
Technical Report
Number 882

Computer Laboratory

UCAM-CL-TR-882
ISSN 1476-2986

Discovering and exploiting parallelism
in DOACROSS loops

Niall Murphy

March 2016

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Niall Murphy

This technical report is based on a dissertation submitted
September 2015 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Although multicore processors have been the norm for a decade, programmers still strug-
gle to write parallel general-purpose applications, resulting in underutilised on-chip re-
sources. Automatic parallelisation is a promising approach to improving the performance
of such applications without burdening the programmer. I explore various techniques for
automatically extracting parallelism which span the spectrum from conservative paral-
lelisation, where transformations must be proven correct by the compiler, to optimistic
parallelisation, where speculative execution allows the compiler to generate potentially
unsafe code, with runtime supports to ensure correct execution.

Firstly I present a limit study of conservative parallelisation. I use a novel runtime
profiling technique to find all data dependences which occur during execution and build
an oracle data dependence graph. This oracle is used as input to the HELIX compiler
which automatically generates parallelised code. In this way, the compiler is no longer
limited by the inadequacies of compile-time dependence analysis and the performance
of the generated code represents the upper limit of what can be achieved by HELIX-
style parallelisation. I show that, despite shortcomings in the compile-time analysis, the
oracle-parallelised code is no better than that ordinarily produced by HELIX.

Secondly I present a limit study of optimistic parallelisation. I implement a dataflow
timing model that allows each instruction to execute as early as possible in an idealistic,
zero-overhead machine, thus giving a theoretical limit to the parallelism which can be
exploited. The study shows that considerable extra parallelism is available which, due
to its dynamic nature, cannot be exploited by HELIX, even with the oracle dependence
analysis.

Finally I demonstrate the design of a practical parallelisation system which combines
the best aspects of both the conservative and optimistic parallelisation styles. I use run-
time profiling to detect which HELIX-identified dependences cause frequent conflicts and
synchronise these while allowing other code to run speculatively. This “judicious spec-
ulation” model achieves superior performance to HELIX and approaches the theoretical
limit in many cases.

Acknowledgements

I would like to thank:

• Robert Mullins, my supervisor, who offered invaluable insight which guided my
work, was a constant source of encouragement and was always ready and willing to
extend advice and support.

• Timothy Jones who provided many ideas for interesting directions, worked tirelessly
to reduce the technical challenges I faced and could always be relied on to find simple
solutions to difficult problems.

• Simone Campanoni for providing technical support for the HELIX compiler.

• Kevin Zhou for assisting in the implementation of the speculation timing model and
for providing a parameterisation of TLS-STM.

• Kate Oliver for meticulously proof-reading this dissertation and offering much-
needed literary advice.

• EPSRC, Cambridge Computer Laboratory and Cambridge Philosophical Society for
funding my research.

• Everyone in “lunch club” for supplying a welcome daily distraction.

• Mam and Dad for always being so supportive and giving me the encouragement I
needed to keep focussed.

Contents

1 Introduction 11
1.1 Conservative versus optimistic parallelism 12
1.2 Contributions . 12
1.3 Dissertation overview . 13

2 Topics in automatic parallelisation 15
2.1 Automatic parallelisation . 15

2.1.1 Independent multithreading . 16
2.1.1.1 Privatisation . 17
2.1.1.2 Induction variable elimination 17
2.1.1.3 Reduction . 18
2.1.1.4 Historical IMT compilers 18

2.1.2 Cyclic multithreading . 19
2.1.3 Pipelined multithreading . 20
2.1.4 Programmer-guided techniques . 21

2.2 Speculative execution . 22
2.2.1 Transactional memory . 23

2.2.1.1 Hardware transactional memory 23
2.2.1.2 Software transactional memory 24

2.2.2 Thread-level speculation . 25
2.2.2.1 Software-only speculation 26
2.2.2.2 Hardware-supported speculation 27

2.3 Dependence analysis . 29
2.4 Discovering the limits of parallelism . 30
2.5 Putting this work in context . 31

3 HELIX automatic parallelisation 35
3.1 ILDJIT . 35
3.2 HELIX . 36

3.2.1 Loop normalisation . 37
3.2.2 Dependence analysis . 38
3.2.3 Sequential segments . 39
3.2.4 Communicating between threads 39
3.2.5 Loop selection . 40

3.3 Optimising inter-core communication . 41
3.4 Benchmarks . 42
3.5 HELIX timing model . 43

3.5.1 Assumptions . 45

3.5.2 Validation of the timing model . 45

4 Limits of static parallelisation 49
4.1 Oracle data dependence graph . 49

4.1.1 Memory trace . 50
4.1.2 Control flow trace . 51

4.1.2.1 Iteration-level compression 51
4.1.2.2 Loop-level compression . 52

4.1.3 Dependence analysis . 53
4.1.4 Worked example . 54

4.2 Evaluation . 56
4.2.1 Accuracy of HELIX static analysis 56
4.2.2 A note on local variables . 58
4.2.3 Parallel performance with the oracle DDG 60

4.3 Analysis . 60
4.4 Summary . 63

5 Uncovering dynamic parallelism 65
5.1 Ideal dataflow speculation . 65

5.1.1 Hypothetical implementation . 66
5.1.2 Timing model implementation . 67

5.2 Results . 67
5.2.1 Case studies . 71

5.2.1.1 automotive susan c . 71
5.2.1.2 automotive susan e . 72
5.2.1.3 security sha . 75
5.2.1.4 automotive bitcount . 75

5.2.2 Load balancing . 77
5.3 Patterns and Statistics . 78

5.3.1 Sequential segment conflicts . 78
5.3.1.1 automotive susan c . 80
5.3.1.2 automotive susan s . 81
5.3.1.3 security rijndael d . 81

5.4 Summary . 82

6 Practical speculative parallelism 83
6.1 Supporting speculation with transactions 84

6.1.1 Design decisions . 84
6.2 Speculation timing model . 86

6.2.1 Model implementation . 86
6.2.2 TM implementation . 87
6.2.3 Determining parameter values . 88

6.2.3.1 TinySTM . 88
6.2.3.2 TLS-STM . 93
6.2.3.3 Hardware TM . 95

6.3 Pure speculation . 96
6.3.1 Case studies . 96

6.3.1.1 automotive bitcount . 96

6.3.1.2 automotive susan s . 98
6.4 Judicious speculation . 99

6.4.1 Worked example . 101
6.4.2 Results . 105

6.5 Transaction size . 105
6.6 Summary . 106

7 Conclusion 109
7.1 Future work . 110

7.1.1 Going beyond sequential sementics 110
7.1.2 Real implementation of judicious speculation 110
7.1.3 Exploiting more dynamic behaviours 111

7.1.3.1 Phase behaviour . 111
7.1.3.2 Dependence distance . 111

Bibliography 113

A Oracle DDG data 123

B Transaction size data 127

Chapter 1

Introduction

The “golden age” of the uniprocessor has come to an end. While Moore’s Law continues
to hold, the era of exponential growth of sequential performance petered out ten years
ago. In those ten years we have witnessed the rise of the multiprocessor and with it the
emergence of computer architecture’s most urgent question: how do we extract the con-
tinued performance enhancement we have become accustomed to in the multicore era?
This is a multifaceted question. On the one hand we might focus on the programming
model, aiming to give the programmer more support to reason about and express the par-
allelism inherent in the algorithm. We might propose architectural extensions or entirely
new microarchitectures which are designed first and foremost with parallel execution in
mind. Or we may turn our attention to the compiler and runtime system, hoping to find
automated ways to extract parallelism without burdening the programmer.

Developing new parallel programming models is an elegant approach and it is the best
way to accurately capture the intent of the programmer. Existing sequential programming
models are inherently restrictive since they force the programmer to specify a single correct
path through the program and a single correct output, even though for many algorithms
multiple outputs would be acceptable. So far, however, parallel programming models have
not gained much traction. Parallel programs are difficult to write and difficult to debug
and parallel programming is considered a laborious and highly skilled task. Although
in many ways we are fighting an established legacy of sequential programming tools,
perhaps the human mind is simply less capable of reasoning about parallel computation
than sequential.

Architectural extensions which support parallel programming are gradually appearing
in commercial microprocessors but the rate of change in this sphere is low. Transactional
memory support has only appeared recently in Intel processors despite enjoying plentiful
attention in academia for over 20 years. Chip designers are hesitant to make any changes
which could be detrimental to sequential performance, for instance, by trading off single
core resources in return for greater on-chip core count. Uptake of completely novel par-
allel architectures is slow because of the difficulty of providing adequate infrastructural
support.

So we may decide to focus our attention on extracting parallel performance with the
help of the compiler and runtime system: automatic parallelisation. This is a topic which
has been considered for many years by researchers and has demonstrated remarkable
potential for regular scientific codes where the flow of data can be easily analysed and
understood. The feasibility of automatically parallelising general purpose code is still a
matter of debate however. Numerous advances, including improvements to dependence

11

analysis and thread-level speculation, have failed to conclusively crack this problem.

1.1 Conservative versus optimistic parallelism

Broadly speaking there are two approaches to automatic parallelisation. There is the
conservative approach which aims to prove the existence of parallelism at compile-time
and generate code to exploit it. This method is naturally restrictive because of the in-
tractability of precise memory disambiguation and the lack of runtime information. Even
if the static dependence analysis is perfect, it will still indicate a dependence between
two static instructions although at runtime that dependence may only exist for a single
dynamic instance of the instructions. Then there is the optimistic approach which allows
potentially incorrect code to be generated by the compiler which is then executed specula-
tively. Runtime support is added to ensure that dependence violations are corrected. This
takes advantage of the fact that parallelism is easier to observe at runtime than it is to
prove at compile-time. In addition, it has been demonstrated that for some benchmarks
parallelism may depend on the inputs to the program and cannot be exploited by the
compiler. The downside of optimistic parallelism is that there is some runtime overhead
associated with ensuring the correctness of speculative execution.

In this dissertation I will explore the trade off between conservative and optimistic
parallelism for a DOACROSS-style [1] automatic parallelising compiler. First I will look
at the primary challenge of conservative parallelisation: accurate dependence analysis.
I simulate a perfectly accurate “oracle” dependence analysis by constructing the data
dependence graph from a profiling run of the program. Using this oracle as input to
a parallelising compiler I demonstrate that improved dependence analysis results in no
additional speedup above what is possible with the real dependence analysis. I will then
answer the question of whether any additional parallelism exists by simulating an ideal
dataflow-based machine which extracts the maximum possible parallelism. I show that
there is indeed additional parallelism but that it can only be exploited by taking advantage
of the dynamic behaviour of the program. Finally I will discuss the decision of when it
makes sense to be conservative and when it makes sense to be optimistic. A method will
be demonstrated for balancing conservative and optimistic parallelisation within a single
iteration of a parallelised loop.

1.2 Contributions

The original contributions of this dissertation are as follows:

• A method to determine the upper bound of conservative parallelism for a program by
creating an “oracle” data dependence analysis and a demonstration of the surprising
result that improving dependence analysis results in no additional speedup.

• The design of a simulation model to detect the maximum possible parallelism in a
program and a study of benchmarks showing that additional parallelism is available
which cannot be exploited by the conservative approach.

• A study of transactional memory overheads and a parameterisation of the overheads
to allow quantifiable comparisons between implementations.

12

• A technique for parallelising loops which combines both conservative and optimistic
parallelisation.

1.3 Dissertation overview

Chapters 2 and 3 contain primarily prior work. Chapters 4, 5 and 6 are my own original
contributions except where explicitly stated otherwise.

• Chapter 2: A survey of existing literature on automatic parallelisation. This
chapter also suggests a taxonomy of existing techniques and places my contributions
in context.

• Chapter 3: A description of the HELIX parallelising compiler which is used as
a starting point for my work. HELIX was designed and implemented by Simone
Campanoni, Timothy Jones and various other collaborators [2, 3, 4].

• Chapter 4: Details of the oracle dependence analysis including a novel runtime
profiling technique. A quantification of the accuracy of the existing HELIX de-
pendence analysis is shown along with a study of how the accuracy of the analysis
affects performance.

• Chapter 5: A study of dynamic parallelism and a demonstration that such paral-
lelism exists and requires optimistic techniques to be exploited.

• Chapter 6: A discussion of practical techniques to support optimistic parallelisa-
tion including a study and comparison of transactional memory overheads in existing
implementations. This chapter also presents a method for mixing both conservative
and optimistic parallelism within a single loop iteration and a study of how this
affects performance.

• Chapter 7: Conclusions and suggestions for future work.

13

14

Chapter 2

Topics in automatic parallelisation

In this chapter I will look at some of the key issues in automatic parallelisation and other
topics which feature in this thesis. Previous work in these areas will be presented and
compared in order to demonstrate the key trends which have emerged in this field. Firstly
I will provide an introduction to automatic parallelisation and give a brief overview of the
long history of this topic, focussing on important related work (section 2.1). My work
has primarily investigated speculative techniques to achieve automatic parallelisation and,
as such, section 2.2 looks specifically at speculative techniques for increasing parallelism
and the transactional memory style systems which are used to achieve this. Section 2.3
contains related work in the areas of dependence analysis and dependence profiling which
are used to determine at compile-time and runtime which memory references can conflict.
My contributions include two original limit studies which are related to various previous
attempts to discover the limits of parallelism and these will be considered in section 2.4.
Finally I present a taxonomy of automatic parallelisation approaches in section 2.5 and
show how my contributions relate to prior work.

2.1 Automatic parallelisation

Since the advent of multiprocessors, programmers have been faced with the significant
challenge of how to take full advantage of the processing power available. While some
algorithms are readily amenable to being written in a coarse-grain multithreaded style,
many general purpose programs have parallelism which is difficult to express with current
tools. Sometimes parallelism is available but it exists in a form which is too complex for
the programmer to reason about, for instance, in graph application where the existence of
parallelism depends on the structure of the data [5]. In addition, there exists a large body
of legacy sequential code which has for years enjoyed incremental performance improve-
ments afforded by the steady advancement of single core execution. These codes do not
reap any benefits from the current trend towards an increasing number of on-chip cores.

For a number of years, automatic parallelisation has been seen as the ideal solution
to these challenges. Automatic parallelisation removes the burden on the programmer
of understanding and expressing the parallelism which exists in the algorithm. Although
this topic has been studied for quite some time, a generally applicable solution is still
elusive. In this section I will discuss historical approaches to the problem and classify the
current techniques to better understand the exploration space. Speculative parallelisation
is discussed separately in section 2.2 since it forms an important basis for the work in this

15

dissertation.

I am exclusively studying loop-level parallelisation techniques here since these are the
focus of the vast bulk of the literature and account for a large proportion of execution
time for most programs. Approaches to automatic parallelisation are generally classified
into three categories which will be discussed in turn:

1. Independent multithreading (IMT)

2. Cyclic multithreading (CMT)

3. Pipelined multithreading (PMT)

2.1.1 Independent multithreading

In this technique, also known as DOALL parallelism [6], every iteration of the loop is
executed in parallel completely independently with no communication between threads.
The iterations are assigned to threads in round-robin order so, for example, if we have
four cores then core 0 will execute iterations 0, 4, 8, 12 etc. (see Figure 2.1). This form
of parallelisation is only possible when the loop contains no loop-carried dependences or
can be transformed such that no conflicts occur between concurrently executing iterations.
Loops which can be parallelised in this manner are likely to experience large speedups since
there is no overhead of inter-thread communication. However, the lack of communication
also limits the applicability of this technique as many loops will not be amenable to this
form of parallelisation. Zhong et al. [7] show that the fraction of execution time covered
by loops which can be proven as DOALL at compile-time is only 8% across a range of
common benchmarks.

Iteration 0

Iteration 4

Iteration 8

Iteration 1

Iteration 5

Iteration 2

Iteration 6

Iteration 10

Iteration 3

Iteration 7

Time

Core 0 Core 1 Core 2 Core 3

Figure 2.1: Independent multithreading parallelisation.

Unfortunately, loops which are not written with parallel execution in mind can contain
dependences which are readily avoidable. In some cases, it is still possible to parallelise
loops which have loop-carried dependences in their original form by transforming the
loop into some new form in which the dependences are removed or arranged to occur at
a sufficient distance that concurrent iterations do not conflict. These optimisations will
also be of interest for improving the performance of other forms of parallelisation. Some
of these techniques are described here.

16

Listing 2.1: A loop amenable to DOALL with appropriate transformations.

int y = 5;
int sum = 0;
for(int x = 2; x < N; x++){

int a = A[x];
a *= y;
y += 2;
sum += a;
A[x] = a;

}

2.1.1.1 Privatisation

In some loops we may have loop-carried write-after-read and write-after-write dependences
caused by variables which are always written first within a loop iteration. For example,
consider the loop shown in Listing 2.1. A naive implementation of a DOALL paralleliser
would fail to extract parallelism due to the dependence from reading variable a at the
end of each iteration to writing it at the start of each iteration. However, it is clear that
a is a temporary variable and does not cause any true loop-carried dependence.

This can be solved with privatisation of temporary variables [8]. If a variable must
always be written first in a loop iteration we may create a private copy of the variable
in each thread. This may be achieved by allocating an array to replace the temporary
variable. The array is indexed by the thread ID, thus giving each thread a private version
of the variable.

Previous work has also shown that arrays can be privatised by adding a dimension
to the array [9]. The extra dimension is similarly indexed with the thread ID. This is
useful for many programs which process a large amount of data by allocating a block of
memory and reading the data block by block, reusing the same allocated memory on each
iteration.

2.1.1.2 Induction variable elimination

From a cursory inspection of some simple loops it might be concluded that almost every
loop contains at least one loop-carried dependence: the loop induction variable. In listing
2.1, variable x will be incremented in every iteration resulting in a read-after-write loop-
carried dependence. Without a means to eliminate this class of dependences, there would
be very few loops to parallelise.

Fortunately, there is an analysis known as induction variable elimination which can
successfully remove many dependences of this form [10]. First, imagine introducing a
new variable, i, which is equal to the number of iterations previously completed, i.e. an
iteration counter. It is then possible to privatise i to each parallel thread by initialising it
to the thread ID and incrementing it by the number of threads on each iteration. Then
the loop-carried dependence caused by x can be removed by privatising it and calculating
its value as a function of i in each iteration: x = i + 2.

Any variable, j, which can be expressed as a linear function of i can be eliminated in
this way, i.e. j = c0i+ c1 [10]. For instance, the variable y in listing 2.1 can by expressed
as y = 2i + 5. This variable can therefore be privatised in a similar manner to x and
loop-carried dependences on this variable are eliminated.

17

Listing 2.2: Example loop in listing 2.1 following transformations.

int sum = 0;
int i[num_threads], private_a[num_threads], private_x[num_threads],

private_y[num_threads], private_sum[num_threads];

/* FORK THREADS */
int tid; /* Initialised to thread ID */
i[tid] = tid; /* Local to each thread */
private_sum[tid] = 0;
while(i+2 < N){

private_x[tid] = i[tid] + 2;
private_y[tid] = i[tid]*2 + 5;
private_a[tid] = A[private_x[tid]];
private_a[tid] *= private_y[tid];
private_sum[tid] += private_a[tid];
A[private_x[tid]] = private_a[tid];
i[tid] += num_threads;

}
/* JOIN THREADS */

for(int t = 0; t < num_threads; t++){
sum += private_sum[t];

}

2.1.1.3 Reduction

Reductions are operations which reduce an array to a single value. Common example
of reductions include summing the contents of an array, finding the maximum value in
an array and counting the number of elements of a particular type in an array. All of
these operations are implemented with a single variable to hold the reduction and a loop
which iterates over the array, updating the variable. This variable will therefore cause a
loop-carried read-after-write dependence to occur. The variable sum in listing 2.1 is an
example of a reduction.

Any computation of this sort in which the reducing operation is both commutative
and associative can be converted into a number of thread-local reductions and a final
combining reduction once the loop completes [11]. In the example, we can privatise sum
by creating an array of accumulators with one for each thread. Each iteration’s reduction
operation then accumulates into its thread’s private accumulator. An additional loop is
added after the main loop to sum all the private accumulators back into the original sum
variable.

Having applied privatisation, induction variable elimination and reduction optimisa-
tion we can now show the example loop in a form suitable for IMT parallelisation. Listing
2.2 shows the transformed version of the loop. Arrays have been allocated for each priva-
tised variable to eliminate conflicts and induction variables (private x and private y)
are now calculated privately as a function of the loop counter. The comments indicate
the point at which parallel threads are forked and joined and each parallel thread runs
the while loop. To implement the reduction to variable sum an additional loop has been
added subsequent to the joining of the parallel threads.

2.1.1.4 Historical IMT compilers

Much of the work in this area focusses specifically on regular scientific codes written
in Fortran such as SPECFP and NAS. These codes have simpler dependence patterns

18

than many general purpose programs. Stanford’s SUIF compiler [12] is an influential
example of a system which made significant advances in analysis for parallelisation of
such codes. This work introduces a comprehensive suite of interprocedural analyses to
enable detection of parallelisable code. SUIF has considerable success at parallelising
loops in SPECFP and NAS, specifically as a result of applying interprocedural analysis.
This allows privatisation and reduction analyses to be applied across procedure boundaries
which increases coverage of the technique to very large loops with coarse-grain parallelism.
Interprocedural analysis is generally indispensable if we wish to target the largest loops
in a program [13].

Polaris [14] is another influential parallelising compiler contemporary to SUIF. This
compiler features many of the same parallelising techniques and optimisations but is
focussed specifically on parallelising FORTRAN programs. Polaris also implements a less
comprehensive suite of interprocedural analyses, instead relying on method inlining and
interprocedural value propagation (IPVP) [15]. IPVP identifies when a method parameter
has a specific value depending on its call site and creates a copy of the method for each
value of that parameter. This allows more effective analysis of the method since one of
the parameters has effectively been removed.

2.1.2 Cyclic multithreading

While the transformations described previously can be effective for increasing the coverage
of IMT parallelisation, the requirement of having absolutely no dependences between loop
iterations restricts the general applicability of this technique. Non-removable loop-carried
dependences must be executed in loop-iteration order, which means that instructions
involved in these dependences cannot be executed in parallel. However, a loop which
contains such dependences may still exhibit significant parallelism in the rest of the code.
To exploit this parallelism, a more sophisticated parallelisation technique is needed which
enforces sequential execution of dependence-related code but permits other code to run
in parallel. This technique is known as cyclic multithreading (CMT).

A CMT paralleliser, like IMT, assigns iterations to threads in a round-robin fashion.
The optimisations described to increase parallelism in IMT loops are also available in
CMT. Since CMT parallelisation may add significant communication overhead to syn-
chronise dependences, it is important to take full advantage of these optimisations to
minimise the amount of communication required.

An early and influential example of CMT is DOACROSS [1]. In this technique, de-
pendences are identified by the compiler and the start of each loop iteration is delayed
until all dependences from previous iterations have been satisfied. In this manner, the
parallel portion of one iteration is overlapped with the sequential portion of the subse-
quent iteration resulting in parallel execution. For example, in figure 2.2 the statement
x = x->next; causes a loop-carried dependence since it cannot be evaluated until the
statement has completed in the previous iteration. Synchronisation is inserted to ensure
sequential execution of this statement across cores while the rest of the iteration can run
in parallel. Once all cores have started their first iteration, this technique can still ap-
proach linear speedup if the parallel portion of the loop is sufficiently large to allow full
utilisation of the cores.

A more recent advance in this space is HELIX [2]. HELIX generalises the above
approach to DOACROSS loops by creating multiple synchronisation points per loop.

19

x = x->next;

x = x->next;

x = x->next;

x = x->next;

x = x->next;

x = x->next;

x = x->next;

x = x->next;

Time

Core 0 Core 1 Core 2 Core 3

(Iteration 0) (Iteration 1)

(Iteration 4)

(Iteration 5)

(Iteration 2)

(Iteration 6)

(Iteration 3)

(Iteration 7)

Figure 2.2: Cyclic multithreading parallelisation.

These synchronisation points are called sequential segments and ensure that the code
involved in a particular dependence cycle executes in loop-iteration order across cores.
HELIX exploits more parallelism than earlier DOACROSS techniques by allowing different
sequential segments to execute in parallel. Furthermore, HELIX applies a more general set
of optimisations and transformations than SUIF which enables it to achieve substantial
speedups on irregular codes. HELIX is further discussed in chapter 3 and forms the
baseline for the contributions in this dissertation.

2.1.3 Pipelined multithreading

Pipelined multithreading (PMT) is an alternative method for parallelising loops with
cross-iteration dependences. In this approach, the loop body is divided into a number of
pipeline stages with each pipeline stage being assigned to a different core. Each iteration
of the loop is then distributed across the cores with each stage of the loop being executed
by the core which was assigned that pipeline stage. Each individual core only executes
the code associated with the stage which was allocated to it. For instance in figure 2.3
the loop body is divided into 4 stages: A, B, C and D. Each iteration is distributed across
all 4 cores but each stage is only executed by a single core.

Iteration 0
Stage A

Itearation 0
Stage B

Iteration 0
Stage C

Time

Core 0 Core 1 Core 2 Core 3

Iteration 1
Stage A

Iteration 2
Stage A

Iteration 3
Stage A

Iteration 1
Stage B

Iteration 2
Stage B

Iteration 1
Stage C

Iteration 0
Stage D

Forward dependences
permitted

Backward
dependences
not permitted

Figure 2.3: Pipelined multithreading parallelisation.

20

DOPIPE is one entry in the design space of PMT [16]. This approach is mainly
targeted at scientific applications with regular dependence cycles [8]. Since the different
pipeline stages often contain largely independent code, DOPIPE can be more effective
than DOACROSS in reducing the amount of inter-core communication. Parallelising in
this manner may be more restrictive than DOACROSS however, since the dependences
between threads must be unidirectional, i.e. a pipeline stage can only communicate data
to a later pipeline stage.

The state-of-the-art in PMT for general purpose programs is decoupled software
pipelining (DSWP) [17]. This technique is similar in style of execution to DOPIPE but
is more general in that it can handle irregular dependence patterns and control flow [18].
DSWP automatically generates pipeline stages by finding strongly connected components
in the program dependence graph (PDG), a graph combining both data and control de-
pendences. Strongly connected components can be combined into a single pipeline stage
to offer better load balancing but cannot be split into multiple pipeline stages since this
would result in cyclic dependences between the threads.

DSWP suffers from a scalability challenge not directly faced by CMT techniques like
HELIX since the number of threads is limited by the number of pipeline stages that can be
created for the loop. HELIX is only restricted by the number of loop iterations, which is
usually much larger. Further work in DSWP has attempted to alleviate this by applying
IMT or CMT style parallelisation to the individual pipeline stages [18]. This allows a
pipeline stage to be replicated across multiple cores so that the stage can be executed for
multiple iterations concurrently.

While DSWP targets general purpose programs, pipeline parallelism is also commonly
used to accelerate streaming media applications [19, 20, 21]. Pipelining is suitable for such
applications since they often consist of a number of stages operating on the input data in
sequence with the individual stages being independent from each other. Tournavitis et al.
[20] propose a framework for taking advantage of such parallelism by profiling the program
and presenting the suspected parallel regions interactively to the programmer. Profiling
enables the extraction of coarser parallelism opportunities than would be afforded by the
purely static analysis of DSWP. A further advance in DSWP is the addition of speculation
[22] which goes some way to addressing this shortcoming.

2.1.4 Programmer-guided techniques

While extracting thread-level parallelism from sequential programs and completely freeing
the programmer from the concern of parallel programming is an attractive prospect, some
researchers have opined that the sequential model is simply too restrictive to permit
the extraction of coarse-grain parallelism. At the same time, the adoption of parallel
programming tools such as OpenMP has been tentative due to the difficulty of using such
tools and the resultant increase in development time and costs. Therefore there has been
some interest in finding a middle ground: providing the programmer with some simple
primitives to indicate parallelism opportunities while applying a fully-featured automatic
thread-extraction framework which takes care of the intricacies. Often this takes the
form of permitting a degree of indeterminacy in the program such that multiple possible
outcomes are allowed, a scenario not describable in the sequential model.

Bridges et al. [23] propose the addition of two annotations to the sequential program-
ming model: Y-branches and commutative functions. Y-branches are conditional state-

21

ments where executing down the incorrect path of the branch does not result in an invalid
outcome. Surprisingly, it has been shown that 40% of dynamic branches in SPECINT
2000 satisfy this property [24]. Whereas in the sequential model the unpredictable control
flow may limit the compiler’s ability to extract parallelism, by indicating to the compiler
that one path of the branch is always permissible, it is possible to rearrange the execution
in a manner which is more amenable to automatic parallelisation.

Commutative functions are those for which calls can be rearranged in any order with-
out affecting the outcome. The classic example of such a function is malloc. malloc
has persistent state which is updated by each call, but calls can still be reordered without
affecting program correctness. Automatic parallelisers often struggle with such functions
because the update of persistent state means that dependences will be detected and the
compiler will endeavour to maintain the sequential ordering of calls to the function. How-
ever, if the programmer annotates the source to indicate that a function is commutative,
the compiler will be able to relax its constraints relating to that function and extract
more parallelism.

A somewhat more invasive approach to programmer-guided parallelisation is the Galois
system [25]. Galois is targeted at graph-based irregular programs which exhibit amorphous
data parallelism [5]: a general form of data-level parallelism where there is no specific or-
der in which the data must be processed and the parallelism is heavily dependent on
the input set. To take advantage of this parallelism, the programmer may use optimistic
iterators : a Galois construct which abstracts away the scheduling of iterations over a
graph. The system then invokes worker threads to execute the iterations speculatively in
parallel, scheduling them in a manner it sees fit to achieving optimum load balancing and
parallelism. Galois offers the programmer a means to express complex data-dependent
parallelism in the program while taking care of the details of spawning threads and resolv-
ing data dependence conflicts. However, it requires substantial re-writing of the program
and thus does not embody many of advantages of pure automatic parallelisation.

2.2 Speculative execution

The automatic techniques described above all suffer from one major limitation: inability to
predict and exploit dynamic runtime behaviour. Certain benchmarks, in particular those
which operate on graph data structures, have input dependent control and dependence
behaviour which cannot be exploited by parallelisation methods which create a static
schedule of threads and dependence synchronisations. Consider the example in listing
2.3. We will assume that the initial contents of array A are read from a file as input.
It is not possible to determine anything about the index variable, t, at compile-time
because its value depends on the contents of the array. The compiler must assume that a
dependence exists as otherwise it might generate incorrect code. However, with knowledge
of the possible input data values, we may be able to say that a dependence never exists,
or rarely exists. To take advantage of the parallelism caused by this input-dependent,
dynamic behaviour, we must use speculative execution. In addition, static dependence
analysis is difficult to implement, even when dependences can theoretically be determined
at compile-time. Speculation can reduce the burden on the compiler of having to perform
precise dependence analysis.

To execute this loop with speculation, we would need to track the addresses touched
during the execution of each iteration. If two iterations touch the same address, one

22

Listing 2.3: Loop which cannot be parallelised without speculation.

for(int i = 0; i < N; i++){
int t = A[i];
A[t]++;

}

or both of the iterations must be re-executed to prevent incorrect output. It may be
noted that this characteristic of speculation is similar to the operation of transactional
memory (TM). Indeed, many speculation proposals include an implementation of what is
essentially a TM system. Therefore I will first discuss prior work on TM to understand
how this technique is used to support speculation in section 2.2.1. Then I will look at a
number of specific entries in the speculation design space in section 2.2.2.

2.2.1 Transactional memory

TM was first proposed by Herlihy and Moss as a hardware extension to support lock-
free data structures [26]. The concept is based on the widely used transaction model of
databases. In this model, the database is only accessed by transactions which conform to
the ACID properties:

• Atomicity: Transactions must appear to either run entirely or not run at all. Trans-
actions cannot half complete.

• Consistency: The transaction must leave the data in a consistent state with respect
to the constraints of the application.

• Isolation: Transactions must not observe the intermediate state of another transac-
tion.

• Durability: Once a transaction has committed, its results must be stored perma-
nently on disc.

Database transactions support high levels of concurrency for access to a shared memory
structure, while shielding the programmer from the complications of parallelism. It is
therefore an attractive model to reproduce in the multiprocessor programming world
where these are the specific challenges being faced. The properties of transactions for
multiprocessor programming are usually referred to as ACI since durability is not relevant
to the volatile main memory of a processor.

2.2.1.1 Hardware transactional memory

Early proposals for TM were generally based on hardware extensions to the architec-
ture to support conflict detection, rollback and re-execution [26]. Hardware transactional
memory (HTM) techniques generally take advantage of an existing mechanism in the
architecture for detecting conflicting memory references: the cache coherence protocol.
Herlihy and Moss [26] propose a transactional cache, separate from the main data cache,
which stores data read and written transactionally. When a read or write occurs within
a transaction, the cache coherence bus is used for early detection of conflicts with other

23

transactions. More recent entries in this space, including Intel’s implementation of trans-
actional synchronisations on the Haswell architecture [27], use a single L1 cache for both
transactional and non-transactional memory accesses [28]. Cache lines are extended with
extra bits to indicate the transactional state of the line.

Hammond et al. [29] go so far as proposing a system where TM is the only mem-
ory model to satisfy coherence and consistency. This proposal has many advantages in
simplifying the cache coherence protocol and in providing a clear and accessible memory
consistency model to the programmer. However, apart from IBM’s Blue Gene/Q [30]
and POWER8 [31] processors, HTM has not yet received widespread adoption by the
industry. This may change in the near future with Intel having committed to providing
transactional support. In the meantime, researchers have looked at implementing TM in
software to provide the same functionality on currently available hardware.

2.2.1.2 Software transactional memory

Software transactional memory (STM) has developed in parallel with HTM, with re-
searchers hoping to experiment with and increase adoption of transactional memory on
real systems. The term was coined by Shavit et al. shortly following Herlihy and Moss’s
influential HTM proposal [32]. STM is generally more flexible than HTM and is less
limited by the size of the hardware structures used in HTM, but suffers from a significant
performance overhead due to performing conflict checking in software. In general, the
decision when designing an STM as to whether to use deferred update or direct update
leads to two major directions in implementation [33].

Deferred update A deferred update system uses a buffer to store writes made during
the transaction such that they are not visible to other transactions. Committing the
results to main memory is deferred until the transaction completes. Shavit and Touitou’s
STM [32] is deferred update and bears the significant constraint that the programmer must
specify all memory locations are accessed by the transaction. A later proposal by Herlihy
et al. [34] introduces a more flexible implementation which removes this constraint. This
STM is written for C++ and Java and provides transactional semantics at an object
granularity. When a transactional object is used in a transaction, a local copy is made
and modifications are made to the local copy. The transactional object itself records
whether the object is currently open in a transaction and the locations of the old and new
versions. When the transaction commits, assuming no conflict occurs, the transactional
object is simply marked as committed and the local copy becomes the new definitive
version of the object.

Herlihy et al. also employ a commonly used model of contention management where a
variety of contention managers can be plugged into the STM through a generic interface.
Contention management is concerned with the decision of how to resolve the situation
where two transactions conflict. Considerable research has been done specifically into the
design of the contention manager, and policies usually take into account some combination
of transaction timestamp, amount of work done and which transaction first accessed the
conflicting resource [35].

Direct update Deferred update systems commonly experience significant overhead re-
lated to making local copies of variables and committing these local copies once the

24

transaction completes. An alternative approach has been explored more recently where
objects are updated in place by the transaction [36, 37]. This generally requires a mech-
anism for locking memory locations which have been written so that other transactions
cannot modify them and a logging mechanism for recording the old value of a location
so that it can be restored in the case of rollback. Direct update systems reduce the cost
of committing a transaction since all memory has already been updated in place, but
increase the cost of aborting a transaction since memory must be restored to its original
state.

2.2.2 Thread-level speculation

The difficulty of memory reference disambiguation has long been considered a signifi-
cant challenge to enhancing performance with automatic parallelisation. Thread level
speculation (TLS) is an attractive solution to this issue since it moves the burden of
disambiguation from the compiler to the runtime where considerably more information
is available and analysis is conceptually more straightforward. As a result, TLS has a
long history of discussion in the literature and a wide variety of approaches have been
proposed. Speculative threads were first proposed by Knight [38] as a means to par-
allelise the execution of functional programs containing difficult to analyse side-effects.
This work introduced a number of core concepts including the use of a an extra cache to
buffer speculative writes (referred to by Knight as the confirm cache) and the abortion
and re-execution of speculative blocks.

Other early work stems from pushing the limits of instruction-level parallelism (ILP)
in superscalar processors. The first implementation of an architecture explicitly designed
to support speculative execution at the task-level1 is the Multiscalar processor [39, 40].
The insight leading to this work is that, as the transistor density and architectural com-
plexity of chips grow, it will become increasingly challenging to scale the performance of
centralised resources, in particular the instruction window used to exploit ILP [41]. In
addition, Sohi et al. [42] observe experimentally that as the instruction window is in-
creased, the parallelism which is being exploited is increasingly coming from points that
are far apart in the instruction stream. Ultimately this leads to the proposal to split the
instruction window so that several processing sites can execute instructions from different
segments of the instruction stream (tasks) concurrently. Register dependences between
these tasks are maintained via register reservations from older tasks to newer tasks [43].
Speculative writes to memory are buffered in an additional hardware feature called the
address resolution buffer [44] where they are tagged with the identification of the pro-
cessing unit which created them so that later tasks can detect if a dependence has been
violated. Selecting tasks is itself an important problem and Vijaykumar et al. [45] describe
a number of heuristics used by the compiler including task size, existence of control flow
and existence of data dependences.

These initial proposals on speculation at the task-level have spawned a wide variety
of related work in the area which will be discussed in this section. While many of these

1Here I use the phrase task-level to emphasise the distinction between this work, which speculatively
executes code segments larger than a basic block, and the more fine-grain exploitation of ILP in con-
ventional superscalar processors. However, the approach used in the Multiscalar work is more similar to
research on exploiting ILP than to the research previously discussed on automatic parallelisation. The
phrase thread-level is used to refer to parallelisation techniques focussing on high-level program structures
such as loops, although in some literature these threads are referred to as tasks.

25

projects have followed in same vein as Knight and Sohi et al. by advocating additional
architectural resources, others have attempted to make TLS available through software
support. I divide the research into broad categories depending on whether it is purely
software-based (section 2.2.2.1) or if additional hardware support is suggested (section
2.2.2.2).

2.2.2.1 Software-only speculation

Contemporary with the Multiscalar proposal of Sohi et al., Rauchwerger and Padua pro-
posed the LRPD test [46]. This work attempts to increase the coverage of DOALL
parallelisation techniques for Fortran programs by speculatively applying the compiler
optimisations described in section 2.1.1 such as reduction and privatisation. Speculative
state is buffered in software and the entire loop is executed in DOALL style (i.e. one
iteration per core with no inter-iteration communication). Upon completion of the loop,
a test is run to verify the validity of the parallel execution based on the loop privatising
DOALL (LPD) test [47]. This test maintains shadow arrays for each array used in the
loop which record if any element is read before it is written in an iteration, thus indi-
cating that the array cannot be privatised. The test is extended to also verify reduction
operations at runtime (the LRPD test).

Rauchwerger and Padua’s approach is only suitable for regular scientific applications
where the speculative optimisations take advantage of only a small range of specific pat-
terns where array indices cannot be disambiguated statically. Furthermore, this work
suffers a very large performance penalty for misspeculation since the entire loop must be
re-executed sequentially.

Subsequent work in this style focuses on trying to reduce the cost of misspeculation.
Gupta and Nim [48] propose a similar technique which applies parallelising optimisations
speculatively but also inserts tests on each iteration which detect, to some degree of
accuracy, whether speculation will be successful. This early detection of conflicts greatly
reduces the performance hit in the case of misspeculation due to less wasted computation.

A generalisation of the LRPD test technique was presented by Dang et al. [49] which
allows parallel execution of a loop even when it contains loop-carried dependences. This
scheme uses a sliding window of in-flight iterations with the LRPD test being applied once
all the iterations in a window have completed. If loop-carried dependences are detected,
the window is simply moved forward to the point of the earliest iteration which executed
incorrectly, a new window of iterations is executed (including the misspeculated iterations)
and the LRPD test is applied again. This is referred to as the sliding window recursive
LRPD test (SW-R-LRPD). Cintra et al. [50] further develop this approach by sliding the
window each time the oldest thread commits rather than waiting for all threads in the
window to complete. This results in better load balancing, since a long-running iteration
in the middle of the window does not prevent new iterations from starting.

Subsequent work expands the purview of software-only speculation to include irreg-
ular programs. Ding et al. [51] suggest a process-based speculation system known as
behaviour-oriented parallelism (BOP). In this technique there is one process which exe-
cutes the program non-speculatively and other processes which execute possibly-parallel
regions speculatively. The speculative and non-speculative processes execute in competi-
tion, so that in the worst case, performance should be approximately equal to the original
non-parallelised version. A separate competition exists for each possibly-parallel region
so that the execution benefits from regions where speculation is profitable but does not

26

suffer when it is not. BOP uses the virtual memory system to detect conflicts at the
granularity of a page. Page fault handlers are installed to detect which pages have been
read and written by a process. This has the advantage that once a particular page has
been recorded as written, there is no further cost incurred by writing to the page again.
Ultimately this makes BOP most suitable for highly coarse-grain parallelism.

A more recent entry in software-only speculation is the Copy or Discard model [52].
This approach has some similarities to those discussed above as it allocates memory space
for each speculative thread, allowing them to perform computation without polluting main
memory. However the manner in which dependence conflicts are detected is significantly
different. Copy or Discard maintains version numbers for all memory locations which
are accessed speculatively for each parallel thread. On commit, if the version number
in speculative memory does not match that in main memory, the speculative state is
discarded and the offending parallel thread is re-executed. This is more general than
early software-only schemes which were restricted to detecting conflicts based on specific
patterns of array accesses. The generality of the Copy or Discard model allows it to work
on general purpose codes including those with dynamic data structures. Copy or Discard
also permits parallelisation of loops with loop-carried dependences by executing any code
involved in such dependences sequentially at the start of each iteration.

A further refinement of this scheme introduces incremental recovery: the ability to
rollback only a portion of a speculative execution and resume [53]. This is implemented
by creating multiple subspaces to store speculative state from multiple different regions of
the iteration. Then one particular region can be rolled back by simply discarding the state
associated with the region. Cao et al. [54] suggest a more general approach which can
parallelise recursive algorithms by allowing speculative threads to spawn further threads
recursively.

While most recent speculation proposals have been based on maintaining a log of
memory accesses to detect conflicts, Privateer [55] reinvents the older LRPD style of
speculation by focussing on applying parallelising transformations speculatively. This
work performs privatisation and reduction optimisations speculatively on heap-based data
structures and verifies at runtime that these are valid. This has the advantage that the
overhead of instrumenting speculative loads and stores is reduced since validating that a
data structure can be privatised does not require communication, i.e. you just need to
check that the data structure was not read before it was written in a given iteration. In
addition, STM style speculation does not support speculative reductions. For example,
Privateer can speculatively reduce an accumulator which is allocated dynamically even
though pointer analysis may not be able to confirm definitively that the accumulator is
safe to reduce. By contrast, an unreduced accumulator will always cause conflicts in an
STM. Privateer is more general than LRPD since it can speculatively optimise pointer-
based data structures as opposed to just arrays.

2.2.2.2 Hardware-supported speculation

Due to the expense of tracking memory references, buffering speculative state and de-
tecting conflicts in software, many proposals in the TLS design space have suggested
adding hardware support to accelerate these tasks. While the Multiscalar processor was
a completely novel architecture designed around the speculative execution of tasks, later
proposals generally suggest more modest architectural extensions to commodity proces-
sors. One of the important considerations which drives this view is the desire to minimise

27

the impact of speculation support on single-thread performance. This constraint limits
the scope for adding complex centralised structures which may increase memory access
latencies.

One of the earliest schemes in this style is the speculation support on the Stanford HY-
DRA chip multiprocessor (CMP) [56]. In this work, a speculative coprocessor is added to
each core on the CMP. The job of the coprocessor is to execute software exception handlers
which spawn speculative threads on other cores. This is in contrast to Multiscalar where
speculative thread control is completely managed by the hardware. The HYDRA scheme
has the advantage of allowing flexibility in the control of threads while not significantly
burdening the main core with executing extra software.

Modifications are also made to the HYDRA cache hierarchy to support speculative
write buffering and conflict detection. A modified bit is added to the write-through L1
data cache to indicate when a line has been speculatively written and must be invalidated
if the thread is restarted. Read bits are added to the L1 to indicate that a line has been
speculatively read. If a write with the same tag is broadcast on the write bus from a
less speculative thread, a dependence violation has occurred and the cache notifies the
processor that it must abort. Write buffers are added between the L1 and L2 to prevent
pollution of the L2 cache with speculative data.

Contemporary to the HYDRA speculation proposal is a similar scheme developed as
part of the Stanford STAMPede2 project [57, 58, 59]. This scheme suggests even fewer
architectural extensions to support TLS. STAMPede eschews HYDRA’s addition of a
speculation coprocessor and manages speculative threads by adding software to the start
and end of each speculative region. The buffering of speculative writes is also simplified in
this architecture due to the use of write-back rather than write-through private L1 caches.
The writes performed in speculative regions are stored in the L1 cache and tagged with
additional bits which prevent such lines from being propagated until the speculative thread
commits. The additional bits are similar in functionality to those added in HYDRA and
an epoch id is piggybacked onto each cache coherence message to indicate the sequential
ordering of speculative memory operations.

HYDRA and STAMPede demonstrate the two common approaches to buffering spec-
ulative state in hardware: write buffers and private write-back caches. In transactional
memory these schemes would both be referred to as deferred update, since they update
main memory only when speculation has been confirmed as successful (see section 2.2.1).
As in transactional memory where direct update schemes have also been suggested, other
TLS proposals work by allowing speculative threads to update the main memory state
and maintain an undo log such that modifications can be reversed if a thread aborts. An
example of such a scheme is the Software Undo System (SUDS) [60]. This is implemented
on the MIT RAW architecture [61], a many-core system with hundreds of very small cores
integrated on a single chip. The detection of dependence conflicts is offloaded to dedicated
memory dependence nodes which record the original non-speculative values of memory
locations.

All hardware TLS schemes must deal with the situation where a speculative buffer
fills up or where a speculative cache line gets evicted. HYDRA deals with evictions by
stalling the thread until it is the oldest (non-speculative) thread and then continues. It
is noted that such evictions can largely be mitigated by the addition of a victim cache
[62] which records the address of the evicted line and the speculative read bits. Similarly,

2STAMPede speculation is referred to as Thread-Level Data Speculation (TLDS) in some literature.

28

when the write buffer fills, the thread is stalled until it is the oldest. The writes (now
non-speculative) are then flushed and execution continues. STAMPede deals with cache
evictions by aborting the thread and restarting.

With the emergence of hardware TM in recent commercial processor architectures
there has been considerable interest in seeing hardware-supported TLS on real chips.
Odaira et al. [63] implement TLS using Intel TSX [27] and evaluate its performance. A
major barrier to implementation is the lack of support for ordered transactions. Intel TSX
does not provide any mechanism for communicating between transactions without causing
rollbacks so it is not possible to stall a transaction while it waits for previous transactions
to commit. Odaira achieves a functionally correct implementation by creating a global
transaction counter in software. When a transaction attempts to commit it checks the
global counter. If the counter does not match its own transaction number then it must
abort. This is likely to result in a high rate of rollback but is currently the only way
to implement TLS on Intel TSX. Odaira shows that other advanced hardware supports,
such as data forwarding and word-based conflict detection, are needed for effective TLS
and finds that the maximum achievable speedup on Intel TSX is 11%. Other processors
such as IBM Blue Gene/Q [30] and POWER8 [31] support ordered transactions but do
not offer these more advanced features.

2.3 Dependence analysis

An important element in a system for effectively extracting parallelism is dependence
analysis. Broadly speaking, dependence analysis is considered to include any techniques
which attempt to predict or detect the aliasing of memory accesses during the execution
of a program. The techniques I study can be divided into two categories. Firstly, compile-
time dependence analysis schemes attempt to predict during compilation the instructions
which may alias at runtime. Knowledge of the input set and dynamic runtime behaviour is
not available, so these techniques usually overestimate the extent of dependences. Much
of the difficulty in analysing programs written in C-like languages is the challenge of
determining pointer aliasing and, as a result, much of the recent work on improving
compile-time analyses has been on pointer analysis [64]. The analysis used as part of the
HELIX parallelising compiler is flow-sensitive and context-sensitive [65] and is applied to
the whole program. As was previously observed in section 2.1.1.4, interprocedural analysis
is imperative for parallelising large loops.

Secondly, there are dependence profiling techniques which track memory references
during an actual execution of the program. From recording the real runtime behaviour of
the program it is possible to determine exactly which instructions alias. This technique
provides more accurate results than the first but is limited in its usefulness since the
results only apply to a particular program input. Moreover, the amount of data which
is collected is typically extremely large for non-trivial programs, so processing the data
efficiently can be a significant challenge. This approach to dependence analysis has been
of particular interest to the designers of parallelising compilers and speculation systems.
The work in this dissertation is primarily based on runtime profiling of dependences and
therefore the discussion will be confined primarily to such techniques.

One of the first attempts to analyse available loop parallelism by tracking runtime
dependences is the parallelism analyser [66]. This system takes a trace of a sequential
program as input and attempts to determine the possible speedup of a parallelised ver-

29

sion. To detect dependences the analyser records every address written by an iteration
and then for each read in subsequent iterations it searches for matches in the record. This
technique has a severe scalability problem as the computation overhead increases with
the square of the iteration’s memory footprint. A similar approach is used by Tournavitis
et al. [67] to construct a control and data flow graph (CDFG) which is used as input to
an automatic paralleliser. Alchemist [68] is a profiler implemented on top of Valgrind,
giving it the advantage of being able to analyse existing binaries. This system can dis-
tinguish between intra-iteration, inter-iteration and inter-invocation dependences in loops
and outputs information to help the programmer to manually parallelise a loop.

A common challenge for profiling infrastructures such as these is that the algorithms
do not scale well for large programs due to memory and computation overheads. A recent
proposal for a scalable dependence profiler is SD3 [69]. Rather than recording each address
as is done in all the previous proposals, SD3 takes advantage of the regular patterns
commonly exhibited by the addresses touched by a particular instruction. This insight
is used to record a compressed trace of each instruction’s addresses. The dependence
profiling described in chapter 4 is based on SD3 and a comprehensive overview of the
technique as I have used it is given in that chapter.

2.4 Discovering the limits of parallelism

A common theme amongst researchers in computer architecture who have the goal of max-
imising performance is to discover the theoretical limits of a particular style of optimisa-
tion. This is a worthwhile endeavour because it allows us to understand the fundamental
power of a particular idea and to gain insight into the practical limitations it faces. The
work presented in chapters 4 and 5 are both directed at discovering the ultimate potential
of different models of execution and is inspired by previous work in this vein.

Wall [70] examines the extent of instruction-level parallelism (ILP) that can be ex-
tracted by a superscalar processor by collecting a trace of the benchmark and scheduling
instructions as early as possible. In the spirit of finding the limits of parallelism, in-
dependent of the constraints of circuitry, infinite functional units and register file ports
are assumed. Wall finds that, even under these assumptions, the median ILP is only
around 5. Austin and Sohi [71] use dynamic dependence graphs to show that much more
parallelism can be extracted than indicated by Wall. The dynamic dependence graphs
are used to detect output (storage) dependences through memory and the work assumes
perfect memory renaming to remove them. In addition, whereas Wall reports average
ILP by calculating the total number of dynamic instructions and dividing by the length
of the critical path, Austin and Sohi show that ILP is bursty and that programs have
phases of very high and very low parallelism. One shortcoming of this study is a failure to
account for control dependences: instructions following a branch cannot be scheduled con-
currently with instructions before the branch without speculation. Mak and Mycroft [72]
show control dependences significantly reduce available ILP, although branch prediction
and speculation may alleviate some of this loss.

While these studies look at the limits of ILP, Larus [66] describes an execution model
to find the limits of loop-level parallelism when exploited in the style of DOACROSS. This
work traces a sequential execution of a program and models parallel execution by simulat-
ing a machine where all iterations start at the same time. The model tracks inter-iteration
dependences and delays the execution of instructions to resolve such dependences. Larus

30

also discusses the effect of DOACROSS-style optimisations to reduce the number of de-
pendences and quantifies the parallelism which depends on such optimisations.

Recent work in this style has evaluated the limits of modern execution paradigms such
as thread-level speculation. Ioannou et al. [73] find the limits of such techniques in the
presence of various architectural features which support speculation. These features in-
clude out-of-order thread spawning, multiversioned caching, dependence synchronisation,
partial rollback and value prediction. The authors find that, while out-of-order thread
spawning did not influence the results, dependence synchronisation and value prediction
improved results significantly, suggesting that these features will be important in realising
the potential of speculation. Elder von Koch et al. [74] do a similar study of the limits of
dynamic binary parallelisation with speculation and evaluate results for various overhead
costs. They find that speedups are possible on an idealistic, zero-overhead machine, but
that these benefits largely disappear when realistic overhead costs are simulated.

2.5 Putting this work in context

This dissertation presents three related, but distinct, pieces of work: a method for studying
the limits of non-speculative parallelisation in chapter 4, a method for studying the limits
of speculative parallelisation in chapter 5 and practical implementations for approaching
these limits in chapter 6. In this section I will compare these contributions to the literature
already presented in this chapter to give some perspective on the broader context where
my work belongs.

My approach to finding the oracle DDG in chapter 4 is related to Alchemist [68]
which also profiles the program to find dependence pairs and can distinguish between
inter-iteration and inter-invocation dependences in loops. However, the output of this is
used as feedback to the programmer whereas my technique feeds the output directly into
the parallelising compiler. Previous work studying the accuracy of pointer analysis has
also used the notion of generated code performance as a metric to quantify the accuracy
of the static analysis [75, 76, 77]. To my knowledge, however, my work is the first to apply
a profile-enhanced data dependence graph to a purely static parallelisation scheme and
use parallel performance as a metric to measure the quality of the static analysis. While
Tournavitis et al. [67] also use profiling to enhance the static dependence graph, they
rely on the user to confirm the validity of the profile-detected parallelism whereas I use
a completely automatic process to find the upper limit of parallelism which the compiler
could, in theory, exploit.

The ideal dataflow model presented in chapter 5 is quite similar to the execution model
used by Larus [66]. Larus instruments the program at the machine code level which leads
to extra work being done to remove spurious dependences such as those caused by stack
reuse. I instrument the program at IR level which gives greater control over which accesses
are tracked. In addition, Larus’s results are not based on the output of a parallelising
compiler, whereas by using the code generated by HELIX I was able to obtain more
accurate results which take advantage of realistic parallelising optimisations.

The analysis of the upper bounds for practical speculation techniques in chapter 6 has
a lot in common with the work of Ioannou et al. [73]. These authors have also explored the
limits of speculation for a range of possible architectural configurations. While they have
looked at how various novel architectural supports affect performance, I have focussed on
how the transactional memory implementation affects performance since this is the most

31

likely way speculation will be supported in future commercial processors.
The practical methods for extracting speculative loop-level parallelism described in

chapter 6 build on a large body of previous work which was summarised in sections 2.1
and 2.2.2. There are many ways to classify the different proposals on this topic, and none
are perfect, but a broadly applicable taxonomy can be found by dividing the work into
non-speculative/speculative categories and further into IMT/CMT/PMT parallelisation
styles. Table 2.1 shows how some of the previously discussed work fits into these categories.

IMT styles are all unable to tolerate any dependences occurring between iterations.
Non-speculative entries in this space must prove that iterations are completely indepen-
dent at compile-time. Speculative entries increase coverage to difficult-to-analyse loops,
although any runtime dependences will cause failure. Some authors may apply an addi-
tional restriction for classifying a technique as IMT, that the iterations can also be run
in any order. This would place HELIX Pure Speculation outside the IMT classification
since iterations are restricted to commit in order. By contrast, the LRPD test runs the
iterations completely independently and performs checks on loop completion to see if spec-
ulation was successful. I consider HELIX Pure Speculation to fit more comfortably into
the IMT category, however, since it has no facility for tolerating loop-carried dependences.
Johnson et al. [55] note that Privateer could be applied to other forms of parallelisation
with loop-carried dependences, but the cited paper only discusses IMT so it is categorised
as such.

CMT styles add some generality to IMT by providing mechanisms to synchronise
loop-carried dependences while still exploiting parallelism. HYDRA and STAMPede are
placed in the CMT category rather IMT as they support the synchronisation of variables
which cause frequent dependence violations even within the context of speculative exe-
cution. In STAMPede this support is only possible for scalars which are shown by the
compiler to cause dependences and a copy of the variable is allocated to prevent corrup-
tion of the actual variable in the case of rollback. Since HELIX Judicious Speculation
alternates between running speculatively and non-speculatively within a single iteration,
synchronised variables can be updated safely in place, so no extra copies or checks are
needed. In addition, this supports the synchronisation of all memory references, including
those to arrays or heap-allocated data. To my knowledge this is the first implementation
of CMT-style speculation which can alternate between purely synchronised and purely
speculative execution within a single iteration of a loop.

The PMT category includes techniques where a loop iteration is pipelined across sev-
eral execution units. DSWP is the state-of-the-art in this approach and SpecDSWP
extends the basic technique to support speculative execution. This increases coverage to
loops with infrequent dependences and allows better balancing of pipeline stages. PMT-
style parallelisation is not considered as part of the main work in this dissertation.

32

Non-speculative Speculative

Independent
multithreading

• SUIF [12]

• Polaris [14]

• LRPD Test [46]

• Privateer [55]

• HELIX Pure
Speculation (Section
6.3)

Cyclic
multithreading

• DOACROSS [1]

• HELIX (Chapter 3)

• HELIX + oracle DDG
(Chapter 4)

• HYDRA [56]

• Stampede [59]

• Copy or Discard [52]

• HELIX Judicious
Speculation (Section
6.4)

Pipelined
multithreading

• DOPIPE [16]

• DSWP [17]
• SpecDSWP [22]

Table 2.1: Taxonomy of automatic parallelisation styles. Contributions of this dissertation
shown in italics.

33

34

Chapter 3

HELIX automatic parallelisation

The analyses throughout this dissertation are based on the HELIX model of automatic
parallelisation [3]. HELIX is a fully automatic parallelising compiler which parallelises
loops in sequential programs by creating a thread for each iteration of the loop and
running these concurrently. HELIX has previously demonstrated significant speedups for
a number of general purpose sequential programs, traditionally considered a challenge for
automatic parallelisation [2].

A major challenge commonly faced when implementing this style of automatic paral-
lelisation is the synchronisation of loop-carried dependences between threads. The com-
piler must be able to accurately identify such dependences. HELIX includes a state-
of-the-art interprocedural dependence analysis [65] to detect potential conflicts between
threads. The compiler produces “sequential segments” to sequentialise code which may
cause inter-thread conflicts. In addition, HELIX performs a range of other analyses to
reduce the number of synchronisation points in a thread and to maximise the chances of
achieving speedups.

This chapter will look at the HELIX model and the compiler analyses performed in
detail. Section 3.1 describes ILDJIT, the optimising compiler in which HELIX is built.
Next I will walk through the HELIX algorithm in section 3.2 to fully explain the nature
of the technique. Some previously published advances in reducing the cost of inter-core
communication are discussed in section 3.3. Section 3.4 describes the benchmark set used
in all my experiments. Finally I will look at the HELIX timing model which is used to
estimate the performance achieved by parallelisation in a deterministic manner (section
3.5). This chapter is exclusively prior work with the exception of my validation of the
timing model in section 3.5.2.

3.1 ILDJIT

HELIX is implemented in the ILDJIT compiler framework [78]. ILDJIT is a flexible
and extensible compiler which easily allows the addition of modules to implement new
optimisations and passes. ILDJIT uses a low-level intermediate representation (IR) and
provides substantial support for instrumenting code at the IR level. This was convenient
for implementing support for the various runtime systems discussed in later chapters.

The compiler has a Common Intermediate Language (CIL) frontend. To compile C
programs using ILDJIT, the C code is first converted to CIL using the GCC4CLI [79]
backend for GCC. ILDJIT has previously been shown to produce code of comparable
performance to GCC’s optimised code [78]

35

Listing 3.1: A sample loop suitable for HELIX paralleisation.

while(nodeA != endA && nodeB != endB){
nodeA = nodeA->next; // A
process(nodeA); // B
nodeB = nodeB->next; // C
process(nodeB); // D

}

3.2 HELIX

HELIX parallelises a sequential loop by assigning successive iterations of the loop to
different cores. At runtime, the iterations are run concurrently to the greatest degree
permitted by the dependences within the loop. The cores conceptually form a ring such
that iterations are assigned to the cores in a cyclic fashion. In this way the operation of
the runtime is simplified by ensuring that communication between successive iterations is
predetermined, i.e. core 1 always sends data to core 2, core 2 to core 3 and so on.

The compiler recognises loop-carried dependences and inserts synchronisation code to
ensure that such dependences are not violated. HELIX can insert many such instances of
synchronisation code so that different dependence cycles can be sequentialised indepen-
dently. In this manner, HELIX can take advantage of parallelism even in the presence
of many dependences by overlapping the code of different dependence cycles in different
iterations. HELIX can only execute a single parallelised loop at a time so, for instance,
if we have nested loops, it is not possible to run multiple levels of the nest in parallel
concurrently. Therefore, the appropriate selection of loops to run in parallel may have
a significant impact on the performance of the program since, in a given loop nest, the
outer loop may provide less speedup than an inner loop.

To illustrate the nature of HELIX parallelisation, consider the code in listing 3.1. This
loop processes two dynamic linear data structures which are iterated across with pointers
nodeA and nodeB. On each iteration of the loop we need to find the next node in each
of the data structures and perform some processing on that node. We assume for this
example that the processing of each node is independent of each other node.

Following a compile-time data dependence analysis, HELIX produces a data depen-
dence graph (DDG) as shown in figure 3.1 with loop-carried dependences indicated in
green. As we can see there are two loop-carried dependences which need to be synchro-
nised in this loop. Therefore HELIX will create two sequential segments to sequentialise
the execution of A and C across the different iterations.

A: nodeA = nodeA->next;

B: process(nodeA);

C: nodeB = nodeB->next;

D: process(nodeB);

Figure 3.1: Data dependence graph for loop in listing 3.1. Green arrows indicate loop-
carried dependences, red arrows indicate intra-iteration dependences.

Figure 3.2 demonstrates the manner in which the HELIX-parallelised loop would ex-
ecute. The sequential segments are indicated as yellow-shaded blocks. The time taken

36

to execute B and D varies depending on the input data. Each sequential segment must
execute in sequential order across cores, for example, sequential segment A is never over-
lapping in different cores. Similarly, core 1 must stall while it waits for sequential segment
C to complete in core 0. However, different sequential segments can overlap with each
other, for example, C on core 0 executes concurrently with A on core 3. The parallel
portions of code can execute concurrently with any other code on the other cores.

A

B

D

A

B

B

D

B

D

Time

Core 0 Core 1 Core 2 Core 3

C

Wait

C

Wait

D

A

Wait

C

A

C

Wait

Wait

A

Signal

Signal

Signal

Signal

Signal

Signal

Signal

It
er

at
io

n
 0

It
er

at
io

n
 4

It
er

at
io

n
 1

It
er

at
io

n
 2

It
er

at
io

n
 3

Figure 3.2: Execution schedule for loop in listing 3.1.

HELIX transformations operate on the intermediate representation (IR) of the loop.
The remainder of this section looks at the specific steps of the parallelisation pass in more
detail.

3.2.1 Loop normalisation

As an initial step towards parallelisation, the loop must be transformed into a particular
format which the compiler can work on more easily. All HELIX parallelised loops must
consist of a prologue and a body. The control flow graph for the example in listing 3.1
is shown in figure 3.3. The prologue is the smallest set of instructions which must be
executed to determine whether the body of that iteration should be executed. This
consists of those instructions which are not post-dominated by the loop’s header.

So in this example, the tests nodeA != endA and nodeB != endB are not post-
dominated by the header, so this code constitutes the prologue. The prologues of each
iteration must run sequentially since until the prologue completes it is not known whether
or not the succeeding prologue should execute. Therefore the prologue can be thought of
as a sequential segment similar to other sequential segments throughout the body, and
many of the models in this dissertation treat the prologue as such.

Once a loop exit condition is reached in any given prologue, it sets a flag to be read
by the successive thread to indicate that it may exit when it attempts to start its next
prologue. This thread sets the corresponding flag for the next thread and so on until all
threads have exited the loop.

37

Prologue

Body

Loop header

test nodeA != endA

test nodeB != endB

Code after loop

A: nodeA = nodeA->next;

B: process(nodeA);

C: nodeB = nodeB->next;

D: process(nodeB);

Back edge

Figure 3.3: Control flow graph for loop in listing 3.1 following normalisation.

The body of the loop simply consists of all instructions which are not in the prologue.
Each time the body of the loop executes, this indicates that the prologue of the next
iteration should execute. Therefore code is added to the start of the body to set a flag
indicating to the next thread that it may proceed with the next prologue.

3.2.2 Dependence analysis

Having normalised the loop, HELIX uses a state-of-the-art interprocedural dependence
analysis [65] to detect all dependences in the loop, including those caused by functions
called from within the loop. This analysis was chosen because it operates at a low-level
and does not require detailed semantic information from the source code, which suited
the low-level ILDJIT IR. In addition, interprocedural analysis is generally a necessity
to parallelise the biggest loops in a program. The analysis was enhanced beyond what
was described by Guo et al. [65] to provide more detailed information to help facilitate
parallelisation. In particular, semantic information about C library calls was added which
greatly reduced the number of dependences caused by such calls.

Since each iteration of the loop runs in a separate thread, each will have its own
private local stack frame and set of registers. Therefore we do not need to consider write-
after-write and write-after-read dependences which occur through registers or the stack.
Read-after-write loop-carried dependences which occur through the stack or registers must
still be respected and these will be converted into accesses to shared memory as described
in section 3.2.4.

In general, a loop is likely to contain many loop-carried dependences as a result of
induction variables which are updated on each iteration of the loop. However, in most
cases it is possible to compute induction variables locally in each thread from the iteration
number. Therefore it is possible to eliminate dependences caused by these variables. In

38

addition, dependences caused by accumulators (such as in a loop to sum the values in
an array) can be removed by creating a local accumulator in each thread and summing
together these local accumulators at the end of the loop.

3.2.3 Sequential segments

Now that HELIX has normalised the loop and detected the loop-carried dependences
which must be satisfied, it can proceed to create the sequential segments which will ensure
that these dependences are not violated. A data dependence consists of two instructions
which may access the same memory address. A sequential segment is created for each
such data dependence and guards are inserted at the beginning and end of each segment
to ensure sequential execution. At the beginning of the sequential segment a Wait op-
eration is inserted which stalls the thread until the corresponding sequential segment in
the preceding iteration has completed. At the end of the sequential segment a Signal
operation is inserted which indicates to the Wait of the corresponding sequential segment
in the succeeding thread that it is now safe to continue execution. For each sequential
segment, the Wait and Signal operations create a chain of sequential execution across
the cores which ensures that any code involved in loop-carried dependences executes in
loop iteration order. Wait and Signal may be implemented by simple flags with one flag
per sequential segment per thread. Signal sets the appropriate flag of the succeeding
thread and Wait waits for its own flag to be set, resets it and continues.

HELIX also performs optimisations to reduce the amount of code that must be ex-
ecuted sequentially. Instructions which are contained within a sequential segment but
which are not in any way involved in loop-carried data dependences may be moved to
after the end of the sequential segment. Functions called from within the loop which
cause data dependences may also be inlined to allow more fine-grained scheduling of the
code to reduce the size of sequential segments.

3.2.4 Communicating between threads

To permit threads to communicate signals to each other, a memory buffer is allocated for
each thread. When the loop starts, each thread is initialised with a reference to its own
buffer and the buffer of the succeeding thread. The last thread is given a reference to the
buffer of the first thread, thus creating a ring. Each thread writes into the buffer of the
succeeding thread and reads from its own buffer.

The number of sequential segments is known at compile-time and thus the memory
required for the buffers can be allocated before execution of the loop begins. The locations
of the flags which guard each sequential segment within the buffers are also statically
determined.

In addition to signals for sequential segments, the threads must be able to communicate
variables used in the loop which belong to the stack frame of the main sequential thread.
These variables are referred to as live-in or live-out variables depending on whether they
were live at the entrance to or the exit from the loop. In addition, the loop may contain
live-in variables which are allocated in the stack frame of the main thread and are written
in one iteration of the loop and read in a later iteration. Such variables are kept in the
stack frame of the main thread, and loads and stores are inserted into the code of the
parallel threads to access the originally allocated location. Data dependences caused by
these variables are preserved with sequential segments in the usual manner.

39

3.2.5 Loop selection

Applying HELIX parallelisation is not profitable for all loops. Code has been added to the
loop to execute the Signal and Wait operations and this adds overhead to the execution
of the parallelised loop. In addition, transferring the signals from one core to another will
usually involve communication through a shared L2 or L3 cache which typically incurs a
large latency. For some loops where the parallel sections are small relative to the time
spent communicating, the parallelised version of the loop may not speed up or may even
become slower than the original sequential version.

In addition, the HELIX model only allows for a single parallelised loop to be executing
at a time. If there are nested loops and a parallel version of the outer loop begins executing,
the inner loops will be forced to run sequentially, since HELIX is only capable of executing
a single parallelised loop at a time. If this outer loop offers less parallel speedup than
some combination of the inner loops, optimal performance will not be achieved. For these
reasons, it is critical that loops are selected which will be most profitable for parallelisation.

To find an optimal solution we start by building a loop nesting graph which covers all
the loops in the entire program. This is a directed graph where each node represents a
loop and each edge represents a nesting relationship (i.e. the loop at the tail of the edge
is nested within the loop at the head). A nesting relationship can transcend function
boundaries and a loop L2 which is in a function called from within loop L1 is considered
to be nested within L1. The graph is not necessarily a tree (or forest) since a function
which contains a loop may be called from within multiple other loops, resulting in multiple
parents.

To estimate the speedup afforded by parallelising a particular loop, it is useful to do
a profiling run of the loop with the HELIX timing model since this gives deterministic
results and is machine-independent. Each loop is executed sequentially with callbacks
to a performance model which estimates the amount of time the various parallel threads
would have spent stalling and communicating data in a parallel execution. The output of
the model is a figure for how much time would be saved by executing a parallel version
of the loop. The timing model is discussed in more detail in section 3.5.

Two values are assigned to each node in the loop nesting graph: t which is the time
saved by running the parallel version of this loop as opposed to the sequential version, and
maxT which is the maximum time saved by either parallelising this loop or any selection
of its subloops. The algorithm proceeds in two stages. First it works from the leaves (the
nodes with no children) upwards. At each node set maxT to either t at the current node
or the sum of its children’s maxT s, whichever is greater. This is repeated at each of the
node’s parents.

Now each node contains a value for the maximum speedup achievable at each loop or
a combination or its descendants. If the maximum time saved at a node is equal to the
time saved by that node, then choosing that node is the optimal solution for the node
and all its descendants. So the second stage of the algorithm works from the roots (nodes
with no parents) downwards. If t is equal to maxT then select this loop for parallelisation
and proceed no further into its descendants. If not then repeat this at each of the node’s
children.

Figure 3.4 shows a sample loop nesting graph. The graph is not a tree since loop5 is
nested within both loop1 and loop2 due to function func4 being called by both func1 and
func2. In this example, parallelising loop1 would save 100 cycles but parallelising the best
selection of its subloops would save 4000 cycles. The loops which are ultimately selected
are shaded green.

40

T = 0
maxT = 2000

T = 1000
maxT = 1000

T = 500
maxT = 500

T = 100
maxT = 4000

T = 1000
maxT = 1000

T = 50
maxT = 1000

func1 func2

func3

func4

loop5

loop2loop1

loop3 loop4

loop7

T = 2000
maxT = 2000

loop6

Figure 3.4: Sample loop nesting graph with selected loops shaded green.

The algorithm as described may not choose the best loops for certain graphs where
a node has multiple parents, since the time saved by parallelising a subloop should be
distributed between its parents according to the proportion of relative frequencies with
which the loop is invoked by each path. For example, in figure 3.4 if loop 5 is called
999 times from loop 1 but only once from loop 2 then the the maxT for loop 2 will be
incorrect. This can be solved by enhancing the profiling to calculate the time saved by a
loop along each possible path in the graph and propagating maxT upwards in appropriate
proportions. HELIX performs aggressive inlining so that multiple copies of functions may
exist when they are called from different sites. This means that the problem of multiple
predecessors in the loop graph occurs fairly rarely. For the benchmarks I have studied
the basic algorithm was found to be sufficient to choose the best loops.

3.3 Optimising inter-core communication

A common challenge with this form of parallelisation is the overhead of communication
between cores required to implement synchronisation [80]. In HELIX, synchronising se-
quential segments is on the critical path and minimising the latency of signals is crucial
to enabling speedups. In prior work on HELIX, two techniques have been proposed to
reduce the expense of these operations: helper threads and the ring cache.

Helper threads

Wait and Signal operations are implemented by creating a flag in shared memory
which is set by the signalling thread and inspected by the waiting thread. Communication
of the signal relies on the cache coherence protocol making the signal visible when the
waiting thread attempts to read it. Therefore, communication only takes place once the
thread begins to wait, so it will always incur the latency of going through the cache
coherence protocol, even if the signalling thread “sent” the signal many cycles previously.

41

To reduce this latency on a processor with simultaneous multithreading (SMT), HE-
LIX may couple each iteration thread with a helper thread [2]. This is a thread which
runs on the same core as the iteration thread but whose sole task is to prefetch the signals
from the previous core. Conceptually, the signalling thread can now “push” the signal
into the private cache of the waiting thread, rather than having the waiting thread “pull”
it in when it is required. The latency of waiting for a signal then reduces to almost zero in
cases where the signal was sent much earlier since the Wait operation will simply consist
of loading a value from the core’s own private cache.

Ring cache

Helper threads are useful in the cases where signals occur significantly before the corre-
sponding waits, but when a wait occurs before the signal the thread suffers the full latency
of communicating through the cache coherence protocol. Unfortunately most commercial
processors do not provide any other mechanism for low latency inter-core communication.
However, it has been shown that low latency communication on a chip multiprocessor
(CMP) can be supported with modest architectural extensions. Campanoni et al. [4]
propose the addition of a ring cache to an Atom-like CMP: a ring network with one node
attached to each core. Each ring node contains a set associative cache, 1KB in size with
word-sized cache lines. The instruction set is extended with two instructions to delimit
the boundaries of sequential segments: wait and signal.

When the core is executing a sequential segment (after a wait but before a signal)
all memory accesses are directed first to the core’s ring node. The address and value are
stored in the node’s cache and then propagated to all other nodes in the ring. In this
manner, all memory accesses which could be involved in data sharing can forward their
data through the ring cache at low latency to whatever core the data is shared with. The
network topology takes advantage of the nature of CMT parallelisation: data produced by
one iteration will usually be consumed by the subsequent (or nearly subsequent) iteration
and the iterations themselves are distributed across cores in a logical ring. Reducing
the overhead of communication not only improves the performance of loops which were
already parallelisable but also enables the profitable parallelisation of small hot loops
which would previously have been overwhelmed by the communication overheads. An
evaluation of the ring cache on a 16-core architectural simulator found that it increased
the geometric mean speedup of SPECINT with HELIX from 2.2x to 6.85x [4].

3.4 Benchmarks

To test the performance of HELIX and the various modifications discussed throughout
this dissertation I have used the cbench benchmark suite [81]. This is a set of sequential
benchmarks based on the MiBench suite [82] but with the addition of multiple datasets.
The suite includes applications from various domains such as security, telecommunications
and office software. The benchmarks used and their description are shown in Table 3.1.
This table includes all of the benchmarks which I was able to compile with ILDJIT and
parallelise with HELIX. There are a number of other benchmarks in the suite which have
not been included because I was unable to push them through the framework. Many
of these benchmarks could not be compiled from C to CIL (required by the ILDJIT
frontend) because of the lack of a complete C-library implementation in the GCC4CLI

42

Benchmark Lines Loops Description

automotive bitcount 460 4 Counts number of bits set in a word.

automtive susan c 1376 4 Finds corners in an image.

automotive susan e 1376 6 Finds edges in an image.

automotive susan s 1376 4 Gaussian smoothing on an image.

security sha 197 2 Calculates SHA hash of a file.

security rijndael d 952 2 Rijndael decryption.

security rijndael e 952 2 Rijndael encryption.

office stringsearch1 338 2 Searches text for string matches.

consumer jpeg c 14014 20 Compresses an image with JPEG.

consumer jpeg d 13501 17 Decodes a JPEG compressed image.

Table 3.1: Benchmark descriptions.

backend. The GCC4CLI project has not been maintained for a number of years and this
caused many problems with compiling benchmarks. In addition, some benchmarks are
not included because ILDJIT could not compile them or did not generate correct code.
Of the benchmarks in cbench which are not listed in 3.1, 14 could not be compiled with
GCC4CLI and 6 could not be compiled with ILDJIT or crashed during execution.

The SPECINT benchmark suites are commonly used for the type of work discussed
in this dissertation since these benchmarks are large and are generally considered difficult
to parallelise. However, the analyses and timing models implemented, in particular the
oracle data dependence analysis described in chapter 4, incurred very large memory and
computational overhead. The SPECINT benchmarks proved too difficult to analyse, with
estimates indicating that some loops would take weeks to complete. The applications in
cbench are smaller but still contain interesting, non-trivial kernels and as such this suite
was considered a good fit for my work. It may be possible to refine these techniques to
allow analysis of SPECINT by using more information from the compile-time dependence
analysis to reduce the number of checks the profiler needs to perform.

3.5 HELIX timing model

While HELIX is capable of producing multi-threaded parallel code to be executed on a real
machine, for most of the experiments in this dissertation I will be using the HELIX timing
model to estimate speedups. The model allows quick exploration of the design space and
the ability to experiment with new runtime systems and architectural parameters. To
estimate execution time with the model, the HELIX parallelised code is instrumented
with callbacks to a performance model which records the amount of time the various
operations would have taken in a real execution.

To run the timing model, the HELIX transformations are performed to produce a
parallelised version of the loop as normal. However, rather than running the code in
parallel, the loop code is instrumented at the IR level with callbacks to an analytical
performance model. The following callbacks are inserted:

43

• A callback is inserted after each basic block to record the number of cycles taken
to execute the basic block. The number of cycles is determined statically based on
the type and number of instructions contained.

• Callbacks are inserted at the start and end of each sequential segment. This allows
the model to determine how much time each thread would spend stalling while
waiting for signals.

• Each instruction which accesses shared memory is instrumented. This will allow
the system to track runtime data dependences in the models proposed in chapters
5 and 6.

• The entrances and exits to loops and the starting point of each iteration are also
instrumented.

When the code is executed, rather than creating multiple threads and assigning suc-
cessive iterations to successive threads, only a single thread is created and all iterations
run on a single core. The timing model simulates a multi-core system with a cycle counter
for each core. Each time the loop makes a callback to the model, the cycle counter for one
of the cores is incremented to reflect the time spent performing whatever operation was
indicated by the callback. Initially the cycle counter for core 0 is incremented and the
model moves to the next core each time a new loop iteration begins. Note that because the
HELIX paralleliser runs as normal, the code being executed is an accurate representation
of the code that would be executed by any individual thread in parallel execution.

The number of cycles attributed to each instruction was determined by tuning the
model to match the execution time of an Intel Atom-based architectural simulator [83].
The tuning was performed on the SPECINT2000 benchmark suite. The model was tuned
to fit 70% of the benchmarks and then tested on the remaining 30% to prevent over-
fitting. The average error was found to be within 6%. Although the overall cycle count
would not be the same when comparing the timing model to other architectures, the
speedups obtained from parallelisation should be stable since these are always compared
to a baseline from the same architecture or model. An attempt was made to include
a simulation of the memory hierarchy in the timing model but it was found that this
increased the execution time of the model to unacceptable levels.

Figure 3.5 shows a sample execution and how the cycles elapsed are assigned to the
cycle counters of the virtual cores. When the execution enters a sequential segment, a
delay is applied to the appropriate core based on the actual running time of the previous
invocation of that sequential segment. The model also applies delays to model the latency
of communicating between cores and executing the code for waits and signals.

I have opted to base most of my experiments on the timing model since it gives deter-
ministic results, is more amenable to performance debugging and allows experimentation
with a variety of runtime systems where providing full implementations would not be fea-
sible or sensible before their worth has been proven. In addition, it allows tweaking of the
architectural parameters, such as the time it takes to communicate values between cores.
This ability is convenient for determining what the effects of communication latency are
and for simulating different architectures. A validation of the model in section 3.5.2 con-
firms that the timing model can predict speedups on a real machine for the benchmarks
I am studying.

44

New Iteration

Add
Add
Load

Enter SS 0

Exit SS 0

Add
Add
Mul

Store

New Iteration

Add
Add
Load

Enter SS 0

Add
Add
Mul

Store

Actual Execution

Time

Virtual Cores

Core 0 Core 1

14 Cycles

Enter SS 0

19 Cycles

Exit SS 0

14 Cycles

Enter SS 0

Delay until previous Exit

Inter-core communication delay

19 Cycles

Virtual
cycle

counters

Figure 3.5: Sample execution of the HELIX timing model.

3.5.1 Assumptions

In the implementation of the HELIX timing model the following assumptions are made:

• That the time taken to execute any particular type of instruction is constant and
can be determined statically.

• That the working set for the selected benchmarks largely fits within the private
caches of the cores such that memory instructions have constant latency.

• That the time to transfer values between private caches (e.g. to communicate sig-
nals) is constant.

• False sharing effects between private caches which could reduce performance are not
modelled.

In practice, a real machine will violate these assumptions. We are faced with a trade-
off where, the more accurate the simulation is, the more time it takes to run, the more
difficult it is to implement various execution models and the more tied the results will
be to a particular architectural design. I opted to base my results on the HELIX timing
model since it allows exploration of a large design space and the results provide a more
accurate upper bound of the potential of the execution styles which were studied since
they are considered in isolation from specific architectural decisions.

3.5.2 Validation of the timing model

While the timing model is convenient for experimenting with different parameters and
for producing deterministic results, it is imperative to ensure that the trends seen in the

45

Haswell Atom

Processor Xeon(R) E3-1230 v3 Atom(TM) Z3735F

Frequency 3.3GHz 1.33GHz

Cores 4 (hyper-threaded) 4

Cache
32KB + 256KB private

8192KB shared
32KB private

1024KB x2 shared

Table 3.2: Machines used to measure HELIX performance.

timing model results could be accurately reproduced on a real machine. To establish
confidence in the timing model I have parallelised a number of loops with HELIX and
timed the execution on a real machine. These loops are listed in table 3.3 and are all
high-coverage loops in cbench. The results are then compared to those produced by the
timing model to ensure they are comparable. The most important metric is loop speedup,
therefore this validation will compare the speedup trend rather than the wall time or raw
clock cycles. The baseline is the sequential version of the compiled program produced by
ILDJIT. To attain speedup results the loops are parallelised by HELIX and executed on
various numbers of cores.

I calculated the speedups achievable by HELIX on two machines, an Intel Haswell
server and an Intel Atom compute stick. The specifications of these machines are shown
in table 3.2. The Haswell machine features hyper-threading technology which allows two
threads to run concurrently on the same core, giving a total of 8 virtual processors. It
was found that allowing the operating system to use its own heuristics to assign threads
to virtual processors gave rise to variable results. This was because the operating system
would sometimes assign two threads to the same core resulting in excessive demand on
that core’s resources. In practice, it was always advantageous to keep each of the HELIX
generated threads on separate cores, so I manually assigned each thread to specific cores
for all tests. In addition, both of the test machines use frequency scaling to achieve a
particular balance of performance and power consumption so it was necessary to fix the
processor frequency to its maximum value.

I selected several significant loops from the benchmark suite for which the timing
model claimed that speedups were attainable. Figure 3.6 shows a comparison of the
speedups claimed by the model and those achieved on real hardware. All loops constitute
at least 50% of the total benchmark execution time and speedups are calculated just for
the time spent running the loop, i.e. not the whole benchmark. Speedup is calculated
relative to the sequential performance of the loop on each machine, e.g. Atom speedup is
calculated as sequential execution time on the Atom divided by parallel execution time
on the Atom. The highest level of cache on the Atom is the 2048KB L2 which is split
into two caches, one shared between cores 0 and 1, the other shared between cores 2 and
3. As a result, communication from core 1 to core 2 must go through memory which is
considerably more expensive. This results in poorer performance scaling on this machine
when going beyond two cores.

The results shown for Atom and Haswell do not use either of the techniques for reduc-
ing the latency of inter-core communication described in section 3.2.4. This is because
the helper thread implementation was not operational at the time of writing due a recent

46

Benchmark Function Coverage

automotive susan c susan corners 88.3%

automotive susan e susan edges 56.5%

automotive susan s susan smoothing 99.6%

automotive bitcount main 100%

Table 3.3: Loops used to validate the timing model.

change of the compiler backend to LLVM which caused some functionality to break. The
ring cache could not be evaluated since it has only been implemented in simulation. This
may reduce performance relative to the timing model which assumes that some mechanism
is being used to “push” signals into the private cache of the waiting core. In particular,
relatively small loops, like automotive bitcount, may suffer noticeable performance loss
since the overhead of communication is large relative to the loop.

The results show that the timing model is accurate at predicting speedups and that
the performance trends are similar between the model and the real execution. The main
source of inaccuracy in the model is that it does not model the memory hierarchy and so
underestimates the cost of some long latency memory accesses. In addition, the expense
of communication in the case of false sharing between the cores’ private caches is not
accurately modelled; however, there is considerable prior work on compiler optimisations
to reduce the rate of false sharing in parallel programs [84] which could be employed to
reduce this problem. The benchmarks studied in this dissertation have small working sets
which fit inside the cache and so modelling memory accesses to have constant latency
is considered reasonably accurate for these test cases.1 This simplification of the model
greatly reduced the complexity of experimenting with different models and made the
model considerably faster to run, which was conducive to exploring a variety of novel
runtime systems as discussed in chapters 5 and 6.

1The analysis of transaction sizes in section 6.5 confirms that these loops have sufficiently small working
sets to fit inside the cache.

47

2 3 4
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
op

 s
pe

ed
up

automotive_susan_c_timed:loop 61

2 3 4
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
op

 s
pe

ed
up

automotive_susan_e_timed:loop 62

2 3 4
Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
op

 s
pe

ed
up

automotive_susan_s_timed:loop 67

2 3 4
Cores

0.0

0.5

1.0

1.5

2.0

Lo
op

 s
pe

ed
up

automotive_bitcount_timed:loop 37

Atom performance Haswell performance HELIX timing model

Figure 3.6: Comparison of speedups with the timing model and running on real hardware.

48

Chapter 4

Limits of static parallelisation

In the previous chapter I described the HELIX parallelising compiler and stated that
it uses a state-of-the-art interprocedural dependence analysis. In general it has been as-
sumed in the automatic parallelisation community that dependence analysis is a formidable
challenge in achieving speedups with statically parallelised code. Therefore, the com-
munity has spent a significant amount of effort on improving this dependence analysis
[64, 65, 85]. Previous work has shown empirically that an improved dependence analysis
can enhance the performance of automatic parallelisation [86]. While these efforts were
justified in the past, there is no evidence that this is still a limitation for today’s com-
pilers. What if dependence analysis is already good enough and further enhancements
will result in only negligible performance improvements? In this chapter I will study the
upper limits of compile-time analysis for HELIX style parallelisation and determine to
what extent speedups are being limited by shortcomings in the analysis.

To find the limits of achievable speedups, I simulate a perfect dependence analy-
sis which can know exactly which compiler-identified dependences will actually exist at
runtime. To achieve this I carry out a profiling run of the program to detect any may-
dependence pairs claimed by the analysis which are never actually realised at runtime.
These are the only dependences that a hypothetical improved compile-time dependence
analysis could eliminate. These apparent dependences can be removed from the compile-
time determined data dependence graph (DDG) to create an oracle DDG. This is the
upper limit of how accurately the compiler can identify dependences given a specific pro-
gram input set. By parallelising the code again, replacing the compile-time DDG with
the oracle DDG, it is possible to determine an upper bound on potential speedups for
purely static parallelisation in HELIX.

This chapter begins with a description of how I generated an oracle DDG by collecting
runtime memory traces and analysing them to find actual runtime data dependences
(section 4.1). Section 4.2 presents results for how effective the oracle DDG analysis is
at removing dependences from the static DDG and evaluates the performance of HELIX
when parallelising with the oracle DDG. Finally in section 4.3, I analyse the results from
section 4.2 and explain the outcomes with reference to specific benchmarks.

4.1 Oracle data dependence graph

The HELIX-generated DDG contains data dependences which do not manifest themselves
at runtime. This is a natural facet of all static data dependence analyses. In general,

49

especially in a language like C which allows raw access to pointers, it is extremely difficult
for the compiler to determine exactly what memory locations can be touched by a partic-
ular instruction. In addition, not having access to the input data on which the program
will be run can make it even more challenging for the compiler to predict the flow of data
at runtime. It is a requirement that the compiler must, as a minimum, produce correct
code so in these circumstances it must be conservative and assume that all possible data
dependences do actually exist. It is assumed that this is a major source of inefficiency
in automatically parallelised code, and indeed, Ottoni et al. [86] show empirically that
removing spurious dependences from the DDG results in improved performance.

In this section I will describe a method for generating an oracle DDG, a refined version
of the compiler’s static DDG which only contains those dependences which actually exist
at runtime for a particular program input set. First, traces are generated which precisely
record all memory references at runtime. Then the traces are analysed offline and all
memory references which did not exist at runtime are removed from the static DDG. I
opted for an offline approach for two reasons. Firstly, keeping an entire trace of every
memory instruction in the program in main memory at once would be infeasible; by
analysing the trace offline I could reduce the memory overhead by dealing with individual
instructions at a time. Secondly, by recording the trace once, I could then perform various
analyses on the traces without having to expensively rerun the trace collector each time.
The approach used here is similar in essence to that described by Tournativis et al. [67],
however, I have used compression schemes which have been shown to reduce the memory
overhead of the analysis by up to 20 times [69].

Generating the oracle DDG takes place in three stages:

1. Memory trace: Collect a trace of all addresses touched by each memory instruction
in the program.

2. Control flow trace: Collect a trace of the order in which each memory instruction
was executed to determine the direction of dependences.

3. Analyse traces: Analyse the traces to find all pairs of instructions which conflict.

Since the program is run multiple times it must be possible to identify the equivalent
instructions from one run to the next. This is achieved by first compiling the code to the
compiler’s intermediate representation (IR), assigning each IR instruction a unique ID,
and storing the IDs and associated IR on the disk. Then, on each run, it is possible to
identify which runtime instructions correspond to each other. Each of these instructions
is instrumented with a call back to the trace collector.

4.1.1 Memory trace

The memory access trace provides a complete record of every memory event which occurs
during the execution of the loop. The trace is compressed using the SD3 scheme [69]. This
takes advantage of the fact that memory instructions in a loop typically access memory
in a stride fashion. For example, consider the loop in listing 4.1. If we imagine the array
B begins at address 0x1000, the reads from the array during one iteration of the inner
loop will form this sequence of memory accesses:

0x1000 0x1004 0x1008 0x100C 0x1010 0x1014 0x1018 0x101C

50

Listing 4.1: Sample loop with corresponding IR code.

for (int i = 0; i < 4; i++)
for (int j = 0; j < 8; j++)

A[i] += B[j];

i0: r0 = read(B[j])
i1: r1 = read(A[i])
i2: r2 = r0 + r1
i3: write(A[i], r2)

This can be represented as a base address (0x1000), a stride (4) and a number of
repetitions (8), together referred to as a memory set entry. A complete trace for one
instruction consists of a sequence of memory set entries. If array A begins at address
0x2000, then the complete memory trace for this program would look as follows:

i0: (0x1000, 4, 8), (0x1000, 4, 8), (0x1000, 4, 8), (0x1000, 4, 8)
i1: (0x2000, 0, 8), (0x2004, 0, 8), (0x2008, 0, 8), (0x200C, 0, 8)
i3: (0x2000, 0, 8), (0x2004, 0, 8), (0x2008, 0, 8), (0x200C, 0, 8)

Some instructions, such as those involved in pointer chasing in dynamic data struc-
tures, do not compress well with this scheme. These are compressed by taking advantage
of the fact that such instructions tend to be confined to a relatively small portion of the
address space. Each memory set entry records the base address as the offset from the
previous base address rather than the absolute address.

4.1.2 Control flow trace

With the memory trace there is already enough information to determine which instruc-
tions touch the same addresses at runtime. However, there is no record of the ordering of
dynamic instructions, and consequentially it is not possible to determine if the conflicting
memory references occurred in different iterations of the loop. This is important because
it is necessary to identify instruction pairs which cause loop-carried dependences. There-
fore a control flow trace is recorded which stores the ordering of every dynamic instruction
which accesses memory in the program.

This trace could become prohibitively large without an effective compression scheme.
Two complimentary methods are used to compress the data to a manageable size: iteration-
level compression and loop-level compression.

4.1.2.1 Iteration-level compression

Firstly a novel compression scheme is used which takes advantage of the nested patterns
which exist in the instruction trace. For example a loop with a number of levels of inner
nested loops might produce a raw instruction trace which looks like the following, where
each number is the ID of a static instruction:

1 2 3 4 5 4 5 4 5 2 3 4 5 4 5 4 5 2 3 4 5 4 5 4 5 6 7

To record the nested patterns a new grammar is used which is expressed here in
Extended Backus-Naur Form (EBNF):

51

digit = "O" | "1" | "2" | "3" | "4"
| "5" | "6" | "7" | "8" | "9"

instruction-id = digit{digit}
num-reps = digit{digit}
compress-pattern = "("compress-pattern","num-reps")"

| "("instruction-id")"
compressed-output = {compress-pattern}

The example raw trace would be compressed to:

(1)((2)(3)((4)(5),3),3)(6)(7)

A new algorithm1 is now presented which performs the required compression. It is
named match and merge after the two compressing operations it performs:

1. Match: Match a sequence of symbols with a previously detected compression pat-
tern.

2. Merge: Merge two identical sequences to form a new compression pattern.

An example compression sequence is shown in figure 4.1. The algorithm uses a fixed-
size window of symbols. Each time a symbol is added to the right hand side of the
window, the algorithm attempts to find any possible matches or merges. In the diagram,
the orange boxes represent symbols that have just been added to the window.

Beginning with four symbols in the window, A B C C, note that there is a duplicate
sequence: a C followed by another C. These can be merged to form a new compression
pattern, (C), with 2 repetitions. Operations are performed repeatedly on the window
until no further compression is possible. For example, on the fourth line the algorithm
first performs a merge to form a new pattern, (C) and then performs another merge
to form another new pattern ((A)(B)(C,2)). Finally, now that this pattern has been
established, further sequences of the same symbols can be matched with the pattern. This
removes the matched symbols and increments the pattern’s repetition counter.

4.1.2.2 Loop-level compression

Match and merge compression could be used to compress the entire loop, however, it is
also important to take into consideration how the data will be processed later on. Since
the oracle analysis will focus mainly on loop-carried dependences, it is important that it
can efficiently determine from the control flow trace exactly which iteration of the loop a
particular dynamic instruction occurred in and whether two dynamic instructions occur
in different iterations. The control flow trace as described so far contains no explicit
information regarding iterations of the main loop.

Therefore I have opted to use match and merge to compress each individual iteration
of the main loop and to use another scheme to compress the overall loop. Each time
an iteration of the loop completes, the compression pattern for that iteration is recorded
along with the iteration number. For each subsequent iteration which has an identical
compression pattern, the new iteration number is simply added to the original record. So
an example compression for an entire loop might look like this:

1The algorithm is an original contribution of this thesis.

52

A B C C

Merge  A B C

A B C A B C C

Merge  A B C A B C

Merge  A B C

A B C A B C

Match  A B C

Figure 4.1: Sample sequence being compressed by match and merge. Orange boxes indi-
cate symbols that have just been added to the window.

{0,2,4} (A)(B)(D)(E)
{1,3,5} (A)(B)(C)(E)

This indicates that iterations 0, 2 and 4 had compression pattern (A)(B)(D) (E)
while iterations 1, 3 and 5 had compression pattern (A)(B)(C)(E).

4.1.3 Dependence analysis

The next task is to analyse the traces to find every pair of instructions which conflict at
runtime. The first step is to find pairs of memory set entries which access the same address
for a given pair of instructions. Given two memory set entries, a naive approach to finding
common addresses would be to iterate through every combination of addresses at O(n2)
complexity. Since the instructions being studied will possibly have millions of dynamic
instances, however, this would quickly become prohibitively expensive. Fortunately Kim
et al. [69] find a solution whose complexity does not depend on the size of the memory
set entries.

To demonstrate, consider the sample memory set entries for instructions x and y in
figure 4.2. The memory set entries have strides of 4 and 3 respectively. Finding the
common addresses for these two instructions is equivalent to solving the diophantine
equation:

100 + 4x = 95 + 3y (0 ≤ x ≤ 5, 0 ≤ y ≤ 7)

53

If the greatest common divisor (GCD) of the strides (in this case 1) divides evenly into the
difference between the bases (in this case 5) then there may be common addresses. The
first solution can be found with the extended Euclidean algorithm [87] and all subsequent
solutions can be found by repeatedly adding the lowest common multiple of the strides
(in this case 12).

100 104 108 112 116 120

95 98 101 104 107 110 113 116 119

Inst x:

Inst y:

Figure 4.2: Finding common addresses as solutions to a diophantine equation.

From this algorithm it is possible to find all pairs of instructions which ever touch the
same address; however, this would potentially include instructions which only touch the
same address within a single iteration. To eliminate these pairs it is necessary to consult
the control flow trace. Initially I tried storing all solutions to the diophantine equation
and then looking up the iteration numbers of the dynamic instructions responsible for
each common address. Although it was possible to build data structures which permitted
efficient querying of the control flow trace to find iteration numbers, this proved to be
too slow, especially in cases where the conflicting instructions were always in the same
iteration so that every single solution had to be checked. It was possible to make this
more efficient by observing that the number of dynamic instances of an instruction within
a single loop iteration is usually constant across iterations (e.g. 1 for an instruction which
is not in an inner loop). So if both instructions satisfy this property and the first solution
to the diophantine equation involves dynamic instances in the same iteration, then all
subsequent solutions will also involve dynamic instances in the same iteration and no inter-
iteration dependence exists. Instructions are marked during trace collection to indicate if
they satisfy the property. A convenient test is to simply check if the first and last solution
to the diophantine equation are intra-iteration. If this is the case then all solutions in
between will also be intra-iteration.

4.1.4 Worked example

In this section I will describe a sample loop for which the compiler over-estimates the
DDG and show how the oracle DDG improves the parallel performance of such a loop.
Consider the outer loop in listing 4.2 which contains 4 memory references:

1. A: Read glob

2. B: Write glob

3. C: Read A[factor*count + i]

4. D: Write A[factor*count + i]

The HELIX dependence analysis will generate the DDG shown in figure 4.3. Using
this DDG, HELIX parallelises the loop and creates two sequential segments to synchronise
each of the dependence cycles. The control flow graph of the code generated by HELIX is

54

Listing 4.2: Sample loop with difficult to analyse dependences.

for (count = 0; count < weight; count++){
glob++;
for(i = 0; i < factor; i++){

int tmp = A[factor*count + i];
tmp += count*5;
if(tmp%2 == 0){

A[factor*count + i] = tmp;
}

}
}

shown in figure 4.4. When the loop is parallelised, code in SS 1 can be run concurrently
with code in SS 2 but each sequential segment can only be running on a single thread at
any given time.

Read(glob)

Write(glob)

RAW

WAW

Read(A[factor*count + 1])

Write(A[factor*count + 1])

RAW

WAW

Figure 4.3: Compiler generated DDG for loop in listing 4.2.

Now the runtime traces are collected and dependence analysis is performed as de-
scribed above. The colour of the edges in figure 4.3 indicates the outcome of the analysis.
The green edges are confirmed to be part of the DDG but the red edges are not realised
at runtime. The oracle DDG is a subset of the DDG shown in figure 4.3 consisting of only
the green edges.

Finally the oracle DDG is fed back into the compiler and the loop is re-parallelised.
Having removed the red edges from the DDG, the compiler no longer generates sequential
segment 2. This code is now free to execute in parallel with any other code in the loop.
The performance impact of the oracle DDG for this benchmark is demonstrated by the
results in figure 4.5.

While the loop experiences virtually no speedup with HELIX using the compile-time
DDG, the improved accuracy of the oracle DDG results in close to linear speedups. This
is because the code in sequential segment 2 generated by the compiler accounted for a
large proportion of sequential execution time. Without being able to run this code in
parallel, HELIX could not have performed well on this loop. Evidently, over-estimating

55

SS 1

SS 2

Read(glob)

Write(glob)

Inner loop header

Read(A[factor*count + 1])

Write(A[factor*count + 1])

Loop header

Figure 4.4: Simplified CFG for parallelising loop in listing 4.2.

the DDG can result in significant performance degradation for automatic parallelisation.

4.2 Evaluation

In this section I will generate oracle DDGs for a number of cbench benchmarks and
evaluate the extent to which HELIX is over-estimating the DDG and the resultant par-
allel performance degradation. It is important to note that the results do not include
dependences which are caused by local variables. This is explained in section 4.2.2.

4.2.1 Accuracy of HELIX static analysis

When the HELIX static analysis is run, a graph is generated of all the suspected depen-
dences in the loop. One way of quantifying the accuracy of this analysis is to create an
oracle DDG as described in section 4.1 and see what percentage of edges in the original
graph have been removed. If the analysis is extremely accurate then it is expected that
hardly any dependence edges would be removed, whereas if the analysis is rather poor it
is expected that a large percentage of edges would be removed.

56

2 4 8 16
Cores

0

2

4

6

8

10

12

14

Sp
ee

du
p

synthetic_oracle: loop 2

HELIX
HELIX + oracle DDG

Figure 4.5: Parallel performance of loop in listing 4.2.

Figure 4.6 shows the percentage of edges which were removed from the DDG for various
cbench benchmarks. Each benchmark consists of a number of different loops which were
each analysed individually. The figures depicted in the graph were obtained by summing
the number of edges in each of the compile-time DDGs (one per loop) and calculating
what proportion of edges had been removed in total. The graph shows that the accuracy
of the static analysis varies greatly for different benchmarks. The analysis was perfect
for automotive bitcount for example, with no dependences removed, whereas the analysis
vastly over-estimated the number of dependences in automotive susan c with almost 100%
of dependences removed.

Overall the graph shows that a significant proportion of dependence edges could be
removed from the DDG for most benchmarks. This means that the compile-time analysis
identified many pairs of instructions which it determined could potentially have accessed
the same memory locations but in reality did not alias even once during execution.

Figure 4.6 is useful for getting an overview of the compile-time DDG accuracy, but
to fully appreciate the potential of the oracle analysis it is instructive to look at the
individual loops. A breakdown of these results by loop is shown in figure 4.7. Each bar
indicates the percentage of dependences which were removed by the oracle analysis for
a particular loop in the benchmark. “Coverage” indicates the percentage of sequential
execution time during which this loop was executing. Coverage figures may sum to more
than 100% due to loop nesting (i.e. time spent executing inner loops also contributes to
the coverage of the outer loops).

From these results it is evident that even within a benchmark different loops may
have vastly different DDG accuracy. In addition, there are high-coverage loops, such as
loops C and D in automotive susan c, for which a very large proportion of dependence
edges can be removed. These loops may hold promise for gaining parallel performance
with an improved compile-time dependence analysis. Conventional wisdom would suggest
that when the profile-determined oracle DDG is used to parallelise, it will be possible to
exploit more parallelism than previously.

57

au
tom

oti
ve

_b
itc

ou
nt

au
tom

oti
ve

_su
sa

n_
c

au
tom

oti
ve

_su
sa

n_
e

au
tom

oti
ve

_su
sa

n_
s

se
cu

rity
_ri

jnd
ae

l_d

se
cu

rity
_ri

jnd
ae

l_e

se
cu

rity
_sh

a

off
ice

_st
rin

gs
ea

rch
1

co
ns

um
er_

jpe
g_

c

co
ns

um
er_

jpe
g_

d
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f m
em

or
y

de
pe

nd
en

ce
s

re
m

ov
ed

Figure 4.6: Percentage of memory dependences removed by the oracle analysis for cbench
benchmarks.

Listing 4.3: An example of local variables causing loop-carried dependences.

for(int i = 0; i < 100; i++){
if (A[i] > 0){

x++;
B[x] = i;

}
}

The raw data from which these graphs were generated is included as appendix A for
reference.

4.2.2 A note on local variables

When HELIX parallelises a loop it detects loop-carried dependences through memory and
through local variables. Dependences can occur through local variables when a variable is
written in one iteration of the loop and read in a subsequent iteration. Consider variable
x in listing 4.3. For sequential execution x would be allocated on the stack but for parallel
execution its value must be communicated between threads. Therefore HELIX allocates
shared memory to store the variable which is accessed by all threads.

The oracle analysis only tracks references which refer to heap-allocated data or to
stack-allocated arrays and does not track local variable references, even when they cause
loop-carried dependences. The reason for this is that detecting dependences caused by
local variables is easy for the compiler since their addresses never change. The only
scenario in which the compiler would detect a dependence between two local variables
which did not actually exist would be if one instruction had a control dependence which
caused it to never execute. Since tracking local variable references would have hugely

58

A (7.3%) B (24.1%) C (89.5%) D (98.4%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

automotive_bitcount

A (7.0%) B (7.1%) C (83.3%) D (83.3%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

automotive_susan_c

A (1
5.5

%)

B (1
5.5

%)

C (1
8.2

%)

D (1
8.2

%)

E (
56

.5%
)

F (
56

.5%
)

Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

automotive_susan_e

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

automotive_susan_s

A (6.8%) B (92.2%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

security_rijndael_d

A (6.8%) B (96.1%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

security_rijndael_e

A (78.1%) B (97.1%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

security_sha

A (71.4%) B (84.2%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

office_stringsearch1

A (4.2%) B (4.2%) C (10.3%) D (10.7%) E (17.0%)
Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

consumer_jpeg_c

A (1
3.6

%)

B (1
5.2

%)

C (1
7.5

%)

D (1
8.0

%)

E (
20

.5%
)

F (
44

.9%
)

Loop ID (coverage)

0

20

40

60

80

100

%
 m

em
or

y
de

ps
 re

m
ov

ed

consumer_jpeg_d

Figure 4.7: Percentage of memory dependences removed by the oracle analysis broken
down by loop.

59

increased the overhead of the analysis and this scenario does not occur frequently I decided
to omit local variables from the analysis. Therefore, all loop-carried dependences through
local variables will always be included in the oracle DDG when it is used as input to the
compiler.

Figure 4.8 shows that 100% of memory dependences are removed for some loops.
This does not necessarily mean the iterations can run completely independently since
dependences caused by local variables may still cause the loop to be sequentialised.

4.2.3 Parallel performance with the oracle DDG

So far I have simulated a perfect static analysis to produce the most accurate DDG that
a compiler could achieve and find the upper limit of the accuracy of static analysis. This
section shows what the upper limits of HELIX-style parallel performance are, given a
perfect static analysis. This is useful to determine exactly how much performance is
being lost as a result of poor compile-time analysis. The HELIX paralleliser is run as
normal but, rather than performing the static dependence analysis, the compiler simply
reads the oracle DDG previously generated. The compiler then proceeds to parallelise
the code based entirely on dependences that have been identified as real by the oracle
analysis.

Figure 4.8 shows the performance of the individual loops2 in the various benchmarks
when running with 16 cores. Surprisingly, despite the greatly increased accuracy of the
DDG, only two loops in the entire suite experienced any noticeable speedup whatsoever.
For some loops HELIX performance is already so good that no further improvements are
possible. For example, in automotive susan s loop C already achieves linear speedup with
plain HELIX. Therefore, it was impossible to improve on the performance that HELIX
was already offering. Evidently, the dependences which were removed from the DDG for
this benchmark were not restricting HELIX’s ability to effectively parallelise the code.

However, there are still unanswered questions. Loops A and B in automotive susan c
achieve no speedup with HELIX and still did not improve even though almost all of the
memory dependence edges for these loops were removed. There are many other loops
which do not appear to be affected by the improved dependence analysis at all even
though there appears to be considerable scope for further speedup. These loops will be
analysed in section 4.3 to gain further insight.

4.3 Analysis

Consider loop B in automotive susan e: the oracle DDG analysis was capable of removing
almost 80% of the dependences (figure 4.7) but the resultant reduced DDG did not enable
the extraction of any additional parallelism (figure 4.8). However, there is considerable
parallelism available in this loop, as shall be demonstrated in section 5.2 (figure 5.3). The
source for this loop is shown in listing 5.2 and will be discussed in more detail in section
5.2.1.2. The key issue in this kernel is that the induction variables are potentially modified
in the body of the loop. This makes it impossible to start an iteration until the previous
iteration has completed. The static DDG analysis detects a number of dependences since

2Since the oracle analysis is run for each loop individually it was not trivial to parallelise several
loops at once to give an overall program speedup since the oracle DDG could be different for each loop.
Therefore only individual loop spedups are shown.

60

A (7.3%) B (24.1%) C (89.5%) D (98.4%)
Loop ID (coverage)

0

1

2

3

4

5

Lo
op

 s
pe

ed
up

automotive_bitcount

A (7.0%) B (7.1%) C (83.3%) D (83.3%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_susan_c

A (1
5.5

%)

B (1
5.5

%)

C (1
8.2

%)

D (1
8.2

%)

E (
56

.5%
)

F (
56

.5%
)

Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_e

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_s

A (71.4%) B (84.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

office_stringsearch1

A (6.8%) B (92.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

security_rijndael_d

A (6.8%) B (96.1%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

security_rijndael_e

A (78.1%) B (97.1%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

security_sha

A (4.2%) B (4.2%) C (10.3%) D (10.7%) E (17.0%)
Loop ID (coverage)

0

1

2

3

4

5

Lo
op

 s
pe

ed
up

consumer_jpeg_c

A (1
3.6

%)

B (1
5.2

%)

C (1
7.5

%)

D (1
8.0

%)

E (
20

.5%
)

F (
44

.9%
)

Loop ID (coverage)

0

1

2

3

4

Lo
op

 s
pe

ed
up

consumer_jpeg_d

HELIX HELIX + oracle DDG

Figure 4.8: Performance of individual loops with the oracle DDG running with 16 cores.

61

Listing 4.4: Loop A in security rijndael e.

for(i = 0; i < 16; ++i){
/* Enter sequential segment */
inbuf[i] ˆ= outbuf[i];
/* Exit sequential segment */

}

Listing 4.5: Loop C in consumer jpeg c.

for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* Enter sequential segment */
outptr0[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >>

SCALEBITS);
outptr1[col] = (JSAMPLE) ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >>

SCALEBITS);
outptr2[col] = (JSAMPLE) ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >>

SCALEBITS);
/* Exit sequential segment */

}

an array which is indexed by these induction variables is written and read a number of
times within the loop body. In practice, many of these individual accesses never conflict
with each other, resulting in a substantial reduction in the number of dependences in the
oracle DDG. However, the only dependence that really matters is the dependence caused
by the induction variables which cannot be removed because of the unpredictable way
they are modified within the loop.

Loop A in security rijndael e does enjoy a very slight speedup for the oracle DDG
relative to plain HELIX. The code is shown in listing 4.4. The dependence analysis is
unable to determine with certainty that pointers inbuf and outbuf point to separate
allocations and therefore must enforce sequential execution of the statement. The oracle
analysis detects that these references never conflict and enables the removal of that se-
quential segment. Unfortunately the loop body is too short to experience speedup relative
to the sequential baseline.

Loop C in consumer jpeg c gained a significant speedup with the oracle DDG. This
loop converts a block of an image from RGB encoding to YCC encoding. The source
is shown in listing 4.5. The pointers outptr0, outptr1 and outptr2 all point into
different parts of a single dynamically allocated memory region. Although they never
alias, HELIX is unable to disambiguate them and creates the sequential segment marked
in the listing. With the oracle analysis this sequential segment is removed. Loop F in
consumer jpeg d performs the inverse discrete cosine transform (IDCT) on a row of an
image. The code for this loop is too large to reproduce here. Again HELIX generates a
spurious sequential segment due to the inability to precisely disambiguate array references.

Hind [64] observes the difficulty of finding a meaningful metric to quantify the accuracy
of pointer analysis. In figures 4.6 and 4.7 I have reported what is essentially equivalent
to what Hind describes as the direct metric: the number of pairs of objects which the
analysis determines may alias. As an alternative, Hind suggests reporting how the analysis
affects some runtime property, in this case the performance of the parallelised code. The

62

discrepancy between these two results (huge improvements with the direct metric versus
no improvement with the runtime property metric) demonstrates the challenge of choosing
an appropriate metric.

4.4 Summary

In this chapter I have described a method for creating an oracle data dependence graph
which includes only those data dependences which are actually manifested at runtime.
I evaluated the analysis, showing that the compiler significantly overestimates the size
of the DDG. Surprisingly, removing spurious dependences from the graph did not result
in improved parallel performance for these benchmarks in most cases. It would appear
that, without the implementation of additional sophisticated transformations which can
improve privatisation, the dependence analysis is already good enough to extract what-
ever parallelism is available in these benchmarks to a HELIX-style parallelisation model.
However, the benchmarks that have been studied are fairly small and do not exhibit the
complex behaviour found in larger benchmarks which is more difficult for the compiler
to analyse. Therefore, it would be necessary to increase the scope of this limit study to
include such large benchmarks to test whether this result holds in general.

The oracle DDG is not sufficient to represent the complete dynamic behaviour of
the program since even a single manifestation of a dependence at runtime results in an
edge being inserted in the DDG. The question of whether or not additional dynamic
parallelism exists for these benchmarks is still unanswered. This will be the subject of
the next chapter.

63

64

Chapter 5

Uncovering dynamic parallelism

In chapter 4 I looked at the limits of what could be achieved using purely static paral-
lelisation by simulating a perfect dependence analysis. It was found that even with an
ideal analysis, performance could not be improved above the current HELIX baseline.
However, the oracle DDG includes all dependences, even ones which only occur once
throughout the execution of the program. Therefore it does not give an accurate account
of dynamic behaviour. In this chapter I go further towards identifying the ultimate limits
of cyclic-multithreaded parallelism by delving into the realm of speculative execution.

Thread-level speculation (TLS) involves many complicated trade-offs associated with
the runtime expenses of tracking memory references, identifying conflicts and re-executing
incorrect computation. To get a pure idea of the available parallelism, independent of the
restrictions of any specific TLS implementations, I created an ideal speculative model
which is restricted only by dataflow limits, i.e. reads cannot be reordered with respect to
the write which they consume. It should be noted that this model is purely hypothetical
and a realistic implementation of this model is not offered. It serves to provide an upper
bound on what could be achieved with TLS based on a HELIX-style cyclic-multithreaded
parallelisation.

This chapter begins with a precise description of the model and a theoretical outline
of how such a model might be implemented in section 5.1. Results are presented in
section 5.2 showing an upper bound on speculative performance and an analysis of why
speculation achieves speedups where the oracle DDG does not. Finally I look at patterns
and statistics that can be obtained from the model which can be used to direct practical
speculation implementations in section 5.3.

5.1 Ideal dataflow speculation

Write-after-read dependences and write-after-write dependences can, in theory, be re-
moved with memory privatisation so the true limit to performance enhancement with
speculation is read-after-write dependences: the dataflow limit [88]. The ideal dataflow
speculation model is restricted only by data which is produced in one iteration and then
consumed in a later iteration. In this model each thread can make whatever writes it likes
without delay, but must stall any read which consumes data from a previous iteration. It
is assumed, for the purposes of finding an upper bound, that data can be propagated at
zero cost from the producing thread to the consuming thread such that a thread which
is stalled on a consuming read can proceed instantly once the producing write has been
executed.

65

In this section the term “dataflow” is used to describe execution determined by the
flow of data between iterations of the loop. This is in contrast to the classical usage
of the term to refer to execution of instructions based on the availability of inputs to
the instructions. My dataflow model does not take advantage of any parallelism which
is available within a single iteration of the loop. Rather, each individual iteration uses
ordinary control flow and the execution of instructions which consume data produced
by previous iterations is dependent on that data becoming available. Classical dataflow
architectures are generally based on the compiler producing a static dataflow graph so
that for each instruction it can be determined before the execution of the instruction
what its dependences are. By contrast, I do not assume that an instruction’s memory-
based dependences can be determined prior to execution and instead rely on speculative
execution to achieve the maximum possible parallelism, independent of the compiler.

5.1.1 Hypothetical implementation

Ideal dataflow speculation is primarily a limit study and is not considered to be a realistic
model of implementation for a TLS system. However, it is possible to imagine a hypo-
thetical implementation of such a model on a real system. It is worthwhile discussing
the possibility of a real implementation to justify the belief that this model represents a
realistic upper limit of what could be achieved.

Firstly, a mechanism is needed to break write-after-read and write-after-write depen-
dences. This is simplified by the nature of the HELIX parallelisation model. For each
thread a write buffer is needed which stores all non-thread-local writes of an iteration.
This allows arbitrary reordering of write instructions between different parallel threads.
In each write buffer only a single entry is stored per address so that each write to an
address overwrites the value previously stored. The value which is ultimately visible to
subsequent threads is the last value written in an iteration. In addition to the address
and value of each write, a timestamp must also be stored to allow the rollback of specific
writes.

Ensuring the satisfaction of read-after-write dependences is more complex since it is
necessary to ensure that each read returns the value last written within the current thread
or, if no writes have occurred, the final value of the most recent thread which wrote to
that address. So each time a read is encountered, the runtime attempts to look up the
address in the following order:

1. The current thread’s write buffer.

2. The write buffers of other threads starting with the thread immediately older than
the current thread and working back to the oldest.

3. Main memory.

Of course, because the threads are executing speculatively, it is possible that after
a read is executed an older thread will write to the same address. This will cause the
read, and all subsequent execution, to become invalid. To allow fine-grained rollback, a
read log must be kept which records the timestamp of the first read in the iteration for
each address and the program counter address of the read. In addition, the write buffer
maintains a log of all local writes and timestamps so that these can also be rolled back.

To facilitate rollback of invalid execution, each time a thread performs a non-local
write, it must check the read logs of all younger threads and invalidate any threads which

66

have read from that address. Any addresses stored in the local write log with younger
timestamps are reverted to their original values and the program counter is restored to
the point where it can begin executing again.

The overheads of this system would likely be prohibitively high in a real implementa-
tion due to the expense of looking up multiple buffers and logs on each read or write.

5.1.2 Timing model implementation

The dataflow model is built as an extension to the HELIX timing model which was de-
scribed in section 3.5. Since all the code is actually executed completely sequentially,
there is no need to implement a complex fine-grained rollback scheme. As each iteration
is executed, the model records which core the iteration is assigned to and how many
cycles are needed to execute each instruction. Memory accesses are instrumented with
callbacks to the model. For each callback the model simulates the hypothetical implemen-
tation described above to determine on which cycle each instruction would have actually
executed.

For each thread, a write set is created which records the address and timestamp of
each write in an iteration. The write set is stored as a hash table to facilitate quick
lookup for large sets. For each read, the model first does a lookup in the write set of
the currently executing thread. If the write set contains the address then execution may
proceed without other action since the value is already available. Otherwise a lookup
must be performed in the write sets of each previous thread. If the address has been
written by a previous iteration, the currently executing thread is delayed until its cycle
counter is equal to the timestamp of the latest write to that address by the most recent
thread. In this way dataflow dependences are preserved by ensuring that no read can
execute until the completion of the write on which it depends.

A sample execution of the dataflow model is depicted in figure 5.1. When the first
iteration is executed, the cycles elapsed are assigned to virtual core 0 and the cycle
number of each store is recorded. During the second iteration when Load X is executed,
the model will add cycles to virtual core 1 until its counter is greater than the cycle
number of the most recent Store X (in this case, the one recorded by virtual core 0).
In accordance with the hypothetical implementation (section 5.1.1), stores are modelled
as being buffered by the virtual core so there is no need to stall Store Y on virtual core
1 until after the same store on virtual core 0. Delays are only added to allow loads to
always see the most sequentially recent value.

Certain events such as calls to the operating system cannot be executed speculatively
and cannot be analysed and instrumented by the compiler. I modelled these as memory
operations which both read and write to every location in memory. When such an event
occurs, the model delays the executing thread until all writes in older iterations have
completed. In addition, all younger iterations cannot perform any reads until the event
completes (writes are modelled as buffered so are safe to execute anyway).

5.2 Results

Figure 5.2 shows the results of the ideal dataflow timing model compared to the perfor-
mance of HELIX for the cbench benchmarks I am studying. These results were obtained
by parallelising each loop individually, running the benchmark once for each parallelised

67

New Iteration

Load X

Store X

New Iteration

Store Y

Actual Execution

Time

Virtual Cores

Core 0 Core 1

Load X

Store X

Load X

Delay until most
recent store to X

Virtual
cycle

counters

Load X

Store X

Store Y

Store Y

Store X

Store Y

(Store to Y may be re-
ordered since there is no

dataflow conflict)

Add
Add
Mul

15 Cycles

Figure 5.1: Sample execution of the dataflow model.

loop, running the loop selection algorithm (section 3.2.5) and, finally, running the bench-
mark again with the best selection of loops. Speedups are measured relative to the exe-
cution time of the original sequential code produced by ILDJIT. From these results it is
evident that for some cbench benchmarks there is significantly more parallelism available
than is currently being exploited by HELIX. However, for some benchmarks, such as of-
fice stringsearch1, there is no parallelism available whether using HELIX or the dataflow
model. The lack of parallelism may be inherent to the algorithm or may be due to the
manner in which the algorithm was expressed by the programmer. The model cannot
automatically distinguish between these causes but in section 5.2.1 I identify several cases
where coding artefacts have restricted the exploitation of parallelism.

To gain some insight into this it is useful to look at a breakdown of the speedups of
the various loops that constitute the benchmark. Figure 5.3 shows the individual loop
speedups when run with 16 cores. Each loop is labelled with its coverage, defined as
the proportion of total program execution time spent within the loop during sequential
execution. Having broken down the benchmark into its constituent loops a much more
pronounced difference can be seen between the dataflow performance and the HELIX
performance. While HELIX performs well on some high-coverage loops, it is generally
beneficial to improve the speedups of low-coverage loops since it has previously been shown
that a combination of multiple low-coverage loops can give the best speedups [2, 4].

Some loops, such as loop B in automotive susan c, have no speedup with HELIX but
almost linear speedup with the dataflow model. For some loops HELIX is not capable of
exploiting the large amount of parallelism which exists. In the next section I will look in
more detail at some individual benchmarks and loops to understand why HELIX is not
showing speedups in some cases.

68

2 4 8 16
Cores

0
2
4
6
8

10
12
14

Pr
og

ra
m

 s
pe

ed
up

automotive_bitcount

2 4 8 16
Cores

0
1
2
3
4
5
6

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_c

2 4 8 16
Cores

0
1
2
3
4
5
6

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_e

2 4 8 16
Cores

0
2
4
6
8

10
12
14

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_s

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

office_stringsearch1

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

security_rijndael_d

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

security_rijndael_e

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

Pr
og

ra
m

 s
pe

ed
up

security_sha

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

Pr
og

ra
m

 s
pe

ed
up

consumer_jpeg_c

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
og

ra
m

 s
pe

ed
up

consumer_jpeg_d

HELIX
Ideal dataflow

Figure 5.2: Cbench results for ideal dataflow model.

69

A (9.8%) B (34.5%) C (100.0%) D (100.0%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_bitcount

A (7.0%) B (7.1%) C (83.3%) D (83.3%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_susan_c

A (1
5.5

%)

B (1
5.5

%)

C (1
8.2

%)

D (1
8.2

%)

E (
56

.5%
)

F (
56

.5%
)

Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_e

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_s

A (71.4%) B (84.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

office_stringsearch1

A (6.8%) B (92.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
op

 s
pe

ed
up

security_rijndael_d

A (6.8%) B (96.1%)
Loop ID (coverage)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Lo
op

 s
pe

ed
up

security_rijndael_e

A (78.1%) B (97.1%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
op

 s
pe

ed
up

security_sha

A (4.2%) B (4.2%) C (10.3%) D (10.7%) E (17.0%)
Loop ID (coverage)

0

2

4

6

8

10

12

Lo
op

 s
pe

ed
up

consumer_jpeg_c

A (1
3.6

%)

B (1
5.2

%)

C (1
7.5

%)

D (1
8.0

%)

E (
20

.5%
)

F (
44

.9%
)

Loop ID (coverage)

0

2

4

6

8

10

Lo
op

 s
pe

ed
up

consumer_jpeg_d

HELIX
Ideal dataflow

Figure 5.3: Loop breakdown for ideal dataflow model run with 16 cores.

70

Listing 5.1: Second kernel from automotive susan c.

n=0;
for (i=5;i<y_size-5;i++){ /* Loop B */

for (j=5;j<x_size-5;j++) { /* Loop A */
x = r[i][j];
/* Enter sequential segment */
if (x>0) {

if (/* Abbreviated: compare x to each pixel in window */) {
corner_list[n].info=0;
corner_list[n].x=j;
corner_list[n].y=i;
corner_list[n].dx=cgx[i][j];
corner_list[n].dy=cgy[i][j];
corner_list[n].I=in[i][j];
n++;
if(n==MAX_CORNERS){

fprintf(stderr,"Too many corners.\n");
exit(1);

}
}

}
/* Exit sequential segment */

}
}

5.2.1 Case studies

5.2.1.1 automotive susan c

This benchmark is based on the SUSAN algorithm to find corners in an image [89]. The
benchmark consists of two kernels, and each one iterates across the image and performs
some processing at each pixel site. The first kernel, comprising loops C and D, creates an
initial response output highlighting features which look like corners. The second kernel,
comprising loops A and B, passes a window across this initial response identifying local
maxima within the window, with each maximum being added to a list of corners (see
figure 5.4). Smith et al. [89] have published full details of the algorithm.

Of interest is the second kernel which finds local maxima in a sliding window. The
source code of this kernel is shown in listing 5.1, which has been abbreviated here due to
the verbosity of the original. The loops have been labelled in correspondence with the
labels in figure 5.3.

50 53 3 4 3

52 9 4 7 8

3 5 2 8 6

3 4 2 5 5

50 53 3 4 3

52 9 4 7 8

3 5 2 8 6

3 4 2 5 5

Not a corner Corner

Figure 5.4: Second kernel from automotive susan c performs non-maximal suppression.

71

The difficulty with this benchmark centres around the calculation of the variable n.
When a corner is detected, the comparison between x and each of the other pixels in
the window returns true and an entry is inserted into the array corner list. n is the
index into this array and it only gets updated when an entry is inserted. Therefore, on
any given iteration of the loop, it is unknown what the value of n is until the x comparison
tests from all previous iterations have completed. When HELIX compiles this loop, it
must insert a sequential segment to order the accesses to n, sequentialising a portion of
the loop. This results in a major performance hit for HELIX which can now achieve no
speedup whatsoever.

By contrast, the dataflow model can execute in parallel freely until it actually needs to
read the value of n. At this point, whichever thread is reading n must stall until the cycle
on which the most up-to-date value of n was written. By the nature of the algorithm,
the number of corners in an image will likely be small relative to the number of pixels.
Therefore, it is likely that many iterations will pass between one corner and the next and
the dataflow stall time will be minimal.

Of interest is the fact that the outer loop, B, achieves almost linear speedup compared
to the inner loop, A, which achieves a speedup of only 8 on 16 cores. The initial response
created by the first kernel is a sparse image where most pixels are set to zero apart from
the points suspected of being corners. These suspected corners tend to come in clusters
together and the kernel being studied reduces these clusters to a single point which is
recorded as the corner.

So, for the vast majority of iterations of A, there is essentially no work to be done
and these take a negligible amount of time. For the input image used in this experiment
for example, only 0.4% of pixels were non-zero. As a result, even though the inner loop
performs a large number of iterations, on average for this input data, the number of
suspected corners per row of the image is only around 10. With only 10 iterations per
invocation of the loop actually performing any work, speedups larger than 10 cannot be
expected.

It may be noted that, unless there is a requirement that the corners be entered into
corner list in a specific order, there need not be any dependence caused by this data
structure since it would be possible to create private arrays for each thread which are
then merged once the loops completes. However, without some information from the
programmer to indicate that the order is not important, it is necessary for the paralleliser
to preserve sequential semantics and ensure the order is the same as in the sequential
version. This is an example of how coding artefacts may restrict the parallelism which
can be exploited automatically.

5.2.1.2 automotive susan e

This benchmark is very similar to automotive susan c but rather than detecting corners
it detects edges. As shown in figure 5.3 the benchmark contains 6 significant loops. These
are organised into 3 kernels, each comprising two loops which iterate over the image to be
processed. The first two kernels create an initial response image. The third kernel “thins”
the initial response by looking at each pixel site and applying a number of rules based on
the number of connected neighbours each identified edge site is permitted to have. This
creates an output image with thin continuous edges.

Loop B is the outer loop of the third kernel which performs thinning on the initial
response image. The source code for this kernel is too large to reproduce here, but the

72

Listing 5.2: Third kernel from automotive susan e.

for (i=4;i<y_size-4;i++){ /* Loop B */
for (j=4;j<x_size-4;j++){ /* Loop A */

if (mid[i][j] is an edge point) {
n = number of neighbours to mid[i][j] which are edge points
if (n==0) /* No neighbours, remove point */

mid[i][j]=100;

if ((n==1) && (mid[i][j]<6)) { /* One neighbour, extend line */
Extend the line in the direction opposite to the neighbour
If we extended backwards relative to the direction of the window,
i and j must be decremented to reprocess the point that was added.

}

if (n==2) { /* Two neighbours, straighten the line */
Alter window so that line is straighter, example:
X O X X X X
O X O --> O O O
O O O O O O

i and j may be decremented to reprocess a point that was added
}

if (n>2) { /* More than two neighbours, thin out the window */
Remove points so that the edge is a single thin line.
i and j may decremented to reprocess altered pixels

}
}

}
}

algorithm is roughly described by the pseudocode in listing 5.2. The loops have been
labelled to correspond with the labels in figure 5.3. This kernel passes a 3 by 3 window
across the initial edge response image. At each site where the centre pixel was identified
as an edge point, the number of neighbours which are also edge points are calculated and
stored in variable n. Then the kernel performs various actions depending on how many
neighbours the edge point has (also depicted in figure 5.5):

• n == 0: The pixel has no neighbours, it is an orphan and unlikely to be part of a
real edge. Remove the edge point.

• n == 1: The pixel looks to be at the end of an edge. Attempt to extend the edge
in the correct direction (i.e. the direction opposite to the neighbour). Move the
window so that any added pixels get reprocessed.

• n == 2: The pixel is part of a line. Attempt to straighten the line. Move the
window to reprocess any modified pixels.

• n > 2: The pixel is in a crowded region of edge points. The edge should be a
well-defined thin line so some edge points in the window are removed. Move the
window to reprocess any sites where pixels have been removed.

A similar situation to automotive susan c arises where there is a fairly sparse data
structure with most pixels in the image requiring no processing whatsoever. The edge im-
age is considerably more dense than the corner image from automotive susan c, however,
with 6.5% of pixels requiring some processing in this case.

For HELIX this kernel is extremely problematic for two reasons. Firstly, the induction
variables i and j are modified within the loop in a data-dependent manner. This means

73

0 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

Orphan pixel: remove

0 0 0
0 1 1
0 0 0

0 0 0
1 1 1
0 0 0

End of line: extend

1 0 1
0 1 0
0 0 0

1 1 1
0 0 0
0 0 0

Crooked edge: straighten

1 1 0
1 1 1
0 1 1

1 0 0
0 1 0
0 0 1

Noisy edge: thin

Figure 5.5: Third kernel from automotive susan e performs edge thinning.

that HELIX cannot privatise the variables as is normally done for such induction variables
as the value in any particular iteration can not be known until the previous iteration has
completed. This by itself would probably have the effect of sequentialising the entire loop.
Even without that issue, the kernel works on the initial response image, mid, in-place.
Entries in the image may be read in iterations subsequent to them being written. This
would also prevent HELIX from effectively parallelising the loops.

This explains the poor HELIX performance, but what does it say about the dataflow
model? The kernel does contain a significant amount of inherent parallelism since the
window works on a small portion of the image at a time and what happens in one part of
the image in general does not affect another. However, the paralleliser is limited by the
iteration order specified in the original algorithm and so even the parallelised version of
the loop must consider each pixel in the order of the source loop. The pixels are processed
in order along each row, one row after the other. Edges are generally continuous lines
so processing the image in this order means that the pixel sites which cause conflicts are
likely to be processed at around the same time for horizontal lines. This limits the amount
of parallelism which can be exploited by the dataflow model.

For the inner loop, A, this clustering of conflicts severely affects performance and no
speedup is achieved for this loop whatsoever. However, according to figure 5.3 loop B
achieves a linear speedup! To understand this, consider the work that is performed by an
iteration in each of these loops. For loop A, an iteration is a single site and the subsequent
iteration will be a site offset by one pixel in some direction. Any iteration which performs
work is almost certain to conflict with the subsequent one because a pixel written in one
iteration will be read by the next.

Contrast this with loop B where each iteration processes an entire row of the image.
There will naturally be conflicts between adjacent rows of the image as well. However,
any particular edge is likely to be localised to a specific section of the image. Since each
iteration of loop B traverses the entire width of the image, there is always enough room
for each of the cores to operate on independent sections of the data. What happens during
the execution of the parallelised version of loop B is that, in the initial phase, the threads
spend a lot of time stalled while data dependences are being resolved. After this initial
phase the threads become staggered along the width of the image so that each one is
operating on completely separate parts of the data structure.

74

This is an interesting kernel from the point of view of parallelism because the overly
specific nature of the algorithmic description in C prevents any effective parallelisation
by HELIX. However, there is not necessarily a single acceptable output result and even
choosing to traverse the pixels in a different order could result in slightly different output.
Linear speedup could be achieved on this kernel with purely static parallelisation if we
could relax the semantics a little such that overlapping regions did not need to be processed
in a specific order. Some previous work has looked at taking advantage of parallelism in
this manner by allowing the programmer to indicate a relaxing of the requirement that
the output must be identical to that obtained by running sequentially. For instance, the
Galois infrastructure [25, 5] uses the notion of unordered-set iterators to express a loop
in which any sequential ordering of the iterations produces an acceptable output.

5.2.1.3 security sha

This benchmark implements the SHA-1 hashing algorithm and is designed to take a
large chunk of data, such as a file, and create a 160-bit digest. The most significant
loops, A and B, are shown in listing 5.3. Loop B reads chunks of input data from a file
and calls sha update on each chunk to update the output digest. Loop A, in turn,
breaks these chunks into 64-byte chunks which are used as input to the next round of
the hash. Since each iteration of each of these loops reads the output digest, performs
some transformations and writes the result back to the digest, the loop contains definite
loop-carried dependences and is not parallelisable. However, the dataflow model can still
achieve a small speedup for loop A. Function sha transform does some transformation
of the input chunk before reading the digest, updating it and writing it back. Since the
transformation of the input can be overlapped with the digest update of the previous
iteration, a small speedup can be achieved.

5.2.1.4 automotive bitcount

This benchmark consists of a number of different methods of counting bits in a chunk
of memory. Loop C experiences a large speedup with the dataflow model. This is a
very straightforward loop which runs a particular bit-counting algorithm on a number of
different inputs. The source code for this loop is shown in listing 5.4.

Variables n, j and seed do not cause dependences since these can be calculated
locally within each thread. For example, rather than communicating j from one thread
to the next, the compiler creates a local copy of j in each thread and increments it by
the total number of threads on each iteration. However, despite not having any real
loop-carried dependences, the benchmark does not achieve linear speedup with HELIX.
To explain this, it is useful to study the speedup of this loop for various numbers of
cores, as shown in figure 5.6. The performance of HELIX is comparable to the dataflow
model up until 8 cores, but then it plateaus. This is caused by the HELIX loop prologue.
Every HELIX loop contains at least one sequential segment which executes the minimum
amount of code to determine whether or not the next iteration should execute. In this
case, the prologue must calculate the new value of j and check the value of the condition
j < iterations. The loop body is sufficiently short that this prologue forms a non-
negligible part of each iteration and it must be executed sequentially. In addition, there
is some communication overhead in synchronising the prologue to ensure it runs in order.
By Amdahl’s law, this implies a limit on the maximum speedup possible. For example, if
the test accounts for 15% of the total loop body, the maximum possible speedup is 6.67.

75

Listing 5.3: Loops G and H from security sha.

void sha_stream(){
BYTE data[BLOCK_SIZE];
while ((i = fread(data, 1, BLOCK_SIZE, fin)) > 0) { /* Loop B */

sha_update(sha_info, data, i);
}

}

void sha_update(){
while (count >= SHA_BLOCKSIZE) { /* Loop A */

memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
sha_transform(sha_info);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;

}
}

void sha_transform(){
int i;
LONG temp, A, B, C, D, E, W[80];

for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];

}
for (i = 16; i < 80; ++i) {

W[i] = W[i-3] ˆ W[i-8] ˆ W[i-14] ˆ W[i-16];
}

/* Abbreviated: read digest */

/* Abbreviated: update digest */

/* Abbreviated: write digest */
}

Listing 5.4: Loop C from automotive bitcount.

for (j = n = 0, seed = 1; j < iterations; j++, seed += 13)
n += pBitCntFunc[i](seed);

76

HELIX could achieve comparable performance to the dataflow model with purely static
parallelisation in this case by eliminating the loop prologue. This is possible because for
this loop each thread could determine independently if its next iteration should run.
HELIX does not currently implement this optimisation. The results of the dataflow
model are useful, not just as a limit study, but also to automatically detect scenarios
where HELIX is underperforming. This is helpful for directing future enhancements to
the compiler.

2 4 8 16
Cores

0

2

4

6

8

10

12

14

Sp
ee

du
p

automotive_susan_c:loop C

HELIX
Ideal dataflow

Figure 5.6: Loop C from automotive bitcount with ideal dataflow for various numbers of
cores.

5.2.2 Load balancing

One particular limitation of the ideal dataflow model is that the HELIX constraint of
in-order iteration start is still enforced, i.e. iteration i + 1 cannot start until iteration i
has started. As a result there may be performance degradation due to load imbalance
when cores are stalled waiting for the completion of a particularly long-running iteration
(see figure 5.7). It was observed in section 5.2.1 that some benchmarks such as auto-
motive susan c do have significant imbalance in the amount of work performed by each
iteration. In this section I will show how much performance degradation is caused by this
limitation.

I implemented an extension to the dataflow model which removes the restriction that
an iteration can only start once the previous iteration has started (see figure 5.7). This
prevents long-running iterations from causing other cores to stall. Figure 5.8 compares
the performance of the original dataflow model (in-order iteration start, IOIS) with the
new model (out-of-order iteration start, OoOIS). On the whole, it does not appear that
forcing iterations to begin in order is a major performance limitation for the benchmarks
being studied. For automotive susan c and automotive susan e there are several loops
which benefit from OoOIS. As discussed in the case studies, these are loops which operate
on pixels in an image and the amount of work done varies depending on the value at a

77

Iter 0

Iter 1

Iter 2

Iter 3

Core 0

Core 1

Core 2

Core 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8

Iter 10

Iter 9

Iter 11

Iter 0

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8

Iter 10

Iter 9

Iter 11

Time Time

In-order iteration start (IOIS) Out-of-order iteration start (OoOIS)

Figure 5.7: Out-of-order iteration start is beneficial for unbalanced iterations.

particular site. Loop A in automotive susan c for instance does not perform any work at
most pixel sites so permitting OoOIS allows each core to progress quickly to a pixel where
some work is actually performed.

Figure 5.9 shows the performance of loop A in automotive susan c in more detail. This
figure shows the results of running the benchmark with the original 264KB input image
and also a larger 6MB input image with wider rows. The 6MB image is noisier, resulting
in more corners being detected in the initial response image. Firstly, looking at results
for just the IOIS model, it is evident that the speedup is much better for the large image
with 2 cores but for 16 cores the performance is virtually the same. This is because the
noisier image makes it more likely for corners to be suggested in adjacent pixels, whereas
in the quiet image corners are spaced out and cannot be processed concurrently.

Secondly, the OoOIS performance increases dramatically for the large image relative
to the IOIS performance as core count is increased. As described in section 5.2.1.1, the
number of pixels for which any significant work must be performed is relatively small in
the smaller image, so performance cannot scale beyond 8x. For the larger image there is
considerably more work to do in each image row but the IOIS model does not scale well.
This demonstrates that the importance of load balancing becomes more critical for these
benchmarks as input size and core count are increased.

5.3 Patterns and Statistics

So far in this chapter I have shown that there is a significant amount of extra parallelism
available in cbench which is not being exploited by plain HELIX. The dataflow model
can be used to go a step further towards understanding the nature of this parallelism by
collecting various statistics as the program executes. By understanding the behaviour of
dependences at runtime it will be possible to exploit that behaviour in a real system.

5.3.1 Sequential segment conflicts

The HELIX paralleliser identifies dependences statically and creates sequential segments
which ensure that these dependences are satisfied. However, the HELIX algorithm must
be conservative so that any dependences which may occur are synchronised at runtime.
As a result, it is likely that some sequential segments may not be needed at all or may
only be needed on certain iterations. This section looks at the behaviour exhibited by
sequential segments at runtime to get a better understanding of how the impact of this
conservativeness can be reduced while still taking advantage of the analysis that HELIX

78

A (9.8%) B (34.5%) C (100.0%) D (100.0%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_bitcount

A (7.0%) B (7.1%) C (83.3%) D (83.3%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_susan_c

A (1
5.5

%)

B (1
5.5

%)

C (1
8.2

%)

D (1
8.2

%)

E (
56

.5%
)

F (
56

.5%
)

Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_e

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_s

A (71.4%) B (84.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

office_stringsearch1

A (6.8%) B (92.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
op

 s
pe

ed
up

security_rijndael_d

A (6.8%) B (96.1%)
Loop ID (coverage)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Lo
op

 s
pe

ed
up

security_rijndael_e

A (78.1%) B (97.1%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
op

 s
pe

ed
up

security_sha

A (4.2%) B (4.2%) C (10.3%) D (10.7%) E (17.0%)
Loop ID (coverage)

0

2

4

6

8

10

12

Lo
op

 s
pe

ed
up

consumer_jpeg_c

A (1
3.6

%)

B (1
5.2

%)

C (1
7.5

%)

D (1
8.0

%)

E (
20

.5%
)

F (
44

.9%
)

Loop ID (coverage)

0

2

4

6

8

10

Lo
op

 s
pe

ed
up

consumer_jpeg_d

Ideal dataflow in-order iteration start (IOIS) Ideal dataflow out-of-order iteration start (OoOIS)

Figure 5.8: Dataflow model with out-of-order iteration start.

79

2 4 8 16
Cores

0

2

4

6

8

10

12

Lo
op

 s
pe

ed
up

automotive_susan_c:loop A, Ideal dataflow

264KB input IOIS
6MB input IOIS
264KB input OoOIS
6MB input OoOIS

Figure 5.9: Loop A with original 264KB input and large 6MB input.

has performed.

To study sequential segment conflicts, the timing model is run with all memory accesses
instrumented, and read and write sets are recorded for each sequential segment. Each
time a sequential segment finishes, the model compares all the addresses touched in this
segment with all the addresses touched by the corresponding sequential segment in each
of the N − 1 previous iterations, where N is the number of cores. If at least one address
conflicts then it would have been necessary to synchronise that sequential segment.

In the following sections I will look at the sequential segment statistics for some of
the cbench benchmarks. The tables show the sequential segment ID, the total number
of iterations that executed for a loop and the number of iterations on which conflicts
occurred. These results were obtained by running the timing model with 16 cores. A
conflict is recorded for a sequential segment if any address touched during a particular
iteration was also touched by any of the previous 15 iterations in the same sequential
segment. Each sequential segment executes once per loop iteration. Sequential segment
ID 0 is always the loop prologue (i.e. that section of the loop which must be executed to
determine if the loop has reached its exit condition).

5.3.1.1 automotive susan c

Table 5.1 shows the conflict rates for the sequential segments in automotive susan c. Each
loop in this benchmark contains only a single sequential segment, the loop prologue. The
size of the prologue itself varies greatly. In loops C and D, the prologue accounts for only
a small proportion of the loop body, whereas in loops A and B the prologue takes up the
vast majority of the loop. This is due to HELIX performing sequential segment merging
to reduce the number of signals which must be communicated at runtime. Looking at the
HELIX performance in Figure 5.3 it is evident that the different sequential segment size
results in vastly different performance for these two pairs of loops.

As described in section 5.2.1.1, loops A and B iterate across an image finding local

80

Loop ID SS ID Iterations Conflicts Conflicts %
A 0 203351280 28934 0.0%
B 0 344862 115736 33.6%
C 0 203351280 0 0.0%
D 0 344862 344080 99.8%

Table 5.1: Sequential segment statistics for automotive susan c

Loop ID SS ID Iterations Conflicts Conflicts %
A 0 1884245974 0 0.0%
B 0 211680000 0 0.0%

1 198450000 185220000 93.3%
2 198450000 185220000 93.3%
3 198450000 185220000 93.3%

C 0 13252050 0 0.0%
D 0 22099 0 0.0%

1 22050 22001 99.8%
2 22050 0 0.0%
3 22050 0 0.0%
4 22050 22001 99.8%

Table 5.2: Sequential segment statistics for automotive susan s

maxima. Each iteration of the inner loop, A, accounts for a single pixel whereas each
iteration of the outer loop, B, accounts for an entire row of the image. Whenever a corner
is found, a shared array is modified and this causes a conflict. Because the outer loop
accounts for a much larger portion of the image, it is more likely that any given row will
contain a corner and this results in a much higher conflict rate for loop B. It is interesting
that, despite having a much higher conflict rate, loop B actually performs better than A
in the dataflow model. This is due to iterations of the outer loop becoming staggered over
time such that they naturally begin to process different sections of the image.

5.3.1.2 automotive susan s

Table 5.2 shows the sequential segment statistics for automotive susan s. This benchmark
performs smoothing on an image by passing a window across the image and calculating
new values at each site based on a gaussian function. The outer loops, C and D, iterate
across the image and the inner loops, A and B, iterate within the window. Of the inner
loops, loop A has no conflicts while loop B has a large number of conflicts. This is reflected
in the results in Figure 5.3 where A shows some speedup but not B.

5.3.1.3 security rijndael d

Table 5.3 shows the sequential segment statistics for security rijndael d. This program
performs AES decryption on a piece of encrypted input text. The source code for the
kernel of this benchmark is shown in Listing 5.5. The kernel consists of two loops, the
outer loop, B, which reads a chunk of the input text and performs the decryption and the
inner loop, A, which exclusive-ors each input block with the previous block.

81

Listing 5.5: Loops A and B from security rijndael d.

while(1) { /* Loop B */
i = fread(bp1, 1, 16, fin); /* read next encrypted block */

/* to first input buffer */
if(i != 16) /* no more bytes in input - the decrypted */

break; /* partial final buffer needs to be output */

/* if a block has been read the previous block must have been */
/* full length so we can now write it out */
if(fwrite(outbuf + 16 - l, 1, l, fout) != (unsigned long)l) {

printf("Error writing to output file: %s\n", ofn);
return -11;

}

decrypt((const byte*)bp1, (byte*)outbuf, ctx); /* decrypt the new input block */
for(i = 0; i < 16; ++i) /* Loop A */

outbuf[i] ˆ= bp2[i]; /* xor it with previous input block */

/* set byte count to 16 and swap buffer pointers */
l = i; tp = bp1, bp1 = bp2, bp2 = tp;

}

Loop ID SS ID Iterations Conflicts Conflicts %
A 0 541700393 0 0.0%
B 0 31993736 31864729 99.6%

1 31864729 31735722 99.6%

Table 5.3: Sequential segment statistics for security rijndael d

This outer loop contains two sequential segments. SS ID 0 (the prologue) performs
the fread library call and checks if data is available. SS ID 1 covers the entire remainder
of the loop body. This loop is inherently sequential since the decryption of each block
depends on the decrypted value of the previous block. This is reflected by the statistics
in the table which show that both sequential segments conflict on almost every iteration.
The reason there is not a conflict on 100% of the iterations is that each time the loop is
invoked, the first iteration will have no previous iterations to conflict with.

The inner loop, A, is trivially parallelisable and contains no conflicts. Figure 5.3
showed a small speedup for this loop with the dataflow model which is due to the removal
of the requirement to sequentialise the loop prologue.

5.4 Summary

In this chapter I have shown that there is extra parallelism that cannot be exploited by
the oracle DDG and that it is necessary to take advantage of the dynamic behaviour of
the program to gain further speedups. I demonstrated an ideal dataflow model which was
used place an upper limit on the speedup achievable with a cyclic-multithreading paral-
lelisation model. I showed that the HELIX-imposed constraint of starting loop iterations
in order does not significantly reduce performance. Finally I presented some statistics
for sequential segment conflicts. While this has shown that extra parallelism is available,
the dataflow model is not considered to be a realistic approach to employ on a real ma-
chine without adding substantial hardware support for the hypothetical implementation
described in section 5.1.1. In the next chapter I will propose some realistic techniques to
show how much of this parallelism can be exploited in practice.

82

Chapter 6

Practical speculative parallelism

In chapter 4 it was shown that improving static dependence analysis does not enhance
parallel performance for a set of embedded benchmarks. However, chapter 5 proved that
a significant amount of further parallelism is available in these benchmarks if the dynamic
behaviour of the program can be exploited. This chapter discusses practical techniques for
extracting this parallelism and shows what performance can be expected from a realistic
system.

Various approaches are considered to run the HELIX code speculatively, all using
a conflict resolution scheme based on transactional memory. I will explore the various
trade-offs involved in speculative execution and discuss the characteristics required of a
thread-level speculation (TLS) implementation to achieve superior performance.

Speculation is not always profitable. Loops with frequent dependences are unlikely to
benefit from speculation due to the overhead of the speculation support and the costs of
rollback and re-execution. Ultimately the key is finding the balance between HELIX-style
static parallelisation and dynamic speculative execution and identifying which technique
to use in which situation.

To evaluate the various schemes, I have implemented a number of HELIX timing
models which simulate how execution would proceed on a real system. Using the timing
models allows evaluation of a wide range of implementations and parameters. In addition
it allows easy exploration of the complete design space of TLS without the excessive
engineering overhead of providing multiple fully-functional implementations.

This chapter begins with a discussion of the overlapping features of TLS and trans-
actional memory (TM) and how to leverage previous exploration of the trade-offs in TM
to improve our understanding of the TLS design space (section 6.1). This motivates the
extension of the HELIX timing model to include simulation of TM in section 6.2, where
a parameterisation of various TM implementations is presented. Section 6.3 describes
a pure speculation model which discards all the HELIX generated synchronisations and
relies solely on speculation to preserve program correctness. This model is further refined
in section 6.4 by using profile data to determine whether it is sensible to speculate or
not. Finally I present a study of the sizes of transactions using my scheme and show that
current proposals for hardware TM support would comfortably accommodate this scheme
(section 6.5).

83

6.1 Supporting speculation with transactions

Transactional memory (TM) and thread-level speculation (TLS) have many common fea-
tures and so speculation implementations are commonly based on transactional memory
algorithms or even incorporate existing TM implementations. Essentially a TM system is
a means of sandboxing portions of execution which run in parallel such that their memory
reference conflicts are resolved in a well-defined manner. The TM ensures that the ulti-
mate result of the complete execution is equivalent to some sequential execution schedule
where all the portions are executed in some order one after the other.

Broadly speaking, a TM implementation will have the following features:

• Conflict checking system which identifies memory addresses touched by multiple
transactions.

• Rollback capability to erase the effects of invalid computation.

TLS also requires these features so there is significant overlap between the two con-
cepts. TLS generally has an additional restriction that the equivalent sequential execution
schedule must have some specific ordering. In HELIX-style parallelisation the portions
that need to be sandboxed are iterations and it is strictly required that the effects of each
iteration appear to happen in the order prescribed by the original sequential loop (i.e.
loop-iteration order).

6.1.1 Design decisions

The TM design space is large and a number of design decisions must be made to create an
efficient implementation for TLS. In some cases, the specialised nature of loop-iteration-
based speculation enforces a particular decision. In this section I will describe some of
the major decisions that need to be made.

Deferred versus direct update The most important factor affecting the performance
and implementation of the TM system will be the manner in which transactional writes
are propagated to non-transactional memory state. This decision dictates what happens
when a transaction performs a write. A deferred update system will implement a write
buffer which records all writes performed during the transaction. At commit-time the
transaction must transfer all the values in the write buffer to the main memory store.

In contrast, a direct update system modifies the memory in place. This has the
advantage that it does not need to calculate the appropriate buffer location on each write
and does not incur the overhead of having to flush the buffer to memory on commit.
However, a direct update system must implement some system for logging modifications
such that they can be rolled back if a transaction fails.

In general, the trade-off is that deferred update systems can handle rollbacks more
efficiently by simply invalidating the write buffer, while direct update systems can han-
dle commit more efficiently since the memory has already been updated. There is an
additional complication in implementing direct update for TLS because of the strict loop-
iteration ordering of transactions. When a younger transaction writes to an address and
then an older transaction reads the address, the older transaction must take precedence so
the younger transaction will be aborted. In a general purpose TM, the ordering of trans-
actions is irrelevant and this scenario would not necessarily result in rollbacks. HTM

84

systems are more commonly based on the deferred update model using a private cache as
the write buffer, which allows efficient conflict detection and commit. For these reasons I
have used the deferred update model for all the experiments in this chapter.

Lazy versus eager conflict checking Deciding at what point in the lifetime of the
transaction the system should attempt to detect conflicts is of significant consequence.
In general there are two broad possibilities: detect conflicts each time the transaction
performs a memory access (eager) or detect conflicts at the end of the transaction just
before it commits (lazy).

The advantage of eager conflict checking is that the system can react to conflicts as
soon as they occur, thus avoiding having the transaction continue executing even though
it is destined to abort. However this results in a much larger overhead on each access.
In addition, for TLS implementation it would also be necessary to perform all the checks
again at commit-time to ensure an older transaction has not written one of the addresses
in the intervening period. As such I have largely focussed on lazy conflict checking to
keep the overhead of performing transactional memory accesses to a minimum.

Weak versus strong isolation A crucial decision for general purpose TM implementa-
tion is how to deal with non-transactional memory accesses executing concurrently with
transactional memory accesses. In a weak isolation system, code executing outside a
transaction is not modified and conflicts with a running transaction will not be detected.
It is the programmer’s responsibility to ensure such conflicts do not occur. Strong isola-
tion implementations transform all memory accesses even outside transactions such that
a transaction that conflicts with non-transactional code will be aborted.

The pure speculation model (section 6.3) runs all loop code transactionally so isola-
tion is not an issue. The judicious speculation model (section 6.4) does allow concurrent
execution of speculative and non-speculative code, however, the compiler analysis en-
sures that conflicts cannot occur between transactional and non-transactional code so the
weak/strong isolation distinction is not applicable. Parallel code can only run outside a
transaction if it has been proven by the compiler to be safe.

Contention management Contention management determines what happens when a
conflict is detected between two transactions and must be resolved. In general this is
largely concerned with determining whether a transaction needs to be rolled back and
deciding which transaction must be aborted. This decision is made simple for TLS by
the restriction that transactions must commit in loop iteration order. Therefore when a
conflict arises, the younger transaction is always the one to be aborted.

Granularity The decision as to what granularity conflicts should be detected at can
be a key factor in the performance of the system. Large granularities (e.g. cache line
size) allow for more efficient data structures and can result in quicker conflict checking if
multiple memory references within a transaction are stored in the same bin. However, false
conflicts are more likely. Small granularities (e.g. byte or word size) increase overhead
but result in more accurate conflict detection. Some systems operate at the granularity
of objects in an object-oriented program [34]. This has the advantage of tailoring the
conflict detection granularity to the nature of the program in question; however, it is not
applicable to general purpose programs written in C and I will therefore not consider this

85

option. I have used word-sized conflict detection granularity since it is not desirable that
loop iterations which operate on adjacent array indices should be recorded as a single
transactional object. This may still present problems for byte arrays however.

6.2 Speculation timing model

In section 3.5 I described the HELIX timing model which estimates the parallel speedups
which can be achieved by running an instrumented sequential version of the program.
The timing model is independent of specific architectural features and provides an upper
bound on the potential of the execution styles described in this chapter. However the
model was shown to accurately predict speedups for a range of loops in cbench on real
machines in section 3.5.2. Now the timing model is enhanced with a TM-like extension
which can be used to estimate the speedups obtainable with speculation. The extension
operates in much the same manner as described previously for the HELIX timing model,
by counting the clock cycles elapsed on a number of virtual processors in response to
events which occur during execution of the program. In addition to the events recorded
in the original model, it is now also necessary to record all memory accesses to facilitate
accurate simulation of the TM.

Loops are parallelised one at a time as this is most conducive to understanding the be-
haviour of the code under speculative execution. The HELIX transformations are applied
to the loop to produce a parallelised version. Every memory access to a non-local variable
is then instrumented with a callback to the timing model, passing the address which is
read or written. HELIX converts loop-carried register and local variable dependences into
non-local memory accesses so these can be tracked by the TM (see section 3.2.4 for more
details). As part of the standard HELIX optimisations, variables which can be privatised
and loop induction variables are converted into local variables and these are not tracked
by the TM since they cannot cause dependences.1

6.2.1 Model implementation

The initial implementation of a timing model to enhance HELIX performance uses a sim-
ple writeback TM with lazy conflict checking. The loop is parallelised using the standard
HELIX algorithm but all sequential segment ordering constraints are ignored. Instead,
the entire iteration, including the loop prologue, is run using a TM implementation to
ensure that data dependence conflicts are respected.

This model is based on a deferred update TM. Speculative writes which occur in the
loop are buffered by the transaction and do not become visible to other threads until
after the iteration has completed and the transaction has been validated. A hash table is
created for each transaction to store speculative writes to allow efficient querying for the
existence of addresses. This is called the write set.

In addition to the write set, a record of all addresses which were read during the
transaction must be maintained, along with the times at which they occurred. This
information is stored in another hash table called the read set.

When a transaction commits, it must ensure that it has not read any values which
were subsequently updated by an older transaction. Once the iteration has completed

1An overview of these standard parallelisation optimisations is provided in section 2.1.1.

86

execution, it searches all older transactions to see if they contain any of the addresses
in the current transaction’s read set. If the address is contained and the conflicting
transaction committed after the address was read in the current transaction, the current
transaction must be rolled back and re-executed.

6.2.2 TM implementation

The TM design space is large and I was faced with deciding between many potential
implementation styles. Therefore, to the greatest extent possible, I have parameterised
the model to facilitate the exploration of the design space. Of crucial importance is accu-
rately modelling the overheads which are caused by the addition of TM instrumentation.
From my experience of implementing TM, from studying existing TM schemes [90] and
from consulting with industry partners [91], I have determined that overheads can be
categorised according to six main sources:

• Transaction start: When the transaction starts there is at least the overhead of
storing the current environment to enable execution to restart from this point, i.e.
program counter, stack pointer, live register values. In addition, the implementation
may have some overhead to set up data structures.

• Transactional load: When a transaction performs a load it will incur overhead
from adding the address to a read set, checking and recording the current version
of the location, and/or recording the current value of the memory location.

• Transactional store: When a transaction performs a store, it will incur overhead
from adding the address to a write set and/or buffering the new value.

• Validate reads: When a transaction attempts to commit, it will generally perform
some verification of the read set to ensure that the version of a variable which was
read is consistent. This cost is per entry in the read set.

• Commit writes: Once a transaction has validated its read set, buffered writes can
be written out to their original intended locations. This cost is per entry in the
write set.

• Abort: When a conflict is detected, the TM must revert the system to its state
before the transaction began. For a deferred update system this simply involves
clearing out the data structures used to record the transaction’s reads and writes.
This cost is per entry in the read and write sets.

The parameterisation is primarily modelled on a deferred update system. It would
be possible to model a direct update system with some minor modifications and changes
to the parameter values. However the challenges of using direct update for speculation
have already been discussed (section 6.1.1), and consequently, I have chosen to focus
on a deferred update implementation. These overheads could be further categorised to
increase accuracy for specific TM designs. For instance, the overhead of a load may be
different if it is to a location which has previously been read in the same transaction.
However, from discussion with industry partners [91] and from the previous use of a
similar parameterisation by Olukotun et al. [92], I have concluded that these parameters
are sufficient to provide adequate estimates of performance with speculation.

87

6.2.3 Determining parameter values

The main advantage of parameterising the design is that it allows estimation of the per-
formance of speculation under various TM designs and observation of the maximum over-
heads which can be borne while still achieving speedup. In light of this, I have done
studies to determine the appropriate parameter values to model various styles of TM.
This section discusses available TM implementations and how TM can be best designed
to suit TLS. Three TM models are considered:

1. TinySTM: An existing general purpose STM implementation [90].

2. TLS-STM: An STM design currently being implemented which is opti-
mised for TLS.

3. TCC-HTM: A HTM model described by Olukotun et al. [92].

The overheads I determined are summarised in table 6.2 on page 93.

6.2.3.1 TinySTM

TinySTM [90] is an open source software TM implementation which supports various TM
designs. TinySTM is word-based which makes it suitable for parallelising C programs
where it is necessary to track memory references based on runtime addresses. TinySTM
tracks memory references through a shared array of locks. When a memory access is
executed transactionally, the address is hashed to give an offset into the array. The value
of each array element either stores the current version number of the lock or the address
of the transaction which currently holds the lock if the lock is taken.

TinySTM has three designs which can be chosen at compile-time:

1. Write-back encounter-time-locking: A deferred update design where the trans-
action takes a lock on a location as soon as that location is written.

2. Write-back commit-time-locking: A deferred update design where the transac-
tion only takes locks on written locations at commit-time.

3. Write-through: A direct update design.

I primarily considered the write-back commit-time-locking (WB-CTL) design since di-
rect update designs introduce complications for TLS (as described previously) and taking
locks at commit-time most closely followed my own TM implementation which will be
described later.

The overheads of the STM are characterised by looking at a sample application: con-
servative smoothing [93]. This is an image-processing algorithm which removes noise
spikes from an image, i.e. isolated pixels which have much higher or lower intensity than
the surrounding pixels. The kernel of the application is shown in listing 6.1. For this
experiment the outer loop is parallelised, i.e. processing rows of the image in parallel.
This is an interesting loop for TLS since, if noise is relatively rare, the rows can generally
be processed independently. The inner loop would also be a candidate for speculation but
each iteration would be very short and the fixed overheads of ordering these iterations
would outweigh the benefit of speculation. This kernel was chosen because it is fairly

88

Listing 6.1: Kernel of conservative smoothing image filter.

for(int i = 1; i < y_size-1; i++){

int v00, v01, v02, v10, v11, v12, v20, v21, v22;
v01 = R[i-1][1]; v02 = R[i-1][2];
v11 = R[i][1]; v12 = R[i][2];
v21 = R[i+1][1]; v22 = R[i+1][2];

for(int j = 1; j < x_size-1; j++){
v00 = v01; v01 = v02; //
v10 = v11; v11 = v12; //
v20 = v21; v21 = v22; //
v02 = R[i-1][j+1]; // Shift window to the right
v12 = R[i][j+1]; //
v22 = R[i+1][j+1]; //

int local_max = 0;
if(v00 > local_max) local_max = v00; //
if(v01 > local_max) local_max = v01; //
if(v02 > local_max) local_max = v02; //
if(v10 > local_max) local_max = v10; //
if(v12 > local_max) local_max = v12; // Find local maximum
if(v20 > local_max) local_max = v20; //
if(v21 > local_max) local_max = v21; //
if(v22 > local_max) local_max = v22; //
if(v11 > local_max*MAX_GRAD)

R[i][j] = local_max;

int local_min = 0;
if(v00 < local_min) local_min = v00; //
if(v01 < local_min) local_min = v01; //
if(v02 < local_min) local_min = v02; //
if(v10 < local_min) local_min = v10; //
if(v12 < local_min) local_min = v12; // Find local minimum
if(v20 < local_min) local_min = v20; //
if(v21 < local_min) local_min = v21; //
if(v22 < local_min) local_min = v22; //
if(v11*MAX_GRAD < local_min)

R[i][j] = local_min;
}

}

small and easy to instrument, it exhibited behaviour which could be exploited with TLS,
it has a high density of memory accesses which exposes the overhead of the TM system
and it allowed the addition of extra memory accesses easily which facilitated obtaining
more robust results.

This kernel was manually instrumented with calls to TinySTM to study the perfor-
mance that could be achieved by parallelising the loop with TLS. In addition to instru-
menting all loads and stores in the program, it is necessary to add support for in-order
commit2. The modifications are shown in listing 6.2. The outer loop is modified such
that each thread processes a row of the image in turn. sigsetjmp is called to save the
environment at the point where the transaction begins. TinySTM uses siglongjmp to
return to this point if the transaction aborts and re-execution is necessary. Every access
to the array R is converted to a call to stm load or stm store. To enforce in-order
commit of transactions (necessary to preserve the sequential semantics of the original
loop) a shared variable, global commit stamp, is added along with a thread-local
variable, txn stamp. A transaction may only commit when its txn stamp is equal to
the global commit stamp. The txn stamp is essentially an induction variable and
can be calculated locally by each thread. Variables v00, v01 etc. are all written first in

89

Listing 6.2: Conservative smoothing following manual instrumentation to support TLS
parallelisation of the outer loop.

/* This code runs on each processor */
int txn_stamp = thread_id;
for(int i = thread_id+1; i < y_size-1; i+=NTHREADS){

sigjmp_buf e = stm_start((stm_tx_attr_t)0);
sigsetjmp(*e,0); // Save environment for re-execution

int v00, v01, v02, v10, v11, v12, v20, v21, v22;
v01 = stm_load(&R[i-1][1]); v02 = stm_load(&R[i-1][2]);
v11 = stm_load(&R[i][1]); v12 = stm_load(&R[i][2]);
v21 = stm_load(&R[i+1][1]); v22 = stm_load(&R[i+1][2]);

for(int j = 1; j < x_size-1; j++){
v00 = v01; v01 = v02;
v10 = v11; v11 = v12;
v20 = v21; v21 = v22;
v02 = stm_load(&R[i-1][j+1]);
v12 = stm_load(&R[i][j+1]);
v22 = stm_load(&R[i+1][j+1]);

int local_max = 0;
/* find local_max ... */
if(v11 > local_max*MAX_GRAD)

stm_store(&R[i][j], local_max);

int local_min = 0;
/* find local_min ... */
if(v11*MAX_GRAD < local_min)

stm_store(&R[i][j], local_min);
}

while(global_order_stamp != txn_stamp); // Wait for turn
stm_commit();
global_order_stamp++; // Allow next iteration to commit
txn_stamp += NTHREADS;

}

each iteration of the outer loop and can therefore be privatised to each thread.

Determining the overheads of the various TM operations was non-trivial since the
operations generally run for a very short period of time (<100 clock cycles). Most methods
to measure cpu usage (clock, clock gettime etc.) have a relatively large overhead
at that scale and it is difficult to distinguish the overhead of the TM from the overhead
of the measurement instrumentation. I experimented with the possibility of timing a
whole iteration and then progressively removing calls to the STM so that the reduction in
overall execution time would be equal to the overhead of the removed calls. This produced
inconsistent results and does not seem to be a viable method since removing calls affects
the overhead of other calls, e.g. removing the calls to stm store reduces the overhead
of stm commit since there are now no buffered stores to be written out during commit.

Ultimately I settled on using the x86 RDTSC instruction which accesses the processor’s
timestamp counter, a 64-bit register which counts the number of clock cycles elapsed since
the processor reset. I measured the overhead of RDTSC to be 24 cycles on our test machines
(a 4-core Haswell server and an Ivy Bridge 16-core server). An example of how the code
was instrumented is shown in listing 6.3. For loads and stores, rather than timing a single

2The most recent version of TinySTM includes support for in-order commit of transactions but this
is only available in the encounter-time-locking design.

90

Listing 6.3: An example of how RDTSC was used to measure overheads.

unsigned long long start_clock = rdtsc();
v11 = stm_load(R[i][j]); // Actual load
tmp = stm_load(A[0]); //
tmp = stm_load(A[1]); //
tmp = stm_load(A[2]); //
tmp = stm_load(A[3]); // Extra loads inserted to reduce variability of results.
tmp = stm_load(A[4]); // ’A’ is a stack-allocated array and will not
tmp = stm_load(A[5]); // cause inter-thread conflicts.
tmp = stm_load(A[6]); //
tmp = stm_load(A[7]); //
tmp = stm_load(A[8]); //
unsigned long long end_clock = rdtsc();
totalclocks += end_clock - start_clock - 24 /* RDTSC overhead */;
totalloads += 10;

call, I added a number of extra calls to the same TM operation. For example, for loads
I added a number of extra calls to stm load for different addresses and then recorded
the time for all loads to complete. This gave more repeatable results than timing a single
operation.

Additional overhead fluctuations may occur since TinySTM uses an array of locks
to manage contention between transactions. If, for example, a load attempts to read
the current version of a location from the lock table but the lock is currently held by a
committing transaction, the load will spin wait for the lock to come free. I was primarily
looking at low contention cases — high contention would not be suitable for TLS anyway
— so this variability is unlikely to significantly affect performance.

Start TinySTM uses sigsetjmp to save the environment at the point where the trans-
action begins. In addition, a call to stm start is made to initialise variables such as the
starting timestamp.

Loads In the WB-CTL design of TinySTM it is not possible to accurately model the
overhead of a load as a single number as there is a dependence on the size of the write
set. When a transactional load is executed, the TM searches the write set to see if the
location has previously been written. This is so that the transaction can read its own
buffered writes. The TinySTM write set is simply an array recording the address and
value of each write. Searching for matches in the write set is linear complexity. Therefore
two parameters must be found, the base time for adding the read to the read set, and the
time taken per store to search the write set. To measure this I first recorded the time for
a load in a transaction with no writes to obtain the base time. Then I gradually added
stores to the transaction and measured how much the load time increased for each extra
store.

Stores Stores are modelled similarly since the TM also looks up the write set for previous
stores to the same address. This is to prevent duplicates in the write set. Overheads were
measured using the same technique as for loads.

Validation Validation ensures that all values read transactionally are still valid. In
TinySTM this is achieved by recording the version of the lock corresponding to the location

91

Ivy Bridge

Processor Xeon(R) E5-2667 v2

Frequency 3.3GHz

Sockets 2

Cores 8 per socket (hyperthreaded)

Cache 32KB + 256KB private25MB shared

Table 6.1: Specification of machine used to evaluate TinySTM performance.

when it is first read and then confirming that the lock version has not changed by the
time the transaction commits. Validation is a relatively straightforward operation, simply
iterating through the read set, checking each version. It is therefore linear complexity,
proportional to the size of the read set. To measure the overhead I timed the entire
validation for a read set and then divided by the size of the read set to give a per-read
cost.

Commit Once the read set has been validated the buffered writes can be copied out
to main memory. Since I am enforcing fully-serialised commit, it would now be possible
to simply copy these values out with no further checks. However, since TinySTM is
designed to support parallel commits it must do some extra work (superfluous in this
case) to protect the memory’s consistency during commit. Locks are taken out on all
addresses in the write set, then each location is atomically updated with the buffered
value and finally the locks are released. Commit is linear complexity in the size of the
write set.

Abort Abort is essentially free for TinySTM with the WB-CTL design since no locks
are taken out until commit and serial commit ensures that once the read set has been
validated, the transaction will never abort. The read and write sets are stored as arrays
so they can be invalidated by simply setting the array size to zero.

Validation of TinySTM speculation model

Ideally the speculation model would have been validated by modifying the compiler to
insert calls to TinySTM into the parallelised code, running this modified code on a real
machine and comparing the speedups to those reported by the timing model. However,
implementing this in the compiler led to major technical challenges due to the difficulty
of debugging parallel machine code and the instability of the current version of TinySTM.
Therefore as an approximate validation of the model, I compiled the manually-parallelised
version of the conservative smoothing benchmark shown in listing 6.2 with GCC. The
performance of the parallelised version was then compared to the baseline sequential
version (listing 6.1), also compiled with GCC. The benchmarks were timed on an Ivy
Bridge dual-socket 16-core server machine. The configuration of the machine is shown in
table 6.1.

The timing model was implemented to apply the overheads measured for TinySTM
as shown in table 6.2. The sequential version of the benchmark was then automatically

92

TinySTM on
Haswell

TinySTM on Ivy
Bridge

GABP-STM
TCC-like

HTM

Start 120 150 95 0

Load 20 + 2*num writes 25 + 3*num writes 14 0

Store 25 + 2*num writes 32 + 3*num writes 16 0

Validate 5*num reads 6*num reads 3*num reads 0

Commit 55*num writes 66*num writes 3*num writes 5

Abort 0 0
3*(num reads +

num writes)
0

Table 6.2: Overheads of various TM designs in cycles.

parallelised with HELIX and run through this model. The results for this experiment are
shown in figure 6.1. The baseline for the Ivy Bridge results is the execution time when the
original sequential version of the code was compiled with GCC. The baseline for the timing
model results is the execution time of the sequential code produced by ILDJIT. The graph
shows that the speedup trends are similar across cores between the speculation model and
manually parallelised version, although the performance of the GCC-compiled version is
not as good as suggested by the timing model. The reason for this is difficult to surmise
since the code being compared is generated by two different compilers; however, a possible
explanation is that the sequential code generated by GCC is superior to that generated
by ILDJIT and so the overheads of parallelisation are relatively more significant. The
machine used has 8 cores per socket and performance does not scale well above 8 cores due
to the increased latency of communicating between sockets. In addition, the speculation
model is not a perfect simulation of TinySTM since it does not model the shared array
of locks which is used to detect conflicts and compare versions, and this may lead to
unpredictable behaviour in the real implementation. Since TinySTM transactions may
spin while waiting for locks to come free the overheads may be quite variable in practice.
TinySTM also performs eager conflict checks for writes which may result in multiple
rollbacks for a single transaction which is particularly detrimental for this benchmark,
since if a conflict exists then the iteration will only be able to run successfully once the
previous iteration has committed its writes.

6.2.3.2 TLS-STM

While TinySTM is a fairly simple implementation of STM, it is more general purpose than
what is required for TLS. In particular, since there is an implicit ordering of transactions
(dictated by iteration order) and in-order commit enforces serialisation of commits, there
is no need for the STM to take out locks on locations which will be written during commit.
To take advantage of these possible optimisations an alternative STM implementation is
proposed, TLS-STM, which eliminates some of the overheads experienced by TinySTM.
The concept of TLS-STM is the work of Kevin Zhou.

TLS-STM is also a deferred update design but with lazy conflict checking so reads are
not validated in any way until commit-time. The STM uses value-based conflict detection:
when an address is first read by a transaction, a copy is made of the current value at that
address. Validating the read set is a simple matter of checking that the value at the address
is still equal to the saved value. This has the added benefit of avoiding conflicts in the case

93

2 3 4 8 16
Cores

0

1

2

3

4

5

Sp
ee

du
p

synthetic_smooth: loop 27

Ivy Bridge TinySTM+GCC
Speculation Model+TinySTM parameters

Figure 6.1: Comparison of speedups for conservative smoothing benchmark (listing 6.1).
Baselines are sequential execution when compiled with GCC and sequential execution in
the timing model respectively.

of silent stores (i.e. when a location is overwritten with its current value). For TLS this
approach is also attractive since the oldest transaction can run without instrumentation,
as any writes made will still be detected by subsequent transactions if they read a stale
value. This method was inspired by JudoSTM [94], an STM implementation for dynamic
binary rewriting.

TLS-STM can efficiently deal with transactions with many writes using a combination
of a linear probe hash table, referred to here as the translation table, and two arrays, one
for reads and one for writes. On a transactional load, the runtime address is hashed to
find an entry into the translation table, as shown in figure 6.2. If this is the first time
the address has been accessed, an entry is inserted into the translation table recording
the address, whether the access is a read or write and the address of the next available
entry in the read set. At this entry in the read set, the accessed address and the current
value at that location are recorded. A transactional store is recorded similarly, but with
an entry being inserted into the write set and the data stored being the updated value
of that location. This implementation is not dependent on the size of the write set as in
TinySTM, since detection of previous writes to the same address entails no extra cost by
the translation table lookup.

Validation of the read set is of linear complexity in the size of the read set and is per-
formed by comparing the recorded data to the current value at the access location. If the
current value is not equal to that stored in the read set then the value that was read trans-
actionally is stale and the transaction is aborted. Once the read set has been validated,
the write set is committed to main memory by copying each value to its corresponding ad-
dress. No fine-grain locks are required since validation and commit are performed serially
and in iteration order. To abort a transaction it is necessary to clear out the translation
table and read/write sets. Clearing the sets is a simple matter of setting the array sizes
to zero; however, it is necessary to clear each entry from the translation table by setting

94

Runtime address

HASH

Translation table

addr r index

addr data
TT

index

Read set

Write set

addr data
TT

index

addr w index

Figure 6.2: Translation of a runtime address in TLS-STM.

the recorded address to zero. To achieve this with linear complexity, each entry in the
read/write sets also contains a pointer back to the corresponding translation table entry.
Clearing the translation table is then linear in the size of the read and write sets.

Work on implementing this STM is currently being undertaken by Kevin Zhou. A
stable version of the STM is not yet available and therefore it was not possible to show
the performance of the conservative smoothing benchmark with TLS-STM. However, it
was possible to estimate the overheads by counting the number of instructions required
to implement each action and assuming an execution rate of one instruction per cycle.
These overheads are shown in table 6.2.

6.2.3.3 Hardware TM

It is inevitable that any software implementation of TM is going to add significant over-
heads in terms of execution time and memory footprint. This motivates using the spec-
ulation model to also simulate the overheads of TLS with full hardware support. While
there are several commercially available hardware TM implementations, none provide the
full complement of advanced features which are needed to effectively support TLS such
as ordered transactions, data forwarding and word-level conflict detection [63]. However,
previous work in modelling hardware TM for speculation has suggested overhead param-
eters which can be used to model the performance of such a system. Olukotun et al. [92]
describe an execution-driven simulator executing instructions at a rate of one instruction
per cycle with a parameterised TM system known as TCC [29].

A TCC-based processor adds additional hardware to buffer writes, detect conflicts
and order commits. Transaction control bits are added to the L1 cache to indicate that
particular cache lines have been speculatively read or modified. Transactional stores are
not broadcast over the coherence bus as they occur but are combined into a commit packet
which is broadcast once the transaction commits. The commit packet is snooped by the
other caches to detect conflicts.

In this scheme transactional loads and stores do not incur any extra overhead which
is visible to the software since the hardware takes care of recording them in the cache.
In addition, no overhead is incurred for validation which takes place continuously as

95

Listing 6.4: Loop C from automotive bitcount.

for (j = n = 0, seed = 1; j < iterations; j++, seed += 13)
n += pBitCntFunc[i](seed);

the caches snoop the bus for commit packets. Committing a transaction does incur a
delay since the hardware must do a processor-wide arbitration for the right to commit.
Olukotun et al. [92] suggest that this amounts to a delay of 5 cycles on average for a chip
multiprocessor. Aborting a transaction is achieved by invalidating all transactional loads
and stores in the L1 cache which can be performed in parallel by the hardware. Olukotun
et al. propose that no overhead is incurred for this operation in a chip multiprocessor.
These overheads are summarised in table 6.2.

6.3 Pure speculation

I use the term pure speculation to refer to the speculation model I have described so
far, i.e. always speculating during loop execution with each transaction covering one
entire iteration. The pure speculation model was run on the cbench benchmarks with
the three sets of TM parameters shown in table 6.2 (for TinySTM I simulated with the
Ivy Bridge figures only since there was not sufficient difference between the two machines
for the Haswell parameters to be of interest). The results are shown in figure 6.3. These
were obtained by first measuring the speedup for each individual loop and using the loop
selection algorithm (section 3.2.5) to choose the best loops. In the case that no speedups
were achieved for any loops, it was not profitable to parallelise at all so the speedup is
simply unity. This is the case for office stringsearch1 and security rijndael e. As can
be seen from these results, it was possible to achieve some speedups using this timing
model for most benchmarks. However, for some benchmark the performance of HELIX is
superior to pure speculation. In this section I will look in more detail at these benchmarks
to understand their performance.

6.3.1 Case studies

6.3.1.1 automotive bitcount

Figure 6.4 shows the breakdown of loops for automotive bitcount when run with 16 cores.
The variation in performance between different loops is significant. Only loop C performs
better with the speculation model than with plain HELIX. The original source of this
loop can be seen in listing 6.4.

The HELIX inter-procedural dependence analysis is already capable of determining
that the bitcount function does not contain loop-carried dependences, so the function it-
self runs in parallel resulting in a good speedup for HELIX. What limits HELIX speedup
in this case is the overhead of synchronising the loop prologue. The speculation model
is not restricted by enforced ordering of the prologue since the body of the loop can be
executed speculatively even if the loop should have completed. This potential enhance-
ment was previously noted for the ideal dataflow model in section 5.2.1.4. In this case,
the pure speculation model with TCC HTM parameters was able to achieve comparable
performance to the theoretical maximum.

96

2 4 8 16
Cores

0
2
4
6
8

10
12
14

Pr
og

ra
m

 s
pe

ed
up

automotive_bitcount

2 4 8 16
Cores

0
1
2
3
4
5
6

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_c

2 4 8 16
Cores

0
1
2
3
4
5
6

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_e

2 4 8 16
Cores

0
2
4
6
8

10
12
14

Pr
og

ra
m

 s
pe

ed
up

automotive_susan_s

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

Pr
og

ra
m

 s
pe

ed
up

security_sha

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

office_stringsearch1

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

security_rijndael_d

2 4 8 16
Cores

0.0

0.5

1.0

1.5

Pr
og

ra
m

 s
pe

ed
up

security_rijndael_e

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

Pr
og

ra
m

 s
pe

ed
up

consumer_jpeg_c

2 4 8 16
Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
og

ra
m

 s
pe

ed
up

consumer_jpeg_d

HELIX
Pure Spec.+TinySTM

Pure Spec.+TLS-STM
Pure Spec.+TCC HTM

Ideal dataflow

Figure 6.3: Cbench results for plain HELIX and speculation model with various TM
parameters.

97

A (9.8%) B (34.5%) C (100.0%) D (100.0%)
Loop ID (coverage)

0

2

4

6

8

10

12

14

Lo
op

 s
pe

ed
up

automotive_bitcount

HELIX
Pure Spec.+TinySTM
Pure Spec.+TLS-STM
Pure Spec.+TCC HTM
Ideal dataflow

Figure 6.4: Loop breakdown for automotive bitcount with 16 cores. Coverage indicates
percentage of total execution time during which loop is running.

6.3.1.2 automotive susan s

Figure 6.5 shows the speedups of the individual loops in automotive susan s. HELIX
achieves linear speedup for loop C although other loops do not perform well. In this case
the speculation model does show good performance for loop C with HTM parameters
compared to the sequential baseline but lags behind HELIX.

To understand the performance profile for this benchmark it is necessary to look at
the code for the loop, as shown in listing 6.5. The benchmark contains a single kernel of
four nested loops. The loops have been labelled in the code to correspond with the labels
in figure 6.5.

The benchmark carries out noise reduction on an image by passing a mask across the
image and performing Gaussian smoothing within the mask at each step. The outer loops,
D and C, iterate vertically and horizontally across the image. The inner loops, B and A,
iterate vertically and horizontally across the mask.

Looking at loop C, each iteration places the mask over a portion of the image,
calculates a new value for the upper left hand pixel and writes it back to the image
(*out++=new value). In the next iteration, the mask is moved one pixel to the right
so it no longer overlaps the written pixel. Each iteration of loop C is completely indepen-
dent, containing no loop-carried dependences. HELIX does not generate any sequential
segments and the loop can run entirely in parallel (apart from the proportionally short
prologue).

Speculation performance is not as good because essentially the same code is being
run, but with the addition of the overheads of instrumenting memory accesses, performing
conflict checks and committing buffered writes to memory. Loop B contains a loop-carried
dependence on ip and therefore is not a good candidate for speculation. However, loop A
contains no loop-carried dependences and therefore performs well with speculation with
the TCC HTM parameters. The density of memory accesses in loop A causes the STM

98

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0

2

4

6

8

10

12

14

16

Lo
op

 s
pe

ed
up

automotive_susan_s

HELIX
Pure Spec.+TinySTM
Pure Spec.+TLS-STM
Pure Spec.+TCC HTM
Ideal dataflow

Figure 6.5: Loop breakdown for automotive susan s with 16 cores. Coverage indicates
percentage of total execution time during which loop is running.

models to perform poorly due to the higher overheads.

6.4 Judicious speculation

In the previous section I described a simple model of speculation where every memory
reference is tracked and the entire loop body is run in a transaction. While this model did
show potential for gaining some speedups, in some cases the performance did not compare
favourably with HELIX. This was largely due to a small number of dependences causing
very expensive rollbacks and due to the large overhead of instrumenting every memory
access in the loop body.

However, this model has essentially ignored all the hard work HELIX has already done
in identifying dependences and consolidating dependence cycles into sequential segments.
The memory accesses which occur outside sequential segments have been proven by the
interprocedural analysis not to cause dependences. Therefore these can, in theory, be
executed without instrumentation. In the speculation model described previously this
was not possible, however, since it was necessary to buffer all writes so they could be
rolled back in the case of a conflict.

In addition to this undesirable overhead there are also situations where a dependence
identified by HELIX may occur on every single iteration (see listing 6.6). Speculation is
guaranteed to fail in these instances since the entire loop will become sequentialised. It
would be ideal to take advantage of profiling data to enable a judicious application of
speculative execution such that the system never attempts to speculate on code which is
guaranteed to fail.

Therefore I propose a new model which speculates judiciously, only when there is
reason to believe that speculation will be profitable. The sequential segments previously
identified by HELIX provide a convenient unit for choosing whether to speculate or not.

99

Listing 6.5: Kernel from automotive susan s.

// Outer loops iterate across image
for (i=mask_size;i<y_size-mask_size;i++){ /* Loop D */

for (j=mask_size;j<x_size-mask_size;j++){ /* Loop C */
area = 0;
total = 0;
dpt = dp;
ip = in + ((i-mask_size)*x_size) + j - mask_size;//Mask starting point
centre = in[i*x_size+j];
cp = bp + centre;

// Inner loops iterate within mask
for(y=-mask_size; y<=mask_size; y++){ /* Loop B */

for(x=-mask_size; x<=mask_size; x++){ /* Loop A */
brightness = *ip++;
tmp = *dpt++ * *(cp-brightness);
area += tmp;
total += tmp * brightness;

}
ip += increment;

}
tmp = area-10000;
if (tmp==0)

*out++=median(in,i,j,x_size);
else

*out++=((total-(centre*10000))/tmp);
}

}

Listing 6.6: Sample code showing an always-true dependence.

for(int i = 0; i < size; i++){
/* iter will always cause a dependence! */
iter = iter->next;
operate(iter->data);

}

100

The model works in two stages:

1. First a profiling stage is run which detects which sequential segments are actually
causing conflicts at runtime. This is based on the method used to collect sequential
segment conflict statistics in section 5.3.1.

2. A threshold percentage is chosen such that sequential segments with a conflict per-
centage above the threshold are synchronised and those below the threshold are
executed speculatively. I implemented a specialised TM model which allows for
multiple domains of transactions such that conflict detection only occurs between
transactions in the same domain. Each static sequential segment corresponds to a
single domain.

This has various advantages over the previous model, most notably that having a
single always-true dependence does not kill the performance of speculation. In addition,
this model may significantly reduce the number of transactional memory accesses that
need to be performed. For example, if a loop has a single very short sequential segment,
only the accesses within the segment need to be recorded transactionally whereas in the
pure speculation model all accesses in the entire loop body would have been instrumented
to facilitate rollback.

There are some potential downsides to this model however. Every time a sequential
segment completes, it is necessary to stall the thread until that segment has completed in
all previous iterations. This is because the code after the sequential segment is not being
executed in a transaction so the sequential segment code executed speculatively must
be validated and committed before the thread can continue. This reduces the extent to
which code in different threads can be overlapped in parallel and may lead to multiple
stall points in loops with several sequential segments.

Currently the profiling run uses the same input set as is used when executing the
program with speculation. In practice it would be necessary to use different input sets to
fully evaluate the technique. Indeed, Edler von Koch et al. [95] have shown that up to 100
different data sets may be required for these benchmarks to exhibit all data dependence
behaviours. However, the current evaluation is still useful for finding an upper limit to
the potential of judicious speculation.

Figure 6.6 shows a sample execution of HELIX with judicious speculation. The loop
contains three sequential segments: SS0, SS1 and SS2. Profiling the loop has indicated
that SS0 and SS2 rarely cause data dependence conflicts during actual execution whereas
SS1 contains genuine dependences. Therefore SS0 and SS2 are executed speculatively
(green shading) and their write sets are committed to main memory before continuing.
SS1 is executed using the standard HELIX synchronisation primitives (yellow shading).
The blue shaded sections are those which have been proven by the compiler to be free of
conflicts and are executed without speculation or synchronisation.

6.4.1 Worked example

To demonstrate the manner in which this model can take advantage of both HELIX-style,
synchronisation-based parallelism and speculative parallelism, it is useful to walk through
a simple example. Consider the code example in listing 6.7. This is a simple loop which
increments a global scalar variable, glob, and conditionally updates a global integer
array, A.

101

SS0 SS0

Time

Core 0 Core 1 Core 2 Core 3

SS1

SS1

SS0 SS0

Wait

It
er

at
io

n
 0

It
er

at
io

n
 1

It
er

at
io

n
 2

It
er

at
io

n
 3

commit
commit

commit
commit

SS1

Signal

Wait

SS1

Signal

Wait

SS2

SS2

SS2

SS2

commit

commit

commit

commit

Wait Wait
Wait

Signal

Figure 6.6: HELIX judicious speculation: Profiling indicates that SS0 and SS2 rarely
cause data dependence conflicts during actual execution and can be executed speculatively
(indicated by green shading).

HELIX creates three sequential segments for this loop:

• SS ID 0: As always, HELIX must sequentialise the loop prologue and is assigned
the ID 0. In this case the prologue will simply consist of a check on the induction
variable count. Remember that count can be privatised to each thread so it does
not cause any dependences.

• SS ID 1: This sequential segment preserves data dependences on the global variable
glob which is updated on each iteration.

• SS ID 2: This sequentialises accesses to the global array A between different iter-
ations. On each iteration of the inner loop an index into the array is computed, an
entry is read from the array at this index and the entry is conditionally updated. If
two iterations were to ever compute the same index it may cause a data dependence
so HELIX must be conservative here and sequentialise the entire inner loop.

It may be noted that sequential segment 1 will cause data dependences on every
iteration since it is always updating the same location. Sequential segment 2 is more
interesting, however, since the existence of an actual data dependence at runtime depends
on the indices into the array. In fact, the calculation of the index, factor*(count%16)
+ i, is guaranteed to access a different range of indices in each iteration of the outer loop
assuming the loop is not run with more than 16 cores. The compiler is unable to prove
this and, indeed, does not know the number of cores until runtime so must be conservative
in sequentialising this loop.

102

Listing 6.7: Synthetic loop with sequential segments indicated.

for (count = 0; count < weight; count++){
/* Enter sequential segment 1 */
glob++; /* Global scalar */
/* Exit sequential segment 1 */
/* Enter sequential segment 2 */
for(i = 0; i < factor; i++){

int tmp = A[factor*(count%16) + i]; /* Global array */
tmp += count*5;
if(tmp%2 == 0){

A[factor*(count%16) + i] = tmp;
}

}
/* Exit sequential segment 2 */

}

Loop ID SS ID Iterations Conflicts Conflicts %
A 0 1001 0 0.0%

1 1000 999 99.9%
2 1000 0 0.0%

Table 6.3: Sequential segment statistics for loop in listing 6.7

This inspection can be confirmed by running the sequential segment conflict analysis
(as described in section 5.3.1). The results are shown in table 6.3. As expected, sequential
segment 2 is completely conflict free while sequential segment 1 causes conflicts on every
iteration. In addition, sequential segment 0 (the prologue) is also conflict free since the
calculation of induction variable count has been privatised. This gives a little more scope
for finding extra parallelism.

The results for this loop are shown in figure 6.7. Only the TCC HTM parameters
are included here for clarity. The HELIX model shows negligible speedup. Some per-
formance improvement could have been possible since three separate sequential segments
were generated, thus allowing the threads to overlap different parts of the iteration con-
currently. However, the proportion of execution time spent executing sequential segment
2 dominated the overall execution time of the loop so without being able to parallelise
that portion, only a tiny speedup would have been possible.

The speculation model performs significantly worse than HELIX in this case. No
speedup would have been possible due to the data dependence cycle caused by the update
of glob. In this case, the model will execute the entire iteration speculatively, wait for all
previous iterations to complete and then check for conflicts. On each occasion a conflict
will be detected so the transaction will then be rolled back and the entire iteration will
be executed again. Thus the entire loop is essentially sequentialised. The performance
degradation relative to the baseline is due to the overhead of tracking memory references,
conflict checking and rolling back.

The judicious speculation model does not suffer from the pure speculation model’s
shortcoming of having to speculate on variables which have been proven to cause conflicts.
On each iteration, this model will synchronise sequential segment 1 in exactly the same
manner as HELIX. This incurs no additional overhead relative to HELIX and no memory
references are tracked since the compiler has proven this to be safe.

Now when a thread reaches the entrance to sequential segment 2, rather than waiting

103

2 4 8 16
Cores

0

2

4

6

8

10

12

14

Sp
ee

du
p

_

HELIX
Pure Spec.+TCC HTM
Judicious Spec.+TCC HTM
Ideal dataflow

Figure 6.7: Perfomance of various models for benchmark in listing 6.7.

for all previous threads to complete the segment, it continues to execute. All memory
references are tracked and writes are buffered. When the sequential segment is complete,
the thread stalls until all previous threads have completed and committed sequential
segment 2. Now the read set of the transaction is validated against the write sets of all
previous transactions within the domain of sequential segment 2. If any previous such
transaction made a write to an address which was read by the current transaction, the
current transaction must be rolled back and re-executed.

As can be seen from the results, the judicious speculation model gains a significant
performance boost above the baseline, HELIX and the pure speculation model. Also
shown in figure 6.7 are the results for the ideal dataflow model, as described in section
5.1. The judicious speculation model does not go all the way to exploiting the speedup
which the dataflow model shows is theoretically available. The dataflow model does not
suffer the overheads of tracking memory references and performing conflict checking so
this accounts for some of the discrepancy in performance.

However, it is interesting that while the judicious speculation model tracks the per-
formance of the dataflow model fairly well up to 8 cores, the model seems to plateau for
higher numbers of cores. Unfortunately the model falls foul of Amdahl’s Law. While it is
possible to speculate on the entire sequential segment, the read set validation and commit
phases of the transaction must be performed serially to ensure correctness.

In this case, the sequential segment contains a large number of memory accesses rela-
tive to the overall amount of code executed. For this example, the validation and commit
phases account for around 5% of the entire execution time of an iteration. This gives a
maximum possible of speedup of 9x with 16 cores. The density of memory references in
a sequential segment is a key determinant of whether or not speculation is likely to be
successful.

104

6.4.2 Results

Figure 6.8 shows the loop speedups under judicious speculation for all the significant loops
in the cbench applications under study. From these results it is evident that on a wide
range of loops the judicious model is significantly more reliable in gaining performance
above the baseline on a wide range of loops in comparison to both plain HELIX and the
pure speculation model. In addition, while the pure speculation model often suffered a sig-
nificant performance degradation in comparison to HELIX, the judicious model performs
at least as well as HELIX in almost every case. This can be attributed to the profiling-
driven nature of the new model. In cases where speculation is unlikely to perform well the
model can fall back on the safer HELIX alternative while still allowing extra performance
to be gained by speculating at a finer granularity in comparison to pure speculation.

It is interesting to note that, in general, the difference between the different transac-
tional memory implementations is much less pronounced for judicious speculation than
for pure speculation. This is due to the significant reduction in the number of mem-
ory accesses which must be instrumented in the judicious model since accesses outside
sequential segments may be executed non-transactionally.

6.5 Transaction size

The software TM models are generally fairly robust in dealing with large transactions.
TinySTM, for example, may need to resize the read and write sets for particularly large
transactions, but this does not constitute a significant portion of the overall overhead. By
contrast, hardware TM may be severely constrained by the fixed sizes of the transactional
write buffer or L1 cache. In most implementations of hardware TM or hardware-supported
TLS, if a transaction exceeds the maximum allowable size it must be stalled until it is
safe to run non-transactionally. Obviously this results in serialisation of transactions
and the complete loss of any possible performance gains. Currently my models assume
infinite resources, therefore to be confident in the performance claimed by the simulation
it is necessary to study the typical sizes of the transactions that are running. This is
also useful for making recommendations about the scale required for future hardware
implementations to effectively support TLS.

Table 6.4 shows the limitations imposed by hardware on the size of transactions for
various research and commercial systems. In general, read state is recorded in the L1 cache
and is limited by its size. We may reasonably assume an L1 of at least 16KB although in
most modern processors 32KB is expected. Capacity for writes may be shared with reads
if they are also buffered in the L1, as is the case for Haswell TSX. Alternatively a smaller,
separate write buffer may be used to make commit more efficient. At the lower end of
the scale, Hydra implements a 2KB write buffer. This is generally higher in more recent
proposals. The figures for TCC were proposed by Hammond et. al [29] as the minimum
required to effectively support TM across a broad range of applications.

Figure 6.9 shows the average and maximum sizes for all the loops I have studied
in cbench when using the pure speculation model. Transaction sizes for the judicious
speculation model would necessarily be the same size or smaller. The figures indicate
that the transactions that have been studied are all fairly small, rarely exceeding 1KB
on average. In particular, average write set sizes never exceed 1KB which is a reasonable
write buffer size according to previous implementations. From these results it may be

105

Per-transaction resources

Stampede [59] 32KB L1 cache (reads and writes)

Hydra [56] 16KB L1 cache + 2KB write buffer

Haswell TSX [96] 32KB L1 cache (reads and writes)

TCC [29] 6-12KB read state + 4-8KB write buffer

Table 6.4: Hardware resource limitations in current research and commercial HTM offer-
ings.

concluded that the measured speedups will not be affected by limitations of the hardware
and that relatively modest architectural support, on the scale of the L1 cache, could be
used to achieve significant performance gains with TLS. The raw data that was used to
generate these histograms is included in full in appendix B.

6.6 Summary

In this chapter I have demonstrated practical methods for exploiting the parallelism dis-
covered in chapter 5. I presented a discussion of TM implementation styles and described
the design decisions that must be made to efficiently support TLS. A survey of TM
schemes and a parameterisation of such schemes was shown which allowed a meaningful
comparison to be made between different styles. I proposed a timing model to simulate
TM which permitted a study of the performance of the cbench loops when running each
iteration in a transaction (pure speculation). This model was further refined to take ad-
vantage of profiling data and apply speculation judiciously, thus taking advantage of the
best aspects of both HELIX and TLS. In general, judicious speculation is the best way
to approach the theoretical limit of parallelism presented in chapter 5. Finally I have
shown that the transactions I have proposed would comfortably fit within the limitations
imposed by various current hardware TLS techniques.

106

A (9.8%) B (34.5%) C (100.0%) D (100.0%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_bitcount

A (7.0%) B (7.1%) C (83.3%) D (83.3%)
Loop ID (coverage)

0
2
4
6
8

10
12
14

Lo
op

 s
pe

ed
up

automotive_susan_c

A (1
5.5

%)

B (1
5.5

%)

C (1
8.2

%)

D (1
8.2

%)

E (
56

.5%
)

F (
56

.5%
)

Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_e

A (96.4%) B (97.9%) C (99.6%) D (99.6%)
Loop ID (coverage)

0
2
4
6
8

10
12
14
16

Lo
op

 s
pe

ed
up

automotive_susan_s

A (6.8%) B (92.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
op

 s
pe

ed
up

security_rijndael_d

A (6.8%) B (96.1%)
Loop ID (coverage)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Lo
op

 s
pe

ed
up

security_rijndael_e

A (78.1%) B (97.1%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
op

 s
pe

ed
up

security_sha

A (71.4%) B (84.2%)
Loop ID (coverage)

0.0

0.5

1.0

1.5

Lo
op

 s
pe

ed
up

office_stringsearch1

A (4.2%) B (4.2%) C (10.3%) D (10.7%) E (17.0%)
Loop ID (coverage)

0

2

4

6

8

10

12

Lo
op

 s
pe

ed
up

consumer_jpeg_c

A (1
3.6

%)

B (1
5.2

%)

C (1
7.5

%)

D (1
8.0

%)

E (
20

.5%
)

F (
44

.9%
)

Loop ID (coverage)

0

2

4

6

8

10

Lo
op

 s
pe

ed
up

consumer_jpeg_d

HELIX
Pure Spec.+TinySTM

Pure Spec.+TLS-STM
Pure Spec.+TCC HTM

Judicious Spec.+TinySTM
Judicious Spec.+TLS-STM

Judicious Spec.+TCC HTM
Ideal dataflow

Figure 6.8: Loop breakdown for judicious speculation model with 16 cores. Coverage
indicates percentage of total execution time during which loop is running.

107

0 -
 32

32
 - 6

4

64
 - 1

28

12
8 -

 25
6

25
6 -

 51
2

51
2 -

 10
24

10
24

 - 2
04

8

20
48

 - 4
09

6

40
96

 - 8
19

2

81
92

 - 1
63

84

Transaction size in bytes

0

5

10

15

20

Nu
m

be
r o

f l
oo

ps

Average read set size

0 -
 32

32
 - 6

4

64
 - 1

28

12
8 -

 25
6

25
6 -

 51
2

51
2 -

 10
24

10
24

 - 2
04

8

20
48

 - 4
09

6

40
96

 - 8
19

2

81
92

 - 1
63

84

Transaction size in bytes

0

2

4

6

8

10

12

14

Nu
m

be
r o

f l
oo

ps

Maximum read set size

0 -
 16

16
 - 3

2

32
 - 6

4

64
 - 1

28

12
8 -

 25
6

25
6 -

 51
2

51
2 -

 10
24

10
24

 - 2
04

8

20
48

 - 4
09

6

40
96

 - 8
19

2

Transaction size in bytes

0

5

10

15

20

Nu
m

be
r o

f l
oo

ps

Average write set size

0 -
 16

16
 - 3

2

32
 - 6

4

64
 - 1

28

12
8 -

 25
6

25
6 -

 51
2

51
2 -

 10
24

10
24

 - 2
04

8

20
48

 - 4
09

6

40
96

 - 8
19

2

Transaction size in bytes

0

2

4

6

8

10

12

14

Nu
m

be
r o

f l
oo

ps

Maximum write set size

Figure 6.9: Histograms of average/maximum read/write set sizes.

108

Chapter 7

Conclusion

Automatic parallelisation is a promising approach to extract performance from multicore
processors without burdening the programmer. However, it is not yet clear what tech-
niques are best suited to parallelising general purpose code. Conservative strategies which
rely solely on the compiler are hampered by the intractable nature of dependence analysis
and cannot exploit dynamic behaviour. On the other hand, optimistic strategies which
use speculation suffer from the large overheads associated with detecting data dependence
conflicts at runtime. So far, the lack of hardware support in commercial processors has
limited thread-level speculation to being primarily an academic curiosity.

In this dissertation I have explored a range of techniques on the conservative-optimistic
spectrum. I have explored the limits of conservative automatic parallelisation in HELIX
by simulating an oracle dependence analysis and have shown that improving static depen-
dence analysis does not result in better performance for a set of embedded benchmarks.
Leading on from this I answered the question of whether there is any additional paral-
lelism available by simulating execution on an ideal dataflow machine which exploits all
available inter-iteration parallelism in a loop. My analysis of these benchmarks shows
that, indeed, further parallelism is available and that exploiting dynamic behaviour is re-
quired. Finally, I compare two models of dynamic execution which improve performance
over the HELIX baseline by simulating a transactional memory implementation. The
first is purely optimistic, speculating on every dependence. The second is a balanced ap-
proach, taking advantage of both conservative and speculative parallelism. Both models
are evaluated for three different implementations of transactional memory. The results
show that it is possible to improve on both the purely conservative and purely optimistic
models with the balanced approach. In addition, the overheads of the transactional mem-
ory implementation are particularly significant and can make the difference in whether or
not speedups are achieved.

A number of conclusions may be drawn from the results presented:

1. Improving compile-time dependence analysis is not sufficient to improve the perfor-
mance of HELIX-like conservative automatic parallelising compilers.

2. Significant additional parallelism is available for some benchmarks when we look at
dynamic behaviour, and requires optimistic parallelisation techniques to exploit.

3. The performance of the TM is a very significant factor and adapting commercial
hardware TM extensions to support speculation will be crucial in enabling the
widespread adoption of optimistic parallelisation.

109

4. Conservative and optimistic parallelisation both have their strengths and weaknesses
and balancing these in a co-operative system will give the best opportunities to
achieve the optimum performance.

7.1 Future work

Finally, I will suggest some interesting directions to expand on the work I have presented.

7.1.1 Going beyond sequential sementics

An issue which was shown to be repeatedly problematic in extracting parallelism in sec-
tion 5.2.1 was that of coding artefacts which restrict the exploitation of parallelism which
inherently exists. This usually occurs when the programmer introduces unnecessary con-
straints through the sequential programming model, for example, requiring that data
must be processed in a specific order. Some previous work has provided programmers
with annotations to allow them to indicate to the compiler and runtime system that such
constraints need not be enforced. For example Kulkarni et al. [5] use unordered iterators
to allow the programmer to express the concept of a loop in which any sequential ordering
of the iterations would be acceptable. However, in the spirit of automatic parallelisation,
we would like to place less burden on the programmer.

An interesting approach for future work would therefore be to develop an automatic
analysis which can detect the existence of such coding artefacts. The compiler could
then present these detections to the user for interactive analysis, in a similar manner to
Tournavitis et al. [67]. This work could also be integrated with the analyses described
in this thesis which would allow a limit study to show the extent to which automatic
parallelisation techniques are hampered by sequential coding artefacts.

7.1.2 Real implementation of judicious speculation

The obvious next step for this work is to integrate a real implementation of judicious
speculation into HELIX. This could be achieved by adding an extra pass to the compiler
following the normal HELIX transformation. The output of the profiling run which de-
tects sequential segment conflicts described in section 5.3.1 would be used as input to this
pass. The pass would decide, based on the conflict statistics, whether or not to replace
specific sequential segments with speculative transactions. The synchronisation instruc-
tions would be replaced with calls to start and commit a transaction and all intervening
memory accesses would be replaced with transactional loads and stores.

An implementation of TLS-STM is currently being developed and I have shown that
this model experiences significantly reduced overheads for thread-level speculation com-
pared to a more general purpose implementation like TinySTM. Ideally it would be best
to take advantage of hardware TM support such as that offered by Intel Haswell TSX.
However, the current implementation of TSX does not support in-order commit of trans-
actions and communication between transactions cannot be achieved without causing
aborts. This makes it next to impossible to effectively support TLS. It is hoped that
in future microarchitectures, Intel may decide to provide suitable support for specula-
tion. While IBM Blue Gene/Q [30] and POWER8 [31] provide sufficient support to order
transactions, previous work has shown that an efficient TLS implementation requires more

110

advanced features such as data forwarding and word-level conflict detection which are not
currently available on any current processors [63].

7.1.3 Exploiting more dynamic behaviours

The dynamic behaviour exploited in the current implementation of HELIX judicious spec-
ulation is based on the frequency with which dependences in the data dependence graph
are realised at runtime. However, other dynamic behaviours may also be of interest.

7.1.3.1 Phase behaviour

Phase behaviour has been observed in some benchmarks, in particular automotive susan c
where the loop goes through a phase where every iteration is completely independent
followed by a phased where every iteration conflicts. This type of behaviour could be
exploited by compiling a speculative and synchronised version of the loop and switching
between them based on the runtime behaviour of the loop. For example, if speculation is
resulting in multiple rollbacks, it is likely profitable to switch to the synchronised version.
This idea provokes many interesting questions including what the role of profiling should
be in directing switching between the two styles, whether there are patterns within phase
behaviour which can be predicted, and how to know if it is profitable to switch from
synchronised to speculative without incurring the overhead of dependence tracking.

7.1.3.2 Dependence distance

Dependence distance refers to the number of iterations which pass between a value being
produced and consumed and is an interesting behaviour to exploit. For instance, if a
profiling run can detect that some dependence pair always has a distance of 3, there may
be scope for automatically forwarding the value 3 iterations on with synchronisation while
the intervening iterations run freely with speculation.

111

112

Bibliography

[1] R. G. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of
the International Conference on Parallel Processing, pages 836–844, August 1986.

[2] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay J. Reddi, Gu Y. Wei,
and David Brooks. HELIX: automatic parallelization of irregular programs for chip
multiprocessing. In Proceedings of the Tenth International Symposium on Code Gen-
eration and Optimization, CGO ’12, pages 84–93, New York, NY, USA, 2012. ACM.

[3] S. Campanoni, T. M. Jones, G. Holloway, Gu-Yeon Wei, and D. Brooks. Helix: Mak-
ing the Extraction of Thread-Level Parallelism Mainstream. Micro, IEEE, 32(4):8–
18, July 2012.

[4] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu Y. Wei,
and David Brooks. HELIX-RC: An Architecture-compiler Co-design for Automatic
Parallelization of Irregular Programs. SIGARCH Comput. Archit. News, 42(3):217–
228, June 2014.

[5] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin
Casçaval. How much parallelism is there in irregular applications? SIGPLAN Not.,
44(4):3–14, February 2009.

[6] F. Irigoin and R. Triolet. Supernode Partitioning. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’88, pages 319–329, New York, NY, USA, 1988. ACM.

[7] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In In Proc. of the 14th
International Symposium on High-Performance Computer Architecture, 2008.

[8] Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy. Fundamentals of
Multicore Software Development. CRC Press, 2011.

[9] Peng Tu and David A. Padua. Automatic Array Privatization. In Proceedings of the
6th International Workshop on Languages and Compilers for Parallel Computing,
pages 500–521, London, UK, UK, 1994. Springer-Verlag.

[10] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and Tools.
Pearson Education Singapore, 1986.

[11] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:
A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

113

[12] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih W. Liao, and Mon-
ica S. Lam. Interprocedural Parallelization Analysis in SUIF. ACM Trans. Program.
Lang. Syst., 27(4):662–731, July 2005.

[13] W. Blume and R. Eigenmann. Performance Analysis of Parallelizing Compilers on
the Perfect Benchmarks Programs. IEEE Trans. Parallel Distrib. Syst., 3(6):643–656,
November 1992.

[14] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David
Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen
Weatherford. Polaris: The Next Generation in Parallelizing Compilers. In PRO-
CEEDINGS OF THE WORKSHOP ON LANGUAGES AND COMPILERS FOR
PARALLEL COMPUTING, pages 10–1, 1994.

[15] Wolfram Blume, Ramon Doallo, Rudi Eigenmann, J. Hoeflinger, and T. Lawrence.
Parallel programming with Polaris. Computer, 29(12):78–82, December 1996.

[16] Kemal Ebcioğlu. A Compilation Technique for Software Pipelining of Loops with
Conditional Jumps. In Proceedings of the 20th Annual Workshop on Microprogram-
ming, MICRO 20, pages 69–79, New York, NY, USA, 1987. ACM.

[17] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. De-
coupled Software Pipelining with the Synchronization Array. In Proceedings of the
13th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’04, pages 177–188, Washington, DC, USA, 2004. IEEE Computer Society.

[18] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.
August. Parallel-stage Decoupled Software Pipelining. In Proceedings of the 6th
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’08, pages 114–123, New York, NY, USA, 2008. ACM.

[19] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A Practical Ap-
proach to Exploiting Coarse-Grained Pipeline Parallelism in C Programs. In Proceed-
ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 40, pages 356–369, Washington, DC, USA, 2007. IEEE Computer Society.

[20] Georgios Tournavitis and Björn Franke. Semi-automatic Extraction and Exploitation
of Hierarchical Pipeline Parallelism Using Profiling Information. In Proceedings of the
19th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, pages 377–388, New York, NY, USA, 2010. ACM.

[21] Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic Pipeline Array: A
Flexible Multicore Accelerator with Virtualized Execution for Mobile Multimedia
Applications. In Proceedings of the 42Nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 42, pages 370–380, New York, NY, USA, 2009.
ACM.

[22] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme
Ottoni, and David I. August. Speculative Decoupled Software Pipelining. In Proceed-
ings of the 16th International Conference on Parallel Architecture and Compilation
Techniques, PACT ’07, pages 49–59, Washington, DC, USA, 2007. IEEE Computer
Society.

114

[23] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David Au-
gust. Revisiting the Sequential Programming Model for the Multicore Era. Micro,
IEEE, 28(1):12–20, January 2008.

[24] Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-branches: when you come to a
fork in the road, take it. In Parallel Architectures and Compilation Techniques, 2003.
PACT 2003. Proceedings. 12th International Conference on, pages 56–66. IEEE,
2003.

[25] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic Parallelism Requires Abstractions. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, volume 42 of PLDI ’07, pages 211–222, New York, NY, USA, June
2007. ACM.

[26] Maurice Herlihy, Eliot, J. Eliot, and B. Moss. Transactional Memory: Architec-
tural Support for Lock-Free Data Structures. In in Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 289–300, 1993.

[27] Per Hammarlund, Rajesh Kumar, Randy B. Osborne, Ravi Rajwar, Ronak Sing-
hal, Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, Steve Gunther, Alberto J. Martinez, Tom Piazza, Ted Burton, Atiq A.
Bajwa, David L. Hill, Erik Hallnor, Hong Jiang, Martin Dixon, Michael Derr, and
Mikal Hunsaker. Haswell: The Fourth-Generation Intel Core Processor. IEEE Micro,
34(2):6–20, March 2014.

[28] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David
Wood. LogTM: log-based transactional memory. In High-Performance Computer
Architecture, 2006. The Twelfth International Symposium on, pages 254–265. IEEE,
February 2006.

[29] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional Memory Coherence and Consistency. SIGARCH Comput.
Archit. News, 32(2), March 2004.

[30] Ruud A. Haring, Martin Ohmacht, T. W. Fox, Michael K. Gschwind, David L.
Satterfield, Krishnan Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich,
R. W. Wisniewski, A. Gara, George L. T. Chiu, Peter A. Boyle, Norman H. Chist, and
Changhoan Kim. The IBM Blue Gene/Q Compute Chip. Micro, IEEE, 32(2):48–60,
March 2012.

[31] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J. Starke,
C. May, R. Odaira, and T. Nakaike. Transactional memory support in the IBM
POWER8 processor. IBM Journal of Research and Development, 59(1):8:1–8:14,
January 2015.

[32] Nir Shavit and Dan Touitou. Software Transactional Memory. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’95, pages 204–213, New York, NY, USA, 1995. ACM.

115

[33] Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan & Claypool Publishers, 2007.

[34] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. Software
Transactional Memory for Dynamic-sized Data Structures. In Proceedings of the
Twenty-second Annual Symposium on Principles of Distributed Computing, PODC
’03, pages 92–101, New York, NY, USA, 2003. ACM.

[35] William N. Scherer and Michael L. Scott. Advanced Contention Management for
Dynamic Software Transactional Memory. In Proceedings of the Twenty-fourth An-
nual ACM Symposium on Principles of Distributed Computing, PODC ’05, pages
240–248, New York, NY, USA, 2005. ACM.

[36] Bratin Saha, Ali Reza Adl Tabatabai, Richard L. Hudson, Chi C. Minh, and Ben-
jamin Hertzberg. McRT-STM: A High Performance Software Transactional Memory
System for a Multi-core Runtime. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, pages
187–197, New York, NY, USA, 2006. ACM.

[37] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing Memory
Transactions. SIGPLAN Not., 41(6):14–25, June 2006.

[38] Tom Knight. An Architecture for Mostly Functional Languages. In Proceedings of
the 1986 ACM Conference on LISP and Functional Programming, LFP ’86, pages
105–112, New York, NY, USA, 1986. ACM.

[39] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In
Computer Architecture, 1995. Proceedings., 22nd Annual International Symposium
on, pages 414–425. IEEE, June 1995.

[40] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning Cache.
In Proceedings of the 4th International Symposium on High-Performance Computer
Architecture, HPCA ’98, Washington, DC, USA, 1998. IEEE Computer Society.

[41] Gurindar Sohi. Retrospective: Multiscalar Processors. In 25 Years of the Interna-
tional Symposia on Computer Architecture (Selected Papers), ISCA ’98, pages 111–
114, New York, NY, USA, 1998. ACM.

[42] Manoj Franklin and Gurindar S. Sohi. Register Traffic Analysis for Streamlin-
ing Inter-operation Communication in Fine-grain Parallel Processors. SIGMICRO
Newsl., 23(1-2):236–245, December 1992.

[43] Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi. The anatomy of the regis-
ter file in a multiscalar processor. In Microarchitecture, 1994. MICRO-27. Proceedings
of the 27th Annual International Symposium on, pages 181–190. IEEE, November
1994.

[44] Manoj Franklin and Gurindar S. Sohi. ARB: a hardware mechanism for dynamic
reordering of memory references. Computers, IEEE Transactions on, 45(5):552–571,
May 1996.

116

[45] T. N. Vijaykumar and Gurindar S. Sohi. Task Selection for a Multiscalar Processor.
In Proceedings of the 31st Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO 31, pages 81–92, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[46] Lawrence Rauchwerger and David Padua. The LRPD Test: Speculative Run-time
Parallelization of Loops with Privatization and Reduction Parallelization. In Pro-
ceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design
and Implementation, volume 30 of PLDI ’95, pages 218–232, New York, NY, USA,
June 1995. ACM.

[47] Lawrence Rauchwerger and David Padua. The Privatizing DOALL Test: A Run-time
Technique for DOALL Loop Identification and Array Privatization. In Proceedings
of the 8th International Conference on Supercomputing, ICS ’94, pages 33–43, New
York, NY, USA, 1994. ACM.

[48] Manish Gupta and Rahul Nim. Techniques for Speculative Run-time Parallelization
of Loops. In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC
’98, pages 1–12, Washington, DC, USA, 1998. IEEE Computer Society.

[49] Francis Dang and Lawrence Rauchwerger. Speculative Parallelization of Partially
Parallel Loops. Technical report, College Station, TX, USA, 2000.

[50] Marcelo Cintra and Diego R. Llanos. Toward Efficient and Robust Software Specula-
tive Parallelization on Multiprocessors. In Proceedings of the Ninth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’03, pages
13–24, New York, NY, USA, 2003. ACM.

[51] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang
Zhang. Software Behavior Oriented Parallelization. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’07, pages 223–234, New York, NY, USA, 2007. ACM.

[52] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or Discard execution
model for speculative parallelization on multicores. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages 330–
341, Washington, DC, USA, November 2008. IEEE Computer Society.

[53] Chen Tian, Changhui Lin, Min Feng, and Rajiv Gupta. Enhanced speculative par-
allelization via incremental recovery. In Proceedings of the 16th ACM symposium
on Principles and practice of parallel programming, PPoPP ’11, pages 189–200, New
York, NY, USA, 2011. ACM.

[54] Zhen Cao and Clark Verbrugge. Mixed Model Universal Software Thread-Level Spec-
ulation. In Parallel Processing (ICPP), 2013 42nd International Conference on, pages
651–660. IEEE, October 2013.

[55] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.
Speculative Separation for Privatization and Reductions. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 359–370, New York, NY, USA, 2012. ACM.

117

[56] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for
a chip multiprocessor. SIGOPS Oper. Syst. Rev., 32(5):58–69, October 1998.

[57] J. Gregory Steffan, Christopher B. Colohan, and Todd C. Mowry. Architectural
Support for Thread-Level Data Speculation. 1997.

[58] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation
to Facilitate Automatic Parallelization. In Proceedings of the 4th International Sym-
posium on High-Performance Computer Architecture, HPCA ’98, Washington, DC,
USA, 1998. IEEE Computer Society.

[59] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The
STAMPede Approach to Thread-level Speculation. ACM Trans. Comput. Syst.,
23(3):253–300, August 2005.

[60] Matthew Frank, C. Andras Moritz, Benjamin Greenwald, Saman Amarasinghe, and
Anant Agarwal. Suds: Primitive mechanisms for memory dependence speculation.
Cambridge, UK, Tech. Rep, 1999.

[61] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,
Saman Amarasinghe, and Anant Agarwal. Baring it all to software: Raw machines.
Computer, 30(9):86–93, September 1997.

[62] Norman P. Jouppi. Improving Direct-mapped Cache Performance by the Addition
of a Small Fully-associative Cache and Prefetch Buffers. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, volume 18 of ISCA ’90,
pages 364–373, New York, NY, USA, 1990. ACM.

[63] R. Odaira and T. Nakaike. Thread-level speculation on off-the-shelf hardware trans-
actional memory. In Workload Characterization (IISWC), 2014 IEEE International
Symposium on, pages 212–221. IEEE, October 2014.

[64] Michael Hind. Pointer Analysis: Haven’T We Solved This Problem Yet? In Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’01, pages 54–61, New York, NY, USA,
2001. ACM.

[65] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni, Easwaran
Raman, and David I. August. Practical and Accurate Low-Level Pointer Analysis. In
Proceedings of the International Symposium on Code Generation and Optimization,
CGO ’05, pages 291–302, Washington, DC, USA, 2005. IEEE Computer Society.

[66] James R. Larus. Loop-level parallelism in numeric and symbolic programs. Parallel
and Distributed Systems, IEEE Transactions on, 4(7):812–826, July 1993.

[67] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P. O’Boyle. To-
wards a Holistic Approach to Auto-parallelization: Integrating Profile-driven Paral-
lelism Detection and Machine-learning Based Mapping. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’09, pages 177–187, New York, NY, USA, 2009. ACM.

118

[68] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. Alchemist: A Trans-
parent Dependence Distance Profiling Infrastructure. In Code Generation and Opti-
mization, 2009. CGO 2009. International Symposium on, pages 47–58, Washington,
DC, USA, March 2009. IEEE.

[69] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A Scalable Approach to Dy-
namic Data-Dependence Profiling. In Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on, pages 535–546. IEEE, December 2010.

[70] David W. Wall. Limits of Instruction-level Parallelism. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, volume 19 of ASPLOS IV, pages 176–188, New York, NY, USA,
April 1991. ACM.

[71] Todd M. Austin and Gurindar S. Sohi. Dynamic Dependency Analysis of Ordinary
Programs. SIGARCH Comput. Archit. News, 20(2):342–351, April 1992.

[72] Jonathan Mak and Alan Mycroft. Limits of Parallelism Using Dynamic Dependency
Graphs. In Proceedings of the Seventh International Workshop on Dynamic Analysis,
WODA ’09, pages 42–48, New York, NY, USA, 2009. ACM.

[73] Nikolas Ioannou, Jeremy Singer, Salman Khan, Polychronis Xekalakis, Paraskevas Yi-
apanis, Adam Pocock, Gavin Brown, Mikel Luján, Ian Watson, and Marcelo Cintra.
Toward a more accurate understanding of the limits of the TLS execution paradigm.
In Workload Characterization (IISWC), 2010 IEEE International Symposium on,
pages 1–12. IEEE, December 2010.

[74] Tobias J. K. Edler von Koch and Björn Franke. Limits of Region-based Dynamic
Binary Parallelization. SIGPLAN Not., 48(7):13–22, March 2013.

[75] Keith D. Cooper and John Lu. Register Promotion in C Programs. In Proc.
ACM SIGPLAN Conf. Programming Language Design and Implementation (PLDI-
97, pages 308–319, 1997.

[76] Robert P. Wilson and Monica S. Lam. Efficient Context-sensitive Pointer Analysis for
C Programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, volume 30 of PLDI ’95, pages 1–12, New York,
NY, USA, June 1995. ACM.

[77] Rakesh Ghiya. On the importance of points-to analysis and other memory disam-
biguation methods for c programs. In In Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 47–58,
2001.

[78] Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi, and Andrea Di Bi-
agio. A highly flexible, parallel virtual machine: design and experience of ILDJIT.
Softw: Pract. Exper., 40(2):177–207, February 2010.

[79] GCC4CLI web page. https://gcc.gnu.org/projects/cli.html. Accessed: 2015-09-17.

119

[80] Alexandru Nicolau, Guangqiang Li, and Arun Kejariwal. Techniques for Efficient
Placement of Synchronization Primitives. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’09, pages
199–208, New York, NY, USA, 2009. ACM.

[81] cBench: Collective Benchmarks. http://www.ctuning.org/cbench. Accessed: 2015-
09-17.

[82] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A Free, Commercially Representative Embedded Benchmark Suite.
In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE Inter-
national Workshop, volume 0 of WWC ’01, pages 3–14, Washington, DC, USA, 2001.
IEEE Computer Society.

[83] Simone Campanoni, Harvard University, personal communication.

[84] Tor E. Jeremiassen and Susan J. Eggers. Reducing False Sharing on Shared Memory
Multiprocessors Through Compile Time Data Transformations. SIGPLAN Not.,
30(8):179–188, August 1995.

[85] Nick P. Johnson, Taewook Oh, Ayal Zaks, and David I. August. Fast Condensation
of the Program Dependence Graph. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages
39–50, New York, NY, USA, 2013. ACM.

[86] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic
Thread Extraction with Decoupled Software Pipelining. In Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 38,
pages 105–118, Washington, DC, USA, 2005. IEEE Computer Society.

[87] Donald E. Knuth. Art of Computer Programming, Volume 1: Fundamental Algo-
rithms. Addison-Wesley Professional, third edition, July 1997.

[88] Mikko H. Lipasti and John P. Shen. Exceeding the Dataflow Limit via Value Pre-
diction. In Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 29, pages 226–237, Washington, DC, USA, 1996. IEEE
Computer Society.

[89] StephenM Smith and Brady. SUSANA New Approach to Low Level Image Process-
ing. 23(1):45–78, 1997.

[90] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based Transactional Mem-
ory with Scalable Time Bases. In Proceedings of the Nineteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, SPAA ’07, pages 221–228, New York,
NY, USA, 2007. ACM.

[91] Stephan Dieselhorst, ARM, personal communication.

[92] K. Olukotun, L. Hammond, and J. Laudon. Chip Multiprocessor Architec-
ture:Techniques to Improve Throughput and Latency. page 145.

120

[93] R. D. Boyle and R. C. Thomas. Computer Vision: A First Course. Blackwell
Scientific Publications, Ltd., Oxford, UK, UK, 1988.

[94] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In Parallel Architec-
ture and Compilation Techniques, 2007. PACT 2007. 16th International Conference
on, pages 365–375. IEEE, 2007.

[95] Tobias J. K. Edler von Koch and Bjorn Franke. Variability of data dependences
and control flow. In Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on, pages 180–189. IEEE, March 2014.

[96] Zhaoguo Wang, Hao Qian, Haibo Chen, and Jinyang Li. Opportunities and Pitfalls
of Multi-core Scaling Using Hardware Transaction Memory. In Proceedings of the 4th
Asia-Pacific Workshop on Systems, APSys ’13, New York, NY, USA, 2013. ACM.

121

122

Appendix A

Oracle DDG data

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 0 0 100.0%

B 0 0 100.0%

C 4 1 25.0%

D 58 58 100.0%

Table A.1: automotive bitcount.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 62 0 0.0%

B 62 0 0.0%

C 164 0 0.0%

D 164 0 0.0%

Table A.2: automotive susan c.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 9726 1778 18.3%

B 9726 2110 21.7%

C 158 0 0.0%

D 158 0 0.0%

E 74 0 0.0%

F 74 0 0.0%

Table A.3: automotive susan e.

123

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 3 0 0.0%

B 3 0 0.0%

C 4 0 0.0%

D 4 0 0.0%

Table A.4: automotive susan s.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 2 0 0.0%

B 9 0 0.0%

Table A.5: office stringsearch1.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 4 4 100.0%

B 2 1 50.0%

Table A.6: security sha.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 5 0 0.0%

B 16 16 100.0%

Table A.7: security rijndael d.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 5 0 0.0%

B 19 17 89.5%

Table A.8: security rijndael e.

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 200 0 0.0%

B 200 0 0.0%

C 21 0 0.0%

D 9 9 100.0%

E 2 0 0.0%

Table A.9: consumer jpeg c.

124

Loop ID
Compile-time
DDG edges

Oracle DDG
edges

Accuracy

A 18 0 0.0%

B 19 0 0.0%

C 6 0 0.0%

D 48 0 0.0%

E 19 0 0.0%

F 76 11 14.5%

Table A.10: consumer jpeg d.

125

126

Appendix B

Transaction size data

Loop ID Avg read size Max read size Avg write size Max write size

A 4 B 4 B 5 B 12 B

B 4 B 12 B 4 B 16 B

C 12 B 24 B 0 B 20 B

D 48 B 268 B 155 B 604 B

Table B.1: automotive bitcount.

Loop ID Avg read size Max read size Avg write size Max write size

A 4 B 212 B 0 B 36 B

B 2 KB 4 KB 20 B 196 B

C 48 B 176 B 0 B 36 B

D 2 KB 3 KB 29 B 328 B

Table B.2: automotive susan c.

Loop ID Avg read size Max read size Avg write size Max write size

A 12 B 68 B 4 B 56 B

B 1 KB 2 KB 37 B 124 B

C 14 B 192 B 0 B 32 B

D 3 KB 8 KB 37 B 260 B

E 76 B 176 B 0 B 28 B

F 4 KB 4 KB 206 B 1 KB

Table B.3: automotive susan e.

127

Loop ID Avg read size Max read size Avg write size Max write size

A 12 B 68 B 4 B 56 B

B 1 KB 2 KB 37 B 124 B

C 14 B 192 B 0 B 32 B

D 3 KB 8 KB 37 B 260 B

E 76 B 176 B 0 B 28 B

F 4 KB 4 KB 206 B 1 KB

Table B.4: automotive susan s.

Loop ID Avg read size Max read size Avg write size Max write size

A 10 B 12 B 8 B 20 B

B 18 B 172 B 13 B 16 B

Table B.5: office stringsearch1.

Loop ID Avg read size Max read size Avg write size Max write size

A 23 B 24 B 19 B 20 B

B 23 B 24 B 19 B 20 B

C 23 B 24 B 19 B 20 B

D 23 B 24 B 19 B 20 B

E 15 B 16 B 4 B 8 B

F 82 B 84 B 397 B 404 B

G 181 B 3 KB 180 B 4 KB

Table B.6: security sha.

Loop ID Avg read size Max read size Avg write size Max write size

A 7 B 8 B 4 B 16 B

B 1 KB 2 KB 107 B 2 KB

Table B.7: security rijndael d.

Loop ID Avg read size Max read size Avg write size Max write size

A 7 B 8 B 4 B 16 B

B 1 KB 3 KB 105 B 2 KB

Table B.8: security rijndael e.

Loop ID Avg read size Max read size Avg write size Max write size

A 16 B 32 B 16 B 32 B

B 16 B 32 B 16 B 32 B

C 40 B 44 B 12 B 24 B

D 12 B 68 B 4 B 36 B

E 7 B 8 B 4 B 20 B

Table B.9: consumer jpeg c.

128

Loop ID Avg read size Max read size Avg write size Max write size

A 23 B 64 B 16 B 32 B

B 24 B 68 B 5 B 16 B

C 14 B 16 B 11 B 12 B

D 22 B 184 B 22 B 164 B

E 36 B 40 B 6 B 40 B

F 911 B 4 KB 908 B 4 KB

Table B.10: consumer jpeg d.

129

	882.pdf
	Introduction
	Conservative versus optimistic parallelism
	Contributions
	Dissertation overview

	Topics in automatic parallelisation
	Automatic parallelisation
	Independent multithreading
	Privatisation
	Induction variable elimination
	Reduction
	Historical IMT compilers

	Cyclic multithreading
	Pipelined multithreading
	Programmer-guided techniques

	Speculative execution
	Transactional memory
	Hardware transactional memory
	Software transactional memory

	Thread-level speculation
	Software-only speculation
	Hardware-supported speculation

	Dependence analysis
	Discovering the limits of parallelism
	Putting this work in context

	HELIX automatic parallelisation
	ILDJIT
	HELIX
	Loop normalisation
	Dependence analysis
	Sequential segments
	Communicating between threads
	Loop selection

	Optimising inter-core communication
	Benchmarks
	HELIX timing model
	Assumptions
	Validation of the timing model

	Limits of static parallelisation
	Oracle data dependence graph
	Memory trace
	Control flow trace
	Iteration-level compression
	Loop-level compression

	Dependence analysis
	Worked example

	Evaluation
	Accuracy of HELIX static analysis
	A note on local variables
	Parallel performance with the oracle DDG

	Analysis
	Summary

	Uncovering dynamic parallelism
	Ideal dataflow speculation
	Hypothetical implementation
	Timing model implementation

	Results
	Case studies
	automotive_susan_c
	automotive_susan_e
	security_sha
	automotive_bitcount

	Load balancing

	Patterns and Statistics
	Sequential segment conflicts
	automotive_susan_c
	automotive_susan_s
	security_rijndael_d

	Summary

	Practical speculative parallelism
	Supporting speculation with transactions
	Design decisions

	Speculation timing model
	Model implementation
	TM implementation
	Determining parameter values
	TinySTM
	TLS-STM
	Hardware TM

	Pure speculation
	Case studies
	automotive_bitcount
	automotive_susan_s

	Judicious speculation
	Worked example
	Results

	Transaction size
	Summary

	Conclusion
	Future work
	Going beyond sequential sementics
	Real implementation of judicious speculation
	Exploiting more dynamic behaviours
	Phase behaviour
	Dependence distance

	Bibliography
	Oracle DDG data
	Transaction size data

