Technical Report A

Number 866

Computer Laboratory

PDTL: Parallel and distributed
triangle listing for massive graphs

Ilias Giechaskiel, George Panagopoulos,
Eiko Yoneki

April 2015

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2015 Ilias Giechaskiel, George Panagopoulos, Eiko Yoneki

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

PDTL: Parallel and Distributed Triangle Listing
for Massive Graphs

llias Giechaskiel George Panagopoulos Eiko Yoneki
University of Cambridge University of Cambridge University of Cambridge
Cambridge, UK Cambridge, UK Cambridge, UK

Email: llias.Giechaskiel@cl.cam.ac.uk Email: gmp37@cam.ac.uk Email: Eiko.Yoneki@cl.cam.ac.uk

Abstract— This paper presents the first distributed triangle improvements in performance. Our Parallel and Distributed
listing algorithm with provable CPU, I/O, Memory, and Network Triangle Listing (PDTL) framework (Section 1V) extended Hu
bounds. Finding all triangles (3-cliques) in a graph has numerous et al.’s Massive Graph Triangulation (MGT) algorithm [18] i
applications for density and connectivity metrics. The majority of . _ . .
existing algorithms for massive graphs are sequential processing order to work in the d'St”bUted environment by duplicatthg
and distributed versions of algorithms do not guarantee their graph across each machine and has provable bounds on CPU,
CPU, 1/0, Memory or Network requirements. Our Parallel 1/0O, Memory, and Network utilization. By further parallging
and Distributed Triangle Listing (PDTL) framework focuses the orientation step, and by intelligently distributingettoad
on efficient external-memory access in distributed environments across each processor, we are able to optimize our algorithm

instead of fitting subgraphs into memory. It works by performing - . .
efficient orientation and load-balancing steps, and replicating to the point where it computes the exact triangle counts on

graphs across machines by using an extended version of Hu etgraphs with billions of edges or verticesx to 4x faster
al’s Massive Graph Triangulation algorithm. As a result, PDTL than the state-of-the-art frameworks, using considertviyer

suits a variety of computational environments, from single-core resources, and exhibiting scalability across multiplecpesors

machines to high-end clusters. PDTL computes th_e exact triangle and machines (Section V). In summary, our contributions are
count on graphs of over 6B edges and 1B vertices (e.g. YahooalS follows:

graphs), outperforming and using fewer resources than the sta-
of-the-art systems PowerGraph, OPT, and PATRIC by2x to 4x. « We create a general framework for triangle listing and

Our approach highlights the importance of I/O considerations in counting for both distributed and single-machine systems.
a distributed environment, which has received less attention in Our algorithm is the first triangle listing algorithm that
the graph processing literature. . . .

provides efficient and well-understood bounds on CPU,
I/0, Memory, and Network utilization, across multiple
environments (Theorem [V.3).
Graphs have become important abstractions to model real, We uncover hidden assumptions in the proofs and im-
world situations, ranging from social relationships to eom plementation of the closed-source MGT algorithm. We
munication, web, and road networks, but such graphs are modify the algorithm to correspond to its implementa-
becoming increasingly massive and and will soon reach bil- tion, and prove that our modifications do not alter its
lions of vertices and trillions of edges, making in-memory theoretical efficiency (Section IV-A).
algorithms insufficient for computing graph properties.eOn , We introduce further optimizations in the orientation
such property that has gained the attention of the graph (Definition I11.2) and distribution steps of our algorithm
processing community is theumber of trianglesn the graph, reducing bottlenecks, without adding complexity.
which from a theoretical point of view can be seen as a special, We conduct extensive experiments, and show that our
case of counting cycles of given length, or finding complete ajgorithm is highly scalable across multiple cores and ma-
subgraphs. From a more practical perspective, finding all chines, with low memory requirements, even for graphs
triangles in a graph is crucial for metrics such aschestering with hundreds of millions of edges, and multiple billion
coefficient[24] and the similartransitivity ratio [18], which edges (Section V). In particular, over the standard Twitter
can be used to find high-density nodes, and to detect fake dataset [15], our algorithm is 4 times faster than PATRIC
accounts in social networks [25], as well as web spam and [3], 3 times faster than OPT [14], and 2 times faster than
content quality [5]. Triangle enumeration is also necessar powerGraph [10], which are the state-of-the-art frame-

I. INTRODUCTION

as a sub-algorithm fodense neighborhood discovef3], works in distributed and multicore triangle counting.
triangular connectivity{4], and finding thek-trussesof graphs
[22]. As a result, triangle listing and counting has a wide Il. RELATED WORK

range of applications, but research has been limited orreitiementiev [9] and Menegola [17] first introducecternal-
external memory considerations, or the creation of pdrallmemory algorithms for triangle counting, but their algorithms
frameworks (Section II). However, in this paper we show th&tad high 1/0 overheads. The first algorithms with reasonable
it is possible to combine both approaches with substantj@rformance for triangle listing were introduced by Chu and

Cheng [8], and relied ograph partitioningto achieve an /O V is defined as followsu < v if and only if d(u) < d(v)

complexity of © gf;; + L), under certain assumptions orPr d(u) = d(v) and u < v. We define the directed graph
the structure of the graph. However, MGT by Hu et al. [13f~ = (V. E7), called G’s orientation, by(u,v) € E* if and

exhibits the same performance without any additional apsun®nly if (u,v) € E andu < v.

tions, and was proven to be superior in practice. FinallghPapecause~ is a strict total order, the orientation uniquely
and Silvestri recently proposed a new algorithm for trignghssociates the triangleu, v, w} whereu < v < w with the
counting (but not listing) which has an 1/O complexity ofyple (u, v, w)

O (£2), and improves the given bounds by a factor of
VM) P g y Definition 111.3 (Cone Vertex, Pivot Edge [13])Given a

min (\/E/M, \/M) [19]. triangle (u,v,w) with u < v < w in G*, we call u its cone

The first dedicated parallel triangle counting framework, vertex, and(v, w) its pivot edge.
PATRIC [3], uses graph partitioning and message passing
exact counting. It is not I/O-efficient, but it proposes npié
novel load balancing mechanisms, which are calculatedrin p e following broperties:
allel and do not pose a bottleneck. Even so, PATRIC requires 9 prop '
that each partition fits in memory, and targets datacentétls, Theorem Il.4 (Arboricity bounds [7]) The arboricity of a
hundreds of processors and high dedicated RAM per procesgpaph G = (V, E) satisfies:
OPT [14] is a disk-based, single machine system that exsploitl) a < \/@
I/O and multi-core CPU parallelism, and performs favorably - . .

o . . 2) a=0(1) if G is planar
compared to distributed triangle-counting frameworks. .
3 X min{d(u),d(v)} < O (alE)

In terms ofgeneral-purpose frameworks there are multi- (u.0)€E

ple MapReduce algorithms for counting triangles, the bést o ' L

which is CTTP [20]. Even so, MapReduce algorithms produd¥ote that theT’ < 5 Z)EEmin{d(U% d(v)}, whereT is

too much intermediate networking data, and are considerabhe number of triangles, as any edge can appear in at most
slow: CTTP takegx longer on the Twitter dataset [15] using,in {q(v), d(v)} triangles, saI’ = O (a|E|). As a result, it is

40 nodes compared a single-core MGT. PowerGraph [10] ig)@neficial to have a runtime dependentca(ts), because it is

general-purpose vertex-oriented framework that is thee$as an

for triangle counting among existing alternatives, whiggPk atgosﬂ & W bgt ;:atr;] beO ((11) forfpl;mar gra:ahs.d Vitter'
[21] proposes novel methods for generic subgraph listing, b inafly, we remind the reader of Aggarwa’ and VILers
is 6x slower than PowerGraph on the Twitter graph. I/O complexity analysis methodology [2], which depends on

Overall, we see that there is a divide between using exterrtlh? block size B: in accessing\' elements in order, the
memory and parallelizing the algorithm, but as we show | Ik performSScc_Ln(N) - G)(N/B) WOs, whereas _random
Section V, by combining the two approaches PDTLAis access can requjlvlsé (N) I/O; in the worst case. Sorting takes
faster than PATRIC3x faster than OPT, andx faster than sort{(N) = © (ElogM/B E) /Os by external mergesort,
PowerGraph, while providing theoretical guarantees, amtd whereM is the memory size.
running out of memory for larger graphs. V. PDTL

tﬂ%e arboricitya(G) of a graphG is the minimum number of
edge-disjoint forests needed to cover its edges [7] ansdfigsti

I1l. PRELIMINARIES We assume a computational environmenf\ohodes, each of
which hasP processors, with\/ bytes of memory for each
) of the processors, so that by choosing these parameters-appr
All graphs G = (V, E) onn = |V vertices andm = |E| priately, we can model a high-end data center, with multiple
edges are assumed to be undirected (bi-directional) anglesim processors per machine, or even just a single computer with
For everyu € V, we denote byNe(u) = {v : (u,v) € E} |ow available memory. In Section IV-A we explain the baselin
the set qf itsneighbors(or adjacency lisk ahd bde(U')l = single-core MGT algorithm and our modifications, while in
[N (u)| its degree Note that we may omit the qualifie gection IV-B we explain our parallel and distributed PDTL

when doing so is clear. Finally, for simplicity, we also itin gystem and prove its theoretical properties.
V with [n] = {0,...,n — 1}.

A. Definitions

A. Massive Graph Triangulation

Algorithm 1 presents the MGT algorithm [13] under gmall-
degree assumptiorthat every vertexo € V hasdg-(v) <
cM/2 for some implementation-specific constant< 1.1
Finding the sef{ of all such triangles is called trianglisting, The idea behind MGT is that given an oriented gra@h
and merely reporting on their numbéf = |K| is called one can find all triangles by loading consecutive edges into
triangle counting memory and iterating over all verticesand their out-edges

Definition 111.1 (Triangle) Given an undirected graply =
(V,E), a triangle is a set of three verticelu, v,w} C V,
such that all of(u,v), (v,w) and (w,u) are edges inE.

Definition 11l.2 (Degree-Based Order, Orientatior§iven an 1yye refer the reader to [13] and our code discussing and impléngea
undirected graphG = (V, E), the degree-based ordex on way to remove this assumption.

to find all triangles with cone vertex and pivot edge loaded N (u) can also be represented by static arrays of djze,,

into memory. By using hash structures on the loaded edgedlednmandnnp respectively.

and N(u) this can be done in a CPU- and I/O- efficient As a result, the modified MGT (Algorithm 2) works as
way. However, as we illustrate in Section IV-Al, the highfollows on the sorted and oriented graph: it loads the next
level algorithm does not correspond to its implementatio® % edges intoedg andi nd as indicated above. Then,
so we modify MGT, and show in Section IV-A2 that oufit jterates over the entire graph vertex by vertex, and fahea

modifications do not alter the algorithm’s efficiency. vertexu, it does the following:
1) StoresN(u) into the arraynm
Algorithm 1 MGT 2) EvaluatesN*(u) into the arraynnp by iterating over
Input: An orientedG* = (V, E*) v € N(u) and checking nd to see if it has any out-
Output: All triangles in G neighbors
while there are edges i* to be readdo 3) For eachv € N*(u), it reports triangle(u,v,w) with
Read the nextM edges into memory coneu and pivotw for eachw € N(u) N E,
Create hash structures on the edges _ —
for u € V do Algorithm 2 Modified MGT
ReadN(u) from disk Input: A sorted, oriented7* = (V, E*)
Construct hash structures ovi(u) Output: All triangles in G
Report triangles with cone and pivot in memory while there are edges i* to be readdo
Release the structures ovi(u) Read the next’ M out-neighbors intedg and store in
i nd the degrees and offsets
for w € V do
1) Modifications: Although only a binary for MGT is ReadN (u) from disk to arraynm
available at [11], during our experimentation we hypothegi Write N (u) to nnmp usingnmandi nd
that the implementation of MGT does not use explicit sets, for v € nnp do
but arrays. Indeed, if the adjacency list for any given veise for w e nmnedg[ind[v — v,] do
not sorted, the given implementation misses trianglesjgho Report (u, v, w)
the manual [12] does not make mention of such requirements. Clearnmandnnp

Clearly, if any types of sets were constructed, this need for
a sorted adjacency list would not be present. This belief was

further verified by our own implementation, where using se(tﬁ each step there ate — O (|E|/M) iterations, and each

++ -
and maps' of any k|.n(.j, from C++5t d: - unor der ed__set iteration performs% I/Os to read over the graph. Addition-
to Google’'sgoogl e: : dense_hash_set , made our imple- g ; T
. ally, the cost of outputtind’ triangles is, for a total /0
mentation more thamn0x slower.

2) Analysis: First of all, becaus® (M) edges are loaded

Consequently, our implementation deviates from the pr89rnplexlty ofO % + g?)
posed high-level Algorithm 1 by utilizing sorted arraystesd ~ FOr the CPU complexity, we note that checking whether
of sets. Specifically, it is assumed (for compatibility witte ¢ € Ve @Mounts to checking whethendi ces[v—wvjou]
MGT implementation [11]) that the file format for the grapH'@s @ positive degree, which is@(1) operation, so con-
is such that ifv < w then Ng(v) comes beforeV (w) and if Struction Of Eemn anqv,jgem (together with clearing it) takes
additionallyv, w € Ng(u) thenv comes befores in Ng(u), © ([Emen|) = © (M) time. Construction ofV(u) and N (u)

with these properties preserved after orientation. thus also take® (|N(u)|) = © (dg-(u)) time. Since each

Following the notation in [13], lef,,.,, denote the set of _edge is examined once in a single iteration, each iteration

edges in memonw,..., its endpointsy+. _ thosew € Vo incurs time O (|E|) for construction of these structures, for

. . N) a total of © (| E[>/M) time.
that haveoutgoing €dges inFiney, and N*(u) = N(u) M Set intersection of two ordered sets of sizgn takes

+.m- In other wor F o = 3 : . . :) .
g”em} aﬁd ?or SO g}%‘;’#’”leﬁ/@ ej/'{;} Ee 5|3v(u€,v€/§ time O (m + n) using a naive set intersection, thus the total
merts y Y ¥ mem = " complexity for the triangle operations is

(v,u) € Emem}s With Viper, = Vit UV, . Additionally
let vy = min,y+ v aNdvpign = max, i+ 0. h

Because the graph is sorted, we know that i v;,., Or z_: > z; dg- (u) + de-(v)
v > Upign, thenv € V.5 As a result, we can splif ., into =L ueV veN S (u)

two arrays:edg which stores the sequence of out-neighbokghere N;' (u) denotesN* (u) in the i-th iteration. First, note
andi nd that stores the degree of and offset intoedg at that anyv is in at most2 (consecutive)]\[i*(u) for any given
locationv —v;,,,- In other words, the out-edges of(provided . This is due to the small degree assumption, because if the
it is in memory) are stored af, =edg[ind[v —wi,w]]. adjacency is split the first time, the second time it will el
Moreover, becauséNT(u)| < |N(u)| < df and fit in memory. Thus, we can change the order of summation

max?
because we knowi},,.. from the orientation stepV(u) and as follows:

Theorem V.2 (MGT Complexity) In summary, our imple-

h . .
mentation of MGT has an 1/0O complexity of
DD Py
z:luEVUGN;r(u) o (|E2 T)
_ Z S MB B
ueVi=lyeNT (u) and CPU complexity of
< 2) X
u E|?
EVveNT(u) o (' + aE|>
Examining each term separately (and ignoring the factd of M
for clarity): If the graph is not already sorted, an addition@l(sort(|E|))
I/0s and O (|E|log|E|) computations are needed, and if
Z Z dg-(u) = Z 2. (u) V| < M, O (scan(|V|?)) I/Os are necessary to orient it.
uEVvENT (u) wev B. Distributed Framework
Additionally, Our distributed protocol works as follows: every machine is
sent a copy of the entire graph, and every available processo
u%:V, NZ; ,)dG* (v) is allocated a (contiguous) set of edggsand is responsible
S ;e*(v()“(d () — de () for finding all triangles in the graph which contain pivot
T “ “ edges inS, by using MGT. This is significantly different from
= Y dg() -dg-(v) — Y d4.(v) the existing parallel triangle-counting systems, wheftedint
VeV veV machines are responsible for different subsets of thecestti

becausel (v) — de-(v) represents the number of incoming 1) Description: In our framework, anastermachine dele-
vertices tov. The sums ofd2.(v) cancel out, so we needgates responsibility to tha/ clientmachines (including itself),

to calculate 3" dg(v) - dg-(v). This is where the arboricity and combines their results. Because the orientation steg ne
only occur once, it is the responsibility of the master tolapp

NBle degree-based order to the graph in question, beforéngend
it over the network. The master then sends the oriented graph
Theorem IV.1 (Ordering) > dg(v) - dg+(v) = O («|E|) to each client, together with the indices that each procdsso

veV
becomes useful (Theorem IV.1 is adapted from — but is
identical to — the one given in [13]):

veV responsible for. Each core processes the adjacency lisebat
Proof. the specified indices. The client combines the triangle toun
(and possibly the triangle lists if necessary), and sendseth
v%:v dg(v) - dg-(v) = u%:v ue%(v) dg (v) back to the master, which atomically sums the results.
_ S de(v) Our PDTL framework is oblivious to how the orientation
(v,0) € B+ step is performed, and what specific (contiguous) subset of
(by orientation) < > min{d(v),d(u)} edges is assigned to each processor. In a naive implenmntati
(vu)EE orientation is performed sequentially, and edges are split
(by Theorem Ill.4) = O (alE]) equally to all processors. However, our master parallltze

O orientation, and includes a load-balancing step to eqaiatie
time taken for triangle counting in each of the processors.
Note that the sorting of the original file také®(sort (|E|)) More concretely, fomulticore orientation, the master reads
I/0s andO (|E|In |E|) CPU time [2], while the orientation the entire degree array into memory (providéd < PM),
itself takesO (scan(|E|)) 1/0s andO (|E|) CPU time, pro- and each core performs the orientation on a contiguous set of
vided that the entire degree array can fit in menfolynot, edges, which are then concatenatesd balancing similarly
in the worst case (e.g. for the complete graigh), a vertex calculates the number of in-edges for each vertex aftenorie
has a neighbor in every block. As a result, for each nod@tion (equal tadg (v) — de-(v)), and splits the edges equally
there must beO (|V|/B) 1/Os, for a total of O (|V|?/B) amongst the processors so that the are still contiguousthend
/Os, just for the degree file. Becausg| = O (|V|?), the sum of these in-degrees are approximately the same among all
total complexity isO (scan (|V|?)) 1/Os andO (|E|) CPU processors. This provides an estimate for the average size o
time. This does not make a difference in dense graphs (excpt (u), and thus the number of required intersections.
for the asymptotic constant), but it is still a point of oniigs Our protocol is illustrated in Figure 1. For clarity, the
for the analysis presented in [13]. Consequently, the divermaster process is duplicated, and is shown to run on a
complexity is identical to that of the baseline MGT, and iseparate machine from the clients. In our illustration, ds0x
summarized in Theorem IV.2. represent different processes and clients, while ovalkimvit
boxes represent threads. Lines between boxes represent net
2The degrees and adjacency lists for all vertices are storedparate files WOTK traffic, with solid lines representing requests, antetb
of sizes|V| and | E| respectively (Section V-B). lines answers. Finally’; ; represents the “configuration” for

Master S = %, and each processor must make= [2] iterations
kel 20 over the grapH. During these iterations, the graph is read
N 0”‘3”““"” once for creation of the vertex structures, and contributes
Lled 2 O (|E|) processing time. Though it would be impossible to
G*'{Cl,l'""cl,P}l lG*,{_CN,lmeN,p} calculate exactly the amount of computations performed in
G (Con iy} | Clientd G (Cus . Cyp} | ClientN each iteration for counting triangles as it depends closely
B A S A the graph structure, we know by the proof of Theorem IV.2 that
Sl o Sog) CufiTua - CugiTnp over all processors, these computations sundty - |E|).*
RE i o) JMETE Cop) MGT (G, Cy,1) || MGT(G", Cyp) Consequently, total computations across all processers ar
E P E
Tl:ZTl’i ;TN:ZTN,L' O(NP- ’VN|P1|M-| |E|+Q|E|) =
=1 37 T = i=1 . 1E|* .)
r=$'n, st O(NP-|E|+EL 4. |E|
R 12| 1]
_ . becaus NPM} <wpmw t1
Fig. 1: PDTL protocol overview The 1/0 complexity is also easy to find. As above, each
processor makes? = % iterations over the graph,

and outputs a variable number of trianglesamaking its 1/0
processoyl on machine: the memory allocated for that thread complexity equal t@ (R - scan(|E|) + scan(t)). As a result,
together with the section of the graph for which the processie total 1/O over all processors is
is responsible. Note that the master starts the trianglatoay E| |EE T
operations before the network transfer has finished, sarsgnd @ <NPB + B + B)
the graph does not pose a big bottleneck in practice.

2) Analysis: A problem with distributed algorithms using©One of the important distinctions between PDTL and frame-
graph partitioning is that they assume each partition can Werks which load entire subgraphs in memory is that in PDTL,
in memory. Though for smaller graphs this may be the cad&| can still be larger than the total amount of available
in dense graphs, such as the complatg, this is no longer memory N P)/. Moreover, we see that wheNPM > |E],
true. Such algorithms requir® (n?) memory oneach of we can reducel! to 125 without affecting any individual
the processors, and each of theP processors must receiveprocessor, whereas the total amount of memory needed in
the entire graph. However, our algorithm requires memofiameworks like PATRIC and PowerGraph can exceed,
proportional to the maximum degree, and the graph is orfijue to overlapping subgraphs. Finally, it is important téeno
duplicated once per th& nodes. As a result, PDTL has lowerthat the limiting factor after the graphs have been sentlto al
network traffic and is preferable for dense graphs, and i aachines is the processor responsible for the highest numbe
able to accommodate more computational environments. M@ triangles, so increasing the total number of processors
concretely, PDTL incur® (N - (P + |E|) + T) network traf- is usually preferable, even with the same amount of total
fic in total, whereT is the total number of triangles in thememory, as we also identify in Section V. Our findings are
graph (or0 for triangle counting), due to the communicatiorsummarized in Theorem IV.3:

cost per processor, and the duplication acrossNheodes. Theorem IV.3 (PDTL Complexity) Using the convention that

Since themaster is responsible for orienting the graphy \enresents the number of triangles in the case of triangle
according to the degree-based order, it inolrscan(|E])) jisting and 0 in the case of triangle counting, and assuming
I/0s andO (|E[) CPU time, assuming there is enough memoryz| _ PDTL incurs across all cores a total of:

to hold V, as explained in Section IV-A2. This is true even¥” ~_ "’ .
for multicore orientation, as the graph is read once over all *® (NP+N|E“|E|J§ T') Network traffic]
cores, but with an additionaD (P) term: one for each of * O (NP|E| T JFC‘(|E|) CPU computations
the cores. For load balancing, the vertex degrees are reaq ¢ (Np% + % + %) I/Os

once, with PM = O (|E|) edges sampled, and the results

are stored forN P processors using (scan(|V])) I/Os and V. EVALUATION

O (V| + maz(|E|, PM)) = O(|E|) CPU time. The master pye to the wide range of environments in which PDTL
is also responsible for adding the triangle counts receivggn run, our extensive experiments cover single-corefdimi
(in parallel) and also concatenating the triangle listisg-(memory machines to multi-machine, multi-core, large memor

quentially), for a CPU complexity o® (N +T') and an /O ¢jysters. We discuss our setup and methodology in Section
complexity ofO ((T' + N)/B), as there might be an additional
block for each of theV machines. ~ %For the load-balanced approach, this is true in summation, foot
Since each processor is responsible for a unique (contigifividua! processors. _ _
. fthe araph. there are no repeatedbutations. If S is smaller than the maximum degree, the complexity changes to
ous) section 0 graph, . peatetp O(NP-a-|E|) as a single vertex can be split acra¥s machines, but
The chunk that each processor is responsible for has siae would be atypical.

V-A, and introduce our datasets in Section V-B. We discuss tkechniques operate on binary data, and all counting algost
pre-processing and orientation operations in Section ¥, require efficient access to neighbors of a vertex, we exclude
compare them to those of competing algorithms. In Secti@my time to convert a graph to this format from our discussion
V-D we discuss the core properties of our PDTL algorithnlowever, because the degree-based ordering is non-stindar
in both the local and distributed environments, includihg t we consider the orientation cost separately, and include it
effects of load balancing. In Section V-E, we compare owur overall measurements. Similarly, we include copyingtgo
algorithm against MGT, OPT, and PowerGraph extensiveliypom the master to the clients, to illustrate that our altoni

and show that PDTL demonstrates superior performance. runs faster, even including graph duplication. Though othe
architectures such as NFS or HDFS were considered, we store
A. Setup and Methodology a graph copy locally, since each graph is read at least once pe

To illustrate the breadth of environments in which PDTL Sumrocessor_ As we see in Table I, the average Copying time is
ports triangle counting, we conducted experiments in pielti yp to 10x less than total processing time.

different clusters and machine configurations:

« Amazon EC2 We used 4 Amazon EC23. 8xl ar ge _) _] _
instances, each of which contained 32 vCPU units, 60GEble Il presents the time orientation took in our Local Nult
of memory, and were connected using a 10 Gigatfiere machine with 24 cores, compared to PowerGraph'’s setup
Ethernet network. For the PowerGraph measurements, #ge and OPT’s database creation, whose pre-processipg ste
rented 4 Amazon EC23. 8x| ar ge that are similar to are much slower. Figure 2 show$ 2 x speed-up of multicore
c3. 8xl ar ge instances, but have 244GB of memory jPrientation over the single-core solution, and illustrgtihat
order to satisfy PowerGraph’s memory requirements. Our SSD is capped at 16 threads and 500MB/s.

C. Preprocessing

o Local C_Iuster: More dlstnb_uted experiments were con- Graphs | df,,., PDTL PowerGraph OPT
ducted in a local 4-node Linux cluster machine running LiveJ1 687 14s - 1m46.8s
8 Virtual Xen nodes, each with 4 cores of an Intel Xeon TO_ftltwt 4?3(’)3 33;%5 5 2553725 . 4137-665

witter y .0S mos.2S ml/.6s
E5607, 40GB of memory and a Samsung 840 SSD. Yahoo | 1540 3m55.6s

« Local Multicore : Additional multicore experiments were RMAT-26 | 2,964 29.3s 3m33.0s 15m10.3s

conducted in a local machine running Linux with 2 AMD) s
Opteron 6344 CPUs for a total of 24 cores, 256GB TABLE II: Preprocessing time: PDTL (Orientation), Power

memory, and a Samsung 840 SSD. raph (Setup), OPT (Database Creation)

o Local Multicore Windows: Since we only had access

to an OPT [14] Windows binary, we used a Windows 140

box, with performance similar to the above, having 2 X ©® Titter
Intel Xeon E5-2420 CPUs with support for 24 concurrent 120 \ u;ah;:m
threads, 128GB memory, and a Samsung 840 SSD. 100 @8 RuAT27
Our code was compiled witls++, using the- O3 optimiza- 5 800 L A EaTe
tion option, and explicitly cleared disk caches before each g 60 e
experiment was run. Though our code fully supports triangle 400
listing, our experiments only measured counting time, lowal 200
comparison with alternative implementations. To accownt f O~ 1 8 16 24
random variation and general fluctuations, we repeated each Cores

experiment 3 times, and present the averages here. More
extensive tables of our results can be found in the Appesdice

D. PDTL Properties

Table | lists the real and synthetic graphs used for ol this section we examine the properties exhibited by PDTL

experiments. Our synthetic RMAT graphs are scale-freerg;rad"’ ithout comparing it to other systgms. :

produced by the RMAT generator [6], such that RMAT- 1)_ Local: We_tested _Neak s_callng of PDTL in the Local
contains2™ vertices and2"** edges. Our triangle counts forMUIt'f:ore machine, by increasing the number of cores, but
real graphs have been verified to be correct. Specificaléy, theeplr:]g th(’." tot_al amount of .mewory constant at 1ﬁ8|GB’
Orkut and LiveJournal graphs have reported triangle cour?él slown in Flgured 3r']. Spf(?cmca y, using 2d cores halves
on the SNAP repository [16] that match our values, while thg?'cy at!on times, an ,t, Is effect persists at a ecreagtug
Twitter and Yahoo datasets are in agreement with OPT [14 ynthetic graphs exhibit better speedups due to their scale

Our PDTL framework assumes that graphs are in binag/ee nature, as does the Twitter graph. However, due to its

bi-directional format, with degrees of vertices and thait-o tructure, the Yahoo graph only exhibitssa speedup at 24
edges in separate files. Moreover, we assume that edgescgtrgs’ compared to B3x speedup for the other graphs.

Sorted_ *?y source a_nd deStinatiQn' partly for compatibikitsh 5Note that OPT [14] requires that the input be sorted by vettgree which
the original MGT binary [11]. Since all efficient graph stgea is not included in the measurements, so we believe this is attiting point.

Fig. 2: PDTL in Local Multicore: Orientation

B. Datasets

Graph Nodes Edges Triangles Size AvDeg STD MaxDeg Source
soc-LiveJournall| 4.8M 68.0M 285,730,264 365MB 17.8 52 20,334 [16]
com-Orkut | 3.1M 117.2M 627,584,181 917MB 76.0 155 33,313 [16]
Twitter | 61.6M 158 34,824,916,864 9.4GB 57.7 402 2,997,487 [15]
Yahoo 1.4B 6.6B 85,782,928,684 59GB 17.9 279 7,637,656 [1]
RMAT-26 | 67.1M 11B 51,559,452522 8.4GB 612 632 430,269 [6]
RMAT-27 | 134.2M 2.1B 114,007,006,286 17GB 63.6 601 676,199 [6]
RMAT-28 | 268.4M 43B 251,913,686,661 34GB 66.0 660 1,062,289 [6]
RMAT-29 | 536.9M 8.6B 556,443,109,053 68GB 69.0 782 1,665,635 [6]
TABLE I: Graphs used for the experiments
Graph 1 node 2 nodes 3 nodes 4 nodes
Total time || Total time Avg copy time|| Total time Avg copy time|| Total time Avg copy time
Twitter 2m44.2s 2mO07.4s 13.55 1m56.0s 16.29 1m49.0s 19.1s
Yahoo 6m37.9s 6m04.9s 1m46.0 5m38.6s 1m52.4 7m13.8s 3m06.4s
RMAT-26 6m10.4s|| 3m29.7s 14.7s| 2m46.8s 16.7s|| 2m31.3s 19.0s
RMAT-27 14m01.1s|| 7m59.5s 27.95| 6m13.1s 27.9s| 5m06.6s 33.3s
RMAT-28 31m16.8s|| 17m57.4s 52.19| 13m34.4s 57.25| 11ml2.1s 1m08.3s
RMAT-29 | 1h17m24.5s|| 42m11.0s 1m46.63| 31m00.3s 2m18.4s| 26m05.0s 2m34.6s
TABLE lll: PDTL in EC2: Total time and average copy time pemete node
4000 pr—— 100000 yvawen the latter two graphs, it comes close to 50% for the Yahoo
2o B oo 80000\ 08 rurer graph on 3 nodes.
8250 \\ £ 6000 \\ ¥yl o Table Il also details the copy times (averaged over the
g 2000 m_ S 10000 A\ number of non-master nodes) for each of our graphs. As
% 100 o 5000 \V\ expected, this number scales with increasing graph size
50 4 (recall Yahoo is larger than RMAT-28, but smaller than
1 2 4 8 16 24 1 2 4 8 16 24 RMAT-29), and with increasing number of nodes (due
Cores Cores .. .
to more limited network bandwidth). The Yahoo graph
Fig. 3: PDTL in Local Multicore: Total Time alsp presents an anomqu in the copying Of_ the gfaph
which results in much higher than expected increase in
copy time for 4 nodes due to improper 1/0O balancing of
2:32 . o 500 N ‘ PO the master node (Section V-D4): since the Yahoo graph
noo0. \ Yoo 4000 S results in heavy I/O due to its structure, it causes an
2 o0 2300 \\ RMAT29 initial 1/0 bottleneck when the master is performing its
& 1000 & 2200 : computaﬂonslwhlltle also copying thg graph to the nodes.
500 100 ‘ 3) Memory: To identify the effect of limited memory, we
o 4 ran experiments in our Local Cluster varying the number of

1 2 4 8 16 322N3N4N
Cores / Nodes

2N
Nodes

Fig. 4: PDTL in EC2: Total Time

3N

4N

nodes, and the total amount of memory available per node
(fixing P = 4 cores/node). As can be seen in Figure 5, the
effect of limiting memory is negligible, and as a matter oftfa
more memory can lead to slightly higher costs due to array
initialization overhead, as indicated in Section IV-B2.

2) Distributed: We also ran distributed experiments in
Amazon EC2, with 1GB of memory/core, as shown in Figure
4. We observe the following:

« The Twitter graph shows good scalability, while the
Yahoo graph, being sparser and having a low averag
degree, does not benefit from adding more than 16 core:
Consequently, the structure of each graph heavily affect
processing time, as also indicated by our analysis.

Seconds

1200

600

000 4 ncde: (JGDC:II.'\ Ti 500 8 nodes (32‘:::\9?)
800 EEE 8 GB RAI %400 E 8 GB RAM
600 § 300

4000 & 200

200 100

RMAT graphs are much denser and more computationally Fig. 5: PDTL in Local Cluster: Memory vs. Calc Time
intensive. This results in good scalability even up to 128 4) 1/0O and CPU: Despite the fact that PDTL is an external-
cores (4 nodes), as copy overhead (included) is negligibleemory algorithm, in our Amazon EC2 experiments we dis-
Comparing total computation time (Table IIl) and ori-covered that it is not I/O-bound. Specifically, we measuhed t
entation time (Table II), further illustrates the unusuabtal I/O for different numbers of cores and nodes on the Waho
behavior of the Yahoo graph compared to Twitter andnd Twitter graphs, and we found that it represents a small
the RMAT graphs. Specifically, even though orientatiopercentage of the computation time (Figure 6). As explained
only represents a small proportion of overall runtime fon Section 1V-B2 and verified here, the absolute time spent

on I/O operations increases as the number of cores increas¢ 200 160

Multicore (16 cores) 140 Multicore (24 cores)

and is tied to the concrete graph structure, as indicatedhdy t 1500 ™= 1 Load Balancing 1200 ™= ! Load Balancing
difference between the Twitter and Yahoo graphs. B i e wio Load Balancing

Seconds
=
o
S

900
8000

700

w
o
o

BN Twitter /O EEE Twitter CPU

600 800
,, 500 o ooy . 0
2 4000 2500 Twitter Yahoo RMAT26 Twitter Yahoo RMAT26
$ 3000 S 400
& & 300

2000 200 Fig. 9: PDTL in Local Multicore: Load Balancing

1000 2000

=T 2 3 4 O—1 2 4 8 16 32
Nodes Cores

Twitter nodes, the difference increases to 13% for 4 nodes,

Fig. 6: PDTL in EC2: Total CPU and I/O breakdown foMvhile for Yahoo, the number increases from 87% to 130%.
various number of cores and nodes E. PDTL Comparisons

Figures 7 and 8 show the per node I/O and CPU breakdown farthis section we examine our PDTL algorithm in the context
Twitter and Yahoo respectively. We notice that for the Texnitt of competing frameworks.

graph, our load-balancing mechanism works fairly well, and 1) MGT: To compare PDTL against single-core MGT, we
there is no correlation between the CPU and the I/O operatigdnducted experiments in Amazon EC2 nodes, looking at
times. However, the Yahoo graph is heavily skewed, and highgst the calculation times. Figure 10 shows that using just 2
I/Os appear at the nodes with highest computation timgsocessors halves the processing time for all real graptts, a
further illustrating the point that the concrete graph e using 32 cores provides #x speedup for the Twitter graph.
heavily influences the overall runtime of our algorithm. Figure 11 similarly shows that the speedup for calculations
of distributed, multicore PDTL over MGT reaches up5tox

with 4 nodes. This effect is especially pronounced for scale-
free RMAT graphs, whereas speedups red¢ck for Twitter,

but only4 x for Yahoo. It should be noted that the comparison
here is against our implementation of MGT, because the
provided MGT binary [11] misreported triangle counts for
some of the larger graplsAs a result, we cannot directly
compare our implementation to the baseline one (or other
external-memory algorithms, which were shown to be slower

Fig. 7: PDTL in EC2: Twitter CPU and 1/O breakdown than MGT [13]), but for completeness we note that for small
graphs the performance was similar to the given binary.

3 Twitter I/O HEE Twitter CPU 0 Twitter /O HEE Twitter CPU

node 1 node 2 0 node 1 node 2 node 3 node 4

700 700 .
3 Yahoo I/O EEE Yahoo CPU 3 Yahoo I/O B Yahoo CPU

600 3000,

5000 Q >>P> LiveJournal
3 2500 <<« Orkut
c 4000)

3 @@ Twitter
33000 2000 Bl Yahoo
2000 8
1000 § 1500
(7]
(2]
node 1 node 2 0 node 1 node 2 node 3 node 4 1000 ™
Fig. 8: PDTL in EC2: Yahoo CPU and I/O breakdown 200
Ll Ll

ot el
1 core 2 cores 4 cores 8 cores 16 cores 32 cores

5) Load Balancing:We compared in our Local Multicore
machine the naive approach of allocating the same number of Fig. 10: PDTL in EC2: Single Node Performance
edges for each core to our load balancing solution. Figure
9 contains our findings for 16 and 24 cores, and cIearIX
illustrates up to a3x improvement on the calculation time,[
even for the Yahoo graph.

Table IV details the total I/O and CPU computations for a
processors within each node in Amazon EC2. As can be se
our load-balancing mechanism leaves room for improveme
since the discrepancies between nodes increase as MOI® NOG{IGT reported 627,506,739 triangles for Orkut (compared to
are added: even though there is only a 1% difference fore62r,584,181) and559, 420, 538 triangles for Twitter (compared t84.8B).

2) OPT: We compared our multi-core algorithm to OPT

4] in our two Local Multicore machines. We measured setup

time (orientation for PDTL and database creation for OPT) an
alculation time separately, and report our results whémgus
ﬁ cores in Table V. With the exception of the LiveJournal
etaset, our calculation time is always (and uRto) faster

10

Graph | 2 nodes [3 nodes I 4 nodes
CPU
Twitter 43m19.9s 44m03.0 33m36.7s 32m00.4s 35m32. 29m01.0s 26m53.1s 27m43.5s 30m48.8s
Yahoo | 1h26m17.7s 46m57.89 1h28m16.2s 59m05.4s 40m12.4s 1h29m12.0s 1h02m45.8s 44m58.7s 38m37.0s
RMAT-26 | 1h26m13.9s 1h8m35.3§ 1h4m23.1s 53m01.3s 45m58. 53m57.1s 44m34.3s 40ml14.3s 34m59.3s
10
Twitter 53.5s 23.7s 54.43s 23.0 53.5s 13.3s 17.8s 17.3s
Yahoo 9m40.8s 28.3s] 7m2.4s 24.7 4m53.1s 48.1s 24.9s 22.4s
RMAT-26 2m35.2s 29.25 2m23.5s 20.9 1m25.2s 19.6s 18.4s 15.3s
TABLE IV: PDTL in EC2: Per node total CPU and 1/O breakdown
60 3) PowerGraph: We also compared our distributed frame-
@@ Twitter work to PowerGraph [10] in Local Cluster and Amazon
so—gmﬁzs EC2. To make a fair comparison, we consider two measures:
a0l &8 huarer V the total runtime of both programs (including orientation i
g | VW AwaAT20 PDTL's case), and the pure calculation time (including load
§30 balancing costs for PDTL). For PowerGraph, the calculation

T core 1IN (32) 2N (64) 3N (96) 4N (128)

Fig. 11: PDTL in EC2: Speedup over MGT

than OPT’s calculations, and our setup time is upiea faster.
When looking at the total time, PDTL is up t5x faster

time is the reported time of the triangle counting algorithm
For PDTL, the overall calculation time corresponds to the
maximum individual calculation time between the different
nodes. This is because the nodes start calculating as soon as
they receive the files and, thus, the calculation time of the
“struggler” node determines entirely the overall calciolat
time. The valuetotal — calc thus represents the setup time
for PowerGraph, while it represents a combination of nekwor
costs and workload imbalance for PDTL.

Figure 13 shows that although calculation times are similar

for large graphs (and.8x faster for LiveJournal). As can be(with PDTL presenting an advantage as the graphs become
seen in Figure 12, these effects remain for any number [sigger), with setup times, PDTL is more thahx faster.
cores, though they are even more pronounced for fewer omgaple VI illustrates this point more clearly, and also hights
We should note that the OPT binary we received occasionalpyat for larger graphs, PowerGraph runs out of memory. This

gave inconsistent triangle counts and could not run With=
128G B, hence the memory discrepancy in our testing.

Graph PDTL OPT
Orientation Calc H Database Calc
LiveJ1 1.4s 12.4s 1m46.8s 3.3s
Orkut 3.6s 11.4s 43.6s 11.7s
Twitter 32.8s 4m22.9s|| 3mb55.2s 7m17.6s
Yahoo 3m55.6s 5m57.9 - -
RMAT-26 29.3s 8m40.4s|| 15m10.3 16m51.2s

TABLE V: Local Multicore: PDTL and OPT Performance

1200
.. PDTL calcula.t on
10009 e |
% 8000 |- OPT setup
c
g 6000
v 4000
2000
0

is especially noteworthy, given that PowerGraph experimen
were run on nodes with 244GB of memoegach for a total

of 976GB, while our PDTL experiments were run using
only 1GB/core (with much lower requirements) for a total
of 128GB of memory. This validates our analysis in Section
IV-B2, clearly illustrating that partitioning-based appches
do not work for large graphs, and that external-memory
algorithms like PDTL are needed.

900
800
700

600

€500
S 400

1300
200
10

35
300
250

%)

2200

S
¢ 150
[%2]

N Twitter total
itter-calc

EEE RMAT27 total
B RMAT27 calc

PDTL

0 PowerGraph

PDTL

0 PowerGraph

Fig. 13: EC2 (4N): PDTL and PG breakdowns
4) Other Frameworks:Although we could not obtain a
copy of the PATRIC binary, the original paper [3] indicates
that PATRIC counts the triangles in the Twitter graph in 9:24
using 200 cores, and 4GB of memory/core. In another recent
experiment [14], PATRIC was run in a cluster of 31 nodes

Fig. 12: Local Multicore: PDTL (128GB) and OPT (100GB)with 12 threads per node (372 threads total) and 2GB of

on RMAT-26

memory/core for a time of 10m8s. In either case, we notice

11

Graph PDTL PowerGraph
Calc Total Calc Total
Orkut 6.9s 11.7s 4.9s 30.6s
Twitter 1m28.5s 2m21.89| 1m37.3s 5m30.5s
Yahoo 5m23.9s 11m09.4 F F
RMAT-26 2m18.6s 3m00.69| 2m56.7s 6m29.7s
RMAT-27 5m02.1s 6m06.79| 6m29.5s 13m30.5s
RMAT-28 | 11m12.1s 13m10.9 F F
RMAT-29 | 25m33.5s 30m21.2 F F

TABLE VI: PDTL and PowerGraph in EC2. F represents a
W pht P Acknowledgments. We would like to thank Marton Havasi

out-of-memory exception

in our experiments, scale-free graphs scale extremely, well
even up to 8 machines, while the real-world Yahoo graph [1]
exhibits a slowdown at even 4 nodes.

Overall, our framework provides a starting point towards
many directions, including altering it for dynamic or apgiro
mate triangle counting, but more importantly for investigg
other graph algorithms and processing systems which can
Henefit from our disk-based approach for large datasets.

for his help with data processing. The research is part fdnde

that PDTL is4x faster using only 96 cores and 1GB oty the EPSRC DDEPI Project, EP/H003959, and by the

memory/core, and is still faster even when the number 6foulandris Scholarship at Magdalene College.

cores is reduced to 8, again highlighting our fast perforrean
under low memory requirements. Finally, it is worth briefly
mentioning that MapReduce-based algorithms such as CTT%
[20] are not competitive, spending 92m calculating Twitter
triangles using 40 nodes with 4GB of memory/node. (3]

VI. CONCLUSIONS ANDFUTURE WORK (4]
In this paper, we presented our Parallel and Distributed Tri
angle Listing (PDTL) framework, the first distributed trian [
gle listing and counting algorithm that focuses on external
memory /O efficiency, but also provides theoretical CPU andf]
Network guarantees. Our framework works well in a variety,
of computational environments, and is based on the recent
MGT algorithm [13]. Key to our engineering approach islél
the combination of both a distributed setting and extern b]
memory. This gives us a high amount of parallelism whilst
freeing us from the usual distributed constraint of fittimgiee [10]
subgraph in memory. Our resulting implementation is sdalab
and performs especially well in low-memory scenarios. Asi]
graphs become larger, the requirement of fitting even p&ss o
graph in memory will no longer be viable, as we also verified?!
experimentally: our algorithm was able to accommodate farz]
massive graphs containing over 8 billion edges with little
memory, while competing partitioning-based frameworks r
out of memory even using almost 1TB of RAM.

More generally, our extensive experiments demonstrate thee!
PDTL is highly scalable across multiple cores and machines,
with low memory requirements, even for graphs with hundregss)
of millions of vertices, and billions of edges. In partictlaver
the Twitter data set [15], our algorithm is faster than alttod
state-of-the-art algorithms in distributed and paralt@rgle [18]
counting: PDTL is4x faster than PATRIC [3]3x faster than
OPT [14], and2x faster than PowerGraph [10]. [19]

Future work could focus investigation on different types qgboj
disks and file systems (for instance distributed file systems
or lazy evaluation), as a means of removing any copyi 61]
bottlenecks that may exist. Such research could be informed
by PowerGraph’s general-framework, which fares better-com
pared to triangle-specific systems. Even though its high melf’!
ory requirements influence the results, it would be intémgst
to more formally investigate this. Additionally, more diétd
investigations could try different techniques of load balag, 25]
and provide a better understanding of the optimal number of
machines and cores for any given graphs. As we identified

[17]

[24]

12

14] Kim, J., HaN, W.-S., LEE, S., RRK, K., AND Yu, H.

REFERENCES

Yahoo! Webscope. http://webscope.sandbox.yahoo.com/
AGGARWAL, A., AND VITTER, JEFFREY, S. The input/output complex-
ity of sorting and related problem&€ommun. ACM 319 (Sept. 1988).
ARIFUZZAMAN, S., KHAN, M., AND MARATHE, M. PATRIC: A
parallel algorithm for counting triangles in massive netkgor CIKM
13, ACM.

BATAGELJ, V., AND ZAVERSNIK, M. Short cycle connectivityDiscrete
Mathematics 30,73-5 (2007).

5] BECCHETT], L., BoLDlI, P., CASTILLO, C.,AND GIONIS, A. Efficient

semi-streaming algorithms for local triangle counting in masgiraphs.
KDD '08, ACM.

CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C.
recursive model for graph mining. SIAM '04.
CHIBA, N., AND NiIsHIZEKI, T. Arboricity and subgraph listing
algorithms. SIAM J. Comput. 141 (Feb. 1985).

CHuU, S.,AND CHENG, J. Triangle listing in massive networké&éCM
Trans. Knowl. Discov. Data,64 (Dec. 2012).

DEMENTIEV, R. Algorithm engineering for large data setBhD thesis,
Saarland University, 2006.

GoONzALEZ,J. E., lLow, Y., Gu, H., BICKSON, D.,AND GUESTRIN, C.
PowerGraph: Distributed graph-parallel computation onurgtgraphs.
OSDI'12, USENIX Association.

Hu, X., TAO, Y., AND CHUNG, C.-W. MGT executable binary. http:/
appsrv.cse.cuhk.edu.hkaoyf/paper/codesttrilist/trilist.zip.

Hu, X., TAO, Y., AND CHUNG, C.-W. MGT manual. http://appsrv.cse.
cuhk.edu.hkttaoyf/paper/codesitrilistmanual.

Hu, X., TAO, Y., AND CHUNG, C.-W. Massive graph triangulation.
SIGMOD 13, ACM.

R-MAT: A

Opt: A
new framework for overlapped and parallel triangulationdrgk-scale
graphs. SIGMOD '14, ACM.

Kwak, H., LEg, C., BRK, H., AND MOON, S. What is Twitter, a
social network or a news media? WWW '10: Proceedings of the 19th
international conference on World wide wék010), ACM.

LeskoVEC, J. SNAP: Stanford large network dataset collection. Http:
snap.stanford.edu/data/. Accessed: 2014-06-03.

MENEGOLA, B. An external memory algorithm for listing triangles.
Tech. rep., Universidade Federal do Rio Grande do Sul, 2010.
OPSAHL, T., AND PANZARASA, P. Clustering in weighted networks.
Social Networks 312 (2009).

PAGH, R.,AND SILVESTRI, F. The input/output complexity of triangle
enumeration.CoRR abs/1312.072@013).

PARK, H.-M., SILVESTRI, F., KANG, U., AND PAGH, R. Mapreduce
triangle enumeration with guarantees. CIKM '14, ACM.

SHAO, Y., Cul, B., CHEN, L., MA, L., YAO, J.,AND XU, N. Parallel
subgraph listing in a large-scale graph. SIGMOD '14, ACM.

WANG, J.,AND CHENG, J. Truss decomposition in massive networks.
Proc. VLDB Endow. 59 (May 2012).

WANG, N., ZHANG, J., TaAN, K.-L., AND TuUNG, A. K. H. On
triangulation-based dense neighborhood graph discovéryc. VLDB
Endow. 4 2 (Nov. 2010).

WATTS, D., AND STROGATZ, S. Collective dynamics of 'small-world’
networks. Nature 393 (1998).

YANG, Z., WILSON, C., WANG, X., GAO, T., ZHAO, B. Y., AND DAI,

Y. Uncovering social network sybils in the wildACM Trans. Knowl.
Discov. Data 8 1 (Feb. 2014).

http://webscope.sandbox.yahoo.com/
http://appsrv.cse.cuhk.edu.hk/~taoyf/paper/codes/trilist/trilist.zip
http://appsrv.cse.cuhk.edu.hk/~taoyf/paper/codes/trilist/trilist.zip
http://appsrv.cse.cuhk.edu.hk/~taoyf/paper/codes/trilist/manual
http://appsrv.cse.cuhk.edu.hk/~taoyf/paper/codes/trilist/manual
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

APPENDIXA
EC2: PDTLAND OPT

PDTL experiments in EC2 use 16GB of total memory for 1 node, 58B/core for multiple nodes.

Graph Cores Nodes
1 2 4 8 16 32 2 3 4

CPU
Twitter | 45m02.1s 45ml17.4s 46ml7.5s 48m05.6s 50m08.8s 1h09m501527m12.6s 1h40m59.1s 1h54m16.3s
Yahoo | 19m06.5s 19m14.3s 21m53.2s 28m58.0s 47m24.4s 2h08m332042m05.7s 3h06m23.3s 3h54m22.7s

110
Twitter 36.0s 26.5s 36.5s 46.9s 1m10.0s 1m17,3s 1m27.6s 1m50.2s 1m52.3s
Yahoo 1m02.5s 2m02.7s 2m12.8s 3m48.2s 6m18.4s 9m20.1s11m19.0s 9m10.6s 7m39.5s

TABLE VII: PDTL in EC2: Total CPU and I/O breakdown for varistnumber of cores and nodes

Graph

Cores

Nodes
1 2 4 8 16 32 2 3 4
LiveJ1 15.1s 8.5s 5.3s 3.6s 2.8s 2.6s 3.0s 3.0s 3.1s
Orkut 1m23.8s 44.0s 25.1s 15.0s 10.4s 9l6s 8.4s 8.0s 8.1s
Twitter 45m38.5s 23m44.3s 12m15.7s 6m35.9s 3m47.4s 2m44.22m07.4s 1m56.0s 1m49.0s
Yahoo 20m09.8s 12m49.4s 9m08.2s 7m20.1s 5m58.3s 6m3[7.98m04.9s 5m38.6s 7m13.8s
RMAT-26 1h38m12.8s - - - - 6m10.4$ 3m29.7s 2m46.8s 2m31.3s
RMAT-27 3h58m00.6s - - - - 14m01.1$ 7m59.5s 6m13.1s 5m06.6s
RMAT-28 9h38m05.4s - - - - 31m16.8s 17m57.4s 13m34.4s 11ml2.1s
RMAT-29 | 23h24m02.5s - - - - 1h17m24.5s 42m11.0s 31m00.3s 26m05.0s
Twitter (OPT) \ 53m55.1s 27m16.2s 13m49.8s 7m23.0s 5mO00.1s 3m]41.4s N/A N/A N/A

TABLE VIII: EC2: PDTL and OPT (12GB)

APPENDIXB
PDTL LoCAL MULTICORE: RUNTIME, ORIENTATION, AND LOAD BALANCING

Graph | d} .. 1 core 2 cores 4cores 8cores 16 cores 24 cores
LiveJ1 687 3.5s 2.5s 2.2s 2.0s 1.6s 1.4s
Orkut 535 9.4s 6.8s 4.6s 3.7s 3.6s 3.6s
Twitter | 4,102 2m22.9s 1m31.5s 58.6s 41.8s 36.4s 32.8s
Yahoo | 1,540 6m50.5s 6m37.6s 5m03.7s 4m58.8s 4ml12.5s 3mb55.6s
RMAT-26 | 2,964 2m03.0s 1m35.2s 57.0s 39.9s 32.9s 29.3s
RMAT-27 | 3,855 5m05.1s 3m08.5s 1m55.5s 1m184s 1m06.3s 1m00.1s
RMAT-28 | 4,984 10m25.1s 6m48.6s 4m00.2s 2m37.7s 2ml12.3s 1m58.8s
RMAT-29 | 6,389 22m14.6s 13m42.5s 7m54.6s 5m27.5s 4m21.7s 4m16.2s

TABLE [X: PDTL in Local Multicore: Orientation

Graph 16 cores 24 cores
w/ LB w/o LB w/ LB w/o LB
Twitter 9m44.4s 5m39.6 7m03.1s 4m22.9s
Yahoo | 19m22.7s 6m10.8g| 15m23.9s 5m57.9s
RMAT-26 | 31m30.6s 11m16.7$) 24m51.9s 8m40.4s

TABLE X: PDTL in Local Multicore: Runtime with and without b balancing (128GB memory)

Graph | 1 core 2 cores 4 cores 8 cores 16 cores 24 cores
LiveJ1 37.7s 27.9s 21.2s 16.8s 13.5s 12.4s
Orkut 1m46.9s 58.3s 33.4s 21.2s 13.7s 11.4s
Twitter 58m45.3s 28m57.9s 15m08.0s 8m55.0s 5m39.6s 4m22.9s
Yahoo 29m15.5s 16m40.6s 10mO04.0s 7m13.0s 6m10.8s 5m57.9s
RMAT-26 2h07m08.2s 1h07m35.0s 35m03.0s 19m37.3s 11m16.7s 8m40.4s
RMAT-27 5h07m40.6s 2h44m08.1s 1h25m16.0s 48m15.0s 27m04.0s 20m52.9s
RMAT-28 | 12h26m43.8s 6h38m52.6s 3h27m21.0s 2h00m20.9s 1h08m54.8s 89m58.
RMAT-29 | 25h42m50.9s 14h26m31.1s 8h31m50.7s 4h42m16.4s 2h43m44.8s mI*hG%

TABLE XI: PDTL in Local Multicore machine (128GB Memory)

13

LocAL CLUSTER: POWERGRAPH AND PDTL RUNTIME

APPENDIXC

Graph Nodes
2 4 8
LiveJ1 8.6s 10.9s 15.2s
Orkut 31.9s 29.7s 37.7s
Twitter 11m08.8s 7m58.9s 8m02.3s
Yahoo 22m18.8s 23m27.1s 40m07.3s
RMAT-26 22m34.8s 13m22.8s 11m43.7s
RMAT-27 54m15.7s 31m02.4s 24m55.7s
RMAT-28 2h9m18.4s 1h12m25.2s 55m50.2s
RMAT-29 | 5h16m07.5s 2h53m01.9s 2h04m23.7s
TABLE XlI: PDTL in Local Cluster: 8GB of Memory/ Node
Graph Cores Nodes
1 4 2 4 8
LiveJ1 29.0s 13.6s 12.5s 13.0s 18.3s
Orkut 2m06.4s 41.35 29.4s 31.0s 39.0s
Twitter 1h11m47.0s 19m33.3 11m40.7s 8m17.5s 8m26.4s
Yahoo 40m42.0s 35m03.3 21m28.5s 22m39.4s 37m44.8s
RMAT-26 2h39m36.8s 43m56.4 22m41.9s 13m41.4s 11m53.3s
RMAT-27 6h22m37.6s 1h47m30.7 54m35.8s 31m59.8s 25m59.3s
RMAT-28 | 15h34m26.6s 4h19m12.0s 2h10m46.6s 1h14m34.6s 57m21.2s
RMAT-29 | 37h33m37.0s 10h29m09.1s 5h16m57.3s 2h53m09.1s 2h5m03.6s

TABLE XIII: PDTL in Local Cluster: 32GB Memory/ Node

Graph

PDTL PowerGraph
Orientation Calc Total Calc Total
LiveJ1 1l.4s 22.5s 23.9 7.0s 21.3s
Orkut 3.6s 17.7s 44.9 18.9s 42.7s
Twitter 32.8s 5m02.5s 9m37.28 6M33.9s 10m22.2s
Yahoo 3m55.6s 19m33.2s 42m11. F F
RMAT-26 29.3s 8m31.1s 11m55.2 F F
RMAT-27 1mO00.1s 19m45.9s 26ma31. F F
RMAT-28 1m58.8s 45m39.6s 59m36. F F
RMAT-29 4m16.2s 1h51m43.6s 2h15m48.9s F F

TABLE XIV: Local Cluster (7N): PDTL (32GB/N) and PowerGragd0GB/N).
F represents an out-of-memory exception

14

	icdcs.pdf
	Introduction
	Related Work
	Preliminaries
	Definitions

	PDTL
	Massive Graph Triangulation
	Modifications
	Analysis

	Distributed Framework
	Description
	Analysis

	Evaluation
	Setup and Methodology
	Datasets
	Preprocessing
	PDTL Properties
	Local
	Distributed
	Memory
	I/O and CPU
	Load Balancing

	PDTL Comparisons
	MGT
	OPT
	PowerGraph
	Other Frameworks

	Conclusions and Future Work
	References
	Appendix A: EC2: PDTL and OPT
	Appendix B: PDTL Local Multicore: Runtime, Orientation, and Load balancing
	Appendix C: Local Cluster: PowerGraph and PDTL runtime

