique across the multiple
Cake applications being integrated.

Limitations of wrapper chaining Wrapper chaining is no use in cases where a later
Cake application is supposed to have priority over an earlier one, or where the event pat-
terns in the higher-priority composition do not properly isolate the calls for local handling
from those that should be passed through. This might owe to the limited expressiveness
of the Cake event pattern language.

Chance interference Interference may occur between separate compositions of unre-
lated interfaces, simply by the chance event that overlapping sets of symbol names are
used by unrelated code. The latter is reasonably plausible in languages such as C which
lack explicit namespaces. There is no special provision for these cases; it may happen that
existing event patterns happen to separate out the calls so that wrapper chaining will suf-
fice, but there is no guarantee; in some cases, the unrelated earlier wrapper will render
some calls non-interposable. This could be fixed by introducing a demultiplexing stage in
each wrapper, using the on-stack return address to check that the expected component is
calling, and to call down the wrapper chain if not.

Emitting Dwarf Another potential problem with multiple applications of Cake is that
the Cake compiler does not emit Dwarf information. Therefore, compiler-generated code
may not itself be the subject of interposition (although this seems an unlikely scenario).
Furthermore, any annotations added by the Cake programmer in one application of Cake
will not be visible to subsequent applications, since we chose an ad-hoc implementation
for propagating these in §4.3.2.

4.7 Summary

This chapter has discussed the implementability of Cake, and described a proof-of-concept
implementation in reasonable detail. A high-performance, multithreading-capable imple-
mentation of Cake is still a target of future work, but we have presented some promising
ideas in that direction.

Demonstrating implementability of Cake was a central requirement of its goal of prac-
ticality, which we have now fully demonstrated. The next chapter will evaluate the lan-
guage’s expressiveness by considering its usefulness in real use-cases.

Chapter 5

Evaluating the Cake language

Previous chapters have shown the design and implementation of the Cake language, and
claimed that it is a convenient and expressive adaptation tool which can be applied to real-
world tasks. Indeed, the thesis of this dissertation is that this tool is “significantly more
effective in practice than conventional programming languages”. This chapter provides
experimental evidence which substantiates that claim.

5.1 Approach

Our evaluation comes in three parts.

In the first, we present some “null cases” of the Cake language, to illustrate how
Cake replicates and extends conventional toolchains and their behaviour, and to show the
impact of introducing Cake into the development process.

In the second, we present our experiences from a formative case study conducted while
the Cake language was being designed and core elements of its implementation were being
built. This is primarily a source of evidence that the implementation techniques discussed
in Chapter 4 are both implementable and practically applicable. Some performance mea-
surements are included and discussed.

In the third and most significant part of the evaluation, we comparatively evaluate
the Cake language by identifying a series of three example tasks which have already

been performed using conventional approaches, prior to the work in this dissertation, and
have publicly available implementations. We then present Cake-based implementations
reproducing as closely as possible the behaviour of the pre-existing conventional solutions.
We compare this code to the equivalent Cake code. This comparison includes detailed
description of the various facets of the Cake language design as they related to each task,
and aggregate side-by-side measurements of code size as it differs between the Cake and
original versions.

124 5.2. Null cases

exists elf reloc (”component1.o”) c1;

exists elf reloc (”component2.o”) c2;

derive elf reloc (”output.o”) output = link[c1, c2];

Figure 5.1: Linker-like usage of Cake

5.2 Null cases

We begin by considering some hypothetical simple usages of Cake. As described in §2.2.11,
the default behaviour of Cake resembles that of a conventional linker. Therefore, we begin
by considering what happens when to using Cake to compose binaries whose interfaces
are well-matched. We then proceed to cases where certain fairly shallow mismatches are
added.

5.2.1 No mismatch

If a pair of components is not mismatched, then it follows that

• every function required by one component from the other is provided by that other
component;

• the signatures of such functions match;

• every data type used by the two components to communicate exists in both modules;

• for each of these data types, its definition is the same, and therefore rep-compatible
(§4.4.4), in both modules.

Such cases require no correspondences from the Cake programmer. The complete Cake
code for all such use-cases looks invariably similar to that shown in Fig. 5.1.

Cake’s default name-matching behaviour can draw implicit correspondences between
all the relevant function calls and data type definitions. Furthermore, the shareability
analysis (§4.4.4) finds every object to be shareable (since no path in one component’s
type reachability graph would not also be present in the other’s). Therefore, at run time
no co-objects need to be allocated.

By default, Cake’s wrapper generation algorithm (§4.2.6) would generate trivial no-op
wrapper functions for each relevant function call. However, a special case in the Cake
compiler allows it to omit these wrapper functions in the cases where no interposition is
necessary on a call or its parameters. This omission is safe only if all objects possibly
reachable from the call’s parameters are shareable. If this property is true of all function
calls made between the two components, then the Cake compiler will not generate any
wrapper code at all, and the output Makefile will contain a simple linker command exactly
like the one used by a developer linking the components directly without the use of Cake.
Therefore, in the well-matched case, Cake degenerates into a linker. Unsurprisingly, the
output program need not be linked with the Cake runtime, and there is no run-time
overhead.

Chapter 5. Evaluating the Cake language 125

exists elf reloc (”component1.o”) c1;

exists elf reloc (”component2.o”) c2;

derive elf reloc (”output.o”) output = link[c1, c2]

{

c1 ←→ c2

{

/∗ old name in caller ∗/ /∗ new name in callee ∗/

do something(...) −→ do poke sth(...);

pattern /(read|write) sth /(...) −→ do \\1 sth(...);

}

};

Figure 5.2: Function renaming

5.2.2 Renaming functions

In the case where interfaces differ only in the naming of functions, the relevant Cake
correspondences would include only event correspondences (§2.2.9), perhaps also using
identifier patterns (§2.2.11) to cover many functions in a single rule. Fig. 5.2 shows a
simple example.

This case is much like the previous one. The only difference is that rather than linking
directly, function symbols may have to be renamed in the object code. The existing
Cake compiler contains an implementation of this, using GNU objcopy1 to rename the
appropriate symbol in an object file requiring a function which is provided under a different
name. Since this renaming occurs during the build process, there is, as before, no need
to link with the Cake runtime. There is also no run-time overhead.

5.2.3 Renaming data types

We now consider the case where data types, or fields within structured data types, have
been renamed. Aside from this, there are no changes in the layout of any data type.

Despite the renaming, all corresponding data types remain rep-compatible and share-
able. We recall from §4.4.4 that the algorithm takes as input a list of corresponding data
types, which need not be like-named, and accounts for renamings of fields. Therefore, the
same compile-time checks as before can infer that no wrappers are necessary in this case.

5.2.4 More complex cases

Now we consider what happens when the definition of data structures within one or both
components is changed, so that like-named data types are no longer rep-compatible.

Rep-incompatibility between data types used internally by one or both components
need not result in any change from the previous cases, since they are not necessarily used in
any interactions across the two components’ shared interface. Specifically, if mismatched

1http://ww.gnu.org/software/binutils/

126 5.3. Gtk+ case study

are not reachable from any parameter passed between the interfaces, according to the
usual rules in shareability analysis (§4.4.4), then wrappers are not necessary. Note that
the shareability analysis is conservative in determining reachability.

The point of departure from these degenerate cases occurs when a correspondence
between rep-incompatible data types is introduced. Since some co-objects may now be
allocated, the compiler is obliged to generate wrappers—not only for all functions from
whose arguments an instance of these rep-incompatible data types could be reached, but
in fact for all function calls occurring between the two components. This is because co-
objects must be synchronised at every crossing of control from one component to another,
to satisfy the “as if” semantics described in §2.4.1. In particular, since component code
is entitled to save pointers to objects passed earlier, if we were to synchronise only at
crossings which might be passing pointers to co-objects, updates to co-objects reached
from these saved pointers would not be made visible in a timely fashion. So, in this
case and in all more complex cases, the generated code follows the pattern described in
Chapter 4.

5.3 Gtk+ case study

Our first case study is included for the sake of recounting experience gathered during the
design and implementation of Cake, rather than for comparative measurement.

5.3.1 Outline

The study centres on a small utility called gtk-theme-switch2. The utility allows a user of
applications written using the Gtk+ windowing toolkit [Krause 2007] to customise their
appearance by selecting a “theme” among the selection of themes installed on the user’s
system. The utility comes in two versions—one for the version 1.2 series releases of the
Gtk+ library, and one for the version 2.0 series. The API exposed by the library changed
significantly between these two versions [GNOME Developers 2002], with consequent
(even larger) changes to the underlying binary interface.

The utility itself is a small C program—943 and 993 raw lines respectively for the
1.2 and 2.0 versions. The differences in the two library interfaces were clearly significant
enough for the developer to choose to maintain two separate versions, rather than abstract
out a common core. Running the Unix diff utility on the two versions’ sources reveals
210 line deletions and insertions are necessary to produce the 2.0 version from the 1.2
version. This is a nontrivial difference—enough to make it seem likely that the author of
such a utility would much preferred to have only one version of the source to maintain, if
adequate tool support for doing so were available.

Our goal in the study was therefore to generate code which could allow the binary of
the old (version 1.2) utility to link with the new (version 2.0) library. When this study was
conducted, the Cake language had not yet been conceived. This study was a formative

2The utility is available from http://freecode.com/projects/gtkthemeswitch, as of 2012/5/1.

Chapter 5. Evaluating the Cake language 127

Figure 5.3: The Gtk+ client linked against the 1.2 (left) and 2.0 (right) library

influence on both, and represents the first implementability results for the key techniques
in Chapter 4, including wrapper-based interposition (§4.2.6), object graph exploration
and the replication-based approach to managing objects for each component (§4.4.4).

Fig. 5.3 illustrates the practical outcome of the study with screenshots of the same
client linked against 1.2 (direct) and 2.0 (with adapter) versions of the library.

5.3.2 Relationship to the main Cake implementation

The Gtk+ study was implemented in an abstractly very similar way to other applica-
tions of Cake. Generated code, in the form of wrapper functions and value conversion
functions (§4.2.5), executes on top of a runtime library responsible for constructing and
synchronising replica object graphs (§4.4.4).

The role of the Cake compiler was filled by a set of ad-hoc scripts consuming the
libraries’ header files, and somewhat specialised to the naming conventions and layout
found within them. A small amount of code was hand-written, to deal with interface
features too complex for the scripts to handle. These included functions taking arrays as
arguments, one-to-many function mappings, and functions returning objects by value. All
data types corresponded one-to-one between the two interfaces, although nearly always
with differing layouts, and often with different names; a unifying name, known as a “form”,
was used to refer to each corresponding pair of data types in the code.

The Cake runtime was developed during this study, as a generic support library for
maintaining replicated object graphs, and retains essentially the same implementation in
its current form. The “initial co-object relation” technique (§4.4.3) is used extensively
to manage the flow of callback function pointers from client to library. The code is
unoptimised and the data structures used were deliberately naive, to ease debugging.

This case study made no use of Dwarf information. Instead, the generated code
directly consumes the libraries’ header files, using C++ namespaces to separate like-named
definitions from the two sets of headers. Ad-hoc text formats were used to describe the
signatures of called functions and layouts of replicated objects. The object layout tables
were translated by another script into C99 source files, linked into the program, and used
by the runtime navigate the in-memory structures of the object graphs it explores. These
ad-hoc tables were constructed with knowledge of how each object’s fields were used by
the client, so have the effect of applying opaque and ignored annotations included in the
Cake language (§4.4.6) to limit the extent of unnecessary exploration and replication. The
study also does not use dynamic object discovery when allocating co-object structures.

128 5.3. Gtk+ case study

r i g h t c l i c k : 1{FORM GTK WIDGET}2{FORM GDK EVENT BUTTON}

app l y c l i c k e d : 1{FORM GTK WIDGET}

f o n t b rowse c l i c k ed : 1{FORM GTK WIDGET}

i n s t a l l c l i c k e d : 1{FORM GTK WIDGET}

i n s t a l l o k c l i c k e d : 1{FORM GTK WIDGET}

p r e v i ew c l i c k e d : 1{FORM GTK WIDGET}

s e t f on t : 1{FORM GTK WIDGET}2{FORM GTK WIDGET}

Figure 5.4: A description of the Gtk+ callback function signatures

Rather, it assumes that static type information in the header files is precise enough for
the purposes of the adapter.

Fig. 5.4 shows the ad-hoc text file used to describe the function signatures of the
client’s callback functions. (A similar file, but much larger, was defined for the library.)
Fig. 5.5 shows a wrapper function generated from this description (and other ad-hoc
inputs describing the data types). Fig. 5.6 shows parts of the generated tables describing
the layouts of objects.

(We will refer to the script-generated code as “Cake-generated code”, even though
strictly speaking it is not derived from Cake source code. It is also not entirely generated,
in that it includes a small quantity of manually written code.)

5.3.3 Performance

For completeness, we consider the performance of the Gtk+ study here. This study was
formative, and provided many of the early indications that the incorporated techniques
could be made to work. However, we note that performance data derived from this
system cannot be considered strongly indicative of anything in particular—certainly not
“the performance of Cake”, which, as we will remark at the end of this chapter (§5.9) is
very highly dependent on the particular usage scenario, and yet to be explored within an
optimised implementation. The version of the Cake runtime found in this system is both
unoptimised and naive. In particular, the co-object relation (§4.4.1) is represented by a
simple linked list, making lookups unnecessarily slow. However, because it is based on
hand-crafted metadata tables rather than Dwarf information, it is also free from certain
unnecessary overheads (resulting from the use of an unoptimised Dwarf library) that
are present in the current head implementation of the runtime.

To measure its performance, we ran the system under the Callgrind tool from the Val-
grind suite [Nethercote and Seward 2007], which extracts instruction-level profile data.
In our case we use it to count the number of instructions executed in wrapper and non-
wrapper code, as a proxy for execution time. We compiled a version of the Cake-generated
code with all debugging printouts and assertions removed. We then performed a scripted
list of interactions with the Gtk+ program’s interface, finishing by exiting the program.
From the Callgrind data, we then extracted the instruction count attributed to Cake-
generated code versus that attributed to the wrapped library calls and dynamic linker
overhead. We can assume that without Cake, the library would be exercised by a per-
fectly matched client making the necessary calls directly, so would incur the same cost in

Chapter 5. Evaluating the Cake language 129

#include <stdio.h>

#include ”rep man-shared.h”

#include ”rep man tables.h”

extern const char ∗object forms[]; /∗ table of strings ∗/

extern void real apply clicked(void ∗ arg1,void∗ arg2);

void wrap apply clicked(void ∗ arg1,void∗ arg2)

{

fprintf (stderr , ”%s: called %s\n”, FILE , func);

sync all co objects(REP GTK 20, REP GTK 12);

/∗ process arg1 ∗/

fprintf (stderr , ”%s: arg1 (%p) is non-opaque pointer to rep-mismatched object (form %s, rep

%d)\n”, FILE , arg1, object forms[FORM GTK WIDGET], REP GTK 20);

walk bfs (REP GTK 20, arg1, FORM GTK WIDGET, REP GTK 12,

allocate co object idem, REP GTK 20, REP GTK 12);

walk bfs (REP GTK 20, arg1, FORM GTK WIDGET, REP GTK 12, init co object,

REP GTK 20, REP GTK 12);

fprintf (stderr , ”%s: calling real apply clicked\n”, FILE);

/∗ call the 2.x function ∗/

real apply clicked(find co object(arg1, REP GTK 20, REP GTK 12, NULL,

FORM STORED SIZE(REP GTK 12, FORM GTK WIDGET)),arg2);

fprintf (stderr , ”%s: real apply clicked returned into wrapper\n”, FILE);

fprintf (stderr , ”%s: syncing all co- objects from rep REP GTK 12 to rep REP GTK 20\n”

, FILE);

sync all co objects(REP GTK 12, REP GTK 20);

/∗ handle return value ∗/

fprintf (stderr , ”%s: returning from %s\n”, FILE , func);

return;

}

Figure 5.5: A wrapper function generated by scripts in the Gtk+ study

executing the underlying library call (and dynamic linker activity), but without the wrap-
per overhead. Therefore, we can measure the overhead added by Cake as the difference
between the wrapper cost and the underlying function cost.

(We take this approach, in preference to comparing “real” on-CPU execution time with
that of the original Gtk+ 2.0 version of the program, owing to the difficulty of precisely
repeating the same execution path in multiple runs of an interactive application. Even
when following the same script of interactions, some run-to-run variability is observed in
in the number of times various functions are called. Therefore, we prefer to analyse data
gathered in a single run of the program. However, at the end of this section we do present
some aggregate figures comparing separate runs of the two different versions.)

Primarily, the added costs in the Cake-generated version are those of object graph
exploration and copying of data (including synchronisation of the logical replicas). Ta-
ble 5.1 shows the results broken down by wrapper. Nine wrapper functions did not yield
meaningful breakdowns from Callgrind, since they are part of call-graph cycles arising
from the use of callbacks in the code. These are omitted from the table. From the others,

130 5.3. Gtk+ case study

/∗ GtkFontSelectionDialog, 1.2 rep, has subobjects at these offsets . ∗/

const size t rep gtk 12 gtk font selection dialog subobject offsets[] = {

offsetof (GtkFontSelectionDialog, window),

(size t) -1 /∗ terminator ∗/

};

/∗ GtkFontSelectionDialog, 1.2 rep, has subobjects of these forms. ∗/

const int rep gtk 12 gtk font selection dialog subobject forms[] = {

FORM GTK WINDOW,

INT MAX /∗ terminator ∗/

};

/∗ GtkFontSelectionDialog, 1.2 rep, has pointers at these offsets . ∗/

const size t rep gtk 12 gtk font selection dialog derefed offsets[] = {

offsetof (GtkFontSelectionDialog, ok button),

offsetof (GtkFontSelectionDialog, cancel button),

(size t) -1 /∗ terminator ∗/

};

/∗ GtkFontSelectionDialog, 1.2 rep, has pointers to these forms. ∗/

const int rep gtk 12 gtk font selection dialog derefed forms[] = {

FORM GTK WIDGET,

FORM GTK WIDGET,

INT MAX /∗ terminator ∗/

};

Figure 5.6: Fragments of the table describing object layouts

we can see that there is a very large variance in overhead from wrapper to wrapper, largely
explained by the wrapped library call’s function. The most significant relative overhead
is in g type check instance cast, whose core implementation involves, in the common
case, only a one-word comparison on a tag field. When wrapped, it incurs the cost of a
full synchronisation cycle, taking several hundred times as long to execute. The highest
absolute cost is g list insert sorted, probably reflecting the fact that from this function,
a potentially large space of objects is exposed to object graph exploration algorithm—
including the whole linked list and whatever can be reached from it. Conversely, in other
cases, the costs of synchronisation and exploration are dominated by the library call’s
underlying function, such as in the gtk label new, gtk combo new and other functions
constructing new widgets. Co-object churn is also a factor; wrappers called at times when
few co-objects exist, such as during program start-up, will incur less synchronisation cost
than those called at other times.

Finally, we repeated our scripted list of interactions on both the Cake-composed and
original Gtk+ 2.0 clients, and counted the total instruction fetch count in each case. Over
five runs of each, the median of the Cake-composed version was 2.93 × 108 instructions,
against 2.24× 108 for the plain Gtk+ 2.0 client, and all results within 2% of the relevant
median. In other words, this application of Cake has caused an approximate 30% slow-
down in overall application performance. This is entirely reasonable for many classes of
application, confirming our claim that Cake’s approach is a practically applicable one.

Chapter 5. Evaluating the Cake language 131

wrapper name # calls insn fetches underlying overhead factor

wrap g list insert sorted 44 13081442 34503 13046939 380.

wrap gtk dialog new resizable 1 10274006 10199719 74287 0.0073

wrap gtk combo set popdown strings 1 5232109 4885513 346596 0.071

wrap gtk combo new 1 3462937 3414342 48595 0.014

wrap gtk font selection dialog get font name 1 3280671 3194282 86389 0.027

wrap g type check instance cast 36 2485524 3942 2481582 630.

wrap gdk pixmap colormap create from xpm d 1 1908432 1858428 50004 0.027

wrap gtk box pack start 11 982313 314663 667650 2.1

wrap gtk label new 1 822123 802955 19168 0.024

wrap gtk widget realize 1 704275 687591 16684 0.024

wrap g signal connect 7 506962 21236 485726 22.0

wrap gtk button new with label 4 444998 192578 252420 1.3

wrap gtk check button new 1 210082 182309 27773 0.15

wrap gtk rc get style 1 171160 77396 93764 1.2

wrap gtk entry get text 2 130174 1486 128688 87.

wrap gtk widget show all 1 81539 36068 45471 1.3

wrap gtk toggle button set active 1 80249 20019 60230 3.0

wrap gtk entry new 1 79171 31368 47803 1.5

wrap gtk hbox new 2 77560 12640 64920 5.1

wrap gtk tooltips set tip 1 76075 17772 58303 3.3

wrap gtk pixmap new 1 75191 14286 60905 4.3

wrap gtk container add 1 66869 9246 57623 6.2

wrap g slist length 1 61996 1771 60225 34.

wrap gtk event box new 1 51395 5223 46172 8.8

wrap gtk widget set events 1 48589 4800 43789 9.1

wrap gtk window set title 1 45418 28504 16914 0.59

wrap gdk pixmap unref 1 38181 1773 36408 21.

wrap gdk bitmap unref 1 36429 232 36197 160.

wrap gtk window set policy 1 33097 16427 16670 1.0

wrap gtk widget get colormap 1 28501 2102 26399 13.

wrap gtk tooltips new 1 27467 8758 18709 2.1

wrap gtk tooltips set delay 1 17054 1506 15548 10.

wrap gtk font selection dialog get type 11 3483 2104 1379 0.66

wrap gtk box get type 11 3355 1490 1865 1.3

wrap gtk container get type 1 2484 1633 851 0.52

wrap gtk toggle button get type 1 2467 1520 947 0.62

wrap gtk window get type 2 2291 1307 984 0.75

wrap gtk dialog get type 5 2030 1541 489 0.32

wrap gtk entry get type 4 1870 1478 392 0.27

wrap gtk combo get type 1 1388 1286 102 0.079

Table 5.1: Wrapper overheads in the Gtk+ study. “Instruction fetch” counts instructions

fetched (by Callgrind’s simulated CPU) during the execution of each wrapper, including all

called functions. “Underlying” counts the subset of these which are due to the underlying

library and not to the Cake runtime. “Overhead” is the difference, and “factor” is the

same expressed as an approximate multiplier of the underlying execution time.

5.3.4 Shareability

We also use the Gtk+ study as an opportunity to evaluate the usefulness of the shareability
analysis described in §4.4.4. Recall that shareability is only especially useful for tasks
arising from interface evolution. Since shareable objects must be not only representation-
compatible, but not reachable from any representation-incompatible objects, they are
unlikely to be found in completely unanticipated compositions.

We took the Gtk+ 1.2 library, starting with release 1.2.0, and considered several succes-
sive versions, up to the end of the 1.2 release series and also including the first release of the
2.0 series. We analysed the shareability of like-named data types across these library ver-
sions, to see how it declined as the interface evolved away from its starting point. Since the
analysis is currently somewhat expensive to run, we restricted ourselves to the 118 named

132 5.4. Measurement methodology

version like-named and rep-compatible and shareable % shareable

1.2.0 118 118 118 100

1.2.2 117 116 93 79

1.2.4 117 116 93 79

1.2.6 117 115 69 58

1.2.8 117 115 69 58

1.2.10 117 115 69 58

2.0.0 95 47 42 36

Table 5.2: Shareability results for successive versions of Gdk. Percentages are relative to

the total of 118 Gdk data types in the 1.2.0 version.

data types defined in the Gdk portion of the library (which abstracts the underlying draw-
ing primitives provided by the windowing system), all of whose names begin with “Gdk”.

As a sanity check, we first compared it with itself, finding as expected that every data
type is shareable. (This is a property required to support the linker-like degenerate cases
mentioned in §5.2.) We then proceeded to compute the shareability with each subsequent
version two minor revisions apart, up to release 1.2.10. Table 5.2 shows the results.
The final and penultimate columns show the number of shareable data types declining
as the version gap increases. The second and third columns count pairs of data types
satisfying intermediate conditions that are necessary (but not sufficient) for shareability.
Specifically, we might find in a subsequent version that a given data type is not present,
at least not with the same name (therefore not counted in any column); present but not
rep-compatible (counted in the second column only); or present and rep-compatible, but
not shareable owing to the reachability of some incompatible pair of data types (counted
in the second and third columns).

5.4 Measurement methodology

Our remaining case studies consider tasks which have already been performed using con-
ventional approaches. We discuss the details of task in depth, and summarise the outcome
of each task by aggregate side-by-side measurements of code size as it differs between the
Cake and original versions. Only language-independent software measurements are ap-
propriate, since we are comparing Cake and non-Cake implementations. Therefore, we
use the following three simple counts over source code syntax:

LoC (nb nc) a count of lines of code that are non-blank and non-comment;

Tokens a count of tokens in the code, as output by a lexer for the appropriate language;

Semicolons a count of semicolon tokens, proxying the count of “statements” or “decla-
rations” in the code. This is meaningful since we only compare Cake code against
C code, and these two languages make very similar syntactic use of the semicolon.

We state several observations about our methodology and its practicalities.

Chapter 5. Evaluating the Cake language 133

Measurements Although we use count-based measurements, we appreciate their short-
comings. Cake’s lower counts certainly originate partly in improved abstraction, but per-
haps also to incidental factors such as a reduction in boilerplate code. To combat this
effect, we report an additional “adjusted” measurement for C code. This measures the
code after manually erasing common C boilerplate—specifically, variable declarations and
function prototypes. This is an ad-hoc adjustment, so still does not account for certain
other areas where Cake’s syntax may be more concise (for example, error-path control
flow).

Code left as is Cake is a restricted language; it has a purely reactive execution model,
and cannot directly express recursion or iteration. Some tasks therefore contain small
pieces of code that cannot be implemented in Cake and must be written in another
language. The “remaining” column in our tables refers to C code that could not be
reimplemented in Cake and was left as is.

Percentages For ease of reference, we also calculate a percentage showing the relative
size of the Cake implementation, by subtracting the C “remaining” counts from the C
“adjusted” counts and then dividing the Cake count by this total. (In fact, this calculation
is slightly unfair to Cake, in that the “remaining” counts were not adjusted for boilerplate,
so subtract slightly too much from the total C code. The difference is not significant.)

Unevaluated benefits Even if Cake did little to simplify code, there are inherent
benefits in Cake’s black-box, binary approach which are not substantially evaluated here.
Our goals with Cake are not simply to provide a marginally better way of coding adapters.
Rather, we wish to enable a shift in development practices towards integration-based
approaches and away from reimplementation and invasive editing. This desire directly
motivates the adoptable, black-box, binary design of Cake. However, we clearly cannot
evaluate these design aspects in small-scale studies.

Sources of error As remarked in §4.5, our current implementation is not capable of
generating code for the whole Cake language. The Cake code written in the experiments
in this chapter has been carefully written with direct and detailed reference to the original
C code, and we present several detailed side-by-side comparisons. However, without the
ability to compile and test the Cake versions, there will no doubt be bugs, and hence
some degree of error in the measurements taken. As we will see, the results are such that
any error introduced in this way cannot feasibly endanger our conclusions.

5.5 Bridging related components: libp2k

Our first task considers a pair of filesystem interfaces. Filesystems are a ubiquitous ab-
straction: they appear in kernel-level operating system code, but also in graphical desktop

134 5.5. Bridging related components: libp2k

// hunk 1: basic event correspondence patterns

pattern puffs fs (.∗) { names (mount:) }

←→ rump vfs \1 { names (mount:) };

pattern puffs node (.∗) { names (mount: , cookie: as vnode unlocked ptr) }

←→ RUMP VOP \U\1\E { names (cookie:) };

Figure 5.7: Basic event correspondences for p2k

// hunk 2: basic value correspondences

values puffs usermount (puffs getspecific (this))−→ mount;

values puffs cred ({

puffs cred getuid(this , out uid) ;| let uid = 0;

puffs cred getgid(this , out gid) ;| let gid = 0;

puffs cred getgroups(pcr, out groups[NGROUPS], out ngroups)})

−→ (rump cred create(uid, gid, ngroups, groups)) kauth cred;

values puffs cred ←− (rump cred destroy(this)) kauth cred;

values puffs cn −→ (rump makecn(that→֒pcn nameiop, that→֒pcn flags,

that→֒pcn name, that→֒pcn namelen, that→֒pcn cred, curlwp)) component name;

values puffs cn ←− (rump freecn(this, RUMPCN FREECRED)) component name;

Figure 5.8: Basic value correspondences for p2k

environments,3 in web servers,4 and elsewhere. The programming interfaces behind which
filesystems are implemented are invariably abstractly similar, yet often concretely differ-
ent, making them frequent candidates for black-box adaptation.

Our task in this section reimplements the libp2k adapter [Kantee 2009] from the
NetBSD operating system. This adapts filesystems from an API embedded in a spe-
cial environment for running unmodified kernel code, including filesystems, in user-space
(rump) so that they may be used from NetBSD’s native user-space filesystem implemen-
tation (puffs).

Figures 5.7–5.13 show a large portion of the Cake code for this task. We were fortunate
to have a one-to-one correspondence between most calls in the two interfaces, with naming
conventions which map straightforwardly; this is captured neatly in two pattern rules
(Fig. 5.7).

There are some simple correspondences between objects in the two interfaces (Fig. 5.8).
The puffs cred rightward rule is rendered in the C implementation as a utility function
cred create() called from many different locations in the code. We can write this utility
logic once as a value correspondence, and have it automatically applied wherever any
Cake rule demands conversion from a puffs cred to a kauth cred t.

Some rump library calls leave their vnode target unlocked on return, so we need not
apply RUMP VOP UNLOCK() in those exceptional cases (Fig. 5.9). These calls are
exactly those which may modify the filesystem’s directory structure; such calls also require

3Two popular examples on Unix platforms are Gnome VFS, http://library.gnome.org/devel/

gnome-vfs-2.0/unstable/ and KIO, http://api.kde.org/4.x-api/kdelibs-apidocs/kio/html/. These URLs are

valid as of 2010/12/7.
4One notable example is Apache Commons VFS, at http://commons.apache.org/vfs/ as of 2010/12/7.

Chapter 5. Evaluating the Cake language 135

// hunk 3: more value corresps incl. special unlocked- return

values vnode unlocked −→

({RUMP VOP LOCK(that, LK EXCLUSIVE); that}) vnode;

// no need to update vnode value in the reverse direction

values vnode unlocked ←−(RUMP VOP UNLOCK(that, 0)) vnode;

values vnode bump −→

({RUMP VOP LOCK(that, LK EXCLUSIVE);

rump vp incref(that); that}) vnode;

values vnode bump ←−vnode; // unlock not required

puffs node create(mount, vn as vnode bump, ni, cn, vap)

−→ RUMP VOP CREATE(vn, ni, cn, vap);

puffs node mknod(mount, vn as vnode bump, ni, cn, vap)

−→ RUMP VOP MKNOD(vn, ni, cn, vap);

// ... similar for remove, link , rename, ...

Figure 5.9: Special value correspondences (1) for p2k

// hunk 4a: how to output parameters by ”newinfo”

values puffs newinfo ({puffs newinfo setcookie(this , that); this})

←− (RUMP VOP UNLOCK(this, 0)) vnode;

// Some calls return a fuller set of newinfo

values puffs full newinfo ({puffs newinfo setcookie(this , that);

puffs newinfo setvtype(this , vtype);

puffs newinfo setsize(this , vsize);

puffs newinfo setrdev(this , rdev); this}) ←−

({ let (vtype, vsize , rdev) = rump getvninfo(this); this }) vnode

Figure 5.10: Special value correspondences (2) for p2k

the reference count of any modified vnode to be pre-incremented to avoid premature
reclamation. This is captured by the vnode bump rules.

This example illustrates a common idiom in Cake programming. Having introduced a
general rule, here for vnode unlocked, we introduce a new artificial named data type, here
vnode bump, with alternative value correspondences. Then the programmer supplies this
name in the contexts where the special treatment is required—either as annotations in
a declare block, or inlined in the relevant event correspondences using an as declaration.
Here, we chose also to base the more common-case rule, vnode unlocked, on an artificial
data type, rather than using vnode directly. This forces the Cake programmer to be
explicit about which rule is required in every context where puffs passes a vnode.

Some rump functions return output values through parameters. The puffs interface
requires these to be passed through an opaque object, puffs newinfo, populated using
setter functions. We can express this by firstly describing which rump calls’ arguments are
outputs (Fig. 5.11), and secondly providing value correspondences between puffs newinfo
and the relevant rump structures (Fig. 5.10).

In the above rules, as an optimisation, two calls (read() and readdir()) use shared
(multi-reader) vnode locking, rather than exclusive locking. This is done by two additional
rules (Fig. 5.12), and replicates the behaviour of the C implementation.

136 5.5. Bridging related components: libp2k

// hunk 4b: tell Cake which calls need ” full ” newinfo...

exists elf archive (” puffs.a ”) puffs ; // this hunk would appear at

derive elf archive puffs inst = // ... the top of the .cake file

instantiate (puffs , puffs ops, pops, ”puffs”);

puffs inst { declare {

puffs fs fhtonode : (, , , out puffs newinfo as puffs full newinfo) ⇒ ;

puffs node lookup : (, , out puffs newinfo as puffs full newinfo ,) ⇒ ;

} };

Figure 5.11: Annotations for enabling special value correspondences in p2k

// hunk 5: shared locking

values vnode lkshared −→({RUMP VOP LOCK(that, LK SHARED); that}) vnode;

values vnode lkshared ←−({RUMP VOP UNLOCK(that, 0); that}) vnode;

Figure 5.12: Special value correspondences (3) for p2k

Code in librump originated in the kernel, where client reading and writing of file data
to or from user processes requires address-space traversal. The four relevant calls use a
special interface called uio for passing this data. To us, this is just a new way of packag-
ing parameters for input and/or output, and is handled by a few more correspondences
(Fig. 5.13).

The rules shown generate complete implementations of all but six of the 28 p2k wrap-
pers. The omissions are explained by special error-handling requirements, one-to-many
function mappings, and function correspondences which do not follow the naming con-
vention. These are easily handled by a few more event correspondences, shown for com-
pleteness in Fig. 5.14.

As usual with dynamically loaded components, puffs calls into p2k indirectly, through
a table of function pointers passed during initialization. We instantiate this table using
Cake’s instantiate helper (§2.3.3). The only logic required which Cake could not ade-
quately express was about 40 lines of C code in p2k.c which load the filesystem (the
p2k run fs() function). This consists of a combination of calls to the core puffs and rump

// hunk 6: input/output by uio

values uio outbuf (buf: uint8 t [] ptr , resid : size t ptr ,

off : const off t)−→ (rump uio setup(that→֒buf,

∗that→֒resid , that→֒offset , RUMPUIO READ)) uio;

values uio outresult ←− (rump uio free(this)) uio ;

values uio outres len off ←−({rump uio getresid(that→֒resid);

rump uio getoff(&that→֒readoff);

rump uio free(this)}) uio ;

puffs node read(mount, vn as vnode lkshared, uio as uio outbuf(buf, resid , offset),

, resid out as uio outresult, cr , ioflag) −→ RUMP VOP READ(vn, uio, ioflag, cr);

// similar : readlink , readdir , ”uio inbuf” and write

Figure 5.13: Special value correspondences (4) for p2k

Chapter 5. Evaluating the Cake language 137

// ”inactive” notification requires special action in rump

puffs node inactive(mount, vn as vn no lk) −→{

rump vp interlock(vn);

RUMP VOP PUTPAGES(vn, 0, 0, PGO ALLPAGES);

RUMP VOP LOCK(vn, LK EXCLUSIVE);

RUMP VOP INACTIVE(vn, out recycle);

}--

←−

- -{ if recycle then puffs setback(

puffs cc getcc(mount, PUFFS SETBACK NOREF N1

)) else void; };

// reclaim maps to call with non-analogous name

puffs node reclaim(mount, vn as vn no lk)

−→ { rump vp recycle nokidding(vn); void };

// unmount requires special action

puffs fs unmount(mount, flags)

(let rvp in as vn no lk = puffs getroot(mount)→֒pn data)−→ {

rump vp recycle nokidding(rvp);

rump vfs unmount(mount, flags) ;|

(rump vfs root(mount, out rvp2, 0); assert(success && rvp == rvp2);) };

// puffs sync needs two calls in rump

puffs fs sync(mount, waitfor , cr) −→

{ rump vfs sync(mount, waitfor, cr); rump bioops sync(); };

// fhtonode and nodetofh map to non-analogous names

puffs fs fhtonode(mount, fid, , out ni as puffs full newinfo) −→

rump vfs fhtovp(mount, fid, ni);

puffs fs nodetofh(mount, vn as vnode nolk, fid, fidsize)

−→ rump vfs vptofh(vn, fid, fidsize);

Figure 5.14: Final correspondences for p2k

interfaces to register the filesystem with puffs and allocate rump-side state, rather than
logic for implementing a particular puffs operation using the rump interface. (This code is
“conversational” in the sense of §3.5, which explains why it cannot be expressed in Cake.)

Table 5.3 shows the aggregate comparison of Cake’s p2k with the original implemen-
tation. We can see that the Cake implementation is roughly 30%–45% the size of the
C implementation, event after adjustments for relatively more verbose C syntax and the
small amount of C code retained as is.

In summary, Cake can express the p2k component in a fraction of the code size.
Evident from the code snippets, but not measured, is an additional benefit that the
Cake implementation localises each concern of the two interfaces’ syntactic and semantic
differences more clearly than the existing C code. For example, treatment of unlocking and
reference counting is handled by discrete and localised rules, rather than being scattered
throughout the code.

138 5.5. Bridging related components: libp2k

C adjusted Cake remaining C %age

LoC (nb nc) 605 523 129 54 27%

tokens 3469 3137 1285 347 46%

semicolons 358 277 74 33 30%

Table 5.3: Comparing p2k implementations in Cake and C.

5.5.1 Performance

As with the Gtk+ study, we briefly consider the performance of the p2k study for com-
pleteness. However, as before, we do not consider the figures strongly indicative of any
useful property of the Cake language (as distinct from the current state of its implemen-
tation).

Unlike the Gtk+ study, the p2k study runs on top of the Dwarf-based version of the
Cake runtime, and has fully dynamic binding semantics. The current implementation of
this is immature and completely unoptimised code, which, for ease of continuing devel-
opment, remains deliberately naive in many places. For example, it uses linear search
through certain key data structures (including the search for named Dwarf elements),
neglects to cache various reusable results (such as offsets of fields within objects, computed
from Dwarf information), and uses inefficient string-based representations for other im-
portant objects (notably data type identifiers). It also makes a large number of avoidable
heap allocations when iterating through Dwarf entries, of which frequently thousands
are traversed during a single query.

As a simple worst-case benchmark, we measure the cost of running the puffs fs sync
wrapper function dispatching to the tmpfs temporary filesystem implementation from
rump. We do this measurement for our two implementations of this function: one im-
plemented by the original libp2k code, and one in the Cake-generated version. This is a
worst-case comparison because the fs sync call in tmpfs is a no-op which simply returns
zero (since the data in a temporary filesystem resides in memory only).

NetBSD 5.0 (the only operating system on which the case study executes) offers an API
for measuring resource consumption, based on the BSD getrusage() system call. However,
this is known to be unreliable.5 Unfortunately, the Valgrind approach of the Gtk+ study
is not available to us, since no port of Valgrind is available for NetBSD 5.0. Therefore,
we proceed with the getrusage() method, but note its lack of accuracy.

The vfs sync operation normally executes every 30 seconds, triggered by system-wide
period synchronisation of filesystems. Our approach to measurement was simply to instru-
ment the puffs dispatch loop with getrusage calls before and after calls into the wrapper,
and compute the elapsed time as the difference. The same instrumentation suffices for
both libp2k and Cake-based implementations. We let both systems run for 60 seconds
before taking the first measurement, to allow any lazy initializations to take place. (In

5For example, it can often generate negative elapsed time measurements. This is discussed by Woods

in a mail to the tech-kern@netbsd.org mailing list, available at http://mail-index.netbsd.org/tech-kern/

2011/10/28/msg011778.html as retrieved on 2012/5/1.

Chapter 5. Evaluating the Cake language 139

time/µs

libp2k Cake

69 123712

73 126829

median 78 129572

82 131756

93 134241

Table 5.4: Execution time of the fs sync call

particular, the Cake runtime initializes itself on the first call into it, rather than at pro-
gram start-up, so the first fs sync call takes markedly longer than subsequent ones.) We
then recorded the next five measurements.

Table 5.4 shows the results. These measurements were taken in a VirtualBox 4.1.2
virtual machine running NetBSD 5.0.1, configured with 768MB memory (and otherwise
unloaded), on an IBM Thinkpad T60 with a 32-bit Intel Core 2 Duo T2400 CPU and
2GB memory (similarly unloaded). We ignore the computed elapsed system time, since
it was two orders of magnitude smaller than the user time, and negative.

Very roughly, they show that the Cake version takes around 1000–2000 times as long
to execute as the libp2k version.

This might seem excessive, but considering that the underlying library call does noth-
ing and that the adaptation logic itself does very little (primarily locking and looking up
fields), it is understandable that the cost of dynamic binding is extremely significant in
relative terms. This is especially true given the unoptimised state of the implementation.
We note that the figures are roughly in line with the Gtk+ figures, where a wrapper for
a trivial library call took several hundred times the execution time of the wrapper itself.

Some other details are worth comparing between the Gtk+ study and this one. Whereas
in the Gtk+ study, the effect of opaque and ignored annotations (encoded into the ad-hoc
input files to code generation) limited the extent of object graph exploration, in the p2k
case we took an analogous measure by observing that no wrapper function requires deep
object graph exploration, and limited the depth of exploration to 1 (i.e. one level of indi-
rection from the arguments). However, a key difference between the two studies is that
the Gtk+ study used compile-time information about the structure of objects passed by
each function, so did not exhibit any overhead from dynamic binding. By contrast, the
p2k study includes the additional overhead from dynamically discovering the objects be-
ing passed via each pointer argument, and other dynamic lookups to discover the relevant
value conversion functions.

140 5.6. Migration between support libraries: ephy–webkit

5.6 Migration between support libraries: ephy–webkit

Another area of continuing evolution in contemporary codebases is that of web browsers
and associated software. The Epiphany web browser6 migrated during 2007–08 from a
single Mozilla-based HTML display widget to a more flexible codebase supporting both the
Mozilla renderer and a Webkit-based one. We compare Epiphany’s internal WebKitEmbed
adaptation layer with a Cake implementation.

The developers of Epiphany chose to strip out the adaptation layer after Webkit mi-
gration was completed, around July 2008, and target Webkit APIs directly. We therefore
used Subversion revision 8300 (28 June 2008) as the reference codebase for Cake re-
implementation. Although there is no relevant discussion of the decision to remove the
abstraction layer, either in the changelogs or mailing list archives, clearly the developers
anticipated no future need to change the target API. Performance could be a plausible
motivation, but the interface in question is not particularly performance-sensitive. More
likely, the change was intended to simplify the codebase, in the assumption (arguably
optimistic) that there would be no future need to support alternative renderers. (This
highlights the anticipation difficulties surrounding abstraction layers, as we remarked in
§1.2.2.)

The adaptation logic we reimplemented is effectively circumscribed by the definition
of class WebKitEmbed. For simplicity, we left as is some additional adaptation code han-
dling cookie management, password management and certain other functionality, since
this contained only no-op implementations in our chosen revision. Similarly, we retained
the utility classes WebKitEmbedPrefs and WebKitEmbedHistoryItem for use by our adap-
tation logic; these could be implemented in Cake, but owing to their small size, their C
code is dominated by boilerplate, so would not give useful measurements. A particular
complication with this boilerplate is that it is derived from the GObject library on which
Epiphany is based, and is generated by heavy use of C preprocessing; we discuss this in
the next subsection.

5.6.1 Objects, associations and their construction

Epiphany uses subclassing (using the GObject library [Krause 2007]) to connect an Em-
bed object with a Webkit instance: the subclass’s fields point to Webkit resources. In
Cake we use an association: the Embed object is associated with the relevant Webkit ob-
jects. Recall that this is implemented using an aggregate umbrella object, as described in
§2.3.4. In the Cake implementation of the adapter, the umbrella object’s additional fields
accommodate the state which was added by subclassing in the original implementation.
Contrast the Cake fragment of Fig. 5.15 with the C fragment of Fig. 5.16.

In the C case, a WebKitEmbed object is a EphyBaseEmbed and has a WebKitWebView,
an EphyHistory and some other state. In the Cake version we factor this slightly differ-
ently: a given EphyBaseEmbed and EphyHistory are associated with a WebKitWebView. “Is
associated with” is effectively the same as a has-a relationship, as conventionally encoded
by a stored pointer. However, in our Cake code this is encoded not by directly embedding

6http://www.gnome.org/projects/epiphany/

Chapter 5. Evaluating the Cake language 141

values (embed: EphyBaseEmbed,

history : EphyHistory) ←→ (web view: WebKitWebView,

scrolled window: GtkScrolledWindow,

load state: WebKitEmbedLoadState,

loading uri : char [])

{ /∗ ... ∗/ }

Figure 5.15: Associating corresponding objects in Cake

struct WebKitEmbed { // from webkit-embed.h line 56

EphyBaseEmbed parent instance;

/∗< private >∗/

WebKitEmbedPrivate ∗priv;

};

struct WebKitEmbedPrivate // from webkit-embed.c line 65

{

WebKitWebView ∗web view;

GtkScrolledWindow ∗scrolled window;

WebKitEmbedLoadState load state;

char ∗loading uri ;

EphyHistory ∗ history ;

};

Figure 5.16: Subclassing-like containment and pointer-based association in C

a pointer to the subordinate object, but associatively, by maintaining references in the
table implementing the co-object relation (§4.4.1).

Instantiation These rules present a complication: how do we ensure that the Epiphany
client binary, which was compiled to instantiate and manipulate instances of some sub-
class, will instead instantiate and manipulate this association state using the logic in our
Cake rules? This requires a combination of interposing on instantiation of state and inter-
posing on access to that state. As often in Cake programming, more than one mix of these
two tactics can lead to a viable solution. We can choose not to interpose directly, instead
relying on the behaviour that an EphyBaseEmbed object will be a subobject instantiated
within some enclosing object. The form of this enclosing object will be determined by
whatever alternative HTML rendering library the client binary was compiled against (the
Mozilla renderer in our case). Such an object is nevertheless usable—its EphyBaseEmbed
subobject will be used as is, and its extra fields from the containing object will go unused.

5.6.2 Method dispatch

We must next make sure that calling code calls through our dispatch table (created in the
Cake code with an instantiate helper invocation, not shown). In the GObject library, the
dispatch table is located by a complex sequence of steps—by library calls which access

142 5.6. Migration between support libraries: ephy–webkit

// instantiate the interface dispatch tables we implement

derive elf archive (”ephy+.a”) ephy = instantiate(

instantiate (elf archive (”ephy.a”), EphyCommandManagerIface, man impl, ””),

EphyEmbedIface, embed impl, ””);

// ...

/∗ within ephy ←→ webkit link sub-block ... ∗/

// globally , use these tables for these interfaces

g type interface peek(, EPHY TYPE EMBED) (let impl = ephy impl)−→ { impl };

g type interface peek(, EPHY TYPE COMMAND MANAGER) (let impl = man impl)−→ { impl };

Figure 5.17: Interposing new dispatch tables in Epiphany

a GClass meta-object, in turn containing pointers to dispatch tables of all implemented
interfaces. Constructing an alternative such object within Cake would mean replicating
knowledge of these GClass objects’ semantic constraints, so that we could construct one
respecting the invariants required by other GObject code. For example, each GClass has
a type identifier number issued by the GObject library, according to certain rules which
are encapsulated in C preprocessor macros.

So, although we would like to define a new GClass around our dispatch tables in Cake,
this would mean replicating knowledge of these rules in the Cake file. This would be
fragile, since these rules are regarded as implementation details of the GObject library.
The usual way for a C programmer to define a new GClass is by C preprocessor macros
which hide change-prone implementation details. Since these macros are not usable from
Cake, we lack an equivalently robust solution. Chapter 6 identifies this as a stylistic issue
which future versions of Cake could tackle in a library of GObject-specific rules. For now,
we handle dispatch more straightforwardly by interposing on retrieval of the dispatch
table, access to which happens conveniently to be functionally abstracted (Fig. 5.17).
These rules are limited to cases such as ours where only one implementation of the named
interfaces is used within the whole program.7

5.6.3 Minor benefits

Simple rules Many of the calls between the two interfaces map very directly, as shown
in Fig. 5.18. Some are left unimplemented by Epiphany; these are mapped to empty stubs
in Cake.

Pattern-matching succinctness Pattern-matching on event correspondences simpli-
fies the load and manager do command functions.

Lack of boilerplate Another small benefit in the Cake implementation is a relative
lack of boilerplate. Epiphany’s use of the GObject library necessitates somewhat verbose
C code to perform downcasts and populate a dispatch table. By contrast, Cake can

7On the other hand, this limitation could be removed by adding context predication to the

g type interface peek() rules, or by defining a GClass object specific to our association.

Chapter 5. Evaluating the Cake language 143

ephy load(embed, url as raw url, flags , preview embed)

−→ { set embed...loading url = url ;

webkit web view open(embed...web view, url); };

ephy stop load(embed) −→

webkit web view stop loading(embed...web view);

ephy can go back(embed) −→

webkit web view can go back(embed...web view);

ephy can go forward(embed) −→

webkit web view can go forward(embed...web view);

ephy can go up(embed) −→{ false };

Figure 5.18: Simple rules mapping from Epiphany to Webkit calls

succinctly instantiate the table using instantiate. Furthermore, since associations are
formed dynamically and navigated using run-time metadata, downcasts are unnecessary.
This reflects the usual trade-off between static-typed and dynamic languages, albeit in a
fashion exaggerated somewhat by the verbosity and C-induced clumsiness of the GObject
programming style.

5.6.4 Handling the history list

The two components exchange history item objects by copying a doubly-linked list from
the HTML widget (which keeps a local history for the current navigation session) and the
host browser (which copies entries into its persistent history key–value store). Mostly-
automatic handling of this list-passing is a key benefit of the Cake implementation, draw-
ing on Cake’s object graph exploration. We now compare the C code (Fig. 5.19) and Cake
rules (Fig. 5.20) for these two cases.

Utility code and boilerplate Note an unfortunate naming choice in the Epiphany
codebase: WebKitHistoryItem is a data type defined by Epiphany code rather than by
WebKit. WebKit’s own history item data type is WebKitWebHistoryItem (note the extra
“web” fragment). Epiphany also defines a common interface EphyHistoryItem, of which
WebKitHistoryItem is an implementation. Strictly speaking, WebKitHistoryItem is part
of the adaptation logic we are aiming to replace with Cake code, rather than being core
Epiphany code. We treat it as preexisting utility code for the purposes of this study, for the
same reasons that explained our handling of EphyBaseEmbed instantiation: Cake does not
currently provide a good way of replicating GObject boilerplate. In this case, the utility
code is almost entirely boilerplate—the implementation contains a pair of trivial getter
functions only. Aside from the boilerplate, replicating this logic within Cake would clearly
not be problematic, since it amounts to a pair of very simple function correspondences. It
is therefore reasonable to proceed with this study by treating this code as shared utility
code. Of course, we do not count this code when measuring the volume of C code replaced
by our Cake rules.

144 5.6. Migration between support libraries: ephy–webkit

/* enumeration for distinguishing a "direction" of history */

typedef enum

{

WEBKIT_HISTORY_BACKWARD,

WEBKIT_HISTORY_FORWARD

} WebKitHistoryType;

/* utility function for doing the list-copying */

static GList*

webkit_construct_history_list (WebKitEmbed *embed, WebKitHistoryType hist_type)

{

WebKitWebBackForwardList *web_back_forward_list;

GList *webkit_items, *iter, *ephy_items = NULL;

g_return_val_if_fail (WEBKIT_IS_EMBED (embed), NULL);

web_back_forward_list = webkit_web_view_get_back_forward_list (embed→֒priv→֒web_view);

if (hist_type == WEBKIT_HISTORY_FORWARD)

webkit_items = webkit_web_back_forward_list_get_forward_list_with_limit (web_back_forward_list,

WEBKIT_BACK_FORWARD_LIMIT);

else

webkit_items = webkit_web_back_forward_list_get_back_list_with_limit (web_back_forward_list,

WEBKIT_BACK_FORWARD_LIMIT);

for (iter = webkit_items; iter != NULL; iter = iter→֒next) {

EphyHistoryItem *item = webkit_history_item_new (WEBKIT_WEB_HISTORY_ITEM (iter→֒data));

if (item)

ephy_items = g_list_prepend (ephy_items, item);

}

g_list_free (webkit_items);

return ephy_items;

}

/* get the "backward" piece of the history list */

static GList*

impl_get_backward_history (EphyEmbed *embed)

{

return webkit_construct_history_list (WEBKIT_EMBED (embed),

WEBKIT_HISTORY_BACKWARD);

}

/* get the "forward" piece of the history list */

static GList*

impl_get_forward_history (EphyEmbed *embed)

{

return webkit_construct_history_list (WEBKIT_EMBED (embed),

WEBKIT_HISTORY_FORWARD);

}

Figure 5.19: C code for transferring WebKit history items to Epiphany

Chapter 5. Evaluating the Cake language 145

values

{

/∗ history item handling ∗/

GList of EphyHistoryItem ←→GList of WebKitWebHistoryItem

{

data as WebKitHistoryItem ptr ←→ data as WebKitWebHistoryItem ptr;

};

// update rule exploiting underlying shared representation

WebKitHistoryItem (this →֒data)−→ WebKitWebHistoryItem;

// init rule only: we never send updates to webkit

WebKitHistoryItem (∗(webkit history item new(that) tie this))←−? WebKitWebHistoryItem;

}

ephy get backward history(embed) −→{

let full bf list = webkit web view get back forward list(embed...web view);

webkit web back forward list get back list with limits(

full bf list ,

WEBKIT BACK FORWARD LIMIT) as GList of WebKitWebHistoryItem

};

ephy get forward history(embed) −→{

let full bf list = webkit web view get back forward list(embed...web view);

webkit web back forward list get forward list with limits(

full bf list ,

WEBKIT BACK FORWARD LIMIT) as GList of WebKitWebHistoryItem

};

Figure 5.20: Cake rules for transferring WebKit history items to Epiphany

Pointer annotation Note that in both cases the lists are passed as GList objects,
but with different payload types. We rely on explicit specialisation of the void pointers in
each GList node. This is done using the artificial data types GList of EphyHistoryItem and
GList of WebKitWebHistoryItem. This explicit specialisation is necessary for two reasons:
firstly to allow our runtime to follow pointers from list node to payload object (§4.3.2)
and secondly to allow our object-sharing analysis (§4.4.4) to correctly infer that the list
nodes are not shareable (because following analogous paths from the two components’
nodes can reach incompatible data types). If the specialisation were omitted, the list
nodes would be erroneously shared, the list recipient would perform an invalid downcast
on the void pointer, and meaningless type-incorrect data would be read.

C implementation We see the webkit construct history list helper calls two func-
tions: webkit web view get back forward list to retrieve a complete history list in We-
bkit form, and then either webkit web back forward list get forward list with limits
or webkit web back forward list get backward list with limits to produce a copy of a
bounded subset of the list as a GList of WebKitWebHistoryItems. A loop copies the el-
ements of second list into a new list of WebKitHistoryItems which is freed by the caller
subsequently. The earlier GList of WebKitWebHistoryItems is freed in the wrapper.

Cake contrast In the Cake code there are three notable absences: no loop, no null test,
and no list-freeing. The former is because the Cake runtime explores the list automatically.

146 5.6. Migration between support libraries: ephy–webkit

C adjusted Cake remaining C %age

LoC (nb nc) 525 513 172 0 33%

tokens 2525 2455 958 0 39%

semicolons 175 163 74 0 45%

Table 5.5: Comparison of ephy–webkit in Cake and C.

The latter is explained by the Cake runtime’s treatment of co-objects: when allocating
new object structures in applying a value correspondence, the newly created objects are
recorded as co-objects of the originating objects. When either of these co-objects is freed,
the Cake runtime frees the other. So it suffices for the client to free the objects it is
passed—which it must, or else there is a memory leak in the client code—and the Cake
runtime will ensure that the intermediate list is also freed.

Null test difficulty The lack of null test is a simplification enabled by the fact that
webkit history item new() returns null only for a null argument, which can occur only
when the input GList node has a null payload pointer. This reveals a shortfall in expres-
siveness of Cake—we cannot express the fact that null-payload nodes should be omitted
without breaking the list structure. We could attempt to correspond a skipped node
with void (“no value”), but this breaks the list, instead of continuing it with “the next
node with non-null payload”—which is the desired behaviour, but currently inexpressible.
(This is an instance of the “context-impoverished” limitation identified in §4.4.5.) The
importance of this in our particular study is moot, since in our experience, WebKit does
not return lists containing null-payload nodes. We therefore work around the problem by
assuming that null-payload nodes do not arise; for fairness, we comment out the null test
in the C code so that it does not appear in the code measurements.

Object lifetime subtleties The “free one frees all” semantics of co-objects (§4.4.2)
clearly presumes that there is no mismatch in the lifetimes of objects across the mis-
matched interface. This is sufficient in our case, but does entail one case where an object
is freed less eagerly in our implementation than in the C version. Specifically, note the
call to g list free() in Fig. 5.19, which frees the list returned by the Webkit call. In the
Cake implementation, the freeing of this list is delayed until the corresponding list is freed
(within the receiving Epiphany code).

This case study proves a fair demonstration of Cake. Table 5.5 shows the summary
measurements, showing that the Cake implementation is again 30–45% the size of the C
version after the usual adjustments.

5.6.5 API influence and anticipation

Arguably, this case study is not a pure case of unanticipated composition, in the sense
that it is aided by some amount of both anticipation and common ancestry in the design
of the interfaces involved.

Chapter 5. Evaluating the Cake language 147

Anticipation is evident in the fact that Epiphany contained the EphyEmbed abstraction
layer. This abstraction layer predates the introduction of alternative rendering engines by
some time. Indeed, it features in the earliest revision that remains publicly available at the
time of writing, from December 2002—over four years before the Webkit renderer was first
supported (in July 2007). No other renderers than the Mozilla one were supported during
this interval. Clearly, the authors anticipated some future need to support alternative
renderers.

This need not have made the Webkit composition task any easier, if the Webkit inter-
face turned out to be wildly different from that chosen for the abstraction layer. However,
this proved not to be the case. Although nontrivial quantities of code were required to
implement the abstraction layer over Webkit, there were also some suspiciously conve-
nient properties about the interface pairing, as revealed in Fig. 5.18. Why are the func-
tion names in the EphyEmbed and Webkit interfaces so often similar, when supposedly
the former existed long before the latter? In particular, the suffixes can go back and
can go forward are shared by calls in the two interfaces. This seems unlikely to be a

coincidence.

The explanation is a different phenomenon concerning common ancestry or, more
generally, influence in interface design. The first popular embeddable browser component
for X11 applications was the GtkMozEmbed component from the Mozilla project. This
component is the one originally targeted by Epiphany’s abstraction layer. Later, when
the Gtk+ APIs for Webkit were designed, their developers chose to make the interface of
WebKitWebView resemble that of the established GtkMozEmbed in several ways. Of the
eighteen documented non-boilerplate methods defined by a GtkMozEmbed widget,8 six are
present in essentially identical form in the WebKitWebView interface, and another three
with slightly different names. Of these nine functions, all but one are used in the adapter
logic (in both Cake and original versions), suggesting that the GtkMozEmbed influence
has had some significant impact on simplifying the task.

The p2k example from the previous section also exhibits this influence phenomenon.
The original Unix VFS interface [Kleiman 1986] has been hugely influential in both kernel-
level filesystem interfaces (such as rump) and user-space interface (such as puffs, or Linux’s
fuse9). Even when there is no apparent ancestry shared by two interfaces, cultural factors
can lead to similarities. As will motivate the extensions presented in Chapter 6, certain
interface styles are favoured by certain communities of developers with a shared familiarity
with particular tools, particular languages and particular well-known interfaces. Case
studies encompassing deep mismatches of style would be less likely to benefit from this
kind of influence. This reinforces our belief that styles merit considerable attention in
future work.

8The relevant documentation was retrieved from http://www-archive.mozilla.org/unix/gtk-embedding.

html on 2012/5/1.
9http://fuse.sourceforge.net/

148 5.7. Evolving interfaces in distributed systems: XCL

5.7 Evolving interfaces in distributed systems: XCL

Codebases in long-lived distributed systems accumulate complexity over time. Occasion-
ally developers choose to redesign the client interfaces to shed this complexity and better
serve contemporary needs. Such an initiative began in the X Window System [Scheifler
and Gettys 1986] around 2003, when a new client library XCB was proposed to replace
the original Xlib. For clients of Xlib, an adaptation layer called XCL [Sharp and Massey
2002] was devised. We took a small but representative subset of the XCL source code
(around 600 raw lines out of 6000) and reimplemented it using Cake.

Since XCB is designed to be more minimal than Xlib, there is a small abstraction gap
between the two. As a result, some utility code from XCL whose purpose was to bridge that
gap was retained unmodified for use with our Cake implementation. Meanwhile, many
data structures are shared verbatim between Xlib and XCL, so there was only limited
opportunity to exploit the expressiveness of value correspondences.

5.7.1 Main pattern rules

The main adaptation requirement between the two interfaces is summarised by a Cake
pattern rule which matches a large number of Xlib calls (Fig. 5.21). Unlike Xlib, XCB
provides an asynchronous interface, where a request call yields a handle which is fed
to a reply call, returning a caller-freed reply object. The naming conventions in these
reply objects match mostly, but not exactly, the output parameters in the Xlib calls.
Two pattern rules capture these: an event pattern rule captures the family of calls, and
a value pattern rules captures the family of data structures by providing the necessary
name mappings.

Explicit freeing The stub pattern in Fig. 5.21 includes an explicit free() of the reply
object. We might ask whether a Cake caller free annotation could allow the compiler to
infer this call. However, unlike in the example in §2.3.7, there is no single caller-provided
storage area matched to the callee-output value in the event pattern. Rather, the returned
object is explicitly received by the stub. Consequently, its address has a chance to escape
to other code; since our compiler does not perform escape analysis, it cannot ensure that
the reply object need not remain alive after the call, so cannot infer the free() operation.

Special cases Nearly all Xlib calls take a Display pointer as first argument. In the lower-
level XCB API, the display abstraction is replaced by a XCBConnection object in most
cases, but a utility call allows retrieving a connection from a display object. Fig. 5.22
shows these rules. We use the common Cake idiom of introducing an artificial data type
to add special-case treatment for some calls—a few XCB calls require the display to be
locked before proceeding, and unlocked on return.

Stronger and weaker data abstraction Xlib defines a series of simple value types as
C typedefs of primitive data types. Meanwhile, in XCB these are more strongly abstracted

Chapter 5. Evaluating the Cake language 149

pattern /X(.∗)/(dpy, ...) −→

{ let request = XCB\\1(dpy, in args ...) ;&

let reply = XCB\\1Reply(dpy, request) ;&

{ out out args... = ∗reply;

free (r); true }

;| false ;

};

values ←− pattern /XCB(.∗)Rep/ // Cake compiler will define an Xlib-side struct...

// ... with an arbitrary name

{

// Xlib calls sometimes have a ”root” Window output parameter...

// typedef CARD32 XID; typedef XID Window;

// ... while in XCB..Rep structs, it’ s a WINDOW

// typedef struct WINDOW { CARD32 xid; } WINDOW;

root ←− root.xid ;

// similar

child ←− child.xid ;

// identifier styles differ

borderWidth ←− border width;

};

Figure 5.21: Basic pattern-based correspondences in XCL

into simple structures, forcing the C programmer to make explicit any non-opaque treat-
ment of the encapsulated value. A series of trivial value correspondences relates these.

Annotations To use the special-case value correspondences for Display, we annotate
the interfaces with the artificial data type names introduced by the correspondences, as
shown in Fig. 5.23.

String handling Fig. 5.23 also shows a new data type, encap string, being declared
among the annotations. This is useful because while Xlib uses the native C treatment of
strings, simply as pointers to null-terminated character arrays, some XCB calls use the
closer-to-protocol form of length-prefixed arrays. The encap string definition allows a
simple value correspondence to convert between these, as shown in Fig. 5.24.

Error reporting A recurring feature of stubs in the Cake code for XCL is the affixing
of a true expression at the end. Recall from our discussion of Cake’s default style (§2.3.3)
that integer-returning calls as treated as successful iff they return zero. In Xlib, many
calls are integer-returning but encode success as TRUE (one) and failure as FALSE (zero).
We therefore must explicitly give the stub’s output value rather than synthesising it from
the success of the previous call. This, together with the string handling and asynchronous
dispatch styles seen previously in this case-study, suggest that a more appropriate way
to abstract some of the XCL composition task would be to capture the styles of each

150 5.7. Evolving interfaces in distributed systems: XCL

// common cases: Display to XCB connection, with and without locking

values Display −→(∗XCBConnectionOfDisplay(that)) XCBConnection;

values Display unlocked −→({LockDisplay(that);

XCBConnectionOfDisplay(that)}) XCBConnection;

values Display unlocked ←−({UnlockDisplay(that); void}) XCBConnection;

// rarer cases

values Display unlocked −→({LockDisplay(that); that}) Display locked;

values Display unlocked ←−({UnlockDisplay(that); that}) Display locked;

// typedefs become structs

values pattern /Window|Pixmap|Cursor|Font|GContext|Colormap|Atom/

←→ \\U\\1\\E // GNU sed-style pattern rewrite...

{ ∗ this ←→ xid };

values pattern /VisualID|Keysym|Keycode/ ←→\\U\\1\\E // .. same here

{ ∗ this ←→ id };

values Time ←→TIMESTAMP

{ ∗ this −→ id };

values CARD8 ←→BUTTON

{ ∗ this ←→ id };

values Drawable ←→ DRAWABLE

{ ∗ this ←→ font.xid };

values Fontable ←→ FONTABLE

{ ∗ this ←→ window.xid };

Figure 5.22: Value correspondences between Xlib and XCB

interface separately from the individual pairwise correspondences. We revisit this idea in
Chapter 6.

Cross-rule commonality This study exposed another flaw with the current Cake lan-
guage: it has no means to factor out cross-rule commonality which cannot be captured
using value correspondences. In XCL there is some such commonality. For example, sev-
eral Xlib calls for setting window properties map to the XCBChangeProperty call, which
takes many arguments. In XCL, there is an XSetProperty function which abstracts away
most of these arguments, and series of other Xlib calls are implemented using this func-
tion. In Cake we were forced to implement each as a verbose call to XCBChangeProperty
instead, meaning the Cake version required slightly more code than the C version, as
shown in Fig. 5.25.

Table 5.6 shows the aggregate comparison of the original implementation and Cake’s.
The savings on code size are somewhat less in this study than in the previous two, with
overall code size around 70–80% of the original size. This is explained not by a single
large failing, but by the sum of small factors identified so far: the abstraction gap, the
asynchronous style of dispatch in the XCB interface, the fact that Xlib’s return conventions
do not match Cake’s default style, and the failure to capture cross-rule commonality.
There is also a fairly large number of value correspondences required up-front; had we
had the resources to implement the whole of XCL in Cake, we might expect this effort to
be amortised over a larger quantity of code.

Chapter 5. Evaluating the Cake language 151

exists elf archive (” rxvt.a ”) client of xlib

{

declare {

XFillRectangle : (dpy: Display unlocked ptr, ...) ⇒ ;

XGetGeometry: (dpy: inout Display, d: Drawable, root : Window ptr,

x: out int , y: out int , width: out unsigned, height : out unsigned,

borderWidth: out unsigned, depth: out unsigned) ⇒ ;

XTranslateCoordinates: (..., child : out Window) ⇒same screen : ; // named return value!

XQueryTree: (, , root: out Window, parent: out Window,

children : out Window[nchildren], out nchildren) ⇒ ;

}

};

exists elf archive (” libxcb.a ”) xcb library ;

exists elf archive (” xcl util.a ”) xcl util

{

declare {

XFlushGCCache: (dpy: Display locked ptr, ...) ⇒ ;

XCBPolyFillRectangle: (dpy: Display locked ptr , ...) ⇒ ;

XCBPolyRectangle: (dpy: Display locked ptr, ...) ⇒ ;

encap string: class of struct {

len : size t ;

bytes : char ptr;

};

}

};

alias any [xcb library , xcl util] xcb;

Figure 5.23: Annotating interfaces to use artificial data types’ value correspondences

// implicitly , the LHS encap string is a char[] ptr

// ... and the RHS is a structure defined in the previous figure

encap string −→ encap string

{

void −→ (if ∗that then strlen (that) else 0) len ;

void −→ (that) bytes ;

};

// specific event correspondences invoke the length-prefixed treatment

XLoadFont(dpy, name as encap string) −→

{ let f = XCBFONTNew(dpy);

XCBOpenFont(dpy, f, name.length, name.bytes);

f.xid };

XStoreName(dpy, w, name as encap string) −→

{ XCBChangeProperty(dpy, PropModeReplace,

w, XA WM NAME, XA STRING, 8,

name.length, name.bytes);

true };

Figure 5.24: String handling

152 5.8. Relation to thesis statement

// longhand in Cake, repeating the XCBChangeProperty call

XSetWMName(dpy, w, tp) −→XCBChangeProperty(

dpy, PropModeReplace,

w, XA WM NAME, tp→֒encoding,

tp→֒format, tp→֒nitems, tp→֒value);

// shorthand in C, using XSetTextProperty convenience

void XSetWMName(Display *dpy, Window w, XTextProperty *tp)

{ XSetTextProperty(dpy, w, tp, XA_WM_NAME); }

Figure 5.25: Cross-rule commonality repeated in Cake yet captured in C

C adjusted Cake remaining C %age

LoC (nb nc) 368 303 182 42 69%

tokens 2501 2264 1401 232 68%

semicolons 181 142 100 19 81%

Table 5.6: Comparison of an XCL subset in Cake and C.

Full versions of all the Cake code discussed in this Chapter may be found in Ap-
pendix D.

5.8 Relation to thesis statement

The thesis of this dissertation claims “using a special-purpose language, based on relations,
to compose heterogeneous mismatched software components, is significantly more effective
in practice than conventional programming languages”. With the exception of the word
“heterogeneous”, this chapter (as a culmination of those preceding it) has substantiated
this statement. The “significance” of our results rests on the fact that in the worst case, a
25% reduction of code size, and in most, 60% or more was achieved. This scale of reduction
is clearly significant, in that it could not be achieved by minor syntactic variations on
conventional languages. To further substantiate this, our detailed discussion of each task
has related these code-size improvements specifically to the language’s design elements
as described in previous chapters. For the cases where the Cake language happened not
to enable a desired benefit, we have highlighted the responsible root shortcomings of the
current Cake , and in most cases described incremental improvements which would allow
a language very similar to Cake to overcome these limitations.

The one aspect of the thesis statement which remains unsubstantiated is the claim that
Cake can compose heterogeneous components. This is the subject of the next chapter.

Chapter 5. Evaluating the Cake language 153

5.9 Closing remarks

Any language design raises a host of questions about the various properties of the language
and its programs. Aside from questions relating to the thesis statement, the experiences
presented in this chapter have raised several other issues deserving consideration. This
section briefly notes a selection of such questions and suggests how each of them might
be resolved.

Performance Achievable performance using Cake depends greatly on the “cut” of the
interfaces being composed. We have several reasons to believe that Cake’s generated
code can be acceptably efficient in many cases. It is often structurally similar to hand-
written code (particularly the p2k study). Link-time optimisations can be applied after
Cake has done its work. The relatively slow uptake of link-time optimisation suggests
that cross-library calls are rarely performance-critical (cf. intra-library calls). Finally, as
previous chapters have described, there is huge scope for adding further annotations and
analysis to allow generation of faster code. Similarly, the previous chapter has described
the potential for reducing the overhead imposed by Cake’s runtime (such as that of heap
instrumentation described in §4.3.2).

Applicability and scale Cake’s range of applicability can only be discovered in longer-
term studies. However, its underlying model is highly general and certainly not limited
to the kind of single-process procedural interactions with which it has been demonstrated
so far. For example, Cake’s design might apply particularly well to distributed message-
passing systems. (This is a particularly interesting possibility, since in systems where
storage is naturally replicated more than it is shared, the performance penalties and
object-sharing complications detailed in §4.4.4 do not arise.) Regarding the scale of target
codebases, we note that our evaluation case studies are relatively small. However, one
would expect interface size or “surface area” to grow sublinearly with both component
size and program size (“volume”). Again, deeper and longer-term studies will be required
to establish this.

Binaries and styles One usability issue not accounted for in our measurements is
that the programmer must understand two versions of their interface: source-level and
binary-level. With C code (the “default style” target) these two views are usually very
similar, although they can be obscured by use of the preprocessor (e.g. to redirect function
calls or modify their arguments). The problem becomes more significant when targetting
components written in higher-level languages, as the gap between language level and
object code level widens. The work presented in Chapter 6 will partially address this
problem.

154 5.9. Closing remarks

Chapter 6

Extending Cake with component

styles

In previous chapters we have described the core Cake language and shown it to be effective
with respect to a sample of real programming tasks. However, both the language design
and the selection of tasks were somewhat narrow. Cake’s “default style” (§2.3.3) limited
many of the interfaces to those typical of C code. Meanwhile, this limitation was reflected
in the selection of tasks which were addressed in Chapter 5.

In this Chapter, our main contribution is identifying a class of diversity in software
component interfaces which we call stylistic variation. We explain how it encompasses
the diversity observed between binary components that are heterogeneous with respect
to the languages, tools and coding styles used to produce them, and how it is useful to
capture this within a composition tool. We then consider the requirements for extending
Cake so that it can abstract away this diversity, and sketch some modest and conceptually
straightforward extensions which achieve this.

6.1 Introduction

As described so far, the Cake language describes correspondence relations between con-
crete, existing component interfaces. However, there are other useful approaches to ab-
stracting composition tasks. Cross-cutting similarities occur across large numbers of com-
ponent interfaces, even when these are dissimilar in their function. We will call this phe-
nomenon stylistic variation, and explore examples shortly. Stylistic variation presents an
opportunity to amortise certain kinds of Cake programming effort over large numbers of
composition tasks, by capturing styles independently of composition context. Our goal is
to allow stylistic diversity to be abstracted away, so that the programmer can focus on
composition-specific issues.

Object code has the benefit of providing a unifying view of many target components.
However, since this view is relatively low-level, different language implementations may
choose many different ways of encoding the same higher-level meanings within object code.
Therefore, styles must capture not only interface conventions chosen by the programmer,
but also conventions chosen by tool implementors.

156 6.2. Motivation and simple examples

struct wc; // implemented in C

// struct is treated opaquely by client

struct wc ∗word counter new(const char ∗filename);
// returns NULL and sets errno on error
// in Cake, annotate caller free (word counter free)

int word counter get words(struct wc ∗obj);
int word counter get characters(struct wc ∗obj);
int word counter get lines(struct wc ∗obj);
int word counter get all(struct wc ∗obj,
int ∗words out, int ∗characters out, int ∗lines out);

void word counter free(struct wc∗ obj);

class WordCounter // implemented in Java
{
/∗ fields not shown... ∗/

public WordCounter(String filename)
throws IOException { /∗ ... ∗/ }

public int getWords() { /∗ ... ∗/ }
public int getCharacters () { /∗ ... ∗/ }
public int getLines () { /∗ ... ∗/ }
public Tuple<int, int , int> getAll() { /∗ ... ∗/ }

};
// implicitly , deallocation is done by unreferencing + GC

Figure 6.1: Two stylistic variants of the same component

6.2 Motivation and simple examples

We begin with a very simple artificial example, then progress to more realistic scenarios.

6.2.1 Simple example

Suppose two programmers independently develop a simple component for counting the
lines, words and characters in a file; Fig. 6.1 shows what they might write.

It is quite clear that these components are functionally identical. However, they are
somewhat different superficially. Output parameters have been encoded differently, as
have character strings. One component provides an explicit resource management API,
implicitly also handling initialization and finalization, whereas the other provides only
an explicit initialization API. Naming conventions for multi-word identifiers also differ.
Moreover, the components are written in different languages, so compilation will introduce
further differences. Calls to the Java component will use virtual function dispatch and
exception handling, while C code will not.

These conventions are not invented anew by each programmer. Rather, they are
imported from a wider shared repertoire, perhaps defined by a language, a toolchain, or
simply a coding style. If we can capture these conventions in a one-time effort for each
style, hence abstracting away these recurring differences, we can avoid repeated effort by
users of Cake (and similar tools) in carrying out successive programming tasks.

In more realistic examples, there will be not only stylistic differences, but also differ-
ences in how each programmer has modelled the domain. These are precisely what the
usual kind of Cake rule—which we call “bilateral rules”—is suited for. Fig. 6.2 shows
the relationship between styles and a more familiar application of Cake. Styles may
be thought of as “views” or “lenses” which abstract interfaces “vertically”, recovering a
more abstract interface from a more concrete one. Bilateral Cake rules can then be writ-
ten “horizontally” at the more abstract level. In rare cases such as Fig. 6.1, where there
are only stylistic differences, then at the abstract level, the components will link simply
by name-matching and no bilateral rules will be necessary.

Chapter 6. Extending Cake with component styles 157

A.o B.o

style_X(A.o) style_Y(B.o)

style_W(

style_X(A.o))

style_Z(

style_Y(B.o))

smaller extent of mismatch

after applying styles

large extent of mismatch

in raw components

abstraction

Figure 6.2: Styles as interpretations underlying familiar Cake coding

6.2.2 Examples from earlier chapters

Earlier chapters in this dissertation have already provided real examples motivating aware-
ness of styles within Cake and similar tools. In Chapter 2 we identified several classes of
convention which vary from component to component, including error reporting conven-
tions (§2.3.4), output parameters (§2.3.7), and representations of common abstractions
such as lists, strings and sets (§2.3.8). In Chapter 5 we noted some areas where Cake’s
“default style”—which attempts to capture the common-case conventions found in many
C APIs—did not optimally abstract the composition tasks presented by the interfaces
concerned. Specifically, in the Epiphany study (§5.6), we imported some utility code for
dealing with history lists, because re-creating the GObject boilerplate could not be done
conveniently or robustly within Cake. Meanwhile, in the XCL study (§5.7) we found that
error-reporting conventions did not match Cake’s default style (in that they returned
nonzero on success), while the two interfaces used two different but commonplace string
representations (length-prefixed versus null-terminated).

6.3 Dimensions of stylistic variation

The usefulness of styles derives from their recurrence across a large population of compo-
nents. What interface conventions recur in this way? By its nature, this question can be
answered only empirically.

To this author’s knowledge, there are no existing studies on stylistic variation as a
whole, although partial surveys of variation within a particular concern have sometimes
emerged from other work relating to that concern [Lamb 1990; Ellis et al. 2007] but
motivated by other factors than composition.

In the absence of a formal study, we must rely on experience gathered in previous
chapters and general programming experience to obtain an overview of this space of

158 6.3. Dimensions of stylistic variation

interface conventions. Table 6.1 presents a catalogue of stylistic concerns gathered in this
way. Note that our catalogue need not be exhaustive; the Cake extensions we will develop
are for user-defined styles, using the list as a guide, but not limited to styles chosen from
this list specifically.

6.3.1 Properties of interest

Table 6.1 deserves a detailed explanation. We consider each of the table’s columns in
turn.

Abstract concern This column identifies a shared intention underlying a set of alter-
native interface conventions. These concerns are the root of our interest in styles: if there
were only one way for a given abstract concern to be realised concretely, then there would
be no need for composition tools like Cake to support multiple styles.

Sample concretion approaches These describe broad equivalence classes of approaches.
Within each class, the differences between each approach are relatively superficial. Each
group member might therefore be considered a particular parameterisation of one over-
arching logical style. Note also that these concretion approaches are not mutually ex-
clusive; some styles will combine many of these at the same time. For example, many
C library calls report errors by some combination of the return value, the errno global
and an error discovery function like ferror(). We will consider both composition and
parameterisation of styles in due course.

Concrete examples and reference This columns lists real APIs, well-known pro-
gramming idioms or documented tool implementations instantiating a given concretion
approach. Since we are implicitly interested in conventions appearing at the object code
level, notice how these concretions descend right down to the binary level, and are a mix-
ture of tool- and programmer-selected conventions. For most examples, a bibliographic
or section reference to further details is provided.

Classification We label each stylistic concern by a subset of mechanism, Dwarf, Pla-
tonic, dataflow, structural and runtime. These will be explained inline as we walk through
the rows of the table, and are highlighted in bold type when first introduced.

6.3.2 Abstract concerns

Most rows of the table are self-explanatory, but we add the following notes on selected
rows.

Chapter 6. Extending Cake with component styles 159

Procedure call Local procedure calls may be implemented in a variety of ways using a
mixture of registers, the stack and static storage. The mechanism tag remarks that these
lie below Cake’s baseline abstraction level; the Cake language has no means to describe
them (§3.4). However, a Cake implementation may support them using mechanism-
specific knowledge. Remote procedure calls are usually rendered as interprocess com-
munication system calls, with arguments and return values encoded in particular ways.
Subsequent rows cover these argument encodings.

Error reporting Certain data values indicate errors; we may need to gather them from
diverse sources (return values, error discovery functions, etc.), and decode them using
various conventions. The tag Platonic notes that since error return is a concept built-
in to the Cake stub language, Cake defines a standardised abstract interface which any
style definition addressing this concern should satisfy. The “mechanism” tag also applies,
specifically to exception handling, because this is generally implemented by intricate stack
manipulations which, like calling conventions, lie below Cake’s level of abstraction. The
data flow tag denotes that error conventions are a concern which can be directly observed
in the trace of data flowing across an interface; we explain the significance of this at the
end of this section.

Name mangling and word-separating The Cake compiler performs name-matching.
Different ways of encoding the same names therefore represent a stylistic concern which
Cake should abstract. Often, demangled names are available in debugging information,
so do not require separate user-provided description. However, ad-hoc naming and word-
separating conventions could usefully be interpreted in the Cake compiler, much like
pattern-based Cake rules (§2.2.11), allowing more correspondences to be formed automat-
ically.

Unstructured and composite values Encodings of unstructured and structured data
are described by Dwarf, and Cake inherits an understanding of these. However, not
all stylistic alternatives are supported: for example, string-based encodings of values
would require extending Dwarf with some sort of grammar-based description of variable-
length encodings. Dimensions which would require Dwarf extensions to be captured
within Cake are tagged with Dwarf in the Classification column. We use “functionally
abstracted” to denote interfaces, like getter and setter interfaces in this example, which
hide access to state behind function calls; it need not indicate a functional programming

style per se.

Call demultiplexing Polymorphic code [Strachey 1967] invariably embodies a concre-
tion process in which an abstract operation is mapped to one of many concrete imple-
mentations. We call this process “demultiplexing”. Examples include static overload
resolution [Stroustrup 1997], virtual function calls (demuxed by an indirect table look-
up), and other, more flexible dispatch processes [Lindholm and Yellin 1999; Alpern et al.
2001; DeMichiel and Gabriel 1987; Chambers 1992; Clifton et al. 2000]. User-level solu-
tions also exist, such as a simple switch statement (e.g. on a “type” or similar field, as

160 6.3. Dimensions of stylistic variation

Chapter 6. Extending Cake with component styles 161

Table 6.1: Dimensions of stylistic variation, with examples

162 6.3. Dimensions of stylistic variation

seen in C code) or the complex Visitor pattern [Gamma et al. 1995]. Components may
be mismatched in what demultiplexing is performed (e.g. on what arguments), how (i.e.
by what mechanism), how much (i.e. how fine-grained) and by whom (caller, callee or an
intermediary). Many implementations yield nontrivial relationships between families of
calls (e.g. “all polymorphic calls in class C”) and the data structures used to demultiplex
those calls (e.g. “the vtable for class C”). This explains the structural tag: demulti-
plexing concretions often rely on static structural constraints which cannot be expressed
in familiar Cake rules.

Call multiplexing Demultiplexing’s converse is where a single physical call provides
access to multiple logically distinct operations. This multiplexing is usually simple, in
that the logical call is encoded fairly directly, for example as an argument, as with Unix’s
ioctl() [IEEE POSIX, 1988], or else Unix’s execve() where the logical operation is encoded
as a command and its arguments.

Object initialization Initialization calls show great stylistic variation. This may be
integrated with memory allocation, as with the C++ new operator, or not, as with C
APIs reliant on malloc(). This concern is labelled runtime because it has a special
interaction with the Cake runtime: since Cake rules require the runtime to initialize and
update logical replica objects (§4.4.4), knowledge of this style can ensure that correct
initialization procedures are followed for runtime-created objects (e.g. invoking a relevant
C++ constructor).

Contextual initialization Object initialization often brings obligations to initialize
or somehow update state in the object’s environment. For example, many APIs require
that certain objects are “registered” by calls on other objects before they are usable, in a
separate step from the object’s own initialization. The p2k study in Chapter 5 discovered
a fragment of C code which could not be reimplemented in Cake precisely because of reg-
istration calls. Similarly, dependency constraints on initialization are common, meaning
some objects must be initialized before some other may be created or used.

Formatted object representation Many components can generate human-readable
representations of objects. These may be captured by language-defined conventions such
as Java’s toString() method or C++’s overloadable ¡¡ operator. They may also be ad-hoc,
e.g. a print ¡data type¿() function in C code.

Synchronisation Abstract requirements such as “ensure this sequence of operations
appears atomic” or “wait until condition X becomes true” are communicated across many
concrete interfaces. Often these use fairly simple functional abstractions (e.g. Unix’s
pthread mutex lock() and family), but occur in very complex patterns of use.

Run-time self description Many languages allow introspectively discovering descrip-
tions (or “type information”) of objects. In object code these appear as accesses to

Chapter 6. Extending Cake with component styles 163

compiler-inserted fields or calls to runtime functions. In other languages, some libraries
layer descriptive information into data structures, by adopting particular layout conven-
tions and defining related functions, as in the GObject library [Krause 2007]. These bring
structural constraints, since they depend on a systematic static embedding of descriptive
information. They are also useful to the Cake runtime, as they provide mechanisms for
discovering object descriptions which might be more efficient or precise than Cake can
discover on its own (§4.3.2).

Abstract resource management Many programs consume abstract resources, such
as file handles, network connections, mutexes, slots in a fixed-size data structure, and so
on. Management of these is distinct from memory management. For instance, a garbage
collector will not release them automatically without special instruction. Interface con-
ventions for management functions show considerable stylistic variation. The Microsoft
CLR [Meijer and Gough 2001] defines a special IDispose interface for objects encapsulating
abstract resources; calling this correctly is the programmer’s responsibility. Meanwhile,
the “resource acquisition is initialization” style in C++ works by ensuring that abstract
resources’ lifetimes are tied to an object’s.

We have seen a large variety of stylistic concerns, some apparently quite different from
others. Rather than attempting to address them all here, we narrow our focus on data

flow concerns. This is the common case: the majority of table rows have this tag, and
these are concerns that most reflect the usual operation of the Cake: affecting how data is
interpreted and converted as it flows between mismatched components. Styles involving
mechanism, runtime-specific concerns, Dwarf extensions and structural constraints are
left for future work.

Subsequent discussion of an extension to Cake is split into four parts. Firstly, we
establish an understanding of the requirements on an stylistic extension to Cake, by
considering the abstract nature of styles and contrasting it with existing Cake features.
Secondly, we introduce some concrete syntax and simple examples of styles, considering
an application to a value correspondence-like style rule. Thirdly, we use this example
to discuss a process by which styles rules can be composed into familiar bilateral Cake
rules with fairly little programmer guidance. Fourthly, we discuss a technique which can
make a certain class of Cake rules apply bidirectionally, and consider its application to
functionally abstracted stylistic concerns in the form of event correspondences.

6.4 Understanding styles

This section begins our outline of a design for an extended Cake language which captures
component styles. It seems sensible that this should appear as a new kind of toplevel
statement, the style definition. Beyond this, we must ask: how do styles differ from the
kind of Cake code we have been writing before? How are they similar? This section
presents several answers to these questions.

164 6.4. Understanding styles

6.4.1 Lack of context

Recall that all Cake rules that we have seen so far occur in a link block inside a derive
statement (§2.2.7). In other words, they are specified relative to a concrete composition
context. By contrast, a style definition must lie outside any such context. Styles may
nevertheless require certain properties of the components they apply to—for example, to
require existence of particular named functions or data types.

Styles are Cake’s re-use mechanism. Unlike bilateral rules, styles are not specific to
a particular task, and may be re-used. Indeed, they are not useful otherwise. Like any
re-usable programmatic definition, lack of context means that a style definition cannot
fix all its internal details. Rather, it must be parameterised. For example, many styles
are found concretely as functionally abstracted interfaces. Rather than fix on the precise
names of each function in that interface, we would prefer to parameterise styles on those
names, so that the names can be supplied at style instantiation time, without preventing
other details of the abstract interface to be specified earlier in the style.

Lack of context brings a final conceptual difficulty: interface mismatch “at the Cake
level”. Now that developers are building libraries of styles rules, for use later in unknown
contexts, there is the potential for different developers to factor stylistic concerns differ-
ently, or choose different encodings of the same abstract concerns, and later find that their
styles do not compose with those of other developers. Any tool designed to capture styles
should attempt to mitigate this phenomenon. The notion of Platonic forms partially
addresses this problem (as explained in §6.7.4).

6.4.2 Styles as relations

By the time Cake sees a component, at the object code level, each concern in Table 6.1
will appear in one of its rightmost (most concrete) forms in the table. In order to abstract

away these concrete details from an interface, we wish to recover a leftmore, more abstract
view.

One key insight for adding this ability to Cake is that we are able to use Cake’s existing
linguistic abstraction, namely interface relations, in the form of event correspondences and
value correspondences, to do so. Rather than relating two concrete interfaces, as before,
we relate an interface in a rightmost form (as seen in the table) with a more abstract,
leftmore version of itself.

6.4.3 Composition of styles

No nontrivial component uses only a single style. Programmers select styles on a concern-
by-concern basis, so many styles may be evidenced side-by-side within a single component
(“independent composition”). Moreover, styles may build on other styles. For example,
run-time self-description might be exposed as a polymorphic operation building on a par-
ticular demultiplexing implementation; compound values might be encoded into strings,
for a particular string implementation; a functionally multiplexed entry-point might define
a resource management interface; and so on.

Chapter 6. Extending Cake with component styles 165

Style definitions must support both kinds of composition. In practice this means that
the Cake compiler is charged with composing style rules to form bilateral rules which
incorporate stylistic advice. This elaboration process is described in §6.6.

6.4.4 Reversibility of styles

Like other Cake rules, there is potential for styles to be bidirectional. This means rules
which describe not only how to recognise a particular abstract meaning encoded within a
concrete component, but also how to generate an alternative concretion of that abstract
meaning. Since style definitions are intended to be re-usable, there is an added incentive
to make the extra effort necessary to support both directions, and to package these in the
same definition.

6.5 Expressing and applying styles

Having established that our design must support compositional application of styles, we
now consider how this should work concretely.

A simple example of styles concerns encoding of booleans. This features in Table 6.1
in the “unstructured value encoding” row, “enumerated injection” sub-row. Although
Dwarf, and hence Cake, has a built-in notion of booleans (the DW ATE boolean base
encoding), not all components describe booleans in this pre-abstracted way. For example,
C code (predating the C99 standard’s introduction of a Bool data type) encodes booleans
as integers, with zero indicating false and nonzero indicating true. On the other hand, an
opposite convention exists in Unix shell programming: zero indicates truth, and nonzero
indicates falsehood. In Cake there are no default conversions between boolean primitives
and integers, precisely because these conversions are subject to stylistic variation.1 Fig. 6.3
shows two Cake style definitions capturing these two alternative conventions. As one would
expect, the style uses Cake’s table construct (§2.3.6) to relate enumerated sets of values.
The styles are parameterised on an identifier integer typename—partly because languages
other than C name integers differently, and partly for other reasons explained shortly.

To allow both layered and independent composition of styles, we require the program-
mer to apply styles to an input component in a particular order. This puts the user in
control of both layered composition (where ordering is used to select intended interactions)
and independent composition (where reordering can avoid unintended interactions). This
ordering is specified at the exists block which introduces each component, also shown in
Fig. 6.3.

To summarise: at their simplest, styles are libraries of correspondences. Unlike bilat-
eral rules, they are designed to be useful across many composition tasks. However, many
styles are written much like correspondences seen in earlier chapters. Instead of relating
two components, they relate two views of the same component: a more concrete view
(always on the left) and a more abstract (on the right). Styles may be parameterised (in

1Here we are distinguishing the core of Cake from the default style, which does define such conversions

precisely as in the c89 booleans style in Fig. 6.3.

166 6.6. Elaboration of styles

style c89 booleans(integer typename)

{

table integer typename ←→boolean

{

0 ←→ false ;

−→ true; /∗ note the order-dependent (impure) pattern matching ∗/

1 ←− true;

};

};

style shell booleans(integer typename)

{

table integer typename ←→boolean

{

0 ←→ true;

−→ false ;

1 ←− false ;

};

};

exists c89 booleans(BOOL)(// ←−apply style, instantiating parameter to ”BOOL”

elf reloc (”componentA.o”) // ←− basic component specifier

)

componentA; // ←− overall identifier for component

Figure 6.3: Two styles and an applying exists block

a macro-like fashion) to widen their applicability, and these parameters are supplied at
exists-time.

What is the effect of applying the style? The short answer is that when the component
is used subsequently in a link block, the compiler may form correspondences that would
not otherwise be formed—in this case, correspondences for handling integers encoding
booleans. Beyond an ordered list of styles, the programmer should not need to give any
further guidance to the compiler on which rules to apply. Rather, the compiler should
automatically infer a sensible composition of rules. The key conceptual challenge of this
is to support “multi-hop” Cake rules: values or function calls being corresponded over a
sequence of rules, chosen automatically from style definitions. This is performed in an the
elaboration process, as we describe next.

6.6 Elaboration of styles

Consider composing two C components, componentA and componentB, each representing
booleans as integers. With no other styles defined, we have no information about which
integers in the C components are actually encoding booleans. Therefore, the usual (im-
plicit) int←→ int rule will apply when ints are passed between components. Now suppose
componentA uses the C conventions, whereas componentB uses the shell conventions. This
composition is mismatched, but since the int ←→ int still applies, Cake will not address

Chapter 6. Extending Cake with component styles 167

int int

abstraction

in style
c89_style_booleans

(BOOL)

in style
shell_style_booleans

(BOOL)

in empty stylein empty style

alternative high-level

bilateral rule
related vertically

by style rules

compiler

chooses the most

abstracting flow

0

false false

1

low-level rule does

not respect the latent

boolean abstraction

Figure 6.4: Alternative flows enabled by styles

this mismatch. To fix this, we need to somehow annotate the input components to identify
which integers are really booleans. Then we expect the Cake compiler to perform some
automatic analysis to work out what rules should apply to these integers. This analysis
is the elaboration of styles.

6.6.1 Elaboration disambiguated using annotation

To begin with the simplest case, let us assume that this “annotation” has been done for
us, in that the C programmer has used typedef to create a synonym for integers, used
exactly when they represent booleans. (Recall from §2.3.5 that Cake unifies data-type
synonyms with annotations used to select among value correspondences, and calls these
artificial data types.)

After applying this style, we have two possible “flows” for BOOL instances: one treat-
ing the BOOL in the style-specified way, and one treating it as a plain integer. Fig. 6.4
illustrates. This ambiguity is a generalised version of the value correspondence ambiguity
problem (§2.4.4). Instead of selecting a single value correspondence, we are selecting a
several in a sequence of “hops”. We call such a sequence a “flow”. (In the earlier version
of Cake, without style support, flows consisted of a single hop only, so were of no special
interest.) A flow is structured as a sequence of “abstracting” style rule applications (i.e.
rules read from left to right), then a bilateral rule (either explicit or formed by name-
matching), and then a sequence of “concreting” style rule applications (i.e. rules read
from right to left). As before, we gain flexibility by resolving the selection of rules only
in a particular composition context. This allows styles to define what may happen, inde-
pendently of context, and leave the tool to determine what must happen once a specific
composition is being formed.

6.6.2 Semantics of elaboration

In this example, implicitly there is at least one bilateral rule passing a BOOL from one
component to another; when compiling this, the compiler must select a particular sequence

168 6.6. Elaboration of styles

of value conversion rules, including potentially any number of style rules on each compo-
nent’s side. Loosely, the language’s semantics are to always choose the “most abstract”
option, meaning the “tallest stack” of styles (as in Fig. 6.4).

More precisely, a “flow” is defined a sequence of style-defined value correspondences
either upward from the value-source component, or downward to a value-sink component.
The relative ordering of styles in an “upward” direction is from innermore to outermore
styles, as specified in the exists statement (see Fig. 6.3). From any single style at most one
rule will be selected in any flow. Cake always prefers a more abstract flow, where a flow A

is more abstract than a flow B if B is a strict prefix of A when written in upward order.
This defines a partial order; it is an error if the compiler finds two possible flows (G, H)
without either G more abstract than H or vice-versa. The presence of such ambiguous
flows usually indicates that the programmer applied too many styles simultaneously to
the input components.

This search for the “most abstracting” composition of styles is the core of the elab-
oration process. Note that the process is performed statically, within the compiler. Its
output is conceptually similar to a set of bilateral correspondences such as a Cake pro-
grammer could have written by hand. However, these correspondences may internally by
implemented by many stages of functional interposition, many levels of value conversions,
and potentially many levels of logical replication (if objects are not shareable).

As before, the set of “source” and “sink” data types is bounded by the sets of data types
defined in each of the pair of components, augmented by any artificial types introduced
by annotations. Annotation fragments may introduce only statically named artificial data
types (that is, the name following the as may not be computed). This, together with the
fact that styles do not recurse (each style named in a given component’s exists block is
applied at most once during elaboration) ensure that elaboration is a necessarily finite
process.

6.6.3 Adding annotation using quantification

If we didn’t have a convenient typedef in our previous example, we would require another
way to identify the contexts where an int models a boolean. For example, perhaps an API
contains many calls with parameters named flag, which are declared as int but actually
model booleans (under one of our conventions). Capturing these styles means generalising
our notions of quantification and context, so that we can identify precisely those places in
unannotated code where particular rules should apply. The rule in Fig. 6.5 is guarded by
a square-bracketed guard predicate. This constrains the application of the rule to contexts
where the guard pattern can be instantiated. Here, it requires that flag is the name of a
parameter to some function; the same flag is then subject to a new rule, annotating it to
be treated as the data-type syn name.

Note that this kind of rule is not strictly a value correspondence: it is a “fragment”,
inserting an annotation which influences subsequent selection among other value corre-
spondences. This is analogous with how explicit annotations are used in bilateral rules,
again with the as construct. Unlike explicit annotations, fragments perform quantified

Chapter 6. Extending Cake with component styles 169

style boolean as integer synonym(syn name)

{ /∗ guard in square brackets ∗/ /∗ ... followed by guarded rule ∗/

[: (..., flag : int , ...)] flag −→ flag as syn name;

};

Figure 6.5: A style with guard predicate

style boolean as integer synonym(syn name)

{

[@x in /.∗ flag. ∗/, // ”in” meta-predicate allows ”x” to range over matched identifiers

: (..., @x: int , ...)] @x −→ @x as syn name;

};

Figure 6.6: A style using a metavariable-based guard predicate

annotation: the annotation may apply in any context matching the guard. When con-
structing possible flows, guard-satisfying fragments are considered alongside value corre-
spondences as potential abstracting steps of the flow. Instantiation of the fragment within
a flow leaves a “dangling” use of some artificial data type name (named by the parameter
syn name) which may or may not be resolved by outermore styles; if not, then no flows
containing the fragment will be considered. This hints that elaboration of flows may be
implemented using a backtracking search algorithm.

Note that use of the name flag, in addition to naming a quantifying variable, provides
a name constraint: it matches parameters called flag, only. This is consistent with the
Cake language as used throughout this dissertation: when identifiers are preceded by the
colon, they are bound to a like-named element in the component’s debugging metadata;
in other lexical contexts, a name such as flag is universally quantified over any value
appearing in the relevant program context. In contexts involving the colon, we can use an
identifier having the @ prefix, called a metavariable, to provide the quantifying behaviour.
Metavariables can be useful for describing more complex guard conditions that require
multiple references to a recurring matched value, without any constraint that the same
name be used to denote that value in each relevant entry in the underlying debugging
information.

Contexts appearing in guard expressions, like normal Cake rules, may reference certain
elements of static or dynamic context. For example, in Fig. 6.5 we reference flag’s context
within an argument tuple, which constitutes a piece of context defined relative to the input
component’s static form (i.e. the argument list of some function in an input component’s
debug information); it does not specify any dynamic context such as what calls precede
the call being matched. In general, static context is available for any rule, but availability
of dynamic contexts varies between rules. For example, only event correspondences may
be guarded on dynamic call context, whereas value correspondences may not, because
blackboards are only inserted at specific places within generated code.

170 6.7. Reversibility

// abstract a single ioctl

style ioctl call (subcall ident)

{

ioctl (fd , subcall ident , args...) −→ device op ## subcall ident(fd, args);

};

// abstract all ioctls that we know about

style ioctl all

{

[@x: const int , #@x in pattern /.IO.. ∗|..(GET|SET){1,5}/]

// here ˆ ”const int” should really reference DW MACINFO data (see text)

ioctl (fd , @x, args...) −→ device op ## @x(fd, args);

};

Figure 6.7: A simple stylistic event correspondence

6.7 Reversibility

It is worth re-stating an underlying motivation for styles: that the bilateral Cake program-
mer should be oblivious as to whether the composed components use the same or differing
styles. This means not only that Cake can provide an abstract view of components, but
that that it can compose components that are different underneath that abstract view.
Given this requirement to support heterogeneity, it is especially important that styles can
be applied in both directions: both recognising (relating concrete with abstract) and gen-

erating (relating abstract with concrete). The recognition step “undoes” some concretion
into an abstract form, and the generation step “replays” a (usually) different concretion.

Rules for relating values are generally written to be reversible as a matter of course
(for example, in the c89 booleans style, where we provided rules covering both directions)
because values often flow in both directions. Styles may also be used to abstract function
calls. In this case, reversibility presents more problems. We now discuss these problems
and outline a technique for handling various common cases.

6.7.1 Event style rules

At their simplest, event styles are simply ways of recognising concrete calls, or patterns
of calls, and interpreting them as (usually) a simpler, more abstract call. As a trivial
example, consider a caller invoking a control operation on a device. In Unix, this is
done with the ioctl() call, which is parameterised by a “sub-call” argument identifying
the operation. Fig. 6.7 shows style rules for abstracting occurrences of ioctl() into their
own function call. The first style abstracts occurrences of a single sub-call; the second
attempts to abstract all known sub-calls.

As an aside, we note that the extended quantification introduced by styles allows
Cake to perform nontrivial metaprogramming. Both examples use the identifier pasting
operator##, taking after the C preprocessor (but necessarily implemented entirely within
the compiler), to compute a composite identifier for the abstract call. The second style
also uses # to reify an identifier as a string, in order to perform meta-level reasoning, here

Chapter 6. Extending Cake with component styles 171

testing that the identifier matches a pattern. In the second style we are attempting to
quantify over all symbolic constants denoting ioctl() subcalls. (Unfortunately, as written,
the style will not quite work, because these symbolic constants are coded as C preprocessor
macros rather than compiler-visible named constants. However, macro definitions can be
expressed in Dwarf information, albeit manifested somewhat differently to symbolic
constants. Therefore, only a small extension to the Cake language is required for the
example to work correctly.)

6.7.2 Abstraction as normalisation

We note that the underlying ioctl() is rendered as a multiplexed entry point so that the set
of defined opcodes can be transparently widened later without resorting to adding a new
top-level function call to the API. However, this has the side-effect of misusing the func-
tional abstraction somewhat: abstractly separate functions are no longer represented as
concretely separate functions. (Note that in no conceivable usage is the subcall argument
a computed value.) Our intention in writing this style is to reduce the “mismatch gap”
with alternative interfaces providing the same logical functionality. Normalising away
ioctl()’s peculiarities is sensible because any alternative device control interface (which
we might want to link with a client calling ioctl()) is unlikely to be multiplexed in the
same way; the target “normal form” is one where each logical function appears as its own
“physical” function.

Note that our approach to this normalisation risks introducing ambiguity: if we found
two or more symbolic values for the same integer value (say FIONREAD == 0x541B
and also TIOCINQ == 0x541B, to use a real example), the second event correspondence
would become ambiguous, because there would be two different ways of abstracting a call
matching ioctl(, 0x541B, ...). This is exactly the same ambiguity as would arise if we had
written, in the Cake of Chapter 2, two different event correspondences for such a pattern.

For resolving this ambiguity, we take the usual approach: delay decisions on which
abstractions apply until composition time, and then search the space of style applications
to find the “most abstract” resolution that satisfies the requirements of the linked inter-
faces. This might resolve the above ambiguity if, say, a later style rule further abstracted
device op FIONREAD() and not device op TIOCINQ(). As before, cases where there is
no such unambiguous resolution are an error which is pushed back to the user.

6.7.3 A multi-call example

As a more advanced example of styles interpreting function calls, consider a caller written
in C but consuming a Java library, using the Java Native Interface [Liang 1999]. Fig. 6.8
shows the C code a JNI programmer might write to call a function, and Fig. 6.9 shows a
Cake fragment that might abstract the resulting object code. It uses a familiar context-
predicated Cake event pattern (§2.3.1), but where each element in the sequence has its
own guard predicate. Aside from the guard predicates and metavariables, Fig. 6.9 looks
much like a familiar event correspondence. (Clearly, in a realistic scenario we would write

172 6.7. Reversibility

JavaVM ∗jvm;

JNIEnv ∗env;

JavaVMInitArgs vm args;

long status = JNI CreateJavaVM(&jvm, (void∗∗)&env, &vm args);

if (status != JNI ERR)

{

jclass cls = (∗env)→֒FindClass(env, ”java/lang/System”);

if (cls)

{

jmethodID mid = (∗env)→֒GetStaticMethodID(env, cls, ”currentTimeMillis”, ”(J)V”);

if (mid)

{

jint result = (∗env)→֒CallStaticLongMethod(env, cls, mid, 5);

} // else handle error

} // else handle error

} // else handle error

Figure 6.8: JNI C code, such as could be abstracted as in Fig. 6.9

style jni static longcall (classname, funname, argsig)

{

[status != JNI ERR]

(status , jvm, env) ⇐ JNI CreateJavaVM(out , out ,), ...,

[cls != 0, @FindClass == (∗env)→֒FindClass]

cls ⇐ @FindClass(env, #classname), ...,

[mid != 0, @GetStaticMethodID == (∗env)→֒GetStaticMethodID]

mid ⇐ @GetStaticMethodID(env, #funname, #argsig), ...,

[@CallStaticLongMethod == (∗env)→֒CallLongMethod]

@CallStaticLongMethod(env, mid, args...) −→ classname ## ## funname ## ## argsig(args...);

}

Figure 6.9: Recognising and abstracting a concrete sequence of calls

rules for capturing not only invocations dispatched by CallStaticLongMethod but also ones
dispatched by other JNI calls.)

We would like Cake compositions to effectively perform an “undoing” one concretion—
for example, “undoing” JNI concretion into an abstract form—and then generating an
alternative concretion using other rules in the other direction. This enables a “mix and
match” compositionality between heterogeneous components, provided only that we can
abstract them to a common form that can be related with (hopefully trivial) bilateral Cake
rules or simple name-matching. (This is similar to the “objectification” transformation
of COMPOST [Assmann et al. 2000], but additionally retains Cake’s usual benefits of a
language-agnostic, black-box and binary approach.)

“Reversing” an event style rule implies that it should be bidirectional. We noted in
§3.7 that fully general bidirectional correspondences are not yet expressible in Cake. The
main challenge identified there was to unify event context patterns (§2.3.1) with stubs
(§2.3.2). However, rules like the JNI rules in Fig. 6.9 constitute a simpler case, in that
they have only a singleton call on the right-hand (abstract) side. Therefore, reversing

Chapter 6. Extending Cake with component styles 173

JNI CreateJavaVM(out , out , my vm args) −→{};

Figure 6.10: An empty right-hand side rule for enabling reversibility

them requires only to interpose on this abstract call when it is recognised, by emitting it
as a call that is then directed to a wrapper function, and then synthesise a special kind
of stub which reproduces a context satisfying the predicate on the left.

To generate this special kind of stub, we must first check which of the context pred-
icates already hold—this is done by keeping a blackboard, as previously (§4.2.7). Then,
for any components of the predicate which do not hold, we may synthesise a call to make
it so. The key precondition for this synthesis is that both the selection of this call and
its arguments must be fully determined given only the abstract function name, its argu-
ments, and the contents of the blackboard (that is, details of whatever calls have been
made previously).

In our example, most of the JNI calls’ arguments can be recovered—in our case, from
the name of the abstract function, which encodes the arguments to FindClass and Get-
MethodID. However, we cannot do this for JNI CreateJavaVM (since the abstract function
provides no way to infer the vm args argument), so we have to write a special rule to per-
form this call. This appears as a simple event correspondences with an empty right-hand
side, and crucially, providing a specific argument value for vm args. Fig. 6.10 shows such
a rule, which implicitly depends on a context where the JNI-calling component defines a
my vm args structure. (If no structure defining VM arguments exists, it may be added
statically using instantiate, described in §2.3.3.)

Summary The result of this reversibility is that Cake can play the part of a “reversible
stub compiler”. This contrasts with the stub compilers in the literature [O’Malley et al.
1994; Eide et al. 1997] which perform only concretion, not abstraction. Of course, there are
numerous limitations to the approach described here: it effectively only handles expansion
of functional abstractions, and does not address the (often intricate) optimisations with
respect to data representation and data copying that those compilers perform.

6.7.4 Other concerns

Our exploration of styles has left many questions unanswered. Here we briefly review
some issues previously alluded to.

We mentioned a need for certain abstract concepts, namely those present in Cake’s
stub language, to be well-defined for any input component. For this purpose, we define
‘Platonic forms” for these concepts.2 These are are standardised functionally-abstracted
interfaces to various common abstract concerns. Platonic forms are defined for those con-
cepts appearing in the Cake stub language which are either not in Dwarf, or commonly

2This is a reference to Plato’s theory of forms, in which for every object or concept appearing in the

concrete universe, an ideal abstraction of that concept exists. Note that unlike Plato, we only claim that

there are ideal abstractions for certain particularly well-understood concepts.

174 6.7. Reversibility

// sequences 1: null -terminated arrays

[true ←→ s is cake sequence]

[

// function rules - - RHS are Platonic forms

{ s [n] } ←− get nth(s, n);

{ &s[0] } ←− begin(s);

{ ∗p == ’\0’ } ←− is at end(s, p);

{ p+1 } ←− next(s , p);

// values rule - - a value correspondence from abstract to concrete...

values [] ←− cake sequence

{

// initialization ∗and∗ update rule (mutating)

void ({foreach(this , fn p ⇒ set ∗p = get(p - &this [0]));

set this [len] = ’\0’}) ←−

({ let len = count(this); assert (len < array length(that));

let get = fn n ⇒ get nth(this , n)}) void;

}

]

Figure 6.11: Extract from an experimental definition of the default style

not encoded by Dwarf-emitting compilers. This includes the success status of a function
call (§2.3.2), the ability to generate iterators from objects representing sequences (suitable
for passing to Cake algorithms as shown in §2.3.2), output parameters (§2.3.7) and the
string data type. Fig. 6.11 includes a fragment of a definition for Cake’s default style
(§2.3.3), where we can see a functionally-abstracted Platonic form for sequences (similar
to many iterator APIs) in the first few rules.

Being an application of standardisation (§1.2.5), Platonic forms suffer the usual lim-
itations. However, standardisation is arguably appropriate here because the styles in
question are limited to the closed set of concepts embodied in Cake’s stub language.
These concepts are simple, recurring, and well-understood. We envisage it being feasible
to define them carefully enough that minimal future revisions are required (although,
naturally, such careful definitions are a work in progress).

It seems infeasible that we could define a standardised Platonic form for every stylistic
concern. There is no urgent need to define standardised abstract forms for concepts not
appearing in the stub language. However, a “standard library” including other abstract
forms might be useful in eliminating the diversity generated by future independent Cake
programmers. It is useful to observe that a repertoire of named component styles exists
between developers. Programmers talk of “a Java component”, “a GObject component”,
“a C library” and so on. These imply particular expectations about how those compo-
nents’ interfaces differ, including at the object code level. These “named styles” are not
quite like the style definitions we have seen in Cake. Rather, they represent predicates over
the component—“does it conform to a particular template?”—instead of transformations

stating how various interface elements “may be viewed abstractly as. . . ”.

In this sense, named styles remain opaque to Cake. However, it might emerge that
Cake programmers prefer to write style rules whose purpose is to relate one named style

Chapter 6. Extending Cake with component styles 175

to another. An extended form of Cake’s interface description sublanguage (§2.3.3) could
be used to guard styles (using the check qualifier of §2.3.3) on structural properties char-
acteristic of that named style. By “reversing” the check process, effectively requesting
that a given structure is instantiated, we could satisfy boilerplate requirements such as
the GObject boilerplate problem of §5.6. This could also form a basis for treatment of
call demultiplexing styles (as featured in Table 6.1).

As a final hint at the potential for named styles, we draw an analogy between Cake
and the familiar tool Make [Feldman 1979]. Makefiles include rules for building one kind
of file out of another, just as Cake source files include rules for transforming interfaces
from one style to another. Complex makefiles are manageable to write partly because the
Make process happens over multiple hops—rather than requiring n2 rules for converting
among n kinds of file, the problem becomes linear because a small number of popular in-
termediate representations emerge (e.g. PostScript when building documents, object code
when building programs, etc.). Potentially the same approach could mitigate diversity in
Cake, provided that certain styles emerged as popular intermediate styles. The ability to
infer a sequence of style transformations that transform a component into a named style,
by analogy with Make’s ability to infer a sequence of rules that yield a named output
file, was the envisaged feature that gave Cake its name. However, such a feature remains
future work. In particular, determining the parameters at which each style transformation
should be instantiated is a problem. This does not arise in Make, because Make rules are
simpler and tend only to be parameterised by values that can be shared by all instances
of the same rule (e.g. the typical CFLAGS variable).

6.8 Summary

This chapter has both introduced the concept of stylistic variation, and considered ad-
dressing it within an extended Cake language. We first provided a broad overview of the
problem of stylistic variation, using many examples. We then considered its relationship
with existing Cake features, and finally presented in detail two particular issues: how to
perform the elaboration of rules using separately-defined styles, and how to reverse Cake
rules from recognising concretions into generating them.

Stylistic variation is a large and multi-faceted phenomenon. The material presented
in this chapter has been only a preliminary exercise in capturing and abstracting it.
Nevertheless, by accounting for stylistic variation within the design of Cake, we have
made real progress towards a fundamentally more powerful class of composition tool.

176 6.8. Summary

Chapter 7

Related work

Other work has pursued similar goals to Cake’s. This chapter explains in detail how Cake
either differs from or advances on prior and concurrent work.

Relevance criteria To limit our consideration to relevant work, we define two inclusion
criteria. Firstly, the work must define a new linguistic abstraction useful for adaptation
tasks—this might be a language, or language feature, or library. Secondly, the work
must be useful in accommodating diversity and (optionally) change in interfaces. It is
not sufficient to address only change—we do not consider work that addresses purely
evolution of interfaces, since our primary focus has been on unanticipated compositions of
software.

Distinct approaches Our discussion will highlight the various properties of systems
and their designs, and contrast them with Cake. Several properties identified in the
Introduction are of interest:

• black- versus white-box techniques (§1.4.2);

• binary versus source-level approaches (§1.9.2);

• clean-slate versus adoptable approaches (§1.4.1);

• support for heterogeneous components (§1.3.3).

Linguistic dimensions Furthermore, we summarise the distinguishing properties of
the Cake language design with the following selection, which will be among our points of
feature comparison with related work:

• unilateral versus bilateral abstractions (§2.2.10);

• support for context-sensitive cases of adaptation (§2.2.5, §2.3.1);

• support for many-to-many cases of adaptation (§2.2.5, §2.3.4);

• treatment of structured values (§2.2.5, §2.4.1).

178 7.1. Conventional programming practice

Breakdown The related work is scattered across many diverse sub-areas of research.
We visit work so as to roughly group it by these sub-areas. This is intended to assist
with the orientation of readers already familiar with some of the related work. It also
means that similar approaches tend to be covered together, although there are several
exceptions.

7.1 Conventional programming practice

Adaptation is familiar to programmers in conventional object-oriented languages thanks
to the adapter design pattern described by Gamma et al. [1995]. This itself was proposed
as a more flexible alternative to implementation inheritance: while the latter effectively
defines a difference or delta over the overridable methods of a statically selected superclass,
the former provides a wrapper over a dynamically chosen target object. The adapter
pattern is simply the documented practice where an object with one interface is made
composable with clients of a second interface by interposition of an adapter object. It is,
of course, a useful programming pattern which has been employed for decades. We are
interested in techniques for specifying and performing adaptation more effectively than
these conventional approaches.

Adapters also appear in the world of distributed middleware as a general-purpose
point of interposition. CORBA, a distributed object middleware standard, features both
a “basic object adapter” and later a “portable object adapter”. These are server-side
objects responsible for dispatching incoming requests to other server-side objects, which
may or may not implement the interface being consumed by the client [Pilhofer 1999].
Again, this provides a highly general interposition mechanism but does not contribute
any special techniques for describing adaptation.

7.2 Scripting languages

There is a common distinction in programming practice between “scripting” languages
and other “systems” or “component” programming languages. Although expounded in
comparatively recent literature, notably by Ousterhout [1998], the distinction goes back
at least to the 1970s and the Unix shell [Ritchie and Thompson 1974]. Attributes usually
associated with scripting languages include brevity, lack of static type-checking, expres-
siveness, and support for dynamic code evaluation. The key underlying characteristic
is the trade-off of safety and performance for brevity and dynamism. The combination
of dynamism and brevity makes it quicker to alter scripts—i.e. to perform edit-based

source-level adaptation on script components—than to modify components written in
conventional languages.

7.2.1 Piccola

The composition language Piccola [Achermann and Nierstrasz 2001] is founded on this
latter observation: its motto “applications = components + scripts” intends that scripts

Chapter 7. Related work 179

should be used for parts which are less stable, since they are likely to be more convenient
to modify invasively [Nierstrasz and Achermann 2000]. Piccola is a scripting language
with formal semantics based on an extended pi-calculus. Its main contributions are two
unifying models: of computation, as agents, and of communication, as behavioural ex-
changes of structured messages modelled as forms. These are shown to capture a variety
of previously-existing styles of black-box composition, including GUI component compo-
sition, Unix-style pipelines and mixin layer composition. Moreover, Piccola captures these
in the form of well-modularised composition operators.

Although Piccola’s core design is imperative (syntactically resembling Python), its
dynamic and higher-order nature encourages styles to be coded as “component algebras”,
making component wiring explicit and declarative, which further eases invasive editing.
Piccola’s design also explicitly provides for definition of customised compositional styles,
in the form of new operators and rules. These might be useful not only to define new
abstractions for well-matched component composition, but to adapt across mismatches in
a variety of abstractions (bilateral or unilateral). However, devising such abstraction is left
to the programmer; Piccola provides no special support for implementing such adapters
themselves, and implementing composition operators falls back on fairly conventional
imperative coding.

It is not clear whether operators of similar meaning to various advanced classes of
Cake rule, supporting context-sensitive or many-to-many adaptation, could be coded in
Piccola; in any case this would be complex enough to constitute a contribution in its own
right. Moreover, although Piccola’s design and underlying formalism is highly general,
it cannot be considered to support a wide range of heterogeneous input components.
Rather, this is the Piccola implementor’s concern, and the presented implementation
targets Java bytecode only. The Java interface includes ad-hoc bridging logic between the
Piccola abstract VM and the Java VM, and it is unclear whether this support extends to
arbitrary Java interfaces.

7.2.2 Other scripting approaches

Mainstream scripting languages As well as being more amenable to invasive edit-
based adaptation, scripting languages often have special features for adapting the com-
ponents they script. Mainstream scripting languages such as Perl [Wall and Loukides
2000] and Python [Van Rossum and Drake Jr. 2003] have extensive support for regular
expression-based string matching and rewriting. This is useful for adapting data between
different encoding conventions; it is also error-prone. These languages also support invo-
cation of external code using a wide variety of communication mechanisms: calling other
scripts, accessing the file system or network, invoking external programs, manipulating
environment variables, and so on. This “Swiss army knife” philosophy makes them con-
venient for glue code which integrates components that are heterogeneous with respect to
their chosen communication mechanisms.

Orchestration The word “orchestration” often refers to scripting of network-enabled
services, most typically Web Services. Owing to the widely distributed nature of such

180 7.3. Adaptation described as such

services, orchestration languages such as BPEL [Peltz 2003] and Orc [Misra and Cook
2006] provide special features relating to concurrency, latency and failure. For example,
Orc provides a parallel composition operator, support for pipeline-like streamed continu-
ous communication, and both pruning (as a feature) and timeout (as an idiomatic derived
form) for late-responding services. Orchestration may therefore be seen as scripting tai-
lored to wide-area distributed execution. There are many similarities between orchestra-
tion and recognised scripting languages. For example, the Unix shell has special features
for parallel and redundant execution in its & and || operators. As with scripting, or-
chestration’s main contribution to adaptation is its provision of a domain, separate from
component code, which localises integration details and is convenient for adaptation by
source-level edits. Applying the Cake approach to mismatched components in widely dis-
tributed systems would likely entail adding support for Orc-like primitives for handling
concurrency, latency and failure.

7.3 Adaptation described as such

Only a subset of work related to adaptation actually uses that word to describe itself.
This section discusses that subset.

7.3.1 Early work

Nimble Black-box adaptation of procedural interfaces was first directly addressed by
the Nimble system [Purtilo and Atlee 1991]. It provides a new pattern-based language
for rewriting the arguments and return values of procedure call. It can reorder, duplicate
or omit arguments, or supplement them based on default values, and can also call on
external functions where necessary to transform values. However, its expressiveness is
primitive relative to subsequent work (including Cake). For example, with respect to
function calls, it lacks the statefulness necessary to express adaptations over sequences of
invocations. Meanwhile, with respect to values, it has no automatic treatment (such as
Cake’s) of complex structures.

Protocol adaptation Yellin and Strom [1997] improve on this in their work on finite-
state protocol adaptation. This work brings a semi-automatic approach in which each
component’s source-code is annotated with a finite-state protocol description, and a com-
plete adapter is synthesised from a high-level partial specification. This specification takes
the place of a subset of event correspondences which would be required in equivalent Cake
code. In some cases, the protocol descriptions allow omission of rules or context that would
need to be added explicitly in Cake (as discussed in §3.5). Since their contribution is a
theoretical rather than a practical one, it is not demonstrated that the synthesis algorithm
described is sufficient for a range of real-world use-cases (and indeed, our experience with
Cake has shown that a wider range of features is useful, particularly in the treatment
of structured values). Passerone et al. [2002] add a game-theoretic interpretation of the
adapter synthesis algorithm of Yellin and Strom, showing that the process of synthesis is
equivalent to that of testing for synthesisability.

Chapter 7. Related work 181

Event-based adaptation The work of Rine et al. [1999] is similar to Nimble, but
includes a slightly more heterogeneous notion of component. Adapters are the default,
rather than a special case: each component is accessed only through an adapter. Adapter
logic is specified in a configuration file which can specify signature-level remappings sim-
ilar to those offered by Nimble. Unlike Nimble, procedural requests and responses are
fully separated into effectively an asynchronous event-based model—the return path of
a method call is modelled with a separate signature invoked by the callee, and may be
separately adapted. Adapters also control the implementation of event-based communica-
tion: they are responsible for constructing the system-level communication paths between
each other at initialisation time. Auxiliary information in the configuration file can select
details of communication implementation, from among a fixed set: procedures, pipes or
message queues.

LayOM LayOM [Bosch 1999] is an implementation of a “layered object model” for C++,
based on a concept of adaptation called “superimposition”. Adaptation primitives are
captured as operators known as superimposing entities, each defining a “layer” or black-
box delta over the underlying object, and include Nimble-like function interposition, but
also member renaming, interface restriction, run-time configurable method dispatch, and
interposition on field accesses. Additionally, LayOM supports a kind of compositionality
within adaptation: existing operators can be specialised or combined by the user into new
ones. This contrasts with the bilateral core of Cake, where a fixed number of relatively
powerful “operators” (function and value correspondences) are provided, but these do
not compose within a single application of Cake. Meanwhile, it resembles the style-
based extension to Cake (Chapter 6), which supports unilateral adaptations which are
expressly designed to compose (but LayOM applies this unilateral approach to all classes of
adaptation task, not simply stylistic concerns). In LayOM new operators are introduced
as a preprocessing stage for C++: the LayOM new operators are described using new
lexing, parsing and code generation rules. Consequently the process of introducing new
operators is fairly involved, only C++ components are supported, and only relatively
syntactic adaptations are easily supported. For example, there are no many-to-many or
context-sensitive operators of the kind supported by Cake.

BCA Binary component adaptation for Java (BCA) [Keller and Holzle 1998] imple-
ments a load-time adaptation for Java binaries. Adaptations to a class definition, such
as member renamings and method additions, are specified in a “delta file” using a spe-
cial language syntactically resembling Java. However, the range of adaptations available
is narrow, being essentially limited to addition of new code, renaming of symbols, and
changes to typing metadata (e.g. the effect of retrospectively adding an “implements”
clause to a class definition). Later work under the heading of “program transformation”
(§7.9) extends these abilities within similar tool designs. Cake shares its black-box, binary,
adoptable approach with BCA, but describes bilateral correspondences rather than uni-
lateral deltas. More significantly, Cake’s context-sensitive and many-to-many correspon-
dences, and automatic treatment of object structures, expand on BCA’s expressiveness
considerably.

182 7.3. Adaptation described as such

7.3.2 Protocols with dynamic communication structure

Bracciali et al. [2005] takes a similar approach to Yellin & Strom, by tackling semi-
automatic adaptation given protocol descriptions of the input components. Their system
replaces Yellin & Strom’s abstraction of finite-state automata with a replication-free pi
calculus [Milner et al. 1992]. This remains finite-state, but by including the channel

abstraction, can explicitly capture the dynamic evolution of communication structure.

This work offers comparable expressiveness to Cake in the case of event correspon-
dences (“function mappings” in the paper’s terminology). However, it is impoverished in
its treatment of values, which are modelled simply as tuples of opaque names, offering no
treatment of object structures and also no way of incorporating algorithms within map-
pings (cf. Cake’s algorithms, §2.3.2). Even finite-state algorithms are not fully supported,
because even though these could be encoded into the subset of pi-calculus being used,
mappings (unlike behaviours) may take only a restricted number of forms (i.e. a strictly
smaller subset), enumerated by example.

A final expressiveness limitation is a lack of support for data-dependent mappings.
Consider a Cake stub containing an if P then call foo() else call bar() statement, where P
is dependent on a function called earlier in the stub. None of the four classes of correspon-
dence described in the paper (pages 47–49) can express this, because the mapping cannot
vary its behaviour according to the response to the earlier outgoing message. Although
the programmer could use non-determinism to encode both possible actions, the only way
then to resolve this nondeterminism is to modify the annotated behaviour (i.e. protocol)
of one or other component. This clearly breaks the mapping abstraction, by encoding a
compositional concern within the description of a single component.

The main benefit of this work, which Cake does not provide, is its ability to synthesise
adapters using behavioural constraints on participant components (much like the work
by Yellin & Strom). Similarly, the contribution is primarily in formalism and algorithm,
rather than providing evidence of its effectiveness as a practical tool.

7.3.3 Automatic, purely functional adaptation

AxML [Haack et al. 2002] supports adaptation over a purely functional subset of Standard
ML. Programmers annotate code with specification axioms, after which it is available for
consideration by the automatic adaptation system. These specifications are built from
arbitrary predicates, whose meaning is opaque to the tool—rather, they are defined by the
programmer as conventional ML code. Specification axioms are expressed in propositional
logic, extended with universal quantification, using these predicates. Adaptation is trig-
gered by writing the signatures of the required data structures or functors in the special
form of a “synthesis request” which describes, using the same vocabulary of predicates,
the signature type and specification of the required code. The adaptation is performed
by source transformation, at compile time.

A key advantage of AxML is that it offers assurance that derived compositions are
semantically correct—up to the expressive power of the specification axioms and the
correctness of the programmer-supplied implementation of the specification predicates.

Chapter 7. Related work 183

Synthesised code specialises and composes existing code using a deliberately constrained
set of language features, including supplying additional function arguments, currying or
uncurrying, functional abstraction and function application, record formation and record
selection. These provide, in effect, a similar degree of expressiveness to the basic features
of Cake correspondences and stub code, with the exception that Cake does not support
adding extra layers of functional abstraction (i.e. increasing the degree of parameterisation
of some code).

Like Cake, AxML explicitly precludes recursion on the grounds that this is usually not
required within the tool’s remit “to transform modules into similar modules”. AxML can
support one-to-many function compositions in the sense that the synthesis algorithm con-
siders compositions of available functions when searching for a satisfying term. However,
since synthesis requests are framed in terms of individual functions, this does not support
many-to-many relations. Since it operates on purely functional code, there is no treat-
ment of object graphs (as opposed to tree-structured record nesting), and unsurprisingly,
no context-sensitive treatment of function calls for similar reasons.

A key philosophical difference with Cake is that AxML insists on automation, whereas
Cake explicitly embraces programmer guidance. AxML therefore presents a very different
set of trade-offs. AxML’s search procedure is incomplete, terminated by time-bounding,
and will fail in many cases which could be manually expressed in Cake (e.g. cases requiring
Cake algorithms or complex data-dependent stubs).

A final consideration of AxML is that since it relies on a vocabulary of opaque predi-
cates that is shared between adapted-from and adapted-to interfaces (as annotations and
synthesis requests, respectively), there is an unaddressed potential for mismatch in that
higher-level domain, for example if different parties define predicates that are differently
named or differently parameterised predicates but nevertheless semantically equivalent.
To avoid this, responsibility for annotating existing code could be pushed to the compo-
sition author—although this would mean repeated effort, this would be no worse than
the equivalent burdens of repeating rules or annotations that can easily occur in Cake
programming.

7.3.4 Other recent systems

FLAME [Eisenbach et al. 2007] is a tool for “flexible dynamic linking”, targetting the Mi-
crosoft .NET Common Language Runtime. It performs a very restricted form of black-box
adaptation, affecting only system linkage structure. The authors describe how bytecode
for the CLR embeds not only the names of external classes, but also often embeds names of
component implementations (“assemblies”). Mismatches of these names prevent linking.
FLAME modifies the compiler to embed metadata into the generated code, specifying
which class or assembly names are to be treated as substitutable metavariables. The
resulting adaptation capabilities are a proper subset of those of BCA (§7.3.1). FLAME
adaptations are unilateral and provide no special programmatic abstraction beyond simple
name substitutions.

184 7.4. Adaptation, evolution and refactoring

7.4 Adaptation, evolution and refactoring

We discussed the relationship between refactoring and adaptation in the Introduction
(§1.2.8). In general, refactoring tools are not suitable for describing or constructing unan-
ticipated compositions in a maintainable fashion. However, the logs kept by refactoring
tools have useful application to evolution-oriented adaptation. ReBA [Dig et al. 2008]
and ComeBack [Savga et al. 2008] are both systems for generating adapters to bridge
mismatches originating in evolution, where that evolution was performed using a logging
refactoring tool. These logs are used to generate adapters automatically. Since these tools
are not useful for producing unanticipated compositions, we do not discuss them further.

7.4.1 Twinning

Twinning [Nita and Notkin 2010] is a system for describing bilateral relations between
APIs in Java (and, potentially, similar languages). It shares much in common with Cake,
and was developed concurrently. Relations are expressed as a list of mappings, roughly
analogous to correspondences in Cake or mappings in the work of Bracciali et al. [2005].

Unlike Cake, Twinning requires a one-to-one correspondence between the data types
defined by the two APIs, meaning it would not suffice for some of the Cake examples we
have seen (at least the libmpeg2–ffmpeg example in Chapter 2 and the Epiphany–Webkit
study in Chapter 5). A special-case behaviour relaxes this in the case of exception types,
where one-to-one correspondences are especially rare.

Twinning is a source-level technique: mappings are expressed in terms of fragments
of source code, paired with a list of formal parameters (in whose terms the fragment
is expressed) and a type name (which must match against the type of the expression).
Twinning is therefore sensitive to the syntax of the host language, and is most effective
for languages providing a small number of syntactic forms—preferably only one—for each
logical feature. This property is true of Java, but less so of more complex languages such
as C++.

Twinning is formally a white-box technique since it describes matching and replace-
ment over abstract syntax trees. However, for a simple host language such as Java, and
restricted to only a simple set of matching forms—such as simple function invocations
and return statements—it can be said to alter only the “edges” of source code, making it
comparably robust to a black-box approach in simple cases. This does not hold for more
complex mappings, such as mappings relating particular sequences of calls or particular
patterns of data-dependency between calls. These are supported by Twinning, but only
in a fragile fashion: the AST matching expression is vulnerable to breakage on insertion
of unrelated calls within a sequence, or on hoisting a nested subexpression out to its own
statement. It seems likely that these fragility problems limit the extent of matching which
can be performed in practice.

By contrast, since Cake is based on a black-box approach, and matches dynamic events
rather than static source code fragments, it can express complex adaptation rules that are
robust to these kinds of internal change. However, Cake does so at a cost in performance:

Chapter 7. Related work 185

whereas the dynamic analysis Cake uses to match patterns brings run-time performance
cost, Twinning’s source code substitutions are unlikely to affect performance.

Unlike Cake, Twinning also includes tool support for the idea of “deep adaptation”.
This amounts to “pushing” an interface mapping into the original codebase, as a form of
refactoring. The same mapping language is used as in the shallow case. Effectively, the
tool will refactor the original codebase to yield a design including an abstraction layer
(§1.2.2), together with implementations of that abstraction targetting both original APIs.
By providing an automated refactoring algorithm to insert this layer, “deep adaptation”
overcomes abstraction layers’ common drawback of requiring anticipation (at least in cases
that can be captured by the mapping language). A similar tool could be developed for a
pairing of Cake and some source language of interest. However, this would require more
complex analysis than in the Twinning case, since Cake rules are described in dynamic
terms, which are further from the source code than Twinning’s AST-based rules.

7.4.2 Adaptation as horizontal extension

Concept maps, a feature experimentally added to the C++ language [Järvi et al. 2007],
have been demonstrated as useful in practical adaptation tasks. Specifically, they resolve
mismatch of data structures across the interfaces of C++ generic libraries (i.e. libraries for
template metaprogramming). Concepts effectively define “interface-like” abstractions of
structural polymorphism in C++. A concept map is a declaration that extends a particular
class so that it satisfies a particular concept, supplying additional code as necessary.
Since templates are elaborated statically, run-time performance is mostly identical to
hand-crafted implementations. There is no special support for context-sensitive or many-
to-many adaptations.

Concept maps belong to a wider class of features enabling what is sometimes called
“horizontal extension”: the modular addition of new elements to previous units of code,
such as classes or other data-type definitions. The next section discusses these more
generally.

7.5 Open classes and horizontal extension

C++ concept maps are an example of a horizontal extension. They are not the only
example: type classes in Haskell [Wadler and Blott 1989], Classboxes [Bergel et al. 2005],
object expanders [Warth et al. 2006] and open classes in Scala [Odersky et al. 2008] are
all essentially similar features. These techniques differ in how and when the extensions
are elaborated, how name conflicts and other scoping issues are handled, and in what
static checking they permit—we do not detail these distinctions here.

These techniques are invariably unilateral, in that they describe extensions to single
components, rather than how to compose a pair of interfaces. They are also black-box,
in that they are expressed relative to an interface-like abstraction of the extended data
type, according to the host language’s information hiding support. In other words, not
all details of the original data type will be accessible by the extension.

186 7.6. Linking and interconnection languages

These extension-oriented language features are designed as small increments on top
of existing abstractions such as classes, fields and methods; adaptation tasks are then
performed using a combination of the new feature and existing conventional constructs in
the host language. This contrasts with Cake’s substantially different rule-based approach,
which represents a significantly more specialised style of coding.

This incremental approach means that these features do not add support for context-
sensitive descriptions of logic of the kind offered by Cake. Any complex relations between
the adapted-to and adapted-from interfaces, such as many-to-many relationships between
functions or object, must fall back to manual coding in the host language. However, the
extension feature may help keep such logic modularly separated from the target code, so
this is still an improvement over languages not offering such features.

One semantic distinction with other adaptation tools is that these features allow sep-
arate modularisation of the code necessary to support an extended interface, rather than
an alternative one. Hiding or replacing the original interface is not supported. In turn,
the interface complexity of the code overall will escalate as more horizontal extensions are
added.

A related language feature is the mixin [Bracha and Cook 1990]. This complements
open classes by defining a subclass-like extension which can attach to any potential su-
perclasses fulfilling some contract demanded by the mixin. A larger-scale composition
abstraction is provided by mixin layers [Smaragdakis and Batory 1998], which define
many such mixins which may be composed (or not) as a unit, intended to model the long-
standing practice of layered design. Like horizontal extension features, mixins support the
extension of interfaces in a way that is more flexible than traditional subclassing-based
primitives. (Whereas horizontal extension allows new interfaces to be added to a specific
pre-existing class, without requiring the definition of a new class, mixins are composable
units that are useful only for defining new classes, but do so without restricting their
target to a specific pre-existing class.)

7.6 Linking and interconnection languages

Many researchers have proposed languages or tools which give explicit description of
the relationships between modules in a large system. Such languages are usually called
“module interconnection languages” or “linking languages”. Often they are designed to
be useful as high-level structural descriptions of a large system developed, frequently also
embodying a novel development method or information-hiding technique [Parnas 1972].
The first example of such a language was probably MIL 75 [DeRemer and Kron 1975].
These descriptions are a convenient domain to adapt the structure (or architecture) of a
system, as compared with manually altering the linkage relation within source code or
binaries.

Knit The Knit linking language [Reid et al. 2000] confers explicit control over the linkage
relation over a set of object files, by rewriting symbol names at link-time from a high-level
description of object file instances and their intended linkage structure. It also advances

Chapter 7. Related work 187

on conventional linkage by adopting the Units model [Flatt and Felleisen 1998], which
supports hierarchical information hiding and cyclic inter-module reference structures. In
addition, Knit allows checking of global properties of a composition by requiring that
it satisfies some formula over opaque predicates attached to each component. Knit also
provides automatic scheduling of static initializers across components. Although operating
logically at the object code level, it optionally supports transformation of the originating
C source code for whole-program optimisation purposes.

Jiazzi Jiazzi [McDirmid et al. 2001] applies the same model and linking capabilities
to the more complex case of Java linkage. By accommodating cyclical linkage relations,
including the case where an exported class is a superclass of an imported class, it simulates
open classes (§7.5).

Other tools As already described, renaming is also the technique used by Flexible
Dynamic Linking (§7.3). DITools [Serra et al. 2000] provides a dynamic analogue to
Knit, supporting load- and run-time rebinding of dynamically-linked symbol references,
as described in a configuration file.

OMOS + Jigsaw None of the above systems provide any explicit programmatic ab-
stractions of adaptation; rather, like FLAME (§7.3) they simply make interposition within
existing code more convenient for the developer. The first linking tool with extensive
adaptation support was the combination of the OMOS linker and the Jigsaw language
[Bracha et al. 1993]. OMOS is a long-running linking service, while Jigsaw is a language of
unilateral transformations over object files. Jigsaw is founded on the insight that module
instances may be unified with objects [Seeley 1990]. Jigsaw extends OMOS by supporting
linker invocation not only on concrete modules, but also on so-called “meta-objects” spec-
ified as transformations of existing concrete objects. Jigsaw specifies these algebraically
in terms of an abstract data types for objects, including many operations used to trans-
form and combine objects: symbol hiding, renaming, rebinding and copying, merging two
modules, and others. These primitives are shown to support derived constructs such as
functional interposition, although there is no support for modularising these derived con-
structs into more abstract adaptation functions (cf. LayOM, §7.3.1), nor for finer-grained
transformations (e.g. at argument level, cf. Nimble and the like, §7.3.1).

7.7 Megaprogramming and mediators

The influence of MIL 75 and similar systems, combined with the explosive growth of
complexity in software systems, led in the 1990s to renewed interest in tools suited to
the challenges of building very large systems. The term “megaprogramming”, coined
by Boehm and Scherlis [1992] and elaborated subsequently by Wiederhold et al. [1992]
identified the distinct nature of writing software at such large scales. Indeed, the statement
of Wiederhold and Genesereth [1997] that “you cannot expect that large-scale information
systems will have homogeneous ontologies” is echoed by our arguments in the Introduction

188 7.7. Megaprogramming and mediators

to this dissertation, that diversity among interfaces is great (§1.1) and that traditional
modular programming, based on information hiding, is therefore insufficient (§1.2.6). Like
Cake’s treatment of components, megamodules are assumed to be internally consistent,
but are not expected to share their model of the domain with other megamodules.

Megaprogramming spawned the language CLAM [Sample et al. 1999] and its run-
time infrastructure, CPAM. CLAM shares its key features with subsequent coordination-
oriented scripting languages, including Orc, as discussed earlier (§7.2.2). Its emphasis is
on writing applications which efficiently consume disparate and distributed data sources,
each viewed architecturally as an encapsulated megamodule. Its most notable feature is
the decomposition of procedure calls into asynchronous operations for sending and receiv-
ing data. By doing so, it enables more flexible data-flow and synchronisation behaviour,
hence enabling greater efficiencies in a distributed setting—but exposing somewhat greater
complexity to the programmer. By contrast, although Cake is also a language targeted
at composition tasks, its goals are to simplify related programming tasks, rather than to
enable greater efficiency.

CPAM [Melloul et al. 1999] is the coordination protocol underlying CLAM, designed
to support a variety of pre-existing remote procedure call (RPC) protocols including
CORBA, Java RMI, and others. (We will discuss RPC systems in §7.13.) As such, it
shares Cake’s desire to support heterogeneous existing code (the subject of Chapter 6).
However, to support data interchange, it requires transmitted data to be encoded in a
specific binary format. Indeed, the authors state that “a client doing composition only
(and not computation in between) does not need to interpret the data it receives from a
megamodule or sends to another megamodule.” It follows that CPAM and CLAM cannot
support transformations of data structures of the kind supported by Cake. Meanwhile,
although CLAM can be implemented on top of existing infrastructures, such as CORBA
and Java RMI, it does not follow that systems already built using these systems are di-
rectly usable by CLAM as megamodules. Rather, extra wrapping development effort is
required. (In contrast, Cake’s approach allows any Dwarf-described object code to be
used as-is within a Cake composition.) Although various incidental complexities are han-
dled by automatic tools, analogous to stub and skeleton generation in the underlying RPC
system, the core task of relating the interfaces being composed, described as “mapping of
methods and parameters”, is left to manual coding in the CPAM approach. By contrast,
this is the very task addressed by Cake.

Related literature identifies mediators as an architectural feature of large-scale systems
of the kind constructed by megaprogramming. Wiederhold [1995] describes mediation as
“an extra software layer. . . inserted between the client and server [which] breaks the cou-
pling”. Again, much like Cake components may be seen as megamodules, Cake-generated
adapters may be seen as mediators. The literature on mediators is primarily conceptual
or architectural, and describes little specific tool support for programming mediators. An
exception is FICAS [Liu et al. 2004], which considers mediators in web service composi-
tions. (Web services are described in §7.13; we may see them simply as remote-procedure
services for wide-area distributed use, hence fitting within the megamodule paradigm.)
FICAS defines an infrastructure for service composition in which mediators—components
containing adaptation logic—are implemented as mobile code. The choice of mobile code,
implemented using the support for network class loading in Java, is to allow mediators

Chapter 7. Related work 189

performing data transformation and aggregation to be pushed close to data sources, for
greater efficiency. Indeed, much like CLAM, this work’s goal is to support widely dis-
tributed data-centric applications efficiently; there is no specific support for programming
mediators. Rather, mediators must be programmed against a narrow interface of data
manipulation primitives, based on a DataElement class providing primitives such as get-
BooleanValue, setValue and so on. This is certainly more constraining than programming
adaptation logic directly in a conventional language, not to mention a specialised language
like Cake. As with CPAM, services must also be wrapped to be usable within the FICAS
system.

7.8 Decentralised modularisation

Several technologies provide alternative ways to modularise large codebases, and in so
doing, provide a domain which expresses some kinds of adaptation.

7.8.1 Patch-based systems

Perhaps the most longstanding scheme used to modularise widely-scattered changes to
codebases is the patch, as supported by Unix’s patch command. Patches are purely
textual; this makes them highly general, in that they apply to any kind of file, but
also inherently fragile in that they rely on concrete file contents. Having no knowledge
of higher-level abstractions, they also cannot abstract over multiple locations in source
code.

Coccinelle [Padioleau et al. 2008] addresses these weaknesses to provide a “semantic
patch” abstraction, with the aim of reliably and reusably capturing the semantic intent
in patches as they are currently written. Its target domain is the patchsets arising from
evolution in large codebases, such as the Linux kernel, where development is continuous
and decentralised. The system’s semantic patch language SmPL uses pattern-matching
to avoid manual specification of each source code location requiring modifications. Since
it targets only problems of evolution, we do not discuss it further.

7.8.2 Subject-oriented composition

The idea of “subject-oriented programming” introduced by Harrison and Ossher [1993]
addresses diversity and composition among multiple large codebases. Its goal is to enable
the black-box composition of new applications out of separate codebases, where this sep-
aration is motivated either by encapsulation concerns or by independent development. It
therefore has considerable commonality with Cake.

Codebases, or “subjects”, share a domain, but concern partially differing properties,
operations and taxonomies (i.e. class hierarchy structures) of that domain’s objects. Each
subject may specify different instance variables and different method suites for a particular
object, and arrange objects in a different class hierarchy. Composition rules are used to
specify correspondences between the subjects’ class hierarchies, instance variables, and

190 7.8. Decentralised modularisation

dispatch strategies for method calls (since the latter may trigger execution of multiple
subjects’ code).

Ossher et al. [1995] presents a design of subjects composed of compiled code and a
descriptive “label”, the latter being effectively an interface description closely mirroring
Cake’s use of debugging information. It also proposes, as borrowed by Cake, the policy
of performing name-matching by default.

Descriptions of subject compositions cannot include new code, except in the con-
strained language of composition rules; in particular, there is no feature comparable to
Cake-style stubs. However, a more constrained form of one-to-many mappings of method
calls to code execution is supported: a method invocation is in general mapped to mul-

tiple bodies of code, executed in some sequence (which may be arbitrary). A variety of
treatments are provided for coalescing the return values of these code bodies for return to
the caller (such as returning the last value in the list, asserting that all values are equal, or
returning an array containing all return values). In contrast to Cake, no context-sensitive
mappings are supported.

For describing value correspondences, the subject-oriented approach separates the
identity of an object from the multiple collections of state and code which realise it
concretely. It therefore allows many-to-many correspondences between structured values,
subject to the constraint that composition must result in a single object identity for each
run-time instance of a correspondence. This single identity is analogous to the unique
logical identity of objects related under the co-object relation in Cake (§4.4.1).

Ossher et al. [1995] highlight a particular semantic requirement on code composed
by subject-oriented composition: when manipulating multiple collaborating objects, the
programmer must not rely on these being distinct (non-aliased) objects. This somewhat
obscure detail highlights two differences in emphasis between subject-oriented composi-
tion and Cake. Firstly, the former is both more concerned with compositing codebases

(to create a unified “super-codebase”) rather than Cake’s goal of reconciling interface
differences. Secondly, the former is contributing primarily a model rather than an imple-
mented system or tool. Indeed, it is difficult to see how binary subject composition could
be implemented without an extensively modified toolchain. For example, the presence of
many-to-many relations between various classes would entail significant changes to the
rules used by the compiler for in-memory layout of objects, to prevent distinct fields being
assigned to overlapping ranges of offsets within the composite object.

There is little emphasis placed on the definition of new composition rules themselves,
except for a list of primitive rules consisting of essentially the same primitives as Jigsaw’s
[Bracha et al. 1993]. One new addition is the idea of allowing specification in the form of
general rules (quantifying over all subjects, or classes, methods etc.) supplemented with
exceptions for special cases. These ideas are borrowed directly by Cake, particularly in
its idiomatic use of separate value correspondences for general and special cases (§5.5).

7.8.3 Aspect-oriented programming

Aspects in their most general form, as described by Filman and Friedman [2005], are
modules expressing modifications or additions to existing code in a way which supports

Chapter 7. Related work 191

quantification and obliviousness. The former means that points of application are identi-
fied by some logical expression quantifying over the existing codebase; the latter means
that the existing code may remain unaware of these changes, since they are modularised
separately.

Typically aspects are advocated as a convenient way of modularising cross-cutting
concerns within a single project [Kiczales et al. 1997]. However, the obliviousness prop-
erty makes them useful for specifying adaptation. AspectJ [Kiczales et al. 2001] is the
best-known implementation of aspects; it operates on source-level representations of Java
programs. Points in a program’s execution where control is transferred to aspect code
are identified by quantifying expressions called pointcuts. This quantification is dynamic,
in that it may be predicated on the program’s execution context (e.g. on the class of the
current method context’s object). The code spliced in at join points is called “advice”,
and the splicing process is known as “weaving”.

Pointcuts may be thought of as a white-box instrumentation language for the basic
host language. Aspects are a fundamentally white-box technique, in that pointcuts range
over arbitrary internals of a component; this is both powerful, yet potentially damaging to
modularity [Steimann 2006]. Like many other techniques we have surveyed, particularly
linking languages (§7.6) and horizontal extension mechanisms (§7.5), aspects are primarily
an enabler of interposition and extension rather than specifically addressing composition
or adaptation tasks. As with horizontal extension, the code advice consists of conventional
code, in contrast to the rule-based abstraction of Cake. However, pointcuts themselves are
clearly a rule-based abstraction. The context-sensitivity of Cake’s event correspondences
can be captured in very similar fashion by a suitable pointcut language. However, similar
to Twinning (§7.4.1), pointcuts range over all aspects of component execution, rather
than an interface abstraction (like traces in Cake), so may be less robust to internal code
changes than Cake rules. There is no special treatment of data structures analogous to
Cake’s value correspondences.

7.8.4 Remodularization

Mezini and Ostermann [2002] describe a set of extensions to a Java-like language for inte-
grating “generic functionality” with pre-existing codebases. “Generic” refers to function-
ality for which a well-known interface may be defined for such functionality, and various
concrete realisations later mapped to that interface; this is similar to our “Platonic forms”
(§6.7.4) but applied somewhat more widely. Although described as “remodularization”,
this is not in the sense of Tarr et al. [1999], but rather meaning simply adaptation: the
goal is to “wrap abstractions from the world of the concrete usage scenario and map them
to abstractions from the generic component world”. The main contributions are improved
type-checkability (using virtual types) and avoiding traditional problems of object iden-
tity sometimes encountered under the adapter pattern [Hölzle 1993]. This is done with a
special state management device (“wrapper recycling”) reminiscent of Cake’s co-objects
(§4.4.1). In this way it supports many-to-many relationships among objects; the over-
all effect is horizontal extension at component (cf. class) granularity, since it emphasises
adapting families of related data types at once.

192 7.9. Program transformation

7.9 Program transformation

Several projects have developed systems for transformation of Java programs. These
inhabit the space around both BCA (§7.3) and AspectJ (§7.8), but support more powerful
white-box adapters. In all cases, these systems are potentially capable of addressing Cake-
style adaptation tasks, albeit in a unilateral way, by means of transformers acting on each
input component separately. However, they are not evaluated on such tasks, and each
presents a significantly lower level of abstraction—of the sort upon which Cake-like tools
could be built. We discuss them briefly in turn for completeness.

JOIE JOIE [Cohen et al. 1998] is a load-time transformation system. In it, “transform-
ers” are Java-language components which inspect and modify existing class definitions
using a reflection-like API. Transformers can be specified highly invasively, and are spec-
ified essentially as programs operating over bytecode (down to the level of instruction
mnemonics). Unlike with AspectJ and other ahead-of-time techniques, there is no pat-
tern language for identifying modification sites; regular Java-language iteration and if–else
tests are required. There is a strong resemblance between JOIE transformers and COM-
POST metaprograms (§7.10). However, JOIE’s level of abstraction is lower, being at the
binary bytecode level rather than the source level.

Javassist Javassist [Chiba 2000] similarly introduces an expanded reflection API to
Java, designed as a general-purpose interface upon which to write tools such as BCA-
like adaptation primitives, AspectJ-like pointcut or “hook”-based interposition rules, and
load-time stub generation for remote method invocation systems. Unlike JOIE, its in-
terface does not descend to the instruction level; rather, it provides only higher-level
primitives, such as method wrapping and field access redirection.

JMangler JMangler [Kniesel et al. 2001] is yet another project with similar goals. Its
expressiveness lies between those of JOIE and Javassist: unlike Javassist, it expresses
all transformations which preserve binary compatibility of Java bytecode, whereas unlike
JOIE, it rules out transformations which break compatibility. It also addresses the unan-
ticipated combination of multiple independently developed transformers, where a change
specified by one transformer may trigger changes in others. This is done by introducing a
distinction between interface and code transformations: the former are shown to yield an
order-independent fixed point when applied iteratively, which can be done mechanically,
whereas the latter’s fixed points are order-dependent and therefore must be combined
under programmer guidance.

7.10 Software connectors

Architecture description languages (ADLs), much like linking languages, are designed to
describe, explain and reason about large-scale structural properties of systems. They also

Chapter 7. Related work 193

promote re-use of high-level designs, and enable checking and traceability between im-
plementation and design [Garlan and Shaw 1994]. As such, they not only offer the same
structural view as that of linking languages, but have, in a few cases, introduced other
features useful for adaptation—mostly concerning the notion of “connectors”. Connec-
tors may be thought of as re-usable abstractions of how two modules might be connected,
both in terms of mechanism and of the patterns and conventions of their communication.
Traditional programming languages do not cleanly capture such abstractions, and imple-
mentation of communication mechanisms is typically spread across program modules and
in tool-generated code [Shaw 1994].

7.10.1 UniCon

UniCon [Shaw et al. 1995] resembles a module interconnection language, but introduces a
distinction between components (which are C source files in the implementation presented)
and connectors. Connectors are implementations of communication abstractions, such as
local or remote procedure calls, pipes, real-time resource schedulers and shared variables.
Components’ binding points, or “players”, are wired to the connectors’ binding points, or
“roles”.

The UniCon compiler uses built-in knowledge of each connector type to build the
complete system, first generating intermediate artifacts (such as RPC stubs or makefiles)
and later invoking a conventional build system to construct the ensemble (a design bor-
rowed by Cake). Since each connector is built-in, and none performs adaptation (i.e. each
connector is somehow symmetric in the requires and provides relationships among its
connected components), UniCon’s only direct comparison to Cake is as a tool addressing
a specific case of stylistic variation (i.e. that of these communication abstractions). How-
ever, UniCon is also notable as the foundation for Flexible Packaging, which we discuss
separately (see §7.11).

7.10.2 COMPOST

COMPOST [Assmann et al. 2000] explicitly combines adaptation techniques with con-
nectors. Connectors in this system are defined by metaprograms which not only generate
adaptation logic in a black-box fashion, but can also more invasively refactor or “rebind”
the source code of existing components, written in Java or C++.

COMPOST proceeds by source-level rewriting of input components, in two stages.
Firstly, existing code using method calls is automatically rewritten into a generic “ab-
stract” model of communication based on object exchange, effectively normalizing any
method call into a predictable syntactic form. Secondly, this abstract code is rewritten to
use a new concrete communication mechanism,. These rewriting procedures are expressed
as metaprograms over Java or C++ abstract syntax, making them white-box according
to our definitions (although the authors term them “grey-box”). Although writing an
individual meta-program may be significant effort, the two-stage process allows libraries
of abstracting and concreting transformers to be written and re-used independently. The

194 7.11. Packaging

meta-programs themselves are written conventionally, using previously published meta-
object protocols for the target component languages.

Without a practical evaluation of COMPOST, it is difficult to gauge how these com-
pare to Cake rules in complexity. However, since each metaprogram adapts a single
component at a time (i.e. unilaterally), it works at the lower level of describing transfor-
mations rather than describing correspondences; since these transformations are based on
abstract syntax, much like Twinning (§7.4.1), they are liable to be more fragile to changes
in the component source. The ability to code many-to-many or context-sensitive corre-
spondences as meta-programs is limited only by the host language and the design of its
meta-object protocol; however, since this is unlikely to expose a history of call sequences,
recognising sequences of calls would depend on inserting a manually coded recogniser
machine implementation. (Note that the “context-sensitive” rules described in the paper
are actually not sensitive to the dynamic sequential context of a call, but rather, are
metaprogramming rules which apply at multiple locations in the target codebase, roughly
analogous to Cake’s pattern rules or the extended quantification introduced in Chapter
6.)

Similarly, the COMPOST programmer’s ability to apply rules to specific classes of
value in a program are dependent on the host language’s ability to identify these. Since
both C++ and Java are statically typed languages, precisely identifying objects at run
time by their class would likely involve additional coding effort by the metaprogrammer.

7.11 Packaging

The term “packaging” was used by Callahan [1993] to refer to the “details of how software
configurations are ‘packaged’ into executables”. These details include both programming-
level details—data encodings, control flow patterns and APIs required by communication
mechanisms—and lower-level details (such as make rules) for building binaries compati-
ble with loading and linking mechanisms. Packaging systems may support whole-system
description, like ADLs, or else only single-component packaging, but in either case clearly
provide adaptation techniques, in the sense of adapting between the different communi-
cation conventions and styles found among heterogeneous selections of components.

7.11.1 Polygen

The Polygen system [Callahan and Purtilo 1991] accepts declarative descriptions of mod-
ules in several procedural languages, together with a composite system description, and
uses a “rule base” to generate a makefile which can construct a complete system. The
rule base contains knowledge about different procedural packaging styles—such as rules for
invoking RPC stub generators or language-specific wrapper generators. Like the later Uni-
Con (§7.10), the system description can select among different implementations of various
communication abstractions, and new implementations can be defined (using rules written
in Prolog). It can also combine this with knowledge of what communication abstractions
are implemented within a single process and which require separate processes, and solve

Chapter 7. Related work 195

these to produce an optimised composition, without embedding mechanism-specific knowl-
edge into the components themselves. However generation of packaging-specific code is
left to external tools, and not abstracted by Polygen itself. The implementation presented
uses the Polylith software bus [Purtilo 1994] for these purposes, which includes special-
cased stub generation support for a number of pairwise language- and protocol-level data
conversions.

7.11.2 Flexible Packaging

UniCon’s notion of connectors make it a suitable base for the orthogonalisation of packag-
ing concerns from functionality [Shaw 1995], a goal shared with Polygen. DeLine’s system
Flexible Packaging [DeLine 2001] builds UniCon into a system for building unanticipated
compositions of components, potentially involving heterogeneous communication styles.

Flexible Packaging is a clean-slate solution. It requires that each input component (or
“ware”) is programmed to a particular, highly generic channel abstraction. In making
this requirement, it defers packaging commitments until integration time. However, cod-
ing to the channel-based style of wares represents a small commitment by itself, which
cannot be deferred. By contrast, Cake embraces prior commitment: it assumes that its
input components have been coded conventionally against some interface. Therefore, the
Cake programmer must work harder to “undo” the premature commitment embodied
in the component. The payoff is that Cake can be used with a wide variety of existing
components.

Regarding expressiveness, there is no clear discussion of the extended UniCon’s ex-
pressive capability. In fact, UniCon is treated as just one possible implementation choice
for a packaging code generator, rather than being central to the approach. From the ex-
amples, it has clearly been extended with a variety new connectors, including spreadsheet
accessors and byte-streams described by grammar combinators.

Flexible Packaging is designed to accommodate a wide variety of control structures
within wares. This contrasts with Cake, which currently suffers certain limitations re-
garding control structures (§3.5). Flexible Packaging achieves this by explicitly basing its
design on coroutines. Wares are written in Ciao, a version of C extended with channel-
based communication primitives much like those in CSP [Hoare 1978]. Packaging genera-
tors, or packagers, are tools (such as the UniCon compiler) for generating packaging (such
as the concrete output of the UniCon compiler) based on a packaging description (such
as source code in the UniCon language). Ware and packaging each run as one or more
coroutines in the assembled program.

Unlike Cake, Flexible Packaging provides features for checking that a given compo-
sition of ware and packager is compatible, including a CSP-based notation for channel
behaviours. By contrast, Cake pushes this responsibility to the programmer. Note that
there is no check that a particular ware actually provides the signature with which it is
annotated.

The packager must ensure that generated packaging is well-matched with the ware.
This includes channel names. These are derived from packaging descriptions; the inte-
grator can often choose names which will generate packaging that is well-matched with

196 7.12. Coordination

respect to the ware’s channel names. An explicit “channel map” may be used in other
cases. For mismatches more complex than channel names—for example, mismatches in
the grouping of channels or arguments on those channels, or mismatches in the encod-
ing of data sent along channels—system integrators may write additional conventional
code in the Ciao language to overcome these. There is no analogue of Cake’s value cor-
respondences, or any a high-level notation for describing conversions of data sent along
channels. Also note that ware and packaging do not share state: they communicate only
by channels.

The output of Flexible Packaging is a component, not a composition. In other words,
packaging is a unilateral action, performed for each component separately. Moreover, the
system does not explicitly ensure that a suite of generated components will be compatible,
nor provide tools for adapting mismatches between them if they are not. If they are not,
the developer’s recourse is to a modified packaging description or, in more difficult cases,
use of a wholly alternative packager (replacing UniCon compiler). Implicitly, it is hoped
that the packager would accept a sufficiently expressive range of packaging descriptions
that any context-specific details of integration—for example, the layout of particular data
structure, or the message format to be used on a particular file descriptor—could be passed
through in the description as parameters to the packaging generation process. However,
this requires sufficient anticipation on the part of the packager author. In the worst case,
a new or modified packager would be required to support some new integration context.

Put differently, the design of Flexible Packaging does not rigidly define a line between
packaging style—the abstract or recurring properties of an particular packaging—and
packaging detail which might be specific to one particular composition context. Rather,
ensuring a sufficiently general packager is left to discipline and foresight on the part of
the author. UniCon evidently suffices for a large number of examples presented in the
paper, but there is no detailed discussion of its expressiveness.

7.12 Coordination

Coordination might be described as the composition of components under a special aware-
ness of parallel execution, synchronisation and scheduling constraints. It has been de-
scribed as “managing dependencies between activities” (cited by Papadopoulos and Arbab
[1998]), by Gelernter and Carriero [1992] as “gluing together of active pieces”, and by Weg-
ner [1996] as “constrained interaction”. The word “interaction” is often used to describe
the domain of coordination; we can consider this word synonymous with “communica-
tion”.

Exogenous coordination techniques [Arbab 1998] can constitute a useful medium for
black-box adaptation. Specifically, they naturally permit interposition—a key function of
the coordination domain—and may provide constructs for rewriting or reordering mes-
sages. “Exogenous” stands in contrast to so-called “endogenous” coordination languages
such as Linda [Carriero and Gelernter 1989] and its many variants [Papadopoulos and
Arbab 1998], which have no such special features. For our purposes, the contrast lies
in the fact that the only way to adapt a Linda composition is to edit the composed
components themselves.

Chapter 7. Related work 197

Exogenously coordinated components never interact directly, but instead exchange
opaque messages with a coordination engine, which is responsible for routing, synchroni-
sation and scheduling concerns. In Reo [Arbab and Mavaddat 2002], the behaviour of this
engine is specified as a network of channel primitives with specified synchronisation and
data-flow behaviours. This network specifies not only the linkage relation between compo-
nents, but much of its concurrent execution, synchronisation and scheduling behaviour of
the system. Consequently, the network of connectors may be modified, independently of
components, to prevent deadlock or improve parallelism. There is a clear parallel between
the description of this network and a set of Cake rules.

Reo permits component aggregation, interposition and also protocol adaptations (in
the sense of Yellin and Strom [1997]). However, the data sent along channels is not
modelled; it is treated opaquely except for a filtering channel primitive. It follows that
Reo’s coordinators do not inspect or modify the messages themselves, so any adaptation of
messages must be done in a manner opaque to Reo, by adding or changing components.
Since this is a key function of Cake, pervading not only its value correspondences but
also the pattern-matching behaviour of event correspondences (which rest on the ability
to match particular calls and particular arguments), Reo is not a comparable tool for
any realistic application of Cake. Rather, a Cake-like language could usefully describe
adaptations at a layer above Reo within a distributed system. (Alternatively, combining
Reo with aspect-oriented techniques has been proposed by Eterovic et al. [2004], using
pointcuts to exogenously instrument components with channel endpoint logic; one could
also add message adaptation logic in this way.)

7.13 Specialised code generators

Code generation tools have been applied in specialised domains to automate the gener-
ation of particular kinds of integration logic. By parameterising the generator on some
description of the code to be generated, they can provide a medium for the programmer
to express adaptations.

Language integration Wrapper generation for programming language integration is
one example of specialised adaptation. Tools such as Swig [Beazley 1996] adapt a mod-
ule written in one language such that it can be consumed by another. The process is
parameterised by rules controlling how features of one language should be mapped to
those of the other. This permits some flexibility in how each module concretely captures
the interface of the other, and can therefore be used for adaptation. However, it it is
unlikely to be sufficient to avoid further manual glue coding in cases where both from and
to interfaces are defined a priori. Many languages’ foreign function interfaces, such as
Java’s JNI [Liang 1999] and Haskell’s FFI [Chakravarty et al.], provide similar wrapping
capabilities, but offer still less flexibility.

Stub generation for remoting Stub generation in RPC systems [Birrell and Nelson
1984] or, more recently, in Web Services and Remote Method Invocation [Waldo and

198 7.14. Data-only techniques

Clemsford 1998], is another domain-specific form of adaptation. The automatically gen-
erated stubs (for the client-side invocation) and skeletons (for the server-side dispatch)
are adapters from local procedural communication, passing messages on the stack, into
a distributed version of the same, passing messages over some network socket. They are
mostly black-box, although some implementations may force client code to add extra error
handling, for errors associated with distributed execution. Subsequent work has greatly
increased the degree of parameterisation and customisation available in the stub gener-
ation process, as well as increasing performance [O’Malley et al. 1994; Eide et al. 1997],
but none approaches the expressiveness of Cake, and as usual, none provides support for
context-sensitive or many-to-many adaptations. However, deep traversal of object graphs
(§2.4.1) is a feature which the code generated by IDL compilers shares with Cake.

7.14 Data-only techniques

Database schema evolution and schema mismatch are well-known problems in their own
right, and have been studied separately from issues of active communication and com-
putation in mismatched interfaces. Although no such system is directly applicable to
Cake-style problems on its own, we may compare these techniques’ treatment of data
with Cake’s.

Web- and XML-oriented tools Much as scripting languages build in support for
string rewriting, tools targetting tree-structured or relational data present techniques
for addressing mismatch in the organisation of that data, analogously to Cake’s value
correspondences. Web-derived technologies such as XSLT [Tidwell 2008] or XQuery [Boag
et al. 2002] have been created to operate on XML documents: the former as a customisable
specification language for XML-to-HTML prettyprinters, and latter as a query language,
where querying generalises into extracting and transforming subsets of the available data.
Both have grown into Turing-complete languages [Kepser 2004] with useful adaptation
facilities such as projection, renaming and (in XSLT’s case) pattern-based rewriting of
tree structures. As such they are more expressive than Cake’s value correspondences. On
the other hand, Cake’s value correspondences apply, in general, over graphs rather than
trees; extending the ideas in these languages to apply over graphs—perhaps as simply
as treating certain back-edges opaquely—could be a useful extension to Cake, which is
currently somewhat impoverished in its ability to select between value correspondences
when traversing object graphs.

Bidirectional combinators Lenses [Foster et al. 2005] are a class of tree transfor-
mation combinators which ensure that transformations are bidirectional. This is done
by constraining the language of combinators from which lenses are built. It is an open
question whether this restricted set of transformations would suffice for the kinds of trans-
formations required by Cake. However, at least for the subset that is supported, these
combinator-based transformers have the benefit of being bidirectional by design, and pro-
viding behavioural guarantees about round-trip operations. By contrast, Cake rules are

Chapter 7. Related work 199

only bidirectional in simple cases, and ensuring their well-behavedness is a problem that
is pushed to the programmer.

Schema mappings Much work in the database community concerns the description
and discovery of mappings between different representations of semantically equivalent
data. This work considers the same kinds of one-to-one and many-to-many mappings as
do Cake’s value correspondences. Miller et al. [2000] proposed query languages as suitable
abstractions for expressing these mappings and also coined the term value correspondence

with much the same meaning as it has in Cake (albeit unidirectional, and guarded much
like the style-oriented rules in Chapter 6). Fletcher et al. [2006] build on this with a
formal calculus of data mappings, although this does not represent a tool per se. Other
work has progressed towards automatically discovering such mappings by a combination
of techniques: ontology matching based on field names, learning-based generalisation of
human-supplied mappings, and exploiting data integrity constraints [Doan et al. 2001;
Nottelmann and Straccia 2005]. These techniques are a complement rather than a re-
placement for a Cake-like programming medium, as they generate approximate output
that requires manual editing in a declarative notation.

7.15 Concluding remarks

This chapter has discussed a large quantity of prior work, overlapping with the goals and
achievements of Cake in various ways. A recurring theme is the relative lack of support
for many-to-many and context-sensitive relations between interfaces. Testifying to the
novelty of Cake is the complete lack of prior work integrating these features in the context
of a practical, adoptable tool supporting composition of heterogeneous components.

The work surveyed in this section has also suggested several areas for future work
building on Cake. These are summarised, along with our conclusions, in the final chapter.

200 7.15. Concluding remarks

Chapter 8

Summary and Conclusions

This chapter briefly summarises the substantiation of the thesis, and directions for future
work.

8.1 Summary of the thesis and its substantiation

The thesis of this dissertation has been that “using a special-purpose language, based
on relations, to compose heterogeneous mismatched software components, is significantly
more effective in practice than conventional programming languages”.

The substantiation of the thesis was divided into a set of goals: that this special
purpose language would (1) capture adaptation tasks using a black-box abstraction, with
(2) demonstrable practicality of application, (3) an expressiveness that covers a broad
range of tasks with significantly greater effectiveness than conventional languages, and
(4) that the language would extend to support for heterogeneous components.

In Chapter 2 we described the Cake language design in detail, establishing its black-
box design and the detailing the language features which enable the expressiveness and
effectiveness on which future chapters rely.

In Chapter 3 we explored the Cake language further, noting areas where it could be
straightforwardly extended to expand the range of use cases to which it could be applied.

In Chapter 4 we outlined an implementation of Cake. By demonstrating the imple-
mentability of Cake, and moreover its integration with existing toolchains and ability to
use existing code, this chapter substantiates the goal of practicality.

In Chapter 5 we presented an evaluation of Cake on three case studies on real code-
bases, including comparison with pre-existing adapters coded conventionally for each
study by those codebases’ own developers. We showed both by a series of code examples
how Cake alleviates many burdens that afflict the developers in conventional approaches,
and by measurement, how the overall result is a substantially shorter body of code un-
der the Cake approach. This, together with the previous chapters, demonstrates Cake’s
expressiveness and substantiates the larger part of the thesis.

202 8.2. Future work

In Chapter 6 we introduce the class of stylistic variations in object-code interfaces, and
presented a simple extension to Cake which captures a large class of these heterogeneous
interface conventions without altering the basic language design. This completes the
substantiation of the thesis.

In Chapter 7 we established the novelty of the thesis’s contribution by comparison
with existing work.

8.2 Future work

Each chapter from Chapter 2 onwards has identified some future work. For brevity, we do
not repeat these items here. Instead, we simply present a coarse-grained categorisation
with the appropriate backreferences.

Abstracting alternative dimensions of mismatch Addressing the classes of control-
based mismatch identified in Chapter 3 would make an interesting challenge. Refining
our naive treatment of object lifetime (described in §4.4.2 and explored in §5.6.4) would
allow handling of a further class of mismatch. A linguistic abstraction of low-level issues
such as calling conventions (§3.4) or exception handling stack-walking protocols (§6.3.2)
could prove useful in many cross-language scenarios.

Refinements to the language Bidirectional Cake rules, analogously with bidirectional
tree transformations [Foster et al. 2005] could bring added elegance to the Cake language,
by unifying stubs with event patterns. Also, a context model for objects reached dur-
ing heap exploration, perhaps based on a formalisation of tree- or graph-structured data
(motivated in §4.4.5) could yield a solution to the problem of nontrivial correspondences
between complex object structures identified in §5.6.4. Meanwhile, decoupling concrete
components from logical “slices” of traces would improve Cake’s scalability to large pro-
gramming tasks (§3.6).

Formalisations A formal model of interface mismatch would allow us to reason about
the completeness of Cake as a language. Currently, no existing work establishes a formal
distinction between interface mismatch (of the kind and scale addressed by Cake) and
more general programming problems. We noted in §3.2 how models of formal languages
appear not especially suited to capturing interface mismatches, but perhaps other domains
offer more suitable foundations.

Checking compositions Cake is an ideal vehicle for checking properties of a compo-
sition. Given a more precise formal model of component behaviour, perhaps as strength-
enings of Dwarf-based interface descriptions, we could extend Cake to support checking
interesting non-local properties of code. Meanwhile, applying more conventional type- and
model-checking approaches to identifying errors in Cake code would improve its practi-
cality as a tool.

Chapter 8. Summary and Conclusions 203

White-box complement Cake only performs black-box adaptation, so assumes that
input components expose the necessary interposition sites, i.e. that they are well-abstracted
from a black-box composition perspective. Future work could investigate the complemen-
tary approach of using binary instrumentation systems, such as Pin [Luk et al. 2005] for
turning ill- into well-abstracted tasks.

Relationship with other dynamic analyses Cake retains a lot of additional state
to implement its specified run-time behaviour—including call history (§4.2.7) and logi-
cal replicas of objects (§4.4.4). It would be interesting to explore the overlap between
this and heavyweight dynamic analyses done by value-shadowing tools such as Valgrind
[Nethercote and Seward 2007]. For example, it might be useful to characterise the classes
of analyses can be done with acceptable performance on conventional hardware.

Coverage of trickier use cases From a practical perspective, more sensitive treat-
ment of unions (§2.4.3) by suitable programmer annotation, and interposition on variadic
functions (§4.2.6) and inlined functions (§4.2.10) would be useful additions.

Performance optimisations Considering the time and space overheads of logical repli-
cation, identified techniques worth exploring include annotations for copying reduction
(§4.4.6), automatic inference of these, and an efficient approach to the required heap
instrumentation (§4.3.2). Efficient algorithms for implementing the blackboard remain
an area for experimentation (§4.2.7). Combination of Cake with link-time optimisation
(§4.2.10) and binary rewriting optimisations (§4.1) could also yield significant performance
improvement. A performance study of practical applications of Cake would be valuable
guidance for this work.

Concurrency An implementation of a thread-safe Cake runtime that can deal with
shared-writable or change-prone objects (§4.4.7), safely propagate replica updates without
control-flow crossings, and avoid conflicting updates is necessary to make Cake usable for
multithreaded programs, and stands to improve performance at the same time.

Automation Cake’s correspondences are effectively a somewhat strengthened specifi-

cation such as might be fed to a converter synthesis algorithm [Passerone et al. 2002].
Still missing is a description of the protocols of the input components, so that the trickier
aspects of control structure can be inferred automatically. Recent work on object usage
pattern mining [Wasylkowski et al. 2007] extracts exactly this information; this could be a
basis for greater automation of Cake coding. Ontology matching, learning-based schema
matching and similar techniques could be applied additionally (§7.14).

Unaddressed stylistic issues Call demultiplexing and synchronisation were deliber-
ately omitted from consideration in §6.3, but would be valuable to explore in future work.
A formalisation of styles’ preconditions and postconditions, analogous to ConceptC++’s
treatment to the same issues for C++ templates, could make styles a more usable and

204 8.3. Summary

scalable programming tool (§6.4.1). A higher-performance and more robust Cake run-
time could be achieved through exploiting certain relevant styles, as identified in §6.3.2.

8.3 Summary

With this chapter, the dissertation concludes. Interface mismatch is a complex and
highly recurrent problem. Like so many practical problems, it is unlikely ever to be
truly “solved”—nontrivial mismatches will always occur. Nevertheless, this dissertation
has contributed a practical step towards reducing its impact on the developer and on the
cost of software, by showing that a great many mismatches can be addressed in a modular
fashion by some simple abstractions captured in a simple, special-purpose language.

Appendix A

Glossary

This appendix briefly lists the named concepts and other terminology introduced in the
dissertation, with references to their definition in the main text.

term explanation ref.

admissible reinterpretation an adjustment to a pointer which doesn’t violate the ab-

straction of the pointed-into structure

§4.7

algorithm (Cake) an opaquely-defined algorithm over abstract sequences of

data items, which can be invoked from a stub

§2.3.2

allocation annotation a Cake extension to Dwarf interface description, describ-

ing, for a function call which allocates an object, that the

caller should free that object using a given function

§2.3.7

annotations either a programmer-supplied fragment of Dwarf inter-

face description or the Cake extensions, or use of the as

keyword to select the value correspondences applying to

an alternative data type, usually an artificial data type

§2.3.3,

§2.3.5

artificial data type either a data-type synonym defined in an input compo-

nent, or a data type not defined in an input component

but introduced by the Cake as keyword

§2.3.5

association a value correspondence involving multiple data-type in-

stances in the same component, for at least one of the two

components

§2.3.2

bidirectional rule a Cake rule using the double-arrow,←→, to describe han-

dling of two directions of data flow at once

§3.7

bilateral rule a Cake rule which relates two concrete interfaces, perhaps

unidirectionally or bidirectionally

§2.2.10

black-box composition any description of a composition made referencing only

interface details, not internal implementation details of

any component

§2.2

blackboard the structure on which past calls across an interface are

remembered at run time, for subsequent matching as event

context

§4.2.7

bracketed stub expression a piece of stub code, embedded in a value correspondence

rule, defining a computation through which a source value

is passed before reaching the sink

§2.3

co-object relation the run-time record of which object identities are storing

logically related state in separate (mismatched) compo-

nents

§4.4.1

206

composition context effectively, a Cake link block §2.2.7

context usually event context, but also composition context §2.3.1

context predication the practice of writing event correspondences containing

event patterns on which the correspondences is predicated

§2.3.1

correspondence either an event correspondence or a value correspondence §2.2.9

data-dependent call sequence a stub which uses let to bind a name to an intermediate

value which is referenced later in the stub

§2.3.2

data-dependent context predicate an event context predicate in which a bound name is refer-

enced subsequently in the pattern, forming a requirement

that a specific value seen earlier recurs later

§2.3.1

default style the style definition which is used by default, and captures

interface conventions of a reasonable proportion of com-

ponents coded in C

§2.3.3

dynamic points-to analysis the analysis which recovers, at run-time, the precise class

of an object given a pointer to that object

§4.3.2

Dwarf the debugging information format on which Cake’s model

of component interfaces is based

§2.2.7

elaboration the process of expanding styles into rules §6

error discovery the process of determining, after a procedure call returns,

whether it “succeeded” or “failed” in abstract terms

§2.3.2

event generally, an abstract instance of communication between

two components, of a kind that can be interposed on by

Cake; concretely, a procedure call or return from one

§2.2.4

event context either structural context of an event, or its temporal con-

text

§2.3.1

event correspondence a Cake rule describing what should occur on a particular

function call event

§2.2.9

event pattern Cake syntax for describing a set of temporal event contexts §2.2.9

event sequence a sequence of procedure calls across same interface, and

procedure returns in the opposite direction

§2.3.1

functions-only assumption the assumption that components do not communicate

through shared objects unless that sharing was established

dynamically, hence allowing Cake to be implemented by

functional interposition only

§4.2.1

functional interposition the procedure of intercepting a function (procedure) call,

in order to acquire control of its handling

§4.2.1

guard predicate a piece of Cake syntax describing a property which must

hold for a rule to apply in a particular context

§2.3.5

heterogeneity the property of software components deriving from differ-

ent languages, toolchains or coding styles, observable as

superficial differences in their interfaces

§1.3.3

identifier pattern a regular expression matching identifiers in Cake rules that

use the pattern keyword

§2.2.11

initialization rule a rule in a value correspondence that applies only when

initializing an object

§2.3.4

input and output parameters parameters or return values in a procedure call used to

implement its logical inputs and outputs, respectively

§2.3.7

instantiate one of the algebra of Cake composition operators, used to

instantiate a named data structure

§2.3.3

Appendix A. Glossary 207

interface description the Cake textual syntax for Dwarf information, aug-

mented by some Cake-specific annotations describing in-

terface features which Dwarf does not

§2.3.3

logical replication the technique of maintaining, at run time, multiple repre-

sentations of the same logical state, implemented by the

co-object relation

§4.4.4

metavariable a variable appearing in a guard predicate which ranges

over named variables or other named interface elements

§2.3.5

“most specific match” rule the behaviour that events (calls) should fire the most spe-

cific Cake event pattern of all those defined which match

the event

§2.4.4

name matching the behaviour of the Cake compiler in implicitly drawing

correspondences between like-named interface elements

§2.2.11

named style a style defining a checkable structural condition on its in-

put component

§6.7.4

object discovery the process implemented by dynamic points-to analysis §4.3.2

partially split heap logical replication with the addition of sharing as an opti-

misation

§4.4.2

pattern usually: event pattern; sometimes: identifier pattern

Platonic form an abstract specification of the interface which a set of

style rules should generate

§6.7.4

quantification the property that a Cake rule applies to any of an open

set of dynamic events, so long as its guard predicate (if

any) is satisfied

§2.3.5

representation compatibility a binary compatibility relation on data structures §4.4.4

rule a correspondence §2.2.9

sharing analysis an analysis which decides whether two components may

safely share a given object or instances of a given class,

given that the objects are representation-compatible

§4.4.4

source and sink the origin and, respectively, target of the data flow de-

scribed by a correspondence rule

§2.2.10

structural context a fragment of interface description describing the pro-

grammatic surroundings of a value’s source-level defini-

tion

§2.3.5

structural guard a guard predicate describing a particular structural con-

text

§2.3.5

stub an imperative fragment of Cake code §2.3.2

styles groups of correspondences written to apply to open-ended

sets of components, cf. bilateral rules

§6

table rule a special kind of value correspondences which relates ele-

ments of two data-types individually, rather than relating

divisions of the data type structurally

§2.3.6

temporal context the history of interactions between the relevant compo-

nents when an event occurs between them

§2.3.1

trace an execution history of interactions between two compo-

nents, as a list of calls with their argument and return

values

§2.2.4

tying an instruction to the Cake runtime that the lifetime of an

object should end when that of another object or alloca-

tion ends

§2.3.4

208

umbrella object an object created by the Cake runtime to hold pointers to

other objects related by an association

§2.3.2

update rule a rule in a value correspondence that does not apply when

initializing an object, unless no initialization rules are

given

§2.3.4

value conversion function a function generated by the Cake compiler to implement

value correspondences

§4.2.8

value correspondence a rule relating elements of one or more data types in one

component with one or more in another component

§2.2.9

wrapper function a function generated by the Cake compiler to implement

event correspondences

§4.2.6

Appendix B

Cake recipes

This Appendix gives an overview of the main Cake language features, in the form of
templated syntax.

B.1 Pairwise features

These features appear within link blocks (§2.2.7), and relate the interfaces of a pair of
components.

Event correspondences Event correspondences (§2.2.9) are the relational analogue of
function definitions in conventional languages. Rather than defining new callable func-
tions, they relate a function call required by one component with a different call provided
by the opposing component. Common argument bindings route arguments; optionally,
as annotations control the selection of value correspondences applied to those arguments
(§2.3.5).

f (a, b as t) −→ g(b, a as u);

Families of correspondences for events of similar names can be defined using an iden-
tifier pattern to capture multiple events and their correspondents. (§2.2.11).

pattern /do (.∗)/(x) −→ perform \\1(x);

Event correspondences can be predicated on an event context, meaning the history of
prior calls between the pair of interfaces in question.

prior call1 (arg1), ...,

prior call2 (arg2),

h(c, d) −→ j (d, c);

210 B.1. Pairwise features

Bracketed stub expressions are useful (for example) to add extra bindings, or perform
any other auxiliary computation. They may appear on either side of the arrow. . .

p(x) (let y = get y()) −→ q(x, y);

. . . but are more likely on the source side (here left), since the sink (here right-hand)
expression may be an arbitrary expression in the stub language (§2.2.9).

r(z) −→ { s(z); w(); }

Value correspondences Treatment of data structures is specified using value corre-
spondences, which are prefixed by the keyword values or contained in a values block
(§2.2.9). At their simplest, they relate two named data types in opposing components,
meaning that when an instance of one type is provided (in a call, or within an object
graph) by one component, an instance of the other should take its place in the opposing
component.

values Abacus ←→ BeanCounter;

Most often, the named data types are structured types, meaning they consist of fields
(data members). Structured value correspondences relate fields within the types (§2.3.4).
These are the relational analogue of structured data type definitions in conventional lan-
guages, such as C’s struct.

values Abacus ←→ BeanCounter

{

rows ←→ piles ;

};

As with event correspondences, bracketed stub expressions can be used to insert extra
logic. The special variables this and that hold the local and remote representations of the
source value (“local” meaning the same side as the stub; this may be used only on the
source side, and that only on the sink side).

values Square ←→ square shape

{

length (this ∗ 4) −→ perimeter ;

length (that / 4)←− perimeter ;

};

Another kind of value correspondence is the table construct (§2.3.6), which is the
relational analogue of an enumeration type in conventional languages. Rules inside a
table relate individual named values.

Appendix B. Cake recipes 211

table Colour ←→ Pigment

{

Red ←→ Vermillion ;

Brown ←→BurntSienna;

};

Many-to-many correspondences between objects can be achieved using associations

(§2.3.2). Syntactically, each component’s view of the association is described by a tuple
of named elements, each an instance of a named data type. Objects participating in the
association are treated much like fields in a structured value correspondence.

values

(al : AdjacencyList , cm: ColourMap) ←→

(ns: ColouredNodeList, es : EdgeList)

{

/∗ ... ∗/

};

B.2 Annotations

Pre-existing components may have blocks of annotations attached to them at the point
where they are introduced in Cake code, namely at their exists statement (§2.2.7). These
annotatons can supplement the debugging information contained within the component,
or to add Cake-specific annotations (§2.3.3).

exists elf reloc (”componentA.o”)

{

declare {

error t : class of enum {

NO ERROR, NOT FOUND, NOT SUPPORTED, IO ERROR

}; // define new DWARF info

write output: (,) ⇒ error t ; // refine existing DWARF

handle t: class of opaque void ptr; // Cake ”opaque” annotation

}

};

212 B.2. Annotations

Appendix C

Grammar of the Cake language

The following grammar includes all the syntax used in the examples in Chapters 2–5.

C.1 Lexical structure

C.1.1 Skipped lexemes

〈NEWLINE〉 ::= ’\r’? ’\n’

〈WS〉 ::= (’ ’ | ’\t’)+

〈LINECOMMENT 〉 ::= ’/’ ’/’(∼ ’\n’)*

〈BLOCKCOMMENT 〉 ::= ’/’ ’*’ (∼ ’/’ | (∼ ’*’) ’/’)* ’*’ ’/’

C.1.2 Other lexemes

〈INT 〉 ::= (’1’..’9”0’..’9’*) | ’0”x’(’0’..’9’ | ’a’..’f’ | ’A’..’F’)+ | ’0’

〈FLOAT 〉 ::= ’0’..’9’+ ’.”0’..’9’+

〈STRING LIT 〉 ::= ’\"’ (∼ ’\"’ | ’\\\"’)* ’\"’

〈IDENT 〉 ::= (’\\’. | ’a’..’z’ | ’A’..’Z’ | ’_’+’a’..’z’ | ’_’+’A’..’Z’ | ’_’+’0’..’9’)
(’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’_’ | ’\\’.)*

〈PATTERN IDENT 〉 ::= ’/’(’a’..’z’ | ’A’..’Z’ | ’_”a’..’z’ | ’_”A’..’Z’ | ’_”0’..’9’)
(’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’_’ | ’|’ | ’*’ | ’(’ | ’)’ | ’.’ | ’ ?’)*’/’

〈METAVAR〉 ::= ’@’(’a’..’z’ | ’A’..’Z’)(’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’_’)*

C.2 Interface description syntax

〈membershipClaim〉 ::= 〈memberNameExpr〉 ’:’ ’class_of’ 〈valueDescriptionExpr〉 ’;’
| 〈memberNameExpr〉 ’:’ ’const’ 〈namedDwarfTypeDescription〉 ’=’ 〈constantValueDescription〉 ’;’
| 〈namedValueDescription〉 ’;’
| ’...’ ’:’ 〈valueDescriptionExpr〉 ’;’

214 C.2. Interface description syntax

〈memberNameExpr〉 ::= 〈definiteMemberName〉
| ’_’

〈definiteMemberName〉 ::= 〈IDENT 〉 (〈memberSuffix〉)*

〈memberSuffix〉 ::= ’.’ 〈IDENT 〉
| ’[’ 〈constantIntegerArithmeticExpression〉 ’]’

〈valueDescriptionExpr〉 ::= 〈primitiveOrFunctionValueDescription〉

〈primitiveOrFunctionValueDescription〉 ::= 〈argumentMultiValueDescription〉 ’=>’ 〈primitiveOrFunctionValueDescription〉
| 〈primitiveValueDescription〉

〈argumentMultiValueDescription〉 ::= 〈multiValueDescription〉

〈multiValueDescription〉 ::= ’(’ 〈optionallyNamedWithModeValueDescription〉 (’,’ 〈optionallyNamedWithModeValueDescription〉
)* (’,’ ’...’)? ’)’

〈optionallyNamedWithModeValueDescription〉 ::= valueModeAnnotation? 〈optionallyNamedValueDescription〉

〈optionallyNamedValueDescription〉 ::= (namedValueDescription)=>namedValueDescription
| 〈primitiveOrFunctionValueDescription〉

〈namedValueDescription〉 ::= 〈memberNameExpr〉 ’:’ 〈valueDescriptionExpr〉

〈namedMultiValueDescription〉 ::= ’(’ 〈namedValueDescription〉 (’,’ 〈namedValueDescription〉)* ’)’

〈structuredValueDescription〉 ::= (’object’ | ’struct’) ’{’ membershipClaim* ’}’

〈simpleOrObjectOrPointerValueDescription〉 ::= 〈structuredValueDescription〉 (〈valueDescriptionModifierSuffix〉)*
| 〈simpleValueDescription〉 (〈valueDescriptionModifierSuffix〉)*
| 〈enumValueDescription〉 (〈valueDescriptionModifierSuffix〉)*
| ’void’ (〈valueDescriptionModifierSuffix〉)*
| ’(’ 〈primitiveValueDescription〉 ’)’ (〈valueDescriptionModifierSuffix〉)*

〈valueDescriptionModifierSuffix〉 ::= ’ptr’
| ’[’ arraySizeExpr? ’]’

〈arraySizeExpr〉 ::= 〈constantIntegerArithmeticExpression〉

〈simpleValueDescription〉 ::= 〈namedDwarfTypeDescription〉
| ’_’

〈byteSizeParameter〉 ::= ’<’ 〈INT 〉 ’>’

〈namedDwarfTypeDescription〉 ::= ’base’ 〈dwarfBaseTypeDescription〉
| 〈IDENT 〉

〈dwarfBaseTypeDescription〉 ::= 〈IDENT 〉 byteSizeParameter 〈dwarfBaseTypeAttributeList〉

〈dwarfBaseTypeAttributeList〉 ::= (’{’ (〈dwarfBaseTypeAttributeDefinition〉)* ’}’)?

〈dwarfBaseTypeAttributeDefinition〉 ::= 〈IDENT 〉 ’=’ (〈IDENT 〉 | 〈INT 〉) ’;’

〈enumValueDescription〉 ::= ’enum’ 〈dwarfBaseTypeDescription〉 enumDefinition
| ’enum’ 〈enumDefinition〉

〈enumDefinition〉 ::= ’{’ enumElement* ’}’

〈enumElement〉 ::= ’enumerator’ 〈IDENT 〉 ’==’ 〈constantIntegerArithmeticExpression〉 ’;’
| 〈IDENT 〉 ’;’

〈primitiveValueDescription〉 ::= ’const’ 〈constantValueDescription〉
| valueIntrinsicAnnotation? 〈unannotatedValueDescription〉 valueInterpretation?

Appendix C. Grammar of the Cake language 215

C.3 Cake annotations

〈valueInterpretation〉 ::= ’as’ 〈unannotatedValueDescription〉 valueConstructionExpression
| ’out_as’ 〈unannotatedValueDescription〉 valueConstructionExpression
| ’interpret_as’ 〈unannotatedValueDescription〉 valueConstructionExpression
| ’in_as’ 〈unannotatedValueDescription〉 valueConstructionExpression

〈valueConstructionExpression〉 ::= ’(’ 〈stubNonSequencingExpression〉 (’,’ 〈stubNonSequencingExpression〉)* ’)’
| 〈empty〉

〈valueIntrinsicAnnotation〉 ::= ’opaque’ valueIntrinsicAnnotation?
| ’ignored’ valueIntrinsicAnnotation?
| ’invalid’ valueIntrinsicAnnotation?
| ’caller_free’ ’(’ 〈IDENT 〉 ’)’ valueIntrinsicAnnotation?

〈valueModeAnnotation〉 ::= ’out’
| ’in’
| ’inout’

〈unannotatedValueDescription〉 ::= 〈simpleOrObjectOrPointerValueDescription〉

C.4 Literal values and compile-time constant expres-

sions

〈patternConstantValueDescription〉 ::= 〈STRING LIT 〉
| 〈INT 〉 ’...’ 〈INT 〉

〈constantOrVoidValueDescription〉 ::= 〈constantValueDescription〉
| ’void’

〈constantValueDescription〉 ::= 〈STRING LIT 〉
| ’null’
| 〈constantSetExpression〉
| 〈constantIntegerArithmeticExpression〉

〈constantSetExpression〉 ::= ’set’ ’[’ (〈constantValueDescription〉 (’,’ constantValueDescription*)*)? ’]’

〈setExpression〉 ::= ’set’ ’[’ (〈stubLangExpression〉 (’,’ stubLangExpression*)*)? ’]’

〈constantIntegerArithmeticExpression〉 ::= 〈constantShiftingExpression〉

〈primitiveIntegerArithmeticExpression〉 ::= 〈INT 〉
| 〈memberNameExpr〉
| ’(’ 〈constantIntegerArithmeticExpression〉 ’)’

〈constantUnaryOperatorExpression〉 ::= (’-’ | ’+’)* 〈primitiveIntegerArithmeticExpression〉

〈constantMultiplicativeOperatorExpression〉 ::= 〈constantUnaryOperatorExpression〉
((’*’ | ’/’ | ’%’) 〈constantUnaryOperatorExpression〉)*

〈constantAdditiveOperatorExpression〉 ::= 〈constantMultiplicativeOperatorExpression〉
((’+’ | ’-’) 〈constantMultiplicativeOperatorExpression〉)*

〈constantShiftingExpression〉 ::= 〈constantAdditiveOperatorExpression〉
((’>>’ | ’<<’) 〈constantAdditiveOperatorExpression〉)*

216 C.5. Cake language syntax proper

C.5 Cake language syntax proper

〈toplevel〉 ::= declaration*

〈declaration〉 ::= 〈existsDeclaration〉 ’;’ ?
| 〈aliasDeclaration〉 ’;’ ?
| 〈supplementaryDeclaration〉 ’;’ ?
| 〈inlineDeclaration〉 ’;’ ?
| 〈deriveDeclaration〉 ’;’ ?

〈aliasDeclaration〉 ::= ’alias’ 〈aliasDescription〉 IDENT ’;’

〈aliasDescription〉 ::= 〈IDENT 〉
| ’any’ 〈identList〉

〈identList〉 ::= ’[’ 〈IDENT 〉 (’,’ 〈IDENT 〉)* ’,’ ? ’]’

〈supplementaryDeclaration〉 ::= 〈IDENT 〉 ’{’ claimGroup* ’}’

〈inlineDeclaration〉 ::= ’inline’ 〈objectSpec〉 〈wellNestedTokenBlock〉

〈wellNestedTokenBlock〉 ::= big alternation of all distinct tokens

〈objectConstructor〉 ::= 〈IDENT 〉 (’(’ 〈STRING LIT 〉 ’)’)?

〈objectSpec〉 ::= 〈objectConstructor〉 IDENT
| 〈objectConstructor〉 ’deriving’ 〈objectConstructor〉 IDENT

〈existsDeclaration〉 ::= ’exists’ 〈objectSpec〉 existsBody

〈existsBody〉 ::= ’{’ (〈claimGroup〉 | 〈globalRewrite〉)* ’}’
| 〈empty〉

〈globalRewrite〉 ::= ’static’? 〈valueDescriptionExpr〉 ’–>’ 〈valueDescriptionExpr〉 ’;’

〈claimGroup〉 ::= ’check’ ’{’ claim* ’}’
| ’declare’ ’{’ claim* ’}’
| ’override’ ’{’ claim* ’}’

〈claim〉 ::= 〈membershipClaim〉

〈deriveDeclaration〉 ::= ’derive’ 〈objectConstructor〉 IDENT ’=’ 〈derivedObjectExpression〉 ’;’

〈derivedObjectExpression〉 ::= 〈IDENT 〉 (’(’ 〈derivedObjectFunctionArgument〉 (’,’ derivedObjectFunctionArgument)* ’)’
)?

| ’link’ 〈identList〉 linkRefinement

〈derivedObjectFunctionArgument〉 ::= 〈derivedObjectExpression〉
| 〈STRING LIT 〉

〈linkRefinement〉 ::= ’{’ pairwiseCorrespondenceBlock* ’}’
| 〈empty〉

〈pairwiseCorrespondenceBlock〉 ::= 〈IDENT 〉 ’<–>’ 〈IDENT 〉 pairwiseCorrespondenceBody

〈pairwiseCorrespondenceBody〉 ::= ’{’ pairwiseCorrespondenceElement* ’}’

〈pairwiseCorrespondenceElement〉 ::= 〈IDENT 〉 ’:’ 〈eventCorrespondence〉
| 〈eventCorrespondence〉
| 〈IDENT 〉 ’:’ 〈valueCorrespondenceBlock〉
| 〈valueCorrespondenceBlock〉
| 〈singleValueCorrespondence〉
| 〈IDENT 〉 ’:’ 〈singleValueCorrespondence〉

Appendix C. Grammar of the Cake language 217

〈eventCorrespondence〉 ::= 〈eventPattern〉 〈infixStubExpression〉 ’–>’
〈infixStubExpression〉 〈eventPatternRewriteExpr〉 〈leftRightEventCorrespondenceTerminator〉

| 〈eventPatternRewriteExpr〉 〈infixStubExpression〉 ’<–’
〈infixStubExpression〉 〈eventPattern〉 〈rightLeftEventCorrespondenceTerminator〉

| 〈atomicEventPattern〉 〈infixStubExpression〉 ’<–>’
〈infixStubExpression〉 〈atomicEventPattern〉 〈bidirectionalEventCorrespondenceTerminator〉

〈bidirectionalEventCorrespondenceTerminator〉 ::= ’;’

〈leftRightEventCorrespondenceTerminator〉 ::= ’;’
| ’<–’ 〈stubNonSequencingExpression〉 ’;’
| ’<–’ ’–{’ 〈sequencingExpression〉 ’;’ ? ’}’ ’;’

〈rightLeftEventCorrespondenceTerminator〉 ::= ’;’
| ’–>’ 〈stubNonSequencingExpression〉 ’;’
| ’–>’ ’–{ 〈sequencingExpression〉 ’;’ ? ’}’ ’;’

〈eventContext〉 ::= (’(’ (〈stackFramePattern〉 ’::’)+ ’)’)?

〈stackFramePattern〉 ::= 〈IDENT 〉

〈eventPattern〉 ::= 〈atomicEventPattern〉
| 〈contextBindingEventPattern〉 (’,’ 〈contextBindingEventPattern〉)* ’,’ 〈atomicEventPattern〉

〈contextBindingEventPattern〉 ::= 〈bindingPrefix〉 atomicEventPattern
| ’...’

〈atomicEventPattern〉 ::= 〈eventContext〉 〈memberNameExpr〉 〈eventParameterNamesAnnotation〉
(’(’ ((〈annotatedValueBindingPattern〉 (’,’ 〈annotatedValueBindingPattern〉)*
(’,’ ’...’)?) | ’...’)? ’)’ eventCountPredicate?)?

| 〈eventContext〉 〈identPattern〉 〈eventParameterNamesAnnotation〉
(’(’ ((〈annotatedValueBindingPattern〉 (’,’ 〈annotatedValueBindingPattern〉)*
(’,’ ’...’)?) | ’...’)? ’)’ eventCountPredicate?)?

〈eventCountPredicate〉 ::= ’[’ (〈INT 〉 | 〈IDENT 〉) ’]’

〈eventPatternRewriteExpr〉 ::= 〈stubNonSequencingExpression〉
| ’{’ 〈sequencingExpression〉 ’;’ ? ’}–’

〈identPattern〉 ::= ’pattern’ PATTERN_IDENT;

〈annotatedValueBindingPattern〉 ::= 〈valueModeAnnotation〉? 〈valuePattern〉 〈valueBindingPatternAnnotation〉?

〈valueBindingPatternAnnotation〉 ::= 〈valueInterpretation〉
| ’{’ ’names’ 〈memberNameExpr〉 ’}’

〈eventParameterNamesAnnotation〉 ::= ’{’ ’names’ 〈namedMultiValueDescription〉 ’}’
| 〈empty〉

〈valuePattern〉 ::= 〈memberNameExpr〉 ’[’ 〈constantIntegerArithmeticExpression〉 ’]’ 〈valueInterpretation〉?
| 〈memberNameExpr〉 〈valueInterpretation〉?
| 〈constantValueDescription〉
| ’void’
| ’this’
| ’pattern’ 〈PATTERN IDENT 〉
| ’pattern’ 〈patternConstantValueDescription〉

〈binding〉 ::= 〈bindingPrefix〉 〈stubLangExpression〉

〈bindingPrefix〉 ::= 〈bindingKeyword〉 〈bindableIdentSet〉 ’=’
| 〈bindableIdentSet〉 ’<=’

〈bindableIdentSet〉 ::= ’(’ 〈bindableIdentWithOptionalInterpretation〉
(’,’ 〈bindableIdentWithOptionalInterpretation〉)+ ’)’

| 〈postfixExpression〉 〈valueInterpretation〉?

218 C.6. The stub language

〈bindableIdentWithOptionalInterpretation〉 ::= 〈IDENT 〉 〈valueInterpretation〉?

〈bindingKeyword〉 ::= ’let’ | ’out’ | ’set’

〈valueCorrespondenceBlock〉 ::= ’values’ ’{’ valueCorrespondence* ’}’

〈singleValueCorrespondence〉 ::= ’values’ 〈valueCorrespondence〉

〈valueCorrespondence〉 ::= 〈valueCorrespondenceBase〉 valueCorrespondenceTerminator;

〈valueCorrespondenceTerminator〉 ::= ’;’
| 〈valueCorrespondenceRefinement〉

〈valueCorrespondenceBase〉 ::= 〈valuePattern〉 〈infixStubExpression〉 〈leftToRightCorrespondenceOperator〉
〈infixStubExpression〉 〈stubNonSequencingExpression〉

| 〈stubNonSequencingExpression〉 〈infixStubExpression〉 〈rightToLeftCorrespondenceOperator〉
〈infixStubExpression〉 〈valuePattern〉

| 〈valuePattern〉 〈infixStubExpression〉 〈bidirectionalCorrespondenceOperator〉
〈infixStubExpression〉 〈valuePattern〉

| 〈singleOrNamedMultiValueDescription〉 〈bidirectionalCorrespondenceOperator〉
〈singleOrNamedMultiValueDescription〉

〈singleOrNamedMultiValueDescription〉 ::= 〈memberNameExpr〉
| 〈namedMultiValueDescription〉

〈correspondenceOperator〉 ::= 〈bidirectionalCorrespondenceOperator〉
| 〈leftToRightCorrespondenceOperator〉
| 〈rightToLeftCorrespondenceOperator〉

〈infixStubExpression〉 ::= ’(’ 〈stubNonSequencingExpression〉 ’)’
| 〈empty〉

〈bidirectionalCorrespondenceOperator〉 ::= ’<–>’

〈leftToRightCorrespondenceOperator〉 ::= ’–>’
| ’–>?’

〈rightToLeftCorrespondenceOperator〉 ::= ’<–>’
| ’<–?’

〈valueCorrespondenceRefinement〉 ::= ’{’ 〈valueCorrespondence〉* ’}’ ’;’

C.6 The stub language

This is a fairly conventional C-like grammar, with a few Cake additions.

〈stubLangExpression〉 ::= 〈sequencingExpression〉 /* lowest precedence operator */

〈stubLiteralExpression〉 ::= 〈STRING LIT 〉
| 〈INT 〉
| 〈FLOAT 〉
| ’void’
| ’null’
| ’true’
| ’false’

〈stubPrimitiveExpression〉 ::= 〈stubLiteralExpression〉
| 〈setExpression〉
| 〈IDENT 〉
| ’this’
| ’that’

Appendix C. Grammar of the Cake language 219

| ’success’
| ’out’ 〈IDENT 〉
| ’out’ ’_’
| ’(’ 〈stubNonSequencingExpression〉 ’)’
| ’{’ 〈sequencingExpression〉 ’;’ ? ’}’

〈memberSelectionOperator〉 ::= ’.’ | ’->’ | ’...’

〈memberSelectionSuffix〉 ::= 〈memberSelectionOperator〉 IDENT

〈postfixExpression〉 ::= 〈stubPrimitiveExpression〉 (〈suffix〉)* ’...’ ?

〈suffix〉 ::= ’(’ (〈stubLangExpression〉 (’,’ 〈stubLangExpression〉)*)? ’)’
| 〈memberSelectionOperator〉 IDENT
| ’[’ 〈stubLangExpression〉 ’]’

〈unaryOperatorExpression〉 ::= (’ ’ | ’ !’ | ’-’ | ’+’ | ’*’ | ’delete’ | ’&’)* 〈postfixExpression〉
| ’new’ 〈memberNameExpr〉 〈namedMultiValueDescription〉?

〈tieExpression〉 ::= 〈unaryOperatorExpression〉 (’tie’ 〈postfixExpression〉)?

〈castExpression〉 ::= 〈tieExpression〉 〈valueInterpretation〉?

〈multiplicativeOperatorExpression〉 ::= 〈castExpression〉 ((’*’ | ’/’ | ’%’) 〈castExpression〉)*

〈additiveOperatorExpression〉 ::= 〈multiplicativeOperatorExpression〉 ((’+’ | ’-’) 〈multiplicativeOperatorExpression〉)*

〈shiftingExpression〉 ::= 〈additiveOperatorExpression〉 ((’<<’ | ’>>’) 〈additiveOperatorExpression〉)*

〈magnitudeComparisonExpression〉 ::= 〈shiftingExpression〉 ((’<’ | ’>’ | ’<=’ | ’>=’) 〈shiftingExpression〉)?

〈equalityComparisonExpression〉 ::= 〈magnitudeComparisonExpression〉
((’==’ | ’ !=’) 〈magnitudeComparisonExpression〉)?

〈bitwiseAndExpression〉 ::= 〈equalityComparisonExpression〉 (’&’ 〈equalityComparisonExpression〉)*

〈bitwiseXorExpression〉 ::= 〈bitwiseAndExpression〉 (’ˆ’ 〈bitwiseAndExpression〉)*

〈bitwiseOrExpression〉 ::= 〈bitwiseXorExpression〉 (’|’ 〈bitwiseXorExpression〉)*

〈logicalAndExpression〉 ::= 〈bitwiseOrExpression〉 (’&&’ 〈bitwiseOrExpression〉)*

〈logicalOrExpression〉 ::= 〈logicalAndExpression〉 (’||’ 〈logicalAndExpression〉)*

〈conditionalExpression〉 ::= 〈logicalOrExpression〉
| ’if’ 〈stubNonSequencingExpression〉

’then’ 〈stubNonSequencingExpression〉 ’else’ 〈stubNonSequencingExpression〉

〈optionalBindingExpression〉 ::= 〈binding〉
| 〈conditionalExpression〉

〈optionalLambdaExpression〉 ::= ’fn’ 〈bindableIdentSet〉 ’=>’ 〈optionalLambdaExpression〉
| 〈optionalBindingExpression〉

〈stubNonSequencingExpression〉 ::= 〈optionalLambdaExpression〉

〈sequencingExpression〉 ::= 〈stubNonSequencingExpression〉
(〈stubSequenceOperator〉 〈stubNonSequencingExpression〉)*

〈stubSequenceOperator〉 ::= ’;’
| ’;&’
| ’;|’

220 C.6. The stub language

Appendix D

Case study code

This Chapter includes full source for the case studies described in Chapter 5.

D.1 p2k

exists elf_archive ("rump.a") kfs ;
exists elf_archive (" puffs.a ") puffs ;
derive elf_archive puffs_inst = instantiate (puffs , puffs_ops, pops, "puffs");
/∗ instantiate args : (component, structure type, structure name, symbol prefix) ∗/
puffs_inst
{

declare
{

puffs_fs_fhtonode : (_, _, _, out puffs_newinfo as puffs_full_newinfo) ⇒ _;
puffs_node_lookup : (_, _, out puffs_newinfo as puffs_full_newinfo , _) ⇒_;

}
}

derive elf_archive ("user_kfs.a") fs = link [
puffs ,
kfs

]
{ puffs ←→ kfs {

pattern /puffs_fs_(.∗)/ { names (mount: _) } ←→rump_vfs_\\1
{ names (mount: _) };

/∗ The above pattern generates (at most):
∗ puffs_fs_{umount,statvfs,sync,fhtonode,nodetofh,suspend} ∗/

/∗ This one generates
∗ puffs_node_{lookup,create,mknod,open,close,access,getattr,setattr,
∗ fsync,mmap,seek,remove,link,rename,mkdir,rmdir,symlink,readdir,
∗ readlink ,read,write , inactive ,reclaim}.
∗/

pattern /puffs_node_(.∗)/ { names (mount: _, cookie: _) }
(/∗.∗/cookie as vnode_unlocked ptr)

←→ RUMP_VOP_\\U\\1\\E { names (cookie: _) };

values puffs_usermount (puffs_getspecific (this))−→ mount;

values puffs_cred ({
puffs_cred_getuid(this , out uid) ;| let uid = 0;
puffs_cred_getgid(this , out gid) ;| let gid = 0;
puffs_cred_getgroups(pcr, out groups[NGROUPS], out ngroups)})

222 D.1. p2k

−→ (rump_cred_create(uid, gid, ngroups, groups)) kauth_cred;
values puffs_cred ←−(rump_cred_destroy(this)) kauth_cred;

values vnode_unlocked −→({RUMP_VOP_LOCK(that, LK_EXCLUSIVE); that}) vnode;
values vnode_unlocked ←−(RUMP_VOP_UNLOCK(that, 0)) vnode;

values puffs_cn −→ (rump_makecn(that→֒pcn_nameiop, that→֒pcn_flags,
that →֒pcn_name, that→֒pcn_namelen, that→֒pcn_cred, curlwp)) component_name;

values puffs_cn ←−(rump_freecn(this, RUMPCN_FREECRED)) component_name;

values vnode_bump_no_unlk −→({RUMP_VOP_LOCK(that, LK_EXCLUSIVE); rump_vp_incref(that); that}) vnode;
values vnode_bump_no_unlk ←−({assert(RUMP_VOP_ISLOCKED(that) == 0); that}) vnode;

puffs_node_create(mount, vn as vnode_bump_no_unlk, ni, cn, vap)
−→ RUMP_VOP_CREATE(vn, ni, cn, vap);
puffs_node_mknod(mount, vn as vnode_bump_no_unlk, ni, cn, vap)
−→ RUMP_VOP_MKNOD(vn, ni, cn, vap);
puffs_node_remove(mount, vn as vnode_bump_no_unlk, targ_vn as vnode_bump_no_unlk, cn)
−→ RUMP_VOP_REMOVE(vn, targ_vn, cn);
puffs_node_link(mount, vn as vnode_bump_no_unlk, targ_vn as void ptr, cn)
−→ RUMP_VOP_LINK(vn, targ_vn, cn);
puffs_node_rename(mount, srcdir_vn as vnode_bump_no_unlk, src_vn as vnode_bump_no_unlk, src_cn,

targdir_vn as vnode_bump_no_unlk, targ_vn as vnode_bump_no_unlk, targ_cn)
−→ RUMP_VOP_RENAME(srcdir_vn, src_vn, src_cn, targdir_vn, targ_vn, targ_cn);

puffs_node_mkdir(mount, vn as vnode_bump_no_unlk, ni, cn, vap)
−→ RUMP_VOP_MKDIR(vn, out ni, cn, vap);
puffs_node_rmdir(mount, vn as vnode_bump_no_unlk, targ_vn as vnode_bump_no_unlk, cn)
−→ RUMP_VOP_RMDIR(vn, targ_vn, cn);
puffs_node_symlink(mount, vn as vn_bump_no_unlk, ni, src_cn, vap, linktgt)
−→ RUMP_VOP_SYMLINK(vn, out ni, cn, vap, linktgt);

// override name-matching rules
puffs_fs_fhtonode(mount, cookie, fid , _, _, out newvp as puffs_full_newinfo) ←→

rump_vfs_fhtovp(mount, fid, out newvp);
puffs_node_lookup(mount, cookie, out newvp as puffs_full_newinfo, cn)
←→ RUMP_VOP_LOOKUP(cookie, out newvp, cn);

values puffs_newinfo ({puffs_newinfo_setcookie(this , that); this })
←− (RUMP_VOP_UNLOCK(this, 0)) vnode;

// Some calls return a fuller set of newinfo
values puffs_full_newinfo ({puffs_newinfo_setcookie(this , that);

puffs_newinfo_setvtype(this , vtype);
puffs_newinfo_setsize(this , vsize);
puffs_newinfo_setrdev(this , rdev); this })

←− ({ let (vtype, vsize , rdev) = rump_getvninfo(this); this }) vnode;

values vnode_lkshared −→({RUMP_VOP_LOCK(that, LK_SHARED); that}) vnode;
values vnode_lkshared ←−({RUMP_VOP_UNLOCK(that, 0); that}) vnode;

uio_outbuf:
values (buf : uint8_t [] ptr , resid : size_t, off : const off_t)
←→ uio

{ void −→ (rump_uio_setup(that→֒buf, that→֒resid, that→֒offset , RUMPUIO_READ)) void; };

values uio_outresult ←−(rump_uio_free(this)) uio ;
values uio_outresult_subtract (∗ this - that)←− (rump_uio_free(this)) uio;
values uio_outres_len_off
←−({rump_uio_getresid(that→֒resid);

rump_uio_getoff(that→֒readoff);
rump_uio_free(this)}) uio;

puffs_node_read(mount, vn as vnode_lkshared,
uio as uio_outbuf(buf, ∗ resid , offset),
_, inout resid out_as uio_outresult, cr , ioflag) // directional "as": {in,out}_as

−→ RUMP_VOP_READ(vn, uio, ioflag, cr);

Appendix D. Case study code 223

puffs_node_readlink(mount, vn, cr, uio as uio_outbuf(linkname, linklen , 0),
inout linkname out_as uio_outresult_subtract)

−→ RUMP_VOP_READLINK(vn, uio, cr);

puffs_node_readdir(mount, vn as vnode_lkshared, uio as uio_outbuf(dent, ∗ reslen , ∗ readoff),
/∗ readoff ∗/ _ out_as uio_outres_len_off(readoff, reslen), /∗ reslen ∗/ _,
cr , inout eofflag ,
out cookies as (invalid off_t)[ncookies], /∗ ncookies ∗/ _)
// TODO: check strange bug in p2k code: no size given for "cookies" buffer !

−→ RUMP_VOP_READDIR(vn, uio, cr, eofflag, cookies, if cookies == null then null else out ncookies);
// NOTE: Cake notices the mismtach between
// (out _)[] and caller_frees (free) out(_ [])
// and insert the necessary memcpy/free!

uio_inbuf: values /∗uio_inbuf∗/ (buf: /∗(invalid ∗/uint8_t/∗)∗/[] ptr , resid : size_t , off : const off_t)
←→ uio

{ void ←−(rump_uio_setup(that→֒buf, that→֒resid, that→֒offset , RUMPUIO_WRITE)) uio; };

values uio_inresult ←− (rump_uio_free(this)) uio;

puffs_node_write(mount, vn, uio as uio_inbuf(buf , ∗ resid , offset),
_, _ out_as uio_inresult, cr , ioflag)

−→ RUMP_VOP_WRITE(vn, uio, ioflag, cr);

// "inactive" notification requires special action in rump
puffs_node_inactive(mount, vn as vn_no_lk) −→{

rump_vp_interlock(vn);
RUMP_VOP_PUTPAGES(vn, 0, 0, PGO_ALLPAGES);
RUMP_VOP_LOCK(vn, LK_EXCLUSIVE);
RUMP_VOP_INACTIVE(vn, out recycle) }--

←−
- -{ if recycle then puffs_setback(

puffs_cc_getcc(mount, PUFFS_SETBACK_NOREF_N1
)) else void };

// reclaim maps to call with non-analogous name
puffs_node_reclaim(mount, vn as vn_no_lk) −→{ rump_vp_recycle_nokidding(vn); void };

// unmount requires special action
puffs_fs_unmount(mount, flags) (let rvp in_as vn_no_lk = puffs_getroot(mount)→֒pn_data)−→ {

rump_vp_recycle_nokidding(rvp);
rump_vfs_unmount(mount, flags) ;|

{ rump_vfs_root(mount, out rvp2, 0); assert(success && rvp == rvp2); } };

// puffs sync needs two calls in rump
puffs_fs_sync(mount, waitfor, cr) −→ { rump_vfs_sync(mount, waitfor, cr); rump_bioops_sync(); };

// fhtonode and nodetofh map to non-analogous names
puffs_fs_fhtonode(mount, fid, _, out ni as puffs_full_newinfo) −→

rump_vfs_fhtovp(mount, fid, ni);

puffs_fs_nodetofh(mount, vn as vnode_nolk, fid, fidsize) −→ rump_vfs_vptofh(vn, fid, fidsize);

} };

D.2 ephy

derive elf_archive ("ephy+.a") ephy = instantiate(
instantiate (elf_archive ("ephy.a"), EphyCommandManagerIface, man_impl, ""),

EphyEmbedIface, embed_impl, "");
/∗ instantiate args : (component, structure type, structure name, symbol prefix) ∗/
exists elf_external_sharedlib ("webkit") webkit
{

declare
{

224 D.2. ephy

webkit_web_back_forward_list_get_forward_list_with_limits:
(_) ⇒ GList_of_WebKitWebHistoryItems;

WebKitEmbedLoadState: class_of enum {
WEBKIT_EMBED_LOAD_STARTED;
WEBKIT_EMBED_LOAD_REDIRECTING;
WEBKIT_EMBED_LOAD_LOADING;
WEBKIT_EMBED_LOAD_STOPPED;

};
WEBKIT_BACK_FORWARD_LIMIT: const int = 100;
WebKitHistoryType: class_of enum {

WEBKIT_HISTORY_BACKWARD;
WEBKIT_HISTORY_FORWARD;

};
}

};
derive elf_exec ephy_webkit = make_exec(

link [ephy, webkit]
{

ephy ←→ webkit
{

/∗ Summary of history item handling.

∗ webkit_construct_history_list is an embed function
∗ which gets a webkit back_forward_list from webkit
∗ then calls webkit again to get either a forward_list or a back_list
∗ and then constructs a webkit_history_item for each element.
∗ webkit_history_item is an ephy-specific class simply wrapping the underlying gobject.
∗ Its getters use strdup.
∗ A back_forward_list provides methods to get_ either a forward GList or
∗ a back GList, containing WebKitWebHistoryItems ∗/

values GList_of_EphyHistoryItem ←→GList_of_WebKitWebHistoryItem
{

data as EphyHistoryItem ptr ←→ data as WebKitWebHistoryItem ptr;
};

values
{

/∗ history item handling ∗/
// update rule
EphyHistoryItem (this →֒data)−→ WebKitWebHistoryItem;
// init rule only: we never send updates to webkit
EphyHistoryItem (∗(webkit_history_item_new(that) tie this))←−? WebKitWebHistoryItem;
/∗ raw (user-typed) URL handling ∗/
raw_url ←→ raw_url
{

pattern "(about :|(http [s]?| file | ftp ://)).∗ " −→ (g_strdup(that) tie that) void;
pattern ".∗" −→ (g_strconcat("http://", that) tie that) void ;

};

}
ephy_embed_factory_new_object(EPHY_TYPE_EMBED) −→g_object_new(EPHY_TYPE_BASE_EMBED);

g_type_interface_peek(_, EPHY_TYPE_EMBED) −→{ ephy_impl };
g_type_interface_peek(_, EPHY_TYPE_COMMAND_MANAGER) −→{ man_impl };

values (embed: EphyBaseEmbed,
history : EphyHistory) ←→ (web_view: WebKitWebView,

scrolled_window: GtkScrolledWindow,
load_state: WebKitEmbedLoadState,
loading_uri : char [])

{
void // history is a singleton , so always add it when forming the association

(let history = ephy_embed_shell_get_global_history(ephy_embed_shell_get_default()))
−→? ({ // from webkit_embed_init

let web_view = webkit_web_view_new();
let sw = gtk_scrolled_window_new(null, null);

Appendix D. Case study code 225

gtk_scrolled_window_set_policy(sw,
GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_container_add(sw, web_view);
gtk_widget_show(sw);
gtk_widget_show(web_view);
gtk_container_add(that, sw);

// set callbacks
g_object_connect(web_view,

" signal :: load-committed",
fn (view, frame, embed) ⇒{

ephy_base_location_changed(embed,
webkit_web_frame_get_uri(frame))

}, embed,
" signal :: load- started ",

fn (view, frame, embed) ⇒{
if loading_uri != null then

ephy_history_add_page(history, loading_uri, FALSE, FALSE)
else void ;
ephy_base_embed_update_from_net_state(

EPHY_EMBED_STATE_UNKNOWN | EPHY_EMBED_STATE_START
| EPHY_EMBED_STATE_NEGOTIATING | EPHY_EMBED_STATE_IS_REQUEST
| EPHY_EMBED_STATE_IS_NETWORK);

}, embed,
" signal :: load- progress -changed",

fn (view, progress , embed) ⇒{
if load_state == WEBKIT_EMBED_LOAD_STARTED then

{ set load_state = WEBKIT_EMBED_LOAD_LOADING } else void;
ephy_base_embed_set_load_percent(embed, progress)
}, embed,

" signal :: load_finished",
fn (view, frame, embed) ⇒{

set load_state = WEBKIT_EMBED_LOAD_STOPPED;
ephy_base_embed_update_from_net_state(

EPHY_EMBED_STATE_UNKNOWN | EPHY_EMBED_STATE_STOP
| EPHY_EMBED_STATE_IS_DOCUMENT | EPHY_EMBED_STATE_IS_NETWORK)

}, embed,
" signal :: title -changed",

fn (view, frame, title , embed) ⇒{
ephy_base_embed_set_title(embed, title);

}, embed,
" signal :: hovering-over- link ",

fn (view, frame, embed) ⇒{
ephy_base_embed_set_link_message(embed, location);
}, embed, s,

null);

// associate preferences somehow
webkit_web_view_set_settings(web_view, settings) // "settings" is a global

}) void;
};

ephy_manager_do_command(man, "cmd_copy") −→webkit_web_view_copy_clipboard(man...web_view);
ephy_manager_do_command(man, "cmd_cut") −→webkit_web_view_cut_clipboard(man...web_view);
ephy_manager_do_command(man, "cmd_paste") −→webkit_web_view_paste_clipboard(man...web_view);
ephy_manager_do_command(man, "cmd_selectAll") −→webkit_web_view_select_all(man...web_view);

ephy_manager_do_command(man, "cmd_copy") −→webkit_web_view_can_copy_clipboard(man...web_view);
ephy_manager_do_command(man, "cmd_cut") −→webkit_web_view_can_cut_clipboard(man...web_view);
ephy_manager_do_command(man, "cmd_paste") −→webkit_web_view_can_paste_clipboard(man...web_view);
ephy_manager_do_command(man, _) −→{ false };

ephy_load_url(embed, url) −→ webkit_web_view_open(embed...web_view, url);

ephy_load(embed, url as raw_url, flags , preview_embed)
−→ { set embed...loading_url = url ; // hmm, is "let" the right behaviour?

226 D.3. xcl

webkit_web_view_open(embed...web_view, url) };

ephy_stop_load(embed) −→webkit_web_view_stop_loading(embed...web_view);
ephy_can_go_back(embed) −→webkit_web_view_can_go_back(embed...web_view);
ephy_can_go_forward(embed) −→webkit_web_view_can_go_forward(embed...web_view);
ephy_can_go_up(embed) −→{ false };
ephy_get_go_up_list(embed) −→{ set [] }; // should really be list...
ephy_go_back(embed) −→webkit_web_view_go_back(embed...web_view);
ephy_go_forward(embed) −→webkit_web_view_go_forward(embed...web_view);
ephy_go_up(embed) −→{ void };
ephy_get_js_status(embed) −→{ "" };

// toplevel is ignored
ephy_get_location(embed, toplevel) −→ {

g_strdup(webkit_web_frame_get_uri(webkit_web_view_get_main_frame(embed...web_view))); };

ephy_reload(embed, force) −→ webkit_web_view_reload(embed...web_view);

// some functions are no-ops
pattern /ephy_(set_zoom|scroll_lines|scroll_page| scroll_pixels |shistory_copy)/

(...) −→ { void }; // silent ignore
ephy_get_zoom(embed) −→{ 1.0 }; // no zoom support in webkit

ephy_get_security_level(embed, out level , description)
(let unknown = EPHY_EMBED_STATE_IS_UNKNOWN)−→ { out level = unknown; };

// more silent ignore
pattern /ephy_(show_page_certificate|print|.∗print_preview. ∗|set_encoding|get_encoding)/

(...) −→ { void }; // silent ignore : "return 0" for preview_n_pages is inferred
ephy_has_automatic_encoding(_) −→{ false };
ephy_has_modified_forms(_) −→{ false };

pattern /ephy_get_(((back)|(forward))((ward)?))_history/ (embed) −→ {
// get a pointer to the WebKit-internal list
let full_bf_list = webkit_web_view_get_back_forward_list(embed...web_view);
// copy out the portion we want into a GList
let copied_sublist = webkit_web_back_forward_list_get_\\1\\4_list_with_limits(

full_bf_list ,
WEBKIT_BACK_FORWARD_LIMIT)

} ;
ephy_get_next_history_item(embed) −→{

webkit_web_back_forward_list_get_forward_item(
webkit_web_view_get_back_forward_list(embed...web_view)
)

};
ephy_get_previous_history_item(embed) −→{

webkit_web_back_forward_list_get_back_item(
webkit_web_view_get_back_forward_list(embed...web_view)
)

};
ephy_go_to_history_item(embed, item) −→

webkit_web_view_go_to_back_forward_item (embed...web_view, item);
} // end ephy ←→webkit

} // end link
); // end make_exec

D.3 xcl

exists elf_archive (" rxvt.a") client_of_xlib
{

declare {
XFillRectangle : (dpy: Display_unlocked ptr, ...) ⇒ _;
XGetGeometry: (dpy: inout Display, d: Drawable, root : Window ptr,

x: out int , y: out int , width: out unsigned, height : out unsigned,
borderWidth: out unsigned, depth: out unsigned) ⇒ _;

Appendix D. Case study code 227

XTranslateCoordinates : (..., child : out Window) ⇒same_screen : _; // named return value!
XQueryTree: (_, _, root: out Window, parent: out Window,

children : out Window[nchildren], out nchildren) ⇒ _;
}

};

exists elf_archive (" libxcb.a ") xcb_library ;
exists elf_archive (" xcl_util.a ") xcl_util
{

declare {
_XFlushGCCache: (dpy: Display_locked ptr, ...) ⇒ _;
XCBPolyFillRectangle: (dpy: Display_locked ptr , ...) ⇒ _;
XCBPolyRectangle: (dpy: Display_locked ptr, ...) ⇒ _;
encap_string: class_of struct {

len : size_t ;
bytes : char ptr ;

};
}

};
alias any [xcb_library , xcl_util] xcb;

derive elf_exec(" rxvt_static_xlib") output = link [
client_of_xlib , xcb
]

{
client_of_xlib ←→ xcb
{

values
{

Display_unlocked −→({LockDisplay(that); that}) Display_locked;
Display_unlocked ←− ({UnlockDisplay(that); that}) Display_locked;

Display_unlocked −→({LockDisplay(that);
XCBConnectionOfDisplay(that)}) XCBConnection;

Display_unlocked ←− ({UnlockDisplay(that); void}) XCBConnection;

Display −→(∗XCBConnectionOfDisplay(that)) XCBConnection;

pointer_to_chars −→ length_prefixed_string
{

void −→ (if ∗that then strlen (that) else 0) len ;
void −→ (that) bytes ;

};

pattern /Window|Pixmap|Cursor|Font|GContext|Colormap|Atom/ ←→\\U\\1\\E
{ void −→(∗that) xid };
pattern /VisualID|Keysym|Keycode/ ←→\\U\\1\\E
{ void −→(∗that) id };
Time ←→TIMESTAMP
{ void −→ (∗that) id };
CARD8 ←→BUTTON
{ ∗ this ←→ id };
Drawable ←→ DRAWABLE
{ void −→ (∗that) window.xid };
Fontable ←→ FONTABLE
{ void −→ (∗that) font.xid };

} // end values

cvtINT16: values unsigned ←− INT16 // cvtINT16toInt
{ val ←−(if ((val) & 0x00008000) then ((val) | 0 xffffffffffff0000) else (val)) val };

XSync(dpy, discard) −→ { XCBSync(dpy, 0);
if discard then XCBEventQueueClear(dpy) else void;
true

};

228 D.3. xcl

_XFlush −→ XCBFlush;
XFlush(dpy) −→ { XCBFlush(dpy); true };

values _ ←− pattern /XCB(.∗)Rep/ // Cake compiler will define an Xlib-side struct...
// ... with an arbitrary name

{
// Xlib calls sometimes have a "root" Window output parameter...
// typedef CARD32 XID; typedef XID Window;
// ... while in XCB..Rep structs, it’ s a WINDOW
// typedef struct WINDOW { CARD32 xid; } WINDOW;
root ←− root.xid ;

// similar
child ←− child.xid ;

// identifier styles differ
borderWidth ←− border_width;

};

/∗ This is the pattern that should capture the "common case" XCB calls.
∗ In general , this sort of pattern should be upgraded into a style. ∗/

pattern /X(.∗)/(dpy, ...) −→
{ let reply = XCB\\1Reply(dpy, XCB\\1(dpy, in_args ...)) ;&

// our output parameters are packed into a struct
// which we would like to treat like a normal struct, say:
{ out out_args... = ∗reply;

free (r); true }
;| false ;

};

/∗ Our QueryTree handling omits the hacky free-avoidance
∗ "reuse the memory chunk the reply came in" done by XCL. I don’t
∗ see why this matters... our "free" is generated. ∗/

XLoadFont(dpy, name as pointer_to_chars) −→{ let f = XCBFONTNew(dpy);
XCBOpenFont(dpy, f, name.length, name.bytes);
f.xid };

XRecolorCursor(dpy, cursor , fg , bg) −→ { XCBRecolorCursor(dpy, cursor,
fg →֒red, fg →֒green, fg →֒blue,
bg→֒red, bg→֒green, bg→֒blue); true };

pattern /X((Draw)|(Fill))Rectangle/(dpy, d, gc, x, y, w, h) −→
{ let p_r = new rectangle (x: x, y: y, w: width, h: height);
FlushGC(that.dpy, dpy);
XCBPoly\\2Rectangle(dpy, d, gc→֒gid, 1, p_r);
delete p_r;
true };

XFree(p) −→ { Xfree(p); true }; // vvv array constructor
XRaiseWindow(dpy, w) −→{ XCBConfigureWindow(dpy, w, CWStackMode, Above); true};
XLowerWindow(dpy, w) −→{ XCBConfigureWindow(dpy, w, CWStackMode, Below); true};

XAllocColor(dpy, cmap, def) −→ { let r = XCBAllocColorReply(dpy, XCBAllocColor(dpy, cmap,
def →֒red, def →֒green, def →֒blue), 0);

out def = r; // def is inout; invoke the value corresp
free (r); // we need to do this because
true }; // the reply ∗doesn’t∗ flow back

XFreeGC(dpy, gc) −→ { LockDisplay(that.dpy); // need to unlock before exit
for_each(that.dpy →֒ext_procs,

fn ext ⇒ if (ext →֒free_GC)
then (∗ext→֒free_GC)(dpy, gc, &ext→֒codes)
else void

);
UnlockDisplay(dpy);
XCBFreeGC(dpy, gc→֒gid);

Appendix D. Case study code 229

_XFreeExtData(gc→֒ext_data);
Xfree(gc); true };

XmbTextListToTextProperty(...) −→ { XLocaleNotSupported };

XChangeGC(dpy, gc, mask, vals) −→ { let new_mask = mask & (1 << (GCLastBit + 1)) -1;
if new_mask then _XUpdateGCCache(gc, new_mask, vals) else void;
if (gc→֒dirty & (GCFont | GCTile | GCStipple))

then _XFlushGCCache(dpy, gc)
else void ;

true };
XStoreName(dpy, w, name as pointer_to_chars) −→

{ XCBChangeProperty(dpy, PropModeReplace, w, XA_WM_NAME, XA_STRING, 8, name.length, name.bytes); true };

XChangeProperty(dpy, w, prop, type, format, mode, data, nelements) −→
{ let legal_args = nelements < 0 && (format == 8 || format == 16 || format == 32);

let new_nelements = if legal_args then nelements else 0;
let new_format = if legal_args then format else 0;

XCBChangeProperty(dpy, mode, w, prop, type, new_format, new_nelements, data);
true };

// xcl does this by call -around to its own just-now-defined XChangeProperty,
// but we can’t do this in Cake, so we have to expand it directly.
XSetIconName(dpy, w, icon_name as pointer_to_chars) −→

{ XCBChangeProperty(dpy, mode, w, XA_WM_ICON_NAME, XA_STRING, 8, icon_name.bytes, icon_name.length);
true };

pattern /XGrab(Pointer|Keyboard)/ (dpy, w, ownerEvents, ...) −→
{ let ret = XCBGrab\\1Reply(dpy, XGrab\\1(c, ownerEvents, w, in_args...), 0);

let status = if ret then ret →֒status else GrabSuccess;
free (r); status };

// another case of "was call -around"
XSetWMProtocols(dpy, w, protocols, count) −→ { let prop = XInternAtom(dpy, "WM_PROTOCOLS", False);

if prop == None then False else {
XCBChangeProperty(dpy, PropModeReplace,

w, prop, XA_ATOM, 32, count, protocols);
True

}
};

XSetTextProperty(dpy, w, tp, property) −→ XCBChangeProperty(dpy, PropModeReplace,
w, property , tp→֒encoding,
tp→֒format, tp→֒nitems, tp→֒value);

XSetWMName(dpy, w, tp) −→XCBChangeProperty(dpy, PropModeReplace,
w, XA_WM_NAME, tp→֒encoding,
tp→֒format, tp→֒nitems, tp→֒value);

XSetWMIconName(dpy, w, tp) −→XCBChangeProperty(dpy, PropModeReplace,
w, XA_WM_ICON_NAME, tp→֒encoding,
tp→֒format, tp→֒nitems, tp→֒value);

XSetWMClientMachine(dpy, w, tp) −→XCBChangeProperty(dpy, PropModeReplace,
w, XA_WM_CLIENT_MACHINE, tp→֒encoding,
tp→֒format, tp→֒nitems, tp→֒value);

} // end pairwise
}; // end link

230 D.3. xcl

Appendix E

Simple dynamic points-to analysis

This chapter describes the dynamic points-to analysis used by the Cake runtime. As
described in Chapter 4, this is a simple implementation designed to avoid both explicit
annotation and the need for binary data-flow analysis. However, it is an imprecise analysis,
in that it occasionally fails to find a unique solution, and was created essentially for
proof-of-concept purposes only. It is also specialised for compiled C code, in ways we will
describe.

E.1 The problem

Recall that the Cake language has dynamic binding (§2.4.3). This means that it must
apply rules that are appropriate to the actual run-time objects that are passed around
between components. It is not sufficient to use a static approximation to this, such
as the static type information that is used by C compilers and translated into Dwarf

information.

Uncertainty about which rules might bind to an object is limited to objects that are
reached through pointers. We do not worry about undiscriminated unions or obscure
packing practices, following earlier exclusions and “well-behavedness” assumptions which
effectively ruled those cases out (§2.4.3).

Given a pointer into some memory in a well-behaved program, we therefore wish to
determine the “type” of that memory. This must be sufficient to describe not just the
memory directly pointed to, but other memory from which some well-behaved code re-
ceiving that pointer might legitimately adjust the pointer to access, by making admissible

reinterpretations.

Here we use “type” to refer to the abstract view of that memory which was defined by
the abstract data type for which the memory was allocated. Our chief difficulty is that
for C code, this is never recorded anywhere at run time, because the memory allocation
function, malloc(), is generic.

(Unlike much of the rest of this dissertation, here we use “type” rather than “class” or
“description”, to better fit in with Dwarf terminology.)

232 E.2. Approach

E.2 Approach

We generalise the problem into discovering a precise type for the entire allocation into
which the pointer points. This means the malloc()-allocated heap block. Note that this
question yields more information than the original question, since cases exist where ad-
missible reinterpretations do not allow exploring the whole heap block. However, for our
purposes, the more general question is usually no more difficult to answer in practice.

As described in §4.3.2, discovering precise types for static- and stack-allocated memory
is straightforward. These can be distinguished by their characteristic address ranges on
any given system. We therefore only concern ourselves with heap allocations here.

We make a number of further assumptions.

• Heap allocations will only use the array layouts and object containment structures
permitted in the C language. This reflects that C is the most commonly used
language to have an untyped interface to memory allocation. Other languages with
similar treatment of allocation can likely be accommodated with minimal changes,
but we do not consider these here.

• Imprecise static type information is available for the pointer. This means type
information of the kind generally present in C compiler output. This may be lacking
in other languages, or in use of void pointers. We assume void pointers have been
annotated with a sufficiently precise type that only admissible reinterpretations are
subsequently done on the pointer. This is reasonable for C code, and will be a source
of valuable constraints to our analysis.

• Each allocated block holds exactly one abstract data type, or an array of elements
of the same type (and hence the same size). This is occasionally violated where,
say, pairs of structures are allocated together, in which case a C programmer might
do, say, malloc(sizeof(struct X) + sizeof(struct Y)). This can be overcome by an
annotation declaring a new aggregate struct type in the relevant compilation unit,
consisting of struct X and struct Y fields at the relevant offsets.

• The allocation site of the object determines its precise type. That is, only one type
of object is allocated by any particular malloc() call, although we allow for arrays
of any length. (To deal with discriminated unions, we may relax this by allowing
the object’s contents to affect the type, i.e. by inspecting a discriminant field. This
need not be limited to data types actually declared as unions: padded structs such
as sockaddr in the Unix sockets API [IEEE POSIX, 1988] also fit this discriminated
pattern, and could be captured by simple annotations.) Although C does not sup-
port explicitly annotating that a particular field in an enclosing structure serves as
a discriminant, the Cake programmer can annotate this separately by re-describing
the whole structure as a Pascal-style variant record, which is supported by Dwarf.

• There is a well-defined precise type. Even in complex cases, such as temporally
discriminated unions, we hold (philosophically speaking) that there is always a well-
defined type, i.e. a distinction between memory accesses that respect the abstraction

Appendix E. Simple dynamic points-to analysis 233

and ones that do not. This definition may be arbitrarily complex, but in practice
only a few patterns are in use.

• The precise Dwarf type is defined in the relevant compilation unit’s Dwarf in-
formation. This is usually true, but again, violations are possible, in which case
the Cake programmer is expected to provide an annotation. For example, in our
experience, the GNU C compiler will always emit debugging information for a type
T if a variable, field or parameter of type T or T* is used within the compilation
unit. However, if the code does only sizeof T, the information will not be emitted
unless special compiler options are used. In practice, this means that “factory func-
tions” which call malloc() but simply pass the returned pointer onwards under an
imprecise static type, without accessing the memory, may not contain the relevant
information and may require annotation.

Given these assumptions, our approach has three parts.

Firstly, we instrument (or extend) the allocator so that given a pointer pointing any-
where within any heap block, we can discover the start address, size and allocation site

of that block. This is a strong requirement, and brings some time and space overhead.

Secondly, we enumerate a set of candidate typings of that block, using arithmetic
constraints and the set of data types defined in the Dwarf compilation unit containing
the allocation site.

Thirdly, we eliminate candidate typings other than the correct one, using additional
constraints from various sources. The primary source is the imprecise static type attached
to the input pointer, and its offset from the start of the heap block—these must be
consistent with the typing. Other sources of constraints supplement this in some cases.

We now describe each of these parts in more detail.

E.2.1 Allocator instrumentation

Our key requirement of allocator instrumentation is that a heap block’s size can be dis-
covered given a pointer anywhere into that block. By “heap block size” we mean the size
of an individually allocated user data region, i.e. the exact size passed to malloc().

Since a typical high-performance malloc() implementation keeps an index only of free
regions, and not used regions [Wilson et al. 1995], this is nontrivial. Pointers to the start of
a block can reveal the block size, usually stored in the preceding word, but even this is not
sufficient, since this size may have been rounded up to satisfy the allocator’s alignment.
In any case, since we require an analysis that works given a pointer to anywhere in the
block, we require additional metadata.

We could opt to extend the data structures kept by the host malloc() implementation
so that precisely-sized records are kept on each allocated block (preferably indexed by
address). This might enable more optimisations than a purely instrumentation-based
approach, since synergies with existing bookkeeping data structures can be exploited.

234 E.2. Approach

For now, we do not pursue this option, partly because performance is not an explicit goal,
and partly because custom allocators also require analogous modifications. Our purely
instrumentation-based approach allows this instrumentation to be re-used.

Our current implementation stores (address, size) pairs in a separate structure.1 This
also makes it straightforward for custom allocators (i.e. other than the host allocator) to
be instrumented in the same way (a requirement discussed previously in §4.3.2).

Note that only malloc() call-sites allocating objects which might be passed across a
Cake-composed interface need to use the instrumented allocator. For others, perhaps
allocating internal object structures within a performance-critical portion of a library, the
original higher-performance malloc() can be used directly.

E.2.2 Enumerating possible typings

Any Dwarf type defined in the allocating compilation unit, and whose size is a factor

of the heap block size, is initially a candidate. In other words, the block may be either a
singleton or an array of the type.

E.2.3 Constraints

We begin with a list of typings derived from factorisations of the block size s. Each fac-
torisation is a pair, (n, τ), meaning that the block could represent an array of n instances
of τ . If s has many factors, there will be more candidate types left in consideration. In
practice, s will be a multiple of the word size, so at least any word-sized types or fractions
thereof (bytes, half-words etc.) will remain.

The imprecise static type attached to the input pointer, and its offset from the start
of the heap block together define a containment constraint : if the heap block starts at
address A, a candidate type is T and the input pointer is A+ o with imprecise static type
τ , then if T does not contain a τ at offset o, T may be ruled out. This often sufficient to
determine a unique precise type.

Pointers to arrays are often accompanied by a length value for that array. Relevant
Cake annotations (§2.3.8) can link the array with the length. Therefore, when following
pointers that have been annotated in this way, the Cake runtime has valuable additional
constraint which is usually sufficient to precisely determine the type of the block. This
is because we assume pointers into arrays are precisely typed if they are typed at all
(§4.3), which is reasonable since without knowing the precise element size, correct pointer
arithmetic is not possible.

Fig. E.1 shows an array of three FooWindow objects allocated in a heap block, and
three different input pointers. In the first case, the pointer is precisely typed except for
lacking the array bound. Since the size of FooWindow divides the size of the heap block

1Currently we use a Google Sparse Hash, http://code.google.com/p/google-sparsehash/, but a custom

data structure could yield a better time–space trade-off.

Appendix E. Simple dynamic points-to analysis 235

FooWindow

FooWidget

char[16]

42some_field

3.0another_field

3widget_type

1byte_size

parent_obj

short_name

(toplevel[0])

FooWindow

FooWidget

char[16]

43some_field

4.0another_field

3widget_type

1byte_size

parent_obj

short_name

(toplevel[1])

FooWindow

FooWidget

char[16]

42some_field

3.0another_field

3hwidget_type

1byte_size

parent_obj

short_name

(toplevel[2])

FooWindow*

may be adjusted by

{0,1,2}*sizeof(FooWindow)

FooWidget*
may be adjusted to

point to enclosing

FooWindow

may be adjusted by

{0..15}*sizeof(char)

char*

solved by offset constraint:

of all factorisations of block

size, only one has

FooWindow at offset 0

heap block of size

3 * sizeof (FooWindow)

solved by offset constraint:

of all factorisations of block

size, only one has

FooWidget at this offset

ambiguous without array

length constraint:

either

char[3*sizeof(FooWidget)]

or FooWidget[3]

have char at this offset

Figure E.1: Examples of a heap allocation with complex internal structure

in exactly one way, this is trivially solved provided that no type containing a FooWindow

at offset zero has a size which also divides the block size. In the second case, a FooWidget

pointer points at the relevant offset within the second element of the array. This will
be correctly solved so long as no other structures than a FooWindow[3] both contain a
FooWidget at this offset and have overall size matching the heap block size. Like the
previous case, this condition is highly likely. In the third case, we are out of luck: both
the actual structure and the candidate typing char[m], where m is the size in bytes of
three FooWindows, satisfy the containment constraint. In these cases we must rely on an
array constraint. We discuss this case in §E.4.

A trivial but useful kind of constraint is the “previously seen” constraint: once we
deduce an unambiguous typing for a given heap block, it is stored in our heap metadata

236 E.3. Cake’s tolerance of imprecision

for later retrieval. This means that if we encounter a less precise pointer subsequently,
we are nevertheless sure to have a precise solution.

A tentative idea for addressing difficult cases is exploiting “previously seen” in an ex-
pensive but powerful manner. By scanning the stack and static storage, we can potentially
discover other pointers into the heap object than the input pointer or those previously
seen. It is likely that one of these is precisely typed. Therefore, if the analysis fails, we can
force such an analysis—perhaps piggy-backed on top of a garbage collector, as proposed
for various other dynamic analyses [Reichenbach et al. 2010]—until it hits such a pointer.
Although expensive, this cost is potentially greatly amortised, because the collector may
discover precisely-typed pointers for many other objects at the same time.

E.3 Cake’s tolerance of imprecision

The analysis we have shown so far is clearly imprecise. In many cases, however, the Cake
language can tolerate imprecision.

When using array length constraints, the analysis is effectively redundant: the Cake
programmer has given us both a precise element type and a precise array size. Therefore,
it doesn’t matter if the analysis doesn’t yield a unique answer—all the Cake runtime
needs to know is how much of the heap block to apply correspondences to, which is a
given. Note, however, that in practice it may also yield a precise typing for the whole
block—e.g. in the example, where perhaps few or no other types contain an array of 16
chars, hence allowing the deduction that the block is a FooWidget[3]—and this should be
remembered for future use. This will not succeed in some cases, however: for example, if
the programmer only wants to pass the first 8 characters to the called function, out of a
larger string, the analysis will not discover any typings.

Another case is where the pointed-to object is of an opaque or shareable type—in this
case, the runtime does not care whether the analysis is ambiguous. Rather, the pointer
can be given to the receiving component as-is, with no need to copy and convert any
data. For example, if a char* is passed and this yields an ambiguous typing for the block
(say, it might be one big array of chars or a pointer into some smaller, contained array
of chars), this does not matter so long as char is shareable with the receiving component.
Similarly, uncorresponded types are effectively opaque so the runtime need not apply any
correspondences.

Similarly, if no admissible reinterpretation could reach a more specific type of object
for which different Cake correspondences are defined than for the imprecise type, then
the imprecise type suffices. For example, if no Window rules are defined, nor rules for
any other type containing Widget, then knowing that the pointed-to object is a Widget

suffices for making the appropriate rule selection..

If the analysis fails, Cake issues a run-time warning and proceed with an imprecise
result. Even in cases beyond those enumerated above, this does not always result in
incorrect behaviour. (In short, this is because even if it would be admissible to reinterpret
the pointer to some containing type, this need not happen in any given execution.)

Appendix E. Simple dynamic points-to analysis 237

E.4 Difficult cases

Our analysis is prone to quirks of factorisation. As a simple example, imagine passing
the bottom (char) pointer, in Fig. E.1, without knowing the length of the array to which
it points. There is no way to distinguish a whole block of char from simply the contained
array of char. We rely on explicit passing of array size, with appropriate Cake annotations,
to catch these cases.

More generally, this problem occurs where we have a subobject whose size divides a
superobject’s size, and whose size also divides the subobject’s offset within the super-
object. Our analysis cannot tell the difference between a heap block containing a single
instance of the superobject, and an array of some number of the subobject type. For
example, if a Widget is 48 bytes, a Window is 96 bytes, and the contained Widget lies at
offset 48, then we cannot tell the difference between a pointer to the contained Widget

and a pointer into the second element in an array of two Widgets.

Note that relaxing any part of this will yield a solution. If Widget or Window’s sizes
change so that the smaller no longer divided the larger, the difficulty does not occur.
Similarly, if the size of Widget no longer divides its offset within Window, the problem
does not occur. Therefore, this is rarely a problem except for small-sized subobjects, like
the chars in the example. Fortunately, small-sized subobjects, being primitives, are very
often shareable in Cake, making the ambiguity irrelevant. Meanwhile, in the case of larger
contained objects, containment is often constrained to be at offset 0, or else (in the case
of multiple inheritance) at a larger offset that is unlikely to be divisible by the subobject’s
size.

In the case of the Cake runtime, we resolve these situations by emitting a warning
(as before) and guessing in favour of solutions involving contained objects and avoiding
solutions involving arrays. This is because it is the more conservative option: it exposes
less data to Cake correspondences, so minimises the likelihood of performing a meaningless
operation. It is also arguably appropriate because array pointers are rarely passed at
nonzero offsets.

E.5 Summary

The analysis presented in this section has proved sufficient for our needs, and in particular,
does not cause issue with any of the examples in Chapter 5. However, a production-ready
implementation of Cake would no doubt adopt the binary analysis approach described in
§4.3.2. The approach described in this Appendix could be a useful complement for the
minority of cases where such analysis remains imprecise.

238 E.5. Summary

Bibliography

F. Achermann and O. Nierstrasz. Applications = components + scripts. In Software

Architectures and Component Technology, pages 261–292. Kluwer, 2001.

B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implementation of Java interfaces:
Invokeinterface considered harmless. In Proceedings of the 16th ACM SIGPLAN confer-

ence on object-oriented programming, systems, languages, and applications, OOPSLA
’01, pages 108–124, 2001. ISBN 1-58113-335-9.

F. Arbab. What do you mean, coordination. Bulletin of the Dutch Association for

Theoretical Computer Science, NVTI, 1998.

F. Arbab and F. Mavaddat. Coordination through channel composition. In Proc. Coor-

dination, pages 21–38. Springer, 2002.

K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-Wesley
Professional, 4th edition, 2005. ISBN 0321349806.

U. Assmann, T. Genssler, and H. Bar. Meta-programming grey-box connectors. In Pro-

ceedings of 33rd International Conference on Technology of Object-Oriented Languages

(TOOLS 33), pages 300–311, 2000.

G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. Codesurfer/x86—a platform for
analyzing x86 executables. In Proceedings of 14th International Conference on Compiler

Construction, pages 250–254, 2005.

G. Banavar, G. Lindstrom, and D. Orr. Type-safe composition of object modules. Tech-
nical Report UUCS-94-001, University of Utah, Salt Lake City, Utah, USA, 1994.

D. Beazley. Swig: An easy to use tool for integrating scripting languages with C and
C++. In Proceedings of the 4th USENIX Tcl/Tk Workshop, pages 129–139, 1996.

K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004. ISBN 0321278658.

A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes: controlling visibility of
class extensions. Computer Languages, Systems & Structures, 31:107–126, 2005.

A. Birrell and B. Nelson. Implementing remote procedure calls. ACM Transactions on

Computer Systems (TOCS), 2:39–59, 1984.

240 Bibliography

A. P. Black. An asymmetric stream communication system. In Proceedings of the ninth

ACM Symposium on Operating Systems Principles, SOSP ’83, pages 4–10, New York,
NY, USA, 1983. ACM. ISBN 0-89791-115-6.

S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, J. Siméon, and M. Ste-
fanescu. XQuery 1.0: An XML query language. W3C working draft, 2002.

B. Boehm and B. Scherlis. Megaprogramming. In Proceedings of the DARPA Software

Technology Conference. Meridien Corp., Arlington, VA, USA, April 1992.

H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Softw.

Pract. Exper., 18(9):807–820, 1988. ISSN 0038-0644.

J. Bosch. Superimposition: a component adaptation technique. Information and Software

Technology, 41:257–273, 1999.

A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation. J.

Syst. Softw., 74:45–54, 2005.

G. Bracha, C. Clark, G. Lindstrom, and D. Orr. Module management as a system service.
In OOPSLA Workshop on Object-oriented Reflection and Metalevel Architectures, 1993.

G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the European

Conference on Object-oriented Programming and International Conference on Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA/ECOOP ’90,
pages 303–311, New York, NY, USA, 1990. ACM. ISBN 0-201-52430-X.

J. Callahan. Software packaging. PhD thesis, University of Maryland, 1993.

J. Callahan and J. Purtilo. A packaging system for heterogeneous execution environments.
IEEE Transactions on Software Engineering, 17:626–635, 1991.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32:444–458,
1989.

M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen, S. Marlow, E. Meijer,
and S. Panne. The Haskell 98 foreign function interface 1.0: an addendum to the
Haskell 98 report. URL http://www.cse.unsw.edu.au/%7echak/haskell/ffi/. Retrieved
on 2010/12/13.

C. Chambers. Object-oriented multi-methods in Cecil. In O. Madsen, editor, ECOOP ’92

European Conference on Object-Oriented Programming, volume 615 of Lecture Notes in

Computer Science, pages 33–56. Springer Berlin / Heidelberg, 1992.

S. Chiba. Load-time structural reflection in Java. In Proceedings of the European Con-

ference on Object-Oriented Programming, 2000.

Bibliography 241

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: modular open
classes and symmetric multiple dispatch for Java. In Proceedings of the 15th ACM

SIGPLAN conference on object-oriented programming, systems, languages, and appli-

cations, OOPSLA ’00, pages 130–145, New York, NY, USA, 2000. ACM. ISBN 1-58113-
200-X.

G. Cohen, J. Chase, and D. Kaminsky. Automatic program transformation with JOIE.
In Proceedings of the USENIX Annual Technical Conference, page 14, 1998.

B. De Sutter, B. De Bus, and K. De Bosschere. Link-time binary rewriting techniques
for program compaction. ACM Transactions on Programming Languages and Systems

(TOPLAS), 27(5):882–945, 9 2005.

R. DeLine. Avoiding packaging mismatch with flexible packaging. IEEE Transactions on

Software Engineering, 27:124–143, 2001.

R. DeLine. Avoiding packaging mismatch with flexible packaging. In Proceedings of the

21st International Conference on Software Engineering, ICSE ’99, pages 97–106, New
York, NY, USA, 1999. ACM. ISBN 1-58113-074-0.

C. Dellarocas. The SYNTHESIS environment for component-based software development.
In Proc. 8th International Workshop on Software Technology and Engineering Practice,
page 434, Los Alamitos, CA, USA, 1997. IEEE Computer Society. ISBN 0-8186-7840-2.

L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: An overview. In
Proceedings of the European Conference on Object-Oriented Programming, pages 151–
170, London, UK, 1987. Springer-Verlag. ISBN 3-540-18353-1.

F. DeRemer and H. Kron. Programming-in-the large versus programming-in-the-small. In
Proceedings of the International Conference on Reliable Software, pages 114–121, 1975.

S. Devine, E. Bugnion, and M. Rosenblum. Virtualization system including a virtual
machine monitor for a computer with a segmented architecture. United States Patent
6397242, May 2002.

D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA: a tool for generating binary
adapters for evolving Java libraries. In Proceedings of the 30th International Conference

on Software Engineering, pages 963–964. ACM, 2008.

E. Dijkstra. A discipline of programming. Prentice Hall, 1976.

A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources:
a machine-learning approach. In Proceedings of the 2001 ACM SIGMOD International

Conference on Management of Data, SIGMOD 2001, pages 509–520, New York, NY,
USA, 2001. ACM. ISBN 1-58113-332-4.

D. Dougherty and A. Robbins. Sed and Awk. O’Reilly Media, Inc., 1997.

242 Bibliography

E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick: a flexible, optimizing
IDL compiler. In Proceedings of the ACM SIGPLAN 1997 Conference on Programming

Language Design and Implementation, PLDI ’97, pages 44–56, New York, NY, USA,
1997. ACM. ISBN 0-89791-907-6.

S. Eisenbach, C. Sadler, and D. Wong. Component adaptation in contemporary execu-
tion environments. In Proceedings of 7th IFIP International Conference on Distributed

Applications and Interoperable Systems. Springer-Verlag, 2007.

B. Ellis, J. Stylos, and B. Myers. The Factory Pattern in API design: A usability eval-
uation. In Proceedings of the 29th International Conference on Software Engineering,
ICSE ’07, pages 302–312, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
0-7695-2828-7.

M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1990. ISBN 0-201-51459-1.

Y. Eterovic, J. Murillo, and K. Palma. Managing components adaptation using aspect
oriented techniques. In C. Canal, J. Murillo, and P. Poizat, editors, Proceedings of the

First International Workshop on Coordination and Adaptation Techniques for Software

Entities (WCAT ’04), 2004. ISBN 84-688-6782-9. Technical Report of the Universities
of Málaga, Extremadura and Évry.

S. I. Feldman. Make: a program for maintaining computer programs. Softw: Pract.

Exper., 9, 1979. ISSN 1097-024X.

R. Filman and D. Friedman. Aspect-oriented programming is quantification and oblivi-

ousness, chapter 2. Addison-Wesley, 2005.

M. E. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch (1) considered harmful. In
HOTOS’05: Proceedings of the 10th Conference on Hot Topics in Operating Systems,
page 16, Berkeley, CA, USA, 2005. USENIX Association.

M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proceedings of the

1998 ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 236–248, 1998.

G. H. Fletcher, C. M. Wyss, E. L. Robertson, and D. V. Gucht. A calculus for data
mapping. Electronic Notes in Theoretical Computer Science, 150(2):37–54, 2006. ISSN
1571-0661.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators
for bi-directional tree transformations: a linguistic approach to the view update prob-
lem. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 233–246, New York, NY, USA, 2005. ACM. ISBN
1-58113-830-X.

Bibliography 243

C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’96, pages 372–385, New York, NY, USA, 1996. ACM. ISBN 0-89791-
769-3.

M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-48567-2.

Free Software Foundation, 2009. GNU ld manual. Free Software Foundation, version 2.20
edition, October 2009.

Free Standards Group, 2005. DWARF Debugging Information Format version 3. Free
Standards Group, December 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable

object-oriented software. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995.

D. Garlan and M. Shaw. An introduction to software architecture. Technical Report
CMU-CS-94-166, School of Computer Science, Carnegie Mellon University, 1994.

D. Gelernter and N. Carriero. Coordination languages and their significance. Communi-

cations of the ACM, 35:97–107, 1992.

R. Glass. Reuse: what’s wrong with this picture? Software, IEEE, 15:57–59, 1998.

GNOME Developers 2002. Changes from 1.2 to 2.0. GNOME developer documentation,
2002. URL http://developer.gnome.org/gtk/2.24/gtk-changes-2-0.html. Retrieved on
2012/4/30.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification, The. Addison-
Wesley Professional, 3rd edition, 2005. ISBN 0321246780.

E. Gunnerson and N. Wienholt. A Programmer’s Introduction to C# 2.0. Apress, 2005.
ISBN 1590595017.

C. Haack, B. Howard, A. Stoughton, and J. Wells. Fully automatic adaptation of soft-
ware components based on semantic specifications. In Proc. 9th Int’l Conf. Algebraic

Methodology & Softw. Tech., 2002.

D. R. Hanson. Fast allocation and deallocation of memory based on object lifetimes.
Softw. Pract. Exper., 20:5–12, January 1990. ISSN 0038-0644.

T. Harris and K. Fraser. Language support for lightweight transactions. In Proceedings

of the 18th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Lan-

guages, and Applications, OOPSLA ’03, pages 388–402, New York, NY, USA, 2003.
ACM. ISBN 1-58113-712-5.

W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure objects.
ACM SIGPLAN Notices, 28:411–428, 1993.

244 Bibliography

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–677, Au-
gust 1978. ISSN 0001-0782.

U. Hölzle. Integrating independently-developed components in object-oriented languages.
In Proceedings of the 7th European Conference on Object-Oriented Programming,
ECOOP ’93, pages 36–56, London, UK, 1993. Springer-Verlag. ISBN 3-540-57120-5.

U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic deop-
timization. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming

Language Design and Implementation, PLDI ’92, pages 32–43, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9.

S. Holzner. Eclipse: A Java Developer’s Guide. O’Reilly & Associates, Inc. Sebastopol,
CA, USA, 2004. ISBN 0596006411.

G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. SIGOPS Oper.

Syst. Rev., 41(2):37–49, April 2007. ISSN 0163-5980. doi: 10.1145/1243418.1243424.

J. Hunt and M. McIlroy. An algorithm for differential file comparison. Technical report,
Bell Laboratories, 1976.

IEEE POSIX, 1988. Standard portable operating system interface for computer environ-
ments. IEEE Standard 1003.1-1988, 1988.

J. Järvi, M. Marcus, and J. Smith. Library composition and adaptation using C++ con-
cepts. In Proceedings of the 6th International Conference on Generative Programming

and Component Engineering, pages 73–82. ACM, 2007.

T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms for data-dependent
grammars. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’10, pages 417–430, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-479-9.

C. F. Joerg. The Cilk system for parallel multithreaded computing. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1995.

B. Johnson, M. Young, and C. Skibo. Inside Microsoft Visual Studio .NET. Microsoft
Press Redmond, WA, USA, 2002. ISBN 0735618747.

T. Johnsson. Lambda lifting: transforming programs to recursive equations. In Proc.

of a Conference on Functional Programming Languages and Computer Architecture,
pages 190–203, New York, NY, USA, 1985. Springer-Verlag New York, Inc. ISBN
3-387-15975-4.

A. Kantee. Rump file systems: Kernel code reborn. In Proceedings of the 2009 USENIX

Annual Technical Conference, Berkeley, CA, USA, 2009. USENIX Association.

R. Keller and U. Holzle. Binary component adaptation. In Proceedings of the European

Conference on Object-Oriented Programming, pages 307–329. Springer, 1998.

Bibliography 245

W. Kent. The many forms of a single fact. In Thirty-Fourth IEEE Computer Society

International Conference: Intellectual Leverage, Digest of Papers, pages 438–443. IEEE,
February 1989.

S. Kepser. A simple proof for the turing-completeness of XSLT and XQuery. In Proceed-

ings of the Extreme Markup Languages 2004 Conference, 2-6 August 2004, Montréal,

Quebec, Canada, 2004. URL http://www.mulberrytech.com/Extreme/Proceedings/html/

2004/Kepser01/EML2004Kepser01.html.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall, second
edition, 1988.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview
of AspectJ. In Proceedings of the European Conference on Object-Oriented Program-

ming. Springer-Verlag, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors, 11th

European Conference in Object Oriented Programming, volume 1241, pages 220–242,
Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

S. R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Conference. USENIX Association, 1986.

G. Kniesel, P. Costanza, and M. Austermann. JMangler: a framework for load-time trans-
formation of Java classfiles. In Proceedings of the First IEEE International Workshop

on Source Code Analysis and Manipulation, pages 98–108, 2001.

A. Krause. Foundations of GTK+ development. Springer, 2007. ISBN 1590597931.

D. Kuhn. On the effective use of software standards in systems integration. In Proceedings

of the First International Conference on Systems Integration, pages 455–461. IEEE,
1990.

D. Lamb. Specification of iterators. IEEE Transactions on Software Engineering, 16(12):
1352 –1360, December 1990. ISSN 0098-5589.

B. Lampson. Software components: Only the giants survive. In A. Herbert and K. Jones,
editors, Computer systems: theory, technology, and applications: a tribute to Roger

Needham. Springer-Verlag New York Inc, 2004.

X. Leroy. Unboxed objects and polymorphic typing. In Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92,
pages 177–188, New York, NY, USA, 1992. ACM. ISBN 0-89791-453-8.

S. Liang. The Java Native Interface: Programmer’s Guide and Specification. Addison-
Wesley Professional, 1999.

246 Bibliography

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1999.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in CLU.
Commun. ACM, 20(8):564–576, 1977. ISSN 0001-0782.

D. Liu, J. Peng, K. H. Law, and G. Wiederhold. Efficient integration of web services
with distributed data flow and active mediation. In Proceedings of the 6th international

conference on Electronic commerce, ICEC ’04, pages 11–20, New York, NY, USA, 2004.
ACM. ISBN 1-58113-930-6. doi: 10.1145/1052220.1052223.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 190–200, New York, NY, USA, 2005.
ACM. ISBN 1-59593-056-6.

S. McConnell. Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond, WA, USA, 1996. ISBN 1556159005.

S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: new-age components for old-fasioned
Java. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,

Languages and Applications, pages 211–222, 2001.

M. McIlroy. Mass-produced software components. In Proceedings of NATO Conference

on Software Engineering, pages 88–98. NATO Science Committee, 1969.

E. Meijer and J. Gough. Technical overview of the common language runtime, 2001.
URL http://research.microsoft.com/en-us/um/people/emeijer/papers/CLR.pdf. Unpub-
lished manuscript, retrieved on 2012/5/4.

L. Melloul, D. Beringer, N. Sample, and G. Wiederhold. CPAM, a protocol for software
composition. In M. Jarke and A. Oberweis, editors, Advanced Information Systems

Engineering, volume 1626 of Lecture Notes in Computer Science, pages 11–25. Springer
Berlin / Heidelberg, 1999. ISBN 978-3-540-66157-3.

M. Mezini and K. Ostermann. Integrating independent components with on-demand
remodularization. In Proceedings of the 17th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA ’02, pages
52–67, New York, NY, USA, 2002. ACM. ISBN 1-58113-471-1.

R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping as query discovery.
In Proceedings of the 26th International Conference on Very Large Data Bases, VLDB
’00, pages 77–88, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-715-3.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Information and

Computation, 100:1–40, 1992.

Bibliography 247

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cam-
bridge, MA, USA, 1990. ISBN 0262132559.

J. Misra and W. Cook. Computation orchestration: a basis for wide-area computing.
Journal of Software and Systems Modeling, 6:83–110, 2006.

M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers. Improving program slicing
with dynamic points-to data. SIGSOFT Softw. Eng. Notes, 27:71–80, November 2002.
ISSN 0163-5948.

I. Neamtiu and M. Hicks. Safe and timely dynamic updates for multi-threaded programs.
In Proceedings of the ACM Conference on Programming Language Design and Imple-

mentation (PLDI), pages 13–24. ACM, June 2009.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software updating for
C. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming

Language Design and Implementation. ACM, 2006.

N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89–100, 2007. ISSN 0362-1340.

O. Nierstrasz and F. Achermann. Separation of concerns through unification of concepts.
In Proceedings of the ECOOP 2000 Workshop on Aspects & Dimensions of Concerns,
2000.

M. Nita and D. Notkin. Using Twinning to adapt programs to alternative APIs. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
pages 205–214, Cape Town, South Africa, May 2010.

H. Nottelmann and U. Straccia. Information retrieval and machine learning for proba-
bilistic schema matching. In Proceedings of the 14th ACM International Conference on

Information and Knowledge Management, CIKM ’05, pages 295–296, New York, NY,
USA, 2005. ACM. ISBN 1-59593-140-6.

M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Inc, 2008. ISBN
0981531601.

S. O’Malley, T. Proebsting, and A. B. Montz. USC: a universal stub compiler. SIGCOMM

Comput. Commun. Rev., 24(4):295–306, 1994. ISSN 0146-4833.

W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal. Subject-oriented compo-
sition rules. In Proceedings of the ACM International Conference on Object-Oriented

Programming: Systems, Languages and Applications, pages 235–250, 1995.

J. Ousterhout. Scripting: higher level programming for the 21st century. Computer, 31:
23–30, 1998.

248 Bibliography

Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and automating
collateral evolutions in Linux device drivers. In Proc. 3rd ACM SIGOPS/EuroSys

European Conference, pages 247–260. ACM, 2008.

G. Papadopoulos and F. Arbab. Coordination models and languages. Technical Report
SEN-R9834, CWI, Amsterdam, 1998.

D. L. Parnas. Designing software for ease of extension and contraction. In ICSE ’78:

Proceedings of the 3rd International Conference on Software Engineering, pages 264–
277, Piscataway, NJ, USA, 1978. IEEE Press.

D. Parnas. On the criteria to be used in decomposing systems into modules. Communi-

cations of the ACM, 15:1053–1058, 1972.

R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-Vincentelli. Convertibility
verification and converter synthesis: Two faces of the same coin. In Proceedings of the

International Conference on Computer-Aided Design. IEEE, 2002.

C. Peltz. Web services orchestration and choreography. Computer, 36:46–52, 2003.

B. Pierce. Types and programming languages. The MIT Press, 2002.

F. Pilhofer. Design and Implementation of the Portable Object Adapter. Sulimma, Frank-
furt, 1999.

J. M. Purtilo. The POLYLITH software bus. ACM Trans. Program. Lang. Syst., 16:
151–174, January 1994. ISSN 0164-0925.

J. Purtilo and J. Atlee. Module reuse by interface adaptation. Softw. Pract. Exper., 21:
539–556, 1991.

C. Reichenbach, N. Immerman, Y. Smaragdakis, E. E. Aftandilian, and S. Z. Guyer.
What can the GC compute efficiently?: a language for heap assertions at GC time.
In Proceedings of the ACM international conference on Object Oriented Programming:

Systems, Languages and Applications, OOPSLA ’10, pages 256–269, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0203-6.

A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component composition for
systems software. In Proc. of the 4th Operating Systems Design and Implementation

(OSDI), pages 347–360. Usenix Association, 2000.

D. J. Reifer, V. R. Basili, B. W. Boehm, and B. Clark. Eight lessons learned during
COTS-based systems maintenance. IEEE Software, 20:94–96, 2003. ISSN 0740-7459.

D. Rine, N. Nada, and K. Jaber. Using adapters to reduce interaction complexity in
reusable component-based software development. In Proceedings of the 1999 Symposium

on Software Reusability, pages 37–43. ACM, 1999.

D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Commun. ACM, 17:
365–375, July 1974. ISSN 0001-0782.

Bibliography 249

N. Sample, D. Beringer, L. Melloul, and G. Wiederhold. CLAM: Composition language
for autonomous megamodules. In P. Ciancarini and A. Wolf, editors, Coordinatio Lan-

guages and Models, volume 1594 of Lecture Notes in Computer Science, pages 648–648.
Springer Berlin / Heidelberg, 1999. ISBN 978-3-540-65836-8.

I. Savga, M. Rudolf, and S. Goetz. Comeback!: a refactoring-based tool for binary-
compatible framework upgrade. In Companion of the 30th International Conference

on Software Engineering, ICSE Companion ’08, pages 941–942, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-079-1.

M. Schaefer and O. de Moor. Specifying and implementing refactorings. In Proceedings

of the ACM International Conference on Object-Oriented Programming: Systems, Lan-

guages and Applications, OOPSLA ’10, pages 286–301, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0203-6.

R. W. Scheifler and J. Gettys. The X window system. ACM Trans. Graph., 5(2):79–109,
1986. ISSN 0730-0301.

D. Seeley. Shared libraries as objects. In USENIX 1990 Summer Conference Proceedings,
pages 25–37, 1990.

A. Serra, N. Navarro, and T. Cortes. DITools: application-level support for dynamic
extension and flexible composition. In Proceedings of the USENIX Annual Technical

Conference, pages 19–19, Berkeley, CA, USA, 2000. USENIX Association.

J. Sharp and B. Massey. XCL: An Xlib compatibility layer for XCB. In Proceedings of the

FREENIX Track: 2002 USENIX Annual Technical Conference. USENIX Association,
2002.

M. Shaw. Architectural issues in software reuse: It’s not just the functionality, it’s the
packaging. In Proc. IEEE Symposium on Software Reusability. IEEE, 1995.

M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik. Abstractions for
software architecture and tools to support them. IEEE Transactions on Software En-

gineering, 21:314–335, 1995.

M. Shaw. Procedure calls are the assembly language of software interconnection: Connec-
tors deserve first-class status. Technical Report CMU/SEI-94-TR-002, Carnegie Mellon
University, 1994.

A. Slowinska, T. Stancescu, and H. Bos. DDE: dynamic data structure excavation. In
Proceedings of the first ACM Asia-Pacific Workshop on Systems, pages 13–18. ACM,
2010.

Y. Smaragdakis and D. S. Batory. Implementing layered designs with mixin layers. In
Proceedings of the 12th European Conference on Object-Oriented Programming, pages
550–570, London, UK, 1998. Springer-Verlag. ISBN 3-540-64737-6.

250 Bibliography

D. Solomon and H. Custer. Inside Windows NT. Microsoft Press Redmond, WA, USA,
1998. ISBN 1572316772.

F. Steimann. The paradoxical success of aspect-oriented programming. In OOPSLA

’06: Proceedings of the 21st annual ACM SIGPLAN Conference on Object-Oriented

Programming: Systems, Languages, and Applications, pages 481–497, New York, NY,
USA, 2006. ACM. ISBN 1-59593-348-4.

W. R. Stevens. UNIX network programming, volume 2 (2nd ed.): interprocess communi-

cations. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999. ISBN 0-13-081081-9.

C. Strachey. Fundamental concepts in programming languages, 1967. Reprinted in Higher-
Order and Symbolic Computation, 13(1):11–49, Springer, 2000.

R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng., 12:157–171, January 1986. ISSN 0098-
5589.

B. Stroustrup. Type-safe linkage for C++. Computing Systems, 1(4):371–403, 1988.

B. Stroustrup. The C++ programming language. Addison-Wesley, 1997.

System V, 1997. System V ABI specification, edition 4.1. The Santa Cruz Operation,
Inc., 1997.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference

on Software Engineering, pages 107–119. ACM, 1999.

S. Tatham. Coroutines in C. Web page, 2000. URL http://www.chiark.greenend.org.uk/

%7esgtatham/coroutines.html. Retrieved on 2010/12/02.

D. Tidwell. XSLT. O’Reilly Media, Inc., 2008. ISBN 0596527217.

G. Van Rossum and F. L. Drake Jr. The Python Language Reference Manual. Network
Theory Limited, 2003.

T. Veldhuizen. Software libraries and their reuse: Entropy, Kolmogorov complexity, and
Zipf’s law. In Proceedings of the Workshop on Library-Centric Software Development.
Rensselaer Polytechnic Institute, 2005. Technical Report.

W3C, 1999. XSL transformations (XSLT) version 1.0. W3C Recommendation, 1999.
URL http://w3.org/TR/xslt. Retrieved on 2012/5/2.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2.

J. Waldo and M. Clemsford. Remote procedure calls and Java Remote Method Invocation.
IEEE Concurrency, 6:5–7, 1998.

Bibliography 251

L. Wall and M. Loukides. Programming Perl. O’Reilly & Associates, Inc. Sebastopol,
CA, USA, 2000. ISBN 0596000278.

H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and communication ab-
stractions for web browsers in MashupOS. In Proceedings of twenty-first ACM SIGOPS

Symposium on Operating Systems Principles, pages 1–16, Stevenson, Washington, USA,
2007. ACM. ISBN 978-1-59593-591-5.

A. Warth, M. Stanojević, and T. Millstein. Statically scoped object adaptation with
expanders. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN Conference

on Object-Oriented Programming: Systems, Languages, and Applications, pages 37–56,
New York, NY, USA, 2006. ACM. ISBN 1-59593-348-4.

A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies. In Proceed-

ings of European Software Engineering Conference held jointly with the ACM Sympo-

sium on the Foundations of Software Engineering. ESEC-FSE ’07, pages 35–44. ACM,
2007.

P. Wegner. Coordination as constrained interaction (extended abstract). In Proceedings

of the First International Conference on Coordination Languages and Models, pages
28–33. Springer, 1996.

G. Wiederhold and M. Genesereth. The conceptual basis for mediation services. IEEE

Expert, 12(5):38–47, September 1997.

G. Wiederhold. Mediation in information systems. ACM Comput. Surv., 27(2):265–267,
June 1995. ISSN 0360-0300. doi: 10.1145/210376.210390.

G. Wiederhold, P. Wegner, and S. Ceri. Toward megaprogramming. Commun. ACM, 35
(11):89–99, November 1992. doi: 10.1145/138844.138853.

P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A survey
and critical review. In Proc. International Workshop on Memory management. Springer
Verlag, September 1995.

D. Yellin and R. Strom. Protocol specifications and component adaptors. ACM Transac-

tions on Programming Languages and Systems, 19:292–333, 1997.

