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Summary

In 2002, Suresh Chari, Rao Josyula and Pankaj Rohatgi presented a very powerful method,

known as the Template Attack, to infer secret values processed by a microcontroller, by

analysing its power-supply current, generally known as its side-channel leakage. This

attack uses a profiling step to compute the parameters of a multivariate normal distribu-

tion from the leakage of a training device, and an attack step in which these parameters

are used to infer a secret value (e.g. cryptographic key) from the leakage of a target device.

This has important implications for many industries, such as pay-TV or banking, that use

a microcontroller executing a cryptographic algorithm to authenticate their customers.

In this thesis, I describe efficient implementations of this template attack, that can push

its limits further, by using efficient multivariate statistical analysis techniques. Firstly,

I show that, using a linear discriminant score, we can avoid some numerical obstacles,

and use a large number of leakage samples to improve the attack, while also drastically

decreasing its computation time. I evaluate my implementations on an 8-bit microcon-

troller, using different compression methods, including Principal Component Analysis

(PCA) and Fisher’s Linear Discriminant Analysis (LDA), and I provide guidance for the

choice of attack algorithm. My results show that we can determine almost perfectly an

8-bit target value, even when this value is manipulated by a single LOAD instruction.

Secondly, I show that variability caused by the use of either different devices or different

acquisition campaigns can have a strong impact on the performance of these attacks.

Using four different Atmel XMEGA 256 A3U 8-bit devices, I explore several variants of

the template attack to compensate for this variability, and I show that, by adapting PCA

and LDA to this context, we can reduce the entropy of an unknown 8-bit value to below

1.5 bits, even when using one device for profiling and another one for the attack.

Then, using factor analysis, I identify the main factors that contribute to the correlation

between leakage samples, and analyse the influence of this correlation on template attacks.

I show that, in some cases, by estimating the covariance matrix only from these main

factors, we can improve the template attack. Furthermore, I show how to use factor

analysis in order to generate arbitrary correlation matrices for the simulation of leakage

traces that are similar to the real leakage.

Finally, I show how to implement PCA and LDA efficiently with the stochastic model

presented by Schindler et al. in 2005, resulting in the most effective kind of profiled

attack. Using these implementations, I demonstrate a profiled attack on a 16-bit target.
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Chapter 1

Introduction

Smartcards, such as those provided to their customers by many banks across the world,

use a microcontroller to encrypt or decrypt data, in order to authenticate a person (e.g.

verify a PIN) or a transaction (e.g. generate an electronic transaction certificate), based

on a secret key stored in the microcontroller. However, the physical implementation of a

microcontroller leaks information via a side-channel, such as the power-supply current or

electromagnetic emanations. This leakage may allow an attacker to recover the secret key

of a microcontroller, and use that to generate valid certificates for unlawful commercial

transactions. To reduce this threat, microcontrollers used in the smartcards provided by

banks have several layers of countermeasures to limit the amount of side-channel infor-

mation available to an attacker. But, to develop efficient countermeasures, and to have a

correct assessment of the level of security provided by such smartcards, it is important to

have a good understanding of the potential of side-channel attacks.

1.1 Cryptography

Encryption has been used for thousands of years, a classic example being the Caesar

cipher, devised by the Roman emperor Julius Caesar [57] to replace each letter in a

message by another one at a fixed distance in the alphabet. However, until the past

century, encryption was developed and analysed more as an art, rather than a science.

Another popular example is the Enigma machine, which was used by the Germans during

the Second World War to encrypt messages between battlefield troops. This machine

used several connected rotors, that could encrypt one character at a time by displaying

a permutation of the input character. The secret “key” of these machines was composed

mainly of the initial position of the rotors (this position changed after typing a letter),

and the selection of rotors (some machines used three out of five possible rotors). Before

the end of the war, by a collaboration between Poland and Britain, scientists at Bletchley

Park (England), including Alan Turing, found a mechanism to decrypt messages and even

13



14 1.1. CRYPTOGRAPHY

built machines to automate this process. The break of the Enigma made evident the need

for obtaining secure encryption systems, based on strong theoretical foundations.

Today, we may refer to Cryptography (from Greek: secret writing) as the art of designing

cryptosystems, to cryptanalysis as the art of breaking cryptosystems, and to cryptology

(from Greek: study of secrets) as the union of cryptography and cryptanalysis [96]. The

input to an encryption algorithm (e.g. a document) is known as the plaintext, and the

encrypted output as the ciphertext. More formally, a cryptosystem (e.g. an algorithm

that encrypts some data) is considered secure “if no adversary can compute any function

of the plaintext from the ciphertext” [59, Section 1.4].

The first rigorous theoretical study of cryptography was probably the paper published by

Shannon in 1949 [99], where he also defined the conditions necessary for obtaining perfect

secrecy : the probability of obtaining a ciphertext, given a plaintext, must be independent

of the plaintext. Shannon also showed that for obtaining perfect secrecy, the secret key

used to encrypt a plaintext must be as long as the plaintext. This result means that perfect

secrecy is impractical for most scenarios, since it would require parties to exchange keys

as long as the messages they want to exchange.

However, even if perfect secrecy is not practical, the wider development of computers after

the Second World War enabled scientists to develop algorithms with strong theoretical

foundations, secure given some practical assumptions. The first notable example was the

development at IBM of the Data Encryption Standard (DES) [1], based on a design by

Horst Feistel, which had some strong, unpublished, theoretical design rules (e.g. specially

designed S-boxes, criteria for choosing the number of encryption rounds, which were

discovered after its publication [15]), and was considered computationally secure. The

notion of computationally secure relies on the assumption that an attacker is limited in

the amount of computation he can perform to break the system. In particular, for DES

it was assumed that the only possible attack was to iterate over all possible 256 values

of the key, which was considered expensive in 1977, when DES was first published as a

standard. However, a DES key of 56 bits has long been considered insecure, and the

successor of DES, the Advanced Encryption Standard (AES) [2], uses key sizes of 128,

192, or 256 bits. Another notable example was the proposal by Diffie and Hellman in

1976 [35], and the development by Rivest, Shamir and Adleman in 1978 [94], of a public-

key cryptosystem, that allowed one party to publish a public key, which another party

could use to encrypt messages decryptable only by the party knowing the corresponding

private key (usually the party publishing the public key). The system published by

Rivest, Shamir and Adleman (known as RSA), relies on the assumption that factoring

the product of two sufficiently large randomly chosen prime numbers is computationally

hard, i.e. there are no polynomial-time algorithms known for this task [59, Section 7.2.4].

Today, an RSA key modulus of size larger than 2048 bits is still considered secure.

The development of cryptography continued in the direction of providing semantic secu-
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rity, i.e. formal definitions and proofs of the security of a cryptosystem, when assuming

some computational limitation of the adversary. This line of research started the same

year I was born, in 1984, with the seminal work of Goldwasser and Micali [49], in the

context of public-key cryptosystems, which lead to two widely employed definitions of se-

curity: chosen-plaintext attack (CPA) security, which means that an adversary should not

be able to break the security of the system even when he is supplied with a large number of

encryptions of chosen plaintexts, and chosen-ciphertext attack (CCA) security, where the

adversary is also given access to the decryption of a large number of chosen ciphertexts.

In the context of block ciphers, such as DES or AES, the description of pseudorandom

functions [48] and pseudorandom permutations [71] established the grounds for proving

the security of their applications. More recently, we saw the development of authenticated

encryption schemes, which provide CPA-secure encryption and ciphertext integrity (i.e.

an adversary cannot produce an arbitrary ciphertext that decrypts correctly), and that

are therefore CCA-secure.

Transport Layer Security (TLS) [34] is a present example of a system using modern

cryptography to secure the communication between a web browser and a web server.

Since its development, there were many attacks discovered against it, but its latest version,

TLS 1.2, using authenticated encryption, such as Galois Counter Mode (GCM) [77], is

currently considered secure. In a recent paper, Krawczyk, Paterson and Wee [65] provide

a detailed security analysis of TLS.

EMV [38] is another widely deployed application of cryptographic algorithms. EMV aims

to protect against counterfeiting banking cards and the misuse of stolen cards, by means

of a cryptographic protocol between the card, a terminal (card reader), and the bank that

issued the card. In contrast to TLS, where the target systems (e.g. web-servers) are not

generally physically accessible to an attacker, EMV cards may be physically analysed by

an attacker, and therefore they are a good target for the side-channel attacks presented

below. For this reason, these cards often contain many countermeasures against these

attacks, and are generally required to be security-certified for high assurance levels. As

part of my research, I also investigated some aspects of the security of EMV, and found

several problems, such as the possibility to exploit a protocol flaw in order to extract

information from a card, that may be used later to perform an unlawful commercial

transaction [16]. However, in the following chapters, I shall focus my research on side-

channel attacks. In Appendix A, I provide some details about EMV, in order to explain

why the EMV cards need resistance to side-channel attacks.

1.2 Side-channel attacks

Along the search for better cryptosystems during the two World Wars, to encrypt messages

over a particular communication channel, the military discovered the possibility of “lis-
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tening” to the main communication channel by means of another, unintentional, channel,

known as the side-channel. As Kuhn [67, Section 1.1.1] and Markettos [74, Section 2.11.1]

describe in more detail, there were many such cases during the past century. Among the

first known cases, during the First World War, the Germans were able to retrieve the

communications of enemy troops, by analysing the earth return-current of the single-wire

telegraph system used by those troops [14]. Another important case, this time involving

a cryptosystem, was the side-channel analysis performed by British intelligence on the

French embassy in London, around 1960–1963 [112]. MI5 and GCHQ scientists used a

broad-band radio-frequency tap on the communication line used by the French embassy to

transmit information, encrypted using a low-grade cipher, in the hope of obtaining partial

information of the plaintext, that may leak into the channel. It turned out that they were

indeed able to retrieve the plaintext of the communication encrypted using the low-grade

cipher. Furthermore, they were also able to retrieve a secondary signal, corresponding to

the plaintext of a high-grade encrypted communication, which leaked somehow (e.g. via

electro-magnetic cross-talk) into the low-grade channel.

While the previous attacks showed that it was possible to use side-channel leakage, such

as the signal recovered by the British intelligence, to recover the plaintext message, the

publication of side-channel attacks against the cryptosystem itself, e.g. to recover the

secret key, came much later. Probably the first such publication was the paper by Paul

Kocher in 1996 [63], describing the use of timing information to determine the private-key

used by the RSA cryptosystem. Kocher’s timing attack exploited the fact that the time

needed to perform the modular multiplication and exponentiation operations, used by the

RSA cryptosystem, depended on the value of the private key bits.1

Two years later, in 1998, Kocher, Jaffe and Jun published another side-channel attack,

known as Differential Power Analysis (DPA) [62], which exploited the monitored power

consumption of a microcontroller executing DES encryptions, to determine the secret

key used with DES. This publication marked a very important point in history, since a

cryptosystem such as DES, which was considered secure against all known cryptanalytic

attacks, and was even designed to resist the differential cryptanalysis attacks discovered

by Biham and Shamir [15] after its publication, could be easily broken (i.e. we could

recover the secret key), when implemented on a physical device accessible to an attacker.

This had important consequences for the pay-TV industry, and later for the banking

industry as well, who provided their customers with a microcontroller (in the form of

a smartcard), in order to authenticate them, by using their smartcard to perform some

encryption using a cryptosystem such as DES. After the publication of DPA, this technique

has also been used with the electromagnetic emissions of microcontrollers [42, 91], and

was also immediately analysed for the case of AES [22].

Other applications of side-channel attacks include the use of electromagnetic emissions

1RSA basically decrypts a message y as yx mod n, where x is the private key, and n is public.
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from displays [111], photon emissions from transistors [39] and displays [66], and acoustic

waves to recover keystrokes [10] or RSA keys [44].

1.3 Template Attacks

The Template Attacks were first described by Chari, Rao and Rohatgi [24] in 2002, demon-

strating that this technique can provide results far superior to DPA, by using both signal

and noise information. The attack consists of two parts, a profiling step in which the pa-

rameters of a multivariate normal distribution of the side-channel leakage are computed,

and an attack step in which these parameters are used to infer some secret value (e.g. the

key used by DES or AES). In addition, these attacks are aimed at situations where an

attacker can only acquire a limited number of leakage traces (e.g. power-supply current,

or electromagnetic emanations) from the target device. For this reason, the template

attacks assume the use of a training device, that the attacker can use at will during the

profiling step. Therefore, the aim of these attacks is to accumulate as much information

as possible during the profiling step, such that the attack step can be successful in re-

covering the secret data with a very small number of side-channel leakage traces. Due to

the profiling requirement, the template attack and its variants are also known as profiled

attacks. When profiling is possible, the template attack is known to be the most effective

side-channel attack in terms of number of attack traces required for a successful attack.

The first practical application of the template attack was shown by Chari et al. [24] on a

smartcard running the encryption algorithm RC4 [95], developed by Ron Rivest in 1987.

Later, Rechberger and Oswald [92] presented several options to help in the computation of

template attacks, such as the transformation of time samples into the frequency domain.

Agrawal et al. [6] then showed how to combine DPA and template attacks in order to

target single bits. They showed that DPA could be used as a pre-processing step, in

order to select the most vulnerable bits (i.e. easier to target by DPA), and the best time

instants from the power traces. After this step, they applied the template attack on

secret bits processed by DES, and showed that all of them could be classified correctly

with probability equal to or higher than 0.72, even when using a single attack trace.

In 2005, Schindler et al. [97] presented a method, called stochastic models, to improve

the profiling step of template attacks, by modeling each sample of the leakage traces as

a linear combination of the bits (or combinations of bits) of the target value (e.g. a DES

or AES key byte). Soon afterwards, Gierlichs et al. [46] published an evaluation of classic

template attacks and stochastic models, demonstrating the efficiency of the latter.

Another important contribution, in the development of template attacks, were the ap-

plication of Principal Component Analysis (PCA) [9], and Fisher’s Linear Discriminant

Analysis (LDA) [101], in order to transform the leakage traces, which may contain from

a few hundreds to several hundred thousands leakage samples, into a new dimensional
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space, where we can use only a few variables, but still retain most of the information from

the original traces.

Together with the enhancements of template attacks, as well as the developments of other

powerful attacks, such as Correlation Power Analysis (CPA) [18] and Mutual Information

Analysis (MIA) [45], there were developments on the methodology for evaluating the

success of these attacks. A notable example was the paper by Standaert, Malkin and

Yung [104]. Based on the definitions of guessing entropy by Massey [75] and Cachin [19],

Standaert et al. presented the use of the guessing entropy and success rate as measures of

success of a side-channel attack, and following on the entropy definitions of Shannon [98],

they presented the conditional entropy and mutual information to quantify the leakage

provided by a device. These measures are similar, but they aim to provide different

views in the evaluation of side-channel attacks. Using these measures, Standaert et al.

performed an extended evaluation of classic template attacks and stochastic models [103],

as well as an evaluation of template attacks in relation to DPA, CPA and MIA, targetting

two software implementations of AES [102].

On another line of research, some studies have analysed the impact of using different

devices or acquisition campaigns for the success of template attacks. Renauld et al. [93]

have used 20 different samples of a hardware circuit, concluding that template attacks

may not work at all when using different devices for the two steps of the attack, but using

several devices during profiling can help. Then, Elaabid et al. [37] showed that even using

the same device but different campaigns can result in very ineffective template attacks.

On the other hand, Lomné et al. [70] showed that, by using electromagnetic emanations,

the template attacks can be effective even when using different devices for the profiling

and attack steps.

1.4 Contributions

In this thesis, I use several multivariate statistical analysis techniques in order to improve

the efficiency of template attacks in different situations.

In Chapter 3, I provide some background on multivariate statistical analysis, with a focus

on those details that are used in subsequent chapters.

Then, in Chapter 4, I provide a detailed description of template attacks, present several

numerical problems that can arise in practice, and show efficient techniques to overcome

the numerical issues, improve the success, and reduce the computation time of these

attacks. I also present an extensive evaluation of template attacks using different com-

pression methods, and show that LDA is generally the most efficient, but in general we

should not compress the leakage traces beyond what is necessary to enable the computa-

tion of the attacks. Using these efficient techniques, I demonstrate that we can determine
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almost perfectly an unknown 8-bit value manipulated by a microcontroller, even when

this value is used by a single instruction.

Next, in Chapter 5, I provide an evaluation of template attacks on different devices,

by using four different samples of the Atmel XMEGA 256 A3U 8-bit microcontroller,

and I present several techniques that can improve substantially the success of template

attacks. In particular, I show how to adapt the PCA and LDA compression methods for

this scenario, such that even when using a single device for profiling, but a different one

during the attack step, we can still determine very well an unknown 8-bit value.

In Chapter 6, I provide what is probably a first study of the impact of correlation between

leakage samples on template attacks and the impact of acquisition parameters (bandwidth,

power supply) on this correlation. Using factor analysis, I demonstrate that the correlation

is mainly caused by a small number of factors, and how knowledge of these factors can be

used to improve the template attacks. Furthermore, I also show how to use factor analysis

for the simulation of leakage traces having any desired correlation, in order to match the

observations from real traces.

Finally, in Chapter 7, I show how to implement PCA and LDA with stochastic models,

resulting in the most efficient version of template attacks. Furthermore, I also show how

to use these PCA and LDA implementations for attacking a 16-bit target value.
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Chapter 2

Obtaining side-channel leakage traces

In this chapter, I describe briefly how microcontrollers leak information through the power

supply current, how to exploit this leakage in side-channel attacks, and the evaluation

setup that I used to acquire power consumption leakage traces. In Section 2.3, I present

several datasets that I prepared and used for the evaluations described in the following

chapters.

2.1 Digital circuits and side-channel attacks

The physical implementation of cryptographic algorithms, such as Data Encryption Stan-

dard (DES) [1] or Advanced Encryption Standard [2], or the simple manipulation of data

by microcontrollers, Field Programmable Gate Arrays (FPGA) and other devices, make

side-channel attacks possible.

The term side-channel attack was probably first proposed by Kelsey et al. [60], and may

refer to different channels, such as the use of electromagnetic emanations to eavesdrop

on video displays [111, 67], the use of timing information to extract a secret key [63, 33],

the use of the acoustic channel to eavesdrop on key strokes [10] or even to recover a

cryptographic key [44], or the use of power analysis to recover the secret key used by a

cryptographic algorithm [62]. Although the concepts presented in the following chapters

can apply to any of these side channels, my focus will be on the latter form: attacks that

use the power-consumption leakage of a microcontroller in order to infer the data that it

manipulates. In the following, I may use the terms side-channel attacks or power analysis

attacks interchangeably to refer to this type of attacks.

Registers, buses and combinatorial logic cells, which are an essential part of electronic

devices such as microcontrollers or FPGAs [108, Chapter 26], are the main target of

side-channel attacks.

Most combinatorial cells (such as an OR gate) and registers (also a kind of cell, known as

flip-flop) are built using transistors. In order to minimise transition time from one state

21



22 2.1. DIGITAL CIRCUITS AND SIDE-CHANNEL ATTACKS

A

B

A

B

VDD

IDD

Z
CL

Pull up
Network

Pull down
Network

Figure 2.1: A CMOS NAND gate.

to another (e.g. from low to high) and to minimise space (e.g. by avoiding resistors), man-

ufacturers of such cells use complementary metal-oxide semiconductor (CMOS) process

technology. Using this technology, a logic cell is formed of a combination of both PMOS

(p-channel MOS) and NMOS (n-channel MOS) transistors that create a push-pull net-

work. An example of such a network is shown in the NAND gate from Figure 2.1, where

the pull-up network is formed of PMOS transistors that conduct when the inputs (A, B)

are low (ground), and the pull-down network is formed of NMOS transistors that conduct

when the inputs are high (VDD). When any of the inputs is low (logic 0), the pull-down

network is closed and the pull-up network is open such that the current IDD flows through

the output of the cell (Z) and this current charges the output (load) capacitor CL; when

this capacitor is charged, the voltage across it is VDD. When both inputs are high (logic

1), the pull-up network is closed but the pull-down network is open. In this case the ca-

pacitor is discharged and the output becomes low (ground). In a stable state (i.e. after the

load capacitor has been charged or discharged), this kind of CMOS structure consumes

very little power, which is known as the static power consumption. Giorgetti et al. [47]

provide a detailed analysis of this static leakage and they show, based on simulated data

as well as from real traces from an ASIC [7] containing several Intel 8051 cores [107, 109]

attached to AES modules, that it can be used to differentiate between different keys used

with AES. Also, very recently, Amir Moradi [81], using 3 Xilinx FPGAs, has shown that
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static power can be used to determine the value stored in registers or look-up-tables, as

well as to retrieve the key used with different AES implementations.

Besides the static power, there is a considerable current flow from VDD to ground, when

the output switches from one state to another (due to a change in the input), because

then there are short periods of time when both pull-up and pull-down networks conduct.

This current flow, together with the current caused by charging or discharging the load

capacitor, leads to what is known as the dynamic power consumption [73, Chapter 3].

Most often, it is this dynamic power that is targeted by side-channel attacks, because

it allows us to distinguish between a change in the output vs no change. Furthermore,

functional blocks, such as a multiplier, are composed of many interconnected gates like the

one in Figure 2.1, which update their output state based on the current input. Therefore,

a change in one cell (e.g. at the start of a new clock cycle) propagates through all the

connected cells, resulting in a sequence of changes of their outputs until they reach a stable

state. This effect is known as glitching, and is also an important factor in side-channel

attacks, in particular because it makes it difficult to match theoretical assumptions about

leakage with real leakages.

A bus (mainly a set of parallel wires) generally connects some component, such as memory,

to registers, which are used to store temporary values. Due to the non-negligible length

of buses, they form a substantial output capacitance for a register, very much like the

output capacitance CL in Figure 2.1. Therefore, buses are a good target for side-channel

attacks, because we may be able to differentiate between a transition of a line in the bus

(e.g. from low to high) versus no transition. Furthermore, we may be able to differentiate

between a transition from low to high and a transition from high to low and we may be

able to differentiate between the transitions of individual lines (wires) in the bus.

2.1.1 Leakage models

As I explained earlier, the dynamic power consumption caused by transitions in the output

of CMOS cells or data buses can be used by side-channel attacks. However, in order to

mount a particular side-channel attack we might have to assume a certain leakage model,

i.e. to make an assumption about how the dynamic power consumption leaks information

about the values processed by our target device. I now summarize some of the most

common leakage models.

Bit difference model

One of the first leakage models was used by Kocher et al. in their Differential Power

Analysis (DPA) attack [62]. They simply assumed that the power consumption of a

smartcard running a DES encryption is slightly different when a particular bit b of some
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value v processed by the encryption algorithm is 1 compared to when it is 0. This

assumption is reasonable, since a manipulation of the value v by a physical device (e.g.

microcontroller or FPGA) means in practice the use of a register to store the value v,

or some combinatorial cells to pass this value to some other processing stages. In either

case, the bit b of value v will affect some CMOS cell (see Figure 2.1), and as explained in

Section 2.1, this will lead to different power consumption for different values of b.

Hamming weight model

The Hamming weight HW(v) of a value v (e.g. an 8-bit value) is defined as the number

of bits that are 1 in its binary representation. For example, HW(5) = 2 (since the value 5

is “101” in binary). The idea of using the Hamming weight for side-channel attacks was

probably first proposed by Kelsey et al. [60]. However, it was Messerges et al. [79] who

published some of the first results showing that the power consumption of microcontrollers

follows a Hamming weight model. They explain that this model may be suitable when the

main cause of the dynamic power consumption is the discharge of the load capacitor (see

Figure 2.1), and that this can be observed easily when using a precharged-bus hardware

design. In this case, every 0 bit of a value put into the bus will directly influence the

power consumption.

Hamming distance model

Messerges et al. [79] also explained that, for some microcontrollers, the power consumption

can be modeled by the number of bit transitions (number of bits that change state) on

a bus, which in turn determines the number of CMOS cells that will change state (those

connected to the bus and those influenced by these), hence reflecting the dynamic power

consumption.

If we consider two consecutive values u and v on the data bus, then the number of bit

transitions on the bus can be determined by the Hamming weight of u ⊕ v, where ⊕
represents the exclusive-OR (XOR) operator. This leads to what is now known as the

Hamming Distance model, where the Hamming distance HD(u, v) = HW(u ⊕ v). Other

authors [23, 8] have confirmed this model may work well for many microcontrollers.

As an example, in Figure 2.2, I show average power consumption traces from the Atmel

XMEGA A3U microcontroller1, when loading different 8-bit values k from RAM memory

to a register, for the two clock cycles required by the target LOAD instruction. We can

see that the leakage during the first clock cycle is well separated into the nine Hamming

weight values 0 to 8, while this separation disappears during the second clock cycle. If we

look also at the leakage for the values k = 0 (HW = 0) and k = 255 (HW = 8), shown

1These are taken from the Grizzly Beta dataset, presented in Section 2.3.1.
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Figure 2.2: Average power consumption traces from the Atmel XMEGA A3U microcon-

troller, when loading different values from RAM memory to a register. Left: leakage at

first clock cycle of LOAD instruction. Right: leakage at second clock cycle.

with bold and dashed lines, we can conclude that the leakage for the first clock cycle

follows a Hamming distance model, suggesting that the power consumption is dependent

on the XOR between the value k and some value having HW = 4, that may be present

on the bus before the value k. Also, it seems that the leakage in the second clock cycle

is directly influenced by the value k, since the highest leakage corresponds to k = 255

(HW = 8) and the lowest to k = 0 (HW = 0).

Some researchers [51, 89] also considered a different model for transitions from 0 to 1 and

transitions from 1 to 0 on a data bus, observing improved results in some cases. However,

the standard Hamming distance model remains the most common.

Linear model

Akkar et al. [8] mentioned the use of a linear model P [x] =
∑nbits

i=0 xi · Pi to approximate

the power consumption P [x] of a value x processed by a device as a linear combination

of the bits xi of x. They mentioned that setting all the Pi to 1 reverts to the Hamming

weight model, but they did not provide more details. Later, Schindler et al. [97] refined

this model to allow for more general combinations of bits and arbitrary functions of the

processed values. In Chapter 7, I will describe this model in more detail and I shall

explain how it can be used to obtain very powerful side-channel attacks.

Multivariate normal distribution

The previous models may not accurately represent the leakage of a device, since the ac-

tual leakage may depend on more than the Hamming weight of processed values, or the

values of the individual bits. For example, past computations might affect the leakage in

following clock cycles, or several computations computed in parallel might affect the leak-

age in a particular clock cycle in the case of hardware implementations of cryptographic

algorithms, or perhaps coupling effects between individual bit lines play an important role



26 2.1. DIGITAL CIRCUITS AND SIDE-CHANNEL ATTACKS

for some devices. Therefore, a better model can be obtained if we are able to characterise

precisely the leakage caused by processing a particular target value.

In practice, the leakage traces obtained from an electronic device often follow a multivari-

ate normal distribution. As a result, Chari et al. [24] used this distribution to characterise

the leakage of a device, obtaining very powerful side-channel attacks, known as template

attacks. These attacks are the focus of my work, and they will be described in detail

throughout the following chapters. As I shall show, such attacks, based on characterising

the leakage of each possible target value, worked very well in my experiments, since my

target was often the value processed by a LOAD instruction in an 8-bit CPU. However,

this approach may not provide the best results when dealing with hardware implementa-

tions of cryptographic algorithms, where the target value (often a key byte) is manipulated

together with other data in many operations performed in the same clock cycle. In such

cases, finding an optimal strategy is not trivial, since we might have to model the leakage

of many intermediate values.

2.1.2 The S-box

For the following discussion, it is useful to first introduce briefly the concept of a sub-

stitution box (known as S-box ), a fundamental element of many common block ciphers,

such as DES or AES, because the S-box is very often the target of side-channel attacks.

The S-box is a non-linear mapping between some input value u and some output value

v = Sbox(u). Typically, the input is the XOR between a known value p (e.g. part of the

plaintext) and an unknown value k (e.g. part of the secret key of the block cipher). This

is shown in Figure 2.3. For DES, the S-box maps 6 bits input to 4 bits output, while for

AES the S-box maps 8 bits to 8 bits. The main property of the S-box is its non-linearity,

which means that Sbox(a) ⊕ Sbox(b) 6= Sbox(a ⊕ b). More details can be found in the

book of Paar and Pelzl [84].

A block cipher such as DES or AES iterates a sequence of operations several times to

encrypt some plaintext P into a ciphertext C and for each iteration (round) it uses a

round key, which is derived from the master secret key K. At each round, parts of the

round key (the value k in Figure 2.3) are sent to the S-boxes (which are different for DES

but identical for AES). In most common side-channel attacks, the target is either the

first round of the block cipher for which p is known (is just a part of the plaintext P ), or

the last round of the block cipher if v is known (e.g. if it can be easily derived from the

ciphertext C). In either case, we assume that an attacker can recover the plaintext or the

ciphertext (or perhaps both) and is interested in obtaining the full secret key K.

The side-channel attacks against block ciphers are practical because only a part k (e.g.

6 or 8 bits) of the full master key K (e.g. 56 bit for DES or 128 bit or more for AES) is

processed by one S-box. Therefore, by targeting each S-box individually, we can break
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Figure 2.3: A general S-box scenario, where k is a part of the secret key of a block cipher.

the task of finding the full master key into smaller tasks of attacking only small parts k

of the entire key.

2.1.3 Side-channel attacks

I now briefly describe the most common side-channel attacks evaluated in the academic

community.

Simple Power Analysis (SPA)

Kocher et al. [62] showed that, by simply observing a single power trace of a microcon-

troller, it is possible to reveal the sequence of instructions being executed. This may be

used to extract the secret key of a cryptographic algorithm by targetting the key schedule

if this involves conditional branching, by targetting comparison operations, or by target-

ting the exponentiators needed in public-key cryptographic algorithms such as RSA [94].

Simple and efficient countermeasures for SPA rely on preventing the use of secret data

for conditional branching operations. Furthermore, Kocher et al. mentioned that SPA

will probably fail on most hardware implementations of block ciphers due to their small

power consumption variation. As a result SPA is not considered a major security threat

if simple precautions are taken, but the following attacks are.

Differential Power Analysis (DPA)

Kocher et al. [62] also showed a much more powerful attack against DES (which also

works very well against AES), known as Differential Power Analysis (DPA). It exploits

a known2 relation (such as the input-output relationship of the S-box in Figure 2.3),

2This assumes knowledge of the target algorithm.
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between a target bit b, a ciphertext C and a part k of the round key, to separate power

consumption traces of different encryptions into two groups. Trying each possible value

of k (of which there are only 26 = 64 for DES or 28 = 256 for AES), we can split the

leakage traces according to the value that b would take for each k. Under Kocher’s leakage

model, the difference between the mean values of the traces in the two groups should be

noticeable when we used the correct k to separate the traces, but this difference will be

close to zero when using a wrong candidate k. Given the leakage corresponding to a

cryptologically small number (e.g. 1000) of encryptions, Kocher showed that the correct

value of k is easily recoverable. This result radically changed the view of the cryptographic

community, because an algorithm that is secure in theory (such as AES) can be broken

easily (i.e. we can recover the secret key) using side-channel attacks.

Correlation Power Analysis (CPA)

Based on the observation that the leakage of a microcontroller may be directly related

to some simple model, such as the Hamming weight or Hamming distance of manipu-

lated values, Brier et al. [18] presented the use of Pearson’s product-moment correlation

coefficient [87], described in Section 3.3.5, to determine the values manipulated by a mi-

crocontroller. This main idea behind this attack, known as Correlation Power Analysis

(CPA), is to obtain many traces, then compute the expected Hamming weight (or other

leakage model) of the values corresponding to these traces, and finally compute the corre-

lation coefficient between the power consumption and the leakage model. If our prediction

of the processed values and the leakage model are good, then we should obtain a high

correlation for those leakage samples that correspond to the processed value. Brier et al.

showed how this technique can be used to determine the values processed by a microcon-

troller, and in particular, how this can be easily used to determine the AES key bytes, by

targeting for example the key addition (value u = p⊕k, in Figure 2.3): we simply compute

the correlation between the power consumption and HW(u), for all possible values k, and

decide that the correct key byte corresponds to the one providing the highest correlation.

However, as I explain in Appendix B, note that it makes a great difference whether we

target just the XOR of a key byte and a plaintext byte, or if we target the output of a

non-linear function such as the S-box, which leads to better results with CPA.

Template Attacks

As mentioned earlier, Chari et al. [24] used the multivariate normal distribution

f(x | k) =
1

(2π)m/2|Sk|1/2
exp

(
−1

2
(x− x̄k)

′S−1
k (x− x̄k)

)
(2.1)

to obtain a very powerful side-channel attack, known as the template attack. This attack

works in two steps. In the first step, we use a profiling device, processing known data,
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to obtain the template parameters (a mean vector x̄k ∈ Rm and a covariance matrix

Sk ∈ Rm×m , describing the leakage traces xprofile ∈ Rm) for each possible value k (e.g.

secret key byte). Then, in the second step, we use these parameters, together with (2.1),

to classify a trace xattack ∈ Rm , obtained from the attack device (of the same model as the

profiling device), thus being able to infer the unknown value k? processed by the attacked

device, as

k? = arg max
k

f(x | k). (2.2)

Due to the requirement for a profiling step, these attacks are also known as profiled

attacks.

In Chapter 3, I describe the multivariate normal distribution and how to estimate its

parameters. Then, in Chapter 4, I present the template attack in more detail, as well

as efficient implementations of this attack. In Chapters 5 and 6, I present further im-

provements of the template attack for different practical situations, and in Chapter 7, I

describe efficient implementations of the template attack using the stochastic model of

Schindler et al. [97].

Mutual Information Analysis (MIA)

The Mutual Information Analysis (MIA), presented by Gierlichs et al. [45] in 2008, allows

an attacker to determine some secret value k processed by a microcontroller, when this

value is processed by some known operation, such as the key addition or S-box from

Figure 2.3, which combines the secret value k with a known and modifiable value p. The

overall process of this attack is very similar to CPA, but instead of using the correlation

between power consumption and leakage model, MIA uses the mutual information I(L;X)

as a measure of dependence between the leakage model L of the candidate values (e.g.

v, in Figure 2.3) and the leakage values X. As for CPA, the main idea is that, for the

correct key, the mutual information will be maximized. Gierlichs et al. mention that one

important advantage of MIA is that “it can exploit arbitrary relationships between [L] and

[X]”. They also mention that Pearson’s correlation coefficient requires a linear relation

between leakage model and leakage traces, but this is not entirely the case, since Pearson’s

correlation coefficient may capture other types of relationships as well. For example, two

random variables X and Y = X2 can have a very high correlation coefficient when X is

positive, so the advantage of MIA over CPA may not be that great in practice.

2.1.4 Countermeasures

Along with the side-channel attacks presented earlier, there have been many countermea-

sures developed to limit the effects of these attacks. Some of the first countermeasures

included the addition of noise, dummy operations and randomized clock [73] to diminish
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the ability of using many power consumption traces for statistical attacks such as DPA.

However, these countermeasures do not prevent these attacks completely, but only make

them more difficult. Therefore, several people proposed and developed a more radical

and theoretically sound approach [23, 50, 30, 73], known as masking. The main idea of

masking is to split the intermediate values targeted by a side-channel attack (e.g. the

output of the S-box from Figure 2.3), into a number of secret shares that depend on

some random values (the masks), which are refreshed at each iteration of the algorithm.

This should remove the dependency of the leakage traces from secret data. However, in

practice, masking cannot completely remove this dependency, due to glitches in a CMOS

device, pipeline effects and other implementation details that cannot be fully captured

by masking. Also, incorrect implementations of masking can lead to even more leakage,

therefore resulting in actually better attacks. For example, the current results of an open

competition known as DPA contest V4 [85], show that a standard template attack can

easily recover the secret key using a single attack trace. Therefore, in practice, a combi-

nation of countermeasures is used to design secure devices, such as the smartcards used

in the banking industry.

In my work, I did not consider any countermeasures, since my focus has been to ex-

plore efficient multivariate statistical techniques for template attacks. As a result, during

profiling I could determine the data processed by the microcontroller, leading to a high

signal-to-noise ratio, while for the attack the traces were not affected by unknown values

(such as masks). However, many of the techniques presented here can be applied also to

devices protected by some countermeasure. For example, Lemke-Rust and Paar [69] show

how to use stochastic models (which I explore in detail in Chapter 7) against a device

protected by masking.

2.1.5 Leakage-resilient cryptography

Besides the physical (e.g. dual rail, noise) and software (e.g. random delays, masking)

protections, a new field of study called Leakage Resilient Cryptography has emerged in

recent years, where the goal is to design algorithms that are by themselves resistant to side-

channel attacks. Micali and Reyzin [80] wrote probably the first paper in this field, where

they defined the notion of a leakage function, formalised the notion of a computation that

leaks, and proposed leakage resilient one-way functions and permutations. Later advances

include the work of Standaert et al. [105], Balasch et al. [11], and Medwed et al. [78].

Many of the leakage-resilient algorithms assume some bounds on the amount of leakage

provided by a device. Therefore, while I have not focused directly on this area of research,

my results from using efficient template attacks may help to understand what are some

reasonable assumptions about the amount of leakage provided by a device. Nevertheless,

there are still no practical results that can prove a bound on the gap between the leakage

in the average case and the leakage in a worst-case scenario.
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2.1.6 Common Criteria

Together with the academic efforts in developing countermeasures and leakage-resilient al-

gorithms, the industry, together with national security agencies, have developed standards

to evaluate and certify the security of IT products used in high-risk applications. One

such standard, perhaps the most relevant for secure microcontrollers, is known as Com-

mon Criteria (CC) [4]. The CC define protection profiles for different IT products, which

describe the possible threats of these products, the protection that these products must

provide, the general components of these products, the overall design and certification

process, etc. Manufacturers of these products submit their product to an evaluation lab-

oratory, in order to obtain a CC certification at some desired Evaluation Assurance Level

(EAL). A higher EAL results in higher demands of security, but also requires a larger

investment for the development of products that can pass the CC evaluation. The CC is

responsible for accrediting and verifying the correct operation of evaluation laboratories.

For the particular case of secure microcontrollers, the CC Security IC Platform Protec-

tion Profile [28] defines the overall structure of a secure microcontroller and the possible

attacks against such device. The relevant definitions for side-channel attacks are “T.Leak-

Inherent”, which states that an attacker may exploit the side-channel leakage to disclose

confidential user data, and “O.Leak-Inherent”, which states that the Target of Evaluation

(TOE) must provide protection against side-channel attacks (e.g. current consumption,

time). The Joint Interpretation Library Hardware Attacks Subgroup (JHAS) [55] provides

more details regarding the attacks and equipment that should be used during an evalua-

tion of a secure microcontroller, and also provides a method to assess its resistance to an

attacker, based on time required for attack, expertise, knowledge of the device, access to

the device, equipment, and access to open samples (i.e. available to any attacker).

As a practical example, a currently certified device, the Infineon M9900 A22 [29] Secure IC

has been certified at level EAL5 Augmented (EAL5+), which means that it has resistance

to attackers with HIGH attack potential. The CC definition for EAL5 is that the target

device has been semiformally designed and tested, meaning that the device has been

designed with security features from its early stages, rather than engineering additions.

A security evaluation for such Security IC may cost up to hundred thousands EUR, and

may require about 3 man months of work.

2.2 Acquisition framework

As explained in the previous section, side-channel attacks work because we are able to

observe the power consumption of a microcontroller, and this power consumption in turn

depends on the data processed by the microcontroller. Therefore, in order to mount these

attacks in practice, the first step is to obtain leakage traces of the power consumption.
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For this purpose, I used an evaluation setup consisting of a custom Printed Circuit Board

(PCB) that I designed for the Atmel XMEGA A3U microcontroller (the XMEGA PCB),

some target code (the algorithm or sequence of instructions that we aim to target in a

side-channel attack) running on this microcontroller, an oscilloscope used to record the

power consumption of the XMEGA, a waveform generator, a power supply, and a PC

running some scripts to communicate with both the oscilloscope and the XMEGA PCB.

These are described below in more detail.

2.2.1 Atmel XMEGA A3U

When I decided to focus on the field of side channel attacks, I was advised to build my

own evaluation device, so that I would know exactly all the components and parameters

involved. Therefore, based on my previous experience with AVR microcontrollers, and

given their wide use, I decided to build a board for the Atmel XMEGA A3U microcon-

troller [31].

The XMEGA A3U is an 8-bit microcontroller, i.e. the bus and registers are 8-bit wide,

has 32 8-bit registers, can use 16-bit addresses to access memory locations, has many

peripherals (e.g. USB, USART, ADC and DAC converters), accepts a wide range of clock

frequencies (0–32 MHz), can be powered from 1.6 V to 3.6 V, has 16 KB internal SRAM,

4 KB EEPROM, 256 KB flash, hardware DES and AES crypto engines, and several other

features that make it an attractive choice for embedded devices. The block diagram of

this device is shown in Figure 2.4.

2.2.2 Design of the XMEGA PCB

I designed the XMEGA PCB with two main goals in mind: (a) to allow easy commu-

nication with a PC for programming, debugging and data transfer; (b) to minimise the

negative effects of impedance mismatch and other noise sources derived from a naive

design of the PCB.

The first goal is easier to accomplish. For programming and debugging, I used the JTAG

interface of the XMEGA A3U microcontroller and I provided headers on the PCB to

connect to this interface. For data transfer, I used the USB interface of the XMEGA,

linked to a USB MINI connector.

For the second goal, I followed the advice on measurement setup given by Mangard

et al. [73, Sections 3.4–3.5] as well as the detailed guidance on signal integrity provided

by Paul [86].
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Figure 2.4: XMEGA A3U block diagram. Taken from the XMEGA A3U datasheet [31].

Measurement technique

There are two main ways to obtain power (side-channel) traces from a device. The most

popular is to insert a measurement resistor between the VCC or the GND lines of the

microcontroller and the corresponding line on the PCB, and then use an oscilloscope

to measure the voltage across this resistor, which should be proportional to the power

consumption of the microcontroller. The other way is to use an E-field or H-field probe

(sometimes referred to as EM probe) that measures the electromagnetic field around

the target microcontroller, which is also proportional to its power consumption. The

advantage of the EM probes is that they may be able to measure the localized power

consumption of only a part of the target device, therefore avoiding switching noise caused
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by other components.

For simplicity, I decided to use a measurement resistor of 10 Ohm placed between the

joined ground lines of the microcontroller and the ground plane of the XMEGA PCB.

Quality of measurement setup

Mangard et al. [73, Sections 3.5–3.6] describe various causes that lead to electronic noise,

which is unrelated to the operation of the target device. They identify five main sources of

electronic noise. (1) Noise of the power supply, which can be minimised by using a highly

stable power supply such as batteries or a laboratory power supply. (2) Noise of the clock

generator. Besides electronic noise, a noisy or unstable clock signal can result in traces

that are misaligned, which will require an extra pre-processing step during the side-channel

attack. These problems can be minimised by using a very stable clock signal, such as a

waveform generator or a crystal oscillator. Furthermore, Mangard et al. recommend using

a sinusoidal clock signal. (3) Conducted emissions, i.e. unwanted signals that propagate

through the components, wires and material of the PCB. These can be mitigated by

good PCB design and by reducing the number of components on the PCB. (4) Radiated

emissions, which can be generated by any component carrying current. These emissions

can then be picked up by other components on the PCB, therefore producing unwanted

noise. Again, a good PCB design can reduce these. (5) Quantization noise, which is

introduced by the analog to digital conversion performed by the measurement oscilloscope.

This can be reduced by increasing the resolution of the oscilloscope (i.e the number of

bits used to store each voltage sample), although 8 bits seem sufficient in practice.

As a result, I designed the XMEGA PCB to allow for different power supply and clock

signal, as follows. It has input for unregulated power supply (e.g. input coming from a

stable lab power supply), as well as for batteries that are then regulated via a 3.3 V linear

voltage regulator. It also allows the use of either an external clock signal (e.g. from a

waveform generator), an on-board crystal oscillator, or one of the internal oscillators of

the XMEGA microcontroller (although this is not recommended as they are not stable).

A few design aspects also increase the quality of the PCB, such as using only 45 degrees

line corners to avoid discontinuities that lead to high fields in the corners, and the use of

ground planes that minimise loops, resulting in very low impedance [108, Chapter 21].

Signal integrity

The quality of the leakage signal used by side-channel attacks directly influences the

success of these attacks, so it is useful to try increasing the quality of the acquired signal.

In my experiments, the leakage signal comes from the current consumed by the target

microcontroller, which is proportional to the voltage across the measurement resistor RP .
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Figure 2.5: Circuit for signal acquisition (left) and Thévenin equivalent circuit (right).

This signal then goes through the PCB, via a microstrip line, then through the probe

connector, then through the oscilloscope probe, and finally arrives at the load ZL in the

oscilloscope, which samples this signal. This is illustrated in Figure 2.5 (left), where IS

is a current source modeling the current consumed by the target microcontroller, ZC is

the characteristic impedance of the transmission line between RP and the oscilloscope

(see next paragraphs), and ZL is the input impedance of the oscilloscope (generally a

combination of resistance with very small capacitance). In Figure 2.5 (right) I show the

Thévenin equivalent circuit, where VS represents the open-circuit voltage. This form will

be helpful in the following.

The path through which the leakage signal travels is known as a transmission line and

has several interesting properties [86, Chapter 4]. Firstly, each continuous part of the

transmission line can be characterized by a per-length impedance l and a per-length

capacitance c, leading to a characteristic impedance ZC =
√

l
c
. Then, if some voltage is

applied between the line and the ground plane and if some current is flowing through the

transmission line, we can derive the (lossless) transmission-line equations

V (z, t) = V +(t− z

v
) + V −(t+

z

v
) (2.3)

I(z, t) =
1

ZC
V +(t− z

v
) +

1

ZC
V −(t+

z

v
), (2.4)

where z is the distance (location) of the electromagnetic wave flowing through the trans-

mission line, t is the time, v is the velocity of propagation of the wave and ZC is the

characteristic impedance. The important thing from this equation is to notice that both

the voltage V and current I at a particular distance z and time t consist of two compo-

nents: (a) a forward -travelling wave V + and (b) a backward -travelling wave V −.

In the following discussion I will assume that the signal of interest is the voltage that

is generated between the nodes 2 and 0 in Figure 2.5. Then, the forward and backward

voltage waves are related at the oscilloscope load, z = L, by the load reflection coefficient

as

ΓL =
V −(t+ L/v)

V +(t− L/v)
=
ZL − ZC
ZL + ZC

. (2.5)

An initial wave arrives at the load after a time TD = L/v, at which point the backward
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Figure 2.6: Voltage at the oscilloscope load from ngspice simulations. Left: standard

circuit from Figure 2.5 (left), when IS = 100 mA. Centre: using a matching resistor

at the source, as in Figure 2.7 (left). Right: using a line does not matter setup, as in

Figure 2.7 (right).

(reflected) wave emerges, with

V −(t+ L/v) = ΓLV
+(t− L/v). (2.6)

After an additional time TD = L/v, the reflected wave reaches the initial node 2, where the

line sees another (possibly different) characteristic impedance. Therefore, at the source

(node 2) we obtain a voltage reflection coefficient

ΓS =
RP − ZC
RP + ZC

, (2.7)

that causes the reflected wave to be reflected back towards the load. As a result, we

get a kind of ping-pong scenario, where an original wave originating at the source (node

2) travels forwards and backwards between the source and the load. This can cause

unwanted oscillations (ripples) at the load, which in turn may degrade the signal integrity.

To demonstrate this, I have simulated the circuit from Figure 2.5 (left) with ngspice [100],

using a source that produces an impulse with rising/falling time of 0.1 ns and width 1 ns,

RP = 10 Ω, ZC = 50 Ω, TD = 5 ns, and a load ZL composed of a parallel combination

of a 50 Ω resistance and a 10 pF capacitance. The voltage at the load is shown in

Figure 2.6 (left). We can see that besides the main impulse signal, there are subsequent

reflections having a considerable amplitude. For high-frequency signals (e.g. in the order

of 100 MHz), these reflections will distort the received signal.

There are two main ways to avoid the ripples at the load, and hence to obtain a cleaner

and more useful signal. The first method is to match the impedances such that at least

one of the reflection coefficients becomes zero. To obtain a zero reflection coefficient at

the source (2.7), we should add a matching resistor RM in series with RP such that the

resulting source resistance RS = RP + RM is equal to ZC , as shown in Figure 2.7 (left).

At the load we can either match also the impedance (ZC = ZL), such that the reflection
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Figure 2.7: Thévenin equivalent circuit for good signal acquisition. Left: using matching

resistor at the source. Right: ignoring ZC when the line does not matter.

coefficient at the load (2.5) is zero, or we can use a very large impedance at the load (e.g.

ZL = 1MΩ), such that the reflection coefficient at the load is one. Note that using a

matching resistor at the source implies that the signal provided to the transmission line

(at node 2) is effectively VS/2, since at this point we have effectively a voltage divider

(ZC = RP + RM). Therefore, matching the output (ΓL = 0) provides half the signal at

the output, while using a very large load resistance (ΓL = 1) provides the original signal.

This does not affect the signal integrity, although matching the output as well as the input

might be better if the amplitude is not important, since it will diminish the risk of residual

reflections due to imperfect matching at the source. In Figure 2.6 (middle), I show the

results of the ngspice simulation for the circuit in Figure 2.7 (left), using RM = 40 Ω and

the same values as before for the other elements. We can see how this setup removes all

the unwanted reflections, providing a very clean signal.

The second option to avoid the unwanted ripples at the load is to use a setup such that

the transmission line does not matter. We can assume this situation if the length L of the

transmission line is electrically short at the highest significant frequency, which translates

in practice to the condition

L < 1

10

v

fmax
. (2.8)

This scenario is shown in Figure 2.7 (right). To simulate a very short line in ngspice I

used the previous setup, from Figure 2.7 (left), but with TD = 0.05 ns. The results are

shown in Figure 2.6 (right). In this case we can observe that there is a small ripple along

the main signal, but nothing else. Therefore, this option can also also provide a good

signal.

In the context of power analysis, it is not generally possible to achieve the condition

from (2.8), since we must connect the side-channel signal to an oscilloscope somehow and

in practice this requires the use of some probe having a cable considerably longer than
1
10

v
fmax

. However, we can use an active probe, such as the Tektronix P6243. This probe

basically provides the line does not matter condition, by using an operational amplifier

with high impedance at the source (i.e. the tip of the probe), and by matching the input

of the oscilloscope (i.e. it will match at the load). In addition, the active probe is designed
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Figure 2.8: Schematic of the XMEGA PCB.

to compensate any loss in the cable.

The XMEGA PCB is designed to allow both options: a matched line leading to an

SMA connector that can be connected to a passive probe or coaxial cable having a 50 Ω

characteristic impedance, and an unmatched but very short line that can be connected

to an active probe. For most of my experiments, I decided to use the P6243 active probe,

although at the end of Chapter 4, I discuss briefly also the use of the matched line output.

Schematic and board

I used Eagle [110] to design the XMEGA PCB. The schematic is shown in Figure 2.8, and

the board layout is shown in Figure 2.9.
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Figure 2.9: Board layout of the XMEGA PCB. Red: top side. Blue: bottom side.

2.2.3 Experimental devices

For the experiments presented in the following chapters, I built 4 instances of the XMEGA

PCB, as shown in Figure 2.10. I named these devices Alpha, Beta, Gamma and Delta.

2.2.4 Acquisition setup

In order to implement side-channel attacks in practice, I used the combination of hardware

and software tools described below.

Hardware

I used a Tektronix TDS 7054 oscilloscope with a P6243 active probe in order to record

the voltage across the measurement resistor of the XMEGA PCB. This oscilloscope has a

maximum bandwidth of 500 MHz and samples at 5 GS/s, but I used different bandwidth

filters for the experiments presented in the following chapters. In order to synchronize

measurements, I used one of the pins of the XMEGA, connected to the oscilloscope using

a passive probe, as trigger signal.
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Figure 2.10: The four XMEGA PCB devices that I used in my experiments.

Following the advice of Mangard et al. [73], I used a sine wave clock signal, synthesized by

a TTi TGA 1230 waveform generator, to drive the XMEGA CPU. For most experiments,

I used a clock signal with 1 MHz frequency.

Depending on the experiment, I used either a set of batteries connected via a linear voltage

regulator, or a TTi EL 302 power supply, to power the XMEGA PCB.

In Figure 2.11 (left), I show the XMEGA PCB while it was used for side-channel attacks,

and in Figure 2.11 (right), I show the overall acquisition setup.

Software

To automate my acquisition experiments, I used a PC to communicate with both the

XMEGA PCB (via the USB virtual serial line) and the oscilloscope (via GPIB [3] or VXI-

11 [5]). For this, I developed a series of Python scripts that send acquisition commands

to the oscilloscope, send the necessary data to the XMEGA, retrieve the waveforms from

the oscilloscope and store the waveforms on a hard-disk. Also, to allow communication

between the XMEGA PCB and a PC (to send data and commands), I wrote some code

to implement a USB virtual serial line, based on the LUFA library [20].

Then, to run the actual side-channel attacks, I wrote a large set of MATLAB scripts, which

together form a library of functions that implement the techniques described throughout

the following chapters.
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Figure 2.11: Left: XMEGA PCB while it was used for side-channel attacks. Right: overall

acquisition setup.

2.3 Data sets

For the experiments presented in the following chapters, I used the different datasets

described below. Throughout my experiments, I was not particularly interested in tar-

geting a given cryptographic algorithm (e.g. AES), but rather I was mostly interested in

evaluating the success of template attacks using different techniques. For this purpose,

most of my datasets focus on a single or at most two LOAD instructions, rather than an

entire algorithm (i.e. set of instructions). However, for completeness, one data set (Polar)

consists of traces related to AES.

2.3.1 Grizzly dataset

This dataset consists of power consumption traces of the Atmel XMEGA microcontroller

when running the following simple code: a consecutive sequence of LOAD instructions

that transfer eight byte values from the SRAM memory to registers r8 to r15. Each

LOAD instruction requires 2 clock cycles to execute. In this dataset, only the second

byte takes different values, while all the other values remain unchanged. This scenario

avoids the noise caused by nearby instructions due to pipelining. However, the pipeline

architecture of the Atmel XMEGA AVR core processes the operand of a LOAD instruction

during several clock cycles, which spreads the leakage over many samples (see for example

Figure 3.8).

The exact sequence of instructions for which I obtained the power consumption is

5a5c: 00 00 nop ; several previous NOPs ommited in this listing

5a5e: fc 01 movw r30, r24 ; 1 clock cycle, recorded traces start here

5a60: 81 90 ld r8, Z+ ; 2 clock cycles per ld instruction
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Figure 2.12: Example of leakage trace from the Grizzly Alpha data set.

5a62: 91 90 ld r9, Z+ ; this is our target instruction (2 clock cycles)

5a64: a1 90 ld r10, Z+ ; we want to infer the data loaded in r9

5a66: b1 90 ld r11, Z+

5a68: c1 90 ld r12, Z+ ; recorded trace ends after first clock cycle of this ld

where the load instructions use the Z pointer (which refers to registers r31:r30) for indirect

RAM addressing. The initial value of registers r8–r12 before the load operations is zero.

The initial value of Z before the first load instruction is 0x2020.

In my evaluations of template attacks using this dataset, as in Chapters 4, 5 and 7, the

goal of the attacks is to infer the byte value processed by the second LOAD instruction.

This represents a bus eavesdropping scenario, which is very general and independent of

any algorithmic assumptions. An improvement in this scenario should also lead to an

improvement in more particular scenarios such as targeting the S-box output v of AES

(see Figure 2.3).

For the acquisition of each leakage trace I used the SAMPLE mode of the oscilloscope,

sampling at 250 MS/s and using the full bandwidth (500 MHz). I powered the XMEGA

PCB with batteries through a 3.3 V linear voltage regulator.

This dataset contains np = 3072 traces for each of the 256 possible 8-bit values that can

be transferred into the register r9 (a total of 786432 traces). Each trace has m = 2500

leakage samples. An example of leakage trace is shown in Figure 2.12.

In order to remove any dependency between the value loaded into r9 and environmen-

tal factors such as temperature, I used random permutations of the values 0, 1, . . . , 255

during consecutive acquisitions, ensuring that all values are used after every 256 leakage

acquisitions.
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Table 2.1: Parameters for real experiment

Experiment name Bandwidth Power Supply

E1 20 MHz lab power supply 3.3 V (TTi EL302).

E2 20 MHz batteries via 3.3 V voltage regulator.

E3 500 MHz lab power supply 3.3 V (TTi EL302).

E4 500 MHz batteries via 3.3 V voltage regulator.

To test the side-channel attacks against different devices (see Chapter 5), I performed

the same experiments on my four instances of the PCB XMEGA, and I also performed

a second acquisition on the device Beta, resulting in five actual datasets: Grizzly Alpha,

Grizzly Beta, Grizzly Gamma, Grizzly Delta and Grizzly Beta Bis, respectively.

The Grizzly dataset, along with MATLAB scripts to produce some of the results from

Chapter 4, is available at this URL:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

2.3.2 Koala dataset

Using the same code (a sequence of LOAD instructions) and acquisition setup as for the

Grizzly datasets (see Section 2.3.1), I varied the bandwidth of the Tektronix TDS 7054

8-bit oscilloscope, and the power supply of the XMEGA PCB Beta, to test the influence

of these parameters on the correlation between leakage samples. As a result, I obtained

the four datasets shown in Table 2.3.2, all using the Beta device. These datasets form the

basis for the template attacks presented in Chapter 6, which target the value k? processed

by the second LOAD instruction, i.e. the value that is loaded into the register r9, exactly

as the evaluations from Chapters 4 and 5.

Similarly to the Grizzly datasets, each of the Koala datasets contains np = 3072 traces

for each of the 256 possible 8-bit values that can be transferred into the register r9 (a

total of 786432 traces). Each trace has m = 2500 leakage samples.

Note that the Koala E4 dataset is in fact the same as the grizzly Beta dataset.

2.3.3 Panda dataset

In order to test profiled attacks on 16-bit data (see Chapter 7), I varied the 8-bit values

processed by two consecutive LOAD instructions, thus obtaining leakage traces that de-

pend on 16-bit values. For this dataset, which I call Panda, I acquired np = 200 traces for

each of the 216 = 65536 values (N = 13107200 traces in total). Each trace has m = 500

samples, recorded with 125 MS/s using the HIRES mode of the Tektronix TDS 7054 os-

cilloscope (this provides ≈ 10.5 bits per sample, by averaging 40 consecutive 8-bit samples
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acquired internally at 5 GS/s), and contained data over 5 LOAD instructions, of which

two contained the target data and the other three processed the constant value 0. The

dataset also contains np = 1000 traces for a random selection of 512 16-bit values (512000

traces in total).

2.3.4 Polar dataset

The Atmel XMEGA A3U microcontroller also contains an AES hardware cryptographic

module, which can perform one AES encryption with a 128-bit key in 375 CPU clock

cycles. Each such AES encryption requires 10 encryption rounds. For more details about

the AES encryption algorithm, please refer to the book by Paar and Pelzl [84, Chapter

4].

In my last dataset, which I call Polar, I used the XMEGA PCB to record power con-

sumption traces targeting this AES implementation. The dataset contains a total of

N = 384000 traces, taken while running the hardware AES encryption module with the

16-byte fixed key (in hexadecimal notation)

3c53eb11a470e4f7df71b49f2f7e72c6

and uniformly distributed 16-byte plaintexts. Each trace contains 5000 leakage samples,

recorded at 500 MS/s using the HIRES mode of the Tektronix TDS 7054 oscilloscope,

with 250 MHz bandwidth. The XMEGA PCB was powered from batteries via a 3.3 V

linear regulator, and I provided the CPU with a sine wave clock signal at 2 MHz. These

traces cover the first 20 CPU clock cycles of the AES encryption, which correspond only

to the first encryption round of AES.



Chapter 3

Multivariate statistical analysis

In this chapter, I provide some background on multivariate statistical analysis, which

forms the theoretical ground for the following chapters. Much of this material is based on

the excellent book by Johnson and Wichern [54], although most of the examples are based

on my experimental data. Readers well familiar with this topic may skip this chapter.

3.1 Leakage and random variables

As I explained in Chapter 2, we can obtain leakage traces from a microcontroller by mea-

suring its power consumption using an oscilloscope. Such traces, as shown in Figure 2.12,

may contain a large number of leakage samples (data points) due to the large oscilloscope

sampling rate used to acquire them. For example, the trace in Figure 2.12 has m = 2500

samples covering a 10 µs execution interval, while traces from the DPA contest v4 [85]

contain m = 435, 002 samples. I shall refer to a leakage trace as the vector x ∈ Rm , which

may contain an arbitrary number m of leakage samples x1, x2, . . . , xm.

For side-channel attacks, including the template attacks, which are my focus, we need to

consider a large number of leakage traces, which we can refer to as a statistical sample.

A statistical sample represents a subset of all possible traces that we could obtain. In

practice, we will always deal with a statistical sample (subset) of all the possible traces

that we may (theoretically) obtain. Note that, throughout the following chapters, I will

use the term sample to refer both to a statistical sample or a leakage sample (data point

in a trace), but its meaning should be clear from the context or otherwise I will make it

clear.

Ignoring synchronisation errors for now, we can consider that each leakage sample xj

corresponds to the power consumption at some time index j, and that all the leakage

samples xj from a statistical sample correspond to the same underlying operation of our

target microcontroller. Then, we can define Xj to be the random variable representing a

leakage sample at time j, and the set of leakage samples x1j, x2j, . . . , xNj from a sample

45
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with N leakage traces to be particular instantiations (actual observations) of the random

variable Xj. And since we have m leakage samples per trace, we need to deal with m

random variables.

The statistical study of such random variables is known as multivariate statistical analysis

and will be the focus of the following sections. A good understanding of the theory

governing these variables (e.g. the dependence between them, their statistical distribution)

can lead to very efficient side-channel attacks, particularly for template attacks, as I will

show throughout the following chapters.

3.2 Data representation

As I mentioned earlier, I will use the vector notation x ∈ Rm to represent a leakage trace.

Generally I shall be using a sample with a large number N (e.g. N = 1000) of traces and

I will combine these into a leakage matrix X ∈ RN×m . Each row in the leakage matrix X

contains a leakage vector x′:

X =


x1
′

x2
′

...

xN
′

 =


x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xN1 xN2 . . . xNm

 , (3.1)

where x′ represents the transpose of a vector (or matrix) x.

To get an idea of how some data is distributed, we can restrict ourselves to only two

variables and show a scatter plot, in which we show bi-dimensional vectors as a cloud

of objects in a two-dimensional plane. To illustrate this, I use a sample of N = 1000

traces from the Grizzly Alpha dataset (see Section 2.3.1), where all traces correspond to

the same value loaded into register r9. In Figure 3.1, I show the scatter plot for leakage

samples at j = 878 and j = 1128. It is generally difficult to plot data for more than two

dimensions, but we can use several scatter plots to visualize multiple variables, two at a

time.

3.3 Descriptive statistics

In order to summarize some of the most important information from large data sets we

can use what is known as descriptive statistics. In the following I shall describe the most

common statistics, which provide a measure of location, variation and linear association.
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Figure 3.1: Scatter plot of leakage samples at j = 878 and j = 1128 for N = 1000 traces

from the Grizzly Alpha dataset.

3.3.1 Expectation

In order to help with the definition of descriptive statistics, it is useful to first describe the

expected value, or expectation, of a random variable. Following the notations of Casella

and Berger [21], and to keep the definitions general, we have that if X is a random variable,

then any function of X, say g(X), is also a random variable.

Given a random variable g(X), we can define its expected value or mean as

E g(X) =


∫∞
−∞ g(x)fX(x)dx if X is a continuous random variable

with probability density function fX(x)∑
x∈X g(x)pX(x) if X is a discrete random variable with

probability mass function pX(x),

(3.2)

where E denotes the expectation operator, and X is the discrete set of possible values

that X can take.

The expected value of a random variable is merely its average value, weighted according

to its probability distribution, and it can be thought of as a measure of centre.

3.3.2 Sample mean

Let us start by looking at the observations x1j, x2j, . . . , xNj corresponding to the single

random variable Xj. Given these observations, we can compute their arithmetic average

x̄j =
1

N

N∑
i=1

xij, (3.3)
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which is known as their sample mean. The sample mean provides a measure of location,

a central value for a set of numbers. As an example, for the data used in Figure 3.1, we

have x̄878 = 4.97 and x̄1128 = 5.47, which shows the location of the centre of the data

along the x and y axis respectively.

We can also define the real mean of the random variable Xj as

µj = EXj. (3.4)

In practice, when dealing with observations (samples) from an unknown distribution (as

our side-channel leakage traces), we cannot determine the real mean, which is why most

of the time I shall use the sample mean. If the distribution is known, then we can use

(3.2) to compute its real mean.

We can now compute the sample mean for all the leakage samples (corresponding to the

random variables X1, X2, . . . , Xm), obtaining the m sample means x̄1, x̄2, . . . , x̄m . I shall

generally combine these into the sample mean vector x̄ ∈ Rm . In practice, given a sample

of leakage vectors x1,x2, . . . ,xN , we can compute the sample mean vector directly as

x̄ =
1

N

N∑
i=1

xi. (3.5)

Furthermore, using the leakage matrix X from (3.1), we can compute the sample mean

vector as

x̄ =


x̄1

x̄2

...

x̄m

 =
1

N


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xm1 xm2 . . . xmN




1

1
...

1

 =
1

N
X′1. (3.6)

As shown by the previous equations, I shall use Greek letters (e.g. µj) to represent the

real, but generally unknown, statistics (e.g. the mean), and roman letters (e.g. x̄j) to

represent the sample statistic (e.g. the sample mean). Also, I will generally refer to a

statistic such as the sample mean simply as the mean. Its symbol should clarify to which

statistic I am referring to, or otherwise I shall make it clear.

3.3.3 Sample variance and sample standard deviation

Another useful statistic is the variance, which provides a measure of the degree of spread

of the data around its mean. Given our set of observations x1j, x2j, . . . , xNj, corresponding

to the random variable Xj, we can compute their sample variance as

sjj =
1

N − 1

N∑
i=1

(xij − x̄j)2. (3.7)
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The use of the identical double subscript in sjj will become clear in the next section when

I shall describe the covariance.

As with the mean, we can also define the real variance of the random variable Xj as

Var(Xj) = σjj = E (Xj − EXj)
2 = E (Xj − µj)2. (3.8)

Small values of the variance mean that the data is very close to its mean (e.g. σjj = 0

means that Xj is equal to EXj with probability 1), while large values mean that the data

is very variable.

Notice also the divisor N − 1 in the formula of the sample variance instead of N , to

obtain an unbiased estimator of the sample variance. The use of an unbiased estimator is

important when dealing with a small sample size, but for large N the use of either N − 1

or N should provide similar results. For the unbiased sample variance estimator, we have

E sjj = σjj, (3.9)

while the biased estimator

sbiased
jj =

N − 1

N
sjj (3.10)

will contain a bias equal to

(bias) = E (sbiased
jj )− σjj = E (

N − 1

N
sjj)− E (sjj) = E (− 1

N
sjj) = − 1

N
σjj. (3.11)

The positive square root of the sample variance,
√
sjj, is known as the sample standard

deviation of our sample. The standard deviation has the same qualitative interpretation

as the variance but is generally easier to interpret because it has the same measurement

unit as the data from which it is computed. For the data used in Figure 3.1, we have
√
s878,878 = 0.23 mA and

√
s1128,1128 = 0.21 mA.

3.3.4 Sample covariance

A third important statistic is the covariance, which measures the linear association be-

tween two variables. Given the observations x1j, x2j, . . . , xNj and x1k, x2k, . . . , xNk, corre-

sponding to the two random variables Xj and Xk, we can compute the sample covariance

as

sjk =
1

N − 1

N∑
i=1

(xij − x̄j)(xik − x̄k). (3.12)

Note that sjk = skj and for j = k the sample covariance reduces to the sample variance.
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If the distributions of the random variables are known, we can compute the real covariance

σjk = E (Xj − µj)(Xk − µk) (3.13)

=



∫∞
−∞

∫∞
−∞(xj − µj)(xk − µk)fXjXk

(xj, xk)dxjdxk if Xj, Xk are continu-

ous random variables with

joint probability density

function fXjXk
(xj, xk)∑

xj

∑
xk

(xj − µj)(xk − µk)pXjXk
(xj, xk) if Xj, Xk are discrete ran-

dom variables with joint

probability mass function

pXjXk
(xj, xk).

Note that, in the computation of the real covariance, the cross-products (xj−µj)(xk−µk)
are weighted according to a joint probability function fXjXk

(xj, xk). It is this function

that describes the association between the random variables. One common such function

is the multivariate normal density function, which I describe in Section 3.6.

The random variables X1, X2, . . . , Xm are mutually statistically independent if their joint

probability function can be factored as

fX1X2...Xm
(x1, x2, . . . , xm) = fX1(x1)fX2(x2) . . . fXm

(xm). (3.14)

For any two random variables Xj, Xk, statistical independence implies σjk = 0. However,

σjk = 0 does not imply statistical independence, because there might be some non-linear

dependency between the variables Xj and Xk, which is not captured by the covariance.

I shall use the notations Cov(Xj, Xk) = σjk to refer to the covariance between two random

variables, and Cov(xj,xk) = sjk to refer to the sample covariance between the observa-

tions x1j, x2j, . . . , xNj and x1k, x2k, . . . , xNk, corresponding to the two random variables

Xj and Xk. Furthermore, given a leakage matrix X ∈ RN×m as in (3.1), I shall define the

sample covariance matrix S ∈ Rm×m as

S = Cov(X) =


Cov(x1,x1) Cov(x1,x2) . . . Cov(x1,xm)

Cov(x2,x1) Cov(x2,x2) . . . Cov(x2,xm)
...

...
. . .

...

Cov(xm,x1) Cov(xm,x2) . . . Cov(xm,xm)



=


s11 s12 . . . s1m

s21 s22 . . . s2m

...
...

. . .
...

sm1 sm2 . . . smm

 . (3.15)
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Similarly, we can define the real covariance Σ of the random variables X1, X2, . . . , Xm as

Σ =


Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xm)

Cov(X2, X1) Cov(X2, X2) . . . Cov(X2, Xm)
...

...
. . .

...

Cov(Xm, X1) Cov(Xm, X2) . . . Cov(Xm, Xm)



=


σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

...
...

. . .
...

σm1 σm2 . . . σmm

 . (3.16)

Note that the diagonal values of these covariance matrices contain the variances, which is

why these matrices are also referred to as the variance-covariance matrices. Also, because

sjk = skj and σjk = σkj, both the sample covariance and the real covariance matrices are

symmetric, i.e. S = S′ and Σ = Σ′.

Instead of computing the individual sample covariances sjk of the sample covariance ma-

trix S we can use the following matrix operations, which allow us to take advantage of

vectorised linear-algebra routines, resulting in faster computations. Starting from the

leakage matrix X ∈ RN×m , we first compute the zero-mean leakage matrix

X̃ = X− 1

N
11′X =


x11 − x̄1 x12 − x̄2 . . . x1m − x̄m
x21 − x̄1 x22 − x̄2 . . . x2m − x̄m

...
...

. . .
...

xN1 − x̄1 xN2 − x̄2 . . . xNm − x̄m

 , (3.17)

where 1′ = [1, 1, . . . , 1] has N elements. Then, we can compute the sample covariance

matrix as

S =
1

N − 1
X̃′X̃. (3.18)

3.3.5 Sample correlation

As a last important statistic, the sample correlation coefficient (also known as Pear-

son’s product-moment correlation coefficient) also provides a measure of linear associa-

tion. Given the observations x1j, x2j, . . . , xNj and x1k, x2k, . . . , xNk, corresponding to the

two random variables Xj and Xk, we can compute the sample correlation coefficient as

rjk =
sjk√
sjj
√
skk

=

∑N
i=1(xij − x̄j)(xik − x̄k)√∑N

i=1(xij − x̄j)2

√∑N
i=1(xik − x̄k)2

. (3.19)

Note that in this case it does not matter if we use the divisor N or N − 1 for the

computation of sjk, sjj and skk.
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The sample correlation coefficient is just a standardized version of the sample covariance.

That is, if before the computation of the sample covariance from (3.12) we replace the

values xij and xik by the standardized values (xij− x̄j)/
√
sjj and (xik− x̄k)/

√
skk, then we

obtain the sample correlation coefficient from (3.19). Note that rjj = 1, and if all sjj = 1,

then all rjj = sjj.

Although both the sample covariance and the sample correlation provide a measure of

linear association, the sample correlation is generally easier to interpret because it has

bounded values: −1 ≤ rjk ≤ 1. |rjk| = 1 implies that Xk = a ·Xj + b, ∀a, b ∈ R.

Also, rjk = 0 implies a lack of linear association, rjk < 0 implies that one variable tends

to be above its average when the other is below, while rjk > 0 implies that both variables

tend to be together either above or below their average. The same holds for sjk.

For the data from Figure 3.1, the sample covariance is s878,1128 = 0.0069 and the sample

correlation is r878,1128 = 0.14, which means that there is a non-negligible dependency

between the leakage samples at times j = 878 and j = 1128.

Similarly to the sample covariance matrix S from (3.15), given a leakage matrix X ∈
RN×m , we can also define the sample correlation matrix R ∈ Rm×m as

R =


r11 r12 . . . r1m

r21 r22 . . . r2m

...
...

. . .
...

rm1 rm2 . . . rmm

 , (3.20)

which is also symmetric.

We can compute R from S and vice versa as follows. First, compute the sample standard

deviation matrix

D =


√
s11 0 . . . 0

0
√
s22 . . . 0

...
...

. . .
...

0 0 . . .
√
smm

 (3.21)

and its inverse

D−1 =


1√
s11

0 . . . 0

0 1√
s22

. . . 0
...

...
. . .

...

0 0 . . . 1√
smm

 . (3.22)

Then, we have

R = D−1SD−1 (3.23)

and

S = DRD. (3.24)

Note that R can be obtained from the information in S alone, but to compute S we need

both R and D.
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Figure 3.2: Left: points at a constant Euclidean distance. Right: points at a constant

statistical distance.

3.4 Statistical distance

I now present the statistical distance, also known as the Mahalanobis distance [72], which

is essential for the multivariate statistical analysis techniques used in later chapters.

Given any two leakage vectors x1 ∈ Rm and x2 ∈ Rm , we shall often need to compute a

distance between them, a measure of how far appart they are. This can be directly useful,

for example, to find which vector, from a set of vectors, is closest to a given point. For

this purpose, in the following, we should consider the leakage samples x1, x2, . . . , xm of a

leakage vector x as coordinates in an m-dimensional vector space.

Let’s start with the case m = 2, using samples from two random variables X1 and X2

having µ1 = µ2 = 0, σ11 > σ22 and σ12 = 0 (i.e. no correlation), as shown in Figure 3.2.

Using the classic Euclidean distance, we would measure the distance between a vector

x′ = [x1, x2] and the origin 0′ = [0, 0] using the formula

d(x,0) =
√
x2

1 + x2
2 = x′x. (3.25)

All the points that have the same distance from the origin are represented by the red

circle in Figure 3.2 (left).

However, given our data (where σ11 > σ22), we could say that it is more likely to find

data that deviates more along the X1 dimension than along X2. To accommodate for this

situation, where the different dimensions of our leakage vectors have different variability,

but also to accommodate for correlation between leakage samples, it will be better to

use a statistical distance. For the data shown in Figure 3.2 we can compensate for the

different variances by simply dividing each component by its variance, obtaining the new

distance between the vector x′ = [x1, x2] and the origin 0′ = [0, 0] as

d(0,x) =

√
x2

1

σ11

+
x2

2

σ22

. (3.26)
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Figure 3.3: Left: correlated points at a constant statistical distance. Right: new axes to

match rotation of samples due to correlation.

All points having the same statistical distance to the origin are represented by the red el-

lipse in Figure 3.2 (right). This distance can be easily extended to any two m-dimensional

vectors x′ = [x1, x2, . . . , xm] and q′ = [q1, q2, . . . , qm] as

d(x,q) =

√
(x1 − q1)2

σ11

+
(x2 − q2)2

σ22

+ . . .
(xm − qm)2

σmm
. (3.27)

Now let us examine another situation, where we have a positive correlation σ12 > 0

between the two random variables, as shown in Figure 3.3. We can see that the overall

scatter plot is very similar to the previous example, but only rotated by some angle θ.

Therefore, we could represent our sample in a rotated coordinate system, represented by

the random variables Y1 and Y2, as shown in the right side of the figure. Using these new

variables, the distance between our leakage vector x = [y1, y2] and the origin 0 = [0, 0]

has the same form as before, that is

d(0,x) =

√
y2

1

σ̃11

+
y2

2

σ̃22

, (3.28)

where σ̃11 and σ̃22 are the variances of Y1 and Y2, respectively.

However, we are interested in expressing the distance in terms of the original variables X1

and X2. The relation between the elements of x in the two coordinate systems is given

by

y1 = x1 cos θ + x2 sin θ

y2 = −x1 sin θ + x2 cos θ. (3.29)

Then, we can write the statistical distance as

d(0,x) =
√
a11x2

1 + 2a12x1x2 + a22x2
2, (3.30)
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where the coefficients a, which depend on the original variances σ11, σ12, σ22 and the

rotation angle θ, are such that the distance is nonnegative for all possible leakage vectors

x ∈ R2. What is important to notice in this formula is the apparition of the crossproduct

term 2a12x1x2, determined by the nonzero correlation r12. What is also very important is

that we do not have to worry about the derivation of the a coefficients. As I will explain

shortly, these will be given by the covariance matrix.

We can generalize the above formula to compute the statistical distance between any two

m-dimensional vectors x′ = [x1, x2, . . . , xm] and q′ = [q1, q2, . . . , qm] as

d(x,q) =

√√√√√√ a11(x1 − q1)2 + a22(x2 − q2)2 + . . .+ amm(xm − qm)2

+ 2a12(x1 − q1)(x2 − q2) + . . .

+ 2am−1,m(xm−1 − qm−1)(xm − qm)

. (3.31)

3.4.1 Quadratic forms and positive definite matrices

If we let

A =


a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

am1 am2 . . . amm

 , (3.32)

with ajk = akj, and set q = 0 for simplicity, we can rewrite the statistical distance as

d(x,0) =
√

x′Ax =

√√√√ a11x
2
1 + a22x

2
2 + . . .+ ammx

2
m + 2a12x1x2 + . . .

+ 2am−1,mxm−1xm
(3.33)

From (3.33) we can see that x′Ax is a linear combination of the squares x2
j and the

crossproducts xjxk. For this reason, x′Ax is called a quadratic form. Furthermore, as

mentioned earlier, x′Ax ≥ 0,∀x ∈ Rm . For this reason, both the matrix A and its

quadratic form x′Ax are said to be nonnegative definite or semipositive definite. Any

symmetric matrix satisfying this property is semipositive definite. Morover, if x′Ax >

0, ∀x 6= 0, then A and its quadratic form are said to be positive definite.

Now it is interesting to find under which condition we can guarantee that a symmetric

matrix A is semipositive definite, and hence that it can be used in the computation of

the statistical distance1. This leads us to the concepts of eigenvectors and eigenvalues.

1Any measure of distance d(x,q) between two vectors x and q should satisfy the following conditions:

a) d(x,q) = d(q,x), b) d(x,q) > 0, if x 6= q, c) d(x,q) = 0, if x = q, d) d(x,q) ≤ d(x, r) + d(r,q) for

any other vector r.
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Eigenvectors and eigenvalues

A square matrix (having equal number of rows and columns) A ∈ Rm×m has an eigenvalue

λ ∈ R, with corresponding eigenvector e 6= 0 ∈ Rm , if

Ae = λe. (3.34)

The matrix A ∈ Rm×m has m eigenvectors (and corresponding eigenvalues), all mutually

perpendicular, i.e. ej
′ek = 0,∀j 6= k. We usually normalize all eigenvectors, such that

e1
′e1 = e2

′e2 = . . . = em
′em = 1.

The eigenvalues of a square matrix A can be found by solving the characteristic equation

|A− λI| = 0. (3.35)

Then, we can find the corresponding eigenvector from (3.34). However, in practice, we

use linear algebra libraries (such as MATLAB) to obtain the singular value decomposition

A = UDU′ (3.36)

of a square matrix A ∈ Rm×m , which gives the matrix of eigenvectors U = [e1, e2, . . . , em],

and the diagonal matrix D having the eigenvalues λ1, λ2, . . . , λm along its diagonal. Note

that because the normalized eigenvectors are all mutually perpendicular, the matrix U is

orthonormal, which means that UU′ = U′U = I, and implies that U′ is the inverse of U.

An important property of a symmetric matrix A is that it has the spectral decomposition

A = λ1e1e1
′ + λ2e2e2

′ + . . .+ λmemem
′. (3.37)

We can now use the spectral decomposition of A to express the quadratic form x′Ax and

obtain

x′Ax = λ1x
′e1e1

′x + λ2x
′e2e2

′x + . . .+ λmx′emem
′x (3.38)

= λ1(x′e1)2 + λ2(x′e2)2 + . . .+ λm(x′em)2.

From (3.38) we can derive a very important conclusion: a symmetric matrix A is positive

definite (x′Ax > 0,∀x 6= 0) iff all its eigenvalues are positive. Also, A is semipositive

definite (x′Ax ≥ 0, ∀x 6= 0) iff all its eigenvalues are greater than or equal to zero.

Returning to Figure 3.3, any vector x ∈ R2 on the red ellipse satisfies the relation

d2(0,x) = x′Ax = λ1(x′e1)2 + λ2(x′e2)2 = λ1y
2
1 + λ2y

2
1 = c2, (3.39)

which represents the ellipse in y1 and y2. Now, a very interesting fact is that the vectors

v1 = cλ
−1/2
1 e1 and v2 = cλ

−1/2
2 e2 both satisfy (3.39), and represent the intersection with

the principal and respectively secondary axes of the ellipse. Therefore, the eigenvectors

e1 and e2 give precisely the directions of the random variables Y1 and Y2. Therefore, the
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statistical distance provides the expected transformation, such that in the rotated space

(given by the eigenvectors of A) there is no correlation remaining between the variables.

This simplifies to using the standard Euclidean distance in the new space, as shown by

the right hand side of (3.39).

All the above results hold also when computing the statistical distance between a vector

x and an arbitrary fixed vector q. That is, the statistical distance still has the quadratic

form

d(x,q) =

√
(x− q)′A(x− q). (3.40)

A final question is how to obtain the matrix A, such that the ellipse generated by the

points at a constant distance x′Ax = c2 indeed lies along the directions of the independent

variables Y1 and Y2. That is, how can we find the matrix A that provides the correct

rotation θ and eliminates the correlation between variables? This is explained next.

3.4.2 Using the covariance matrix in the statistical distance

Let

X =


X1

X2

. . .

Xm

 (3.41)

be a vector of m random variables with associated covariance Σ, as in (3.16), and let

Q ∈ Rm×m be some arbitrary matrix of coefficients. Then, one important fact is that the

new vector of random variables

Y =


Y1

Y2

. . .

Ym

 = QX =


q11X1 + . . .+ q1mXm

q21X1 + . . .+ q2mXm
...

qm1X1 + . . .+ qmmXm

 (3.42)

has covariance QΣQ′. As a result, the projection y = Qx of any leakage vector x from

a distribution with covariance Σ, will follow a distribution with covariance QΣQ′.

Since Σ is a symmetric matrix, we can use (3.36) and (3.37) to obtain

Σ =
m∑
j=1

λjejej
′ = UDU′, (3.43)

where U = [e1, e2, . . . , em], and diag(D) = [λ1, λ2, . . . , λm] are now the eigenvectors and

eigenvalues of Σ. A very important observation now is that we can easily compute the

inverse of Σ as

Σ−1 = UD−1U′ =
m∑
j=1

1

λj
ejej

′, (3.44)
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because (UD−1U′)UDU′ = UDU′(UD−1U′) = UU′ = I due to the orthonormality of

U. This implies that Σ and Σ−1 have the same eigenvectors, while the eigenvalues follow

an inverse relationship.

Let us now use Σ−1 instead of the matrix A to compute the quadratic form from (3.38).

We have that

x′Σ−1x =
m∑
j=1

1

λj
(x′ej)(ej

′x) =
m∑
j=1

1

λj
(ej
′x)2 =

m∑
j=1

(
1√
λj

ej
′x

)2

=
m∑
j=1

z2
j . (3.45)

So we are almost there: we now have the squared statistical distance d2 = x′Σ−1x ex-

pressed in Euclidean form. However, to verify that indeed Σ−1 is the matrix we were

looking for in the computation of the statistical distance, we still need to show that there

is no correlation between the variables zj.

If we let Q =


1√
λ1

e1
′

1√
λ2

e2
′

...
1√
λm

em
′

, we have that z =


z1

z2

...

zm

 =


1√
λ1

e1
′

1√
λ2

e2
′

...
1√
λm

em
′



x1

x2

...

xm

 = Qx.

Therefore, as I mentioned earlier, we know that our variables z1, z2, . . . , zm are based on

a distribution with covariance QΣQ′. However,

QΣQ′ =


1√
λ1

e1
′

...
1√
λm

em
′

UDU′

[
1√
λ1

e1, . . . ,
1√
λm

em

]
(3.46)

=


1√
λ1

e1
′

...
1√
λm

em
′

 [e1, . . . , em]

 λ1 0 . . . 0
...

...
. . .

...

0 0 . . . λm


 e1

′

. . .

em
′

[ 1√
λ1

e1, . . . ,
1√
λm

em

]

= I.

And that is what we needed to show: the resulting variables z1, z2, . . . , zm are independent.

Therefore, the matrix Σ−1 is what we need for the statistical distance: it transforms our

variables into a new space where they are not correlated anymore.

As a final important remark, note that we could have used the matrix Σ as well to remove

the correlation between the variables, since both Σ and Σ−1 have the same eigenvectors

and hence can provide the same directions of projection. However, by using the inverse of

the covariance matrix we standardize each variable (i.e. we divide by its variance), while

if we used the covariance matrix we would be amplifying their variance.

Looking again at Figure 3.3, we can now say that the eigenvectors e1 and e2 of Σ and

Σ−1 give precisely the directions of the variables Y1 and Y2. Also, from the description

at the end of Section 3.4.1, we find that, when A = Σ−1, the length δ1 of the principal
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Figure 3.4: Area formed by two deviation vectors dj and dk.

ellipse semi-axis is given by c
√
λ1 and the length δ2 of the secondary semi-axis is given by

c
√
λ2, where λ1 > λ2 are the eigenvalues of Σ. The use of the inverse Σ−1 produces the

difference to the values shown in Section 3.4.1.

In conclusion, the use of the inverse of the covariance matrix, Σ−1, in the computation

of the statistical distance, allows us to eliminate the correlation between the random

variables, by rotating the data into a new space where the variables are uncorrelated, and

to standardize each variable according to its variance. The new axes are given by the

eigenvectors of the matrix Σ, while the lengths of these axes are given by the eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λm of this matrix. Note that in practice we will use the sample estimate

S of the covariance matrix Σ.

3.5 Generalized variance

In Section 3.2, I showed how to represent our leakage traces through the leakage matrix

X and how to visualize these traces in a scatter plot, and in Section 3.4, I presented the

importance of the covariance matrix for the statistical distance. Now, I shall extend these

concepts and present the relation between the volume generated by the leakage vectors

and the covariance matrix.

Looking back at the leakage matrix from (3.1), we can represent each of its columns as

a vector yj
′ = [x1j, x2j, . . . , xNj]. If we now subtract the mean x̄j from each element we

obtain the deviation vector dj
′ = [d1j, d2j, . . . , dNj] = [x1j − x̄j, x2j − x̄j, . . . , xNj − x̄j].

Therefore, we can see our leakage matrix as a set of m vectors in an N -dimensional space.

However, even if each deviation vector is N -dimensional, we can still plot any two such

deviation vectors dj and dk in a two-dimensional space, as shown in Figure 3.4.
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Given the definition of the deviation vectors, we have that

dj
′dk =

N∑
i=1

(xij − x̄j)(xik − x̄k) = (N − 1)sjk, (3.47)

and from the definition of a scalar product we also know that

dj
′dk = |dj||dk| cos (θ) =

√√√√ N∑
i=1

(xij − x̄j)2

√√√√ N∑
i=1

(xik − x̄k)2 cos (θ). (3.48)

Then we can derive

cos (θ) =
sjk√
sjj
√
skk

= rjk. (3.49)

This shows that the angle between two deviation vectors dj and dk corresponds to the

sample correlation coefficient between the columns yj and yk of the leakage matrix X. It

is also an estimate for the correlation between the random variables Xj and Xk.

We can also compute the area A spanned by the deviation vectors, shown by the dashed

parallelepiped in Figure 3.4, as

A = |dj||dk| sin (θ) = (N − 1)
√
sjjskk(1− r2

jk) (3.50)

Also, we can compute the determinant |S| of the sample covariance matrix of the two

vectors dj and dk, and obtain

|S| =

∣∣∣∣∣
[
sjj sjk

sjk skk

]∣∣∣∣∣ = sjjskk(1− r2
jk). (3.51)

Comparing (3.50) with (3.51) we get

|S| = A2

(N − 1)2
. (3.52)

This can be generalized for the volume V spanned by m deviation vectors, obtaining

|S| = V 2

(N − 1)m
, (3.53)

where S ∈ Rm×m . This shows that the determinant |S| of the sample covariance matrix,

also known as the generalized sample variance, is proportional to the square of the volume

spanned by the deviation vectors.

These formulas provide the interesting intuition that a smaller correlation may correspond

to a larger generalized variance |S|. This can be explained from (3.50) and (3.51), where

we see that the generalized variance is proportional to sin(θ). Therefore, if some deviation

vectors are following a similar direction (hence sin(θ) will be small and the vectors will be

highly correlated) we expect the generalized variance to be small (in the extreme case, if

at least two deviation vectors are on the same direction we expect |S| = 0). Conversely, if
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the deviation vectors are close to being perpendicular (sin(θ) large), then they will span

a large volume, resulting in a large value of |S|.

However, the generalized variance |S| depends also on the lengths of the individual de-

viation vectors (i.e. the individual variances sjj). Therefore, the generalized variance |S|
is not very well suited to compare the overall correlation between two samples (in my

experiments two leakage matrices). A good option for this purpose is to first standardize

all the observations from the leakage matrix, i.e. to replace each sample xij of the leakage

matrix X from (3.1) by (xij − x̄j)/sjj. This results in deviation vectors having equal

length, |d1| = |d2| = . . . = |dm| =
√
N − 1.

From Section 3.3.5, we know that the covariance of the standardized variables is the

sample correlation matrix R. Then, we can say that that the generalized sample variance

|R| obtained from the standardized variables is proportional to the squared volume of the

deviation vectors having equal length, since we can replace S by R in (3.53) and obtain

|R| = V 2

(N − 1)m
. (3.54)

As a result, we can use |R| to compare the overall correlation between different samples.

3.6 Multivariate normal distribution

The multivariate normal distribution, which is central to the template attacks from the

following chapters, is a useful approximation of the true population in many natural

phenomena, including side-channel leakage traces. Furthermore, it is mathematically

tractable and many nice results can be derived, as I will show throughout this section.

Let us start by looking at the univariate normal distribution N (µ, σ) of a single random

variable X, with mean µ and variance σ, which can be written as

f(x) =
1√
2πσ

exp

(
−1

2

(
x− µ√

σ

)2
)
, −∞ < x <∞. (3.55)

This distribution is also known as a Gaussian distribution, after Carl Friedrich Gauss,

who is believed to be the first to have used this distribution, based on a publication

from 1809 [43]. However, it was probably James Clerk Maxwell, in a publication from

1860 [76], who first found the normal distribution to explain physical phenomena. In

particular, Maxwell found that this distribution can approximate the number of moving

particles of a gas, having some velocity in a given direction.

As explained in Section 3.3, when dealing with a sample of observations (which is usually

the case in practice), we replace the real (population) parameters µ and σ by their sample

counterparts. Using the data shown in Figure 3.1, we can derive the univariate distribution
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Figure 3.5: Univariate distribution of leakage samples at j = 878 for traces from the

Grizzly Alpha dataset. x̄j = 4.97,
√
sjj = 0.23.

of the leakage samples at j = 878, with sample mean x̄j = 4.97 and sample standard

deviation
√
sjj = 0.23. This is shown in Figure 3.5.

The univariate normal distribution formula (3.55) is composed of two main terms. The

term
(
x−µ√
σ

)2

is simply the squared Euclidean distance from x to µ, normalized by the

standard deviation
√
σ, while the term 1√

2πσ
is a normalizing constant used to make the

area under the distribution (i.e. the probability) equal to 1.

We can extend these terms to the multivariate case, where we deal with several random

variables X1, X2, . . . , Xm, as follows. First, we replace the Euclidean distance by the sta-

tistical distance (x− µµµµµµµµµµµµµµµµµ)′Σ−1(x−µµµµµµµµµµµµµµµµµ), where x ∈ Rm may be a leakage vector observed from

the distribution of the m random variables, µµµµµµµµµµµµµµµµµ is the mean vector and Σ is the covari-

ance of this distribution – see also Section 3.4. Then, we should normalize the resulting

exponent by the volume (|Σ|−1/2) derived from the span of the covariance matrix (see

Section 3.5), and the normalizing constant (2π)−m/2. As a result, we obtain the form of

the multivariate normal distribution Nm(µµµµµµµµµµµµµµµµµ,Σ) of a random vector X′ = [X1, X2, . . . , Xm],

with mean µµµµµµµµµµµµµµµµµ ∈ Rm and covariance Σ ∈ Rm×m , as

f(x) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(x− µµµµµµµµµµµµµµµµµ)′Σ−1(x− µµµµµµµµµµµµµµµµµ)

)
. (3.56)

As I mentioned in Section 3.3.4, if the random variables X1, X2, . . . , Xm are independent

(Cov(Xj, Xk) = 0), then the multivariate distribution is equal to the product of the

univariate distributions, that is

f(x) = f(x1)f(x2) . . . f(xm). (3.57)

Also, note that for m = 1 the formula in (3.56) reverts to the univariate form in (3.55).
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Figure 3.6: Left: multivariate normal distribution of leakage samples at j = 878 and

j = 1128 for N = 1000 traces from the Grizzly Alpha dataset. Right: contours of points

at a constant statistical distance.

As I mentioned throughout this chapter, in practice we shall often use the sample mean

vector x̄ and the sample covariance matrix S instead of µµµµµµµµµµµµµµµµµ and Σ. Using again the

data shown in Figure 3.1, we have x̄ = [4.97, 5.47] and S =

[
0.052 0.007

0.007 0.044

]
. The

multivariate normal distribution based on this data, N2(x̄,S), is shown in Figure 3.6.

The ellipses formed by similar colors on the right hand side of this figure represent the

contours of equal probability. The points in a given contour are at the same statistical

distance d =
√

(x− x̄)′S−1(x− x̄) from the sample mean x̄.

In Appendix C, I show that the leakage traces from the Grizzly dataset follow well the

multivariate normal distribution. Hence, this gives a good motivation for using the tech-

niques from this chapter with template attacks on these traces.

3.6.1 Some properties of the multivariate normal distribution

I now present some important facts regarding the multivariate normal distribution. These

will be used throughout the following chapters.

Distribution of linear combinations

If the random vector X′ = [X1, X2, . . . , Xm ] is distributed as Nm(µµµµµµµµµµµµµµµµµ,Σ), then any linear

combination a′X = a1X1 + a2X2 + . . . + amXm is distributed as N (a′µµµµµµµµµµµµµµµµµ, a′Σa). This

property will be essential in the discussion of principal components (see Section 3.9).

Distribution of statistical distance

If the random vector X′ = [X1, X2, . . . , Xm ] is distributed as Nm(µµµµµµµµµµµµµµµµµ,Σ), then the squared

statistical distance d2 = (x− µµµµµµµµµµµµµµµµµ)′Σ−1(x − µµµµµµµµµµµµµµµµµ) is distributed as χ2
m (the chi-square distri-



64 3.6. MULTIVARIATE NORMAL DISTRIBUTION

bution with m degrees of freedom), which has the pdf

χ2
m(d2) =

d(m− 1
2

) exp (−d2/2)

2m/2Γ(m/2)
. (3.58)

For positive integers, the function Γ has the form

Γ(n+ 1) = n!, (3.59)

for half-integers it has the form

Γ(n+ 1/2) =
(2n)!

4nn!

√
π, (3.60)

while for arbitrary rational numbers it has no known closed form. The name of the Chi-

square distribution comes from the Greek letter χ (chi), which was used by Karl Pearson

in 1900 [88] to refer to the squared statistical distance, χ = (x− µµµµµµµµµµµµµµµµµ)′Σ−1(x− µµµµµµµµµµµµµµµµµ).

Sample distribution of x̄ and S

Let X be a statistical sample with N observations following a distribution Nm(µµµµµµµµµµµµµµµµµ,Σ), such

as the leakage matrix from (3.1), having sample mean x̄ and sample covariance S. Then

the following hold:

1. x̄ is distributed as Nm(µµµµµµµµµµµµµµµµµ, (1/N)Σ).

2. (N − 1)S follows a Wishart distribution.

3. x̄ and S are independent.

The first statement is very important as it shows that: (a) there is also some variance in

the sample mean x̄, around the true mean µµµµµµµµµµµµµµµµµ, and (b) the variance of the sample mean is

N times smaller than the variance of the data.

The third statement is also important as it allows us to use S as an estimate of Σ in the

computation of intervals for the mean vectors (see Section 3.7).

Large sample behaviour

The following result is known as the central limit theorem. Given a statistical sample

X ∈ RN×m with a large number N of observations following any distribution with some

mean µµµµµµµµµµµµµµµµµ and covariance Σ, its sample mean x̄ is distributed as Nm(µµµµµµµµµµµµµµµµµ, (1/N)Σ), or equiv-

alently
√
N(x̄−µµµµµµµµµµµµµµµµµ) is distributed as Nm(0,Σ). This shows that for N large, the sampling

distribution of x̄ is normal, regardless of the underlying distribution of the data.

Furthermore, it can be shown that N(x̄ − µµµµµµµµµµµµµµµµµ)′S−1(x̄ − µµµµµµµµµµµµµµµµµ) is distributed as X 2
m .
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3.7 Confidence regions for mean vectors

Given a random variable X with real mean µ and variance σ, and a set of observations

x1, x2, . . . , xN of this variable, it may be useful to estimate a confidence region for the

value of the real mean. That is, based on the sample estimates x̄ and s, we may wish to

determine a probable interval for the real mean µ. This interval is given by

x̄ − tN−1(α/2)

√
s

N
≤ µ ≤ x̄ + tN−1(α/2)

√
s

N
, (3.61)

where tN−1 is the t-student distribution with N − 1 degrees of freedom and α is a signifi-

cance level. The meaning of this interval and the relation to α is that we expect the real

mean to be within the given bounds with probability (1−α). Such interval is also known

as a 100(1− α)% confidence interval.

We can extend this concept to multiple variables, as follows. Let X ∈ RN×m be a

statistical sample from a distribution Nm(µµµµµµµµµµµµµµµµµ,Σ), such as the leakage matrix from (3.1),

having sample mean x̄ and sample covariance S. Then, a 100(1− α)% confidence region

for the real mean µµµµµµµµµµµµµµµµµ is given by the relation

N(x̄ − µµµµµµµµµµµµµµµµµ)′S−1(x̄ − µµµµµµµµµµµµµµµµµ) ≤ m(N − 1)

N −m
Fm,N−m(α), (3.62)

where Fm,N−m represents an F -distribution, with m and N−m degrees of freedom, having

the pdf

Fa1,a2(α) =

√
(a1α)a1a2a2

(a1α+a2)(a1+a2)

αB(a1
2
, a2

2
)

, B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.63)

We can observe that the left hand side of (3.62) defines the sets of points at a particular

statistical distance from the sample mean x̄. Therefore, the confidence interval for the

real multivariate mean µµµµµµµµµµµµµµµµµ is an ellipsoid centered at x̄, with a boundary given by the points

at a squared statistical distance d2 = (x̄ − µµµµµµµµµµµµµµµµµ)′S−1(x̄ − µµµµµµµµµµµµµµµµµ) ≤ m(N−1)
N(N−m)

Fm,N−m(α).

Furthermore, we can also compute a confidence interval for the observations in our sample

X. From Section 3.6.1 we know that (x− µµµµµµµµµµµµµµµµµ)′Σ−1(x−µµµµµµµµµµµµµµµµµ) is distributed as X 2
m . As a result,

we can compute the (100− α)% confidence interval for the observations x in X, using

(x− µµµµµµµµµµµµµµµµµ)′Σ−1(x− µµµµµµµµµµµµµµµµµ) ≤ X 2
m(α), (3.64)

which represents an ellipsoid centered at µµµµµµµµµµµµµµµµµ. If we use the sample mean x̄ and sample

covariance S, then the (100− α)% confidence interval for the data is given by

(x− x̄)′S−1(x− x̄) ≤ X 2
m(α), (3.65)

which is an ellipsoid centered at x̄.

I shall illustrate these concepts using data from the Grizzly Alpha dataset (see Sec-

tion 2.3.1). Let X1, X2, X3, X4 and X5 be 5 different samples (leakage matrices) from
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Figure 3.7: Confidence intervals using data from Grizzly Alpha dataset for 5 different

values of k and α = 0.01. Left: intervals for data. Right: intervals for means.

this dataset, corresponding to 5 different register values of the loaded value k. Figure 3.7

shows the confidence intervals for the observations (left), as well as for the real means

µµµµµµµµµµµµµµµµµ1, . . . , µµµµµµµµµµµµµµµµµ5 (right), using α = 0.01. Note that, for large N (top-right), the confidence

intervals of the means are very small and all 5 confidence ellipses are very far apart, while

for smaller N (bottom-right) some of the confidence ellipses overlap, meaning that we

cannot classify correctly a point from the intersection of the overlapping ellipses. As the

following chapters will confirm, the sample size has a strong influence on the effectiveness

of template attacks. Generally, the more data we can use the better the attacks.

3.8 Multivariate analysis of variance

Given a set of samples (leakage matrices) X1,X2, . . . ,XG for G groups, such as those five

shown in Figure 3.7, it can be useful to determine if their mean vectors µµµµµµµµµµµµµµµµµ1, µµµµµµµµµµµµµµµµµ2, . . . , µµµµµµµµµµµµµµµµµG (or

more often their sample estimates) are different. A common technique for this purpose is

the (one-way) analysis of variance (ANOVA), which I shall describe in the following.
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3.8.1 ANOVA

Let us start with the univariate case, where

X1 =


x11

x12

...

x1N1

 , X2 =


x21

x22

...

x2N2

 , . . . , XG =


xG1

xG2

...

xGNG

 , (3.66)

are independent leakage samples corresponding to different values k. We can represent

each sample mean x̄k (where k ∈ {1, . . . , G}) as

x̄k = x̄ + τk, (3.67)

where x̄ =

G∑
k=1

Nk∑
i=1

xki

G∑
k=1

Nk

is the overall sample mean across all the G samples and τk =

x̄k − x̄ is the treatment or effect of the particular group k. Then, we can represent each

observation in our samples as

xki = x̄ + (x̄k − x̄) + (xki − x̄k), (3.68)

where eki = xki− x̄k is the residual associated with xki, following the distribution N (0, σ).

Moving x̄ to the left in (3.68) and squaring we obtain

(xki − x̄)2 = (x̄k − x̄)2 + (xki − x̄k)2 + 2(x̄k − x̄)(xki − x̄k), (3.69)

and by adding over all observations and groups, and eliminating zero terms, we obtain

the sums of squares (SS) form

G∑
k=1

Nk∑
i=1

x2
ki = (

G∑
k=1

Nk)x̄
2 +

G∑
k=1

Nk(x̄k − x̄)2 +
G∑
k=1

Nk∑
i=1

(xki − x̄k)2

(SSobs) = (SSmean) + (SStr) + (SSres),

(3.70)

where SStr is known as the treatment or between (samples) sum of squares and SSres is

known as the residual or within (samples) sum of squares. In addition, we can define the

total or corrected sum of squares

(SScor) = (SStr) + (SSres). (3.71)

Finally, we can use the F-test, that rejects the null hypothesis H0 : τ1 = τ2 = . . . = τG = 0

at a significance level α if

F =
SStr/(G− 1)

SSres

/( G∑
k=1

Nk −G
) > FG−1,

∑
k Nk−G(α), (3.72)
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Figure 3.8: F score for the m = 2500 variables across G = 5 samples (leakage matrices)

in the Grizzly Alpha dataset, along with threshold lines for α = 0.05 (red) and α = 0.005

(green). Left: all leakage samples; right: leakage samples around first peak.

where FG−1,
∑

k Nk−G(α) is the upper (100α)th percentile of the F -distribution with G− 1

and
∑

kNk −G degrees of freedom. Using the null hypothesis test, we have a probability

α of incorrectly rejecting the null hypothesis of equal mean vectors (H0), when the F

value is above the threshold. Therefore, choosing a small α should minimise the chance

of incorrectly deciding that there is some difference between the mean vectors.

As I show in Chapter 4, many techniques for finding the best leakage samples to use in

a side-channel attack rely on some method that is similar to the F-test. While the null

hypothesis testing method may be controversial (e.g. it is not clear how to choose α or

the exact meaning of such a value), for side-channel attacks we are not concerned with a

particular value of α, but rather, we should compute the F-test for all the leakage samples

and select for the attack those providing the highest values. Note that, in general, the

values G and Nk are equal across all variables, so to decide which leakage samples to use

we merely need to compute the signal-to-noise ratio SStr/SSres. Here, as throughout the

following chapters, the signal is determined by the treatment sum of squares SStr, which is

computed from the deviations of the mean values to the overall mean. This provides the

desired signal, since in my experiments I did not use masking (processing random values)

or other countermeasures, as explained in Section 2.1.4.

To illustrate the use of the F-test, let’s use again the five samples from Section 3.7. I

computed the F score from (3.72), for each of the m = 2500 leakage samples, and plotted

the result in Figure 3.8, along with the rejection threshold for α = 0.05 (red) and α = 0.005

(green). We can then select only those samples for which the F score is above a desired

threshold. The leakage samples with the highest score are around j = 880, j = 1127

and j = 1880, so the mean values x̄j of the five groups are most different around these

instants. We also see that, for α = 0.05, some incorrect samples would be selected (those

outside the region where we expect the dynamic power consumption to show up), while

for α = 0.005, the threshold allows us to select samples only around the region of interest.
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3.8.2 MANOVA

The technique presented in the previous section can be modified for the multivariate case,

in order to take into consideration also the correlation between variables. In this case the

technique is called the multivariate analysis of variance (MANOVA).

Let’s use again a set of independent samples (leakage matrices) X1,X2, . . . ,XG, but in

this case each observation is m-dimensional, i.e. Xk ∈ RN×m . Similarly to the univariate

case, we can describe each m-dimensional observation as

xki = x̄ + (x̄k − x̄) + (xki − x̄k), (3.73)

where x̄ =

G∑
k=1

Nk∑
i=1

xki

G∑
k=1

Nk

is the overall mean vector and

τττττττττττττττττ k = (x̄k − x̄) (3.74)

is the treatment or effect vector of each group.

We can also define the multivariate versions of the sums of squares, known as the sums

of squares and cross-products (SSP), as

B =
G∑
k=1

Nk(x̄k − x̄)(x̄k − x̄)′ (3.75)

W =
G∑
k=1

Nk∑
i=1

(xki − x̄k)(xki − x̄k)
′ (3.76)

B + W =
G∑
k=1

Nk∑
i=1

(xki − x̄)(xki − x̄)′, (3.77)

where B is the treatment or between SSP matrix, W is the residual or within SSP matrix,

and B + W is the total or corrected SSP matrix. Note that all these matrices can be

efficiently computed as shown in (3.17, 3.18) for the sample covariance matrix.

Similarly to the univariate case, B contains the signal of interest. Then, MANOVA can

be used to test if we can reject the null hypothesis H0 : τττττττττττττττττ 1 = τττττττττττττττττ 2 = . . . = τττττττττττττττττG = 0. For this

purpose, we can compute the quantity

Λ? =
|W|

|B + W|
, (3.78)

known as Wilks’ Lambda (named after its proposer), and reject H0 if Λ? is too small (there

exist tables for checking the expected distribution of Λ?).

I am not aware of this measure having been used in side-channel analysis, although it

may be useful in order to compare the leakage of different implementations.

While I have not used Λ? in my experiments either, I will use the SSP matrices (in

particular W and B) in the following chapters.
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3.8.3 Pooled covariance matrix

Note in (3.76) that the within SSP matrix W is in fact a scaled average of the individual

sample covariance matrices, that is

W = (N1 − 1)S1 + (N2 − 1)S2 + . . .+ (NG − 1)SG. (3.79)

If the underlying real covariances Σ1,Σ2, . . . ,ΣG are the same, we expect their sample

counterparts S1,S2, . . . ,SG to be similar. In this case, we can define the pooled covariance

as

Spooled =

G∑
k=1

(Nk − 1)Sk

G∑
k=1

(Nk − 1)

=
W

G∑
k=1

Nk −G
. (3.80)

The pooled covariance Spooled can provide a much better estimate of the real covariance

Σ governing all samples. Its use will be very important in the subsequent chapters, as it

significantly improves the performance of template attacks.

3.9 Principal Component Analysis

Principal Component Analysis (PCA) is a technique used mainly for two purposes: (a) di-

mensionality reduction; (b) interpretation of data. In the context of side-channel attacks,

in particular for template attacks, we are mostly interested in the first aspect (dimen-

sionality reduction), but generally the application of PCA will also reveal which leakage

samples are more important for the attack. Furthermore, when using PCA for factor ana-

lysis (see Chapter 6), this technique can provide intuitions about the underlying sources

of correlation.

Let X′ = [X1, X2, . . . , Xm] be a vector of random variables representing some data of

interest, such as the leakage matrix in (3.1). Then, the principal components used by

PCA are those linear combinations Yj = a′X, with |a| = 1, that maximise the variance of

the resulting variables Yj. PCA aims to find the best K < m linear combinations of the

original m variables that maximise the variance of the original data. This allows PCA to

capture most of the information from our original data with a smaller (generally much

smaller) number of variables, by projecting the data into a space where the variables are

uncorrelated.

I already presented some important details about PCA in Section 3.4. If we look back

at Figure 3.3, we can recall that for some given data having covariance Σ, the directions

providing the maximum variance of the data were given by the eigenvectors ej of Σ.
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Therefore, if our random variables have covariance Σ, the principal component providing

the maximum variance is Y1 = e1
′X, the component providing the second largest variance

is Y2 = e2
′X, with e2

′e1 = 0, and so on. All the eigenvectors are perpendicular to each

other, i.e. ej
′ek = 0,∀j 6= k, and should be normalized, i.e. |ej| = 1,∀j. The eigenvectors

are selected such that their corresponding eigenvalues are in the order λ1 ≥ λ2 ≥ . . . ≥ λm.

As I mentioned in Section 3.4.1, we can easily obtain the eigenvectors and eigenvalues of

a symmetric matrix, such as Σ or S, using the singular value decomposition (SVD)

Σ = UDU′, (3.81)

where the orthonormal matrix U contains the eigenvectors on its columns and the diagonal

matrix D contains the corresponding eigenvalues on its diagonal elements.

Two important properties of the principal components, that can be easily derived from

(3.46), are that

Var(Yj) = ej
′Σej = λj (3.82)

Cov(Yj, Yk) = ej
′Σek = 0. (j 6= k) (3.83)

Another important property is that

m∑
j=1

Var(Xj) =
m∑
j=1

Var(Yj) =
m∑
j=1

λj, (3.84)

which shows that the total variance across all the random variables in the original data

does not change with the PCA transform, and can be computed from the eigenvalues of

the covariance matrix.

3.9.1 Choosing the number of principal components

Based on (3.84), we can define the contribution of a principal component Yj to the total

variance as

(contribution of Yj) =
λj
m∑
j=1

λj

. (3.85)

Furthermore, we can compute the contribution of the first K principal components to the

total variance as

φ(K) =

K∑
j=1

λj

m∑
j=1

λj

. (3.86)
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Figure 3.9: PCA eigenvectors (left) and eigenvalues (right) from leakage matrix X1 (k = 1)

of Grizzly Alpha dataset.

This leads to a rule, known as the cumulative percentage of total variation [56], by which

we should select the smallest K for which φ(K) is greater than some chosen threshold

(e.g. 0.9).

Another option is to use the elbow rule [56], which advises to plot the eigenvalues and then

select K as the point after which there is no considerable difference between consecutive

eigenvalues.

3.9.2 PCA on the Grizzly dataset

As an example for using PCA, let’s use again the leakage matrix X1, corresponding to

k = 1, from the Grizzly Alpha dataset. Figure 3.9 shows the first four eigenvectors (left)

out of the total of m = 2500 eigenvectors, and first 20 eigenvalues (right) of the sample

covariance matrix S = Cov(X1). Looking at the eigenvectors, it seems that only the first

two either contain large peaks or are constantly different than zero. Looking now at the

eigenvalues, we can see an elbow at j = 3, which confirms that most of the information

can be extracted with only K = 2 PCA components.

Visualising the directions of the eigenvectors in the space spanned by the covariance

matrix X1 is not possible in this case (m = 2500). However, just for exemplification,

we can focus only on the leakage samples at times j = 878 and j = 1128, as I did for

the example in Figure 3.7, and compute the eigenvectors e1 and e2 of the covariance

matrix S =

[
s878,878 s878,1128

s1128,878 s1128,1128

]
. The directions of these eigenvectors are shown in

Figure 3.10 (left), along with the ellipse formed by points at a constant statistical distance

from the sample mean vector x̄ = [x̄878, x̄1128]. Note that this ellipse is one of those shown

already in the left side of Figure 3.7.
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Figure 3.10: Directions of PCA eigenvectors from sample covariance matrix S1 (left) and

from the treatment SSP matrix B (right), using leakage matrices X1, . . . ,X5 of the Grizzly

Alpha dataset.

3.9.3 PCA on the treatment vectors

Another good application of PCA, which will be most useful in the template attacks

described throughout the following chapters, can be used when dealing with samples

having different mean vectors. Let’s use again the leakage matrices X1, . . . ,X5 of the

Grizzly Alpha dataset. The idea then, is to use the matrix of treatment vectors

T =


τττττττττττττττττ 1
′

τττττττττττττττττ 2
′

τττττττττττττττττ 3
′

τττττττττττττττττ 4
′

τττττττττττττττττ 5
′

 =


(x̄1 − x̄)′

(x̄2 − x̄)′

(x̄3 − x̄)′

(x̄4 − x̄)′

(x̄5 − x̄)′

 (3.87)

in order to find the principal components that maximise the variance between the mean

vectors. We simply apply PCA to the covariance matrix T′T, which, except for a constant

factor, is precisely the treatment matrix B from (3.75). Focusing again only on the

samples at j = 878 and j = 1128, I show in Figure 3.10 (right) the direction of the first

eigenvector e1, along with the treatment vectors τττττττττττττττττ k. Comparing this figure with the right

side of Figure 3.7, we can see that the treatment vectors have the same relative position

as the mean vectors x̄k, and that the first eigenvector of B indeed provides the direction

where the variance between the treatment vectors (and the mean vectors) is maximised.

3.10 Fisher’s Linear Discriminant Analysis

Fisher [40] proposed another technique, known as Fisher’s Linear Discriminant Analysis

(LDA), which can also be used for dimensionality reduction. LDA is aimed at maximising
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the classification performance between different groups, which is the main goal of the

template attacks presented in the following chapters.

Let X1,X2, . . . ,XG be G random vectors in Rm (representing for example the leakage

matrices used in Figure 3.10), with the corresponding mean vectors µµµµµµµµµµµµµµµµµX1 , µµµµµµµµµµµµµµµµµ
X
2 , . . . , µµµµµµµµµµµµµµµµµ

X
G and

having equal covariances Σ1 = Σ2 = . . . = Σ. Let also Ykj = aj
′Xk represent a linear

combination of the random vector Xk, having mean µYkj = aj
′µµµµµµµµµµµµµµµµµXk and variance Var(Ykj) =

Var(aj
′Xk) = aj

′Σkaj = aj
′Σaj. Due to the equality of covariances (homoscedasticity),

we can observe that the variance Var(Ykj) of the linear combinations is independent

of k, so I shall use the notation Var(Yj) = Var(Ykj) for all groups. Furthermore, let

µµµµµµµµµµµµµµµµµX = 1
G

G∑
k=1

µµµµµµµµµµµµµµµµµXk and µYj = 1
G

G∑
k=1

µYkj represent the means across the G random vectors.

The goal of LDA is to find those linear combinations Ykj = aj
′Xk that maximise the ratio

G∑
k=1

(µYkj − µ̄Yj )2

Var(Yj)
=

G∑
k=1

(aj
′(µµµµµµµµµµµµµµµµµXk − µµµµµµµµµµµµµµµµµX))2

Var(aj ′X)
(3.88)

=

aj
′( G∑

k=1

(µµµµµµµµµµµµµµµµµXk − µµµµµµµµµµµµµµµµµX)(µµµµµµµµµµµµµµµµµXk − µµµµµµµµµµµµµµµµµX)
′)

aj

aj ′Σaj
=

aj
′Baj

aj ′Σaj
,

where B is the treatment matrix presented in Section 3.8.2. We can observe that this is

precisely a multivariate signal-to-noise ratio, since B contains our signal of interest, and

Σ contains the noise (variance and correlation) common to all traces.

The linear combinations Ykj = aj
′Xk that maximise (3.88) are known as sample discrim-

inants, and the coefficients aj are given by the eigenvectors e1, e2, . . . , es corresponding

to the largest eigenvalues of Σ−1B, where s = min(m,G − 1) is the maximum number

of non-zero eigenvectors, as that is the maximum number of independent linear combi-

nations available in B. In practice, we shall often use the sample estimates of Σ and B,

such that the coefficients of LDA will be given by the eigenvectors of S−1
pooledB. Also, we

should use some rule, such as those in Section 3.9.1, to select the minimum number K of

discriminants that are needed for a good discrimination.

There is an interesting similarity between the left hand side of (3.88) and the F-score

in (3.72), in particular when used to discriminate between leakage samples of different

classes (e.g. different k). While with (3.72), we compute the individual F-score for each

sample and then select the samples with the highest score, Fisher’s LDA finds the linear

combinations of the samples that maximise the overall signal-to-noise ratio from (3.88),

taking into account the overall variation and correlation between samples. In the following

chapters, I will show that this has a great impact on the performance of template attacks.



Chapter 4

Efficient template attacks

In this chapter, I provide a detailed introduction to template attacks (Section 4.1), and

then explain some efficient techniques to implement these attacks in practice (Section 4.4),

complemented with results from the Grizzly dataset (Section 4.6). These results have been

published in the following conference paper:

Omar Choudary and Markus G. Kuhn. Efficient Template Attacks, CARDIS

2013, Berlin, 27–29 November 2013, LNCS 8419, pp. 253–270 [26].

As I will detail in the following sections, these results dismiss some previous misconcep-

tions about the implementation of template attacks and show that with enough data

and good algorithms we can extract much more information from side-channel leakage

traces than was previously thought. In particular, I shall show that we can determine

almost perfectly an unknown 8-bit value processed by a single load instruction in a mi-

crocontroller. These are probably among the best published results on eavesdropping a

single data value (not in the context of any specific cryptographic algorithm) on an 8-bit

microcontroller. Furthermore, in Section 4.7, I demonstrate how the efficient techniques

presented in this chapter can be used to attack a hardware implementation of AES.

4.1 Template attacks

I now provide a detailed description of the template attack. In the rest of this chapter,

and in the following chapters, I shall use the notations introduced in Chapter 3.

As I mentioned in the previous section, to implement a template attack we need physical

access to a pair of identical devices, which I refer to as the profiling and the attacked device.

We wish to infer some secret value k? ∈ S, processed by the attacked device at some point.

For an 8-bit microcontroller, S = {0, . . . , 255} might be the set of possible byte values

manipulated by a particular machine instruction. However, note that this attack is not
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restricted to 8-bit microcontrollers. As I show in Chapter 7, we can combine the efficient

attacks described here with Stochastic Models [97] to obtain practical attacks on 16-bit

targets. Furthermore, it is generally possible to target 8 bits (e.g. the bits processed by

an AES S-box) even in architectures with 64-bit bus, by considering the other bits as

electronic noise (although in this case we shall need more traces).

We assume that we determined the approximate moments of time when the secret value

k? is manipulated and we are able to record signal traces (e.g. supply current or electro-

magnetic waveforms) around these moments. Let x ∈ Rmr
be such a leakage trace. I shall

use the symbol mr to refer to the total number of leakage samples that we obtain from

the oscilloscope, i.e. the number of leakage samples in a raw trace, and the symbol m to

refer to an arbitrary selection or projection of these leakage samples, such that m ≤ mr.

More generally, I shall use the superscript r whenever a symbol applies to the raw traces.

During the profiling phase we record np leakage vectors xr
ki ∈ Rmr

from the profiling

device for each possible value k ∈ S, and combine these as row vectors xr
ki
′ in the leakage

matrix Xr
k ∈ Rnp×mr

.

Typically, the raw leakage vectors xr
ki provided by the data acquisition device contain a

large number mr of leakage samples, due to high sampling rates used. Therefore, we might

compress them before further processing, either by selecting only a subset of m � mr

of those samples, or by applying some other data-dimensionality reduction method (see

Section 4.3). I refer to such compressed leakage vectors as xki ∈ Rm and combine all

of these as rows into the compressed leakage matrix Xk ∈ Rnp×m . (Without any such

compression step, we would have Xk = Xr
k and m = mr.)

Then, as presented in Section 3.3, we can compute the sample mean x̄k ∈ Rm and sample

covariance Sk ∈ Rm×m for each possible value k ∈ S as

x̄k = 1
np

np∑
i=1

xki, Sk = 1
np−1

np∑
i=1

(xki − x̄k)(xki − x̄k)
′. (4.1)

These are known as the template parameters. Note that others [9, 101, 36] have used

1/np rather than 1/(np − 1) in the computation of Sk, thereby computing the maximum

likelihood estimator (MLE) of Σk. In theory, the correct estimator for Σk is the unbiased

estimator with 1/(np − 1); the MLE merely maximises the joint likelihood from the

multivariate normal distribution. In practice, I found this choice makes no significant

performance difference (even down to np = 10,m = 6).

As I show in Appendix C, side-channel leakage traces can be modeled well by the multivari-

ate normal distribution, which I presented in detail in Chapter 3. Then, the probability

density function (pdf) of a leakage vector x, given x̄k and Sk, is

f(x | x̄k,Sk) =
1√

(2π)m |Sk|
exp

(
−1

2
(x− x̄k)

′S−1
k (x− x̄k)

)
. (4.2)
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In the attack phase, we try to infer the secret value k? ∈ S processed by the attacked

device. We obtain na leakage vectors xi ∈ Rm from the attacked device, using the same

recording technique and compression method as in the profiling phase, resulting in the

leakage matrix Xk? ∈ Rna×m . Then, for each k ∈ S, we compute a discriminant score

d(k | Xk?). Finally, we try all k ∈ S on the attacked device, in order of decreasing score

(optimized brute-force search, e.g. for a password or cryptographic key), until we find the

correct k?. Given a trace xi from Xk?, a commonly used discriminant [9, 101, 36], derived

from Bayes’ rule, is

d(k | xi) = f(xi | x̄k,Sk)P (k), (4.3)

where the denominator from Bayes’ rule is omitted, as it is the same for each k. Assuming

a uniform a-priori probability P (k) = |S|−1, applying Bayes’ rule becomes equivalent to

computing the likelihood

l(k | xi) = d(k | xi) = l(x̄k,Sk | xi) = f(xi | x̄k,Sk), (4.4)

where the latter can be computed from (4.2). However, we do not need to compute a

proper a-posteriori probability for each candidate k given a trace xi, but only a discrim-

inant function that allows us to sort scores and identify the most likely candidates. In

Section 4.4, I show how the latter can be much more efficient.

4.2 Implementation caveats

Here I present several problems that can appear when implementing the template attack,

especially when using a large number of samples m.

4.2.1 Inverse of covariance matrix

Several authors [73, 36, 12] noted that inverting the covariance matrix Sk from (4.1), as

needed in (4.2), can cause numerical problems for large m. However, it is important to

understand why Sk can become singular (|Sk| ≈ 0), causing these problems.

Since Sk is essentially the matrix product X̃′kX̃k (see (3.18)), both Sk and X̃k have the

same rank. Therefore Sk is singular iff X̃k has dependent columns, which is guaranteed

if np < m. The constraint on X̃k to have zero-mean rows implies that it has dependent

columns even for np = m. Therefore, np > m is a necessary condition for Sk to be

non-singular. See [54, Result 3.3] for a more detailed proof.

The restriction m < np is one main reason for reducing m through compression (see

Section 4.3). However, it is not mandatory to compress m further than what is needed

to keep the columns of X̃k independent. In practice, some of the leakage samples can be

highly correlated, in which case np needs to be somewhat larger than m. For example,
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using all the N = 3072 raw traces from the leakage matrix Xr
1 of the Grizzly Alpha dataset,

the resulting covariance matrix S1 = Cov(Xr
1) has full rank (rank(S1) = m = 2500), and

hence poses no problems for inversion.

If we cannot obtain np > m, then we may try to correct the covariance matrix [68, 41, 113].

With the covariance estimator of Ledoit and Wolf [68] I obtained a non-singular Sk even

for np < m. However, when possible, a much better option is to use the pooled covariance

matrix Spooled, presented in Section 3.8.3.

4.2.2 Floating-point limitations

One practical problem with (4.2) is that, for large m, the statistical distance

(x− x̄k)
′S−1
k (x− x̄k)

can reach values that cause the subsequent exponentiation operation to overflow. For

example, in IEEE double precision, exp(x) is only safe with |x| < 710, easily exceeded for

large m. For example, taking again the leakage matrix Xr
1 of the Grizzly Alpha dataset,

I obtain (x1,1 − x̄1)′S−1
1 (x1,1 − x̄1) = 2496.2.

Another problem is that, for large m, the determinant |Sk| can overflow or underflow.

This can be explained easily, observing that |Sk| = λ1λ2 . . . λm, which can be easily

verified from the SVD in (3.81) and noting that |U| = ±1. For the covariance matrix S1

of the Grizzly Alpha dataset, λ50 ≈ 5.28 × 106 (all the previous eigenvalues are larger).

Multiplying merely 50 such values again overflows the IEEE double precision format.

4.3 Compression methods

A compression method can be used to reduce the length (dimensionality) of leakage vec-

tors from mr to m. As detailed in Section 4.2, this may be needed if we do not have

enough traces for a full rank covariance matrix or to cope with computational or memory

restrictions. There are two main common approaches used in the literature: (a) selecting

some of the samples based on some criteria; (b) using some linear combinations of the

leakage vectors, based on the principal components or Fisher’s linear discriminant. All of

these approaches, as I will show in the following, rely on the treatment vectors

τk = (x̄k − x̄), (4.5)

that define the signal of interest (see Section 3.8.2), where

x̄ =
1

|S|
∑
k∈S

x̄k. (4.6)
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Figure 4.1: Signal-strength estimates from DOM, SOSD and SNR (identical to SOST) on

the Grizzly Beta dataset, along with the average standard deviation (STD) of the traces

and clock signal. np = 2000. All estimates are rescaled to fit into the plot, so the vertical

axis (linear) has no scale.

4.3.1 Selection of samples

In this method we first compute a signal-strength estimate s(t), t ∈ {t1, . . . , tmr}, and

then we select a subset of m points based on this estimate.

There are several proposals for producing s(t), such as difference of means (DOM) [24, Sec-

tion 2.1], the sum of squared differences (SOSD) [46], the Signal to Noise Ratio (SNR) [73]

and SOST [46]. All these are similar, with the notable difference that the first two do

not take the variance of the traces into consideration, while the latter two do. The SNR

and SOST methods are variants of the F-test, presented in Section 3.8.1.

The DOM method was first proposed by Chari et al. [24, Section 2.1], where they pro-

posed to select samples at which large pairwise differences between the means show up.

Later, Rechberger and Oswald [92, Section 3.2] explicitly suggested to sum these pair-

wise differences and then select the samples from the traces with largest peaks. Gierlichs

et al. [46, Section 2.1] observed that using the sum is not appropriate, proposing the sum

of squared differences (SOSD) instead.

I found that the sum of the absolute value of pairwise differences

sDOM =
∑

1≤i<j<|S|

|x̄r
i − x̄r

j| (4.7)

gives very good results, which is what I refer to as DOM from now on. Here, x̄r
i, x̄r

j are

the mean vectors, as in (4.1), but calculated from the raw leakage vectors xr
i.

In Figure 4.1, I show these estimates for the Grizzly Beta dataset. The methods SNR

and SOST are in fact the same if we consider the variance at each sample point to be

independent of the candidate k, which is expected in our setting. Under this condition

SNR and SOST reduce to computing the F-score from Section 3.8.1.
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In the second step of this compression method we need to choose m samples based on

the signal-strength estimate s. The goal is to select the smallest set of samples that

contains most of the information about our target. A guideline, proposed by Rechberger

and Oswald [92, Section 3.2], is to select at most one sample per clock cycle among the

samples with highest s. In Section 4.6, I evaluate several other options, and show that

selecting several leakage samples per clock cycle can provide better results.

4.3.2 Principal Component Analysis (PCA)

In Section 3.9, I explained in detail how PCA can be used to reduce the dimensionality

of leakage traces, providing examples for the Grizzly Alpha dataset. However, it was

Archambeau et al. [9], who proposed the use of PCA on the treatment matrix

B = np

∑
k∈S

(x̄r
k − x̄r)(x̄r

k − x̄r)′ (4.8)

for template attacks (see also Section 3.9.3).

Using PCA on the matrix B ∈ Rmr×mr
, we obtain the SVD B = UDU′, where the

eigenvectors ej ∈ Rmr
(the columns of U) provide the directions such that the variance

between the treatment vectors τk is maximised (see also Figure 3.10 right). As a result,

only the first m eigenvectors [e1 . . . em] = Um are needed in order to preserve most of the

information from the mean vectors x̄r
k. Therefore, we can project the raw mean vectors

x̄r
k and covariance matrices Sr

k into the new coordinate system defined by Um to obtain

the PCA template parameters x̄k ∈ Rm and Sk ∈ Rm×m , where

x̄k = Um′x̄r
k, Sk = Um′Sr

kU
m. (4.9)

For situations where mr � |S| (which is typical for 8-bit targets, but not so for 16-bit or

larger targets), Archambeau et al. [9] show a better method for computing U. However,

in my experiments with mr = 2500, the direct computation of U from the SVD of B

worked well, requiring only 14 s to complete on a normal PC (Intel i3 CPU 3.07 GHz).

Alternative computation of PCA templates

Even though in [101, Section 4.1] the authors mention that PCA can help where computing

the full covariance matrix Sr
k is prohibitive (due to largemr), the original PCA approach [9]

still requires the computation of Sr
k (see (4.9)). Also, numerical artifacts during the double

matrix multiplication in (4.9) can make Sk non-symmetric. One way to avoid the latter

is to use the Cholesky decomposition Sr
k = C′C and compute

Sk = Um′Sr
kU

m = Um′C′CUm = (CUm)′(CUm) = V′V. (4.10)
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However, based on the facts shown in (3.6.1), we know that

Sk = Cov(Xr
kU

m) = Um′Cov(Xr
k)U

m = Um′Sr
kU

m. (4.11)

Therefore, to avoid both the numerical artifacts and the computation of large covariance

matrices, we can first compute the projected leakage matrix

Xk = Xr
kU

m (4.12)

and then compute the PCA-based template parameters using (4.1) on Xk. I use this

method throughout my experiments.

4.3.3 Fisher’s Linear Discriminant Analysis (LDA)

As explained in Section 3.10, we can also use Fisher’s LDA to compress the leakage

traces. LDA takes into account both the variability of the means (from B) and the

variability within each leakage matrix (from Spooled). This allows LDA to perform better

than PCA, although, if the pooled covariance matrix Spooled (see Section 4.4.2) cannot be

well estimated, then PCA might be a better choice.

LDA provides the eigenvectors [e1 . . . emr ] = U corresponding to the largest eigenvalues

of S−1
pooledB. As with PCA, we only need to use the first m eigenvectors [e1 . . . em] = Um

to preserve most of the information from the original traces. Then, we can project each

leakage matrix as

Xk = Xr
kU

m (4.13)

and compute the LDA-based template parameters using (4.1).

Several authors [101, 36] have used Fisher’s LDA for template attacks, but without men-

tioning two important aspects. Firstly, the condition of equal covariances (known as

homoscedasticity) may be important for the success of Fisher’s LDA. Therefore, the PCA

method (Section 4.3.2), which does not depend on this condition, might be a better choice

in some settings. Secondly, the coefficients that maximise (3.88) can be obtained using

scaled versions of Spooled
1 or different approaches [101, 36], which will result in a different

scale of the coefficients aj. This difference has a major impact on the template attack:

only if we scale the coefficients aj, such that aj
′Spooledaj = 1, will the covariance of the

compressed traces become the identity matrix [54, Exercise 11.21], i.e. Sk = I. That

means that we only need to use the sample means during the attack, which greatly re-

duces computation and storage requirements. Therefore, we can compute the diagonal

matrix Q ∈ Rm×m , having the values qjj = ( 1
aj

′Spooledaj
)
1
2 = ( 1

ej ′Spooledej
)
1
2 on its diagonal,

to obtain the scaled coefficients AQ = UmQ, and replace (4.13) by

Xk = Xr
kAQ = Xr

kU
mQ. (4.14)

1Instead of Spooled we could use W = |S|(np − 1)Spooled, the sample within groups matrix.
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An alternative approach is to compute the eigenvectors ej of S
− 1

2
pooledBS

− 1
2

pooled and then

obtain the coefficients aj = S
− 1

2
pooledej, which leads directly to coefficients that satisfy

aj
′Spooledaj = 1. Throughout my experiments I used the first approach.

4.4 Efficient implementation of template attacks

In this section I present methods that avoid the problems identified in Section 4.2 and

implement template attacks very efficiently.

4.4.1 Using the logarithm of the multivariate normal distribu-

tion

Mangard et al. [73, p. 108] suggested calculating the logarithm of (4.2), as in

log f(x | x̄k,Sk) = −1

2

(
log [(2π)m |Sk|] + (x− x̄k)

′S−1
k (x− x̄k)

)
. (4.15)

They then claim that “the template that leads to the smallest absolute value [of (4.15)]

indicates the correct [candidate]”.

The first problem with this approach is that (4.15) does not avoid the computation of

|Sk|, which I have shown to be problematic. Therefore, a better method is to compute

the logarithm of the multivariate normal pdf as

log f(x | x̄k,Sk) = −m
2

log 2π − 1

2
log |Sk| −

1

2
(x− x̄k)

′S−1
k (x− x̄k), (4.16)

where we can compute the logarithm of the determinant as

log |Sk| = 2
∑

cii∈diag(C)

log cii, (4.17)

using the Cholesky decomposition Sk = C′C of the symmetric matrix Sk. (Since C is

triangular, its determinant is the product of its diagonal elements.)

Secondly, it is incorrect to choose the candidate k that leads to the “smallest absolute

value” of (4.15,4.16), since the logarithm is a monotonic function and preserves the prop-

erty that the largest value corresponds to the correct k.2

Using the log-likelihood from (4.16), and dropping the first term which is constant across

all k, we can compute the following discriminant score:

dLOG(k | xi) = −1

2
log |Sk| −

1

2
(xi − x̄k)

′S−1
k (xi − x̄k) (4.18)

= log f(xi | x̄k,Sk) +
m

2
log 2π = log l(k | xi) + const,

which avoids the numerical issues that can appear with (4.3).

2Note that a probability density function (continuous), such as f from (4.2), unlike a probability mass

function (discrete), can be both larger or smaller than 1 and therefore its logarithm can be both positive

or negative.
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4.4.2 Using a pooled covariance matrix

As I explained in Section 3.8.3, if the leakages from different candidates k have different

means but the same real covariance Σ = Σ1 = Σ2 = · · · = Σk, it is possible to use a

pooled covariance

Spooled =
1

|S|(np − 1)

∑
k∈S

np∑
i=1

(xki − x̄k)(xki − x̄k)
′, (4.19)

which represents a much better estimate of the real covariance Σ, since Spooled estimates

the covariance using np|S| traces, while the individual covariance matrices Sk use only np.

This in turn means that the condition for a non-singular matrix (see Section 4.2.1) relaxes

to np|S| > m or np >
m
|S| . Therefore, the number of traces that we must obtain for each

candidate k is reduced by a factor of |S|, a great advantage in practice. Nevertheless, the

quality of the mean estimates x̄k still depends directly on np. Also note that for Fisher’s

LDA (see Sections 3.10 and 4.3.3) we need to compute the inverse of Spooled ∈ Rmr×mr
,

which requires np|S| > mr.

Several authors used Spooled with template attacks [13, 83], but did not provide a clear

motivation for its use. We expect the assumption of equal covariances to hold for many

side-channel applications, because the covariance matrices Σk capture primarily informa-

tion about how noise, that is variation in the recorded traces unrelated to k, is correlated

across trace samples. After all, the data-dependent signal x̄k was already subtracted. As

a result, we should not expect substantial differences between the sample covariances Sk

for different candidate values k, unless the target device contains some mechanism by

which k can modify the correlation between samples. Note that in this assumption I do

not consider masking implementations [106, 90], and therefore I do not consider scenarios

in which leakage samples depend on k due to missing information during profiling.

Box’s test [17] can be used to reject the hypothesis of equal covariances, although it can

be misleading for large |S| or large m. In my experiments, with |S| = 28, m = 6 and

np = 2000, Box’s variable C ∼ Ff1,f2(α) had the value 2.03, which was above the rejection

threshold for any realistic significance level (e.g. Ff1,f2(0.99) = 1.045). Nevertheless, the

different Sk are visually similar (viewed as bitmaps with linear colour mapping), and we

can consider that the hypothesis of equal covariances (homoscedasticity) is confirmed by

the superior results obtained with the pooled covariance (see Section 4.6).

When using Spooled, the first term in (4.18) becomes constant. The remaining term is

based on the statistical distance (or Mahalanobis distance)

d2
M(x | x̄k,Spooled) = (x− x̄k)

′S−1
pooled(x− x̄k) ≥ 0, (4.20)

which I described in detail in Section 3.4. As a result, we can use the discriminant score

dMD(k | xi) = −1

2
d2

M(xi | x̄k,Spooled) = dLOG(k | xi) + const. (4.21)

to compare the candidates k.
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4.4.3 Linear discriminant score

When using the pooled covariance matrix Spooled we can rewrite the distance from (4.20)

as

d2
M(x | x̄k,Spooled) = x′S−1

pooledx− 2x̄′kS
−1
pooledx + x̄′kS

−1
pooledx̄k, (4.22)

because

x̄′kS
−1
pooledx = (x̄′kS

−1
pooledx)

′
= x′S−1

pooled

′
x̄k = x′S−1

pooledx̄k. (4.23)

The first term in (4.22) is constant for all groups k so we can discard it. That means,

that we can now use the following linear discriminant score:

dLINEAR(k | xi) = x̄′kS
−1
pooledxi −

1

2
x̄′kS

−1
pooledx̄k = dMD(k | xi) + const., (4.24)

which depends linearly on xi (where const. does not depend on k). Although equivalent,

the linear discriminant dLINEAR can be far more efficient to compute than the quadratic

dMD.

4.4.4 Combining multiple attack traces

In the previous sections I presented a couple of discriminants used with a single leakage

trace. However, an attacker might be able to use many attack traces. Therefore, I now

present two sound options for combining the na individual leakage traces xi from Xk? into

the final discriminant score d(k | Xk?).

Option 1:

Average all the traces in Xk? (similar to the mean computation in (4.1)) in order to

remove as much noise as possible and then use this single mean trace x̄k? to compute

davg(k | Xk?) = d(k | x̄k?). (4.25)

This option is computationally fast, requiring O(nam + m2) time for any presented dis-

criminant, but it does not use all the information from the available attack traces (in

particular the noise).
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Option 2:

Compute the joint likelihood l(k | Xk?) =
∏

xi∈Xk?

l(k | xi). By applying the logarithm to

both sides we have log l(k | Xk?) =
∑

xi∈Xk?

log l(k | xi) and we obtain the derived scores:

djoint
LOG(k | Xk?) = −na

2
log |Sk| −

1

2

∑
xi∈Xk?

(xi − x̄k)
′S−1
k (xi − x̄k), (4.26)

djoint
MD (k | Xk?) = −1

2

∑
xi∈Xk?

(xi − x̄k)
′S−1
k (xi − x̄k), (4.27)

djoint
LINEAR(k | Xk?) = x̄′kS

−1
pooled

( ∑
xi∈Xk?

xi

)
− na

2
x̄′kS

−1
pooledx̄k. (4.28)

Given the na leakage traces xi ∈ Xk?, dLOG and dMD require time O(nam
2) while

dLINEAR only requires O(nam + m2), since the multiplications x̄′kS
−1
pooled and x̄′kS

−1
pooledx̄k

only need to be done once, which is a great advantage in practice. As a practical

example, my evaluations of the guessing entropy (see Section 4.6) for m = 125 and

na ∈ {1, 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000} took about 3.5 days with dLOG, but only 30

minutes with dLINEAR.3

Notice that for dLINEAR the computation time is the same regardless of which option we

use to combine the traces, and both give the same results for the template attack. This

is because if we let ck = −1
2
x̄′kS

−1
pooledx̄k for any k, then we have

djoint
LINEAR(k | Xk?) = x̄′kS

−1
pooled

( ∑
xi∈Xk?

xi

)
+ nack, (4.29)

davg
LINEAR(k | Xk?) = x̄′kS

−1
pooled

(
1

na

∑
xi∈Xk?

xi

)
+ ck, (4.30)

and therefore for any u, v ∈ S it is true that

davg
LINEAR(u | Xk?) > davg

LINEAR(v | Xk?)⇔

x̄′uS
−1
pooled

(
1

na

∑
xi∈Xk?

xi

)
+ cu > x̄′vS

−1
pooled

(
1

na

∑
xi∈Xk?

xi

)
+ cv ⇔

x̄′uS
−1
pooled

( ∑
xi∈Xk?

xi

)
+ nacu > x̄′vS

−1
pooled

( ∑
xi∈Xk?

xi

)
+ nacv ⇔

djoint
LINEAR(u | Xk?) > djoint

LINEAR(v | Xk?).

Karsmakers et al. [58] have mentioned the use of the linear discriminant with template

attacks in a technical report in 2007, before the publication of my paper at CARIDS in

2013 [26]. However, they evaluated only the linear discriminant, without commenting on

3MATLAB, single core CPU with 3794 MIPS.
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the great advantage over the other discriminants, and did not consider Fisher’s LDA as a

compression method. In the following section I present an extensive evaluation of all the

discriminants presented earlier, using the compression methods from Section 4.3.

4.5 Metrics for the evaluation of template attacks

There are three common metrics used to evaluate side-channel attacks: the guessing

entropy, the success rate, and the mutual information [104]. The guessing entropy was

analysed by Massey [75] and Cachin [19], and later used by Köph et al. [64] and Standaert

et al. [104] in the context of side-channel attacks. In my evaluations, I used mainly the

guessing entropy, as it is defined below.

4.5.1 Guessing entropy

The guessing entropy estimates the remaining cost of an optimised brute-force search

for the correct k?, i.e. the average number of trials needed to find k? after performing

a template attack, when searching over the candidate values k in decreasing order of

their discriminant score. Basically, the guessing entropy provides the average depth of

the correct value k?, in the sorted vector of discriminant scores. Its logarithm gives the

expected number of bits of uncertainty remaining about the target value k?. The lower

the guessing entropy, the more successful the attack has been and the less effort remains

to search for the correct k?.

To compute the guessing entropy, we first need to obtain the scores d(k | Xk?) (see

Section 4.4) for each combination of candidate value k and target value k?, resulting in a

score matrix M ∈ R|S|×|S| with M(k?, k) = d(k | Xk?). Each row in M contains the score

of each candidate value k given the traces Xk? corresponding to a given target value k?.

Next we sort each row of M, in decreasing order, to obtain a depth matrix D ∈ N|S|×|S|

with

D(k?, k) = position of d(k | Xk?) in the sorted row of M(k?, ·). (4.31)

Finally, using the matrix D we can compute the guessing entropy4 as

g = log2

1

|S|
∑
k∈S

D(k, k). (4.32)

Note that it is possible to compute the guessing entropy even if we do not run the attack

for all possible target values k?, by computing the score matrix M ∈ R|Ss|×|S| and cor-

responding depth matrix D ∈ N|Ss|×|S| for only a subset Ss ∈ S of target values. In this

4Standaert et al. [104] presented this measure without the logarithm.
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case we obtain the partial guessing entropy

g = log2

1

|Ss|
∑
k∈Ss

D(k, k). (4.33)

However, for the Grizzly dataset (see Section 2.3.1), using a partial guessing entropy may

be misleading because some values are much easier to attack than others. For example,

the value k = 0 is the only one with a Hamming weight 0. Therefore, in scenarios where

we attack a single fixed value (as in the Grizzly dataset), we should compute the full

guessing entropy. On the other hand, when our target is for example the output v of the

AES S-box (see Figure 2.3), computing the guessing entropy even for a single secret key

byte value k? might be fine, if the attack traces correspond to a uniformly distributed

choice of values v, which are dependent on the secret key byte hypothesis k and the

plaintext bytes p.

4.5.2 Guessing entropy of Hamming weight leakage

As I explained in Section 2.1.1, a common assumption is that the leakage of a device

can be modeled using the Hamming weight of the target value k?. Therefore, in order

to compare my results on Grizzly (see next section), with a Hamming weight leakage, I

provide below a computation of the guessing entropy for the Hamming weight leakage.

For this, I assume a leakage function that leaks exactly the Hamming weight of k?, and I

use the theoretical definition of the guessing entropy used by Cachin in his thesis [19].

Given a random variable X having n possible outcomes, with probabilities p1, p2, . . . , pn

such that p1 ≥ p2 ≥ . . . ≥ pn, the guessing entropy is defined as5:

E[G(X)] =
n∑
i=1

i · pi, (4.34)

which is simply the expectation (mean) of the position (i) according to the probability of

each value. G(X) represents the number of guesses needed to determine the value of X.

In order to use this definition with a Hamming weight leakage, we need to use a conditional

probability, defining the values pk|h as the probability of the candidate value k ∈ S given

a Hamming weight leakage with value h ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}. Then, after relabeling

and reordering the conditional probabilities such that p1|h ≥ p2|h ≥ . . . ≥ pn|h, where

p1|h = arg maxk pk|h, p2|h is the second largest, etc., the definition of the guessing entropy

for a Hamming weight leakage h becomes:

E[G(X | h)] =
n∑
i=1

i · pi|h. (4.35)

5This definition can lead to different results than using the definition from Section 4.5.1. In the

remaining of this thesis I used the definition from Section 4.5.1.
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For example, given h = 1 we have that p1|h = p2|h = . . . = p8|h = 1/8 (corresponding

to the values k ∈ {1, 2, 4, 8, 16, 32, 64, 128} having the Hamming weight h = 1), and

p9|h = . . . = p256|h = 0. As a result, we obtain

E[G(X | h = 1)] =
8∑
i=1

i · pi|h=1 = 4.5. (4.36)

More generally, for a particular b-bit candidate k there are a total of

tk =

(
b

hk

)
=

b!

(b− hk)!hk!
(4.37)

values with the same Hamming weight value hk = HW(k). Therefore, we have that

p1|hk = p2|hk = . . . = ptk|hk = 1/tk and ptk+1|hk = . . . = p2b|hk = 0, so that the guessing

entropy is

E[G(X | hk)] =

tk∑
i=1

i · pi|hk =
tk + 1

2
. (4.38)

As a result, we can compute the overall guessing entropy, as an average over all possible

values k as

E[G(X)] =
1

|S|
∑
k∈S

E[G(X | hk = HW(k))] =
1

|S|
∑
k∈S

tk + 1

2
. (4.39)

For the 8-bit value target used in my experiments, we have that E[G(X)] = 25.63, or

log2 E[G(X)] = 4.68.

4.6 Attacks on a single LOAD instruction

In this section, I present the results of evaluating template attacks on the Grizzly Beta

dataset from Section 2.3.1, where the target k? is the value processed by the second LOAD

instruction, i.e. the value that gets loaded into r9.

I compare the compression methods from Table 4.16 and the discriminants from Sec-

tion 4.4. The sample selection choices are used to compare the previously proposed

guideline [92] of 1 sample per clock at most (1ppc), against multiple points (leakage sam-

ples) per clock: the 3ppc, 20ppc and allap selections.7 I show these selections in Figure 4.2.

I performed each attack 10 times for each combination of na, k and k?, using a different

random selection of Xk? for each na and k?. In the results presented below, I plot the av-

eraged guessing entropy, resulting in highly reproducible graphs. The standard deviation

across all experiments is around 0.1 bits.

6Using SNR instead of DOM as the signal strength estimate s(t) provided very similar results.
7The selections 1ppc, 3ppc and 20ppc provide a variable number of samples because of the additional

restriction that the selected samples must be above the highest 95th percentile of s(t), which varies with

np for each clock edge.
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Table 4.1: List of compression methods evaluated in this chapter.

Name Description m

DOM 1ppc DOM, 1 sample per clock at most 6–10

DOM 3ppc DOM, 3 samples per clock at most 18–30

DOM 20ppc DOM, 20 samples per clock at most 75–79

DOM allap DOM, all samples above 95th percentile of F(t) 125

PCA Fixed selection of number of principal components 4

LDA Fixed selection of number of coefficients 4

0 500 1000 1500 2000 2500
 

 
DOM signal
1ppc
20ppc
allap

850 900 950 1000 1050 1100 1150 1200 1250

0 500 1000 1500 2000 2500
 

 
F−test/SNR signal
1ppc
20ppc
allap

850 900 950 1000 1050 1100 1150 1200 1250

All samples Two clock cycles of target LOAD

D
O

M
F

-test/S
N

R

Sample index Sample index

Figure 4.2: Signal strength estimates for DOM (top) and F-test (bottom), showing the

sample selections 1ppc, 20ppc, and allap, for all samples (left), and for only the two clock

cycles of the target LOAD instruction (right).

4.6.1 Results using individual covariances

In Figure 4.3, I show the results for dLOG. We can see that using davg
LOG with np = 200 and

large na, the selection methods with more points perform better than the methods with

fewer points, while for djoint
LOG the opposite is true. For small np, the covariance matrix
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Figure 4.3: Guessing entropy remaining after template attacks, with different compres-

sions, for np = 200 (left) and np = 2000 (right) profiling traces, using individual covari-

ances Sk with dLOG.

is not well estimated, and therefore the joint likelihood with large m will provide weak

results, whereas with the average trace x̄k? we rely more on the estimation of the mean

vector and in this case having more points helps.

As expected, on the average attack trace x̄k?, PCA performs best: it discriminates along

the directions of maximum variance of the means x̄k. However, PCA also performs very

well using individual attack traces, and we see that PCA with djoint provides the best

results. This shows that PCA is a very efficient compression method, as it accumulates

most of the information from the traces in a very small number of dimensions, which also

helps to obtain a good estimate of the covariance matrix.

For np = 2000, as na increases, the average-trace results not using PCA converge: good x̄k

estimates lead to good discrimination, even with few samples. In this case, the methods

using more samples are also better for small na.

On the other hand, using djoint
LOG, we see that the methods using more samples lead to similar

results as the methods with fewer samples. However, the method 3ppc has outperformed

1ppc and for small na all the methods using more samples are better than 1ppc. This

happens because as np increases, the estimate of the covariance matrix gets better and

methods with larger m start to perform better. We also observe that djoint
LOG outperforms

davg
LOG for large na. As np increases and Sk becomes very close to Σk, we should expect

this trend to become more clear.

Note also that for these figures, using individual covariances, I did not plot the results of

LDA, because LDA requires the use of a common covariance, and in that case we should

better use dLINEAR, as shown next.
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Figure 4.4: Guessing entropy remaining after template attacks, with different compres-

sions, for np = 200 (left) and np = 2000 (right) profiling traces, using a pooled covariance

Spooled with dLINEAR.

4.6.2 Results using the pooled covariance

As explained in Section 4.4.2, using a pooled covariance we can expect to obtain improved

results, since in my case the covariances Sk are very similar and therefore we have np|S|
traces for the estimation of Spooled. In Figure 4.4, I show the results of the template attacks

for different np using Spooled. In this case, there is no difference between using the average

trace and the joint likelihood, as I proved in Section 4.4.4. We can see that, even for small

np (e.g. np = 200), the selection methods using more samples are now always better than

1ppc. For na < 10, there is about 1 bit of entropy difference between 1ppc and 20ppc

or allap. The results are very similar for np = 2000, with a few differences: (a) there is

almost no difference between 20ppc and allap now, as the covariance estimate for allap is

getting close to the real value (although there seems to be room for improvement); (b) for

small na, the methods 20ppc and allap are now even better than PCA; (c) for very large

na, PCA is still better but the difference to 20ppc and allap is now very small. LDA seems

to be the best method overall, although we observe that, for np = 200 and large na, PCA

is better; this is because LDA depends also on the estimate of the common covariance

matrix, while PCA does not. This might be an important difference to consider when

comparing PCA and LDA.

Note that na = 1 is a very important case, as in a real scenario an attacker might be

able to record only a single trace. In this case, the methods using many samples not

only provide a clear advantage over 1ppc, but they can even provide better results than

PCA. The case na = 1000 is also interesting, as it represents the power of the template

attack for an attacker with unlimited access to the target device. I show the success of

the template attacks on these two cases for different values of np in Figure 4.5. In this
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Figure 4.5: Guessing entropy from the methods discussed, for na = 1 (left) and na =

1000 (right), using djoint (at np ∈ {200, 500, 1000, 1500, 2000}, linearly interpolated).

figure, I show only the results for using the joint likelihood, since for na = 1 there is no

difference to using the average trace (since there is just one trace), while for na = 1000

the joint likelihood provides the best results, and as said earlier, davg
LINEAR = djoint

LINEAR.

4.6.3 Practical guidance

The results and considerations presented earlier, lead to the following practical guidance

regarding the choice of algorithm:

1. Use Option 2 (djoint) in preference to Option 1 (davg) to combine the discriminant

scores for na > 1 attack traces. For na = 1 or when using Spooled, these options

are equivalent. Otherwise, as the number na of attack traces increases and the

covariance matrix is better estimated (e.g. due to a large number np of profiling

traces or small number m of variables) djoint outperforms davg.

2. Try using a common covariance matrix Spooled with dLINEAR (unless differences be-

tween individual estimates Sk are very evident, e.g. from visual inspection, or ex-

pected). Failing a statistical test for homoscedasticity (e.g. Box’s test [17]) alone

does not seem to imply that using individual estimates Sk will improve the template

attack. Using individual estimates Sk prevents use of the significantly faster and

more robust discriminant dLINEAR. Then:

(a) If your target allows you to acquire a large number of traces (na > 100): try the

compression methods PCA, LDA and sample-selection with large m since they

may perform differently based on the level of noise from the profiling traces

Xk.

(b) If your target allows only acquisition of a limited number of attack traces (na <

10): use LDA. Note that in this case, as the covariance estimate improves due
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to large |S|np, performance increases with larger m (cf. 3ppc, 20ppc, allap). In

particular, for na < 10, we see in Figure 4.4 that we got more than 1 bit of

data from 20ppc and allap compared to 1ppc, which contradicts the claim [92,

Section 3.2] that “additional [samples] in the same clock cycle do not provide

additional information”. In this setting, 20ppc and allap can outperform PCA.

3. If you cannot use the pooled covariance Spooled, then use the individual covariances

Sk with dLOG and use PCA as the compression method.

This guidance should work well in situations similar to the Grizzly dataset, with the

mention that the success of LDA depends very much on the ratio np/m
r, since for LDA we

need to estimate the covariance matrix corresponding to the raw (full) traces. Although

in my results I was able to use LDA successfully, providing the best results among all

compression methods for low na, this technique might not be appropriate when dealing

with much larger leakage traces. In that case, using PCA or sample selection might be

the better choice for any na.

4.6.4 Results with a matched line

In Figure 4.6, I compare the results of template attacks when using either the active probe

or a coaxial cable with 50 Ω characteristic impedance, connected to the matched line of

my XMEGA PCB (see Section 2.2.2). Due to lack of amplification when using the coaxial

cable, I had to reduce the vertical scale of the Tektronix oscilloscope from 10mV/div to

5mV/div. From these plots, we see that using the coaxial cable with the matched line

provides better results. This is mainly because the active probe uses an operational am-

plifier, which introduces a considerable amount of noise. For all the experiments presented

in the following I used the active probe, even if it does not provide the best results, mainly

because it was not possible for the author to redo all the experiments.

Note that the methods and conclusions presented in this thesis apply whether we use an

active probe or a matched line, the main difference being the noise level in the acquired

traces. In practical attack scenarios we might not be able to have a matched line, due to

lack of control over the target circuit, so in this respect the results from using the active

probe can be regarded more general. However, if the circuit allows it, using a matched

line may be a better choice, as shown in Figure 4.6.

4.6.5 Implications of my results

The results presented earlier have some important implications. Firstly, they show that,

for my target microcontroller, we can almost completely determine an unknown 8-bit value

manipulated by a single LOAD instruction, not just its Hamming weight. Comparing
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Figure 4.6: Guessing entropy after template attacks on the Grizzly Beta dataset, us-

ing the linear discriminant, and np = 1000 profiling traces. Left: results using active

probe Tektronix P6243; right: results from using a coaxial cable with 50 Ω characteristic

impedance, connected to the matched line of the XMEGA PCB.

the value log2 E[G(X)] = 4.68, obtained from a perfect Hamming weight leakage (see

Section 4.5.2), with my results from Figures 4.4 and 4.6, we can see that using LDA with

dLINEAR we can already obtain more than Hamming weight leakage even with a single

attack trace. When using more than na = 100 attack traces, the logarithmic guessing

entropy decreases close to zero, showing a great advantage compared to the Hamming

weight leakage.

A second important implication is that these results may provide one of the best published

results on attacking a single data value (bus eavesdropping). A similar experiment was

carried out by D. Oswald and C. Paar [83], where they applied the template attacks on

some key bytes that were transferred over the bus of the Mifare DESFire microcontroller

before executing an authentication protocol. In his thesis [82, Table 7.1], D. Oswald shows

that the average key rank he obtains with np = 4000 profiling traces and na = 4000 attack

traces is 3.66, which corresponds to a guessing entropy of g = 1.87.

A third implication is that evaluation laboratories can benefit from the computational

advantage of the linear discriminant, meaning they can use this discriminant to perform

the evaluations in a shorter time. This is important because evaluation laboratories

typically have about 3 months to perform the entire Common Criteria evaluation of

a security microcontroller, leaving only a few weeks for the evaluation of side-channel

attacks [70].
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4.7 Attacks on a hardware AES implementation

I now present the success of template attacks when attacking the hardware AES im-

plementation of the XMEGA A3U 256 microcontroller, using the Polar dataset from

Section 2.3.4. These traces cover the first 20 CPU clock cycles of an AES encryption,

corresponding mainly to the first AES round. The dataset contains N = 384000 traces,

taken while running the hardware AES encryption module with a fixed key and uniformly

distributed plaintexts. For the template attacks described below I split this dataset into

two disjoint sets of traces, one for profiling and one for the attack. The target of the at-

tacks is the byte v = Sbox(p⊕k) from the first AES encryption round (see Section 2.1.2),

where p and k represent the first byte of the plaintext and key, respectively.

I implemented the template attack using the linear discriminant, in a very similar manner

to the attacks on the Grizzly dataset (see Section 4.6). However, there are a few important

differences. Firstly, during the profiling step, we first need to compute the value v =

Sbox(p ⊕ k) corresponding to each plaintext byte p, and compute the template mean

vectors x̄v for each value of v instead of k. Similarly, the pooled covariance matrix from

(4.19) must be computed using these vectors. Secondly, during the attack, for each attack

trace corresponding to a known plaintext byte p, and each candidate key byte value k,

we need to compute the S-box output value v = Sbox(p⊕ k), and then obtain the linear

discriminant of each k as

dLINEAR(k | xi) = x̄′vS
−1
pooledxi −

1

2
x̄′vS

−1
pooledx̄v. (4.40)

Thirdly, when combining multiple attack traces, we cannot first sum the attack traces,

as shown in (4.28), but now we have to add the linear discriminant of each attack trace,

obtaining

djoint
LINEAR(k | Xk?) =

∑
xi∈Xk?

(
x̄′vS

−1
pooledxi −

1

2
x̄′vS

−1
pooledx̄v

)
. (4.41)

While this computation now takes O(na ·m2), we can precompute the fixed factors corre-

sponding to the value v, as shown in Section 7.4.3, and obtain a computation in O(na ·m).

Thirdly, for the computation of the guessing entropy, I only used a fixed key value k, since

the target value v depends also on the plaintext bytes p.

In Figure 4.7, I plot the guessing entropy remaining after using different amounts np

of profiling traces per target value v with the compression methods LDA, PCA, 1ppc,

3ppc and 20ppc. Each line represents the average over 1000 experiments. Comparing

these results to those from attacking a LOAD instruction (see Figure 4.4), we can make

several observations. Firstly, as np increases, LDA becomes the most efficient method,

followed by PCA and 3ppc, similarly to the results on the LOAD instruction. But, even

for np = 3000, 20ppc is worse than 1ppc, due to the higher level of noise from the AES

engine (where many operations are done in parallel), which suggests that more profiling

traces are needed for this compression option to be useful. Secondly, when attacking
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Figure 4.7: Guessing entropy after template attack on Polar dataset (AES engine), using

different values of np and different compression methods.

a LOAD instruction the guessing entropy decreases abruptly whithin the first na = 10

traces and then starts to level off, but here the guessing entropy decreases steady within

the attacked na = 100 traces8. This happens because now we target different values v,

which reduces the set of possible candidates with each new attack trace (e.g. there is a

single value with Hamming weight 0) and helps the attack to converge faster.

Finally, I also mention that a successful DPA attack on the same microcontroller requires

about 3000 attack traces [61], while my results show that with template attacks we can

recover almost perfectly a key byte with about 100 traces. This shows the important

feature of template attacks: while they may require a large number of training traces

(e.g. 256000 in this case), they can help to reduce the number of attack traces.

8Notice the logarithm on the horizontal axis in Figure 4.7.



Chapter 5

Template attacks on different devices

In this chapter, I present an extensive evaluation of the template attack, when using dif-

ferent devices and campaigns for the profiling and attack steps (please refer to Chapter 4,

for a detailed description of template attacks).

Most publications [24, 46, 101, 104], and also my evaluations from Chapter 4, have used a

single device (and possibly acquisition campaign) for the evaluation of template attacks,

in order to demonstrate some particular idea. However, using the same device for profiling

and attack does not represent well a real scenario, where an attacker uses a device during

profiling for training, but needs to use another (the target) device during the attack.

Only recently, Renauld et al. [93] performed an extensive study on 20 physical realizations

of the same electronic circuit, showing that the template attack may not work at all

when the profiling and attack steps are performed on different devices; Elaabid et al. [37]

showed that acquisition campaigns on the same device, but conducted at different times,

also lead to worse template-attack results; and Lomné et al. [70] evaluated this scenario

using electromagnetic leakage.

Throughout this chapter, I explore further the causes that make template attacks perform

worse across different devices. I show that, for my experiments, a main difference across

devices and acquisition campaigns is a DC offset, and this difference decreases very much

the performance of template attacks (Section 5.1). To compensate for differences between

devices or campaigns, I evaluate several variants of the template attack (Section 5.2). One

of them needs multiple profiling devices, but provides good results when using the sample

selection compression method (Section 5.2.3). However, based on investigations of Fisher’s

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA), I explain

how to use these two compression techniques to maximise the performance of template

attacks on different devices, even when profiling on a single device (Section 5.2.4).

Overall, my results show that a good choice of compression method and parameters can

dramatically improve template attacks across different devices or acquisition campaigns.

Previous studies [93, 37] may have missed this by evaluating only one compression method.
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Most of the content in this chapter has been published in the following conference paper:

Omar Choudary and Markus G. Kuhn. Template Attacks on Different Devices,

COSADE 2014, Paris, 14–15 April 2014, LNCS 8622, pp. 179–198 [27].

5.1 Ideal vs real scenario

Throughout this chapter, in order to evaluate the template attacks in different conditions,

I use all the Grizzly datasets described in Section 2.3.1, and the compression methods

from Table 4.1 (see also Section 4.3), targeting the value k? processed by the second

LOAD instruction. For PCA and LDA, I often used m = 4, based on observation of the

eigenvalues (see Section 3.9.1), but in Section 5.2.4 I shall provide a better method for

selecting the components of PCA and LDA. All the evaluations are based on the guess-

ing entropy, defined in Section 4.5.1, computed using the linear discriminant score from

Section 4.4.3. Please refer to the previous chapter, Section 4.1, for a detailed description

of the template attack. The standard implementation of this attack, which I shall refer

to as the standard method in this chapter, is summarised in Algorithm 1.

Algorithm 1 (Standard)

1: Obtain the np leakage traces in Xk from the profiling device, for each k.

2: Compute the template parameters (x̄k,Spooled) using (4.1,4.19).

3: Obtain the leakage traces Xk? from the attacked device.

4: Compute the guessing entropy as described in Section 4.5.1.

In an ideal scenario, as used in many publications [24, 46, 101, 104, 26], the attacker can

use the the same device and campaign for the profiling and attack steps of the template

attack. The results of Algorithm 1 in this ideal case are shown in Figure 5.1 (top-left). We

can see that most compression methods perform very well for large na, while for smaller

na, LDA is generally the best. This is what I have shown previously in Section 4.6.

However, in a more realistic scenario, an attacker who wants to infer some secret data

from a target device may be forced to use a different device for profiling. Indeed, there

are situations where we could use non-profiled attacks, such as DPA [62], CPA [18], or

MIA [45], to infer secret data using a single device (e.g. by targeting values that represent

a known relationship between key and plaintext). But these methods cannot be used in

more general situations, where we want to infer a single secret data value that does not

depend on any other values, which is the setting of our experiments. In such cases, the

template attacks or the stochastic approach (see Chapter 7) might be the only viable

side-channel attack.1 Moreover, the template attacks are expected to perform better than

1In our setting we cannot use the non-profiled stochastic method (termed on-the-fly attacks by Renauld

et al. [93]) either, because our attacker only has data dependent on the target secret value.
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Figure 5.1: Template attacks using Algorithm 1 in different scenarios. Top-left (ideal):

using same device and acquisition campaign (Beta) for profiling and attack. Top-right:

using Alpha for profiling and Beta for attack. Bottom-left: arithmetic average of guessing

entropy over all combinations of different pairs of devices for profile and attack. Bottom-

right: using same device (Beta) but different acquisition campaigns for profile (Beta) and

attack (Beta Bis).

the other attacks, when provided with enough profiling data [103]. Therefore, we would

like to use template attacks also with different devices for profiling and attack.

As I show in Figure 5.1 (top-right), the efficacy of template attacks using the standard

Algorithm 1 drops dramatically when using different devices for the profiling and attack

steps. This was also observed by Renauld et al. [93], by testing the success of template at-

tacks on 20 different devices with 65 nm CMOS transistor technology. Moreover, Elaabid

et al. [37] mentioned that even if the profiling and attack steps are performed on the same

device but on different acquisition campaigns we will also observe weak success of the

template attacks. In Figure 5.1 (bottom-right), I confirm that indeed, even when using

the same device but different acquisition campaigns (same acquisition settings), we can

get results as bad or even worse as when using different devices. In Section 5.2, I offer an

explanation for why LDA can perform well across different devices.
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Figure 5.2: std devices(j) and std data(j), along with clock signal for a selection of

samples around the first clock cycle of our target LOAD instruction. Left: using the four

campaigns on different devices. Right: using Beta and Beta Bis.

5.1.1 Causes of trouble

In order to explore the causes that lead to worse attack performance on different acqui-

sition campaigns, let’s start by looking at two measures of standard deviation (std), that

I call std devices (average deviation of same data across devices) and std data (average

deviation of data per device).

Let x̄
(i)
kj be the mean value of sample j ∈ {1, . . . ,m} for the candidate k ∈ S on the

campaign i ∈ {1, . . . , nc}, x̄(i)
j = 1

|S|
∑

k∈S x̄
(i)
kj , τ

(i)
k (j) = (x̄

(i)
kj − x̄

(i)
j ) is the treatment of k

for campaign i at sample j (see also Section 3.8.1), and τ̄k(j) = 1
nc

∑nc

i=1 τ
(i)
k (j). Then,

std devices(j) =
1

|S|
∑
k∈S

√√√√ 1

nc − 1

nc∑
i=1

(τ
(i)
k (j)− τ̄k(j))

2
, (5.1)

and

std data(j) =
1

nc

nc∑
i=1

√
1

|S| − 1

∑
k∈S

(x̄
(i)
kj − x̄

(i)
j )

2
. (5.2)

I show these values in Figure 5.2. The results on the left plot are from the nc = 4

campaigns on different devices (Grizzly Alpha, Grizzly Beta, Grizzly Gamma, and Grizzly

Delta), while the results on the right plot are from the nc = 2 campaigns on the de-

vice Beta (Grizzly Beta and Grizzly Beta Bis). We can observe that both plots are very

similar, which suggests that the differences between campaigns are not entirely due to

different devices being used, but largely due to different sources of noise (e.g. tempera-

ture, interference, etc.) that may affect in a particular manner each acquisition campaign.

Using a similar type of plots, Renauld et al. [93, Fig. 1] observed a much stronger differ-

ence, attributed to physical variability. Their observed differences are not evident in my

experiments, possibly because my devices use a larger transistor size (around 0.12 µm)2.

2See http://www.avrfreaks.net/?name=PNphpBB2&file=viewtopic&p=976590.
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Figure 5.3: Overall mean vectors x̄ for all campaigns, from which the overall mean vector

of Beta was subtracted. Beta+ci and Beta−ci represent the confidence region (α = 0.05)

for the overall mean vector of Beta. SNR of Beta is the Signal-to-Noise signal strength

estimate of Beta (rescaled). Samples at first clock cycle of target LOAD instruction.

5.1.2 How it differs

Next, let’s look at how the overall power consumption differs between acquisition cam-

paigns. In Figure 5.3, I show the overall mean vectors x̄ = 1
|S|
∑

k∈S x̄k for each campaign,

from which I removed the overall mean vector of Beta (hence the vector for Beta is 0).

From this figure, we see that all overall mean vectors x̄ (except the one for Beta) are

far outside the confidence region of Beta (for a significance level α = 0.05). Moreover,

we see that the overall mean vector x̄ for Beta Bis is the most distant from the overall

mean vector of Beta. This confirms my previous assumption, that the main difference

between acquisition campaigns is caused by campaign-dependent factors, such as temper-

ature drift, environmental noise, etc. and not necessarily by the use of different devices. A

similar observation was made by Elaabid et al. [37], however they used different setups for

the different campaigns on the same devices. In my experiments, I used the same setup

for the acquisition of data, while replacing only the tested device (evaluation board).

It is clear from Figure 5.3, that a main difference between the different campaigns is an

overall offset. We see that this is particularly the case over the samples corresponding to

the highest SNR. If we now look at the distributions of the data, as shown in Figure 5.4

for Alpha and Beta, we observe that the distributions are very similar (in particular the

ordering of the different candidates k), but differ mainly by an overall offset. This suggests

that, for my experiments, this offset is a main reason why template attacks perform badly

when using different campaigns for the profiling and attack steps.
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Figure 5.4: Normal distribution at sample index j = 884 based on the template parameters

(x̄k,Spooled) for k ∈ {0, 1, . . . , 9}. Left: on Alpha. Right: on Beta.

5.1.3 Misalignment

I also mention that, in some circumstances, the recorded traces might be misaligned, e.g.

due to lack of a good trigger signal, or random delays introduced by some countermeasure.

In such cases, we should first apply a resynchronisation method, such as those proposed

by Homma et al. [53]. In my experiments, I used a very stable trigger, as shown by the

exact alignments of sharp peaks in Figure 5.3, so I did not preprocess the traces.

5.2 Improved attacks on different devices

In this section, I present several methods to improve the success of template attacks,

when using different devices or campaigns for the profiling and attack steps. I assume

that the attacker can profile well a particular device or set of devices, i.e. he can get a large

number np of traces for each candidate k, but needs to attack a different device for which

he only has access to a set of na traces for a particular unknown target value k?. Unless

otherwise mentioned, in the following evaluations I considered all possible combinations

of the campaigns Grizzly Alpha, Grizzly Beta, Grizzly Gamma and Grizzly Delta, always

ensuring that the campaign of one device is only used in either the profiling or attack

phases, but not in both.

5.2.1 Profiling on multiple devices

Renauld et al. [93] proposed to accumulate the sample means x̄k and variances sjj (where

S can be either Sk or Spooled) of each sample xj across multiple devices in order to make

the templates more robust against differences between different devices. That is, for each

candidate k and sample j, and given the sample means x̄k and covariances S from nc
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training devices, they compute the robust sample means as

x̄
(robust)
kj =

1

nc

(x̄
(1)
kj + · · ·+ x̄

(nc)
kj ) (5.3)

(i.e. an average over the sample means of each device), and the robust variance as

s
(robust)
jj = s

(1)
jj +

1

nc − 1

nc∑
i=1

(x̄
(i)
kj − x̄

(robust)
kj )

2
(5.4)

(i.e. they add the variance of one device to the variance of the sample means across

devices, using simulated univariate noise for each device). However, this approach does

not consider the correlation between samples or the differences between the covariances

of different devices. Therefore, I instead use Algorithm 2, where I use the traces from all

available campaigns.

Algorithm 2 (Robust Templates from Multiple Devices)

1: Obtain the leakage traces X
(i)
k from each profiling device i ∈ {1, . . . , nc}, for each k.

2: Pull together the leakage traces of each candidate k from all nc devices into an overall

leakage matrix X
(robust)
k ∈ Rnpnc×m composed as

X
(robust)
k

′
= [X

(1)
k

′
, . . . ,X

(nc)
k

′
]. (5.5)

3: Compute the template parameters (x̄k,Spooled) using (4.1,4.19) on X
(robust)
k .

4: Obtain the leakage traces Xk? from the attacked device.

5: Compute the guessing entropy as described in Section 4.5.1.

In my evaluation of Algorithm 2, I used the data from the campaigns on the four devices

(Alpha, Beta, Gamma, Delta), by profiling on three devices and attacking the fourth. The

results are shown in Figure 5.5. We can see that, on average, all the compression methods

perform better than using Algorithm 1 (compare Figures 5.1 and 5.5, bottom-left). This

is because, with Algorithm 2, the pooled covariance Spooled captures noise from many

different devices, allowing more variability in the attack traces. However, the additional

noise from different devices also has the negative effect of increasing the variability of each

leakage sample [93, Fig. 4]. As a result, we can see that for the attacks on Beta, LDA

performs better when profiling on a single device (Alpha) than when using three devices

(compare Figures 5.1 and 5.5, top-right).

5.2.2 Compensating for the offset

In Section 5.1.2, I showed that a main difference between acquisition campaigns and

devices is a constant offset between the overall mean vector x̄. Therefore, we expect

that a template attack that removes this offset should provide better results. Elaabid
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Figure 5.5: Results of Algorithm 2, profiling on three devices and attacking the fourth one.

Top-left: attack on Alpha; top-right: attack on Beta; bottom-left: arithmetic average of

guessing entropy over all four combinations; bottom-right: attack on Delta.

et al. [37] have shown that, indeed, if we replace each trace from each campaign by

the difference between itself and the overall mean x̄ of that campaign (they refer to

this process as normalisation, and this process may also include division by the overall

standard deviation), we can obtain results very similar to those in the ideal case (profiling

and attack on the same campaign). However, this approach does not work straight away

in a more realistic scenario, in which the attacker only has access to a limited number

na of traces from the target device, for a particular target value k?, and hence he cannot

compute the overall mean x̄ of the campaign. Nevertheless, if the difference between

campaigns is mainly a constant overall offset (as I showed in Section 5.1.2), then an

attacker may still use the subset of available attack traces Xk? to improve the template

attack. I describe such method in Algorithm 3.3

Note that, instead of Algorithm 3, we could also compensate for the offset (c(attack) −
c(profile)) in the template parameters (x̄k,Spooled), but that would require more compu-

3For the offset, I used the median of x̄r(profile), since it provides a very good approximation with my

data. However, for higher clock frequencies the median can become noisy, so this might not work.
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Algorithm 3 (Adapt for the Offset)

1: Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2: Compress the raw leakage traces Xr
k to obtain Xk, for each k.

3: Compute the template parameters (x̄k,Spooled) using (4.1,4.19) on Xk.

4: Compute the overall mean vector x̄r(profile) = 1
|S|
∑

k x̄r
k from Xr

k.

5: Compute the constant offset c(profile) = offset(x̄r(profile)) ∈ R.

6: Obtain the leakage traces Xk? from the attacked device.

7: Compute the offset c(attack) = offset(xr) ∈ R from each raw attack trace xr (row of

Xr
k?). As in step 5, for my data, I used the median of xr.

8: Replace each trace xr (row of Xr
k?) by xr(robust) = xr − 1r · (c(attack) − c(profile)), where

1r′ = [1, 1, . . . , 1] ∈ Rmr
.

9: Apply the compression method to each of the modified attack traces xr(robust), obtain-

ing the robust attack leakage matrix X
(robust)
k? .

10: Compute the guessing entropy as described in Section 4.5.1 using X
(robust)
k? .

tation, especially if we want to evaluate the expected success of an attacker using this

method with an arbitrary number of attack traces, as I do in my evaluations. Note also

that, in my evaluation, each additional attack trace improves the offset difference esti-

mation of the attacker: the use of the linear discriminant from (4.28) implies that, as we

get more attack traces, we are basically averaging the differences (c(attack)− c(profile)), thus

getting a better estimate of this difference.

In Figure 5.6, I show the results of Algorithm 3. We can see that, on average, the results

are similar to those obtained with Algorithm 2, but slightly worse. For the best case (top-

right), LDA is now achieving less than 1 bit of entropy at na = 1000, thus approaching

the results on the ideal scenario (Figure 5.1, top-left). On the other hand, we also see

that, for the worst case (top-left), the results are very bad, since even using LDA with

na = 1000 doesn’t provide any real improvement. This large difference between the

best and worst cases can be explained by looking at Figure 5.3. There, we see that the

difference between the overall means x̄ of Alpha and Beta is constant across the regions of

high SNR (e.g. around samples 878 and 884), while the difference between Beta and Delta

varies around these samples. This suggests that, in general, there is more than a simple

DC offset involved between different campaigns, and therefore this offset compensation

method alone is not likely to be helpful.

We could also try to use a high-pass filter to deal with the low-frequency offset variation,

but note that a simple DC block has a non-local effect, i.e. a far-away bump in the trace

not related to k can affect the leakage samples that matter most. Another possibility

is to use the first derivative of the signal, which ignores DC offsets. Using EM leakage

does essentially that, as the commonly used H-field probes measure the change of current

flowing, so it may provide better results, as reported by Lomné et al. [70].
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Figure 5.6: Results of Algorithm 3, profiling on one device and attacking a different device.

Top-left: worst case (profiling on Beta, attack on Delta); top-right: best case (profiling

on Alpha, attack on Beta); bottom-left: average over all possible 12 combinations of

campaigns Grizzly Alpha, Grizzly Beta, Grizzly Gamma, and Grizzly Delta.

5.2.3 Multiple devices and offset compensation

If an attacker can use multiple devices during profiling, and since compensating for the

offset may help where this offset is a main difference between campaigns, a possible option

is to combine the previous two methods. This leads to Algorithm 4.

Algorithm 4 (Robust Templates and Adapt for the Offset)

1: Obtain the overall raw leakage matrix X
r(robust)
k using Steps (1,2) of Algorithm 2.

2: Use Algorithm 3 with X
r(robust)
k instead of Xr

k.

The results from Algorithm 4 are shown in Figure 5.7. We can see that on average,

the sample selections (in particular 20ppc, allap) perform much better, when using Algo-

rithm 4, than when using Algorithms 1–3. Furthermore, in this case the sample selection

allap can even outperform LDA (Figure 5.7, bottom-left). This can be explained as fol-

lows: the profiling on multiple devices allows the estimation of a more robust covariance
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Figure 5.7: Results of Algorithm 4, profiling three devices and attacking the fourth one.

Top-left: attack on Alpha; top-right: attack on Beta; bottom-left: average over all 4

combinations; bottom-right: attack on Delta.

matrix (which helps both the sample selection methods and LDA), while the offset com-

pensation helps more the sample selection methods than LDA. We also notice that PCA

still performs poorly, which was somewhat expected since the standard PCA compres-

sion method does not take advantage of the robust covariance matrix. In the following

sections, I explain how to improve the template attacks, when using LDA or PCA.

5.2.4 Efficient use of LDA and PCA

In the previous sections, I showed that LDA did not benefit much from profiling on

different devices or adapting the attack traces for a DC offset. In fact, using the standard

Algorithm 1, LDA was already able to provide good results across different devices (see

Figure 5.1). To understand why this happens, we need to look at the details of Fisher’s

LDA, presented in Sections 3.10 and 4.3.3. There, we can see that LDA takes into

consideration the raw pooled covariance Spooled. Also, as I explained in Section 2.3.1, I

acquired traces in batches, using random permutations of all values k per batch, and my

acquisition campaigns took a few hours to complete. Therefore, the pooled covariance
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Spooled of a given campaign contains information about the different noise sources that have

influenced the current consumption of my microcontrollers over the acquisition period.

But one of the major sources of low-frequency noise is temperature variation (which

can affect the CPU, the voltage regulator of my boards, the voltage reference of the

oscilloscope, the measurement resistor; see also the study by Heuser et al. [52]), and we

can expect this temperature variation to be similar within a campaign as it is across

campaigns, if each acquisition campaign takes several hours. As a result, the temperature

variation captured by the covariance matrix Spooled of one campaign should be similar

across different campaigns. However, the mean vectors x̄k across different campaigns

can be different due to different DC offsets (even if the overall temperature variation is

similar), and this is why the sample selection methods (e.g. 20ppc, allap) perform poorly

across different campaigns. Nevertheless, the LDA algorithm is able to remove the DC

component and use only the rest of the trace for the attack. This, combined with the fact

that with LDA we no longer need a covariance matrix after compression, allows LDA to

filter out temperature variations and other noise sources that are similar across campaigns,

thus providing good results even across different devices.

To see how LDA and PCA deal with the DC offset, I plot in Figure 5.8 (top) the DC

components (mean) of the LDA and PCA eigenvectors. For LDA, there is a peak at the

fifth DC component, which shows that my choice of m = 4 avoided the component with

largest DC offset by chance. For PCA, there is a similar peak, also for the fifth component,

and again my choice m = 4 avoided this component. However, for PCA this turned out

to be bad, because PCA does use a covariance matrix after projection, and therefore it

would benefit from knowledge of the temperature variation. This temperature variation

will be given by the eigenvector with a high DC offset, and therefore we can expect that

adding this eigenvector may provide better results. I also show in Figure 5.8, the first six

eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled, along with the first ten eigenvalues

of LDA and PCA. The fifth eigenvector of PCA clearly contains a DC offset (most of the

eigenvector is above the dotted black line, which represents the zero value), while this is

not obvious for LDA. Also, we see that the division by Spooled in LDA has removed much

of the noise found in the PCA eigenvectors, and it appears that LDA has reduced the

number of components extracting most information from four (in PCA) down to three.

In Figure 5.9 (left), I show the results of template attacks when using PCA and LDA with

different values of m. We see that, for LDA, there is a great gap between using m = 4 and

m = 5, no gap between m = 3 and m = 4, while the gap between m = 5 and m = 40 is

very small. This confirms that, with LDA, we should ignore the eigenvector containing a

strong DC coefficient. Also, for PCA there is a huge gap between using m = 4 and m = 5

(in the opposite sense as with LDA), but the gap between m = 5 and m = 40 is negligible.

Therefore, PCA can work well across devices, if we include the eigenvectors containing

the DC offset information. These results provide an important lesson for implementing

template attacks across different devices or campaigns: the choice of components should
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Figure 5.8: Top: DC components of eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled.

Middle: First six eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled. Bottom: eigen-

values (log y axis) of LDA and PCA.

consider the DC offset contribution of each eigenvector. This suggests that previous

studies may have missed important information, by using only sample selections with one

to three samples [93] or only the first PCA component [37]. However, even using PCA

or LDA, as proposed in these sections, may only help where the main difference between

campaigns or devices is a low-frequency offset. What is the optimal method for dealing

with arbitrary leakage differences between devices remains an open question.

5.2.5 Add DC offset variation to PCA

Renauld et al. [93] mentioned that “physical variability makes the application of PCA ir-

relevant, as it cannot distinguish between inter-plaintext and inter-chip variances”. While

it is true that the standard PCA approach [9] is not aimed at distinguishing between the

two types of variance (see Figure 5.2 for a plot of the square root of these variances),

I showed in Section 5.2.4 that PCA can actually provide good results if we select the
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Left: using various compressions with Algorithm 1. Right: using PCA and LDA with

Algorithm 5.

eigenvectors carefully. Starting from this observation, we can try to enhance the PCA al-

gorithm by deliberately adding DC noise, in the hope of concentrating the DC sensitivity

in one of the first eigenvectors, thereby making the other eigenvectors less DC sensitive

(as all eigenvectors are orthogonal). I present this approach in Algorithm 5.4

Algorithm 5 (Add Random Offsets to Matrix B – PCA and LDA only)

1: Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2: Obtain the pooled covariance matrix Spooled ∈ Rmr×mr
.

3: Pick a random offset ck for each raw mean vector x̄r
k.

4: Compute the between-groups matrix as

B =
∑

k∈S(x̄r
k − x̄r + 1r · ck)(x̄r

k − x̄r + 1r · ck)′.
5: Use PCA (uses B only) or LDA (uses both B and Spooled) to compress the raw leakage

traces and obtain Xk for each k.

6: Compute the template parameters (x̄k,Spooled) using (4.1,4.19).

7: Obtain the compressed leakage traces Xk? from the attacked device.

8: Compute the guessing entropy as described in Section 4.5.1.

The results of this method are shown in Figure 5.9 (right). Now, PCA provides good

results even with m = 4, while, for the same m, LDA gives bad results. In Figure 5.10,

I show the eigenvectors from LDA and PCA, along with their DC component. We see

that Algorithm 5 pushed the eigenvector having the strongest DC component first (i.e.

corresponding to the largest eigenvalue), which was useful for PCA, but not for LDA.

Therefore, I recommend this method only for PCA.

4For my implementation of Algorithm 5, I have chosen ck uniformly from the interval [−u, u], where

u is the absolute average offset between the overall mean vectors shown in Figure 5.3.



CHAPTER 5. TEMPLATE ATTACKS ON DIFFERENT DEVICES 111

0 5 10 15 20 25 30 35 40
−35

−30

−25

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

10

0 500 1000 1500 2000 2500
 

 
u1
u2
u3
u4
u5
u6

0 500 1000 1500 2000 2500
 

 
u1
u2
u3
u4
u5
u6

LDA (S−1
pooledB) PCA (B)

eigenvector index

sample index

D
C

co
m

p
on

en
t

Figure 5.10: Top: DC components of eigenvectors of LDA (S−1
pooledB) and PCA (B) after

using Algorithm 5. Bottom: First six eigenvectors of LDA (S−1
pooledB) and PCA (B).

.



112 5.2. IMPROVED ATTACKS ON DIFFERENT DEVICES



Chapter 6

Correlation and factor analysis

In this chapter, I provide a first detailed analysis of the structure of the correlation

between samples in side channel traces (Section 6.1.1) and of the effects of this correlation

on template attacks (Section 6.1.2). I vary several acquisition parameters in order to

understand their effect on the inter-sample correlation, and then I examine the effects of

this correlation on template attacks.

Based on analysis of the correlation, I can observe some initial structure. Then, using

factor analysis (Section 6.2), I extract the main factors that make up the correlation

structure in my data, confirming my initial hypothesis on the structure of the correlation

(Section 6.2.1). Furthermore, in Section 6.2.2, I show that factor analysis can be an

effective method to obtain better covariance matrix estimates, which can lead to better

template attacks, particularly when dealing with a large number of samples.

Some publications (e.g. [93]) have analysed the effect of individual variability (i.e. the

standard deviation of each trace sample), but not the effect of the entire inter-sample

correlation. Based on the factor analysis model, I am able to develop an algorithm to

synthesize covariance matrices with arbitrary noise and correlation values (Section 6.3.1).

Using this algorithm, I synthesize covariances based on many combinations of noise and

correlation, providing an overview on the effects of these parameters on template attacks

(Section 6.3.2).

Please refer to Chapter 4, for a detailed description of template attacks.

6.1 Analysis on real data

In order to explore the influence of bandwidth and power supply on the correlation between

leakage samples, and on the template attacks, I used the Koala datasets E1, E2, E3 and

E4, described in Section 2.3.2. The different parameters of these datasets are shown in

Table 6.1.

113
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Table 6.1: Parameters for real experiment

Experiment name Bandwidth Power Supply

E1 20 MHz lab power supply 3.3 V (TTi EL302).

E2 20 MHz batteries via 3.3 V voltage regulator.

E3 500 MHz lab power supply 3.3 V (TTi EL302).

E4 500 MHz batteries via 3.3 V voltage regulator.

6.1.1 Analysis of correlation

As explained in Section 3.3.5, given a sample covariance matrix S (either Sk from (4.1)

or Spooled from (4.19)), we can obtain the corresponding sample correlation matrix

R = DSD−1, (6.1)

having the same size as S, where D is the diagonal sample standard deviation matrix,

having the standard deviation values
√
sjj of each leakage sample xj on its diagonal.

R allows us to visualise the correlation between trace samples using the standardised

variables (xj − x̄j)/
√
sjj, which do not depend on the standard deviation (i.e. noise) of

the samples. Therefore, we can obtain a meaningful comparison between the different

correlation effects.

Figure 6.1 shows the sample correlation matrix R for each experiment. From this visual-

isation, we can observe that the bandwidth and power supply choices have an important

effect on the correlation: for E1 the median correlation is higher than 0.7, while this is

lower for E2, even lower for E3 and finally the median correlation is almost zero for E4.

The correlation is influenced as follows. Firstly, the lab power supply introduces low-

frequency noise into the side-channel, which causes significant correlation. We can see

this effect by comparing experiments E1 vs E2 and E3 vs E4. Secondly, a low acquisition

bandwidth applies a low pass filter that eliminates high-frequency signals (e.g. noise), but

also increases the correlation between neighboring samples significantly. We can observe

this effect by comparing E1 vs E3 and E2 vs E4.

Besides a visual examination of the sample correlation matrices R, we can also compute

the determinant |R|, also known as the generalized sample variance from standardized

variables. As I explain in more detail in Section 3.5, this generalized variance can be

interpreted geometrically as the volume created by the standardized deviation vectors

dj =


x1j−x̄j
sjj

x2j−x̄j
sjj
...

xNj−x̄j
sjj

 . (6.2)

A larger |R| corresponds to a smaller correlation: the deviation vectors dj are nearly

perpendicular, creating a larger volume. Therefore, we can use |R| as a single value



CHAPTER 6. CORRELATION AND FACTOR ANALYSIS 115

ln(|R|) = −6.273670e+03
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Figure 6.1: Sample correlation matrix R for experiments E1 to E4. Left: correlation

between all sample points; right: correlation between samples around first and second

peaks of signal strength estimate s(t).
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Figure 6.2: Signal strength estimate sDOM, along with standard deviation for each sample

points. Left: leakage samples around first clock cycle of target LOAD instruction; right:

leakage samples around second clock cycle of the target LOAD instruction. Markers

indicate the samples chosen using the sample-selection methods from Section 4.3.1.

to compare the correlation between all samples in our traces across different settings.

Note that in practice, we should use log |R| instead, since |R| can overflow floating point

arithmetic for large m (see Section 4.2.2).

From Figure 6.1 (bottom-right), we can observe that even after removing the correlation

due to bandwidth and power supply, there is still a strong correlation between the samples

around the clock edges, possibly caused by trigger jitter. In Figure 6.2, I show the signal

strength estimate sDOM(t) from (4.7), along with the standard deviation (std) for each

leakage sample, for the first two clock edges. The strong correlation happens during the

periods of glitching (high std), which is when the CMOS cells fluctuate before reaching a

stable state. Comparing Figures 6.1 and 6.2, we can see that the correlation returns to a

low level for the samples with high signal strength.

6.1.2 Results from template attacks

In order to understand the effects of the acquisition parameters, and indirectly of the

correlation, on the template attack, I computed the guessing entropy from Section 4.5.1,

using the linear discriminant from Section 4.4.3, on the Koala datasets E1 to E4 from

Section 2.3.2, always targeting the value k? processed by the second LOAD instruction.

In order to provide a more comprehensive view of the results, I evaluated the attacks

using all the compression methods from Table 4.1, described in detail in Section 4.3.

The results of these evaluations are shown in Figure 6.3. We can make several obser-

vations. Firstly, the results using the analog low-pass filter (E1, E2 ) are considerably

better than the results using the full bandwidth (E3, E4 ). This somewhat surprising

result shows that, for my particular CPU (designed for a maximum clock frequency of

36 MHz, but running at 1 MHz), the high SNR obtained by using the analog low-pass

filter provides much better results, even with a single sample per clock (1ppc), than when



CHAPTER 6. CORRELATION AND FACTOR ANALYSIS 117

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

 

 
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap
PCA, m=4
LDA, m=4

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g 
en

tr
op

y 
(b

its
)

E1

lab/20

E2

bat/20

E3

lab/500

E4

bat/500

np = 200 np = 2000

Figure 6.3: Results of template attacks on experiments E1 to E4. Left: using np = 200;

right: using np = 2000.
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using many samples or LDA with the full bandwidth. Nevertheless, this will likely not

hold in situations where there is signal at much higher frequencies. Secondly, for small na,

using more samples (20ppc, allap) is always better than using a single sample per clock,

which confirms that using a single sample per clock is not optimal in general. Thirdly,

we see that for the experiments with low correlation (E3, E4 ) selecting more samples is

vastly better than using fewer samples (in some cases as good or even better than PCA).

This is expected, since the low correlation from (E3, E4 ) results in more information per

additional sample, while for (E1, E2 ) there is little information that can be obtained from

additional samples per clock. In general, LDA provides the best results, but if we do not

have enough samples for a very good estimation of Spooled (computed on the raw traces,

see Section 4.3), we observe that for np = 200 and as the number na of attack traces

increases, LDA is outperformed by 1ppc (in the high correlation experiments E1, E2 ) and

PCA (in the low correlation experiments E3, E4 ). All these results are consistent with

my previous observations from Chapter 4.

Looking at the results from the left hand side of Figure 6.3, we can see another interesting

aspect: LDA cannot provide better results once na > np. This happens because LDA

does not use the covariance matrix, and therefore all the estimation is based on mean

vectors only. For na > np, we may only observe errors due to training. That is, we cannot

get a lower estimation error than what we have during profiling. The confidence region

for the means is based on np, not na.

Note also, that the correlations shown in Figure 6.1 are directly linked to these results,

since the covariance matrices Sk and Spooled, from which the correlations are computed

using (6.1), are essential in template attacks (see Section 4.1). For completeness, in

Figure 6.4, I plot the first five LDA eigenvectors (top) for E1 (left) and E4 (right), along

with the first ten eigenvalues. We see that for E1, where there is a very strong correlation

between leakage samples, the first three eigenvectors are more noisy than for E4 over the

entire trace, meaning that in this case LDA will use information from most of the trace.

This is expected due to the high correlation. Furthermore, for E1, the fourth eigenvalue is

almost as large as the third, meaning that the fourth eigenvector (which does not contain

any peak, as the first three do) is as important as the third, confirming that in this case

LDA tries to extract information from the entire trace. On the other hand, for E4, the

third eigenvalue is much larger than the fourth, meaning that in this case the contents of

the overall trace are not that useful (due to low correlation).

6.2 Factor analysis

Looking at the correlation matrices from Figure 6.1, I suspected that the correlation ma-

trices can be decomposed into two factors: a measurement-dependent factor (bandwidth,

current supply) and an intrinsic correlation factor (between the samples corresponding
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Figure 6.4: LDA eigenvectors (top) and eigenvalues (bottom) for experiments E1 (left)

and E4 (right), computed using np = 1000.

to high levels of glitching). If this is the case, then factor analysis [54, Chapter 9] might

retrieve these factors, and reconstruct the correlation matrix only from these factors.

In factor analysis, we assume that the structure of the covariance or correlation matrix

is determined by a small number of factors, even if the size of the correlation matrix is

large, e.g. K = 2 factors may determine a correlation matrix of m = 2500 variables. This

technique works as follows.

Let Xj be the random variable from which leakage samples at time j are drawn, and X =

[X1, X2, . . . , Xm] be the random vector representing the leakage traces, as in Section 3.1.

Then, we can write each zero-mean value of a variable Xj as a linear combination of

common factors F ∈ RK and a specific factor Ej ∈ R, which is unique to each variable:

Xj − µj = lj1F1 + lj2F2 + · · ·+ ljKFK + Ej, j ∈ {1, . . . ,m}, (6.3)

where we call {lj1, . . . , ljK} the factor loadings (constant for all traces but specific to each

variable). In matrix notation, we can write

X− µµµµµµµµµµµµµµµµµ = LF + E, (6.4)

where L ∈ Rm×K is the matrix of factor loadings, and E ∈ Rm is the vector of specific

factors.
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Without any additional constraints, it is difficult to obtain useful values for this model.

Therefore, we make the following assumptions, which form the orthogonal factor model.

In this model, the random vectors F and E must satisfy the following conditions [54, 9.2]:

F and E are independent, so Cov (E,F) = E (EF′) = 0,

E (F) = 0,Cov (F) = E (FF′) = I,

E (E) = 0,Cov (E) = E (EE′) = Ψ, where Ψ is a diagonal matrix.

(6.5)

The orthogonal factor model implies a particular covariance structure of the random

vector X. Starting from (6.4), we obtain

(X− µµµµµµµµµµµµµµµµµ)(X− µµµµµµµµµµµµµµµµµ)′ = LF(LF)′ + E(LF)′ + LFE′ + EE′, (6.6)

which leads to the real (population) covariance

Σ = Cov (X) = E (X− µµµµµµµµµµµµµµµµµ)(X− µµµµµµµµµµµµµµµµµ)′

= LE (FF′)L′ + E (EF′)L′ + LE (FE′) + E (EE′)

= LL′ + Ψ.

(6.7)

Therefore, we may be able to use a small number K of components, to determine the

entire structure of the covariance matrix. For example, with K = 2 and m = 2500, we

may be able to represent a covariance matrix Σ ∈ Rm×m , having m(m − 1)/2 = 3123750

parameters, with only m(K + 1) = 7500 parameters. In addition, factor analysis allows

us to understand the main structure of the covariance, as I will show in the next section.

There are several methods to obtain the matrix of factor loadings L, but I will focus only

on the Principal Component method, which is relatively simple to implement and works

well in my experimental context. This method relies on the spectral decomposition (see

also Section 3.37) of Σ,

Σ = λ1e1e1
′ + λ2e2e2

′ + · · ·+ λmemem
′, (6.8)

which can also be written as the matrix product:

Σ = [
√
λ1e1,

√
λ2e2, . . . ,

√
λmem]


√
λ1e1

′
√
λ2e2

′

...√
λmem

′

 , (6.9)

where (λj, ej) are the (eigenvalue, eigenvector) pairs of Σ, with λ1 ≥ λ2 ≥ . . . ≥ λm. As

before, since in practice we do not know the true matrix Σ, we should estimate it using

the sample covariance matrix S, computed using (4.1) or (4.19). Comparing (6.7) and

(6.9), and ignoring Ψ for now, we can identify L = [l1, . . . , lm] as the matrix having the

vector lj =
√
λjej ∈ Rm as it’s j-th column, obtaining Σ = LL′. The main idea then, is

to select only those K columns of L that correspond to the minimum number of factors
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Figure 6.5: First 20 eigenvalues from the sample correlation matrix R obtained from

experiments E2 (left) and E4 (right).

describing well enough our covariance matrix. The number of retained factors can be

chosen based on prior knowledge of the data, or using the rules presented in Section 3.9.1.

As a result, we can use the restricted matrix of factor loadings L̃ = [l1, . . . , lK ], having

only K columns, and obtain the estimated sample covariance matrix

S̃ = L̃L̃′ + Ψ, (6.10)

where the matrix Ψ of specific variances can be obtained from the diagonal elements of

S − L̃L̃′:

Ψ =


ψ1 0 . . . 0

0 ψ2 . . . 0
... . . . . . .

...

0 0 . . . ψm

 , with ψj = sjj −
K∑
i=1

l2ji. (6.11)

The Principal Component method can be used with both, the sample correlation matrix

R, and the sample covariance matrix S, as I will show in the following sections.

6.2.1 Factor analysis on Koala

In Figure 6.5, I show the first 20 eigenvalues λj of the sample correlation matrix R

obtained using (6.1) on the pooled covariance matrix Spooled of experiments E2 (left)

and E4 (right). We can see that, in both cases, there is a clear elbow at K = 3, which

is in line with our hypothesis that the first two factors (corresponding to the largest

two eigenvalues) make up for most of the correlation. We can also see that in E2 both

eigenvalues λ1 and λ2 are at least a factor three larger than the rest, while for E4 only

the first eigenvalue is a factor three larger than the others. This suggests that, for E4,

there is merely one factor that influences the correlation, as observed also in Figure 6.1.

Based on these results, and the observations from the beginning of Section 6.2 that only 2

factors seem to influence the correlation between samples, I have set K = 2 and obtained
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Figure 6.6: Factor loadings lj1 and lj2 corresponding to the factors F1 and respectively

F2 for the samples j ∈ {800, . . . , 1100}. Left: for E2 ; right: for E4.

the matrix of factor loadings L̃ = [l1, l2] from the matrix R of experiments E2 and E4.

The vectors of factor loadings (l1, l2) for these experiments are shown in Figure 6.6. From

the factors on E2 (left), we can infer that F1 represents the measurement-dependent

factor (bandwidth, current supply), since it has a large non-zero value at most samples,

except around the samples corresponding to high levels of glitching, and F2 represents the

intrinsic correlation factor, with large non-zero values around the samples corresponding

to high levels of glitching. From E4 (right), we can see that only the intrinsic correlation

factor appears in both l1 and l2 (there are large non-zero values only around the samples

corresponding to high levels of glitching), as we expect in this experiment, since the

correlation due to measurement-dependent factor is almost zero (see Figure 6.1, bottom).

In Figure 6.7, I show the correlation matrices estimated using (6.10, 6.1), where L̃ = l11 l12

...

lm1 lm2

 = [l1, l2], m = mr = 2500. Comparing Figures 6.1 and 6.7, we see that

using only the factors loadings l1 and l2, along with the specific variations Ψ, we can

reproduce very well the entire correlation matrix.

6.2.2 Using factor analysis to improve template attacks

In the previous section, I showed that, using factor analysis, we can estimate a large

correlation matrix R ∈ R2500×2500 using a small number of factors, corresponding to the

main components of the correlation matrix. If indeed, the matrix R̃ computed from only

K = 2 factors estimates well the real correlation matrix, then we may be able to use factor

analysis to remove noise from the sample correlation matrix. Therefore, although in the

previous section I used factor analysis on the correlation matrix R, in order to focus on

the structure of the correlation between samples, we can also use factor analysis on the

individual covariances Sk or the pooled covariance Spooled, in order to reduce noise from

these matrices and obtain cleaner estimates (S̃k or S̃pooled) of the real covariance Σ. This
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Figure 6.7: Correlation matrices estimated from the factor loadings on factors F1 and

F2 and from the specific factors E only, for experiments E2 (top) and E4 (bottom); full

matrices (left) and zoom around subsamples (right).

in turn may provide similar or better template attacks than using the covariances Sk or

Spooled, since in Chapter 4, I showed that the estimation of the covariance matrix plays

a very important role in the success of these attacks. In Algorithm 7, I describe how to

use factor analysis on the raw covariance matrix Sr (Sr
k or Sr

pooled), in order to obtain the

estimate S̃r, which can then be used for the template attack.

Algorithm 6 (Estimating S̃
r

using factor analysis)

Require: Sr ∈ Rmr×mr
(Sr

k or Sr
pooled)

1: Obtain the restricted matrix of factor loadings L̃ = [
√
λ1e1,

√
λ2e2, . . . ,

√
λKeK ]

(where (ej, λj) are the eigenvectors and eigenvalues of Sr)

2: Obtain the matrix of specific factors Ψ ∈ Rmr×mr
. See (6.11)

3: Obtain the covariance estimate S̃
r

= L̃L̃′ + Ψ,

In order to verify if factor analysis can improve template attacks, I used Algorithm 6,

with K = 2 factors (based on the observations and results from Section 6.2), to estimate

both the individual covariances Sr
k and the pooled covariances Sr

pooled from experiment E4.

Then, I evaluated the template attacks, using the estimated covariances S̃
r

k and S̃
r

pooled,

with the discriminants djoint
LOG (4.26) and djoint

LINEAR (4.28), respectively. The results are

shown in Figure 6.8.1 We can see that, when using Sr
pooled (top), the estimates obtained

1For the results using the individual covariances Sr
k (see bottom of Figure 6.8), I did not use LDA
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Figure 6.8: Results of template attacks on real data using the individual covariances with

dLOG (top) and the pooled covariances with dLINEAR (bottom). Left: using the standard

estimators for Sk and Spooled from (4.1, 4.19). Right: using factor analysis to estimate S̃k

and S̃pooled. In all cases I used np = 2000 traces for each candidate k during profile.

from factor analysis provide very similar results. This means that, (a) the K = 2 factors

are indeed able to capture most of the correlation between samples, and (b) the pooled

covariance Sr
pooled already does a good job at estimating the real covariance Σr, such that

factor analysis brings little or no improvement. However, we can observe the differences

better, when looking at the attacks using the individual covariances Sr
k (bottom), since in

this case only np = 200 traces were used for the estimation of each Sr
k, while for Sr

pooled, I

used np|S| = 51200 traces. Firstly, we see that, when using the standard covariances Sr
k

(bottom, left), PCA and 1ppc perform better (as na increases) than in the case of using

the covariances S̃
r

k. This means that there are still some minor factors that, in my choice

of K = 2 factors, I did not consider when computing S̃
r

k, but which PCA and 1ppc were

able to use, since due to the small number of variables (m = 4 for PCA, m = 8 for 1ppc),

since it requires the use of the common covariance Sr
pooled.
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even the np = 200 traces were enough to obtain a good covariance estimate Sr
k. Secondly,

the bottom of Figure 6.8 shows that factor analysis can provide a cleaner estimate of Σr,

since the methods 20ppc and allap (which use a large number of samples) perform vastly

better when the estimates S̃
r

k (bottom, right) are used instead of the standard covariances

Sr
k (bottom, left). In particular, we can see that, for low na, the 20ppc and allap methods

using S̃
r

k, provide results as good as PCA with the standard estimates Sr
k.

In summary, my results show that factor analysis can be useful for template attacks,

in situations where we have a low number np of profiling traces and a large number of

samples (see 20ppc and allap in the bottom of Figure 6.8). However, this technique does

not appear to be very useful otherwise (e.g. when using PCA or LDA with a small m).

6.3 Analysis on synthesized data

In order to observe the influence of the correlation on the template attack, I synthesized

data that resembles what I obtained from the experiments on real data. This synthesized

data permits me to isolate the effects of correlation (matrix R) and noise (matrix D)

on the results of the template attack, thus providing a good setting for an experimental

statistical analysis.

6.3.1 Synthesized data

To generate the synthesized data, I used a simple model of power consumption for three

load instructions during five clock cycles, which depend all on a single byte, in a similar

manner as my real target CPU, the Atmel XMEGA 256 A3U. More precise models can be

built, e.g. using stochastic models [97], as Renzo did in his master thesis [32]. However,

for the purposes of analysing the effects of correlation and noise, and demonstrating the

usefulness of factor analysis for synthesizing data, my simpler model should suffice.

My synthesized noise-free samples x̄kj of a particular candidate k are modeled as

x̄kj = cj + a

(
8∑
i=1

ri · bki − 4

)
, (6.12)

where a is a constant value for each clock cycle, the −4 is used to remove the average value

x̄j over all candidates k, and bki is the value of bit i of candidate k. During the clock cycles

1,3,4 and 5, I set all the values ri = 1, which reduce my model to the Hamming weight

model, while for the second clock cycle I used random values ri ∈ [0.8, 1.2], to obtain

different influences of each bit in the synthesized sample x̄j. This reflects my observations

from the real traces, where the second clock cycle of my target LOAD instruction leaks

clearly more than the Hamming weight of the target value k. The values cj follow a simple
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exponential curve, particular to each clock cycle, that increases or decreases from some

constant value cstatic (this represents the static power consumption of each clock cycle), to

a maximum (respectively minimum) determined by the leakage model described above,

and then decreases (respectively increases) back to the constant value cstatic.

After obtaining the noise-free vectors x̄k, I also need a method to synthesize the correlation

between samples. Earlier, I showed how to compute the correlation matrix R from a

covariance matrix S, using (6.1). However, as described in Section 3.3.5, we can also

perform the opposite, and compute the covariance matrix S from R and D as

S = DRD. (6.13)

Then, using factor analysis, and equations (6.1, 6.13), I designed Algorithm 7 to synthesize

arbitrary covariance matrices.

Algorithm 7 (Synthesize covariance matrix using factor analysis)

1: Compute S (either Sk or Spooled) using (4.1, 4.19) on the real data.

2: Compute D and R using (6.1) on the covariance estimate S.

3: Based on the spectral decomposition (6.8) of R, obtain l1 =
√
λ1e1 corresponding to

the measurement-dependent overall correlation (F1) and l2 =
√
λ2e2 corresponding

to the measurement-independent intrinsic correlation (F2).

4: Scale l1, obtaining lnew
1 = ρcorrl1, in order to increase or decrease the overall correlation

(F1).

5: Use R and L̃ = [lnew
1 , l2] with (6.10,6.11) to compute R̃.

6: Scale the diagonal elements of D, obtaining diag(D(new)) = ρstddiag(D), in order to

increase or decrease the desired level of noise.

7: Compute S̃ from R̃ and D(new) using (6.13).

I make the following remarks about Algorithm 7: (a) instead of steps (1–4,6) we could

use arbitrary values for the noise (diagonal of D) and factor loadings (l1, l2), or even

use more factors. I used these steps in order to change only the level of noise (D) and

overall correlation (l1); (b) I used only two factors to match my observations on real data.

However, for other scenarios, the choice of factors might be different; (c) I select from S̃,

only the rows and columns that correspond to the samples j, for which I synthesized the

noise-free vectors x̄k.

Note also, that it is not possible to use arbitrary covariance matrices with template

attacks, since the covariance matrices need to be positive-semidefinite [26]. For this

reason, Algorithm 7 provides a helpful and reliable method to synthesize different, correct

(positive-semidefinite), covariance matrices, allowing to test independently the effects of

inter-sample correlation (R) and noise (D) on template attacks. This approach may also

be useful also for simulations where the noise-free leakage of a CPU is available but the

correlation is not, as was the case in the work of Renauld et al. [93].
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Figure 6.9: Simulated data of 71 samples per clock for 5 clocks. Left: noise-free mean

vectors; center: synthesized covariance matrix; right: 50 random vectors generated using

MATLAB’s mvnrnd on one of the mean vectors (bold) and the covariance matrix.

6.3.2 Analysis of synthesized correlation

Using the leakage models from (6.12) and Algorithm 7, I synthesized data with 71 samples

per clock over five clock cycles (355 samples in total), having different values of noise

(matrix D) and correlation (matrix R), obtaining traces such as those shown in Figure 6.9.

I used ρstd, ρcorr ∈ {0.2, 0.4, 0.6, . . . , 2}, resulting in 100 different covariance estimates S̃.

In Figure 6.10, I show the guessing entropy2 obtained by running the template attacks

on this synthesized data for np = 100, na = 1, and in Figure 6.11 for np = na = 100. All

attacks are performed five times with different data, and the resulting guessing entropy is

obtained as an average over the five iterations. We see that the overall correlation (ρcorr)

has a much weaker influence on the template attack than the noise (ρstd). The correlation

affects the results of the sample selection methods (1ppc, 3ppc, 20ppc, allap) when the

noise is higher, and this is is more visible for na = 1. LDA and PCA are generally not

affected by the strength of the correlation, even at higher levels of noise: this can be

explained by the fact that both LDA and PCA project the samples into a new space,

where these samples are not correlated anymore. We observe as well that 1ppc and 3ppc

are always worse than all the other methods (including 20ppc and allap), which is in

line with my observations from Chapter 4. In conclusion, factor analysis can be used to

simulate traces having a similar structure as the real traces, therefore providing a useful

tool for the evaluation of template attacks.

2The color bar on the right of the plots provides the value of the guessing entropy corresponding to

each result.
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Figure 6.10: Contour plots of guessing entropy over 100 combinations of noise (D(new))

and correlation (lnew
1 ) for all compression methods from Table 4.1. np = 100, na = 1.
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Figure 6.11: Contour plots of guessing entropy over 100 combinations of noise (D(new))

and correlation (lnew
1 ) for all compression methods from Table 4.1. np = na = 100.



Chapter 7

Efficient stochastic methods: profiled

attacks beyond 8 bits

Throughout the previous chapters, I presented several methods to improve the efficiency

of template attacks in different situations, such as when dealing with a large number

of leakage samples (Chapter 4), with different devices (Chapter 5), or with different

acquisition parameters (Chapter 6).

In this chapter, I describe the use of the “stochastic model” [97] to obtain very efficient

profiled attacks, i.e. attacks in which we use a profiling phase, as we do with template

attacks. While the template attacks presented in previous chapters are very general,

in that they only assume a multivariate normal distribution of the underlying leakage

traces, they also require a large number of profiling traces in order to obtain good mean

and covariance estimates, resulting in one independent mean vector per target value. In

contrast, the stochastic method models the leakage through a small number of functions

of a data word, such as the value of each bit, obtaining the mean vectors of all possible

target values mainly as a linear combination of the leakage vectors corresponding to each

bit. This results in much fewer parameters to be estimated, thereby trading generality of

the model for efficiency of profiling. As I show in Section 7.1, the stochastic model merely

provides an efficient method to estimate the mean and covariance parameters, while the

rest of the attack can proceed exactly as with template attacks. In particular, we can use

all the efficient methods presented in Chapter 4. The results presented in this chapter

have been published in the following conference paper [25]:

Marios O. Choudary and Markus G. Kuhn, Efficient Stochastic Methods: Pro-

filed Attacks Beyond 8 Bits, CARDIS 2014, Springer LNCS 8968, pp. 85–103.

As I have shown throughout the previous chapters, the PCA and LDA compression meth-

ods can improve significantly the success of template attacks. The question arose, whether

similar benefits could be achieved with the stochastic model [101]. In Section 7.2, I present

129



130 7.1. STOCHASTIC MODELS

four efficient ways of implementing PCA and LDA with stochastic models, which allow us

to combine the profiling efficiency of the stochastic method with the compression efficiency

of PCA and LDA, resulting in very efficient profiled attacks.

In Section 7.3, I evaluate my four implementations of PCA and LDA using the Grizzly

Beta dataset from Section 2.3.1, in order to provide a clear comparison between the

template attack and the stochastic model. The results show that these PCA and LDA

implementations can indeed increase the success of profiled attacks, while preserving the

profiling efficiency of the stochastic model.

Then, in Section 7.4, I demonstrate how to profile and evaluate stochastic models simul-

taneously for more than eight bits, using the Panda dataset from Section 2.3.3, and I

show that my applications of LDA and PCA are particularly helpful in this context.

In these evaluations, I use the linear discriminant from Section 4.4.3 for the attack step,

and the logarithmic guessing entropy from Section 4.5.1 to measure the success of the

attack. Also, I compare the PCA and LDA methods against the sample selections 1ppc,

and 20ppc from Section 4.3.1. Please refer to Chapter 4 for more information, and for a

detailed description of the template attack.

7.1 Stochastic models

Stochastic models were introduced by Schindler et al. [97] as another kind of profiled

attack, where the profiling phase can be more efficient than for template attacks.

In the original description, as well as in following publications on stochastic model [46, 103,

52], each leakage sample xj of a trace xi is modelled as a combination of a deterministic

part δj(di, k), which depends on a part (e.g. byte) of plaintext di and a part (e.g. byte)

of key k, and a random part ρj which models the noise:

xj = δj(di, k) + ρj. (7.1)

The formulation of the stochastic model in this form was guided by the assumption that a

side channel attack will use intermediate results such as the output of an S-box of a block

cipher (e.g. AES), which depend on both a known value (the plaintext) and an unknown

value (the key).

Here, I simply assume that a leakage sample xj depends on a deterministic part δj(k),

which takes as input a single value k, and the random part ρj, which models the noise:

xj = δj(k) + ρj. (7.2)

This model can be used to attack any data, not just intermediate results that depend

on combinations of a plaintext and a key, just like the template attacks presented in
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Section 4.1.1

The deterministic function δj(k) is modelled as a linear combination of base functions

gjb : S → R, with

δj(k) =
u−1∑
b=0

βjb · gjb(k), (7.3)

where the coefficients βjb ∈ R model the contribution of each base function gjb. The es-

sential idea behind stochastic models is to find a good set of base functions that matches

well the leakage of the values k. A common and generally good option for 8-bit architec-

tures is to use the set of u = 9 base functions, known as F9, for which gj0(k) = 1 and

gjb(k) = bitb(k). In this case, the coefficients βjb model the contribution of each bit. As

an example, in Figure 7.1, I show the bit-coefficients βjb for the Grizzly Beta dataset.

For my experiments, F9 produced good results, because the leakage caused by the bus

lines in my target CPU can be modelled well with F9, but this model may not work well

when dealing, for example, with hardware implementations of cryptographic algorithms.

In such cases, we might need to use combinations of bits [97, 46], or model the leakage

produced by combinations of several data values. To obtain the most efficient model, we

may require precise knowledge of the internal architecture of the device. However, when

targeting 8-bit values (e.g. the S-box output of AES) in unknown hardware implementa-

tions of cryptographic algorithms, we may still try to use F9 and compensate the lack of

knowledge of a very good model with an increase of the number of profiling traces.

During profiling, instead of acquiring np leakage traces xr
ki for each candidate k and then

use (4.1, 4.19) to compute the mean vectors x̄k and covariance Spooled needed for template

attacks, we only use a total of N leakage traces xr
i ∈ Rmr

from a uniform distribution of

the values k ∈ S. As with template attacks, we generally compress these leakage traces

to obtain the compressed traces xi ∈ Rm (m � mr, see Section 7.2). Then, we combine

all these leakage traces into the leakage matrix X ∈ RN×m . Next, for each sample index

j ∈ {1, . . . ,m} we build the matrix

Fj =


gj0(k1) gj1(k1) . . . gju−1(k1)

gj0(k2) gj1(k2) . . . gju−1(k2)
...

...
. . .

...

gj0(kN) gj1(kN) . . . gju−1(kN)

 , (7.4)

1In the original approach from (7.1) the deterministic function δj(di, k) was intended to capture any

combination of plaintext and key and then use a mapping function that reduced this combination into

a value to be modelled by the set of base functions gjb. However, the most common mapping is to use

the XOR between di and k [97, 103] or the XOR between these and a mask value [69]. Therefore, in

most cases, there is a single value (e.g. the XOR result) that is modelled by the base functions. For

the cases where we want to target several values (e.g. for masking [97, 69], the proposed solution is to

use a set of base functions that depend on both a mask y and the XOR between this mask, a plaintext

and a key), we can simply form the candidate k to be the concatenation of the bits of these values (e.g.

k = [bits mask|bits XOR]).
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Figure 7.1: Coefficients βjb of F9, for the Grizzly Beta dataset from Section 2.3.1.

and use the stochastic model

colj(X) = dj + rj = Fjvj + rj, (7.5)

where colj(X) contains the leakage samples xj of all traces xi in X,

vj
′ = [βj0, . . . , βju−1] (7.6)

represents the vector of coefficients modelling the base functions,

rj
′ = [ρ1

j , . . . , ρ
N
j ] (7.7)

is the vector of noise terms,

dj
′ = [δj(k

1), . . . , δj(k
N)] (7.8)

is the vector containing the deterministic part of each value, and ki represents the value

of k corresponding to the trace xi. To find the vector of coefficients vj, we try to minimise

the distance ‖colj(X)− Fjvj‖2, leading to the least-squares solution

vj = (Fj
′Fj)

−1
Fj
′colj(X). (7.9)

Note that the matrix inversion in (7.9) requires rank(Fj) = u (see Section 4.2), which in

turn requires Fj to have u independent rows.



CHAPTER 7. EFFICIENT STOCHASTIC METHODS 133

In practice, we may use the same set of base functions (e.g. F9) for all samples j (or at

least for a subset of all samples). In this case, we can drop the subscript j from (7.4) and

use the same F for all samples j. This allows us to compute all the coefficients at once as

V = [v1, . . . ,vm] = (F′F)
−1

F′X, (7.10)

which is computationally more efficient. The coefficient vectors vj, computed either with

(7.9) or (7.10), can be used with (7.3) to compute the deterministic part δj(k) of a sample

xj for any value k. Note that this deterministic part is assumed to be noise-free, since the

noise is captured by the term ρj. Therefore, as mentioned also by Gierlichs et al. [46], we

can use the values δj(k) to compute the stochastic mean vectors x̂k ∈ Rm as

x̂′k = [δ1(k), . . . , δm(k)]. (7.11)

While these correspond to the template mean vectors x̄k from (4.1), their approximation

of the real trace means µµµµµµµµµµµµµµµµµk is limited by how well the choice of base functions models the

actual leakage.

In order to use also the noise information, we need to compute a covariance matrix

Ŝ ∈ Rm×m , similar to the pooled covariance Spooled from (4.19). For this, we can use the

same N traces that we used to estimate the coefficients vj, and compute the noise vector

zi ∈ Rm , specific to each trace xi, as

zi
′ = [ρi1, . . . , ρ

i
m ], ρij = xij − δj(ki). (7.12)

These vectors can then be used to compute the noise matrix

Z =

 z1
′

...

zN
′

 =

 ρ1
1 . . . ρ1

m
...

. . .
...

ρN1 . . . ρNm

 , (7.13)

and finally, we can compute the covariance matrix as

Ŝ =
1

N − 1

N∑
i=1

zizi
′ =

1

N − 1
Z′Z. (7.14)

In the attack step, we proceed similarly to the template attack, using the linear discrimi-

nant from Section 4.4.3, but replacing the template mean vectors x̄k by the mean vectors

x̂k from (7.11), and the pooled covariance Spooled by the covariance Ŝ from (7.14).

7.1.1 Note on the estimation of the covariance

In the original publication of the stochastic model, Schindler et al. [97], and then also

following publications [69, 103], suggested to use one set of N1 traces for the estimation of
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Figure 7.2: Results of stochastic model attacks using either (a) two different sets, having

N1 = N2 = N/2 traces, for the estimation of the stocastic mean vectors x̂k and covariance

Ŝ, or (b) a single set of N traces for the estimation of both x̂k and Ŝ.

the coefficients βjb, and an additional training set of N2 = N −N1 traces to compute the

covariance matrix Ŝ. However, it was never clearly motivated why we need the additional

set of N2 training traces. The already available N = N1 traces that were used to estimate

the coefficients βjb seem good for this purpose, since in (7.2) the deterministic part δj(k)

approximates the noise-free part, common to all the N traces, while z ∈ Rm is the noise

vector specific to each trace.

The approach I proposed and used, i.e. using the same N traces to compute both the

mean vectors x̂k and covariance matrix Ŝ is more efficient than the previously proposed

methods, because it allows us to use a larger number N of training traces compared to the

original method, resulting in better estimates of both the mean vectors x̂k and covariance

Ŝ. The advantage of using all the N traces to estimate both the means x̂k and covariance

Ŝ is shown in Figure 7.2 (compare for example N1 = N2 = 500,1ppc with N = 1000,1ppc).

7.2 Compression methods for stochastic models

7.2.1 Sample selection

All the sample selection methods from Section 4.3 can be adapted for stochastic models by

using (7.11) and (7.14) to compute the stochastic mean vectors x̂k and covariance matrix
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Ŝ, and then using these to obtain the desired signal-strength estimate s(t). In addition,

Schindler et al. [97] proposed to use s(j) =
∑u−1

b=1 β
2
jb, i.e. the norm of the data-dependent

coefficients, which I shall refer to as bnorm.

7.2.2 PCA and LDA

PCA and LDA provided a significant break-through in the application of template attacks,

and Standaert et al. [101] mentioned that “Combining data dimensionality reduction tech-

niques with stochastic models is a scope for further research”. However, until now, the

sole published attempt to apply PCA to stochastic models, by Heuser et al. [52], is inef-

ficient. As I explained in Sections 3.9.3 and 4.3.2, the goal of PCA is to find the smallest

set of eigenvectors [e1, . . . , em] = Um, such that the projection Xk = Xr
kU

m from (4.12)

maximises the distance between the compressed traces corresponding to different values

k. The main idea is that the treatment vectors τττττττττττττττττ k = (x̄k − x̄), from Section 3.8.2, define

the signal of interest, i.e. they provide the location and magnitude of the leakage caused

by processing our target value. Therefore, to obtain the PCA eigenvectors that maximise

this signal, we must apply PCA on the treatment matrix B from (4.8), which is derived

from the treatment vectors. Instead, Heuser et al. [52] used the eigenvalues of the raw co-

variance matrix Ŝr, computed as in (7.14), to project the leakage traces. This removes the

correlation between leakage samples, but does not maximise the discrimination between

means, since the matrix Ŝr contains no information about the different raw mean vectors

x̂r
k, obtained from (7.11). I suspect that the lack of ‘mean’ information in Ŝr is also the

reason why only the first eigenvalue was significant in the results of Heuser et al., which

lead them to use a univariate attack. I verified that for the Grizzly dataset this method

provides no useful attack (i.e. the guessing entropy does not decrease).

I now describe four efficient methods of implementing PCA and LDA with stochastic

models. All these methods work in three main steps. In the first step, for which I offer two

methods (labelled “S” and “T” below), we compute the matrix B̂, as an approximation

of the treatment matrix B from (4.8), and the raw covariance matrix Ŝ
r

(only needed

for LDA). Next, we use either PCA or LDA to obtain the matrix of eigenvectors Um,

and use that to compress the raw leakage matrix Xr ∈ RN×mr
into X ∈ RN×m . Finally,

for the third step, we use the stochastic model, on the compressed (projected) traces, to

model each sample xj of a compressed trace xi = [x1, . . . , xm] in X. The general method

is shown in Algorithm 8.

S-PCA

My first PCA method for stochastic models, which I call S-PCA, relies on the stochastic

model from Section 7.1, to build the mean vectors x̂r
k of the raw traces. In the first step,
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Algorithm 8 (Generic PCA/LDA algorithm for stochastic models)

Require: Xr ∈ RN×mr

Step 1:

1: Obtain the matrix B̂ (Algorithm 9 or 10),

and the matrix Ŝr (Algorithm 11 or 12; LDA only)

Step 2:

2: Obtain the matrix Um from B̂ (PCA) or Ŝr
−1

B (LDA)

3: X← XrUm, X ∈ RN×m

Step 3:

4: Compute F (same for all samples) . See (7.4)

5: V = [v1, . . . ,vm]← (F′F)−1F′X

where vj
′ = [βj0, . . . , βju−1]

6: for all k ∈ S do

7: x̂′k = [δ1(k), . . . , δm(k)], δj(k)←
u−1∑
b=0

βjb · gjb(k)

8: end for

9: for i← 1, N do

10: zi
′ = [ρi1, . . . , ρ

i
m ], ρij ← xij − δj(ki)

11: end for

12: Z′ = [z1, . . . , zN ]

13: Ŝ ← 1
N−1

Z′Z

14: Use (x̂k, Ŝ) in the attack step

Algorithm 9 (Compute B̂ for S-PCA/S-LDA)

Require: Xr ∈ RN×mr

1: Compute F (same for all samples) . See (7.4)

2: V = [v1, . . . ,vmr ]← (F′F)−1F′Xr

where vj
′ = [βj0, . . . , βju−1]

3: for all k ∈ S do

4: x̂r′

k = [δ1(k), . . . , δmr(k)], δj(k)←
u−1∑
b=0

βjb · gjb(k)

5: end for

6: x̂r ← 1
|S|
∑

k∈S x̂r
k

7: B̂←
∑
k∈S

(x̂r
k − x̂r)(x̂r

k − x̂r)′

we use these vectors to compute B̂ (see Algorithm 9), and in the second step, we obtain

Um as the eigenvectors of B̂ (see Section 4.3.2).
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Algorithm 10 (Compute B̂ for T-PCA/T-LDA)

Require: Xr
k ∈ Rnp×mr

, ∀k ∈ Ss
1: for all k ∈ Ss do

2: x̄r
k ← 1

np

np∑
i=1

xr
ki

3: end for

4: x̄r ← 1
|Ss|
∑

k∈Ss x̄r
k

5: B̂←
∑
k∈Ss

(x̄r
k − x̄r)(x̄r

k − x̄r)′

Algorithm 11 (Compute Ŝr for S-LDA)

Require: Xr ∈ RN×mr

1: Compute F (same for all samples) . See (7.4)

2: V = [v1, . . . ,vmr ]← (F′F)−1F′Xr

where vj
′ = [βj0, . . . , βju−1]

3: for i← 1, N do

4: zi
′ = [ρi1, . . . , ρ

i
mr ], ρij ← xij − δj(ki), δj(ki)←

∑u−1
b=0 βjb · gjb(ki)

5: end for

6: Z′ = [z1, . . . , zN ]

7: Ŝ
r
← 1

N−1
Z′Z

T-PCA

My second PCA method for stochastic models, which I call T-PCA, is based on the

observation that the matrix B in (4.8) may be approximated from only a subset Ss ∈ S
of values k. Therefore, in the first step, we obtain raw traces for the subset Ss, and we

use the resulting leakage matrices Xr
k to compute the matrix B̂ (see Algorithm 10). In

the second step, we obtain Um as the eigenvectors of B̂. Note that for this method (as

well as for T-LDA, described next), we need two sets of raw traces: (a) the traces in Xr

(used in step 2 and then, compressed, in step 3), and (b) the traces for the matrices Xr
k.

Algorithm 12 (Compute Ŝr for T-LDA)

Require: Xr
k ∈ Rnp×mr

, ∀k ∈ Ss
1: for all k ∈ Ss do

2: x̄r
k ← 1

np

np∑
i=1

xr
ki

3: end for

4: Ŝ
r
← 1

(np−1)|Ss|

∑
k∈Ss

np∑
i=1

(xr
ki − x̄r

k)(x
r
ki − x̄r

k)
′
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Figure 7.3: Normalized eigenvectors for PCA methods, and coefficients βjb of F9.

S-LDA and T-LDA

I propose two methods for using LDA with stochastic models, which I name S-LDA and

T-LDA. These are very similar to their PCA counterparts, with S-LDA using Algorithm 9,

and T-LDA using Algorithm 10, to compute B̂. The main difference is that, besides the

matrix B̂, we also need to compute the covariance matrix Ŝr ∈ Rmr×mr
of the raw traces.

Then, we can obtain Um from the eigenvectors of Ŝr
−1

B̂, as explained in Section 4.3.3.

Algorithms 11 and 12 show how to obtain Ŝr for S-LDA and T-LDA, respectively.

In Figure 7.3, I show the first four PCA eigenvectors of the Grizzly dataset for template

PCA, S-PCA, T-PCA with different subsets Ss, and the unsupervised PCA of Heuser

et al. [52], along with the coefficients βjb. For the unsupervised PCA, the eigenvectors

fail to provide useful information. For the other methods, the first two eigenvectors are

very similar. This suggests that S-PCA and T-PCA can produce eigenvectors similar to

those from template attacks.
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7.3 Evaluation on 8-bit data

As I mentioned at the beginning of this chapter, I use the Grizzly Beta dataset, from

Section 2.3.1, to to compare the template attacks (TA) with stochastic models (SM). The

target of these attacks is again the value k, processed by a single LOAD instruction. Due

to the architecture of the Atmel XMEGA 256 microcontroller, the value k affects the

traces over several clock cycles. In these evaluations, as well as in the evaluations on the

Panda dataset from the next section, I use the linear discriminant from Section 4.4.3 for

the attack step, and the logarithmic guessing entropy from Section 4.5.1 to measure the

success of the attack.

In Figure 7.4, I show the results of SM using my PCA/LDA methods, along with TA using

PCA/LDA (m = 4 for all the evaluations using PCA or LDA). For TA, I used np = 1000

traces per value k during profiling, while for SM, I used different N and subsets Ss. I also

show the results for SM and TA using 1ppc (m = 10) and 20ppc (m = 80), computed

using the absolute difference of means (see Section 4.3.1).

From these figures, we can observe several things. Firstly, it is clear that all the SM

methods provide a guessing entropy equal or better than their TA equivalent, even when

supplied with a much smaller amount of training data. Therefore, these results confirm

the observations of Standaert et al. [103], that SM can be at least one order of magnitude

more efficient than TA. Theoretically, given enough training data, SM cannot perform

better than TA. However, with a limited number of profiling traces, SM may outperform

TA when the leakage is modelled well by the chosen base functions. With the 256× 1000

profiling traces of the Grizzly dataset, SM reaches nearly 0-bit guessing entropy with 1000

attack traces, whereas TA does not (Fig. 7.4, bottom right). Furthermore, if we want to

use profiled attacks against data having more than 8 bits, as I show in the next section,

the SM may be the only practical choice.

Secondly, we can observe that both S-PCA and T-PCA reach the TA boundary quicker

than S-LDA and T-LDA. This is because the PCA methods only depend on B̂ (the

approximation of B), while the LDA methods depend on both B̂ and Ŝr.

Thirdly, we observe that, for large na, the T-PCA, T-LDA, S-PCA, S-LDA, and 20ppc

methods provide similar results, but for small na, the best results are obtained by LDA.

In particular, note that, using T-LDA and S-LDA, we can reach 4.1 bits of entropy when

na = 1, while this limit is unreachable for 1ppc (5.7 bits), 20ppc (4.5 bits) or PCA (4.7

bits).

From Chapter 4, we knew that PCA and LDA are the most efficient compression methods.

Now, we have seen that my PCA/LDA implementations for SM can achieve the same

performance. On the other hand, the SM provide more efficient profiling than TA and,

moreover, the SM may be the only viable solution to implement profiled attacks against

more than 8-bit targets. Therefore, the S-PCA, S-LDA, T-PCA and T-LDA methods
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really combine the best compression methods (PCA, LDA) with the most efficient profiled

attack (SM).
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Figure 7.4: Comparing TA with SM using PCA, LDA, 1ppc and 20ppc with different N

and na. For TA, I used np = 1000. For T-PCA and T-LDA, I used N = 16000.
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7.4 Profiled attacks on 16-bit data and more

So far, most publications on profiled attacks have focused on 8-bit attacks. The possibility

of attacking 16-bits was mentioned in passing [52], but I am not aware of any public

description of the challenges involved in attacking 16-bit data. Therefore, in this section,

I consider and demonstrate a profiled 16-bit attack.

7.4.1 Considerations for the attacker

It is not feasible to mount a template attack on much more than 8 bits, as we need to

obtain leakage traces for each value k to compute and store the mean vectors x̄k. However,

for the stochastic model, all we need is a selection of traces from a random subset of values

k, to estimate the coefficient vectors vj, from which we can derive any desired stochastic

mean vector x̂k. The remaining limitation is that, in the attack phase, we still need to

compute the discriminant dLINEAR from (4.24) over all possible values k. While doing so

for 232 candidate values is no problem with normal PCs, attempting to do this for 264

candidates would certainly require special hardware.

7.4.2 Considerations for evaluation laboratories

Even if SM are practical given a single attack trace xi, a problem that remains, in par-

ticular for evaluation labs, is computing the guessing entropy (see Section 4.5.1), which

requires to store na traces for each value k? ∈ S and run the attack on each of these.

This is not practical for values having 16 bits or more. However, one practical solution is

to run the attack merely over a subset Ss of the target values k?, to compute the partial

guessing entropy defined in Section 4.5.1.

7.4.3 Efficient attacks and evaluations on more than 8-bit

As explained in Section 4.4.4, the complexity of dLINEAR is O(m2 +na ·m). However, that

implies the use of a covariance in (4.24). But with LDA, we no longer use a covariance

matrix (see Section 4.3), so the complexity of dLINEAR reduces to O(m+na·m) = O(na·m).

Then, an attacker who simply wants to find the most likely k, requires a computation

of complexity O(|S| · na · m) when using LDA (since we need to compute dLINEAR for

each k ∈ S), and O(|S|(m2 + na ·m)) when using PCA or sample selection. If na is of

a lower order than m, then the use of LDA will provide a computational advantage to

an attacker. Also, both PCA and LDA will typically select an m much smaller than for

sample selection. In my experiments, on the Grizzly dataset, m = 4 for PCA and LDA,

while for 20ppc, m = 80 (note that with sample selection we should use many samples
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per clock – see Chapter 4). In the extreme case, for na = 1, an attack using LDA will be

1600 times faster than using 20ppc, and PCA will be be 400 times faster than 20ppc. For

larger traces, covering many clock cycles (e.g. for a cryptographic algorithm), I expect

this difference to increase. Therefore, my PCA and LDA implementations for SM can

offer great computational advantage.2

An evaluator who wants to compute the partial guessing entropy will run the attack for

each k? ∈ Ss. Therefore, the complexity of the evaluation is O(|Ss| · |S| · na ·m) for LDA

and O(|Ss| · |S| · (m2 +na ·m)) for PCA or sample selection. However, we can optimise the

computation of the partial guessing entropy by precomputing yk = x̂′kŜ
−1
, and zk = yk

′x̂k,

which require a computation of O(|S|m2). With these values, the discriminant dLINEAR

can be computed as

dfast
LINEAR(k | Xk?) = yk

′
( ∑

xi∈Xk?

xi

)
− na

2
zk, (7.15)

which has complexity O(na ·m). Therefore, the evaluation of the partial guessing entropy

can be done with complexity O(|S|m2 + |Ss| · |S| · na ·m). For PCA, the value m may be

comparable to or smaller than |Ss| and therefore an evaluation using dfast
LINEAR will run as

fast as an evaluation using LDA. However, if we need to use a sample selection method

with very large m, then the evaluation will be considerably slower. Remember also that,

while 1ppc with low m may be as fast as LDA in this case, we confirmed in Figure 7.4

that both PCA and LDA provide better results than 1ppc.

These considerations show that the choice of compression method depends also on who

will need to use it: an attacker who only wants the correct k?, or an evaluator who wants

to know the average attack cost. In both cases, my LDA and PCA methods will help.

7.4.4 Results on 16-bit data

In order to verify that an attack on 16-bit data is feasible, and to obtain an estimate

on the actual run time, I used the Panda dataset from Section 2.3.3, where the target

is composed of two 8-bit values, processed by two consecutive LOAD instructions, thus

providing a 16-bit target k?. Using this dataset, I cannot evaluate the limit of SM on

a 16-bit parallel bus, but I can evaluate the feasibility of profiled attacks on more than

8 bits of data. For the evaluation, I split the dataset into two disjoint sets, for profiling

and attack. Also, I use the np = 1000 traces, obtained for each of the 16-bit values

k ∈ Ss, where the subset has |Ss| = 512 random values, for the computation of B̂ and Ŝr

in T-PCA and T-LDA. For the implementation of the SM, I simply extended the set of

base functions to include the individual contributions of all the 16 bits of the values k,

2I also note that, for SM with sample selection, we should use bnorm (see Section 7.2.1), as it is more

computationally efficient than the other methods for estimating the signal-strength estimate s(t).
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Figure 7.5: Contribution of each coefficients βjb of F17 for the Panda dataset from Sec-

tion 7.4.4.

resulting in the set F17. The contribution of each base function is shown in Figure 7.7.

This figure shows the effect of pipelining in my traces, since the values processed by the

two target LOAD instructions can influence the same portion of the traces (e.g. around

sample 300).

In Figure 7.6, I show the results of S-PCA, S-LDA, T-PCA, T-LDA, and 20ppc for the

full 16-bit attack. We see that, with most methods, the guessing entropy converges after

about N = 1000× 24 = 16000 traces, which confirms the efficiency of stochastic models.

Then, we see that S-LDA reduces the guessing entropy below 4 bits when using na = 100

traces, which means that, in this case, we can find the correct k? in a brute-force search

attack with 16 trials, on average. We also see that S-PCA, S-LDA and T-PCA are better

than 20ppc but T-LDA is not. Also, both S-PCA and S-LDA are better than T-PCA and

T-LDA. This suggests that the subset of |Ss| = 512 values I used for the estimation of the

T-PCA/T-LDA parameters B̂ and Ŝ
r

were not enough to reach the full potential of PCA

and LDA. Therefore, for attacks on more than 8 bits, the methods S-PCA and S-LDA

may be the best option, as they can use all the available N traces with the stochastic

model for both the modeling of the compressed mean vectors x̂k (step 3 in Algorithm 8),

as well as for the modeling of all the raw mean vectors x̂r
k (lines 3–5 in Algorithm 9). This

in turn can result in a better estimation of the matrix B̂ (step 1 in Algorithm 8), than
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Figure 7.6: Results on full 16-bit attack for pipelined data, with S-PCA, S-LDA, 20ppc,

T-PCA, T-LDA, and results from S-PCA on 8 bits at a time, using different N and na.

I tried N = 1000 · 2x, where x is the value shown in the logarithmic x-axis. For T-PCA

and T-LDA, I used |Ss| = 512.

what can be achieved with a small subset of real vectors x̄r
k for the T-PCA and T-LDA

methods.

In the bottom-right of Figure 7.6, I also show the results when performing the SM attack

separately, for each of the two bytes of my target value (i.e. during profiling, I only consider

one byte known, while the varying value of the other represents noise). I computed the
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Figure 7.7: Contribution of coefficients βjb in F17 (bits 1 to 16) and F17x (F17 enhanced

with XOR between bits of 8-bit halves) for the Panda dataset. Pipelining causes leakage

of the two 8-bit halves to overlap (e.g. around sample 300). Their consecutive processing

also leaks their XOR value (e.g. around sample 430).

results by adding the guessing entropy from each 8-bit attack. This figure shows that,

in my particular scenario, performing two 8-bit attacks (each with F9) provided better

results than any of the 16-bit attacks with F17. This could potentially be due to several

factors. Firstly, by attacking only 8 bits, there are fewer parameters to be estimated

during the attack (e.g. the SM coefficients). Secondly, the signal-to-noise ratio in the

acquisition setup might have been too low to provide sufficient separation between the

|S| = 216 classes to be distinguished by our classifier. Finally, the base function set F17

may simply not have adequately modelled the leakage.

The latter turned out to be the main factor, which was easily fixed. Our 16-bit target value

k = [k1|k2] is composed of two 8-bit halves (k1 and k2), which are processed consecutively

in the XMEGA CPU. If these two values pass through the same parts of the circuit, their

XOR difference is likely to affect part of the leakage traces. Therefore, I also evaluated

an attack where the stochastic model included the XOR between the bits of k1 and k2,

resulting in the set F17x (see Figure 7.7). Figure 7.8 shows the results of the SM attacks

using S-PCA (left) and S-LDA (right) with F17x. We see that, using F17x, both S-PCA

and S-LDA perform better than with F17. Also, in this case S-LDA reduces the guessing

entropy to about one bit, which is far better than any of the other results, including the

attack on k1 and k2 separately. Therefore, a 16-bit attack can perform better than two

8-bit attacks, if a model is used that also takes into consideration differences between the

bits, as done in F17x.
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Figure 7.8: Results of SM attack using F17x with S-PCA (left) and S-LDA (right).

Table 7.1: Approximate time required for the main steps of an evaluation using S-PCA

on a 16-bit target with N = 64000

Step time

Obtaining V on raw data (Algorithm 9, line 2) 40 s

Approximating raw mean vectors x̂r
k (Algorithm 9, lines 3–5) 32 s

Computing PCA parameters (Algorithm 8, line 2) 2 s

Obtaining V on compressed data (Algorithm 8, line 5) 38 s

Obtaining x̂k for all k (Algorithm 8, lines 6–8) 28 s

Obtaining Ŝ (Algorithm 8, lines 9–13) 33 s

Compute partial guessing entropy using |Ss| = 256 (m of the same order as na) 210 s

In Table 7.1, I show the execution times for the main steps of an evaluation using S-PCA on

the 16-bit target. This table shows that SM attacks are feasible, at least computationally,

on 16-bit data. All the steps can be extended for 32-bit data and more. The only steps

that depend on the number of bits are the computation of the raw vectors x̂r
k and the

compressed vectors x̂k for all k ∈ S, and the computation of the partial guessing entropy.

These steps depend linearly on k, so a straight-forward extension to 32-bit may require

65536 times more time. That means that, for an attacker who only wants to find the

most likely target value k?, the attacks would take 24 days for the computation of the

raw vectors x̂r
k, 21 days for the computation of the compressed vectors x̂k and 15 hours

for the attack step. However, it seems that for an evaluator it would be impractical to

compute the partial guessing entropy on 32-bit data for large |Ss|.
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Conclusions

In this thesis, I provided an extensive evaluation of template attacks, which are considered

among the most powerful side-channel attacks. They can be used to extract secret infor-

mation (e.g. cryptographic keys) from tamper-resistant devices, such as the smartcards

used in the banking or pay-TV industries to authenticate their customers.

While most of the previous publications have focused on attacking a particular crypto-

graphic algorithm, such as DES, RC4, or AES, my focus has been to explore efficient

multivariate statistical techniques for implementing the template attacks in a general

scenario, independent of any algorithmic assumptions. For this reason, across my evalua-

tions I targeted a fixed value, manipulated by a single, or at most two LOAD instructions.

While this may seem a very simple scenario, in fact it is more difficult to extract the value

processed by a single instruction, than extracting the key used with a software imple-

mentation of AES, because a typical implementation will process the target value (e.g. a

key byte) using several instructions, therefore providing more leakage information to the

attacker. Furthermore, operations of cryptographic algorithms, such as the XOR between

a key byte and a known byte (e.g. plaintext), allow the attacker to obtain leakage traces

for different values (the result of the XOR), which in turn permits him to determine the

unknown key byte much easier, because some values are easier to identify based on their

leakage than others (e.g. there is a single value, 0, with Hamming weight 0).

When I started to look at publications on template attacks, I observed that most evalu-

ations were implementing the attack with a very small number of leakage samples, moti-

vating this due to problems with the matrix inversion that is necessary during the attack.

Furthermore, one publication mentioned that we do not need to consider more than one

leakage sample per clock cycle, since additional leakage samples per clock provide no

additional information. By implementing the attack using many different parameters

(number of leakage traces for profiling and attack, number of leakage samples, compres-

sion method), I found that indeed there are some numerical issues, but not necessarily

related to the matrix inversion. In Chapter 4, I presented in detail the numerical obstacles

that can appear when implementing template attacks, and I provided several solutions
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to overcome them. In that chapter, I also presented the main results of my extensive

evaluations, showing that Principal Component Analysis (PCA) and Fisher’s Linear Dis-

criminant Analysis (LDA) can increase considerably the success of template attacks, while

also reducing dramatically their computation cost. I also showed that, using good meth-

ods, we can actually implement the template attacks with a large number of leakage

samples, and obtain better results than using fewer samples.

Before 2011, there were practically no publications of template attacks using different

devices for the profiling and attack steps, although these attacks were specifically aimed

for situations where an attacker could use one training device at will, but would like to

extract some secret data from another device, that he cannot profile. For this reason, I

decided to study the impact of using different devices on template attacks. The results of

this study, where I used four different devices and tested five different implementations of

the template attacks, were presented in Chapter 5. There, I showed that using different

devices reduces tremendously the success of template attacks, as noticed also by two

other publications. However, what I observed, and was missed in those two studies,

is that LDA can help template attacks to perform very well even in this situation, by

avoiding the variability that I observed between devices and between different acquisition

campaigns on the same device. Based on these observations, I explained how to use both

PCA and LDA to improve the results of template attacks with different devices.

While performing my evaluations, I noticed that changing the type of power supply,

between batteries and a benchtop power supply, as well as changing the bandwidth of the

oscilloscope which I used for my measurements, had a considerable effect on the correlation

between leakage samples. I knew that a high degree of correlation will impede the use of

a large number of samples, since in this case the covariance matrix of the leakage samples

may become close to singular (i.e. not invertible). Therefore, I decided to evaluate more

thoroughly the effect of these acquisition parameters (power supply, bandwidth) on the

correlation between leakage samples and template attacks. The results of these evaluations

were presented in Chapter 6. Using factor analysis, I showed that we can identify and

isolate the effect of the acquisition parameters, and we can also identify another intrinsic

factor affecting the correlation, which was present in my traces regardless of the acquisition

setup. I also showed that, using factor analysis, we can synthesize arbitrary covariance

matrices that can be used with template attacks. This can help simulating leakage traces

having a similar structure as real leakage traces.

Finally, in Chapter 7, I showed several efficient ways to implement PCA and LDA with

stochastic models, which were demonstrated as a very effective method to improve the

profiling step of template attacks, by expressing the leakage samples as a linear combi-

nation of the target’s bits. While PCA and LDA have been applied to classic template

attacks since 2006 and 2008, respectively, there was a single attempt, in 2012, to imple-

ment PCA with stochastic models, but it was not very efficient. Using my PCA and LDA

implementations, I performed an extensive comparison of stochastic models and classic
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template attacks, and showed that these implementations provide the best of profiling

attacks, by combining the profiling efficiency of stochastic models with the compression

efficiency of PCA and LDA. Given the availability of many microcontrollers with 16 or 32

bit buses, the question arose, whether such template attacks are possible when targeting

words larger than 8 bit. Therefore, in the same chapter, I presented an evaluation of

stochastic models targeting a 16-bit value, and showed that, in this case, the PCA and

LDA implementations are also particularly helpful, both in terms of attack success, as

well as time required to perform the attack.

8.1 Directions for future research

In the past two and a half years of working on template attacks, I tried to explore many

techniques to improve their efficiency, but there remain many ideas that still deserve to

be explored further. I provide examples below:

• Masking: throughout my experiments I did not consider countermeasures, such as

masking. However, this is a very important subject, and a vast amount of recent

publications deal with this topic. Many of the current attacks on masking require

to find particular combinations of leakage traces that allow a successful attack, but

finding these combinations often requires very good knowledge of the target device,

or an almost impractical computational cost. Therefore, it would be interesting to

determine if we can use more efficient multivariate statistical techniques to attack

masking countermeasures, and perhaps more importantly, it would be useful to find

what are the real limits of such techniques, in order to determine the actual security

of a device protected by masking.

• Factor analysis: in Chapter 6, I showed how factor analysis can be used to improve

template attacks in some cases. However, the results also showed that factor analysis

did not work well together with PCA. Therefore, it would be interesting to explore

the causes of this result, and whether we can find better uses or implementations of

factor analysis for template attacks.

• Attacks on pipelining: in Chapter 7, I presented template attacks, implemented us-

ing stochastic models, targeting two consecutive LOAD instructions. I showed that

attacks which target the full 16-bit value (the bytes processed by the two instruc-

tions) perform worse than combining two attacks which target the two instructions

separately (in each case, the values processed by the other instruction are considered

as noise). One main factor for this may be the overlapping of the leakage from the

two bytes during some clock cycles. However, it was clear from both attacks, that

an attack in the presence of pipelining performs considerably worse compared to the
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lack of it. This means that, with standard methods, attacks on single bytes, such

as those that I presented, or the attacks on key scheduling presented by Oswald

and Paar [83] cannot be directly extended to attacking multiple consecutive bytes.

Therefore, it would be interesting to determine if it is possible to find some efficient

method to remove the effect of pipelining on the leakage traces.

• Attacks on more than 8 data lines: it is generally possible to target only 8 bits at

a time, regardless of the architecture of our target device, and consider the other

parts of the device as noise. However, if we can use better equipment, providing

enough resolution, and better attack methods, I think that targeting more bits will

provide better results. In Chapter 7, I discussed some of the computational aspects

involved when targeting more than 8 bits at once with template attacks, but my

target device only had an 8-bit bus. Therefore, it would be interesting to determine

the actual limits of template attacks when targeting more than 8 bits in platforms

with larger data buses.

8.2 Final remarks

Overall, the results presented in these chapters represent the essence of a very large number

of experiments, which I carried out in order to evaluate template attacks in different ac-

quisition conditions (different devices, different acquisition setups), using different attack

parameters (number of profiling traces, number of attack traces), trying different attack

implementations (multivariate normal distribution, linear discriminant, factor analysis,

stochastic model) and different targets (single LOAD instruction, two LOAD instructions

with pipeline, hardware AES engine). These results show that using efficient implemen-

tations of the template attack, such as those that I presented in the previous chapters,

we can determine almost perfectly an 8-bit value manipulated by a microcontroller in

a single instruction. Even when using different devices, I described methods that allow

us to reduce the entropy of such 8-bit value to below 1.5 bits, which is far below what

was expected from Hamming weight leakage only. Therefore, with efficient methods, we

can basically “see”, through side channels, the individual bus lines, and not just their

Hamming weight.
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Appendix A

EMV

EMV is a set of cryptographic protocols used for the commercial transactions involving a

banking smartcard (which contains a secure microcontroller), a terminal (card reader), as

well as several other parties, including the bank that issued the smartcard to its customer.

While the entire specification of EMV [38] is quite complex, covering several volumes that

detail most aspects of a transaction, I now provide merely a brief overview of some of the

cryptographic operations that are used during a transaction, in order to understand why

such cards must be well protected against side-channel attacks.

In a standard EMV transaction, there are three main steps:

• card authentication: the terminal reads some data from the card and verifies a static

RSA signature over this data. In addition, the terminal may send an unpredictable

number (32-bit value) to the card, which in turn performs a dynamic RSA signature

over some data, including the unpredictable number, and then returns this to the

card. This is known as Dynamic Data Authentication (DDA).

• cardholder verification: the terminal sends the customer’s PIN to the card, which

then verifies if the PIN is correct, and finally returns a result to the terminal stating

whether the PIN verification was successful or not. The PIN verification is not de-

scribed in the EMV specification, but most likely it is performed by first computing

a one-way function, such as a secure hash algorithm, and then comparing this with

a stored value of the correct result. The terminal may choose to encrypt the PIN

that is sent to the card, by using an RSA public key given by the card.

• transaction authorisation: in the last part of the protocol, the card generates a

cryptographic Message Authentication Code (MAC), also known as transaction cer-

tificate, over the transaction data, which includes the amount, date, currency, and

other details of the transaction, as well as an unpredictable number (UN) that aims

to provide freshness of the transaction.
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A.1 Side-channel targets for EMV

During the DDA step of the card authentication, the card generates an RSA signature

(basically encrypting some data with the RSA private key). Therefore, a naive and

unprotected implementation of this algorithm will be vulnerable to the timing side-channel

attacks described by Kocher [63].

Similarly, if the terminal encrypts the PIN that is sent to the card during the cardholder

verification step, the card may first perform an RSA decryption, which again could be

subject to side-channel attacks.

In the last step, for the generation of the cryptographic MAC, there are several operations

that could be targeted by a side-channel attack. Firstly, there is a key derivation proce-

dure, in which a session key is derived from a master key that is permanently stored in the

card. This derivation is performed using a deterministic and publicly known algorithm.

Secondly, the card uses the session key with 3DES (three consecutive encryptions of DES,

using two different keys – basically the two halves of the session key), to compute a MAC

over the transaction data. If an attacker can recover the session key or the master key,

e.g. if the keys are being transferred over a bus during this operation (see my attacks on

loading data from Section 4.6), or during the key derivation procedure or MAC genera-

tion, then he can basically create a cloned card, and afterwards generate valid certificates

for any desired transaction.

A.2 Practical security of EMV cards

As I showed above, there are many parts of the EMV protocol that may be targeted by

side-channel attacks. For this reason, current EMV cards are often CC-certified using

EAL4+ or higher levels (see Section 2.1.6), which aims to give some confidence that such

cards are well protected against known side-channel attacks. However, more efficient

side-channel attacks, such as those presented in previous chapters, or new methods, may

appear. For this reason, it is important that such cards are regularly replaced with new

ones, that protect against the latest known attacks.

While today’s banking cards may already be quite secure against side-channel attacks, it is

also important to consider the overall implementation security of EMV. Recently, together

with Bond, Murdoch, Skorobogatov and Anderson [16], we published a serious threat

against the security of EMV, where deficiencies in the generation of random numbers at

the terminal side allows an attacker to generate a valid transaction certificate that may

be used in unlawful commercial transactions. Therefore, in such high-risk applications, it

is important to provide security at all levels, including resistance to side-channel attacks,

but also to many other possible threats.



Appendix B

CPA with unknown bus values

In Section 2.1.3, I explained how CPA can be used to determine the key value used with an

encryption algorithm such as AES, by computing the correlation between the amplitude

of the side-channel leakage and the Hamming weight of some intermediate value processed

by the algorithm, such as the values u = p⊕ k, which are the inputs to the AES S-box.

However, I show here that this particular target value (u = p⊕ k) is not the best choice

for CPA, and we should better use the output of the S-box v = Sbox(p⊕ k).

Let’s start with a simple case, where the leakage corresponding to processing the value

u = p⊕k does correspond mostly to the Hamming weight: L1
u ≈ HW(u) = HW(p⊕k). For

the correct key hypothesis, k′ = k, a CPA attack will compute the correlation rL1
u,HW(p⊕k)

between L1
u and HW(p⊕k), which will be very close to 1. On the other hand, for a wrong

key hypothesis, k′ 6= k, we will compute the correlation rL1
u,HW(p⊕k′) ≈ rHW(p⊕k),HW(p⊕k′).

We can write p⊕ k′ = p⊕ k⊕ k⊕ k′. If we let X denote the random variable representing

the values p⊕ k, and let d = k⊕ k′ for fixed k and k′, we can see that in this case a CPA

attack will compute the correlation between HW(X) and HW(X ⊕ d), which will be high

for many values d, hence making it difficult to determine the correct k. Moreover, when

d = 255 (i.e. all bits 1), k′ is the complement of k and we shall obtain a correlation very

close to −1, which again can be misleading.

Let us now consider a CPA attack on the AES Sbox output v, where the leakage is

well modeled by the Hamming weight of v: L1
v ≈ HW(v) = HW(Sbox(p ⊕ k)). For

the correct key hypothesis, k′ = k, the correlation rL2
u,HW(Sbox(p⊕k)) will be again close

to 1. However, for any wrong key hypothesis k′ 6= k, the CPA attack will compute

the correlation rL2
u,HW(Sbox(p⊕k′)) ≈ rHW(Sbox(p⊕k)),HW(Sbox(p⊕k′)). Due to the non-linearity

property of the AES Sbox (Sbox(a ⊕ b) 6= Sbox(a) ⊕ Sbox(b)), this correlation will be

close to zero, allowing us to distinguish easily the correct key value.

To illustrate these ideas, I simulatedN = 10000 leakage values corresponding to HW(p⊕k)

and to HW(Sbox(p ⊕ k)), for k = 39 and random plaintexts, by adding some random

noise to each value, obtaining a variance around 0.08 per intermediate value. In Fig-
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Figure B.1: Correlation after CPA attack, when the correct key is k = 39. Left: results

when leakage depends on Hamming weight of intermediate value. Right: results when

leakage depends also on some unknown constant.

ure B.1 (left), I show the correlations obtained for these two target values, using all 256

candidates k′.

In the examples above, the leakage depended directly on the intermediate values u = p⊕k
or v = Sbox(p⊕k). However, it is also possible that the leakage depends on the Hamming

distance HD(u, c) = HW(u⊕c) or HD(v, c) = HW(v⊕c) between the intermediate target

value and some unknown constant value c, that is processed by the microcontroller before

our target value. In this case, when targeting the intermediate value u = p⊕k, the leakage

will actually be modelled by L2
u ≈ HW(u ⊕ c) = HW(p ⊕ k ⊕ c). For the correct key

hypothesis, a CPA attack will compute the correlation rL2
u,HW(p⊕k) ≈ rHW(p⊕k⊕c),HW(p⊕k).

Considering again X the random variable for p⊕k, we see that in this case we obtain the

correlation between HW(X) and HW(X ⊕ c), which depends on c. For the incorrect key

hypothesis k′ 6= k, we have the correlation rL2
u,HW(p⊕k′) ≈ rHW(p⊕k⊕c),HW(p⊕k′). As before,

we can write p⊕k′ = p⊕k⊕c⊕k⊕c⊕k′. If we let d = k⊕c⊕k′ for fixed k, c, and k′, we

see that in this case we are also computing the correlation between a random variable X

(corresponding to p⊕ k⊕ c) and X ⊕ d, which will lead to arbitrary values depending on

d. Therefore, with high probability we will not be able to identify the correct key value.

When targeting the Sbox, the leakage will be modelled by L2
v ≈ HW(v⊕c) = HW(Sbox(p⊕

k) ⊕ c). For the correct key hypothesis, we obtain the correlation rL2
v ,HW(Sbox(p⊕k)) ≈

rHW(Sbox(p⊕k)⊕c),HW(Sbox(p⊕k)), which will be non-zero for many values c. However, when

using an incorrect key hypothesis k′ 6= k, we obtain the correlation rL2
v ,HW(Sbox(p⊕k′)) ≈

rHW(Sbox(p⊕k)⊕c),HW(Sbox(p⊕k′)). Again, due to the non-linearity of the Sbox, the values

Sbox(p ⊕ k) and Sbox(p ⊕ k′) are uncorrelated, leading to a correlation close to zero

in this case, allowing us to determine the correct key value. This is illustrated in Fig-

ure B.1 (right), where I show the results of CPA in this case, when targeting both the

intermediate values u = p⊕ k and v = Sbox(p⊕ k).



Appendix C

Evaluation of normality

In this Appendix, I provide an evaluation of the assumption of normality for the dataset

Grizzly (see Section 2.3.1), in order to show that such side-channel data can be considered

approximately normal, and therefore the methods presented throughout this thesis that

rely on this assumption can be applied. For this purpose, I shall use histograms, Q-Q

plots, chi-square plots and scatter plots [54, Section 4.6]. For all the following plots, I use

data from loading the fixed value k = 208 and np = 2000 traces.

I start my analysis with univariate checks of normality, where the goal is to verify that

the data follows the normal distribution. In Figure C.1, I show the histograms of the

power consumption for the three leakage samples having the highest SNR (samples 884,

1133 and 1383).

Then, in Figure C.2, I show Q-Q plots of the same samples. These plots show the

correlation of my Grizzly data with a standard normal distribution. If the data deviates

greatly from the plot of the standard normal distribution, then we may consider the

possibility of it not being normal, but these figures show that my data follows well a

normal distribution.

Besides univariate checks, we can also evaluate how close our data follows a multivariate

normal distribution. For this, I first show in Figure C.3 scatter plots for pairs of the

three samples used earlier. Most of these points should be within an ellipse contour, as

explained in Section 3.6.

Finally, we can use the statistical distance from Section 3.4 to test the normality of an

arbitrary large group of samples. For this purpose, I computed the statistical distance of

the np = 2000 traces, using only the five samples with highest SNR (samples 883, 1133,

1383, 1884 and 2133). The histogram of this distance is shown in Figure C.4 (left). To

check for normality, we can produce a Q-Q plot, similar to the univariate scenario, but

here we compare the quantiles of the statistical distances with the chi-square distribution.

This plot, known as a chi-square plot, is shown in Figure C.4 (right). A plot of multivariate

data should resemble a straight line, passing through the origin, and having a slope 1.
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Figure C.1: Histograms of power consumption for some samples.
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Figure C.2: Q-Q plots for some samples.
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Figure C.3: Scatter plots for pairs of samples.
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Figure C.4: Using the statistical distance to check the normality of multivariate data.

Left: histogram of squared statistical distance. Right: chi-square plot. For these two

plots I used 5 leakage samples.


