Technical Report A

Number 85

Computer Laboratory

Category theory and models
for parallel computation

Glynn Winskel

April 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 1986 Glynn Winskel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Caterory Theory and
Models for Parallel Computation

by
Glynn Winskel
Computer Laboratory,
University of Cambridge.

Introduction.
Here we will illustrate two uses of category theory:

e The use of (elementary) category theory to define semantics in a particular model. How semantic
constructions can often be seen as categorical constructions, in particular how parallel compositions
are derived from a categorical product and non-deterministic sum is a coproduct. How categorical
notions can provide a basis for reasoning about computations. These will be illustrated for the

model of Pefri nets.

e The use of category theory to relate different semantics. How the relations between various concrete
models, like Petri nets, event structures, trees, state machines, are expressed as adjunctions. This
will be illustraied by showing the coreflection between safe Petri nets and trees.

No work here relies on any deep result in category theory (e.g. knowledge of the first half of [AM]
is sufficient). Still, category theory has certainly provided guidelines for definitions. This is another
use of category theory which could be advertised, though one which is often suppressed in the final
version of a paper. For example, the simple definition of morphism on Petri nets presented here
originates with the author and is a great improvement on the standard definition provided in [Br].
It was discovered (see [W3]) in a rather roundabout way in order to achieve a coreflection between
a particular subcategory of Petri nets, the safe nets, and a category formed from another model
called event structures—a goal which could not even have been formulated without the machinery

of category theory.

This presentation is essentially a write—up of a talk given at the workshop on Category Theory
and Computer Science held at the University of Surrey in the summer 1985. More details can be
found in the papers [W1-5] listed at the end.

1. Petri nets.

Petri nets are a very simple and intuitively appealing model of parallel computation. They
can be viewed as a generalisation of finite state machines, generalised to express the concurrent
structure present in systems. A Petri net has two kinds of elements, conditions representing types
of resource and eventis representing atomic actions. A condition can hold to a certain multiplic-
ity representing the amount of resource it stands for, and a state of a Petri net, generally called
a marking, is represented by associating each condition with a nonnegative integer, to show the
distribution of resources. The occurrences of events affect the marking because in a Petri net each
event is stipulated to consume certain resources and produce others in certain amounts. Events
can occur concurrently provided they are not in competition to consume the same resources. These
notions will be tightened up in a moment, and note incidentally that although we have talked of
events “consuming” and “producing” “resources” these terms should be understood abstractly and

fit a wide range of situations.




Example. The mcnufacture of C5’s and washing machines.

The idea is most easily seen through an example in which we also introduce the graphical
. representation of Petri nets. Conditions are drawn as circles, and the multiplicity to which they
hold by integer inscriptions or, more often, by numbers of tokens positioned in the circle, and events
as squares, and the amount of various resources consumed and produced by events are shown by
arcs weighted by nonnegative integers. Later, sometimes we shall use the convention that an arc
which carries no weight explicitly is understood to have arc weight 1, The example is more or less
self-explanatory. It represents at a very crude (and useless!) level the relationship between two
manufacturing processes, that of Hoover washing machines and that of small eléctric 3-wheeled
cars called C5’s, produced by Sinclair, which are powered by washing-machine motors. The event
of making a C5 uses up 3 wheels, a single body and a motor while the event of making a washing
machine requires a frame and a motor which explains the choice of arc weights. If there are sufficient
resources (as drawn below there are 3 bodies, 7 wheels, 4 motors and 4 frames) then several C5’s
and several washing machines can be made concurrently (in this case, for example, 2 C5’s and 2
washing machines or, instead, 1 C5 and 3 washing machines, and so on). As various machines are
made some resources get consumed and others produced so the marking changes accordingly. Of
course once a C5 is made it can be dismantled, the unmake event, and the motors recycled to take
be used in the manufacture of washing machines; this explains one of the loops formed by a chain of
arcs. Often Petri nets are explained by “playing the token game” on a net; tokens are placed on the
conditions to represent an initial marking and then as events occur tokens are removed from certain

conditions and placed onto others.

3 i
bodie

&

7 . )
wheels \ make C5 T*}—iﬁ unmake
=S D
otors

V make w.m. —1-9
frames '

Not surprisingly the appropriate mathematics to formalise these ideas is that of multisets and
multirelations. A multiset over X is a function f : X — N it is thought of as a column vector with
nonnegative entries f(z}, written fz, in each column z € X We write pX for the set of multisets
over X. The null multiset 0 is such that 0, = 0 for all £ € X, For convenience, we shall identify =
in X with the singleton multiset £ given by

P { 1 ify==,
y 0 otherwise.

The operations and relations +, —, < on multisets are defined pointwise, with multiset difference,
—, only defined when the result is nonnegative in each component. The natural mappings to take
between multisets are multirelations. Let X and Y be sets. A multirelation from X to Y is a matrix

a:YxX - N.
Write o : X —, Y to mean a is a multirelation from X to Y. We write ay , for the entry a(y, z)

of a multirelation. We write @ for the opposite multirelation to a multireiation o with (a?}zy =
@y.z. In what follows we shall identify sets, functions and relations with the appropriate multisets

2.




and multirelations in which all entries are at most 1. In defining application and composition of
multirelations we must face a little technical discomfort. We chall take composition of multirelations
to be matrix composition and application to a multiset to be matrix application. However because
we do not wish to restrict ourselves to just finite Petri nets we must face the problem that these
definitions can lead to infinite sums of nonnegative integers so matrix application and composition
will not always be well-defined. To accommodate this possibility an extra element oo, to stand
for nonconvergence, is added to N, and multiplication and indexed sums extended accordingly, as
done in [AM1] for instance. In thls broader framework composition and application of matrices,
possibly with entries of oo, always exist. We shall not go ahead and spell out this obvious extension
for the sake of brevxty—refer to [W5] for the details—and because, it so happens, all the multisets
and multirelations that arise for Petri nets will never have oo in any of their components. This is
because the extra structure present in Petri nets will define subspaces on which all the operations
we consider never yield the value oo. Still, this is best shown in the broader framework with co. We
now formalise the definition and behaviour of Petri nets.

The definition of Petri nets
A Petri net is a 2-sorted algebra over multisets with sorts
pB, where B is a non-null set of conditions,
pE, where E is a set of events,
with operatidns
My € pB, a constant non-null multiset of conditions called the initial marking,
°(): F _;p B, a multirelation called the precondition map, such that °e # 0 for ali e€ E,
() : E -, B, a multirelation called the postcondition map, such that e® £ 0 for all e € E,‘

which satisfy:
(Mo)y 0 or [Je€ E. (°¢), #£0] or [Je € E. (e°), # 0],

for all conditions b, ¢.e. no condition is isolated.
The behaviour of Petri nets -
Let N be a Petri net.
A marking M is a multiset of conditions, i.e. M € uB.
Let M, M' be markings. Let A be a finite multiset of events. Define
N:M-A, Mif A<M & M =M—-°A+ A°.
This gives the transition relation between markings.
A reachable marking of N is a marking M such that
Mo Aoy My A1y ... An=ty, M= M

for some markings and finite multisets of events.

3




Remark. We insist that A should be a finite multiset of events in A -4 M’ to avoid the
gituation where an event occurs only through the previous occurrence of an infinite set of events.
The restriction is reasonable intuitively and has several technical advantages.

Examples

The purpose of these examples is to indicate the expressive power of Petri nets. They can
represent computution trees where branching stands for nondeterministic choice as in for example:

e

They can represent any finite—state machine—take its states as conditions and represent its transi-
tions as single events, e.g. as in:

o X

But they also have the ability to express concurrent or parallel activity as in the simple nst:

%

As Petri nets are now viewed as algebras it is natural to take morphisms as some kind of
homomorphism.

2. Morphisms on Petri nets.

Let Ny and Ny be nets. A homomorphism from Ny to N, is a pair of multirelations (5, 8) with
1+ Ey —, E; and B: By —, By such that

My = My and *(n4) = B(* 4) and (74)° = F(A°),
for all A € pE.
A homomorphism is finitary when ne is a finite multiset for all events e.
Finitary homomorphisms preserve the behaviour of nets in the following sense.
Theorem. Let (n,0) : No — Ny be a finitary homomorphism of Petri nets. Then f preserves

the initial marking and
No:M-A M = N, :M 24, M.




Example. A finitary homomorphism: ()==* """
) ..-......é...........,—

.

The morphisms on nets which arise in practice are homomorphisms which preserve the nature of
events—the homomorphism above does not, in the sense that one event is sent to two. It may be
possible to argue on the basis of our understanding of the notion of event in Petri nets that finitary
homomorphisms are too general. Certainly in terms of the categorical constructions and relations
with other models it pays to restrict to morphisms on nets defined as follows.

A morphism on Petri nets N — N' is a homomorphism
(mB): N — N',

on the nets viewed as algebras, in which 5 is a partial function.
(We identify partial and total functions with their linear extensions to multirelations.)

Say a morphism (7, §) of nets is synchronous when 5 is a total function on events.

We have the corresponding categories: Net that of nets with morphisms, and Net,y, the
subcategory with synchronous morphisms.

3. Categorical constructions.

We investigate the categorical constructions in the categories Net and Net,,,.

Product
Let Ny and Ny be nets. Their product has events
E={(e0,0) | 0 € Bo} U{(0,e1) | &1 € By} U{(eorer) | €0 € By & e € By},
with projections m; : E — E; where m;(eo,€;) = ¢;, for 1 =0, 1, and conditions, the disjoint union,
B =BywBhB,,

with projections p; : B — B;, where p{* are the obvious injections B; — B, and initial marking
M = pg¥ Mo + p7P My,

and pre and post condition maps given by

‘e =pg [*(moe)] + pi¥ [ (mre)]
e* = pg’ [(moe)°] + pi¥((m1e)°}].

The product is associated with a simple construction on the graphical representation of nets.
Disjoint copies of the two nets Ny and Nj are juxtaposed and extra events of the form (€0, €1) are
adjoined, for €9 an event of No and e; an event of Ny; an extra event (e, €;) has as preconditions
those of its components and can be thought of as an event of synchronisation between two processes
one modelled by N and the other as N,. Copies of the original events, those which are not
synchronised with any companion event of the the other process, have the form (eg,0) in the copy

of Ny and the form (0, ¢;) in the copy of Nj.

5




The product of Ny and Ny:

t
;
| (e"l E,) .
{
i
[

Theorem. | .
The construction Ny x Ny, with morphisms (7o, po) and (1, p1), is a product in the category
of Petri nets Net.

The behaviour of the product of two nets is that which is allowed when projected to the com-
ponents. Precisely:

Theorem. The behaviour of a product of nets Ny x Ny is related to the behaviour of its
components Ny and N; by

NoXN1 ZM-A—bM' iff (NofpoM—“QA——*poM' & N]ﬁle—"-Lé—’le').
A marking M is reachable in Ny x Ny iff poM is reachable in Ny and py M is reachable in Nj.

Such product constructions are important when modelling the kind of parallel compositions
present in languages like CSP, CCS, SCCS and OCCAM which are based on the idea that processes
communicate by events of synchronisation (see [H], [M1,2]). Imagine two processes, modelled as
. nets, set in parallel. Whether or not they communicate, to form events of synchronisation, depends
on the what kinds of events they are prepared to do. The product of two nets allows arbitrary
synchronisations. Forbidden synchronisations can be removed by another operation of restriction.

Restriction

Let N be a net and E' C F.

Define N[E' to be the net with events E’, and conditions B’ the remaining nonisolated condi-
tions, and pre and post condition maps the restrictions of those of N.

Example.

The behaviour of a net restricted to a set of events is a restriction of the behaviour of the
original net. '

Proposition.
Let M and M' be markings of N[E’. Then

N[E:M-ASMIifN: M4 M & AcuFE.

6




As described restriction is not yet a categorical nction—I am nct yet sure how best to do this.

Parallel compositions

Parallel compositions are obtained by restricting the product of nets to a set of allowed syn-
chronisations.

Theorem. The behaviour of the parallel composition of nets
No |ls Ny =4cy No X N1[S
is related to the behaviour of Ny and N; by
Nolls Ny : M A M if A€ pS & No: poM —52A, po b
| & Ny py M 4 o, M
for markings M, M’ of Ny ||s N;. "
Synchronous product

As an important example of a parallel compositioh, we obtain the product of nets in the category
Net,y,. It is obtained by restricting the product of nets in Net o synchronisations the Cartesian
product of events of the component nets.

Let No and N; be nets with events Ey and E;. Define their synchronous product
No® N

to be the restriction
No X N1 I—(Eo X E1)

Theorem. The synchronous product No® Ny, with the restrictions of the projections is a product
in Net,,,.

Example. A ticking clock is represented by the net {1:

t
/\,\p

The synchronous product of a net with £ serialises the event occurrences of a net:




Sums of nets

Coproducts do not exist in general in the categories Net and Net,y,. However they do for the
subcategory of safe nets.

" A Petri net N is safe iff (°e)s < 1 and (¢°)p < 1, for all events e and conditions b, and M, < 1
for all reachable markings M and conditions b.

For safe nets, for any reachable marking M, if M -2 M’ then ° A4, A, A°, M and M’ are all
sets in the sense that their multiplicities never exceed 1. In a safe net a condition either holds, with
multiplicity 1, or does not hold, with multiplicity 0, which can be thought of as it either being true .
or false, and similarly events either occur or do not occur.

Let Ny and N; be safe nets. Their sum has events

E=EWE,

a disjoint union with injections
tng : By — E,

conditions,

B = {(bo, ) IboGBo'—Mo}U{(O bl)lbleBl M]}U(M()XMI),

and initial marking
M = M, x M,

with injection relations ¢y and ¢y where

botob <> by € By U{0}. b= (bo,b,),
byegb & Ibg € By U {Q} b= (bosbl)v

and pre and post condition maps given by
*(inge) = tx(°e) and (inge)® = sx(e®)
for k=0,1.

The sum can be described by a simple graphical construction.
The sum of safe nets N . and Vy _

Example. The sum of two safe nets:

®+W @E};{;

Theorem. Thesum Ny + Ny with injections (8no, o) and ($ny, 1) is a coproduct in the category
of safe Petri nets with (synchronous) morphisms.

y




The behaviour of the sum of two safe nets is related to that of its components by the injection
morphisms in the following way.

Theorem. Let Ny+ N, be the sum ofsafe nets with injections (sno, ) and ($ny,¢1). Then X is
a reachable marking of Ny + Ny and X -4~ X' iff

3 reachable marking X,, Ao, X5.
No:Xo Ao X5 & A=ingAo & X=10Xo & X' = 15X}
or
3 reachable marking X;, A, X}.
Ny:Xy A X! & A=imA & X=uX, & X' =y X!,

Quotients and loops.

Here we describe an operation which can be used to introduce loops into a Petri net. Let N
be a net, conditions B, events E. Let f : B —, C such that SM,, B(°¢), B(e°) # 0 for all events
e and initial. marking My. Define the quotient N/ to be the unique net with conditions C, events

E, such that
(lE:ﬁ) :N — N/ﬂ

is a morphism.

Examples. | | |
" _ﬂ;”@ »
N " )
L2

-f i

Because of the properties of morphisms we see
N:M-A M = N/g:BM 4 gM',

But the converse does not hold in general, and I do not know the full story of how the behaviour of
a quotient N/f is related to the behaviour of N.

In this section we have presented a variety of constructions on Petri nets. Starting with a some
basic atomic nets—or basic constructions like the “guarding” operation in [W4] which prefixes a net
by an event—the constructions can be used to build-up more complicated nets. In order to build—up
infinite nets in a sensible way we would need some way to construct nets recursively. This has not
yet be done in a completely satisfactory manner. Certainly one can construct such nets by inductive
definitions—but this is not categorical and depends rather crucially on the precise set-theoretic
constructions used. For safe nets there seems to be a satisfactory method using functors which are
continuous on w-chains of certain kinds of morphisms, though even here I do not know simple and
useful, local, sufficient conditions on functors which ensure they are continuous. It is not yet clear
how to generahse this to arbitrary Petri nets. :

9




4. Net invariants.

Of course we would like to have methods for reasoning about complicated nets in terms of the
nets from which they are built-up. Here we indicate how this can be done, at least for a limited
class of safety properties on finite nets. (The work of this section was done with Mogens Nielsen,
University of Aarhus, and is still in a provisional state.) We first exhibit a contravariant functor
from the tategories of Petri nets to Z-modules; it associates each net with a space of invariants,
weighted sums of conditions which stay constant throughout the net behaviour. (See [R] and [Pe]
for an introduction to invariants and some simple uses.)

Let N be a finite Petri net with conditions B and initial marking M. An invariant of N is a
weighted sum of its conditions, i.e. a row-matrix (I)scp with entries I € Z, such that

I(M) = I(Mo)
for every reachable marking M.
Write InvV for the set of invariants of N.

Proposition. Let N be a net. Then InvN forms a Z-module under matrix addition and scalar
multiplication.

Theorem. There is a contravariant functor from the category of finite Petri nets with finitary
homomorphisms to the category of Z—-modules with linear maps; on objects it acts as

N +— InvN,
and takes (n,8) : No — N, to the linear map
p* +InvN, — InvNy, where §*(I) = I8,
on Z-modules.

Remark. With a little more effort, to deal with nonconvergent sums of integers correctly, this
result also holds for infinite Petri nets.

Morphisms on nets are an aid in producing a calculus for invariants. Consider:

No ||s Ny

1

Ny E(ﬂ’o,/’o) Ny x Ny (Wl,Px); N,
Because morphisms preserve invariants in a contravariant way it is easy to see that:
IyelnwvNy & I €InvN; = Lpo + I1py € Inv(No ”5 Nl).

But not all invariants dare got this way. For instance, for the net

we have a* + b* + ¢* + d* € InvN, ||s N; although a* + b* ¢ InvNo & ¢* +d* ¢ Inv Ny,
(We use b* for the row vector with 1 in row b and 0 elsewhere.)

i70]




We must use a more general notion. Let N be a finite net. Let ¢ be a weighted sum of conditions
and k € Z. Let E be a subset of events which may possibly contain 0—the inclusion of 0 is important
to get rules to reason about parallel compositions. Define

N E[E*¢iff Vec E. §(e® —°¢) =k. =
This relation is related to invariants as follows.

Proposition. Let N be a finite net with events E. Let ¢ be a weighted sum of conditions. If
every event of E can occur at some reachable marking then

N E[E]°$ iff ¢ € InvN.

We can see how the notion is respected by mbrphisms in the next lemma.

Lemma. Let (n,b) : N — N' be a morphism between finite nets. Let ¢ be a weighted sum of

conditions of N'. Then: ‘
(i) N E[E)¢ =N En~'E'|*¢B, for a subset E' of events of N'.
(i) N E[E|*¢f = N' [nE}*$ for E a subset of events of N.

Now we can present results which show how a relation holding for a parallel composition is equiv-
alent to relations holding of its components, and similarly for the other constructions. The results
reduce proving an assertion about a constructed net to proving assertions about its components.

Theorem. Let N; be nets for § = 0,1. Let E; be a subset of events of N; and ¢; a weighted sum
of its conditions, for $ = 0,1. Then, for k € Z,

Tko, ks ko + ki =k & Ny E[Eo]¢o & Ny E[E %4,

iff
No x Ny E[Eo x Ei[*¢opo + ¢1p1.

Proposition. Let ¢ be a weighted sum of conditions of net N with a family of subsets of events
{E;|ie€I}. Then, forkc %,

(Vi I. N E|E)*¢) iff N k=|U;c Ei]*8.

Proposition. For a net N with weighted sum ¢, ihteger k and subsets of events E, F',

N[E' F|E*¢ if N E[E]f¢ & ECE'.

The result for sums is:

Theorem. Let N; be safe nets for i = 0,1. Let By be a subset of events of N; and Let ¢ be a
weighted sum of conditions in Ny + Ny. Then, for k € Z,

No E[Bolf¢to & Ny b [Ey|Féu iff No+ Ny b [(ino Ey Uing By )|F4.

To deal with quotients (and so loops) we have the result:

¢




Theorem. Let N/F be 2 quotient of a net N. Let ¢ be a weighted sum of conditions of the

quotient. Then for k € Z
N/B E[E*¢ iff N | [E]*4p.

Of course invariants express the property that a situation holds in all reachable markings, to
be thought of as the states a process can go into. Such properties are often called safety properties
because in practice they often express that “something bad never happens”. On the other hand a
liveness property is one which expresses that “something good must eventually happen”. To make
these ideas precise one considers properties expressed by a modal logic, and these can be designed
to be closely associated with a net. Roughly it appears that liveness properties are preserved in the
direction of morphisms while safety properties are preserved in the opposite direction.

6. Another model: trees.

Trees in the form of synchronisation trees, in which arcs are labelled, are a model which underpin
much of the work in the semantics of parallel computation (see e.g. [M1], [B], [W2]). The nodes are
thought of as states and the arcs as events with branching representing nondeterminism.

For precision, a tree is a subset T' C A* of finite sequences of some set A, called events, such

that
(€T and,

(@0, 21500 8ny...) €T =>{ag,ay,...a,) €T.

(So a tree is a non—null subset of sequences closed under initial subsequences.)

Define
t ot & gey Ja. t' = t(a}.

(We use st to stand for the concatenation of sequences s and ¢.)

A morphism of trees from S to T is a map f : § — T such that

F(0) =0 and,
g5 o > f(s) = f(s') or f(s) or f(s).

So intuitively a morphism between trees is a map on states which preserves the initial state and
respects the nature of events in the same way as morphisms on nets. Now we have a category of
trees Tr . Much more is said about the category in [W2], and about synchronisation trees in general

in [M1].
We describe some categorical constructions on trees
Coproduct of trees

Let {T; | ¢+ € I} be an indexed set of trees. Their coproduct

> o1y = J{{(G,20)y- -+, (By8n1)} | (@0, ... an-1) € Ti}.

34 il
Define the obvious injections ing : Ty — 3 .o, Ti by
ini({ao,...,8n—1)) = ({5, 00),..., (¢, an-1))

YA




for § € I. The coproduct corresponds to gluing the trees together at their roots:

O

Product of trees
First we define a prefixing operation on trees. Let T' be a tree and e an element. Define
T = {(e)t | te T},

which prefixes an event e onto the tree T. In a picture:

We now characterise the product (object) of two trees (cf. the expansion theorem in [M1}).

Theorem.
Suppose § 2 5,405, and T = 37, bTy. Then

SxTe (0,008 xT + Y (0,0)SxTs + Y. (a,6)S x Ty
acA beB acAbeB /g\

Example.

o

<2

6. A coreflection between safe Petri nets and trees.

Given that a net N describes a computation, what tree best describes that computation? We
take the associated tree to be TN where T N consists of sequences of events (eg,e1,...,€,_1) such
that

My -2 M, &1 ... _cn_-x_me

We extend T to morphisms (7, B) : N — N’ on nets by defining

(T o) = { 2T Ea(e) defmed

This yields a functor T : Net — Tr from nets to trees which clearly cuts down fo a functor
T : Net — Tr from safe Petri nets to trees.

Conversely, trees can be viewed as special kinds of safe nets. A tree T determines a safe net
NT in which:




Events E = {(t,t') | ¢ —r t'}, the arcs of T, with dependency relation < and conflict relation #

given by
(fo,t0) < (1, 1)) ®to—r'ts

(o, 8) # (t1,8}) & (to,th) £ (¢1,8)) & (t1,t]) £ (to,to)-
Conditions B have the form

(9, C) where C is a subset of events in pairwise conflict i.e. e # ¢’ or e=¢' foralle,e’ in C.

({e},C) where e is an event such that ¢ < ¢ for all ¢ in C, and C is a set of events in pairwise
conflict.

Pre and post condition maps are

e’ = {({e},C) | ({e},C) € B}
°¢={(A,C) e B|ecC}.

Theorem. Let T be a tree. Then NT and the morphism
6:T = TNT)
is free over T' w.r.t. T : Netyqaye — Tr , where
0{ag,@1y-cesOn_1) = ((50,81),(51,83)**+ 4 (3n—1,8n))
in which s; = {@oy...,@i—1)-

Hence there is a coreflection between safe nets and trees,

2
Net,afe' éT ’.D.l'

with right adjoint T and left adjoint N. It can be shown that there is not a coreflaction between
the category Net of all nets and Net,qze, nor one between Net and Tr . I do not know of a weaker
notion which expresses suitably the relationship between these pairs of categories.

Right adjoints preserve limits, left adjoints colimits (see e.g. [Mac]). Hence e.g.

T(No X Nl) = TNO X TN;
To X Tl = T(.VTO X NTl)
To+ T 2 T(NTo+ NTy),

where showing the latter two isomorphisms depends on the natural isomorphism 7' =2 T NT provided
by the coreflection. Such facts are clearly useful to relate denotational semantics of a language where
the denotations are nets (possibly with some extra structure like labels on the events) to denotational
semantics with trees (possibly with extra structure like synchronisation trees).

7. Categories of models.

There is a criss—cross of functors, often parts of coreflections, bridging different categories of
models, as illustrated in the diagram below. Coreflections are represented by double arrows in the
direction of the left adjoint, and single functors by single arrow. Where they are suspected but not

Ly




worked out is shown by dotted versions of these arrows. Where they have been shown to be absent
is indicated by a crossed—out arrow.

Event sbructores

(R
T-yv :__# Drime ¢vg‘4(, ____> Occurrence g::ie(:; ﬁ]\fe{;

ckrvckures
W\

bion  z=mrzz=sd 6
T-"?ste'ems 7 Eransibion §

A word on the different categories: event structures are a model of processes in which sets of events
carry causal dependency and conflict relations, prime event structures are those in which the causal
dependency relation is a partial order, transition systems are understood to have transitions cor-
responding to single events, while in general transition systems they are associated with multisets.
There is, for example, a functor from nets to general transition systems expressing the fact that mor-
phisms on nets preserve dynamic behaviour. This diagram improves that in [W4]; the improvements
are due to Marek Bednarczyk.

Generally when modelling systems one works not just with nets, or event structures or trees,
for example, but with such structures together with some extra structure in the form of a labelling
of events to indicate what kind of events they are and so how they interact with the environment.
As part of [W1,2] I attempted to incorporate this labelling structure into the categorical set-up.
It is not clear that my approach was the right one and more recently several people (Labella and
Peterossi, Bednarczyk, Fourman) have proposed other solutions.

Acknowledgements.

I am grateful for discussions with Mogens Nielsen. I would like to thank D. Pitt, A. Poigné
and D. Rydeheard for all the work they have put into organising the Surrey workshop on Category
Theory and Computer Science and nudging me to write this up.

References

[AM] Arbib, M.A.,and Manes,E.G., Arrows, Structures and Functors, The categorical imperative.
Academic Press (1975).

[AM1] Arbib, M.A.,and Manes,E.G., Formal semantics of programming languages. Final version
forthcoming, preliminary version (1982).

[B] Brookes, S.D., On the relationship of CCS and CSP. ICALP 1983.

[Br] Brauer, W.(Ed.), Net Theory and Applications, Springer-Verlag Lecture Notes in Comp. Sci.,
vol.84 (1980).

5




{‘H] Hoare, C.A.R., Communicating sequential processes. Comm. ACM 21 (1978).

[HBR] Hoare, C.A.R., Brookes, 8.D., and Roscoe, A.W., A Theory of Communicating Processes,
~ Technical Report PRG-16, Programming Research Group, University of Oxford (1981); in JACM
(1984).

[Mac] Maclane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer (1971).

[M1] Milner, R., A Calculus of Communicating Systems. Springer Lecture Notes in Comp. Sc. vol.
92 (1980).

[MZ] Milner, R., Calculi for synchrony and asynchrony. Theoretical Computer Science, pp.267-310
(1983).

[Pe] Peterson, J. L., Petri Net Theory and the Modelling of Systems. Prentice-Hall (1981).
[R] Reisig, W., Petri nets. Springer Lecture Notes in Comp. Sc. (1984). )

[W1] Winskel, G., Event structure semantics of CCS and related languages, Springer—Verlag Lecture
. Notes in Comp Sc 140 and, expanded, as a report of the Computer Sc. Dept., University of Aarhus,

Denmark (1982).
[W2] Winskel, G., Synchronisation trees. In Theoretical Computer Science, May 1985.

[W3] Winskel, G., A New Definition of Morphism on Petri Nets. Springer Lecture Notes in Comp
Sc, vol. 166 (1984).

[W4] Winskel, G., Categories of Models for Concurrency. In the proceedings of the workshop on
the semantics of concurrency, Carnegie-Mellon University, Pittsburgh, Springer Lecture Notes in
Computer Science 197 (July 1984), and appears as a report of the Computer Laboratory, University
of Cambridge (1984).

[W5] Winskel, G., Petri nets, algebras, morphisms and compositionality. Report 79 of the Computer
Laboratory , University of Cambridge, and to appear in Information and Control {1985).

i




