
Technical Report
Number 850

Computer Laboratory

UCAM-CL-TR-850
ISSN 1476-2986

Capability Hardware
Enhanced RISC Instructions:

CHERI Instruction-set architecture

Robert N.M. Watson, Peter G. Neumann,
Jonathan Woodruff, Jonathan Anderson,

David Chisnall, Brooks Davis, Ben Laurie,
Simon W. Moore, Steven J. Murdoch,

Michael Roe

April 2014

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2014 Robert N.M. Watson, Peter G. Neumann,
Jonathan Woodruff, Jonathan Anderson, David Chisnall,
Brooks Davis, Ben Laurie, Simon W. Moore,
Steven J. Murdoch, Michael Roe

Sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237 (“CTSRD”) as
part of the DARPA CRASH research program. The views,
opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the
Department of Defense. Portions of this work were
sponsored by the RCUK’s Horizon Digital Economy
Research Hub grant, EP/G065802/1. Portions of this work
were sponsored by Google, Inc.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract
This document describes the rapidly maturing design for the Capability Hardware Enhanced
RISC Instructions (CHERI) Instruction-Set Architecture (ISA), which is being developed by
SRI International and the University of Cambridge. The document is intended to capture
our evolving architecture, as it is being refined, tested, and formally analyzed. We have now
reached 70% of the time for our research and development cycle.

CHERI is a hybrid capability-system architecture that combines new processor primitives
with the commodity 64-bit RISC ISA enabling software to efficiently implement fine-grained
memory protection and a hardware-software object-capability security model. These extensions
support incrementally adoptable, high-performance, formally based, programmer-friendly un-
derpinnings for fine-grained software decomposition and compartmentalization, motivated by
and capable of enforcing the principle of least privilege. The CHERI system architecture pur-
posefully addresses known performance and robustness gaps in commodity ISAs that hinder
the adoption of more secure programming models centered around the principle of least priv-
ilege. To this end, CHERI blends traditional paged virtual memory with a per-address-space
capability model that includes capability registers, capability instructions, and tagged memory
that have been added to the 64-bit MIPS ISA via a new capability coprocessor.

CHERI’s hybrid approach, inspired by the Capsicum security model, allows incremental
adoption of capability-oriented software design: software implementations that are more ro-
bust and resilient can be deployed where they are most needed, while leaving less critical
software largely unmodified, but nevertheless suitably constrained to be incapable of having
adverse effects. For example, are focusing conversion efforts on low-level TCB components of
the system: separation kernels, hypervisors, operating system kernels, language runtimes, and
userspace TCBs such as web browsers. Likewise, we see early-use scenarios (such as data com-
pression, image processing, and video processing) that relate to particularly high-risk software
libraries, which are concentrations of both complex and historically vulnerability-prone code
combined with untrustworthy data sources, while leaving containing applications unchanged.

This report describes the CHERI architecture and design, and provides reference documen-
tation for the CHERI instruction-set architecture (ISA) and potential memory models, along
with their requirements. It also documents our current thinking on integration of programming
languages and operating systems. Our ongoing research includes two prototype processors em-
ploying the CHERI ISA, each implemented as an FPGA soft core specified in the Bluespec
hardware description language (HDL), for which we have integrated the application of formal
methods to the Bluespec specifications and the hardware-software implementation.

3

Acknowledgments
The authors of this report thank other members of the CTSRD team, and our past and current
research collaborators at SRI and Cambridge:

Ross J. Anderson Gregory Chadwick Nirav Dave Brooks Davis
Khilan Gudka Jong Hun Han Alex Horsman Alexandre Joannou
Asif Khan Myron King Wojciech Koszek Patrick Lincoln
Anil Madhavapeddy Ilias Marinos A. Theodore Markettos Ed Maste
Andrew Moore Will Morland Alan Mujumdar Prashanth Mundkur
Robert Norton Philip Paeps Colin Rothwell John Rushby
Hassen Saidi Hans Petter Selasky Muhammad Shahbaz Stacey Son
Richard Uhler Philip Withnall Bjoern Zeeb

The CHERI team wishes thank its external oversight group for significant support and contri-
butions:

Lee Badger Simon Cooper Rance DeLong Jeremy Epstein
Virgil Gligor Li Gong Mike Gordon Steven Hand
Andrew Herbert Warren A. Hunt Jr. Doug Maughan Greg Morrisett
Brian Randell Kenneth F. Shotting Joe Stoy Tom Van Vleck
Samuel M. Weber

Finally, we are grateful to Howie Shrobe, MIT professor and past DARPA CRASH program
manager, who has offered both technical insight and support throughout this work. We are also
grateful to Robert Laddaga, who has succeeded Howie in overseeing the CRASH program.

4

Contents

1 Introduction 8
1.1 Motivation . 9

1.1.1 Trusted Computing Bases (TCBs) . 11
1.1.2 The Compartmentalization Problem 12

1.2 The CHERI Design . 13
1.2.1 A Hybrid Capability-System Architecture 15

1.3 Threat Model . 16
1.4 Formal Methodology . 16
1.5 CHERI and CHERI2 Reference Prototypes 17
1.6 Historical Context . 18

1.6.1 Capability Systems . 19
1.6.2 Microkernels . 20
1.6.3 Language and Runtime Approaches 22
1.6.4 Influences of Our Own Past Projects 23
1.6.5 A Fresh Opportunity for Capabilities 24

1.7 Publications . 25
1.8 Version History . 25
1.9 Document Structure . 27

2 CHERI Architecture 29
2.1 Design Goals . 29
2.2 A Hybrid Capability-System Architecture . 31
2.3 The CHERI Software Stack . 33
2.4 Capability Model . 34

2.4.1 Capabilities are for Compilers . 34
2.4.2 Capabilities . 35
2.4.3 Capability Registers . 35
2.4.4 Memory Model . 36
2.4.5 Ephemeral Capabilities and Revocation 37
2.4.6 Notions of Privilege . 38
2.4.7 Traps, Interrupts, and Exception Handling 38
2.4.8 Tagged Memory . 39
2.4.9 Capability Instructions . 40
2.4.10 Object Capabilities . 40
2.4.11 Peripheral Devices . 41

5

3 Capability Coprocessor 43
3.1 Capability Registers . 43
3.2 Capabilities . 46

3.2.1 tag . 47
3.2.2 u . 47
3.2.3 perms . 47
3.2.4 otype/eaddr . 47
3.2.5 base . 47
3.2.6 length . 47
3.2.7 Capability Permissions . 47

3.3 Capability Exceptions . 49
3.4 CPU Reset . 52
3.5 Changes to Standard MIPS Processing . 52
3.6 Changes to the TLB . 53
3.7 Proposed Extensions to the CHERI ISA . 53

4 Instruction-Set Reference 55
4.1 Details of Individual Instructions . 55

CGetBase . 57
CGetLen . 58
CGetTag . 59
CGetUnsealed . 60
CGetPerm . 61
CGetType . 62
CGetPCC . 63
CGetCause . 64
CSetCause . 65
CIncBase . 66
CSetLen . 68
CClearTag . 69
CAndPerm . 70
CSetType . 71
CCheckPerm . 73
CCheckType . 74
CFromPtr . 75
CToPtr . 77
CBTU . 79
CBTS . 80
CSC . 81
CLC . 83
CL[BHWD][U] . 85
CS[BHWD] . 88
CLLD . 91
CSCD . 92
CJR . 93
CJALR . 95

6

CSealCode . 97
CSealData . 99
CUnseal . 101
CCall . 103
CReturn . 106

4.2 Assembler Pseudo-Instructions . 107
4.2.1 Capability Move . 107
4.2.2 Get/Set Default Capability . 107
4.2.3 Capability Loads and Stores of Floating-Point Values 107

5 Design Rationale 109

6 CHERI in Programming Languages and Operating Systems 117
6.1 Development Plan and Status . 117
6.2 Open-Source Foundations . 118
6.3 Current Software Implementation . 118
6.4 CheriBSD . 118

6.4.1 Extended GNU Assembler (gas) . 118
6.5 Extended LLVM/Clang . 118

6.5.1 Extended CHERI Unit-Test Suite . 119
6.6 Future Plans . 120

7 Future Directions 121
7.1 An Open-Source Research Processor . 122
7.2 Formal Methods for Bluespec . 122
7.3 ABI and Compiler Development . 122
7.4 Hardware Capability Support for FreeBSD . 123
7.5 Evaluating Performance and Programmability 123

7

Chapter 1

Introduction

The Capability Hardware Enhanced RISC Instructions (CHERI) architecture extends the com-
modity 64-bit MIPS Instruction-Set Architecture (ISA) with new security primitives to allow
software to efficiently implement fine-grained memory protection and an object-capability
security model. CHERI’s extensions are intended to support incrementally adoptable, high-
performance, formally supported, and programmer-friendly underpinnings for robust and scal-
able software compartmentalization motivated by the principle of least privilege. CHERI is a
hybrid capability-system architecture in that gradual deployment of CHERI features in existing
software is possible, offering a more gentle software adoption path. CHERI has four central
design goals aimed at dramatically improving the security of contemporary Trusted Comput-
ing Bases (TCBs) through processor support for fine-grained memory protection and scalable
software compartmentalization, which at times may conflict:

1. Granular memory protection improves software resilience to escalation paths that allow
software bugs to be coerced into more powerful software vulnerabilities; e.g., through
remote code injection via buffer overflows and other memory-based techniques. Unlike
widely deployed approaches, CHERI’s memory protection is intended to be driven by
the compiler in protecting programmer-described data structures and references, rather
than via coarse page-granularity protections. Fine-grained protection also provides the
foundation for expressing compartmentalization within application instances.

2. Compartmentalization involves the decomposition of software into isolated components
to mitigate the effects of security vulnerabilities by applying sound principles of security,
such as abstraction, encapsulation, and especially least privilege. Previously, it seems
that the adoption of compartmentalization has been limited by a conflation of hard-
ware primitives for virtual addressing and separation, leading to inherent performance
and programmability problems when implementing fine-grained separation. Specifi-
cally, we seek to decouple the virtualization from separation to avoid scalability prob-
lems imposed by translation look-aside buffer (TLB)-based Memory Management Units
(MMUs), which impose a very high performance penalty as the number of protection
domains increases, as well as complicating the writing of compartmentalized software.

3. Simultaneously, we require a realistic technology transition path that is applicable to
current software and hardware designs. CHERI must be able to run most current soft-
ware without significant modification, and allow incremental deployment of security im-
provements starting with the most critical software components: the TCB foundations

8

on which the remainder of the system rests, and software with the greatest exposure to
risk. CHERI features should significantly improve security so that vendors of mobile and
embedded devices would seek its feature set from CPU companies (such as MIPS and
ARM); these CHERI features must at the same time conform to vendor expectations for
performance, power use, and compatibility to compete with less secure alternatives.

4. Finally, we wish to draw on formal methodologies wherever feasible to improve our con-
fidence in the design and implementation of CHERI. This use is necessarily subject to
real-world constraints of timeline, budget, design process, and prototyping, but will help
ensure that we avoid creating a system that cannot meet our functional and security re-
quirements. Formal methods can also help to avoid many of the characteristic design
flaws that are common in both hardware and software. This desire requires us not only to
perform research into CPU and software design, but also to develop new formal method-
ologies and adaptations and extensions of existing ones.

We are concerned with trustworthy systems and networks, where trustworthiness is a mul-
tidimensional measure of how well a system or other entity satisfies its various requirements –
such as those for security, system integrity, and reliability, as well as survivability, robustness,
and resilience, notably in the presence of a wide range of adversities such as hardware failures,
software flaws, malware, accidental and intentional misuse, and so on. Our approach to trust-
worthiness encompasses hardware and software architecture, dynamic and static evaluation,
formal and nonformal analyses, good software engineering practices, and much more.

Our selection of RISC as a foundation for the CHERI capability extensions is motivated by
two factors. First, simple instruction set architectures are easier to reason about, extend, and
implement. Second, RISC architectures (such as ARM and MIPS) are widely used in network
embedded and mobile device systems such as firewalls, routers, smart phones, and tablets –
markets with the perceived flexibility to adopt new CPU facilities, and also an immediate and
pressing need for improved security. CHERI’s new security primitives would also be useful in
workstation and server environments, which face similar security challenges.

In its current incarnation, we have prototyped CHERI as an additional coprocessor to the
64-bit MIPS ISA, but our approach is intended to easily support other similar ISAs, such as
64-bit ARM. The design principles would also apply to other non-RISC ISAs, such as 32-bit
and 64-bit Intel and AMD, but require significantly more adaptation work, as well as careful
consideration of the implications of the diverse set of CPU features found in more CISC-like ar-
chitectures. We also consider the possibility that the syntax and semantics of the CHERI model
might be implemented over conventional CPUs with the help of the compiler, static check-
ing, and dynamic enforcement approaches found in software fault isolation techniques [70] or
Google Native Client (NaCl) [85]. All of these future considerations are considerably enhanced
by our use of Bluespec, which provides significant opportunities for rapid redesigns through its
use of modular abstraction, encapsulation, and hierarchicalization.

1.1 Motivation

The CHERI CPU architecture provides a hardware foundation for principled, secure systems.
Its design builds on and extends decades of research into hardware and operating-system secu-

9

rity.1 However, some of the historic approaches that CHERI incorporates (especially capability
architectures) have not been adopted in commodity hardware designs. In light of these past
transition failures, a reasonable question is “Why now?” What has changed that would allow
CHERI to succeed where so many previous efforts have failed? Several factors have motivated
our decision to begin and carry out this project:

• Dramatic changes in threat models, resulting from ubiquitous connectivity and perva-
sive uses of computer technology in many diverse and widely used applications such as
wireless mobile devices, automobiles, and critical infrastructure.

• New opportunities for research into (and possible revisions of) hardware-software in-
terfaces, brought about by programmable hardware (especially FPGA soft cores) and
complete open-source software stacks.

• An increasing trend towards exposing inherent hardware parallelism through virtual ma-
chines and explicit software multi-programming, and an increasing awareness of infor-
mation flow for reasons of power and performance that may align well with the require-
ments of security.

• Emerging advances in programming languages, such as the ability to map language struc-
tures into protection parameters to more easily express and implement various policies.

• Reaching the tail end of a “compatibility at all costs” trend in CPU design, due to prox-
imity to physical limits on clock rates and trends towards heterogeneous and distributed
computing. While Wintel remains entrenched on the desktop, mobile systems – such as
phones and tablet PCs, as well as appliances and embedded devices – are much more
diverse, running on a wide variety of instruction set architectures (especially ARM and
MIPS).

• Likewise, new diversity in operating systems has arisen, in which commercial products
such as Apple’s iOS and Google’s Android extend open-source systems such as FreeBSD
and Linux. These new platforms abandon many traditional constraints, requiring that
rewritten applications conform to new security models, programming languages, hard-
ware architectures, and user-input modalities.

• Development of hybrid capability-system models that integrate capability-system design
tenets into current operating-system and language designs. With CHERI, we are trans-
posing this design philosophy into the instruction-set architecture. Hybrid design is a key
differentiator from prior capability-system hardware designs that have typically required
ground-up software-architecture redesign and reimplementation.

• Significant changes in the combination of hardware, software, and formal methods to
enhance assurance (such as those noted above) now make possible the development of
trustworthy system architectures that previously were simply too far ahead of their times.

1Levy’s Capability-Based Computer Systems provides a detailed history of segment- and capability-based
designs through the early 1990s [38]. However, it leaves off just as the transition to microkernel-based capability
systems such as Mach [1] and L4 [39], as well as capability-influenced virtual machines such as the Java Virtual
Machine [21], begins. Section 1.6 discuss historical influences on this work in greater detail.

10

In the following sections, we consider the context and motivation for CHERI, a high-level
view of the CHERI design, the role of formal methods in the project, and our work-in-progress
research prototype.

1.1.1 Trusted Computing Bases (TCBs)

Contemporary client-server and cloud computing are premised on highly distributed applica-
tions, with end-user components executing in rich execution substrates such as POSIX appli-
cations on UNIX, or AJAX in web browsers. However, even thin clients are not thin in most
practical senses: as with client-server computer systems, they are built from commodity op-
erating system kernels, hundreds of user-space libraries, window servers, language runtime
environments, and web browsers, which themselves include scripting language interpreters,
virtual machines, and rendering engines. Both server and embedded systems likewise depend
on complex (and quite similar) software stacks. All require confluence of competing interests,
representing multiple sites, tasks, and end users in unified computing environments.

Whereas higher-layer applications are able to run on top of type-safe or constrained exe-
cution environments, such as JavaScript interpreters, lower layers of the system must provide
the link to actual execution on hardware. As a result, almost all such systems are written in the
C programming language; collectively, this Trusted Computing Base (TCB) consists of many
tens of millions of lines of trusted (but not trustworthy) C and C++ code. Coarse hardware, OS,
and language security models mean that much of this code is security-sensitive: a single flaw,
such as an errant NULL pointer dereference in the kernel, can expose all rights held by users
of a system to an attacker or to malware.

The consequences of compromise are serious, and include loss of data, release of personal
or confidential information, damage to system and data integrity, and even total subversion of a
user’s online presence and experience by the attacker (or even accidentally without any attacker
presence!). These problems are compounded by the observation that the end-user systems are
also an epicenter for multi-party security composition, where a single web browser or office
suite (which manages state, user interface, and code execution for countless different security
domains) must simultaneously provide strong isolation and appropriate sharing. The results
present not only significant risks of compromise that lead to financial loss or disruption of
critical infrastructure, but also frequent occurrences of such events.

Software vulnerabilities appear inevitable: even as the execution substrates improve in their
ability to resist attacks such as buffer overflows and integer vulnerabilities, logical errors will
necessarily persist. Past research has shown that compartmentalizing applications into compo-
nents executed in isolated sandboxes can mitigate exploited vulnerabilities (sometimes referred
to as privilege separation). Only the rights held by a compromised component are accessible to
a successful attacker. This technique is effectively applied in Google’s Chromium web browser,
placing HTML rendering and JavaScript interpretation into sandboxes isolated from the global
file system. This technique exploits the principle of least privilege: if each software element
executes with only the rights required to perform its task, then attackers lose access to most
all-or-nothing toeholds; vulnerabilities may be significantly or entirely mitigated, and attackers
must identify many more vulnerabilities to accomplish their goals.

11

1.1.2 The Compartmentalization Problem

The compartmentalization problem arises from attempts to decompose security-critical appli-
cations into components running in different security domains: the practical application of
the principle of least privilege to software. Historically, compartmentalization of TCB com-
ponents such as operating system kernels and central system services has caused significant
difficulty for software developers – which limits its applicability for large-scale, real-world
applications, and leads to the abandonment of promising research such as 1990s microker-
nel projects. A recent resurgence of compartmentalization, applied in userspace to applica-
tions such as OpenSSH [56] and Chromium [58], and most recently in our own Capsicum
project [76], has been motivated by a critical security need; however it has seen success only at
very coarse separation granularity due to the challenges involved.

On current conventional hardware, native applications must be converted to employ mes-
sage passing between address spaces (or processes) rather than using a unified address space
for communication, sacrificing programmability and performance by transforming a local pro-
gramming problem into a distributed systems problem. As a result, large-scale compartmental-
ized applications are difficult to design, write, debug, maintain, and extend; this raises serious
questions about correctness, performance, and most critically, security.

These problems occur because current hardware provides strong separation only at coarse
granularity via rings and virtual address spaces, making the isolation of complete applications
(or even multiple operating systems) a simple task, but complicates efficient and easily ex-
pressed separation between tightly coupled software components. Three closely related prob-
lems arise:

Performance is sacrificed. Creating and switching between security domains is expensive
due to reliance on software and hardware address-space infrastructure, such as a quickly over-
flowed Translation Look-aside Buffer (TLB) that can lead to massive performance degrada-
tion. Also, above an extremely low threshold, performance overhead from context switching
between security domains tends to go from extremely expensive to intolerable: each TLB entry
is an access-control list, with each object (page) requiring multiple TLB entries, one for each
authorized security domain.

High-end server CPUs typically have TLB entries in the low hundreds, and even recent net-
work embedded devices reach the low thousands; the TLB footprint of fine-grained, compart-
mentalized software increases with the product of in-flight security domains and objects due to
TLB aliasing, which may easily require tens or hundreds of thousands of spheres of protection.
The transition to CPU multi-threading has not only failed to relieve this burden, but actively
made it worse: TLBs are implemented using ternary content-addressable memory (TCAMs) or
other expensive hardware lookup functions, and are often shared between hardware threads in
a single core due to their expense.

In comparison, physically indexed general-purpose CPU caches are several orders of mag-
nitude larger than TLBs, scaling instead with the working set of code paths explored or the
memory footprint of data actively being used. If the same data is accessed by multiple security
domains, it shares data or code cache (but not TLB entries) with current CPU designs.

Programmability is sacrificed. Within a single address space, programmers can easily and
efficiently share memory between application elements using pointers from a common names-

12

pace. The move to multiple processes frequently requires the adoption of a distributed program-
ming model based on explicit message passing, making development, debugging, and testing
more difficult. RPC systems and higher-level languages are able to mask some (although usu-
ally not all) of these limitations, but are poorly suited for use in TCBs – RPC systems and pro-
gramming language runtimes are non-trivial, security-critical, and implemented using weaker
lower-level facilities.2

Security is sacrificed. Current hardware is intended to provide robust shared memory com-
munication only between mutually trusting parties, or at significant additional expense; gran-
ularity of delegation is limited and its primitives expensive, leading to programmer error and
extremely limited use of granular separation. Poor programmability contributes directly to poor
security properties.

1.2 The CHERI Design
CHERI embodies two fundamental and closely linked technical goals to address vulnerability
mitigation: first, fine-grained capability-oriented memory protection within address spaces,
and second, primitives to support both scalable and programmer-friendly compartmentalization
within address spaces based on the object-capability model. The CHERI model is designed to
support low-level TCBs, typically implemented in C or a C-like language, in workstations,
servers, mobile devices, and embedded devices. Simultaneously, it will provide reasonable
assurance of correctness and a realistic technology transition path from existing hardware and
software platforms.

To this end, we have prototyped CHERI as an Instruction-Set Architecture (ISA) extension
to the widely used 64-bit MIPS ISA; we are also considering the implications for the RISC-V
and ARM ISAs. CHERI adds the following features to a RISC CPU design via a new capability
coprocessor that supports granular memory protection within address spaces:

• The capability register file describes the rights (protection domain) of the executing
thread to memory that it can access, and to object references that can be invoked to tran-
sition between protection domains. Capability registers supplement the general-purpose
register file, allowing capabilities to displace general-purpose registers in describing data
and object references. Certain registers are reserved for use in exception handling; all
others are available to be managed by the compiler using the same techniques used with
conventional registers.

• A set of capability instructions allow executing code to create, constrain (e.g., by in-
creasing the base, decreasing the length, or reducing permissions), manage, and inspect
capability register values. Both data and further capabilities can be loaded and stored via
capability registers (i.e., dereferencing); object capabilities can be invoked, via special

2Through extreme discipline, a programming model can be constructed that maintains synchronized mappings
of multiple address spaces, while granting different rights on memory between different processes. This leads
to even greater TLB pressure and expensive context switch operations, as the layouts of address spaces must be
managed using cross-address-space communication. Bittau has implemented this model via sthreads, an OS prim-
itive that tightly couples UNIX processes via shared memory associated with data types – a promising separation
approach constrained by the realities of current CPU design [8].

13

instructions, allowing a transition between protection domains. Invalid capability ma-
nipulations (e.g., to increase rights or length) and invalid capability dereferences (e.g.,
to access outside of a bounds-checked region) result in an exception that can be handled
by the supervisor or language runtime. Most capability instructions are part of the user-
mode ISA, rather than privileged ISA, and will be generated by the compiler to describe
application data structures and protection properties.

• Tagged memory associates a 1-bit tag with each capability-aligned and capability-sized
word in physical memory, which allows capabilities to be safely loaded and stored in
memory without loss of integrity. This functionality expands a thread’s effective pro-
tection domain to include the transitive closure of capability values that can be loaded
via capabilities via those present in its register file. For example, a capability register
representing a C pointer to a data structure can be used to load further capabilities from
that structure, referring to further data structures, which could not be accessed without
suitable capabilities. Writes to capability values in memory that do not originate from
a valid capability in the capability-register file will clear the tag bit associated with that
memory, preventing accidental (or malicious) dereferencing of invalid capabilities.

In keeping with the RISC philosophy, CHERI instructions are intended for use primar-
ily by the compiler rather than directly by the programmer, and consist of relatively simple
instructions that avoid, for example, combining memory access and register value manipu-
lation in a single instruction. In our current software prototypes, there are direct mappings
from programmer-visible, C-language pointers to capabilities in much the same way that con-
ventional code generation translates pointers into general-purpose register values; this allows
CHERI to continuously enforce bounds checking, pointer integrity, and so on. There is likewise
a strong synergy between the capability-system model, which espouses a separation of policy
and mechanism, and RISC: CHERI’s features make possible the implemention of a wide vari-
ety of OS, compiler, and application-originated policies on a common protection substrate that
optimizes fast paths through hardware support.

The capability coprocessor is a coprocessor in two senses. First, the capability coprocessor
occupies a portion of the existing ISA encoding dedicated to extensions (typically referred to as
coprocessor instructions). Second, the capability coprocessor supplements the general-purpose
register file with its own ISA-managed registers, as well as performing (and transforming)
memory access, and delivering exceptions to the main pipeline, requiring hardware resources
that interact with the primary processor pipeline. This behavior is comparable in many ways to
system, floating-point, vector, or cryptographic coprocessors that will similarly supplement the
base ISA and processor features.

Wherever possible, CHERI systems make use of existing hardware designs: processor
pipelines and register files, cache memory, system buses, commodity DRAM, and commodity
peripheral devices such as NICs and display cards. We are currently focusing on enforcement
of CHERI security properties on applications running on a general-purpose processor; in future
work, we hope to consider the effects of implementing CHERI in peripheral processors, such
as those found in Network Interface Cards (NICs) or Graphical Processing Units (GPUs).

In order to prototype this approach, we have localized our ideas about CHERI capability
access to a specific instruction set: the 64-bit MIPS ISA. This has necessarily led to a set of
congruent implementation decisions about register-file size, selection of specific instructions,
exception handling, memory alignment requirements, and so on, that reflect that starting-point

14

ISA. These decisions might be made differently with another starting-point ISA as they are sim-
ply surface features of an underlying approach; we anticipate that adaptations to ISAs such as
ARM and RISC-V would adopt instruction-encoding conventions, and so on, more in keeping
with their specific flavor and approach.

Other design decisions reflect the goal of creating a platform for prototyping and exploring
the design space itself; among other choices, this includes the selection of 256-bit capabili-
ties, which have given us greater flexibility to experiment with various bounds-checking and
capability behaviors. Reducing capabilities to 128-bit is not unreasonable, and measurements
suggest that cache footprint increases from capabilities can be significantly mitigated through
such a change. However, this would also introduce tradeoffs in the granularity of memory (e.g.,
losing access to the full 64-bit space) and flexibility of the object-capability design (e.g., loss
of software-defined permission bits) that would need to be reasoned about carefully.

We believe, however, that the higher-level memory protection and security models we have
described would relatively easily apply to variations in ISA-level implementation. This should
allow reasonable source-level software portability (leaving aside OS assembly code and com-
piler code generation) across the CHERI model implemented in different architectures, in much
the same way that conventional OS and application C code is moderately portable across un-
derlying ISAs.

1.2.1 A Hybrid Capability-System Architecture

Unlike past research into capability systems, CHERI allows traditional address-space separa-
tion, implemented using a memory management unit (MMU), to coexist with granular decom-
position of software within each address space. As a result, fine-grained memory protection and
compartmentalization can be applied selectively throughout existing software stacks to provide
an incremental software migration path. We envision early deployment of CHERI extensions in
selected components of the TCB’s software stack: separation kernels, operating system kernels,
programming language runtimes, sensitive libraries such as those involved in data compression
or encryption, and network applications such as web browsers and web servers.

CHERI addresses current limitations on compartmentalization by extending virtual memory-
based separation with hardware-enforced, fine-grained protection within address spaces. Gran-
ular memory protection mitigates a broad range of previously exploitable bugs by coercing
common memory-related failures into exceptions that can be handled by the application or op-
erating system, rather than yielding control to the attacker. The CHERI approach also restores
a single address-space programming model for compartmentalized (sandboxed) software, fa-
cilitating efficient, programmable, and robust separation through the capability model.

We have selected this specific composition of traditional virtual memory with an in-address-
space security model to facilitate technology transition: in CHERI, existing C-based software
can continue to run within processes, and even integrate with capability-enhanced software
within a single process, to provide improved robustness for selected software components –
and perhaps over time, all software components. For example, a sensitive library (perhaps used
for image processing) might employ capability features while executing as part of a CHERI-
unaware web browser. Likewise, a CHERI-enabled application can sandbox and instantiate
multiple copies of unmodified libraries, to efficiently and easily gate access to the rest of appli-
cation memory of the host execution environment.

15

1.3 Threat Model

CHERI protections constrain code “in execution” and allow fine-grained management of priv-
ilege within a framework for controlled separation and communication. Code in execution
can represent the focus of many potentially malicious parties: subversion of legitimate code
in violation of security policies, injection of malicious code via back doors, trojan horses, and
malware, and also denial-of-service attacks. CHERI’s fine-grained memory protection miti-
gates many common attack techniques by reducing opportunities for the conflation of code and
data, as well as catching many common exploitable programmer bugs; compartmentalization
constrains successful attacks via the principle of least privilege.

Physical attacks on CHERI-based systems are explicitly excluded from our threat model, al-
though CHERI CPUs might easily be used in the context of tamper-evident or tamper-resistant
systems. Similarly, no special steps have been taken in our design to counter undesired leakage
of electromagnetic emanations and certain other side channels such as acoustic inferences: we
take for granted the presence of an electronic foundation on which CHERI can run. CHERI
will provide a supportive framework for a broad variety of security-sensitive activities; while
not itself a distributed system, CHERI could form a sound foundation for various forms of
distributed trustworthiness.

Somewhat to our chagrin, we report that the CHERI design currently includes no features
for resisting covert or side-channel attacks: these have proven increasingly relevant in CPU
design, but the tools CHERI provides do not improve resilience against these attacks. In some
sense, they increase exposure: the greater the offers of protection within a system, the greater
the potential impact of unauthorized communication channels. As such, we hope side-channel
attacks are a topic that we will be able to explore in future work. Overall, we believe that our
threat model is realistic and will lead to systems that can be substantially more trustworthy than
today’s commodity systems.

1.4 Formal Methodology

Throughout this project, we apply formal methodology to help avoid system vulnerabilities.
An important early observation is that existing formal methodology applied to software se-
curity has significant problems with multi-address-space security models; formal approaches
have relied on the usefulness of addresses (pointers) as unique names for objects. Whereas this
weakness in formal methods is a significant problem for traditional CPU designs, which offer
security primarily through rings and address-space translation, CHERI’s capability model is
scoped within address spaces. This offers the possibility of applying existing software proof
methodology in the context of hardware isolation (and other related properties) in a manner that
was previously infeasible. We are more concretely (and judiciously) applying formal method-
ology in two areas:

1. We have developed a formal semantics for the CHERI ISA described in SRI’s Proto-
type Verification System (PVS) – an automated theorem-proving and model-checking
toolchain – which can be used to verify the expressibility of the ISA, but also to prove
properties of critical code. For example, we are interested in proving the correctness of
software-based address-space management and domain transitions. We are likewise able

16

to automatically generate ISA-level test suites from formal descriptions of instructions,
which are applied directly to our hardware implementation.

2. We have developed extensions to the Bluespec compiler to export an HDL description
to SRI’s PVS and SAL model checker. We have also developed new tools for efficient
SMT (Satisfiability Modulo Theories) modeling of designs (using SRI’s Yices), and the
automated extraction of key properties from larger Bluespec designs. These tools will
allow us to verify low-level properties of the hardware design and use the power of model
checking and satisfiability solvers to analyze related properties. Ideally they will also
help link ISA-level specifications with the CPU implementation.

A detailed description of formal methods efforts relating to CHERI may be found in the to-be-
published CHERI Formal Methods Report.

1.5 CHERI and CHERI2 Reference Prototypes
As a central part of this research, we are developing reference prototypes of the CHERI ISA via
several CHERI processor designs. These protoypes allow us to explore, validate, evaluate, and
demonstrate the CHERI approach through realistic hardware properties and real-world software
stacks. A detailed description of the current prototypes, both from architectural and practical
use perspectives, may be found in the companion BERI Hardware Reference, BERI Software
Reference, and CHERI User’s Guide documents.

Our first prototype, known simply as CHERI1, is based on Cambridge’s MAMBA research
processor, and is a single-threaded, single-core implementation intended to allow us to explore
ISA tradeoffs. This prototype is implemented in the Bluespec HDL, a high-level functional
programming language for hardware design. CHERI1 is a pipelined baseline processor imple-
menting the 64-bit MIPS ISA, and incorporates an initial prototype of the CHERI capability
coprocessor that includes capability registers and a basic capability instruction set.

We have ported the commodity open-source FreeBSD operating system, with support for
a wide variety of peripherals on the Terasic tPad and DE4 FPGA development boards; we use
these boards in both mobile tablet-style and network configurations. FreeBSD is able to man-
age the capability coprocessor and maintain additional thread state for capability-aware user
applications, although capability features are not yet used within the kernel for its own internal
protection. FreeBSD also implements exception-handler support for object-capability invo-
cation, signal delivery when protection faults occur (allowing language runtimes to catch and
handle protection violations), and error recovery for in-process sandboxes. We have adapted the
Clang and LLVM compiler suite to allow language-level annotations in C to direct capability
use. In addition, we have developed a number of capability-enhanced applications demonstrat-
ing fine-grained memory protection and in-process compartmentalization to explore security,
performance, and programmability tradeoffs. We also have a work-in-progress multi-core ver-
sion of the CHERI prototype.

Using Bluespec, we are able to run the CPU in simulation, and synthesize the CHERI
design to execute in field-programmable gate arrays (FPGAs). In our development work, we are
targeting an Altera FPGAs on Terasic development boards. However, in our companion MRC
project we have also targeted CHERI at the second-generation NetFPGA 10G research and
teaching board, which we hope to use in ongoing research into datacenter network fabrics. That

17

work includes the development of Blueswitch, a Bluespec implementation of an OpenFlow
switch that can operate as a tightly coupled CHERI coprocessor. In the future, should it become
desirable, we will be able to construct an ASIC design from the same Bluespec source code.
We have released the CHERI soft core as open-source hardware, making it available for more
widespread use in research. This should allow others, especially in the research community, to
reproduce and extend our results.

We have also developed a second prototype, known as CHERI2, which deploys addi-
tional CPU features, such as support for multi-core operation and simultaneous multi-threading
(SMT) support. It also employs a more stylized form of Bluespec that is intended to consider-
ably enhance our formal analysis of the hardware architecure.

1.6 Historical Context

As with many aspects of contemporary computer and operating system design, the origins of
operating system security may be found at the world’s leading research universities, but es-
pecially the Massachusetts Institute of Technology (MIT), the University of Cambridge, and
Carnegie Mellon University. MIT’s Project MAC, which began with MIT’s Compatible Time
Sharing System (CTSS) [12], and continued over the next decade with MIT’s Multics project,
described many central tenets of computer security [13, 24]. Dennis and Van Horn’s 1965 Pro-
gramming Semantics for Multiprogrammed Computations [16] laid out principled hardware
and software approaches to concurrency, object naming, and security for multi-programmed
computer systems – or, as they are known today, multi-tasking and multi-user computer sys-
tems. Multics implemented a coherent, unified architecture for processes, virtual memory,
and protection, integrating new ideas such as capabilities, unforgeable tokens of authority, and
principals, the end users with whom authentication takes place and to whom resources are
accounted [63].

In 1975, Saltzer and Schroeder surveyed the rapidly expanding vocabulary of computer se-
curity in The Protection of Information in Computer Systems [64]. They enumerated design
principles such as the principle of least privilege (which demands that computations run with
only the privileges they require) and the core security goals of protecting confidentiality, in-
tegrity, and availability. The tension between fault tolerance and security (a recurring debate
in systems literature) saw its initial analysis in Lampson’s 1974 Redundancy and Robustness
in Memory Protection [33], which considered ways in which hardware memory protection ad-
dressed accidental and intentional types of failure: if it is not reliable, it will not be secure,
and if it is not secure, it will not be reliable! Intriguingly, recent work by Nancy Leveson and
William Young has unified security and human safety as overarching emergent system proper-
ties [37], and allows the threat model to fall out of the top-down analysis, rather than driving
it. This work in some sense unifies a long thread of work that considers trustworthiness as
a property encompassing security, integrity, reliablity, survivability, human safety, and so on
(e.g., [50, 51], among others).

The Security Research community also blossomed outside of MIT: Wulf’s Hydra operat-
ing system at Carnegie Mellon University (CMU) [83, 11], Needham and Wilkes’ CAP Com-
puter at Cambridge [81], SRI’s Provably Secure Operating System (PSOS) [19, 51] hardware-
software co-design that included strongly typed object capabilities, Rushby’s security kernels
supported by formal methods at Newcastle [62], and Lampson’s work on formal models of se-

18

curity protection at the Berkeley Computer Corporation all explored the structure of operating
system access control, and especially the application of capabilities to the protection prob-
lem [34, 35]. Another critical offshoot from the Multics project was Ritchie and Thompson’s
UNIX operating system at Bell Labs, which simplified concepts from Multics, and became the
basis for countless directly and indirectly derived products such as today’s Solaris, FreeBSD,
Mac OS X, and Linux operating systems [60].

The creation of secure software went hand in hand with analysis of security flaws: Ander-
son’s 1972 US Air Force Computer Security Technology Planning Study not only defined new
security structures, such as the reference monitor, but also analyzed potential attack method-
ologies such as Trojan horses and inference attacks [3]. Karger and Schell’s 1974 report on a
security analysis of the Multics system similarly demonstrated a variety of attacks that bypass
hardware and OS protection [29]. In 1978, Bisbey and Hollingworth’s Protection Analysis:
Project final report at ISI identified common patterns of security vulnerability in operating
system design, such as race conditions and incorrectly validated arguments at security bound-
aries [7]. Adversarial analysis of system security remains as critical to the success of security
research as principled engineering and formal methods.

Almost fifty years of research have explored these and other concepts in great detail, bring-
ing new contributions in hardware, software, language design, and formal methods, as well as
networking and cryptography technologies that transform the context of operating system secu-
rity. However, the themes identified in those early years remain topical and highly influential,
structuring current thinking about systems design.

Over the next few sections, we consider three closely related ideas that directly influence
our thinking for CTSRD: capability security, microkernel OS design, and language-based con-
straints. These apparently disparate areas of research are linked by a duality, observed by Mor-
ris in 1973, between the enforcement of data types and safety goals in programming languages
on one hand, and the hardware and software protection techniques explored in operating sys-
tems [47] on the other hand. Each of these approaches blends a combination of limits defined
by static analysis (perhaps at compile-time), limits on expression on the execution substrate
(such as what programming constructs can even be represented), and dynamically enforced
policy that generates runtime exceptions (often driven by the need for configurable policy and
labeling not known until the moment of access). Different systems make different uses of these
techniques, affecting expressibility, performance, and assurance.

1.6.1 Capability Systems

Throughout the 1970s and 1980s, high-assurance systems were expected to employ a capability-
oriented design that would map program structure and security policy into hardware enforce-
ment; for example, Lampson’s BCC design exploited this linkage to approximate least privi-
lege [34, 35].

Systems such as the CAP Computer at Cambridge [81] and Ackerman’s DEC PDP-1 archi-
tecture at MIT [2] attempted to realize this vision through embedding notions of capabilities in
the memory management unit of the CPU, an approach described by Dennis and Van Horn [16].
Levy provides a detailed exploration of segment- and capability-oriented computer system de-
sign through the mid-1980s in Capability-Based Computer Systems [38].

19

VFS

Operating system kernel

Proc 1 Proc 2

/
e

h
b

a

libfoo
libc

rtld

libfoo
libc

rtld

libfoo
libc

rtld

ring 1

ring 3/
e

h
b

a

Figure 1.1: The microkernel movement shifted complex OS components, such as file systems,
from the kernel to userspace tasks linked by IPC. Microkernels provide a smaller, easier-to-
analyze, easier-to-debug, and more robust foundation in the face of dramatic increases in OS
complexity.

1.6.2 Microkernels
Denning has argued that the failures of capability hardware projects were classic failures of
large systems projects, an underestimation of the complexity and cost of reworking an entire
system design, rather than fundamental failures of the capability model [15]. However, the
benefit of hindsight suggests that the earlier demise of hardware capability systems was a result
of three related developments in systems research: microkernel OS design, a related interest
from the security research community in security kernel design, and Patterson and Sequin’s
Reduced Instruction-Set Computers (RISC) [55].

However, with a transition from complex instruction set computers (CISC) to reduced in-
struction set computers (RISC), and a shift away from microcode toward operating system
implementation of complex CPU functionality, the attention of security researchers turned to
microkernels.

Carnegie Mellon’s Hydra [11, 84] embodied this approach, in which microkernel message
passing between separate tasks stood in for hardware-assisted security domain crossings at
capability invocation. Hydra developed a number of ideas, including the relationship between
capabilities and object references, refined the object-capability paradigm, and further pursued
the separation of policy and mechanism.3 Jones and Wulf argue through the Hydra design that
the capability model allows the representation of a broad range of system policies as a result
of integration with the OS object model, which in turn facilitates interposition as a means of
imposing policies on object access [27].

Successors to Hydra at CMU include Accent and Mach [57, 1], both microkernel systems
intended to explore the decomposition of a large and decidedly un-robust operating system
kernel. Figure 1.1 illustrates the principle of microkernel design: traditional OS services, such
as the file system, are migrated out of ring 0 and into user processes, improving debuggability
and independence of failure modes. They are also based on mapping of capabilities as object

3Miller has expanded on the object-capability philosophy in considerable depth in his 2006 PhD dissertation,
Robust composition: towards a unified approach to access control and concurrency control [45]

20

references into IPC pipes (ports), in which messages on ports represent methods on objects.
This shift in operating system design went hand in hand with a related analysis in the security
community: Lampson’s model for capability security was, in fact, based on pure message
passing between isolated processes [35]. This further aligned with proposals by Andrews [4]
and Rushby [62] for a security kernel, whose responsibility lies solely in maintaining isolation,
rather than the provision of higher-level services such as file systems. Unfortunately, the shift
to message passing also invalidated Fabry’s semantic argument for capability systems, namely,
that by offering a single namespace shared by all protection domains, the distributed system
programming problem could be avoided [18].

A panel at the 1974 National Computer Conference and Exposition (AFIPS) chaired by
Lipner brought the design goals and choices for microkernels and security kernels clearly into
focus: microkernel developers sought to provide flexible platforms for OS research with an eye
towards protection, while security kernel developers aimed for a high assurance platform for
separation, supported by hardware, software, and formal methods [40].

The notion that the microkernel, rather than the hardware, is responsible for implement-
ing the protection semantics of capabilities also aligned well with the simultaneous research
(and successful technology transfer) of RISC designs, which eschewed microcode by shift-
ing complexity to the compiler and operating system. Without microcode, the complex C-
list peregrinations of CAP’s capability unit, and protection domain transitions found in other
capability-based systems, become less feasible in hardware. Simple virtual memory designs
based on fixed-size pages and few semantic constraints have since been standardized through-
out the industry.

Security kernel designs, which combine a minimal kernel focused entirely on correctly im-
plementing protection, and rigorous application of formal methods, formed the foundation for
several secure OS projects during the 1970s. Schiller’s security kernel for the PDP-11/45 [65]
and Neumann’s Provably Secure Operating System [20] design study were ground-up operating
system designs based soundly in formal methodology.4 In contrast, Schroeder’s MLS kernel
design for Multics [66], the DoD Kernelized Secure Operating System (KSOS) [42], and Bruce
Walker’s UCLA UNIX Security Kernel [71] attempted to slide MLS kernels underneath ex-
isting Multics and UNIX system designs. Steve Walker’s 1980 survey of the state of the art in
trusted operating systems provides a summary of the goals and designs of these high-assurance
security kernel designs [72].

The advent of CMU’s Mach microkernel triggered a wave of new research into security ker-
nels. TIS’s Trusted Mach (TMach) project extended Mach to include mandatory access control,
relying on enforcement in the microkernel and a small number of security-related servers to im-
plement the TCB to accomplish sufficient assurance for a TCSEC B3 evaluation [9]. Secure
Computing Corporation (SCC) and the National Security Agency (NSA) adapted PSOS’s type
enforcement from LoCK (LOgical Coprocessor Kernel) for use in a new Distributed Trusted
Mach (DTMach) prototype, which built on the TMach approach while adding new flexibil-
ity [67]. DTMach, adopting ideas from Hydra, separates mechanism (in the microkernel) from
policy (implemented in a userspace security server) via a new reference monitor framework,
FLASK [69]. A significant focus of the FLASK work was performance: an access vector cache
is responsible for caching access control decisions throughout the OS to avoid costly up-calls
and message passing (with associated context switches) to the security server. NSA and SCC

4PSOS’s ground-up design included ground-up hardware, whereas Schiller’s design revised only the software
stack.

21

eventually migrated FLASK to the FLUX microkernel developed by the University of Utah in
the search for improved performance. Invigorated by the rise of microkernels and their con-
gruence with security kernels, this flurry of operating system security research also faced the
limitations (and eventual rejection) of the microkernel approach by the computer industry –
which perceived the performance overheads as too great.

Microkernels and mandatory access control have seen another experimental composition in
the form of Decentralized Information Flow Control (DIFC). This model, proposed by Myers,
allows applications to assign information flow labels to OS-provided objects, such as commu-
nication channels, which are propagated and enforced by a blend of static analysis and runtime
OS enforcement, implementing policies such as taint tracking [48] – effectively, a composition
of mandatory access control and capabilities in service to application security. This approach
is embodied by Efstathopoulos et al.’s Asbestos [17] and Zeldovich et al.’s Histar [87] research
operating systems.

Despite the decline of both hardware-oriented and microkernel capability system design,
capability models continue to interest both research and industry. Inspired by the propri-
etary KEYKOS system [25], Shapiro’s EROS [68] (now CapROS) continues the investiga-
tion of higher-assurance software capability designs, seL4 [31], a formally verified, capability-
oriented microkernel, has also continued along this avenue. General-purpose systems also have
adopted elements of the microkernel capability design philosophy, such as Apple’s Mac OS
X [5] (which uses Mach interprocess communication (IPC) objects as capabilities) and Cam-
bridge’s Capsicum [76] research project (which attempts to blend capability-oriented design
with UNIX).

More influentially, Morris’s suggestion of capabilities at the programming language level
has seen widespread deployment. Gosling and Gong’s Java security model blends language-
level type safety with a capability-based virtual machine [23, 22]. Java maps language-level
constructs (such as object member and method protections) into execution constraints enforced
by a combination of a pre-execution bytecode verification and expression constraints in the
bytecode itself. Java has seen extensive deployment in containing potentially (and actually) ma-
licious code in the web browser environment. Miller’s development of a capability-oriented E
language [45], Wagner’s Joe-E capability-safe subset of Java [44], and Miller’s Caja capability-
safe subset of JavaScript continue a language-level exploration of capability security [46].

1.6.3 Language and Runtime Approaches

Direct reliance on hardware for enforcement (which is central to both historic and current sys-
tems) is not the only approach to isolation enforcement. The notion that limits on expressibility
in a programming language can be used to enforce security properties is frequently deployed
in contemporary systems to supplement coarse and high-overhead operating-system process
models. Two techniques are widely used: virtual-machine instruction sets (or perhaps physi-
cal machine instruction subsets) with limited expressibility, and more expressive languages or
instruction sets combined with type systems and formal verification techniques.

The Berkeley Packet Filter (BPF) is one of the most frequently cited examples of the vir-
tual machine approach: user processes upload pattern matching programs to the kernel to avoid
data copying and context switching when sniffing network packet data [41]. These programs
are expressed in a limited packet-filtering virtual-machine instruction set capable of expressing
common constructs, such as accumulators, conditional forward jumps, and comparisons, but

22

are incapable of expressing arbitrary pointer arithmetic that could allow escape from confine-
ment, or control structures such as loops that might lead to unbounded execution time. Similar
approaches have been used via the type-safe Modula 3 programming language in SPIN [6],
and the DTrace instrumentation tool that, like BPF, uses a narrow virtual instruction set to
implement the D language [10].

Google’s Native Client (NaCl) model edges towards a verification-oriented approach, in
which programs must be implemented using a ‘safe’ (and easily verified) subset of the x86 or
ARM instruction sets, which would allow confinement properties to be validated [86]. NaCl
is closely related to Software Fault Isolation (SFI) [70], in which safety properties of machine
code are enforced through instrumentation to ensure no unsafe access, and Proof-Carrying
Code (PCC) in which the safe properties of code are demonstrated through attached and easily
verifiable proofs [49]. As mentioned in the previous section, the Java Virtual Machine (JVM)
model is similar; it combines runtime execution constraints of a restricted, capability-oriented
bytecode with a static verifier run over Java classes before they can be loaded into the execu-
tion environment; this ensures that only safe accesses have been expressed. C subsets, such
as Cyclone [26], and type-safe languages such as Ruby [61], offer similar safety guarantees,
which can be leveraged to provide security confinement of potentially malicious code without
hardware support.

These techniques offer a variety of trade-offs relative to CPU enforcement of the process
model. For example, some (BPF, D) limit expressibility that may prevent potentially useful
constructs from being used, such as loops bounded by invariants rather than instruction limits;
in doing so, this can typically impose potentially significant performance overhead. Systems
such as FreeBSD often support just-in-time compilers (JITs) that convert less efficient virtual-
machine bytecode into native code subject to similar constraints, addressing performance but
not expressibility concerns [43].

Systems like PCC that rely on proof techniques have had limited impact in industry, and
often align poorly with widely deployed programming languages (such as C) that make for-
mal reasoning difficult. Type-safe languages have gained significant ground over the last
decade, with widespread use of JavaScript and increasing use of functional languages such
as OCaML [59]; they offer many of the performance benefits with improved expressibility,
yet have had little impact on operating system implementations. However, an interesting twist
on this view is described by Wong in Gazelle, in which the observation is made that a web
browser is effectively an operating system by virtue of hosting significant applications and en-
forcing confinement between different applications [73]. Web browsers frequently incorporate
many of these techniques including Java Virtual Machines and a JavaScript interpreter.

1.6.4 Influences of Our Own Past Projects

Our CHERI capability hardware design responds to all these design trends – and their prob-
lems. Reliance on traditional paged virtual memory for strong address-space separation, as used
in Mach, EROS, and UNIX, comes at significant cost: attempts to compartmentalize system
software and applications sacrifice the programmability benefits of a language-based capabil-
ity design (a point made convincingly by Fabry [18]), and introduce significant performance
overhead to cross-domain security boundaries. However, running these existing software de-
signs is critical to improve the odds of technology transfer, and to allow us to incrementally
apply ideas in CHERI to large-scale contemporary applications such as office suites. CHERI’s

23

hybrid approach allows a gradual transition from virtual address separation to capability-based
separation within a single address space, thus restoring programmability and performance so
as to facilitate fine-grained compartmentalization throughout the system and its applications.

We consider some of our own past system designs in greater detail, especially as they relate
to CTSRD:

Multics The Multics system incorporated many new concepts in hardware, software, and
programming [54, 14]. The Multics hardware provided independent virtual memory segments,
paging, interprocess and intra-process separation, and cleanly separated address spaces. The
Multics software provided symbolically named files that were dynamically linked for efficient
execution, rings of protection providing layers of security and system integrity, hierarchical di-
rectories, and access-control lists. Input-output was also symbolically named and dynamically
linked, with separation of policy and mechanism, and separation of device independence and
device dependence. A subsequent redevelopment of the two inner-most rings enabled Multics
to support multilevel security in the commercial product. Multics was implemented in a stark
subset of PL/I that considerably diminished the likelihood of many common programming er-
rors. In addition, the stack discipline inherently avoided buffer overflows.

PSOS SRI’s Provably Secure Operating System hardware-software design was formally spec-
ified in a single language, with encapsulated modular abstraction, interlayer state mappings,
and abstract programs relating each layer to those on which it depended [51, 52]. The hard-
ware design provided tagged, typed, unforgeable capabilities required for every operation, with
identifiers that were unique for the lifetime of the system. In addition to a few primitive types,
application-specific object types could be defined and their properties enforced with the hard-
ware assistance provided by the capability-based access controls. The design allowed applica-
tion layers to efficiently execute instructions, with object-oriented capability-based addressing
directly to the hardware – despite appearing at a much higher layer of abstraction in the design
specifications.

Capsicum Capsicum is a lightweight OS capability and sandbox framework included in
FreeBSD 9.x and later [76, 75]. Capsicum extends (rather than replaces) UNIX APIs, and pro-
vides new kernel primitives (sandboxed capability mode and capabilities) and a userspace sand-
box API. These tools support compartmentalization of monolithic UNIX applications into log-
ical applications, an increasingly common goal supported poorly by discretionary and manda-
tory access controls. This approach was demonstrated by adapting core FreeBSD utilities and
Google’s Chromium web browser to use Capsicum primitives; it showed significant simplic-
ity and robustness benefits to Capsicum over other confinement techniques. Capsicum both
provides both inspiration and motivation for CHERI: its hybrid capability-system model is
transposed into the ISA to provide compatibility with current software designs, and its demand
for finer-grained compartmentalization motivations CHERI’s exploration of more scalable ap-
proaches.

1.6.5 A Fresh Opportunity for Capabilities
Despite an extensive research literature exploring the potential of capability-system approaches,
and limited transition to date, we believe that now is the time to revisit these ideas, albeit

24

through the lens of contemporary problems and with insight gained through decades of re-
search into security and systems design. As described earlier in the chapter, a transformed
threat environment deriving from ubiquitous computing and networking, and the practical re-
ality of widespread exploitation of software vulnerabilities, provides a strong motivation to
investigate improved processor foundations for software security. This change in environment
has coincided with improved hardware prototyping techniques and higher-level hardware def-
inition languages that facilitate academic hardware-software system research at larger scales
without which we would have been unable to explore the CHERI approach in such detail.
Simultaneously, our understanding of operating-system and programming-language security
has been vastly enhanced by several decades of research, and recent development of the hy-
brid capability-system Capsicum model suggests a strong alignment between capability-based
techniques and successful mitigation approaches that can be translated into processor design
choices.

1.7 Publications
As our approach has evolved, and project developed, we have published a number of papers
and reports describing aspects of the work. The revisiting of capability-based approaches is
described in Capabilities Revisied: A Holistic Approach to Bottom-to-Top Assurance of Trust-
worthy Systems, published at the Layered Assurance Workshop (LAW 2010) [53], shortly after
the inception of the project. Mid-way through creation of both the BERI prototyping platform,
and CHERI ISA model, we published CHERI: a research platform deconflating hardware
virtualization and protection at the Workshop on Runtime Environments, Systems, Layering
and Virtualized Environments (RESoLVE 2012) [74]. Most recently, we have published The
CHERI capability model: Revisiting RISC in an age of risk at the International Symposium on
Computer Architecture (ISCA 2014) [82].

We have additionally prepared a number of technical reports, including this document, de-
scribing our approach and prototypes. To date, this includes the CHERI Instruction-Set Archi-
tecture [79], the CHERI User’s Guide [78], the BERI Hardware Reference [80], and the BERI
Software Reference [77]. Further research publications and technical reports on the topics of
the CHERI hardware-software security model, compiler approaches, and applications of formal
methods will be forthcoming.

1.8 Version History
This report was previously made available as the CHERI Architecture Document, but is now
the CHERI Instruction-Set Architecture.

1.0 This first version of the CHERI architecture document was prepared for a six-month deliv-
erable to DARPA. It included a high-level architectural description of CHERI, motiva-
tions for our design choices, and an early version of the capability instruction set.

1.1 The second version was prepared in preparation for a meeting of the CTSRD External
Oversight Group (EOG) in Cambridge during May 2011. The update followed a week-
long meeting in Cambridge, UK, in which many aspects of the CHERI architecture were
formalized, including details of the capability instruction set.

25

1.2 The third version of the architecture document came as the first annual reports from the
CTSRD project were in preparation, including a decision to break out formal-methods
appendices into their own CHERI Formal Methods Report for the first time. With an
in-progress prototype of the CHERI capability unit, we significantly refined the CHERI
ISA with respect to object capabilities, and matured notions such as a trusted stack and
the role of an operating system supervisor. The formal methods portions of the document
was dramatically expanded, with proofs of correctness for many basic security properties.
Satisfyingly, many ‘future work’ items in earlier versions of the report were becoming
completed work in this version!

1.3 The fourth version of the architecture document was released while the first functional
CHERI prototype was in testing. It reflects on initial experiences adapting a microker-
nel to exploit CHERI capability features. This led to minor architectural refinements,
such as improvements to instruction opcode layout, some additional instructions (such
as allowing CGetPerms retrieve the unsealed bit), and automated generation of opcode
descriptions based on our work in creating a CHERI-enhanced MIPS assembler.

1.4 This version updated and clarified a number of aspects of CHERI following a prototype
implementation used to demonstrate CHERI in November 2011. Changes include up-
dates to the CHERI architecture diagram; replacement of the CDecLen instruction with
CSetLen, addition of a CMove instruction; improved descriptions of exception genera-
tion; clarification of the in-memory representation of capabilities and byte order of per-
missions; modified instruction encodings for CGetLen, CMove, and CSetLen; specifica-
tion of reset state for capability registers; and clarification of the CIncBase instruction.

1.5 This version of the document was produced almost two years into the CTSRD project.
It documented a significant revision to the CHERI ISA, which was motivated by our
efforts to introduce C-language extensions and compiler support for CHERI, with im-
provements resulting from operating system-level work and restructuring the Bluespec
hardware specification to be more amenable to formal analysis. The ISA, programming
language, and operating system sections were significantly updated.

1.6 This version made incremental refinements to version 2 of the CHERI ISA, and also intro-
duced early discussion of the CHERI2 prototype.

1.7 Roughly two and a half years into the project, this version clarified and extended documen-
tation of CHERI ISA features such as CCall/CReturn and its software emulation, Per-
mit Set Type, the CMove pseudo-op, new load-linked and instructions for store-conditional
relative to capabilities, and several bug fixes such as corrections to sign extension for
several instructions. A new capability-coprocessor cause register, retrieved using a new
CGetCause, was added to allow querying information on the most recent CP2 exception
(e.g., bounds-check vs type-check violations); priorities were provided, and also clarified
with respect to coprocessor exceptions vs. other MIPS ISA exceptions (e.g., unaligned
access). This was the first version of the CHERI Architecture Document released to early
adopters.

1.8 Less three and a half years into the project, this version refined the CHERI ISA based on
experience with compiler, OS, and userspace development using the CHERI model. To

26

improve C-language compatibility, new instructions CToPtr and CFromPtr were defined.
The capability permissions mask was extended to add user-defined permissions. Clarifi-
cations were made to the behavior of jump/branch instructions relating to branch-delay
slots and the program counter. CClearTag simply cleared a register’s tag, not its value.
A software-defined capability-cause register range was made available, with a new CSet-
Cause instruction letting software set the cause for testing or control-flow reasons. New
CCheckPerm and CCheckType instructions were added, letting software object methods
explicitly test for permissions and the types of arguments. TLB permission bits were
added to authorize use of loading and storing tagged values from pages. New CGetDe-
fault and CSetDefault pseudo-ops have become the preferred way to control MIPS ISA
memory access. CCall/CReturn calling conventions were clarified; CCall now pushes
the incremented version of the program counter, as well as stack pointer, to the trusted
stack.

1.9 - UCAM-CL-TR-850 The document was renamed from the CHERI Architecture Docu-
ment to the CHERI Instruction-Set Architecture. This version of the document was made
available as a University of Cambridge Technical Report. The high-level ISA description
and ISA reference were broken out into separate chapters. A new rationale chapter was
added, along with more detailed explanations throughout about design choices. Notes
were added in a number of places regarding non-MIPS adaptations of CHERI and 128-
bit variants. Potential future directions, such as capability cursors, are discussed in more
detail. Further descriptions of the memory-protection model and its use by operating
systems and compilers was added. Throughout, content has been updated to reflect more
recent work on compiler and operating-system support for CHERI. Bugs have been fixed
in the specification of the CJR and CJALR instructions. Definitions and behavior for
user-defined permission bits and OS exception handling have been clarified.

1.9 Document Structure
This document is an introduction to, and reference manual for, the CHERI instruction-set ar-
chitecture:

Chapter 1 introduces CHERI: its motivations, goals, context, philosophy, and design.

Chapter 2 provides a detailed description of the CHERI architecture, including its register
and memory capability models, new instructions, procedure capabilities, and use of message-
passing primitives.

Chapter 3 describes the CHERI capability coprocessor, its register file, tagged memory, and
other ISA-related semantics.

Chapter 4 provides a detailed description of each new CHERI instruction, its pseudo-operations,
and how compilers should handle floating-point loads and stores via capabilities.

Chapter 6 discusses the programming language and operating system implications of CHERI,
including its impact on operating-system kernels, language runtimes, and compilers.

Chapter 7 discusses our short- and long-term plans for the CHERI architecture, considering
both our specific plans and open research questions that must be answered as we proceed.

27

Future versions of this document will continue to expand our consideration of the CHERI
instruction-set architecture and its impact on software, as well as evaluation strategies and
results. Additional information on our CHERI hardware and software implementations, as
well as formal methods work, may be found in accompanying reports.

28

Chapter 2

CHERI Architecture

In this chapter we discuss the high-level design for the CHERI instruction-set architecture (ISA)
and consider both the semantics and mechanism of CHERI’s memory and object capabilities.
We discuss CHERI in relative isolation from the general-purpose ISA, as our approach might
reasonably apply to a number of RISC ISAs (e.g., including MIPS and ARM), but potentially
also to CISC ISAs (such as Intel and AMD 32-bit and 64-bit ISAs).1 In Chapter 3, we consider
in detail an instantiation of the CHERI model in an extension to the 64-bit MIPS ISA.

2.1 Design Goals
As described in Chapter 1, the key observation motivating the CHERI design is that page-
oriented virtual memory, nearly universal in commodity CPUs, is neither an efficient nor
a programmer-friendly primitive for fine-grained memory protection or scalable hardware-
supported compartmentalization. Virtual addressing, implemented by a memory management
unit (MMU) and translation look-aside buffer (TLB), clearly plays an important role by dis-
associating physical memory allocation and address-space management, facilitating software
features such as strong separation, OS virtualization, and virtual-memory concepts such as
swapping and paging. However, with a pressing need for scalable and fine-grained separation,
the overheads and programmability difficulties imposed by virtual addressing as the sole prim-
itive for hardware isolation actively deter employment of the principle of least privilege. These
concerns translate into three high-level security design goals for CHERI:

1. Management of security context must be a “fast path” that avoids expensive operations
such as TLB entry invalidation, frequent ring transitions, and cache-busting OS supervi-
sor paths. This is a natural consequence of the integral role security functions (such as
creation, refinement, and delegation of memory and object rights) play in fine-grained
compartmentalized code.

1One idea we have considered is that CHERI-like semantics might be accomplished through extensions to
Google’s Native Client ISA [85], which uses a strict and statically analyzable subset of Intel and ARM ISAs to
ensure memory safety. An exciting possibility is that we might extend the LLVM intermediate representation [36]
to capture notions of segmentation and capability protection, in which case either NaCl or CHERI back ends might
be targeted as underlying execution substrates. This naturally raises the question, “why new hardware” – one that
we have constantly in mind, and believe will be constructively answerable in terms of functionality, performance,
and formal assurances.

29

2. Security domain switches must be inexpensive and efficient, with cost scaling linearly
with the number of switches and actual code/data footprint (and hence general-purpose
cache performance), rather than scaling as a product of the number of security domains
and controlled objects regardless of code and data cache footprints. CHERI is intended
to support at least two orders of magnitude more active security domains per CPU than
current MMU-based systems (going from tens or hundreds to at least tens of thousands
of domains).

3. Security domain switches must allow shared object namespaces that provide a unified
view that connotes both efficient and programmer-comprehensible delegation. Compart-
mentalized applications should able to be programmed and debugged without unneces-
sary recourse to distributed-system methodology.

These security goals, combined with observations about TLB performance and a desire to
compartmentalize existing single-address-space applications, led us to the conclusion that new
instruction set primitives for memory and object control within an address space would usefully
complement existing address-space-based separation. In this view, security state associated
with a thread should be captured as a set of registers that can be explicitly managed by code, and
be preserved and restored cheaply on either side of security domain transitions – in effect, part
of a thread’s register file. In the parlance of contemporary CPU and OS design, this establishes
a link between hardware threads (OS threads) and security domains, rather than address spaces
(OS processes) and security domains.

Because we wish to consider delegation of memory and object references within an address
space as a first-class operation, we choose to expose these registers to the programmer (or,
more desirably, the compiler) so that they can be directly manipulated and passed as arguments.
Previous systems built along these principles have been referred to as capability systems, a term
that also usefully describes CHERI.

CHERI’s capability model represents an explicit capability system, in which common capa-
bility manipulation operations are unprivileged instructions and transfer of control to a super-
visor during regular operations is avoided. In historic capability systems, microcode (or even
the operating system) was used to implement complex capability operations, some of which
were privileged. In contemporary RISC CPU designs, the intuitive functional equivalent has
an exception that triggers the supervisor. However, entrance to a supervisor usually remains
an expensive operation, and hence one to avoid in high-performance paths. In keeping with
the RISC design philosophy, we are willing to delegate significant responsibility for safety to
the compiler and run-time linker to minimize hardware knowledge of higher-level language
constructs.

CHERI capabilities may refer to regions of memory, with bounded memory access (as in
segments). Memory capabilities will frequently refer to programmer-described data structures
such as strings of bytes, structures consisting of multiple fields, and entries in arrays, although
they might also refer to larger extents of memory (e.g., the entire address space). While com-
patibility features in the CHERI ISA allow programmers to continue to use pointers in legacy
code, we anticipate that capabilities will displace pointer use as code is migrated to CHERI
code generation, providing stronger integrity for data references, bounds checking, permission
checking, and so on. In our prototype extensions to the C language, programmers can explicitly
request that capabilities be used instead of pointers, providing stronger protection, or in some
cases rely on the compiler to automatically generate capability-aware code – for example, when

30

code accessing the stack is compiled with a suitable application binary interface (ABI). We are
exploring further static analysis and compilation techniques that will allow us to automate de-
ployment of capability-aware code to a greater extent, minimizing disruption of current source
code while allowing programs to experience protection improvements.

Alternatively, capabilities may refer to objects that can be invoked, which allows the im-
plementation of protected subsystems – i.e., services that execute in a security domain other
than the caller’s. At the moment of object invocation, caller capabilities are sealed to protect
them from inappropriate use by the callee, and the invoked object is unsealed to allow the
object callee to access private resources it requires to implement its services. The caller and
callee experience a controlled delegation of resources across object invocation and return. For
example, the caller might delegate access to a memory buffer, and the callee might then write
a Unicode string to the buffer describing the contents of the protected object, implementing
call-by-reference.2 A key goal has been to allow capabilities passed across protection-domain
boundaries to refer to ordinary C data on the stack or heap, allowing easier adaptation of exist-
ing programs and libraries to use CHERI’s features. The semantics of capabilities are discussed
in greater detail later in this and the following chapter.

2.2 A Hybrid Capability-System Architecture
Despite our complaints about the implications of virtual addressing for compartmentalization,
we feel that virtual memory is a valuable hardware facility: it provides a strong separation
model; it makes implementing facilities such as swapping and paging easier; and by virtue of
its virtual layout, it can significantly improve software maintenance and system performance.
CHERI therefore adopts a hybrid capability-system model: we retain support for a commodity
virtual-memory model, implemented using an MMU with a TLB, while also introducing new
primitives to permit multiple security domains within address spaces (Figure 2.1). Each address
space becomes its own decomposition domain, within which protected subsystems can interact
using both hierarchical and non-hierarchical security models. In effect, each address space is
its own virtual capability machine.

To summarize our approach, CHERI draws on two distinct, and previously uncombined,
designs for processor architecture:

• Page-oriented virtual memory systems allow an executive (often the operating system
kernel) to create a process abstraction via the MMU. In this model, the kernel is respon-
sible for maintaining separation using this relatively coarse tool, and then providing sys-
tem calls that allow spanning process isolation, subject to access control. Systems such
as this make only weak distinctions between code and data, and in the mapping from
programming language to machine code discard most typing and security information.

• Capability systems, often based on a single global address space, map programming-
language type information and protection constraints into instruction selection. Code at
any given moment in execution exists in a protection domain consisting of a dynamic set

2CHERI does not implement implicit rights amplification, a property of some past systems including HYDRA.
Callers across protected subsystem boundaries may choose to pass all rights they hold, but it is our expectation
that they will generally not do so – otherwise, they would use regular function calls within a single protected
subsystem.

31

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance "pure" capability code

FreeBSD
kernel

w/Capsicum

Kernel address space executive

Device
drivers

Network
stack

Chromium
web browser

Java
Script

Separation kernel

C++ RT
Pure capability
C, Objective-C,

or OCaml
Unikernellibc executive libc executive

CHERI

Unikernel executive

Ca
pa

bi
lity

-s
ys

te
m

 a
dd

re
ss

 s
pa

ce
s

Separation kernel executive

Fetch

libc executive

Capability C,
Objective-C, or
OCaml UNIX
application

zlib

FreeBSD
kernel

w/Capsicum

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s
su

pp
or

te
d

by
 p

ag
ed

 V
M

Fetch

zlib

Chromium
web browser

Java
Script

C++ RT

libc malloc

Device
drivers

Figure 2.1: CHERI’s hybrid capability architecture: initially, legacy software components ex-
ecute without capability awareness, but security-sensitive TCB elements or particularly risky
code bases are converted. In the long term, all packages are converted, implementing least
privilege throughout the system.

of rights whose delegation is controlled by the flow of code. (These instantaneous rights
are sometimes referred to as spheres of protection in the operating system and security
literature.) Such a design generally offers greater assurance, because the principle of
least privilege can be applied at a finer granularity.

Figure 2.1 illustrates the following alternative ways in which the CHERI architecture might
be used. In CHERI, even within an address space, existing and capability-aware code can
be hybridized, as reads and writes via general-purpose MIPS registers are automatically in-
directed through a reserved capability register before being processed by the MMU. This al-
lows a number of interesting compositions, including the execution of capability-aware, and
hence significantly more robust, libraries within a legacy application. Another possibility is a
capability-aware application running one or more instances of capability-unaware code within
sandboxes, such as legacy application components or libraries – effectively allowing the trivial
implementation of the Google Native Client model.

Finally, applications can be compiled to be fully capability-aware, i.e., able to utilize the
capability features for robustness and security throughout their structure. The notion of a
capability-aware executive also becomes valuable – likely as some blend of the run-time linker
and low-level system libraries (such as libc): the executive will set up safe linkage between
mutually untrusting components (potentially with differing degrees of capability support, and
hence differing ABIs), and ensure that memory is safely managed to prevent memory-reuse
bugs from escalating to security vulnerabilities.3 Useful comparison might also be made be-
tween our notion of an in-address-space executive and a microkernel, as the executive will

3Similar observations about the criticality of the run-time linker for both security and performance in capability
systems have been made by Karger [30].

32

similarly take responsibility for configuring protection and facilitating controlled sharing of
data. As microkernels are frequently capability-based, we might find that not only are ideas
from the microkernel space reusable, but also portions of their implementations. This is an
exciting prospect, especially considering that significant effort has been made to apply formal
verification techniques to microkernels.

2.3 The CHERI Software Stack

The notion of hybrid design is key to our adoption argument: CHERI systems are able to exe-
cute today’s commodity operating systems and applications with few modifications. Use of ca-
pability features can then be selectively introduced in order to raise confidence in the robustness
and security of individual system components, which are able to fluidly interact with other un-
enhanced components. This notion of hybrid design first arose in Cambridge’s Capsicum [76]
(which blends the POSIX Application Programming Interface (API), as implemented in the
FreeBSD operating system) with a capability design by allowing processes to execute in hy-
brid mode or in capability mode. Traditional POSIX code can run along side capability-mode
processes, allowing the construction of sandboxes; using a capability model, rights can be del-
egated to these sandboxes by applications that embody complex security policies. One such
example from our USENIX Security 2010 Capsicum paper [76] is the Chromium web browser,
which must map the distributed World Wide Web security model into local OS containment
primitives.

CHERI’s software stack will employ hybrid design principles from the bottom up: capability-
enhanced separation kernels will be able to implement both conventional virtual-machine in-
terfaces to guest operating systems, or directly host capability-aware operating systems or ap-
plications, ensuring robustness. This would provide an execution substrate on which both com-
modity systems built on traditional RISC instruction models (such as FreeBSD) can run side
by side with a pure capability-oriented software stack, such as capability-adapted language
runtimes. Further, CheriBSD, a CHERI-enhanced version of the FreeBSD operating system,
and its applications, will be able to employ CHERI features in their own implementations. For
example, key data-processing libraries, such as image compression or video decoding, might
use CHERI features to limit the impact of programming errors through fine-grained memory
protection, but also apply compartmentalization to mitigate logical errors through the principle
of least privilege. We have extended the existing Clang/LLVM compiler suite to support C-
language extensions for capabilities, allowing current code to be recompiled to use capability
protections based on language-level annotations, but also to link against unmodified code.

To this end, the CHERI ISA design allows software context to address memory either via
legacy MIPS ISA load and store instructions, which implicitly indirect through a reserved ca-
pability register configurable by software, or via new capability load and store instructions that
allow the compiler to explicitly name the object to be used. In either case, access is permitted
to memory only if it is authorized by a capability that is held in the register file (or, by transitiv-
ity, any further capability that can be retrieved using those registers and the memory or objects
that it can reach). New ABIs and calling conventions are defined to allow transition between
(and across) CHERI-ISA and MIPS-ISA code to allow legacy code to invoke capability-aware
code, and vice versa. For example, in this model CheriBSD might employ capability-oriented
instructions in the implementation of risky data manipulations (such as network-packet pro-

33

cessing), while still relying on traditionally written and compiled code for the remainder of
the kernel. Similarly, within the Chromium web browser, the JavaScript interpreter might be
implemented in terms of capability-oriented instructions to offer greater robustness, while the
remainder of Chromium would use traditional instructions.

One particularly interesting property of our hardware design is that capabilities can take on
different semantics within different address spaces, with each address-space’s executive inte-
grating memory management and capability generation. In the CheriBSD kernel, for example,
virtual addressing and capability use can be blended; the compiler and kernel memory allocator
can use capabilities for certain object types, but not for others. In various userspace processes,
a hybrid UNIX / C runtime might implement limited pools of capabilities for specially com-
piled components, but another process might use just-in-time (JIT) compilation techniques to
map Java bytecode into CHERI instructions, offering improved performance and a significantly
smaller and stronger Java TCB.

Capabilities supplement the purely hierarchical ring model with a non-hierarchical mecha-
nism – as rings support traps, capabilities support protected subsystems. One corollary is that
the capability model could be used to implement rings within address spaces. This offers some
interesting opportunities, not least the ability to implement purely hierarchical models where
desired; for example, a separation kernel might use the TLB to support traditional OS instances,
but only capability protections to constrain an entirely capability-based OS. A further extreme
is to use the TLB only for paging support, and to implement a single-address-space operating
system as envisioned by the designers of many historic capability systems.

This hybrid view offers a vision for a gradual transition to stronger protections, in which
individual libraries, applications, and even whole operating systems can incrementally adopt
stronger hardware memory protections without sacrificing the existing software stack. Discus-
sion of these approaches also makes clear the close tie between memory-oriented protection
schemes and the role of the memory allocator, an issue discussed in greater depth later in this
chapter.

2.4 Capability Model

Chapter 3 provides detailed documentation of the registers, capabilities, and new instructions
currently defined in CHERI. These concepts are briefly introduced here.

2.4.1 Capabilities are for Compilers

Throughout, we stress the distinction between the notion of the hardware security model and the
programming model; unlike in historic CISC designs, and more in keeping with historic RISC
designs, CHERI instructions are intended to support the activities of the compiler, rather than
be directly programmed by application authors. While there is a necessary alignment between
programming language models for computation (and in the case of CHERI, security) and the
hardware execution substrate, the purpose of CHERI instructions is to make it possible for the
compiler to cleanly and efficiently implement higher-level models, and not implement them
directly. As such, we differentiate the idea of a hardware capability type from a programming
language type – the compiler writer may choose to conflate the two, but this is an option rather
than a requirement.

34

2.4.2 Capabilities

Capabilities are unforgeable tokens of authority through which programs access all memory
and services within an address space. Capabilities may be held in capability registers, where
they can be manipulated or dereferenced using capability coprocessor instructions, or in mem-
ory. Capabilities themselves may refer to memory (unsealed capabilities) or objects (sealed
capabilities). Memory capabilities are used as arguments to load and store instructions, to ac-
cess either data or further capabilities. Object capabilities may be invoked to transition between
protection domains using call and return instructions.

Unforgeability is implemented by two means: tag bits and controlled manipulation. Each
capability register, and each capability-aligned physical memory location, is associated with
a tag bit indicating that a capability is valid. Attempts to directly overwrite a capability in
memory using data instructions automatically clear the tag bit. When data is loaded into a
capability register, its tag bit is also loaded; while data without a valid tag can be loaded into a
capability register, attempts to dereference or invoke such a register will trigger an exception.

Controlled manipulation is enforced by virtue of the ISA: instructions that manipulate ca-
pability register fields (e.g., base, length, permissions, type) are not able to increase the rights
associated with a capability. Similarly, sealed capabilities can be unsealed only via the invo-
cation mechanism, or via the unseal instruction subject to similar monotonicity rules. This
enforces encapsulation, and prevents unauthorized access to the internal state of objects.

We anticipate that many languages will expose capabilities to the programmer via pointers
or references – e.g., as qualified pointers in C, or mapped from object references in Java. In
general, we expect that languages will not expose capability registers to management by pro-
grammers, instead using them for instruction operands and as a cache of active values, as is the
case for general-purpose registers today. On the other hand, we expect that there will be some
programmers using the equivalent of assembly-language operations, so that system security
cannot rely solely on the goodness of compilers.

2.4.3 Capability Registers

CHERI supplements the 32 general-purpose, per-hardware thread registers provided by the
MIPS ISA with 32 additional capability registers. Where general-purpose registers describe
the computation state of a software thread, capability registers describe its instantaneous rights
within an address space. A thread’s capabilities potentially imply a larger set of rights, which
may be loaded via held capabilities, which may notionally be considered as the protection
domain of a thread.

There are also several implicit capability registers associated with each hardware thread,
including a memory capability that corresponds to the instruction pointer, and capabilities used
during exception handling. This is structurally congruent to implied registers and system con-
trol coprocessor (CP0) registers found in the base MIPS ISA.

Each capability register has 256 bits; unlike general-purpose registers, capability registers
are structured, and contain a number of fields with defined semantics and constrained values:

Sealed bit If the sealed bit is unset, the capability describes a memory segment that is accessi-
ble via load and store instructions. If it is set, the capability describes an object capability,
which can be accessed only via object invocation.

35

Permissions The permissions mask controls operations that may be performed using the ca-
pability.

Object type / entry address Notionally the object type, used to ensure that corresponding
code and data capabilities for the object are used together correctly.

Base This is the base address of a memory region.

Length This defines the length of a memory region.

Reserved fields These bits are reserved for future experimentation.

Tag bit The tag bit is not part of the base 256 bits. It indicates whether or not the capability
register holds a valid capability; this allows non-capability values to be moved via ca-
pability registers, making it possible to implement software functions that, for example,
copy memory oblivious to capabilities being present.

We have discussed a number of schemes to reduce overhead implied by the quite sizable
capability register file. 32 registers is nicely symmetric with the MIPS ISA, but in practice
leads to a substantial overhead; we have considered reducing the number to 16 or even 8 to
reduce hardware resource, cache footprint, and context-switch time. We have also pondered
schemes to reduce the size of capability registers themselves; simple reduction of the addresses
to smaller numbers to 40-bit from 64-bit, reflecting the largest virtual addresses supportable in
the MIPS TLB, might allow reduction to 128-bit. Another approach might be to differentiate
larger object capabilities, which require types, from pure memory capabilities, which could be
represented more compactly, but would require compilers to handle multiple capability sizes.
Finally, more complex techniques, such as Low-Fat Pointers [32] might also prove useful.
Once again, hardware specifications written in Bluespec allow considerable flexibility and ease
of understanding among these options, which will be particularly valuable as we get further
into detailed experimentation, simulation, and modeling.

Object invocation is a central operation in the CHERI ISA, as it implements protected
subsystem domain transitions that atomically update the set of rights (capabilities) held by
a hardware thread, and that provide a trustworthy return path for later use. When an object
capability is invoked, its data and code capabilities are unsealed to allow access to per-object
instance data and code execution. Rights may be both acquired and dropped on invocation,
allowing non-hierarchical security models to be implemented. Strong typing and type checking
of objects, a notion first introduced in PSOS’s type enforcement, serves functions both at the
ISA level – providing object atomicity despite the use of multiple independent capabilities to
describe an object – and to support language-level type features. For example, types can be
used to check whether additional object arguments passed to a method are as they should be.
As indicated earlier, the hardware capability type may be used to support language-level types,
but should not be confused with language-level types.

2.4.4 Memory Model
In the abstract, capabilities are unforgeable tokens of authority. In the most reductionist sense,
the CHERI capability namespace is the virtual address space, as all capabilities name (and
authorize) actions on addresses. CHERI capabilities are unforgeable by virtue of capability

36

register semantics and tagged memory, and act as tokens of authority by virtue of memory
segments and object capability invocation.

However, enforcement of uniqueness over time is a property of the software memory allo-
cation policy. More accurately, it is a property of virtual address-space allocation and reuse,
which rests in a memory model composed from the capability mechanism, virtual address space
configuration, and software language-runtime memory allocation.

This issue has presented a significant challenge in the design of CHERI: how can we provide
sufficient mechanism to allow memory management, fundamentally a security operation in
capability systems, while not overly constraining software runtimes regarding the semantics
they can implement? Should we provide hardware-assisted garbage collection along the lines of
the Java Virtual Machine’s garbage collection model? Should we implement explicit revocation
functionality, along the lines of Redell’s capability revocation scheme (effectively, a level of
indirection for all capabilities, or selectively when the need for revocation is anticipated)?

We have instead opted for dual semantics grounded in the requirements of real-world low-
level system software: CHERI lacks a general revocation scheme; however, in coordination
with the software stack, it can provide for both strict limitations on the extent of hardware-
supported delegation periods, and software-supported generalized revocation using interposi-
tion. The former is intended to support the brief delegation of arguments from callers to callees
across object-capability invocation; the latter allows arbitrary object reference revocation at a
greater price.

2.4.5 Ephemeral Capabilities and Revocation

To this end, capabilities may be further tagged as ephemeral, which allows them to be processed
in registers, stored in constrained memory regions, and passed on via invocation of other ob-
jects. The goal of capability ephemerality is to introduce a limited form of revocation that is
appropriate for temporary delegation across protected subsystem invocations, which are not
permitted to persist beyond that invocation. Among other beneficial properties, ephemeral ca-
pabilities allow the brief delegation of access to arguments passed by reference, such as regions
of the caller’s stack (a common paradigm in C language programming).

In effect, ephemeral capabilities inspire a single-bit information-flow model, bounding the
potential spread of capabilities for ephemeral objects to capability registers and limited portions
of memory. The desired protection property can be enforced through appropriate memory
management by the address-space executive: that is, ephemeral capabilities can be limited to a
particular thread, with bounded delegation time down the (logical) stack.4

Generalized revocation is not supported directly by the CHERI ISA; instead, we rely on
the language runtime to implement either a policy of virtual address non-reuse or garbage
collection. A useful observation is that address space non-reuse is not the same as memory non-
reuse: the meta-data required to support sparse use of a 64-bit address space scales with actual
allocation, rather than the span of consumed address space. For many practical purposes, a 64-
bit address space is virtually infinite5, so causing the C runtime to not reuse address space is now

4It has been recommended that we substitute a generalized generation count-based model for an information
flow model. This would be functionally identical in the ephemeral capability case, used to protect per-stack data.
However, it would also allow us to implement protection of thread-local state, as well as garbage collection, if
desired. The current ISA does not yet reflect this planned change.

5As is 640K of memory. It has also not escaped our notice that there is a real OS cost to maintaining the

37

a realistic option. Software can, however, make use of interposition to implement revocation or
other more semantically rich notions of privilege narrowing, as proposed in HYDRA.

2.4.6 Notions of Privilege
In operating-system design, privileges are a special set of rights exempting a component from
the normal protection and access-control models – perhaps for the purposes of system boot-
strapping, system management, or low-level functionality such as direct hardware access. In
CHERI, three notions of privilege are defined – two in hardware, and a new notion of privilege
in software relating to the interactions of capability security models between rings.

Ring-based privilege is derived from the commodity hardware notion that a series of suc-
cessively higher-level rings provides progressively fewer rights to manage hardware protection
features, such as TLB entries – and consequently potentially greater integrity, reliability, and
resilience overall (as in Multics). Attempts to perform privileged instructions will trap to a
lower ring level, which may then proceed with the operation, or reject it. CHERI extends this
notion of privilege into the new capability coprocessor, authorizing certain operations based
on the ring in which a processor executes, and potentially trapping to the next lower ring if an
operation is not permitted. The trap mechanism itself is modified in CHERI, in order to save
and restore the capability register state required within the execution of each ring – to authorize
appropriate access for the trap handler.

Hardware capability context privilege is a new notion of privilege that operates within rings,
and is managed by the capability coprocessor. When a new address space is instantiated, code
executing in the address space is provided with adequate initial capabilities to fully manage the
address space, and derive any required capabilities for memory allocation, code linking, and
object-capability type management. In CHERI, all capability-related privileges are captured
by capabilities, and capability operations never refer to the current processor ring to authorize
operations, although violation of a security property (i.e., an attempt to broaden a memory
capability) will lead to a trap, and allow a software supervisor in a lower ring to provide al-
ternative semantics. This approach follows the spirit of Paul Karger’s paper on limiting the
damage potential of discretionary Trojan horses [28], and extends it further.

Supervisor-enforced capability context privilege is a similar notion of privilege that may
also be implemented in software trap handlers. For example, an operating system kernel may
choose to accept system-call traps only from appropriately privileged userspace code (e.g.,
by virtue of holding a capability with full access to the userspace address space, rather than
just narrow access, or that has a reserved user-defined permission bit set), and therefore can
check the capability registers of the saved context to determine whether the trap was from an
appropriate execution context. This might be used to limit system call invocation to a specific
protected subsystem that imposes its own authorization policy on application components by
safely wrapping system calls from userspace.

2.4.7 Traps, Interrupts, and Exception Handling
As in MIPS, traps and interrupts remain the means by which ring transitions are triggered in
CHERI. They are affected in a number of ways by the introduction of capability features:

abstraction of virtual memory; one merit to our approach is that it will deemphasize the virtual memory as a
protection system, potentially reducing that overhead.

38

New exceptions New exception opportunities are introduced for both existing and new in-
structions, which may trap if insufficient rights are held, or an invalid operation is requested.
For example, attempts to read a capability from memory using a capability without the read
capability permission will trigger a trap.

Reserved capability registers for exception handling New exception-handling functional-
ity is required to ensure that exception handlers themselves can execute properly. We reserve
several capability registers for use both by the exception-handling mechanism itself (describing
the rights that the exception handler will run with) and for use by software exception handlers
(a pair of reserved registers that can be used safely during context switching). This approach
is not dissimilar from the current notion of exception-handling registers in the MIPS ABI,
which reserves two general-purpose registers for this purpose. However, whereas the MIPS
ABI simply dictates that user code cannot rely on the two reserved exception registers being
preserved, CHERI requires that access is blocked, as capability registers delegate rights and
also hold data. We currently grant access to exception-related capability registers by virtue of
special permission bits on the capability that describe the currently executing code; attempting
to access reserved registers without suitable permission will trigger an exception.

Saved program-counter capability Exception handlers must also be able to inspect excep-
tion state; for example, as PC, the program counter, is preserved today in a control register,
EPC, the program counter capability must be preserved as EPCC so that it can be queried.

Implications for pipelining Another area of concern in the implementation is the interaction
between capability registers and pipelining. Normally, writing to TLB control registers in CP0
occurs only in privileged rings, and the MIPS ISA specifies that a number of no-op instructions
follow TLB register writes in order to flush the pipeline of any inconsistent or intermediate
results. Capability registers, on the other hand, may be modified from unprivileged code, which
cannot be relied upon to issue the required no-ops. This case can be handled through the
squashing of in-flight instructions, which may add complexity to pipeline processing because
incorrect handling could otherwise lead to serious vulnerabilities.

2.4.8 Tagged Memory
As with general-purpose registers, storage capability register values in memory is desirable
– for example, to push capabilities onto the stack, or manipulate arrays of capabilities. To
this end, each capability-aligned and capability-sized word in memory has an additional tag
bit. The bit is set whenever a capability is atomically written from a register to an authorized
memory location, and cleared if a write occurs to any byte in the word using a general-purpose
store instruction. Capabilities may be read only from capability-aligned words, and only if the
tag bit is set at the moment of load; otherwise, a capability load exception is thrown. Tags
are associated with physical memory locations, rather than virtual ones, such that the same
memory mapped at multiple points in the address space, or in different address spaces, will
have the same tags.

Tags require strong coherency with the data they protect, and it is expected that tags will be
cached with the memory they describe within the cache hierarchy. Strong atomicity properties
are required such that it is not possible to partially overwrite a capability value in memory while

39

retaining the tag. This proves a set of properties that falls out naturally from current coherent
memory-subsystem designs.

Additional bits are present in TLB entries to indicate whether a given memory page is con-
figured to have capabilities loaded or stored for the pertinent address space identifier (ASID).
For example, this allows the kernel to set up data sharing between two address spaces without
permitting capability sharing (which, as capability interpretation is scoped to address spaces,
might lead to undesirable security or programmability properties). Special instructions allow
the supervisor to efficiently extract and set tag bits for ranges of words within a page for the pur-
pose of more easily implemented paging of capability memory pages. Use of these instructions
is conditioned on notions of ring and capability context privilege.

2.4.9 Capability Instructions

Various newly added instructions are documented in detail in Chapter 3. Briefly, these in-
structions are used to load and store via capabilities, load and store capabilities themselves,
manage capability fields, invoke object capabilities, and create capabilities. Where possible,
the structure and semantics of capability instructions have been aligned with similar core MIPS
instructions, similar calling conventions, and so on. The number of instructions has also been
minimized to the extent possible.

2.4.10 Object Capabilities

As noted above, the CHERI design calls for two forms of capabilities: capabilities that describe
regions of memory and offer bounded-buffer “segment” semantics, and object capabilities that
permit the implementation of protected subsystems. In our model, object capabilities are repre-
sented by a pair of sealed code and data capabilities, which provide the necessary information
to implement a protected subsystem domain transition. Object capabilities are “invoked” using
the CCall instruction (which is responsible for unsealing the capabilities, performing a safe
security-domain transition, and argument passing), followed by CReturn (which reverses this
process and handles return values).

In traditional capability designs, invocation of an object capability triggered microcode
responsible for state management. Initially, we have implemented CCall and CReturn as soft-
ware exception handlers in the kernel, but are now exploring optimizations in which CCall and
CReturn perform a number of checks and transformations to minimize software overhead. In
the longer term, we hope to investigate the congruence of object-capability invocation with
message-passing primitives between hardware threads: if each register context represents a se-
curity domain, and one domain invokes a service offered by another domain, passing a small
number of general-purpose and capability registers, then message passing may offer a way to
provide significantly enhanced performance.6 In this view, hardware thread contexts, or register
files, are simply caches of thread state to be managed by the processor.

6This appears to be another instance of the isomorphism between explicit message passing and shared memory
design. If we introduce hardware message passing, then it will in fact blend aspects of both models and use the
explicit message-passing primitive to cleanly isolate the two contexts, while still allowing shared arguments using
pointers to common storage, or delegation using explicit capabilities. This approach would allow application
developers additional flexibility for optimization.

40

Significant questions then arise regarding rendezvous: how can messages be constrained so
that they are delivered only as required, and what are the interactions regarding scheduling?
While this structure might appear more efficient than a TLB (by virtue of not requiring objects
with multiple names to appear multiple times), it still requires an efficient lookup structure
(such as a TCAM).

In either instantiation, a number of design challenges arise. How can we ensure safe in-
vocation and return behavior? How can callers safely delegate arguments by reference for
the duration of the call to bound the period of retention of a capability by a callee (which is
particularly important if arguments from the call stack are passed by reference)?

How should stacks themselves be handled in this light, since a single logical stack will
arguably be reused by many different security domains, and it is undesirable that one domain
in execution might ‘pop’ rights from another domain off of the stack, or reuse a capability to
access memory previously used as a call-by-reference argument.

These concerns argue for at least three features: a logical stack spanning many stack frag-
ments bound to individual security domains, a fresh source of ephemeral stacks ready for reuse,
and some notion of a do-not-transfer facility in order to prevent the further propagation of
a capability (perhaps implemented via a revocation mechanism, but other options are read-
ily apparent). PSOS explored similar notions of propagation-limited capabilities with similar
motivations.

Our current software CCall/CReturn maintains a ‘trusted stack’ in the kernel address space
and provides for reliable return, but it is clear that further exploration is required. Our goal is
to support many different semantics as required by different programming languages, from an
enhanced C language to Java. By adopting a RISC-like approach, in which traps to a lower
ring occur when hardware-supported semantics is exceeded, we will be able to supplement the
hardware model through modifications to the supervisor.

2.4.11 Peripheral Devices

As described in this chapter, our capability model is a property of the instruction set architecture
of a CHERI CPU, and imposed on code executing on the CPU. However, in most computer
systems, Direct Memory Access (DMA) is used by peripheral devices to transfer data into and
out of system memory without explicit instruction execution for each byte transferred: device
drivers configure and start DMA using control registers, and then await completion notification
through an interrupt or by polling. Used in isolation, nothing about the CHERI ISA implies
that device memory access would be constrained by capabilities.

This raises a number of interesting questions. Should DMA be forced to pass through the
capability equivalent of an I/O MMU in order to be appropriately constrained? How might
this change the interface to peripheral devices, which currently assume that physical addresses
are passed to them? Certainly, reuse of current peripheral networking and video devices with
CHERI CPUs while maintaining desired security properties is desirable.

For the time being, device drivers continue to hold the privilege to direct DMA to arbi-
trary physical memory addresses, although hybrid models – such as allowing DMA only to
specific portions of physical memory – may prove appropriate. Similar problems have plagued
virtualization in commodity CPUs, where guest operating systems require DMA memory per-
formance but cannot be allowed arbitrary access to physical memory. Exploring I/O MMU-like
models and their integration with capabilities is high on our todo list; one thing is certain, how-

41

ever: a combination of hardware- and software-provided cache and memory management must
ensure that tags are suitably cleared when capability-oblivious devices write to memory, in
order to avoid violation of capability integrity properties.

In the longer term, one quite interesting idea is embedding CHERI support in peripheral
devices themselves, to require the device to implement a CHERI-aware TCB that would syn-
chronize protection information with the host OS. This type of model appeals to ideas from het-
erogeneous computing, and is one we hope to explore in greater detail in the future. Another
alternative would be to pursue the notion of smart buses used by peripherals – for example,
making them capability aware.

42

Chapter 3

Capability Coprocessor

This chapter describes an application of the CHERI approach to the 64-bit MIPS ISA. New
instructions are implemented as a MIPS coprocessor, coprocessor 2, an encoding space reserved
for ISA extensions. In addition to adding new instructions, some behaviors have been modified
in CHERI – notably, those of some standard MIPS instructions, TLBs, and exception handling.
For example, existing memory load and store instructions are now implicitly indirected through
a capability in order to enforce permissions, rebasing, and bounds checking on legacy code.

NOTE: the instruction-set architecture described here is preliminary; we expect to refine it
significantly as a result of ongoing discussion, hardware prototyping, practical experimentation,
and user feedback!

3.1 Capability Registers

Table 3.1 illustrates capability registers defined by the capability coprocessor. CHERI defines
28 general-purpose capability registers, which may be named using most capability register
instructions. These registers are intended to hold the working set of rights required by in-
execution code, intermediate values used in constructing new capabilities, and copies of capa-
bilities retrieved from EPCC and PCC as part of the normal flow of code execution, which
is congruent with current MIPS-ISA exception handling via coprocessor 0. Four capability
registers have special functions and are accessible only if allowed by the permissions field C0.
Note that C0 and C27 (IDC) also have hardware-specific functions, but are otherwise general-
purpose capability registers.

Each capability register also has an associated tag indicating whether it currently contains
a valid capability. Any load and store operations via an invalid capability will trap.

Conventions for Capability Register Use

We are developing a set of ABI conventions regarding use of the other software-managed ca-
pability registers similar to those for general-purpose registers: caller-save, callee-save, a stack
capability register, etc.

The current convention used by LLVM makes the following reservations for calls within a
protection domain:

43

Register(s) Description

PCC Program counter capability (PCC); the capability through which
PC is indirected by the processor when fetching instructions.

C0 Capability register through which all non-capability load and
store instructions are indirected. This allows legacy MIPS code
to be controlled using the capability coprocessor.

C1...C23 General-purpose capability registers referenced explicitly by
capability-aware instructions.

RCC (C24) Return code capability; after a CJALR instruction, the previous
value of PCC is saved in RCC.

C25 General-purpose capability register reserved for use in exception
handling.

IDC (C26) Invoked data capability; the capability that was unsealed at the
last protected procedure call. This capability holds the unlimited
capability at boot time.

KR1C (C27) A capability reserved for use during kernel exception handling.
KR2C (C28) A capability reserved for use during kernel exception handling.
KCC (C29) Kernel code capability; the code capability moved to PCC when

entering the kernel for exception handling.
KDC (C30) Kernel data capability; the data capability containing the security

domain for the kernel exception handler.
EPCC (C31) Capability register associated with the exception program counter

(EPC) required by exception handlers to save, interpret, and store
the value of PCC at the time the exception fired.

Table 3.1: Capability registers defined by the capability coprocessor.

44

• C1-C2 are caller-save. During a cross-domain call, these are used to pass the PCC and
IDC values, respectively. In the invoked context, they are always available as tempo-
raries, irrespective of whether the function was invoked as the result of a cross-domain
call.

• C3-C10 are used to pass arguments and are not preserved across calls. Capability returns
are placed in C3.

• C11-C16 are caller-save registers.

• C17-C24 are callee-save registers.

When calling less-trusted code, there is no guarantee that a non-malicious callee will abide
by these conventions. Thus, all registers should be regarded as caller-save. Additionally, all
capability registers that are not part of the explicit argument set should be invalidated using
the CClearTag instruction. This will prevent leakage of rights to untrustworthy callees. Where
rights are explicitly passed to a callee, it may be desirable to clear the non-ephemeral bit which
will (in a suitably configured runtime) prevent further propagation of the capability. Similar
concerns apply to general-purpose registers, which should be preserved by the caller if their
correct preservation is important, and cleared if they might leak sensitive data.

Protected Procedure Calls

A protected procedure call, instruction CCall, escapes to a handler which takes a sealed ex-
ecutable (“code”) and sealed non-executable (“data”) capability with matching types. If the
types match, the unsealed code capability is placed in PCC and the unsealed data capability is
placed in IDC. The handler will also push the previous PCC, IDC, PC + 4, and SP to a stack
pointed to by TSC. The stack pointer TSC may be implemented either as a hardware register
or as a variable internal to a software implementation of CCall. The caller should invalidate all
registers that are not intended to be passed to the callee before the call.

A protected procedure return, instruction CReturn, also escapes to a handler which pops
the code and data capabilities from the stack at TSC and places them in PCC and IDC re-
spectively; it likewise pops PC and SP. The callee should invalidate all registers that are not
intended to be passed to the caller before the return.

The caller is responsible for ensuring that its protection domain is entirely embodied in the
capability in IDC so that it can restore its state upon return.

These semantics are software defined, and we anticipate that different operating-system and
programming-language security models might handle these, and other behaviors, in different
ways. For example, in our prototype CheriBSD implementation, the operating-system kernel
maintains a “trusted stack” onto which which values are pushed during invocation, and from
which values are popped on return. Over time, we anticipate providing multiple sets of se-
mantics, perhaps corresponding to less synchronous domain-transition models, and allowing
different userspace runtimes to select (or implement) the specific semantics their programming
model requires. This is particularly important in order to provide flexible error handling: if a
sandbox suffers a fault, or exceeds its execution-time budget, it is the OS and programming lan-
guage that will define how recovery takes place, rather than the ISA definition. Basic hardware

45

015163031

perms u

otype/eaddr (64 bits)

base (64 bits)

length (64 bits)



256 bits

Figure 3.1: Contents of a capability

acceleration of capability invocation and return is easy to envision regardless of the specific se-
mantic: many of the checks performed against capability permissions and types will be shared
by all of these systems.

Capabilities and Exception Handling

KCC and KDC hold the code capability and data capability which describe the protection
domain of the system exception handler. When an exception occurs, KCC is moved to PCC
and the victim PCC is copied to EPCC so that the exception may return to the correct address.

When an exception handler returns with eret, EPCC is moved into PCC.

3.2 Capabilities
The CHERI processor is currently always defined to be big-endian, in contrast to traditional
MIPS, which allows endianness to be selected by the supervisor. Figure 3.1 illustrates the
format of a capability.

Each capability register contains the following fields:

• Tag bit (“tag”, 1 bit)

• Unsealed flag (“u”, 1 bit)

• Permissions mask (“perms”, 31 bits)

• Object type (“otype/eaddr”, 64 bits)

• Base virtual address (“base”, 64 bits)

• Length in bytes (“length”, 64 bits)

46

3.2.1 tag
The tag bit indicates whether a capability register contains a capability or normal data. If tag
is set, the register contains a capability. If tag is cleared, the rest of the register contains 256
bits of normal data.

3.2.2 u
The u flag indicates whether a capability is usable for general-purpose capability operations.
If this flag is cleared, the capability is sealed and it may be used only by a CCall instruction.
If the CCall instruction receives a sealed executable capability and a sealed non-executable
capability with matching otype/eaddr fields, both capabilities will have their u flag set and
will be made available in the next cycle, thus entering a new security domain.

3.2.3 perms
The 31-bit perms bit vector governs the permissions of the capability including read, write
and execute permissions. The contents of this field are listed in table 3.2. Bits 15–30 may
be used by application programs for user-defined permissions; they can be checked using the
CCheckPerm instruction.

3.2.4 otype/eaddr
This 64-bit field holds the virtual address of the entry point of an executable capability. This
field also holds the “type” of a non-executable capability. The CSetType instruction sets the
otype/eaddr field to the absolute virtual address of an entry point of an executable capability.
The CSealCode instruction can then seal the executable capability and treat the entry point as
a unique object type. Furthermore, the CSealData instruction may seal a non-executable ca-
pability with the otype/eaddr of an unsealed executable capability. Possession of a capability
with the Permit Set Type permission authorizes a domain to call CSetType with a type within
the capability’s range. This arrangement provides for the construction of matching executable
and data-only capabilities of the same otype/eaddr to be used in protected procedure calls.

3.2.5 base
This 64-bit field is the base virtual address of the segment described by a capability.

3.2.6 length
This 64-bit field is the length of the segment described by a capability.

3.2.7 Capability Permissions
Table 3.2 shows constants currently defined for memory permissions; remaining bits are software-
defined.

Non Ephemeral Allow this capability to persist beyond a protected procedure return.

47

Value Name

0 Non Ephemeral
1 Permit Execute
2 Permit Load
3 Permit Store
4 Permit Load Capability
5 Permit Store Capability
6 Permit Store Ephemeral Capability
7 Permit Seal
8 Permit Set Type
9 Reserved
10 Access EPCC
11 Access KDC
12 Access KCC
13 Access KR1C
14 Access KR2C

Table 3.2: Memory permission bits for the perms capability field

Permit Execute Allow this capability to be used in the PCC register as a capability for the
program counter.

Permit Store Capability Allow this capability to be used as a pointer for storing other capa-
bilities.

Permit Load Capability Allow this capability to be used as a pointer for loading other capa-
bilities.

Permit Store Allow this capability to be used as a pointer for storing data from general-
purpose registers.

Permit Load Allow this capability to be used as a pointer for loading data into general-
purpose registers.

Permit Store Ephemeral Capability Allow this capability to be used as a pointer for storing
ephemeral capabilities.

Permit Seal Allow this capability to be used to seal or unseal capabilities that have the same
otype/eaddr.

Permit Set Type Allow setting the otype/eaddr of this capability to any value between base
and base+length-1 if Permit Execute is also set.

Access EPCC Allow access to EPCC when this capability is in PCC.

Access KR1C Allow access to KR1C when this capability is in PCC.

Access KR2C Allow access to KR2C when this capability is in PCC.

48

07815

ExcCode RegNum

Figure 3.2: Capability Cause Register

Access KCC Allow access to KCC when this capability is in PCC.

Access KDC Allow access to KDC when this capability is in PCC.

Ephemeral capabilities can be stored only via capabilities that have the Permit Store Ephemeral Capability
permission bit set; normally, this permission will be set only on capabilities that, themselves,
have the Non-Ephemeral bit cleared.

3.3 Capability Exceptions
Many of the capability instructions can cause an exception (e.g., if the program attempts a load
or a store that is not permitted by the capability system). The ExcCode field within the cause
register of coprocessor 0 will be set to 18 (C2E, coprocessor 2 exception) when the cause of
the exception is that the attempted operation is prohibited by the capability system. The current
PCC will be moved to EPCC and KCC will be moved into PCC, which should allow the
kernel exception handler to run successfully.

Capability Cause Register

The capability coprocessor has a capcause register that gives additional information on the
reason for the exception. It is formatted as shown in figure 3.2. The possible values for the
ExcCode of capcause are shown in table 3.3. If the last instruction to throw an exception did
not throw a capability exception, then the ExcCode field of capcause will be None. ExcCode
values from 128 to 255 are reserved for use by application programs. (A program can use
CSetCause to set ExcCode to a user-defined value).

The RegNum field of capcause will hold the number of the capability register whose per-
mission was violated in the last exception, if this register was not the unnumbered register
PCC. If the capability exception was raised because PCC did not grant access to a numbered
reserved register, then capcause will contain the number of the reserved register to which ac-
cess was denied. If the exception was raised because PCC did not grant some other permission
(e.g. permission to read capcause was required, but not granted) then RegNum will hold 0xff.

The CGetCause instruction can be used by an exception handler to read the capcause
register. CGetCause will raise an exception if PCC.perms.Access EPCC is not set, so the op-
erating system can prevent user space programs from reading capcause directly by not granting
them Access EPCC permission.

Exception Priority

If an instruction throws more than one capability exception, capcause is set to the highest
priority exception (numerically lowest priority number) as shown in table 3.4. The RegNum
field of capcause is set to the register which caused the highest priority exception.

49

Value Description

0x00 None
0x01 Length Violation
0x02 Tag Violation
0x03 Seal Violation
0x04 Type Violation
0x05 Call Trap
0x06 Return Trap
0x07 Underflow of trusted system stack
0x08 User-defined Permission Violation
0x10 Non Ephemeral Violation
0x11 Permit Execute Violation
0x12 Permit Load Violation
0x13 Permit Store Violation
0x14 Permit Load Capability Violation
0x15 Permit Store Capability Violation
0x16 Permit Store Ephemeral Capability Violation
0x17 Permit Seal Violation
0x18 Permit Set Type Violation
0x19 reserved
0x1a Access EPCC Violation
0x1b Access KDC Violation
0x1c Access KCC Violation
0x1d Access KR1C Violation
0x1e Access KR2C Violation
0x1f reserved

Table 3.3: Capability Exception Codes

50

Priority Description

1 Access EPCC Violation
Access KDC Violation
Access KCC Violation
Access KR1C Violation
Access KR2C Violation

2 Tag Violation
3 Seal Violation
4 Type Violation
5 Permit Seal Violation
6 Permit Set Type Violation
7 Permit Execute Violation
8 Permit Load Violation

Permit Store Violation
9 Permit Load Capability Violation

Permit Store Capability Violation
10 Permit Store Ephemeral Capability Violation
11 Non Ephemeral Violation
12 Length Violation
13 User-defined Permission Violation
14 Call Trap

Return Trap

Table 3.4: Exception Priority

All capability exceptions (C2E) have higher priority than address error exceptions (AdEL,
AdES).

If an instruction throws more than one capability exception with the same priority (e.g. both
the source and destination register are reserved registers), then the register which is furthest to
the left in the assembly language opcode has priority for setting the RegNum field.

Some of these priority rules are security critical. In particular, an exception caused by a
register being reserved must have priority over other capability exceptions (e.g., AdEL and
AdES) to prevent a process from discovering information about the contents of a register that
it is not allowed to access.

Other priority rules are not security critical, but are defined by this specification so that
exception processing is deterministic.

Exceptions and indirect addressing

If an exception is caused by the combination of the values of a capability register and a general
purpose register (e.g. if an expression such as clb t1, t0(c0) raises an exception because
the offset t0 is trying to read beyond c0’s length), the number of the capability register (not of
the general-purpose register) will be stored in capcause.RegNum.

51

Software Emulation of CCall and CReturn

In the current hardware implementation of CHERI, the CCall and CReturn instructions always
raise an exception, so that the details of the call or return operation can be implemented in
software by a trap handler. This exception uses a different trap handler vector, at 0x100 above
the general purpose exception handler. The exception cause will be C2E and capcause will be
Call Trap for CCall and Return Trap for CReturn.

3.4 CPU Reset
When the CPU is hard reset, all capability registers will be initialized to the following values:

• The tag bit is set.

• The u bit is set.

• base = 0

• length = 264 − 1

• otype/eaddr = 0

• All permissions bits are set.

• All unused bits are set.

The initial values of PCC and EPCC will allow the system to initially execute code relative to
virtual address 0. The initial value of C0 will allow general-purpose loads and stores to all of
virtual memory for the bootstrapping process. The initial value of IDC will allow the creation
of any further capabilities required to bootstrap the system.

3.5 Changes to Standard MIPS Processing
The following changes are made to the behavior of standard MIPS instructions when a capa-
bility coprocessor is present:

Instruction fetch When the CPU fetches an instruction from PC, it indirects the instruction
fetch through PCC. If the instruction fetch is not permitted due to a bounds check failure or a
permission error (Permit Execute not set), coprocessor 2 exception (C2E) is thrown.

If an exception occurs during instruction fetch (e.g. AdEL, or a TLB miss) then BadVAddr
is set equal to PCC.base + PC.

Load and Store instructions When the CPU performs a standard MIPS load or store in-
struction, the address to be read from (or written to) is indirected through C0. C0 must have
the appropriate permission (Permit Store or Permit Load) set, and the addresses read or written
must be between C0.base and C0.base + C0.length − 1. If the load or store is not permitted
due to a memory bound check failure or a permission error, a coprocessor 2 exception (C2E) is
thrown.

52

031

S L 0

0 PFN C DVG

Table 3.5: EntryLo Register

Floating-point Load and Store instructions If the CPU is configured with a floating-point
unit, all loads and stores between the floating-point unit and memory are also relative to
C0.base and checked against the permissions and bounds of C0.

Jump and link register After a jalr instruction, the return address is relative to PCC.base.

3.6 Changes to the TLB

CHERI adds two new fields to the EntryLo register, shown as L and S in Table 3.5. If L is
set, capability loads are disabled for the page; if a load capability instruction is used on a page
with the L bit set, then an exception will be raised, setting CP0.Cause.ExcCode to 16. This
exception will be raised even if the corresponding tag bit was not set (i.e., the bytes to be
loaded were non-capability data). If S is set, capability stores are disabled for the page; if a
store capability instruction is used on a page with the S bit set, then an exception will be raised,
setting CP0.Cause.ExcCode to 17. This exception will be raised even if the tag bit was unset in
the capability register to be stored (i.e., it contained non-capability data).

3.7 Proposed Extensions to the CHERI ISA

The following changes have been discussed and are targeted for short-term implementation in
the CHERI ISA:

• Move MIPS memory-access interposition from C0 to a control register accessed via spe-
cial instructions, as is the case for PCC.

• Define a NULL capability, which could be loaded from C0, to make checks easy to imple-
ment. A capability NULL would have the tag bit set (valid capability), but grant no access
rights (cannot be dereferenced, and can be safely delegated – unlike C NULL which, when
cast to a capability, grants full address-space rights).

• Provide some means of efficiently implementing a capability tag-clearing memcpy()

that will not throw a fault when a capability is found in source memory. This might be
a new load instruction variant that clears tags, or could be a variant on CClearTag that
preserves (useful) data while clearing the tag. With an explicit zero-capability register,
CClearTag could just clear the tag, not the data; however, an exception would still result
if the source did not have load-capability permissions.

53

• Allow CCall/CReturn instructions to partially implement capability call/return seman-
tics while still throwing an exception to allow software processing. For example, they
might implement all necessary checks so that software does not need to do this.

• Implement an explicit capability cursor, completing support for fat-pointer style opera-
tion. A capability cursor will differentiate the point of access for a load or store operation
from the bounds imposed on that access; the cursor would move flexibly but loads and
stores would trigger an exception if they occur while the cursor points outside of the
permitted bounds. This might be of particular use in supporting C pointer arithmetic, in
which some application programs temporarily construct pointers that are invalid – e.g.,
during packet parsing – that they will not dereference. Early prototyping of such an
approach, reusing the entry address/type field as a cursor, suggests that it might prove
effective in improving C compatibility for complex buffer management code.

The following changes have been discussed for longer-term consideration in the CHERI
ISA:

• Allow CReturn to accept code/data capability arguments, which might be ignored for
the time being.

• 32-byte capabilities impose measurable overhead; implementing a 16-byte “compressed
capability” representation, usable for pure data capabilities, might reduce this overhead.
In order for this to be useful, the compiler must be able to statically determine and con-
trol use of compressed capabilities. Initial simulations of 128-bit capabilities suggest a
substantial reduction in cache footprint.

54

Chapter 4

Instruction-Set Reference

CHERI instructions fall into a number of categories: instructions to copy fields from capabil-
ity registers into general-purpose registers so that they can be computed on, instructions for
refining fields within capabilities, instructions for memory access via capabilities, instructions
for jumps via capabilities, instructions for sealing capabilities, and instructions for capability
invocation. Table 4.1 lists available capability coprocesor instructions.

4.1 Details of Individual Instructions
The following sections provide a detailed description of each CHERI ISA instructions. Each
instruction description includes the following information:

• Instruction opcode format number

• Assembly language syntax

• Bitwise figure of the instruction layout

• Text description of the instruction

• Pseudo-code description of the instruction

• Enumeration of any exceptions that the instruction can trigger

55

Mnemonic Description

CGetBase Move base to a general-purpose register
CGetLen Move length to a general-purpose register
CGetTag Move tag bit to a general-purpose register
CGetUnsealed Move unsealed bit to a general-purpose register
CGetPerm Move permissions field to a general-purpose register
CGetType Move object type field to a general-purpose register

CGetPCC Move the PCC and PC to general-purpose registers
CGetCause Move capability exception cause register to a general-purpose register
CSetCause Set the capability exception cause register

CIncBase Increase Base
CMove Pseudo-instruction for CIncBase with no change to the base
CSetLen Set Length
CClearTag Clear the tag bit
CAndPerm Restrict Permissions
CSetType Set the otype/eaddr of an executable capability

CCheckPerm Check perms field
CCheckType Check otype/eaddr field

CFromPtr Create capability from pointer
CToPtr Capability to pointer

CBTU Branch if capability tag is unset
CBTS Branch if capability tag is set

CSC Store Capability Register
CLC Load Capability Register
CL[BHWD][U] Load Byte, Half-Word, Word or Double Via Capability Register (Unsigned)
CS[BHWD] Store Byte, Half-Word, Word or Double Via Capability Register

CLLD Load linked doubleword via capability register
CSCD Store conditional doubleword via capability pregister

CJR Jump Capability Register
CJALR Jump and link Capability Register

CSealCode Seal an executable capability
CSealData Seal a non-executable capability with the otype/eaddr of an executable

capability
CUnseal Unseal a sealed capability

CCall Protected procedure call into a new security domain
CReturn Return to the previous security domain

Figure 4.1: Capability coprocessor instruction summary

56

CGetBase: Move Base to a General-Purpose Register
Format (4)

CGetBase rd, cb
023101115162021252631

0x12 0x00 rd cb 0x2

Description

General-purpose register rd is set equal to the base field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd← cb.base

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

57

CGetLen: Move Length to a General-Purpose Register
Format (4)

CGetLen rd, cb
023101115162021252631

0x12 0x00 rd cb 0x3

Description

General-purpose register rd is set equal to the length field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd← cb.length

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

58

CGetTag: Move Tag to a General-Purpose Register
Format (4)

CGetTag rd, cb
023101115162021252631

0x12 0x00 rd cb 0x5

Description

The low bit of rd is set to the tag value of cb. All other bits are cleared.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd[0]← cb.tag
rd[1:63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

59

CGetUnsealed: Move sealed bit to a General-Purpose Register
Format (4)

CGetUnsealed rd, cb
023101115162021252631

0x12 0x00 rd cb 0x6

Description

The low-order bit of rd is set to cb.u. All other bits of rd are cleared.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd[0]← cb.unsealed
rd[1:63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

60

CGetPerm: Move Memory Permissions Field to a General-Purpose Regis-
ter
Format (4)

CGetPerm rd, cb
023101115162021252631

0x12 0x00 rd cb 0x0

Description

The least significant 15 bits (bits 0 to 14) of general-purpose register rd are set equal to the
perms field of capability register cb. The other bits of rd are set to zero.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd[0:14]← cb.perms
rd[15:63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

61

CGetType: Move Object Type Field to a General-Purpose Register
Format (4)

CGetType rd, cb
023101115162021252631

0x12 0x00 rd cb 0x1

Description

General-purpose register rd is set equal to the otype/eaddr field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else
rd← cb.otype

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

62

CGetPCC: Move the PCC and PC to General-Purpose Registers
Format (4)

CGetPCC rd(cd)
023101115162021252631

0x12 0x00 rd cd 0x7

Description

General-purpose register rd is set equal to the PC and the capability register cd is set to the
PCC.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else
rd← PC
cd← PCC

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the cor-
responding bit in PCC.perms is not set.

63

CGetCause: Move the Capability Exception Cause Register to a General-
Purpose Register
Format (4)

CGetCause rd
023101115162021252631

0x12 0x00 rd 0x00 0x4

Description

General-purpose register rd is set equal to the capability cause register.

Pseudocode

if not PCC.perms.Access EPCC then
raise c2 exception(exceptionAccessEPCC, 0xff)

else
rd← CapCause

end if

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access EPCC is not set.

64

CSetCause: Set the Capability Exception Cause Register
Format (1)

CSetCause rt
02356101115162021252631

0x12 0x04 0x00 0x00 rt 0x4

Description

The capability cause register value is set to the low 16 bits of general-purpose register rt.

Pseudocode

if not PCC.perms.Access EPCC then
raise c2 exception(exceptionAccessEPCC, 0xff)

else
CapCause← rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access EPCC is not set.

65

CIncBase: Increase Base

Format (1)

CIncBase cd, cb, rt
CMove cd, cb

02356101115162021252631

0x12 0x04 cd cb rt 0x2

Description

Capability register cd is replaced with the contents of capability register cb with the base field
set to the sum of its previous value and the contents of general-purpose register rt. The length
field of capability register cd is replaced with cb.length minus the contents of general-purpose
register rt, ensuring that capability register cd points to a subset of the original memory region.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag and rt 6= 0 then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed and rt 6= 0 then
raise c2 exception(exceptionSealed, cb)

else if rt > cb.length then
raise c2 exception(exceptionLength, cb)

else
cd← cb
cd.base← cb.base + rt
cd.length← cb.length − rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set and rt 6= 0.

• cb.u is not set and rt 6= 0.

• rt > cb.length

66

Notes

• CIncBase can be used to copy one register to another by setting rt equal to zero. If rt
is zero, the operation will succeed even if cb.u is not set, allowing it to be used to copy
sealed capabilities. CIncBase also succeeds if rt is zero and cb.tag is unset, allowing it
to be used to copy non-capability data items between capability registers.

• In assembly language, CMove cd, cb is a pseudo-instruction which the assembler con-
verts to CIncBase cd, cb, $zero.

67

CSetLen: Set Length
Format (1)

CSetLen cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x3

Description

Capability register cd is replaced with the contents of capability register cb with the length
field set to the contents of general-purpose register rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if rt > cb.length then
raise c2 exception(exceptionLength, cb)

else
cd← cb
cd.length← rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.()

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.u is not set.

• rt > cb.length

Notes

Unlike CIncBase, this operation will always raise an exception if cb.tag or cb.u are unset, even
if the length is unchanged.

68

CClearTag: Clear the tag bit
Format (1)

CClearTag cd, cb

023101115162021252631

0x12 0x04 cd cb 0x5

Description

Capability register cd is replaced with the contents of cb, with the tag bit cleared.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if register inaccessible(cd) then
raise c2 exception()

else
cd← cb
cd.tag← false

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

69

CAndPerm: Restrict Permissions
Format (1)

CAndPerm cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x0

Description

Capability register cd is replaced with the contents of capability register cb with the perms
field set to the bitwise AND of its previous value and the contents of general-purpose register
rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else
cd← cb
cd.perms← cb.perms ∩ rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.u is not set.

70

CSetType: Set the otype of a Capability
Format (1)

CSetType cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x1

Description

Capability register cd is replaced with the contents of cb, with the otype/eaddr field set to
cb.base+rt and the Permit Seal bit in the perms field set.

Purpose

CSetType is used to set the otype/eaddr field of a capability. otype/eaddr has two related
purposes:

1. If the capability is subsequently sealed with CSealCode and called with CCall, then
control will be transferred to the address given by its otype/eaddr. In terms of object
oriented programming, the otype/eaddr is the address of some code that implements the
methods of a class.

2. If the capability is subsequently used as the ct parameter to CSealData or CUnseal,
otype/eaddr acts as a unique identifier for a user-defined class: only subsystems that
have a capability for that otype/eaddr value are permitted to seal or unseal capabilities
with that otype/eaddr. In terms of object oriented programming, otype/eaddr grants
permission to create or examine the internal structure of objects of a particular class.

The connection between the two is that it is the methods of the class (purpose 1) that are
granted permission to create or examine the internal structure of members of the class (purpose
2). The same field is used for both purposes to save bits within a capability, and because the
entry point of the methods serves as a convenient unique identifier for the class.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Set Type then
raise c2 exception(exceptionPermitSetType, cb)

else if rt ≥ cb.length then
raise c2 exception(exceptionLength, cb)

71

else
cd← cb
cd.otype← cb.base + rt
cd.perms.Permit Seal← true

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb.u is not set.

• cb.perms.Permit Set Type is not set.

• rt ≥ cb.length.

72

CCheckPerm: Raise exception if don’t have permission
Format

CCheckPerm cs, rt
02356101115162021252631

0x12 0x0b cs rt 0x0

Description

A exception is raised (and the capability cause set to “user defined permission violation”) if
there is a bit set in rt which is not set in cs.perms (i.e. rt describes a set of permissions, and an
exception is raised if cs does not grant all of those permissions).

Pseudocode

if register inaccessible(cs) then
raise c2 exception()

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if cs.perms ∩ rt 6= rt then
raise c2 exception(exceptionUserDefined, cs)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• cs.tag is not set.

• There is a bit which is set in rt and is not set in cs.perms.

Notes

• If cs.tag is not set, then cs does not contain a capability, cs.perms might not be meaning-
ful as a permissions field, and so a tagViolation exception is raised.

• This instruction can be used to check the permissions field of a sealed capability, so the
instruction does not check cs.u.

73

CCheckType: Raise exception if otypes don’t match
Format (3)

CCheckType cs, cb
02356101115162021252631

0x12 0x0b cs cb 0x1

Description

An exception is raised if cs.otype/eaddr is not equal to cb.otype/eaddr.

Pseudocode

if register inaccessible(cs) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cs.tag then
raise c2 exception(exceptionTag)

else if not cb.tag then
raise c2 exception(exceptionTag)

else if cs.unsealed then
raise c2 exception(exceptionSealed)

else if cb.unsealed then
raise c2 exception(exceptionSealed)

else if cs.otype 6= cb.otype then
raise c2 exception(exceptionType)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cs.tag is not set.

• cb.tag is not set.

• cs.u is set.

• cs.u is set.

• cs.otype/eaddr6= cb.otype/eaddr.

74

CFromPtr: Create capability from pointer
Format (1)

CFromPtr cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x7

Description

rt is a pointer using the C-language convention that a zero value represents the NULL pointer.
If rt is zero, then cd will be the NULL capability (tag bit set, all other bits unset). If rt is
non-zero, then cd will be a capability whose base is cb.base+rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if rt = 0 then
cd.tag = true
cd.base = 0
cd.length = 0
cd.perms = ∅
cd.reserved = 0

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if rt > cb.length then
raise c2 exception(exceptionLength, cb)

else
cd← cb
cd.base← cb.base + rt
cd.length← cb.length − rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.u is not set.

75

• rt > cb.length.

76

CToPtr: Capability to Pointer
Format

CToPtr rd, cb, ct
056101115162021252631

0x12 0x0c rd cb ct

Description

If cb has its tag bit set but is of zero length (i.e. it is either the NULL capability, or some other
capability of zero length), then rd is set to zero.

If the memory addresses cb.base . . . cb.base + cb.length − 1 are contained within ct.base
. . . ct.base + ct.length − 1, then rd is set to the offset cb.base − ct.base.

This instruction can be used to convert a capability into a pointer that uses the C language
convention that a zero value represents the NULL pointer. Note that rd will also be zero if
cb and ct have the same base; this is similar to the C language not being able to distinguish a
NULL pointer from a pointer to a structure at address 0.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if register inaccessible(ct) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if cb.length = 0 then
rd← 0

else if cb.base < ct.base then
raise c2 exception(exceptionLength, ct)

else if cb.base + cb.length > ct.base + ct.length then
raise c2 exception(exceptionLength, ct)

else
rd← cb.base − ct.base

end if

Exceptions

A coprocessor 2 exception will be raised if:

• cb or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

77

• ct.tag is not set.

• cb.length 6= 0 and cb.base < ct.base

• cb.length 6= 0 and cb.base + cb.length > ct.base + ct.length

Notes

• cb or ct being sealed will not cause an exception to be raised. This is for further study.

78

CBTU: Branch if tag is unset
Format (6?)

CBTU cb, offset
015162021252631

0x12 0x09 cb offset

Description

Sets the PC to PC+offset, where offset is sign extended, if cb.tag is not set.
The instruction following the branch, in the delay slot, is executed before branching.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
if PC + offset + 4 > PCC.length then

raise c2 exception(exceptionLength, 0xff)
else

execute delay slot()
PC← PC + offset

end if
end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• PC+offset+4 is greater than PCC.length and cb.tag is not set.

Notes

1. Like all MIPS branch instructions, CBTU has a branch delay slot. The instruction after
it will always be executed, regardless of whether the branch is taken or not.

79

CBTS: Branch if tag is set
Format (6?)

CBTS cb, offset
015162021252631

0x12 0x0a cb offset

Description

Sets the PC to PC+offset, where offset is sign extended, if cb.tag is set.
The instruction following the branch, in the delay slot, is executed before branching.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if cb.tag then
if PC + offset + 4 > PCC.length then

raise c2 exception(exceptionLength, 0xff)
else

execute delay slot()
PC← PC + offset

end if
end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• RPC+offset+4 is greater than PCC.length and cb.tag is set.

Notes

1. Like all MIPS branch instructions, CBTS has a branch delay slot. The instruction after it
will always be executed, regardless of whether the branch is taken or not.

80

CSC: Store Capability Register
Format (3)

CSC cs, rt, offset(cb)
CSCR cs, rt(cb)
CSCI cs, offset(cb)

056101115162021252631

0x3e cs cb rt offset

Description

Capability register cs is stored at the memory location specified by cb.base + general-purpose
register rt, and the bit in the tag memory associated with cb.base + rt is set. Capability register
cb must contain a capability that grants permission to store capabilities. The virtual address
cb.base + rt must be 32-byte word aligned.

The capability is stored in memory in the format described in Figure 3.1. base, length and
otype/eaddr are stored in memory with the same endian-ness that the CPU uses for double-
word stores, i.e., big-endian. The bits of perms are stored with bit zero being the least signifi-
cant bit, so that the least significant bit of the eighth byte stored is the u bit, the next significant
bit is the Non Ephemeral bit, the next is Permit Execute and so on.

Pseudocode

if register inaccessible(cs) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Store Capability then
raise c2 exception(exceptionPermitStoreCapability, cb)

else if not cb.perms.Permit Store Ephemeral Capability and not cs.perms.Non Ephemeral
then

raise c2 exception(exceptionPermitStoreEphemeralCapability, cb)
end if
addr← cb.base + rt + offset
if rt + offset + 32 > cb.length then

raise c2 exception(exceptionLength, cb)
else if rt + offset < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < 32 then

raise exception(exceptionAdES)
else

mem[addr]← cs

81

tags[toTag(addr)]← cs.tag
end if

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• The virtual address rt + offset + 32 is greater than cb.length.

• cb.perms.Permit Store Capability is not set.

• cb.u is not set.

• cb.perms.Permit Store Ephemeral is not set and cs.perms.Non Ephemeral is not set.

An address error during store (AdES) exception is raised if:

• The virtual address cb.base + rt + offset is not 32-byte word aligned.

Notes

• If the address alignment check fails and one of the security checks fails, a coprocessor 2
exception (and not an address error exception) is raised. The priority of the exceptions
is security-critical, because otherwise a malicious program could use the type of the
exception that is raised to test the bottom bits of a register that it is not permitted to
access.

• offset is interpreted as a signed integer.

• This instruction reuses the opcode from the Store Doubleword from Coprocessor 2 (SDC2)
instruction in the MIPS Specification.

• The CSCI mnemonic is equivalent to CSC with cb being the zero register ($zero). The
CSCR mnemonic is equivalent to CSC with offset set to zero.

82

CLC: Load Capability Register

Format (1)

CLC cd, rt, offset(cb)
CLCR cd, rt(cb)
CLCI cd, offset(cb)

056101115162021252631

0x36 cd cb rt offset

Description

Capability register cd is loaded from the memory location specified by cb.base + general-
purpose register rt. Capability register cb must contain a capability that grants permission to
load capabilities. The virtual address cb.base + rt must be 32-byte word aligned.

The bit in the tag memory corresponding to cb.base + rt is loaded into the tag bit associated
with cd.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Load Capability then
raise c2 exception(exceptionPermitLoadCapability, cb)

end if
addr← cb.base + rt + offset
if rt + offset + 32 > cb.length then

raise c2 exception(exceptionLength, cb)
else if rt + offset < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < 32 then

raise exception(exceptionAdEL)
else

cd← mem[addr]
cd.tag← tags[toTag(addr)]

end if

Exceptions

A coprocessor 2 exception is raised if:

83

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.perms.Permit Load Capability is not set.

• cb.u is not set.

• rt + offset + 32 is greater than cb.length.

• rt + offset < 0.

An address error during load (AdEL) exception is raised if:

1. The virtual address cb.base + rt is not 32-byte word aligned.

Notes

• This instruction reuses the opcode from the Load Doubleword to Coprocessor 2 (LDC2)
instruction in the MIPS Specification.

• offset is interpreted as a signed integer.

• The CLCI mnemonic is equivalent to CLC with cb being the zero register ($zero). The
CLCR mnemonic is equivalent to CLC with offset set to zero.

84

Load Via Capability Register
Format

CLB rd, rt, offset(cb)
CLH rd, rt, offset(cb)
CLW rd, rt, offset(cb)
CLD rd, rt, offset(cb)
CLBU rd, rt, offset(cb)
CLHU rd, rt, offset(cb)
CLWU rd, rt, offset(cb)
CLBR rd, rt(cb)
CLHR rd, rt(cb)
CLWR rd, rt(cb)
CLDR rd, rt(cb)
CLBUR rd, rt(cb)
CLHUR rd, rt(cb)
CLWUR rd, rt(cb)
CLBI rd, offset(cb)
CLHI rd, offset(cb)
CLWI rd, offset(cb)
CLDI rd, offset(cb)
CLBUI rd, offset(cb)
CLHUI rd, offset(cb)
CLWUI rd, offset(cb)

013101115162021252631

0x32 rd cb rt offset s t

Purpose

Loads a data value via a capability register, and extends the value to fit the target register.

Description

The lower part of general-purpose register rd is loaded from the memory location specified
by cb.base + rt + offset. Capability register cb must contain a valid capability that grants
permission to load data.

The size of the value loaded depends on the value of the t field:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)

3 doubleword (64 bits)

The extension behavior depends on the value of the s field: 1 indicates sign extend, 0
indicates zero extend. For example, CLWU is encoded by setting s to 0 and t to 2, CLB is
encoded by setting both to 0.

85

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Load then
raise c2 exception(exceptionPermitLoad, cb)

end if
if t = 0 then

size← 1
else if t = 1 then

size← 2
else if t = 2 then

size← 4
else if t = 3 then

size← 8
end if
addr← cb.base + rt + offset
if offset + rt + size > cb.length then

raise c2 exception(exceptionLength, cb)
else if offset + rt < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < size then

raise exception(exceptionAdEL)
else if s = 0 then

rd← zero extend(mem[addr:addr + size − 1])
else

rd← sign extend(mem[addr:addr + size − 1])
end if

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• Immediate offset + rt + size is greater than cb.length. Check depends on the size of the
data loaded.

• cb.perms.Permit Load is not set.

• cb.u is not set.

86

Notes

• This instruction reuses the opcode from the Load Word to Coprocessor 2 (LWC2) in-
struction in the MIPS Specification.

• rt and offset are treated as signed integers.

• The result of the addition does not wrap around (i.e., an exception is raised if cb.base+rt+offset
is less than zero, or greater than maxaddr).

87

Store Via Capability Register
Format

CSB rs, rt, offset(cb)
CSH rs, rt, offset(cb)
CSW rs, rt, offset(cb)
CSD rs, rt, offset(cb)
CSBR rs, rt(cb)
CSHR rs, rt(cb)
CSWR rs, rt(cb)
CSDR rs, rt(cb)
CSBI rs, offset(cb)
CSHI rs, offset(cb)
CSWI rs, offset(cb)
CSDI rs, offset(cb)

013101115162021252631

0x3A rs cb rt offset 0 t

Purpose

Stores some or all of a register into a memory location.

Description

Part of general-purpose register rs is stored to the memory location specified by cb.base + rt +
offset. Capability register cb must contain a capability that grants permission to store data.

The t field determines how many bits of the register are stored to memory:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)

3 doubleword (64 bits)

If less than 64 bits are stored, they are taken from the least-significant end of the register.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

88

else if not cb.Permit Store then
raise c2 exception(exceptionPermitStore, cb)

end if
if t = 0 then

size← 1
else if t = 1 then

size← 2
else if t = 2 then

size← 4
else if t = 3 then

size← 8
end if
addr← cb.base + rt + offset
if rt + offset + size > cb.length then

raise c2 exception(exceptionLength, cb)
else if rt + offset < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < size then

raise exception(exceptionAdES)
else

mem[addr:addr + size − 1]← rd[0:size − 1]
tags[toTag(addr)]← false

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb.tag is not set.

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• Immediate offset + size is greater than cb.length.

• cb.perms.Permit Store is not set.

• cb.u is not set.

Notes

• This instruction reuses the opcode from the Store Word from Coprocessor 2 (SWC2)
instruction in the MIPS Specification.

• If t is 3 and e is 1, then the instruction is CSCD (Store Conditional Doubleword via
Capability).

• rt and offset are treated as signed integers.

89

• The result of the addition does not wrap around (i.e., an exception is raised if cb.base+rt+offset
is less than zero, or greater than maxaddr).

90

CLLD: Load Linked Doubleword via Capability
Format

CLLD rd, rt, offset(cb)
CLLDR rd, rt(cb)
CLLDI rd, offset(cb)

023101115162021252631

0x32 rd cb rt offset 111

Description

CLLD and CSCD are used to implement safe access to data shared between different threads.
The typical usage is that CLLD is followed (an arbitrary number of instructions later) by CSCD
to the same address; the CSCD will only succeed if there have been no context switches since
the preceding CLLD.

The exact conditions under which CSCD fails are implementation dependent, particularly
in multicore or multiprocessor implementations). The following pseudocode is intended to rep-
resent the security semantics of the instruction correctly, but should not be taken as a definition
of the CPU’s memory coherence model.

Pseudocode

addr← cb.base + rt + offset
if register inaccessible(cb) then

raise c2 exception()
else if not cb.tag then

raise c2 exception(exceptionTag, cb)
else if not cb.unsealed then

raise c2 exception(exceptionSealed, cb)
else if not cb.perms.Permit Load then

raise c2 exception(exceptionPermitLoad, cb)
else if offset + rt + 8 > cb.length then

raise c2 exception(exceptionLength, cb)
else if offset + rt < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < 8 then

raise c2 exception(exceptionAdEL)
else

rd← mem[addr:addr+7]
linkedFlag← true

end if

91

CSCD: Store Conditional Doubleword via Capability
Format

CSCD rs, rt, offset(cb)
CSCDR rs, rt(cb)
CSCRI rs, offset(cb)

023101115162021252631

0x3A rs cb rt offset 111

Pseudocode

addr← cb.base + rt + offset
if register inaccessible(cb) then

raise c2 exception()
else if not cb.tag then

raise c2 exception(exceptionTag, cb)
else if not cb.unsealed then

raise c2 exception(exceptionSealed, cb)
else if not cb.perms.Permit Store then

raise c2 exception(exceptionPermitStore, cb)
else if rt + offset + 32 > cb.length then

raise c2 exception(exceptionLength, cb)
else if rt + offset < 0 then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < 32 then

raise exception(AdES)
else if not linkedFlag then

rs← 0
else

mem[addr:addr+7]← rs
tags[toTag(addr)]← false
rs← 1

end if

92

CJR: Jump Capability Register
Format (3)

CJR rt(cb)
056101115162021252631

0x12 0x08 cb rt

Description

PCC is loaded from cb, and PC is loaded from rt. (As the program counter is relative to PCC,
this instruction will branch to the address cb.base + rt).

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cb)

else if not cb.perms.Non Ephemeral then
raise c2 exception(exceptionNonEphemeral, cb)

end if
if rt + 4 > cb.length then

raise c2 exception(exceptionLength, cb)
else if align of(cb.base + rt) < 4 then

raise exception(exceptionAdEL)
else

execute delay slot()
PC← rt
PCC← cb

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.u is not set.

• cb.perms.Permit Execute is not set.

93

• cb.perms.Non Ephemeral is not set.

• Register rt + 4 is greater than cb.length.

An address error exception is raised if:

• cb.base + rt is not 4-byte word aligned.

cb.base, cb.length and rt are treated as unsigned integers, and the result of the addition does
not wrap around (i.e., an exception is raised if cb.base+rt is greater than maxaddr).

94

CJALR: Jump and Link Capability Register
Format (3)

CJALR rt(cb)
056101115162021252631

0x12 0x07 cb rt

Description

The current PCC is saved in the return capability register (capability register number 24) and
PC is saved in general purpose register ra (register number 31). PCC is then loaded from
capability register cb, and PC is loaded from rt. As PC is interpreted relative to PCC during
instruction fetch, this instruction will jump to the code at address cb.base+ rt.

Pseudocode

if register inaccessible(cb) then
raise c2 exception()

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cb)

else if not cb.perms.Non Ephemeral then
raise c2 exception()

end if
if rt + 4 > cb.length then

raise c2 exception(exceptionLength, cb)
else if align of(cb.base + rt) < 4 then

raise exception(exceptionAdEL)
else

execute delay slot()
R31← PC
RCC← PCC
PC← rt
PCC← cb

end if

Exceptions

A coprocessor 2 exception will be raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the corre-
sponding bit in PCC.perms is not set.

• cb.perms.Permit Execute is not set.

95

• rt + 4 is greater than cb.length.

• cb.u is not set.

• cb.tag is not set.

• cb.perms.Non Ephemeral is not set.

An address error exception will be raised if

• cb.base + rt is not 4-byte word aligned.

96

CSealCode: Seal an Executable Capability
Format (5)

CSealCode cd, cs
0101115162021252631

0x12 0x01 cd cs

Description

If

• capability register cs is unsealed;

• cs.perms.Permit Seal is set;

• and cs.perms.Permit Execute is set;

then

• cd.u is cleared.

• the other fields of cd (including otype/eaddr) are copied from cs.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cs) then
raise c2 exception()

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not cs.unsealed then
raise c2 exception(exceptionSealed, cs)

else if not cs.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, cs)

else if not cs.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cs)

else
cd← cs
cd.u← false

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd or cs is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

97

• cs.tag is not set.

• cs.u is not set.

• cs.perms.Permit Seal is not set.

• cs.perms.Permit Execute is not set.

98

CSealData: Seal a Data Capability
Format (5)

CSealData cd, cs, ct
056101115162021252631

0x12 0x02 cd cs ct

Description

If

• capability register ct contains an unsealed capability;

• ct.perms.Permit Seal is set;

• capability register cs contains an unsealed capability;

• and cs.perms.Permit Execute is not set

then

• cd.otype/eaddr is set to ct.otype/eaddr;

• cd.u is cleared;

• and the other fields of cd are copied from cs.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cs) then
raise c2 exception()

else if register inaccessible(ct) then
raise c2 exception()

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not ct.unsealed then
raise c2 exception(exceptionSealed, ct)

else if not cs.unsealed then
raise c2 exception(exceptionSealed, cs)

else if not ct.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, ct)

else if cs.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cs)

else

99

cd← cs
cd.u← false
cd.otype← ct.otype

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cs, or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
the corresponding bit in PCC.perms is not set.

• ct.tag is not set.

• ct.u is not set.

• ct.perms.Permit Seal is not set.

• cs.tag is not set.

• cs.u is not set.

• cs.perms.Permit Execute is set.

100

CUnseal: Unseal a sealed capability
Format (5)

CUnseal cd, cs, ct
056101115162021252631

0x12 0x03 cd cs ct

Description

The sealed capability in cs is unsealed with ct and the result placed in cd. The not-ephemeral
bit of cd is the AND of the ephemeral bits of cs and ct. ct must be unsealed, have Permit Seal
permission, and have the same otype/eaddr as cs.

Pseudocode

if register inaccessible(cd) then
raise c2 exception()

else if register inaccessible(cs) then
raise c2 exception()

else if register inaccessible(ct) then
raise c2 exception()

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if cs.unsealed then
raise c2 exception(exceptionSealed, cs)

else if not ct.unsealed then
raise c2 exception(exceptionSealed, ct)

else if ct.otype 6= cs.otype then
raise c2 exception(exceptionType, ct)

else if not ct.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, ct)

else
cd← cs
cd.u← true
cd.perms.Non Ephemeral← cs.perms.Non Ephemeral and ct.perms.Non Ephemeral

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cs, or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
the corresponding bit in PCC.perms is not set.

• ct.tag is not set.

101

• ct.u is not set.

• ct.perms.Permit Seal is not set.

• ct.otype/eaddr 6= cs.otype/eaddr.

• cs.tag is not set.

• cs.u is set.

102

CCall: Call into a new security domain
Format (3)

CCall cs, cb
0101115162021252631

0x12 0x05 cs cb

Description

CCall is used to make a call into a protected subsystem (which may have access to a different
set of capabilities than its caller). cs contains a code capability for the subsystem to be called,
and cb contains a sealed data capability which will be unsealed for use by the called subsystem.
In terms of object-oriented programming, cb is a capability for an object and cs is a capability
for the methods of the object’s class.

In the current implementation of CHERI, CCall is implemented by the hardware that raises
an exception, and the rest of the instruction’s behavior is to be implemented in software by the
trap handler.

Later versions of CHERI may implement more of this instruction in hardware, for improved
performance.

Authors of compilers or assembly language programs should not rely on CCall being im-
plemented in software.

1. The program counter (PC) + 4, the stack pointer (SP), and 16 bytes of padding are
pushed onto the trusted system stack. (The padding exists to keep the trusted system
stack aligned on a 32-byte boundary).

2. PCC is pushed onto the trusted system stack.

3. IDC is pushed onto the trusted system stack.

4. cs is unsealed and the result placed in PCC.

5. cb is unsealed and the result placed in IDC.

6. The program counter is set to cs.otype/eaddr− cs.base. (i.e. control branches to virtual
address cs.otype/eaddr, but because the program counter is relative to PCC.base, this
must be subtracted).

Pseudocode (hardware)

raise c2 exception(exceptionCall, cs)

Pseudocode (software)

if register inaccessible(cs) then
raise c2 exception()

else if register inaccessible(cb) then
raise c2 exception()

103

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cs.unsealed then
raise c2 exception(exceptionSealed, cs)

else if cb.unsealed then
raise c2 exception(exceptionSealed, cb)

else if cs.otype 6= cb.otype then
raise c2 exception(exceptionType, cs)

else if not cs.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, cs)

else if not cs.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cs)

else if cs.otype < cs.base then
raise c2 exception(exceptionLength, cs)

else if cs.otype > cs.base + cs.length − 1 then
raise c2 exception(exceptionLength, cs)

else
TSS← TSS − 32
mem[TSS .. TSS + 7]← PC + 4
mem[TSS + 8 .. TSS + 15]← SP
tags[toTag(TSS)]← false
TSS← TSS − 32
mem[TSS .. TSS + 31]← PCC
tags[toTag(TSS)]← PCC.tag
TSS← TSS − 32
mem[TSS .. TSS + 31]← IDC
tags[toTag(TSS)]← TSS.tag
PCC← cs
PCC.unsealed← true
IDC← cb
IDC.unsealed← true
PC← cs.otype − cs.base

end if

Exceptions

A coprocessor 2 exception will be raised so that the desired semantics can be implemented in a
trap handler.

The capability exception code will be 0x05 and the handler vector will be 0x100 above the
general purpose exception handler.

A further coprocessor 2 exception raised if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

104

• cs.u is set.

• cb.u is set.

• cs.otype/eaddr 6= cb.otype/eaddr

• cs.perms.Permit Execute is not set.

• cs.perms.Permit Seal is not set.

• cs.otype/eaddr < cs.base

• cs.otype/eaddr > cs.base + cs.length - 1

• The trusted system stack would overflow (i.e., if PCC and IDC were pushed onto the
system stack, it would overflow the bounds of TSC).

Notes

From the point of view of security, CCall needs to be an atomic operation (i.e. the caller cannot
decide to just do some of it, because partial execution could put the system into an insecure
state). From the point of view of hardware design, CCall needs to write two capabilities to
memory, which might take more than one clock cycle. One possible way to satisfy both of
these constraints is to make CCall cause a software trap, and the trap handler uses its access to
KCC and KDC to implement CCall.

105

CReturn: Return to the previous security domain
Format (3)

CReturn
02021252631

0x12 0x06

Description

CReturn is used by a protected subsystem to return to its caller.

1. IDC is popped off the trusted system stack.

2. PCC is popped off the trusted system stack.

3. The program counter (PC) and stack pointer (SP) are popped off the trusted system stack.

In the current implementation of CHERI, CReturn is implemented by the hardware rais-
ing an exception, while the rest of the behavior is implemented in software by the exception
handler. Later versions of CHERI may implement more of this instruction in hardware, for
improved performance. Authors of compilers or assembly language programs should not rely
on CReturn being implemented in software.

Pseudocode (hardware)

raise c2 exception(exceptionReturn, 0xff)

Pseudocode (software)

IDC← mem[TSS .. TSS + 31]
IDC.tag← tags[toTag(TSS)]
TSS← TSS + 32
PCC← mem[TSS .. TSS + 31]
PCC.tag← tags[toTag(TSS)]
TSS← TSS + 64
PC← mem[TSS − 32 .. TSS − 25]
SP← mem[TSS − 24 .. TSS − 17]

Exceptions

The exception raised when CReturn is implemented in software is a coprocessor 2 exception
(C2E) with the capability cause code set to 0x6 (exceptionReturn) and RegNum set to cs. The
handler vector for this exception is 0x100 above the general purpose exception handler.

An additional coprocessor 2 exception is raised if:

• The trusted system stack would underflow.

• The tag bits are not set on the memory location that are popped from the stack into IDC
and PCC.

106

4.2 Assembler Pseudo-Instructions
For convenience, several pseudo-instructions are accepted by the assembler. These expand to
either single instructions or short sequences of instructions.

4.2.1 Capability Move
CMove is a pseudo operation that moves a capability from one register to another. It expands to
a CIncBase instruction, with $zero as the increment operand.

 # The following are equivalent:
 CMove $c1, $c2
 CIncBase $c1, $c2, $zero

4.2.2 Get/Set Default Capability
CGetDefault and CSetDefault get and set the capability register that is used by the legacy
MIPS load and store instructions. In the current version of the ISA, this register is C0. These
pseudo-operations are provided for the benefit of the LLVM compiler: the compiler can more
easily detect that a write to C0 affects the meaning of subsequent legacy MIPS instructions if
these are separate pseudo-operations.

 # The following are equivalent:
 CGetDefault $c1
 CIncBase $c1, $c0, $zero

 # The following are equivalent:
 CSetDefault $c1
 CIncBase $c0, $c1, $zero

4.2.3 Capability Loads and Stores of Floating-Point Values
The current revision of the CHERI ISA does not have instructions for loading floating point
values directly via capabilities. MIPS does provide instructions for moving values between
integer and floating point registers, so a load or store of a floating point value via a capability
can be implemented in two instructions.

Four pseudo-instructions are defined to implement these patterns. These are clwc1 and
cldc1 for loading 32-bit and 64-bit floating point values, and cswc1 and csdc1 as the equiv-
alent store operations. The load operations expand as follows:

 cldc1 $f7, $zero, 0($c2)
 # Expands to:
 cld $1, $zero, 0($c2)
 dmtc1 $1, $f7

Note that integer register $1 ($at) is used; this pseudo-op is unavailable if the noat direc-
tive is used. The 32-bit variant (clwc1) has a similar expansion, using clwu and mtc1.

The store operations are similar:

107

 csdc1 $f7, $zero, 0($c2)
 # Expands to:
 dmfc1 $1, $f7
 csd $1, $zero, 0($c2)

The specified floating point value is moved from the floating point register to $at and then
stored using the correct-sized capability instruction.

108

Chapter 5

Design Rationale

During the design of CHERI, we considered many different capability architectures and design
approaches. This chapter describes the design choices that were made, briefly outlines some
possible alternatives, and provides a rationale for the choices that were made.

High-Level Design Approach: Capabilities as Pointers

Our goals of providing fine-grained memory protection and compartmentalization led to an
early design choice to approach capabilities as a form of pointer. This rapidly led to a number
of conclusions:

• Capabilities are within virtual address spaces, imposing an ordering in which capability
protections are evaluated before virtual-memory protections; this in turn had impliations
for the hardware composition of the capability coprocessor and conventional MMU in-
teract.

• Capabilities are treated by the compiler in much the same way as pointers, meaning
that they will be loaded, manipulated, dereferenced, and stored via registers and to/from
general-purpose memory by explicit instructions, which we used modeled on similar
conventional RISC instructions.

• Incremental deployment within programs meant that not all pointers would immediately
be converted to capabilities, implying that both might coexist in the same memory; also,
there was a strong desire to embed capabilities within data structures, rather than store
them in separate segments, requiring fine-granularity tagging.

• Incremental deployment and compatibility with the UNIX model implied retaining the
general-purpose memory management unit (MMU) pretty much as currently designed,
including support for variable page size, TLB layout, etc. The MIPS ISA describes a
software-managed TLB rather than hardware page-table walking as is present in most
other ISAs; this is not fundamental to our approach, and either model would work.

109

Capability-Register File
The decision to separate the capability-register file from the general-purpose register file is
somewhat arbitrary from a software-facing perspective: we envision capabilities gradually dis-
placing general-purpose registers as pointers, but that management of the two register files will
remain largely the same, stack spilling will behave the same way, and so on. We selected the
separate representation for a few pragmatic reasons:

• Coprocessor interfaces frequently make the assumption of additional register files (a la
floating-point registers).

• Capability registers are quite large, and by giving the capability coprocessor its own
pipeline for manipulations, we could avoid enforcing a 256-wide path through the main
pipeline.

• It is more obvious, given a coprocessor-based interface, how to provide compatibility
support in which the capability coprocessor is “disabled,” the default configuration in
order to support unmodified MIPS compilers and operating systems.

However, it is entirely possible to imagine a variation on the CHERI design in which, more
similar to the manner in which the 32-bit x86 ISA was extended to support 64-bit registers,
the two files were conflated and able to hold both general-purpose and capability registers.
Early in our design cycle, capability registers were able to hold only true capabilities (i.e.,
with tags); later, we weakened this requirement by adding an explicit tag bit to each register in
order to improve support for capability-oblivious code such as memory-copy routines able to
copy data structures consisting of both capabilities and ordinary data. This shifts our approach
somewhat more towards a conflated approach; our view is that efficiency if implementation
and compatibility, rather than negligible effect on the software model, would be the primary
reasons to select one approach or another for a particular starting-point ISA.

Another design variation might have more tightly coupled specific capability registers with
general-purpose registers – an approach we discussed extensively, especially when comparing
with the bounds-checking literature which has explored techniques based on sidecar registers
or associative look-aside buffers. Many of these approaches did not adopt tags as a means
of strong integrity protection, which we require for the compartmentalization model, making
associative techniques less suitable. Further, we felt that the working-set properties of the two
register files might be quite different, and effectively pinning the two to one another would
reduce the efficiency of both.

It is worth considering, however, that our recent interest in cursors within capabilities re-
visits both of these ideas.

Representation of Memory Segments
CHERI capabilities represent a region of memory by its base address and length; memory
accesses are relative to the base address. An alternative representation would have been for
capabilities to contain an upper and lower bound on addresses within the memory region, with
memory accesses being given in terms of absolute addresses but checked against the upper and
lower bound.

110

The base and length representation was chosen because it is more convenient for arrays and
structures in the C language. Given a capability for an array and an index into the array, the
array element can be read with (for example) CLB without the need for an addition in software.
(In C, all arrays are zero based. This is not the case in other languages, e.g. Ada). The length
of a structure is usually known at compile time, and the length of a capability can be set to the
length of a structure with CSetLen; setting an upper bound would require a additional addition
instruction to compute it.

Although CHERI does not attempt to keep the base address of a capability secret, the use of
base-relative (rather than absolute) addresses for memory accesses reduces the need to keep the
absolute base address of a capability in a general purpose register, and possibly might facilitate
code migration to a stricter version of the architecture in which absolute addresses are secret.

The disadvantages of the base and length representation are that:

• There is no way to grant access to the very last byte of the virtual address space (a base
of 0 and a length of 264 − 1 grants access to addresses 0 to 264 − 2).

• Base-relative addressing is cumbersome for code capabilities. If a program wants to call
a subroutine, and to grant the subroutine execute access only to its own instructions and
not to the entire program text, then the subroutine needs to be linked differently from the
calling program, because branches within the subroutine will be relative to a different
base.

A key concern with the current representation is its substantial size – simulation suggests
that cache footprint is a dominant factor in performance, although optimization techniques such
as CCured would reduce this effect. We believe that a reduction to 128-bit capability registers
would come at an observable cost to both protection scalability (e.g., limiting the number of bits
in a pointer to 40-48 bits rather than the full 64) as well as compartmentalization functionality
(e.g., having fewer software-defined permission bits). However, in practice this may prove
necessary to support widespread adoption. Some care must be taken to retain current software
flexibility, especially regarding very fine-grained regions of memory, which are highly desirable
to support critical protection properties for C – e.g., granular stack protection and arbitrary
subdivision of character-based strings into separate bounded regions. It could be that pointer
compression techniques eliding specific middle bits in the address space, or possibly trading
off size and granularity (e.g., bits might be invested either in describing very small objects at
arbitrary alignment, or very large objects at more coarse alignment) provide a useful middle
ground.

Signed and Unsigned Offsets
In the CHERI instructions that take both a register offset and an immediate offset, the register
offset is treated as unsigned integer but the immediate offset is treated as a signed integer.

Register offsets are treated as unsigned so that given a capability to the entire address space
(except for the very last byte, as explained above), a register offset can be used to access any
byte within it. Signed register offsets would have the disadvantage that negative offsets would
fail the capability bounds check, and memory at offsets within the capability greater than 263

would not be accessible.

111

Immediate offsets, on the other hand, are signed, because the C compiler often refers to
items on the stack using the stack pointer as register offset plus a negative immediate offset. We
have already enountered observable difficulty due to a reduced number of bits available for im-
mediate offsets in capability-relative memory operations when dealing with larger stack-frame
sizes; it is unclear what real performance cost this might have (if any), but does reemphasize
the importance of careful investment of encoding bits for instructions.

Overwriting Capabilities

In CHERI, if a capability in memory is partly overwritten with non-capability data, then the
memory contents afterwards will be the capability converted to a byte representation and then
overwritten.

Alternative designs would have been for the capability to be zeroed first before being over-
written; or for the write to raise an exception (with an explicit “clear tag in memory” operation
for the case when a program really intends to overwrite a capability with non-capability data).

The chosen approach is simpler to implement in hardware. If store instructions needed
to check the tag bit of the memory location that was being written, then they would need to
have a read-modify-write cycle to the memory, rather than just a write; in general, the MIPS
architecture carefully avoids the need for a read-modify-write cycle within a single instruction.
(Although, once the memory system needs to deal with cache coherence, a write is not that
much simpler than a read-modify-write).

The CHERI behavior also has the advantage that programs can write to a memory location
(e.g., when spilling a register on to the stack) without needing to worry about whether that
location previously contained a capability or non-capability data.

A potential disadvantage is that the contents of capabilities cannot be kept secret from
a program that uses them. A program can always discover the contents of a capability by
overwriting part of it, then reading the result as non-capability data. In CHERI, there are other,
more direct, ways for a program to discover the contents of a capability it owns, so this is not a
security vulnerability.

However, there are ABI concerns: we have tried to design the ISA in such a way that soft-
ware does not need to be aware of the in-memory layout of capabilities, but as it is necessarily
exposed, there is a risk that software might become dependent on a specific layout. One case of
particular note is in the operating-system paging code, which must save and restore capabilities
and their tags separately; this can be accomplished by using instructions such as CGetBase on
untagged values loaded from disk and then refining an in-hand capability using CSetBase –
an important reason not to limit capability field retrieval instructions to tagged values.

Reading Capabilities as Bytes

In CHERI, if a data load instruction such as CLB is used on a memory location containing
a capability, the internal representation of the capability is read. An alternative architecture
would have such loads return zero, or raise an exception.

Because the contents of capabilities are not secret, allowing them to be read as raw data is
not a security vulnerability.

112

Capability registers are dynamically tagged
In CHERI, capability registers and memory locations have a tag bit that indicates whether
they hold a capability or non-capability data. (An alternative architecture would give memory
locations a tag bit, where capability registers could contain only capabilities – with an exception
raised if an attempt were made to load non-capability data into a capability register with CLC.)

Giving capability registers and memory locations a tag bit simplifies the implementation
of cmemcpy(). cmemcpy() is a variant of memcpy() that copies the tag bit as well as the
data, and so can be used to copy structures containing capabilities. As capability registers are
dynamically tagged, cmemcpy() can copy a structure by loading it into a capability register
and storing it to memory, without needing to know at compile time whether it is copying a
capability or non-capability data.

Tag bits on capability registers may also be useful for dynamically typed languages in which
a parameter to a function can be (at run time) either a capability or an integer. cmemcpy() can
be regarded as a function whose parameter (technically a void) is dynamically typed.

Separate Permissions for Storing Capabilities and Data
CHERI has separate permission bits for storing a capability versus storing non-capability data.
(And similarly, for loading a capability versus loading non-capability data).

(An alternative design would be just one Permit Load and just one Permit Store permission
that were used for both capabilities and non-capability data.)

The advantage of separate permissions bits for capabilities is that that there can be two pro-
tected subsystems that communicate via a memory buffer to which they have Permit Load and
Permit Store permissions, but do not have Permit Load Capability or Permit Store Capability.
Such communicating subsystems cannot pass capabilities via the shared buffer, even if they
collude. (We realized that this was potentially a requirement when trying to formally model the
security guarantees provided by CHERI).

Capabilities Do Not Contain a Cursor
In the C language, pointers can be both incremented and decremented. C pointers are some-
times used as a cursor that points to the current working element of an array, and is moved up
and down as the computation progresses.

In contrast, the base of a CHERI capability can be incremented (via CIncBase) but not
decremented. When CHERI capabilities are used from C, a pointer with type attribute capability

can be incremented but not decremented.
An alternative architecture would have included a “cursor” field within a capability, that

could be both incremented and decremented without changing base. This would have given
capability variables semantics that were closer to ordinary C pointers, at the expense of

making capabilities take up more space in memory, with a reduction in performance as a result.
In comparison, the CCured language includes both FSEQ and SEQ pointers. CHERI capa-

bilities are analogous to CCured’s FSEQ pointers. Programming languages that need semantics
similar to to CCured’s SEQ can be implemented on CHERI by compiling them as the pair of a
CHERI capability and an integer that acts as a cursor into the array.

113

We are now actively exploring variations on the CHERI ISA that do implement tags in
order to improve source-code level compatibility. This turns out to be particularly critical for
packet-parsing code that will frequently perform a series of pointer operations and then vali-
date the resulting pointer against a bound (often incorrectly); with CHERI as defined, invalid
pointers cannot be constructed and such operations will generate an exception, or require com-
piler support for coupling pointers with capabilities. As there is substantial space in the CHERI
capability – in particular, an unused entry address/type field intended for use with object ca-
pabilities – introducing a cursor is relative straightforward, although obviously must be done
with care. The model we have prototyped allows the cursor to float freely outside of the bounds
specified by the capability base and length, generating an exception only if it is used to load
and store from disallowed addresses, tracking an invalid dereference. Separate instructions get
and set the cursor, allowing current CHERI code to work unmodified, with CSetBase also
adjusting the cursor.

NULL Has the Tag Bit Set

In some programming languages, pointer variables must always point to a valid object. In C,
pointers can either point to an object or be NULL; by convention, NULL is the integer value
zero cast to a pointer type.

If hardware capabilities are used to implement a language that has NULL pointers, how is
the NULL pointer represented? CHERI capabilities have a tag bit; if the tag bit is set, a valid
capability follows, otherwise the remaining data can be interpreted as (for example) bytes or
integers. The representation we have chosen for NULL is that the tag bit is set and the base
and length fields are zero; effectively, NULL is an array of length zero.

An alternative representation we have could have chosen for NULL would have been with
the tag bit unset, and zero in the base field; effectively, NULL would be the integer zero.

Many of the CHERI instructions are agnostic as to which of these two conventions for
NULL is employed, but the CFtomPtr and CToPtr are aware of the convention.

One advantage of having NULL’s tag bit unset would have been that it would be possi-
ble for code to conditionally branch on a capability being NULL by using the CBTS or CBTU
instruction.

One advantage of the convention we have chosen is that dynamically typed languages can
distinguish between a pointer to a valid object, NULL, a non-zero integer and the integer zero.
For example, a dynamically typed language could use capabilities with tag unset for small
integers (including zero), capabilities with tag set pointing to an arbitrary precision integer
for large integers, and the NULL capability (tag unset, length zero) for an optional parameter
being absent.

Permission Bits Determine the Type of a Capability

In CHERI, a capability’s permission bits together with the u bit determine what kind of capa-
bility it is. A capability for a region of memory has u and Permit Load and/or Permit Store
set; a capability for an object has u unset and Permit Execute unset; a capability to call a pro-
tected subsystem (a “call gate”) has u unset and Permit Execute set; a capability that allows the

114

owner to create objects whose type identifier (otype/eaddr) falls within a range has u unset
and Permit Set Type set.

An alternative architecture would have included a separate capability type field, as well as
the perms field, within each capability; the meaning of the rest of the bits in the capability
would have been dependent on the value of the capability type field.

A potential disadvantage of not having a capability type field is that different kinds of
capability cannot use the remaining bits of the capability in different ways.

A consequence of the architecture we have chosen is that it is possible to create many
different kinds of capability (2 to the power of the number of permission bits plus u). Some of
the kinds of capability that it is possible to create do not have a clear use case; they just exist as
a consequence of the representation chosen for capabilities.

Object Types are Addresses
In CHERI, the otype/eaddr field serves both as a unique identifier for an object type and as
the address of the executable code that implements the methods on that object type.

An alternative architecture would have been to include separate fields within a capability
for the object type id and for the address of the code that implements the object’s methods.

The architecture we have chosen allows us to keep the size of capabilities small (which is
important for performance) at the cost of some conceptual confusion caused by these multiple
uses of the otype/eaddr field.

Treating the set of object type identifiers as being the same as the set of memory addresses
has the additional advantage that it simplifies assigning type identifiers to protected subsystem:
each subsystem can use its start address as the unique identifier for the type it implements.
Subsystems that need to implement multiple types, or create new types dynamically can be
given a capability with Permit Set Type set for a range of memory addresses, and they are
then able to use types within that range. This avoids the need for some sort of privileged
type manager that creates new type identifiers; such a type manager is potentially a source of
covert channels. (Suppose that there was a type manager and it allocated type identifiers in
numerically ascending order. A subsystem that asks the type manager twice for a new type
id and gets back n and n + 1 knows that no other subsystem has asked for a new type id in
between the two calls; this could in principle be used for covert communication between two
subsystems that were supposed to be kept isolated by the capability mechanism).

Unseal is an Explicit Operation
In CHERI, converting a pointer to an opaque object into a pointer that allows the object’s
contents to be inspected or modified directly is an explicit operation. It can be done directly
with the CUnseal operation, or by using CCall to run the result of unsealing the first argument
on the result of unsealing the second argument.

An alternative architecture would have been one with “implicit” unsealing, where a sealed
capability (u clear) could be dereferenced without explicitly unsealing it first, provided that the
subsystem attempting the dereference had some kind of ambient authority that permitted it to
deference sealed capabilities of that type. This ambient authority could have taken the form of
a protection ring or the otype/eaddr field of PCC.

115

The disadvantage of the architecture we have chosen is that protected subsystems need to
be careful not to leak capabilities that they have unsealed, for example by leaving them on
the stack when they return to their caller. In an architecture with “implicit unseal”, protected
subsystems would just need to delete their ambient authority for the type before returning, and
would not need to explicitly clean up all the unsealed capabilities that they had created.

116

Chapter 6

CHERI in Programming Languages and
Operating Systems

We capture some of our early thoughts on the topic of use of CHERI instructions in program-
ming languages and operating systems. The goal of our software work is to test several funda-
mental hypotheses underlying the CHERI architecture:

• That a hardware capability model provides superior performance when large numbers of
protection domains are required.

• That protection domains within address spaces offer improved programmability and de-
buggability for compartmentalized TCB components.

• That there are (fairly) natural mappings from higher-level language pointer and reference
models into memory-capability semantics.

• That capability adaptation of common TCB components offers dramatically improved
robustness and security.

• That a hardware capability model and MMU-based virtual addressing can not only coex-
ist, but also facilitate an adoption of capability approaches – offering both an incremental
adoption path with immediate security benefits and a long-term vision for software secu-
rity improvement.

• That a fully virtualizable per-address-space capability system is feasible and practical,
while allowing use of capability models within individual hierarchical rings and address
spaces.

To this end, we are developing a significant software stack that will utilize the CHERI feature
set, implementing and exercising various aspects of the hybrid capability model.

6.1 Development Plan and Status
At the time of writing, we are roughly three and one-half years into a five-year research project
in hardware and software security. We have successfully prototyped a fully pipelined 64-bit
CPU implementing the 64-bit MIPS and CHERI ISAs; detailed information on this prototype

117

can be found in the accompanying BERI Hardware Reference. The following sections docu-
ment our recent accomplishments and continuing strategy for exploring the software implica-
tions of the CHERI architecture.

6.2 Open-Source Foundations

During the initial bring-up phase of our prototype CHERI CPU, CHERI’s support for incre-
mental adoption has proven invaluable: we will be able to rely on current open source boot
loaders, operating systems, programming languages, compilers, debuggers, and applications,
to selectively deploy capability features in the most critical software foundations and the most
vulnerable services.

6.3 Current Software Implementation

We have extended existing 64-bit MIPS versions of FreeBSD operating system, GNU assem-
bler, and LLVM/Clang compiler suite to support CHERI ISA features.

6.4 CheriBSD

We have extended the existing 64-bit MIPS port of FreeBSD to support a range of Altera/Tera-
sic hardware peripherals, and our CHERI ISA extensions. CheriBSD maintains a coprocessor
2 context for each user thread; it implements CCall/CReturn exception handlers, and recovery
paths for when a sandbox triggers a hardware exception (e.g., due to an invalid memory refer-
ence). CheriBSD includes a new libcheri which implements a sandbox API and a growing set
of system services that may be delegated to sandboxed code.

6.4.1 Extended GNU Assembler (gas)

We have extended the GNU assembler (gas) to support the CHERI ISA, by allowing assembly
files, and an inline assembler from C to make use of CHERI instructions. Tools such as ob-
jdump are also able to interpret CHERI instructions. We have not yet extended the linker to
support new CHERI-related linkage types; instead, we rely on hybrid behavior to implement
programs for the time being.

6.5 Extended LLVM/Clang

LLVM is a framework for implementing compilers that comprises a well-defined intermediate
representation (IR), a set of APIs for generating this representation, optimization passes for
transforming it, and back ends for generating native code. We have extended the MIPS back
end in LLVM to provide support for capability instructions.

118

We reserve address space 2001 for capability pointers. Any pointer to address space 200 is
assumed to be a capability. We also add explicit integer to pointer and pointer to integer patterns
in the back end. These are required because all existing LLVM back ends regard pointers and
integers as interchangeable.

The LLVM back end also provides an alternative assembler. This currently lacks some
MIPS instructions, so is not yet a replacement for the GNU assembler, but does provide support
for both inline assembly and for stand-alone assembly files.

The modifications to LLVM are intended to make experimentation with programming lan-
guages easier. Any language front end that can generate LLVM IR can be modified to support
capabilities and we are free to experiment with new languages and modifications to others.

In addition to the support for capabilities as pointers, we also provide a number of intrinsics
that map closely to instructions. The example below uses the llvm.cheri.set.cap.length
intrinsic, which sets the length of a capability. This example shows the LLVM IR for a simple
function that wraps the C standard malloc() in one that returns a capability that will enforce the
length.

 define i8 addrspace(200)* @cmalloc(i64 %s) nounwind {
 entry:
 ; Call malloc()
 %call = tail call i8* @malloc(i64 %s) nounwind
 ; Convert the C0-relative pointer to a capability
 %0 = ptrtoint i8* %call to i64
 %1 = inttoptr i64 %0 to i8 addrspace(200)*
 ; CSetLen
 %2 = tail call i8 addrspace(200)* @llvm.cheri.set.cap.length(i8

addrspace(200)* %1, i64 %s)
 ret i8 addrspace(200)* %2
 }

Clang is a front end for LLVM that generates LLVM IR from C-family languages (C, C++,
Objective-C, and Objective-C++). Our first work on language extensions involves providing
capability support to C. Programmers can annotate pointers as being capabilities, which triggers
CHERI rather than MIPS code generation for any resulting memory accesses. C-language types
such as const now perform dynamic permission refinement. We have an experimental version
of the same compiler code that now supports stack access via capability.

Objective-C provides a late-bound object oriented model on top of C that makes it an inter-
esting test ground for experimentation. Combined with the MIT-licensed GNUstep Objective-C
runtime, we can experiment with adding language features to Objective-C based on our exten-
sions to C.

6.5.1 Extended CHERI Unit-Test Suite

Using the CHERI assembler, we have extended our existing MIPS ISA test suite to exercize
various aspects of the CHERI ISA. The current test suite validates the behavior of memory

1The number 200 is subject to change and should not be relied on. Address spaces under 256 are intended to
be reserved for architecture-agnostic uses, so we may either move this to a higher number, or retain a low number
as a general fat-pointer address space in LLVM IR.

119

capabilities and capability exceptions, including monotonic decrease in rights using capabil-
ity manipulation instructions. More detailed implementation status for the CHERI hardware
prototype may be found in the BERI Hardware Reference.

6.6 Future Plans
Between 2010 and 2014, we completed basic prototyping of the CHERI hardware and software
platform. We are now considering potential future directions for further hardware and software
experimentation, including bindings to higher-level languages such as Objective-C, OCaml,
and Java. We are also exploring how adding capability support to LLDB and the LLVM de-
bugger would allow us to develop capability-aware programs, as well as considering security
implications for designing and implementing debuggers.

120

Chapter 7

Future Directions

The CTSRD project, of which CHERI is just one element, has now been in progress for three
and a half years. Our focuses to date have been in several areas:

1. Design the CHERI instruction set architecture based on a hybrid object-capability model.
As part of this work, develop a PVS formal model of the ISA, and analyze properties
about program expressivity.

2. Flesh out the ISA feature set in CHERI to support a real-world operating system – primar-
ily, this has consisted of adding support for the system management coprocessor, CP0,
which includes the MMU and exception model, but also features such as a programmable
interrupt controller (PIC). We have also spent considerable time refining a second version
of the ISA intended to better support automatic compilation, which is now implemented.

3. Prototype, test, and refine CHERI ISA extensions, which are incorporated via a new
capability coprocessor, CP2.

4. Port the FreeBSD operating system first to a capability-free version of CHERI, known as
BERI. This is known as FreeBSD/BERI.

5. Adapt FreeBSD to make use of CHERI features – first by adapting the kernel to maintain
new state and provide object invocation, and then low-level system runtime elements,
such as the system library and runtime linker. This is known as CheriBSD.

6. Adapt the Clang/LLVM compiler suite to be able to generate CHERI ISA instructions as
directed by C-language annotations.

7. Begin to develop semi-automated techniques to assist software developers in compart-
mentalizing applications using Capsicum and CHERI features. This is a subproject
known as Security-Oriented Analysis of Application Programs (SOAAP), and performed
in collaboration with Google.

8. Develop FPGA-based demonstration platforms, including an early prototype on the Tera-
sic tPad, and more mature server-style and tablet-style prototypes based on the Terasic
DE4 board. We have also made use of CHERI2 on the NetFGPA 10G board.

121

9. Develop techniques for translating Bluespec hardware designs into PVS representations
so that they can be used for formal analysis purposes. The SRI PVS tool suite has been
embedded in the BluespecVerilog compiler chain to enable formal verification, model
checking (SAL), and SMT solving (Yices) inline with the compilation.

We have made a strong beginning, but clearly there is much to do. From this vantage point, we
see a number of tasks ahead, which we detail in the next few sections.

7.1 An Open-Source Research Processor
One of our goals for the CHERI processor is to produce a reference Bluespec processor im-
plementation, which can then be used as a foundation not only for CHERI, but also for other
research projects in the hardware-software interface. Capability processor extensions to the
MIPS ISA would then be a core research result from this project, but also the first example of
research conducted on the reference processor.

We have spent a considerable amount of time preparing CHERI for open sourcing, including
enhancing our test suite, updating documentation, and preparing a new open-source license
intended for hardware-software projects (derived from the Apache software license).

7.2 Formal Methods for Bluespec
We have created prototype descriptions of the CHERI ISA in PVS and SAL, and are collabo-
rating with the REMS project at Cambridge to develop an L3 model of the MIPS ISA, with the
intent of also applying it to CHERI. We have used our formal models to automatically generate
test suites, and to prove higher-level properties about what the ISA can represent. We have cre-
ated new tools to automatically process Bluespec designs for use in theorem proving and model
checking, and developed new tools to improve SMT performance and to extract higher-level
properties from hardware designs. Our longer-term goal is to link formal models of the hard-
ware itself with the ISA specification and software compiled to that ISA. We hope that, by the
completion of the CTSRD project, we will also be able to prove a number of basic but interest-
ing properties about the hardware design, such as correctness of pipelining and the capability
coprocessor. Perhaps we may even be able to extend the formal analysis into the lower-layer
system software – such as properties relating to capability-based protection in sandboxing and
compiling.

7.3 ABI and Compiler Development
We have targeted our CHERI ISA extensions at compiler writers, rather than for direct use by
application authors. This has required us to design new Application Binary Interfaces (ABIs),
and to extend the C programming language to allow specification of protection properties by
programmers. We have extended the GNU assembler and the Clang/LLVM compiler suite
to generate CHERI instructions, and begun to experiment with modifications to applications.
We anticipate significant future work in this area to validate our current approach, but also to
extend these ideas both in C and other programming languages, such as Objective C. We are

122

also interested in CHERI instructions as a target for just-in-time compilation by systems such
as Dalvik.

7.4 Hardware Capability Support for FreeBSD
With a capability processor prototype complete, and a FreeBSD/BERI port up and running,
we have begun an investigation into adding CHERI capability support to the operating sys-
tem. Currently, the CheriBSD kernel is able to maintain additional per-thread CHERI state for
user processes via minor extensions to the process and thread structures, as well as exception-
handling code. We have also prototyped object-capability invocation, which we are in the
process of integrating with the operating system. A number of further tasks remain, includ-
ing adding memory tag support to paging and swapping, enhancing TLB support to include
CHERI-related flags, and continuing to adapt userspace OS components, such as the system
library and runtime linker, to use CHERI capability features. This work depends heavily on
Clang/LLVM support for capabilities.

We need to explore security semantics for the kernel to limit access to kernel services (espe-
cially system calls) from sandboxed userspace code. This will require developing our notions
of privilege described in Chapter 2; the userspace runtime and kernel must agree on which ser-
vices (if any) are available without passing through a trusted protected subsystem, such as the
runtime linker.

Ideally, the kernel should make use of capabilities, initially for bounded memory buffers
(offering protection against kernel buffer overflows, for example), but later protected subsys-
tems. An iterative refinement of hardware and software privilege models will be required: for
example, a sandboxed kernel subsystem should not be able to modify the TLB without going
through a kernel protected subsystem, meaning that simple ring-based notions of privilege for
MMU access are insufficient.

7.5 Evaluating Performance and Programmability
This report describes a fundamental premise: that through an in-address space capability model,
performance and programmability for compartmentalized applications can be dramatically im-
proved. Once the capability coprocessor and initial programming language, toolchain, and
operating system support come together, validating this claim will be critical. We anticipate
making early efforts to apply compartmentalization to base system components: elements of
the operating system kernel, critical userspace libraries, and critical userspace applications.

Our hybrid capability architecture will ease this experimentation, making it possible to
apply, for example, capabilities within zlib without modifying an application as a whole.
Similarly, capability-aware applications should be able to invoke existing library services, even
filtering their access to OS services – a similarly desirable hypothesis to test.

We are concerned not only with whether we can express the desired security properties,
but also compare their performance with MMU-based compartmentalization, such as that de-
veloped in the Capsicum project. An early element of this work will certainly include testing
of security context-switch speed as the number of security domains increases, in order to con-
firm our hypothesis regarding TLB size and highly compartmentalized software, but also that
capability context switching can be made orders of magnitude faster as software size scales.

123

124

Bibliography

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development. Technical report, Computer Science
Department, Carnegie Mellon University, August 1986.

[2] W. B. Ackerman and W. W. Plummer. An implementation of a multiprocessing computer
system. In SOSP ’67: Proceedings of the First ACM Symposium on Operating System
Principles, pages 5.1–5.10, New York, NY, USA, 1967. ACM.

[3] J. Anderson. Computer security technology planning study. Technical Report ESD-TR-
73-51, U.S. Air Force Electronic Systems Division, October 1972. (Two volumes).

[4] G. R. Andrews. Partitions and principles for secure operating systems. Technical report,
Cornell University, Ithaca, NY, USA, 1975.

[5] Apple Inc. Mac OS X Snow Leopard. http://www.apple.com/macosx/, 2010.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Cham-
bers, and S. Eggers. Extensibility safety and performance in the SPIN operating system.
In SOSP ’95: Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, pages 267–283, New York, NY, USA, 1995. ACM.

[7] R. Bisbey II and D. Hollingworth. Protection Analysis: Project final report. Technical
report, USC Information Sciences Institute (ISI), Marina Del Rey, California, 1978.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting Applications into
Reduced-Privilege Compartments. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages 309–322. USENIX Association,
2008.

[9] M. Branstad and J. Landauer. Assurance for the Trusted Mach operating system. In
Proceedings of the Fourth Annual Conference on Computer Assurance COMPASS ’89,
pages 9–13. IEEE, June 1989.

[10] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of produc-
tion systems. In ATEC ’04: Proceedings of the USENIX Annual Technical Conference,
Berkeley, CA, USA, 2004. USENIX Association.

[11] E. Cohen and D. Jefferson. Protection of the Hydra operating system. In Proceedings of
the Fifth ACM Symposium on Operating Systems Principles, pages 141–160, 1975.

125

http://www.apple.com/macosx/

[12] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An experimental time-sharing system.
In AIEE-IRE ’62 (Spring): Proceedings of the May 1–3, 1962, Spring Joint Computer
Conference, pages 335–344, New York, NY, USA, 1962. ACM.

[13] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the Multics system. In
AFIPS ’65 (Fall, part I): Proceedings of the November 30–December 1, 1965, Fall Joint
Computer Conference, part I, pages 185–196, New York, NY, USA, 1965. ACM.

[14] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary storage. In
AFIPS Conference Proceedings, Fall Joint Computer Conference, pages 213–229. Spar-
tan Books, November 1965.

[15] P. J. Denning. Fault tolerant operating systems. ACM Computing Surveys, 8(4):359–389,
1976.

[16] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed compu-
tations. Communications of the ACM, 9(3):143–155, 1966.

[17] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in the asbestos
operating system. SIGOPS Oper. Syst. Rev., 39:17–30, October 2005.

[18] R. S. Fabry. The case for capability based computers (extended abstract). In SOSP ’73:
Proceedings of the Fourth ACM Symposium on Operating System Principles, page 120,
New York, NY, USA, 1973. ACM.

[19] R. J. Feiertag and P. G. Neumann. The foundations of a Provably Secure Operating System
(PSOS). In Proceedings of the National Computer Conference, pages 329–334. AFIPS
Press, 1979. http://www.csl.sri.com/neumann/psos.pdf.

[20] P. G.Neumann, R. Boyer, R. Feiertag, K. Levitt, and L. Robinson. A Provably Secure
Operating System: The system, its applications, and proofs. Technical Report CSL-116,
Second edition, Computer Science Laboratory, SRI International, Menlo Park, California,
May 1980.

[21] L. Gong. Inside Java(TM) 2 Platform Security: Architecture, API Design, and Implemen-
tation. Addison-Wesley, Reading, Massachusetts, 1999.

[22] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the sandbox: An
overview of the new security architecture in the Java Development Kit 1.2. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems, Monterey, California,
December 1997.

[23] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[24] R. Graham. Protection in an information processing utility. Communications of the ACM,
11(5), May 1968.

[25] N. Hardy. KeyKOS architecture. SIGOPS Operating Systems Review, 19(4):8–25, 1985.

126

http://www.csl.sri.com/neumann/psos.pdf

[26] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone: A
safe dialect of C. In ATEC ’02: Proceedings of the USENIX Annual Technical Conference,
pages 275–288, Berkeley, CA, USA, 2002. USENIX Association.

[27] A. Jones and W. Wulf. Towards the design of secure systems. In Protection in Op-
erating Systems, Proceedings of the International Workshop on Protection in Operating
Systems, pages 121–135, Rocquencourt, Le Chesnay, France, 13–14 August 1974. Institut
de Recherche d’Informatique.

[28] P. Karger. Limiting the damage potential of discretionary Trojan horses. In Proceedings
of the 1987 Symposium on Security and Privacy, pages 32–37, Oakland, California, April
1987. IEEE Computer Society.

[29] P. Karger and R. Schell. Multics security evaluation: Vulnerability analysis. In Proceed-
ings of the 18th Annual Computer Security Applications Conference (ACSAC), Classic
Papers section, Las Vegas, Nevada, December 2002. Originally available as U.S. Air
Force report ESD-TR-74-193, Vol. II, Hanscomb Air Force Base, Massachusetts.

[30] P. A. Karger. Using registers to optimize cross-domain call performance. SIGARCH
Computer Architecture News, 17(2):194–204, 1989.

[31] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4:
formal verification of an operating-system kernel. Communications of the ACM, 53:107–
115, June 2009.

[32] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. DeHon. Low-fat pointers:
Compact encoding and efficient gate-level implementation of fat pointers for spatial safety
and capability-based security. In 20th ACM Conference on Computer and Communica-
tions Security, November 2013.

[33] B. Lampson. Redundancy and robustness in memory protection. In Information Process-
ing 74 (Proceedings of the IFIP Congress 1974), volume Hardware II, pages 128–132.
North-Holland, Amsterdam, 1974.

[34] B. W. Lampson. Dynamic protection structures. In AFIPS ’69 (Fall): Proceedings of the
November 18-20, 1969, Fall Joint Computer Conference, pages 27–38, New York, NY,
USA, 1969. ACM.

[35] B. W. Lampson. Protection. SIGOPS Operating Systems Review, 8(1):18–24, 1974.

[36] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analy-
sis and transformation. In Proceedings of the international symposium on code genera-
tion and optimization: feedback-directed and runtime optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[37] N. G. Leveson and W. Young. An integrated approach to safety and security based
on system theory. Communications of the ACM, 57(2):31–35, February 2014. url-
http://www.csl.sri.com/neumann/insiderisks.html.

127

[38] H. M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann, Newton,
MA, USA, 1984.

[39] J. Liedtke. On microkernel construction. In SOSP’95: Proceedings of the 15th ACM
Symposium on Operating System Principles, Copper Mountain Resort, CO, Dec. 1995.

[40] S. B. Lipner, W. A. Wulf, R. R. Schell, G. J. Popek, P. G. Neumann, C. Weissman, and
T. A. Linden. Security kernels. In AFIPS ’74: Proceedings of the May 6-10, 1974,
National Computer Conference and Exposition, pages 973–980, New York, NY, USA,
1974. ACM.

[41] S. McCanne and V. Jacobson. The BSD packet filter: a new architecture for user-level
packet capture. In USENIX’93: Proceedings of the USENIX Winter 1993 Conference,
Berkeley, CA, USA, 1993. USENIX Association.

[42] E. McCauley and P. Drongowski. KSOS: The design of a secure operating system. In
National Computer Conference, pages 345–353. AFIPS Conference Proceedings, 1979.
Vol. 48.

[43] M. K. McKusick and G. V. Neville-Neil. The Design and Implementation of the FreeBSD
Operating System. Pearson Education, 2004.

[44] A. Mettler and D. Wagner. Class properties for security review in an object-capability
subset of Java. In PLAS ’10: Proceedings of the 5th ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, pages 1–7, New York, NY, USA, 2010.
ACM.

[45] M. S. Miller. Robust composition: towards a unified approach to access control and
concurrency control. PhD thesis, Johns Hopkins University, Baltimore, MD, USA, 2006.

[46] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in san-
itized javascript, May 2008. http://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf.

[47] J. H. Morris, Jr. Protection in programming languages. Communications of the ACM,
16(1):15–21, 1973.

[48] A. C. Myers and B. Liskov. A decentralized model for information flow control. SIGOPS
Oper. Syst. Rev., 31:129–142, October 1997.

[49] G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In OSDI
’96: Proceedings of the Second USENIX symposium on Operating Systems Design and
Implementation, pages 229–243, New York, NY, USA, 1996. ACM.

[50] P. G. Neumann. Holistic systems. ACM Software Engineering Notes, 31(6):4–5, Novem-
ber 2006.

[51] P. G. Neumann, R. Boyer, R. Feiertag, K. Levitt, and L. Robinson. A Provably Secure
Operating System: The system, its applications, and proofs. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, California, May 1980. 2nd edition,
Report CSL-116.

128

http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf

[52] P. G. Neumann and R. J. Feiertag. PSOS revisited. In Proceedings of the 19th An-
nual Computer Security Applications Conference (ACSAC 2003), Classic Papers sec-
tion, pages 208–216, Las Vegas, Nevada, December 2003. IEEE Computer Society.
http://www.acsac.org/ and http://www.csl.sri.com/neumann/psos03.pdf.

[53] P. G. Neumann and R. N. Watson. Capabilities Revisied: A Holistic Approach to Bottom-
to-Top Assurance of Trustworthy Systems. In Proceedings of the Fourth Annual Layered
Assurance Workshop, 2010.

[54] E. Organick. The Multics System: An Examination of Its Structure. MIT Press, Cam-
bridge, Massachusetts, 1972.

[55] D. A. Patterson and C. H. Sequin. RISC I: A Reduced Instruction Set VLSI Computer.
In ISCA ’81: Proceedings of the 8th Annual Symposium on Computer Architecture, pages
443–457, Los Alamitos, CA, USA, 1981. IEEE Computer Society Press.

[56] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege Escalation. In Proceedings
of the 12th USENIX Security Symposium. USENIX Association, 2003.

[57] R. Rashid and G. Robertson. Accent: A communications oriented network operating
system kernel. In Proceedings of the Eighth ACM Symposium on Operating System Prin-
ciples, pages 64–75, Asilomar, California, December 1981. (ACM Operating Systems
Review, Vol. 15, No. 5).

[58] C. Reis and S. D. Gribble. Isolating web programs in modern browser architectures. In
EuroSys ’09: Proceedings of the 4th ACM European Conference on Computer Systems,
pages 219–232, New York, NY, USA, 2009. ACM.

[59] D. Rémy and J. Vouillon. Objective ML: a simple object-oriented extension of ML. In
POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 40–53, New York, NY, USA, 1997. ACM.

[60] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Communications of
the ACM, 17(7):365–375, 1974.

[61] Ruby Users Group. Ruby Programming Language. http://www.ruby-lang.
org/, October 2010.

[62] J. Rushby. The design and verification of secure systems. In Proceedings of the Eighth
ACM Symposium on Operating System Principles, pages 12–21, Asilomar, California,
December 1981. (ACM Operating Systems Review, 15(5)).

[63] J. Saltzer. Protection and the control of information sharing in Multics. Communications
of the ACM, 17(7):388–402, July 1974.

[64] J. Saltzer and M. Schroeder. The protection of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278–1308, September 1975.

[65] W. Schiller. The design and specification of a security kernel for the PDP-11/45. Technical
Report MTR-2934, Mitre Corporation, Bedford, Massachusetts, March 1975.

129

http://www.ruby-lang.org/
http://www.ruby-lang.org/

[66] M. D. Schroeder. Engineering a security kernel for Multics. In SOSP ’75: Proceedings
of the Fifth ACM Symposium on Operating Systems Principles, pages 25–32, New York,
NY, USA, 1975. ACM.

[67] E. J. Sebes. Overview of the architecture of Distributed Trusted Mach. In Proceedings of
the USENIX Mach Symposium, pages 20–22. USENIX Association, November 1991.

[68] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability system. In SOSP ’99: Pro-
ceedings of the seventeenth ACM Symposium on Operating Systems Principles, Dec 1999.

[69] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask
security architecture: System support for diverse security policies. In Proceedings of the
8th USENIX Security Symposium, pages 123–139, Washington, D.C., USA, Aug. 1999.
USENIX Association.

[70] R. Wahbe, S. Lucco, T. E. Anderson, and S. u. L. Graham. Efficient software-based fault
isolation. In SOSP ’93: Proceedings of the Fourteenth ACM Symposium on Operating
Systems Principles, pages 203–216, New York, NY, USA, 1993. ACM.

[71] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the
UCLA Unix security kernel. Communications of the ACM, 23(2):118–131, 1980.

[72] S. T. Walker. The advent of trusted computer operating systems. In AFIPS ’80: Proceed-
ings of the May 19-22, 1980, national computer conference, pages 655–665, New York,
NY, USA, 1980. ACM.

[73] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter. The multi-
principal OS construction of the Gazelle web browser. In Proceedings of the 18th USENIX
Security Symposium, pages 417–432, Berkeley, CA, USA, 2009. USENIX Association.

[74] R. N. Watson, P. G. N. J. Woodruff, J. Anderson, R. Anderson, N. Dave, B. Laurie, S. W.
Moore, S. J. Murdoch, P. Paeps, M. Roe, and H. Saidi. CHERI: a research platform
deconflating hardware virtualization and protection. In Runtime Environments, Systems,
Layering and Virtualized Environments (RESoLVE 2012), 2012.

[75] R. N. M. Watson. New Approaches to Operating System Security Extensibility. Technical
report, Ph.D. Thesis, University of Cambridge, Cambridge, UK, October 2010.

[76] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum: Practical ca-
pabilities for Unix. In Proceedings of the 19th USENIX Security Symposium. USENIX,
August 2010.

[77] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G.
Neumann, and J. Woodruff. Bluespec Extensible RISC Implementation (BERI): Software
Reference. Technical Report UCAM-CL-TR-853, University of Cambridge, Computer
Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, phone +44
1223 763500, 2014.

130

[78] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G.
Neumann, and J. Woodruff. Capability Hardware Enhanced RISC Instructions (CHERI):
User’s guide. Technical Report UCAM-CL-TR-851, University of Cambridge, Computer
Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, phone +44
1223 763500, 2014.

[79] R. N. M. Watson, P. G. Neumann, J. Woodruff, J. Anderson, D. Chisnall, B. Davis, B. Lau-
rie, S. W. Moore, S. J. Murdoch, and M. Roe. Capability Hardware Enhanced RISC In-
structions (CHERI): Instruction-Set Architecture. Technical Report UCAM-CL-TR-850,
University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3
0FD, United Kingdom, phone +44 1223 763500, 2014.

[80] R. N. M. Watson, J. Woodruff, D. Chisnall, B. Davis, W. Koszek, A. T. Markettos, S. W.
Moore, S. J. Murdoch, P. G. Neumann, R. Norton, and M. Roe. Bluespec Extensible
RISC Implementation (BERI): Hardware Reference. Technical Report UCAM-CL-TR-
852, University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, United Kingdom, phone +44 1223 763500, 2014.

[81] M. Wilkes and R. Needham. The Cambridge CAP Computer and Its Operating System.
Elsevier North Holland, New York, 1979.

[82] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie,
P. G. Neumann, R. Norton, and M. Roe. The CHERI capability model: Revisiting RISC
in an age of risk. In Proceedings of the 41st International Symposium on Computer
Architecture (ISCA 2014), 2014.

[83] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA:
the kernel of a multiprocessor operating system. Communications of the ACM, 17(6):337–
345, 1974.

[84] W. Wulf, R. Levin, and S. Harbison. Hydra/C.mmp: An Experimental Computer System.
McGraw-Hill, New York, 1981.

[85] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, pages 79–93,
Washington, DC, USA, 2009. IEEE Computer Society.

[86] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In SP ’09:
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, pages 79–93,
Washington, DC, USA, 2009. IEEE Computer Society.

[87] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow
explicit in histar. In Proceedings of the 7th symposium on Operating systems design
and implementation, OSDI ’06, pages 263–278, Berkeley, CA, USA, 2006. USENIX
Association.

131

	850.pdf
	Introduction
	Motivation
	Trusted Computing Bases (TCBs)
	The Compartmentalization Problem

	The CHERI Design
	A Hybrid Capability-System Architecture

	Threat Model
	Formal Methodology
	CHERI and CHERI2 Reference Prototypes
	Historical Context
	Capability Systems
	Microkernels
	Language and Runtime Approaches
	Influences of Our Own Past Projects
	A Fresh Opportunity for Capabilities

	Publications
	Version History
	Document Structure

	CHERI Architecture
	Design Goals
	A Hybrid Capability-System Architecture
	The CHERI Software Stack
	Capability Model
	Capabilities are for Compilers
	Capabilities
	Capability Registers
	Memory Model
	Ephemeral Capabilities and Revocation
	Notions of Privilege
	Traps, Interrupts, and Exception Handling
	Tagged Memory
	Capability Instructions
	Object Capabilities
	Peripheral Devices

	Capability Coprocessor
	Capability Registers
	Capabilities
	tag
	u
	perms
	otype/eaddr
	base
	length
	Capability Permissions

	Capability Exceptions
	CPU Reset
	Changes to Standard MIPS Processing
	Changes to the TLB
	Proposed Extensions to the CHERI ISA

	Instruction-Set Reference
	Details of Individual Instructions
	CGetBase
	CGetLen
	CGetTag
	CGetUnsealed
	CGetPerm
	CGetType
	CGetPCC
	CGetCause
	CSetCause
	CIncBase
	CSetLen
	CClearTag
	CAndPerm
	CSetType
	CCheckPerm
	CCheckType
	CFromPtr
	CToPtr
	CBTU
	CBTS
	CSC
	CLC
	CL[BHWD][U]
	CS[BHWD]
	CLLD
	CSCD
	CJR
	CJALR
	CSealCode
	CSealData
	CUnseal
	CCall
	CReturn

	Assembler Pseudo-Instructions
	Capability Move
	Get/Set Default Capability
	Capability Loads and Stores of Floating-Point Values

	Design Rationale
	CHERI in Programming Languages and Operating Systems
	Development Plan and Status
	Open-Source Foundations
	Current Software Implementation
	CheriBSD
	Extended GNU Assembler (gas)

	Extended LLVM/Clang
	Extended CHERI Unit-Test Suite

	Future Plans

	Future Directions
	An Open-Source Research Processor
	Formal Methods for Bluespec
	ABI and Compiler Development
	Hardware Capability Support for FreeBSD
	Evaluating Performance and Programmability

