
Technical Report
Number 884

Computer Laboratory

UCAM-CL-TR-884
ISSN 1476-2986

Machine learning
and computer algebra

Zongyan Huang

April 2016

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Zongyan Huang

This technical report is based on a dissertation submitted
August 2015 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Lucy Cavendish
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Computer algebra is a fundamental research field of computer science, and computer al-
gebra systems are used in a wide range of problems, often leading to significant savings
of both time and effort. However, many of these systems offer different heuristics, deci-
sion procedures, and parameter settings to tackle any given problem, and users need to
manually select them in order to use the system.

In this context, the algorithm selection problem is the problem of selecting the most
efficient setting of the computer algebra system when faced with a particular problem.
These choices can dramatically affect the efficiency, or even the feasibility of finding a
solution. Often we have to rely on human expertise to pick a suitable choice as there are
no fixed rules that determine the best approach, and even for experts, the relationship
between the problem at hand and the choice of an algorithm is far from obvious.

Machine learning techniques have been widely applied in fields where decisions are to
be made without the presence of a human expert, such as in web search, text catego-
rization, or recommender systems. My hypothesis is that machine learning can also be
applied to help solve the algorithm selection problem for computer algebra systems.

In this thesis, we perform several experiments to determine the effectiveness of ma-
chine learning (specifically using support vector machines) for the problem of algorithm
selection in three instances of computer algebra applications over real closed fields. Our
three applications are: (i) choosing decision procedures and time limits in MetiTarski;
(ii) choosing a heuristic for CAD variable ordering; (iii) predicting the usefulness of
Gröbner basis preconditioning. The results show that machine learning can effectively
be applied to these applications, with the machine learned choices being superior to both
choosing a single fixed individual algorithm, as well as to random choice.

Acknowledgements

First, I would like to acknowledge my supervisor Prof Lawrence C. Paulson for his contin-
uous guidance and countless hours of supervision throughout my PhD study. I could not
have asked for a more supportive and kind supervisor. My heartfelt thanks also go to my
second supervisor, Dr Sean Holden. I thank him for his expert advice on machine learning
topics, and for his endless patience with me, answering even my most obvious questions.
I consider myself very lucky to have been their student and I am forever grateful! Fur-
thermore I’d like to thank Prof Mike Gordon and Prof Mahesan Niranjan for being both
knowledgeable and fair examiners during my PhD viva. Their suggested amendments
helped to greatly improve this thesis.

I feel fortunate for the great people in the Computer Laboratory and appreciate the
many fruitful discussions we had. In particular, I want to thank Dr Timothy G. Griffin who
kindly provided me with his warm-hearted encouragements and insightful suggestions on
this dissertation. I would also like to thank James Bridge for our discussions on machine
learning, and for being a great office mate. I am also greatly indebted to Grant Passmore,
for his expert advice on real closed fields, and for his valuable feedback on this thesis. I
am also truly thankful to Pengming Wang and Ramana Kumar for their comprehensive
proofreading and their helpful comments and to Wenda Li and Jean Pichon for their
additional feedback.

Thanks go to my collaborators Dr Matthew England and Dr David Wilson, for the
enjoyable collaboration, for the many helpful discussions, and for their comments on this
thesis.

Finally, I would like to thank my parents for their continuous and unconditional en-
couragement and support.

Contents

1 Introduction 9
1.1 Computer algebra systems . 9
1.2 Real closed fields (RCFs) . 10

1.3 Machine learning . 11
1.4 The hypothesis . 11
1.5 Contributions . 11
1.6 Organisation of the dissertation . 13

2 Background 15
2.1 Computer algebra . 15

2.1.1 RCFs . 15
2.1.2 Quantifier elimination and cylindrical algebraic decomposition . . . 16
2.1.3 Variable ordering in CAD . 17
2.1.4 Gröbner basis . 17
2.1.5 MetiTarski . 18
2.1.6 RCF decision procedures . 18

2.2 Machine learning . 19
2.2.1 Support vector machines (SVMs) 19

2.2.1.1 Motivation for using SVMs 20
2.2.1.2 Linear classifiers . 20
2.2.1.3 Functional margin and geometric margin 20
2.2.1.4 Maximum margin separation 21
2.2.1.5 Kernel methods . 24
2.2.1.6 Soft margin classifier . 25

2.2.2 Multi SVMs . 27
2.2.3 Feature selection . 27

3 Choosing decision procedures and time limits in MetiTarski 29
3.1 Decision produces . 29
3.2 Evaluation of decision procedures . 30
3.3 Problem features . 30
3.4 Performance measures for classifiers . 31
3.5 Kernel selection and parameter optimization 33
3.6 Combining classifiers for choosing decision procedures 34

3.7 Results . 35
3.8 Time limits on RCF decision procedure calls 36
3.9 Summary . 36

4 Choosing a heuristic for CAD variable ordering 39
4.1 CAD implementation . 39
4.2 Heuristics . 39
4.3 Data . 40
4.4 Evaluating the heuristics . 41
4.5 Problem features . 42
4.6 Parameter optimization . 43
4.7 Results . 43
4.8 A comparison of the three heuristics . 46
4.9 Summary . 48

5 Predicting the usefulness of Gröbner basis preconditioning 49
5.1 Gröbner basis preconditioning for CAD . 49
5.2 Data . 50
5.3 Evaluating the heuristics . 50
5.4 Problem features . 51
5.5 Cross-validation and grid-search . 53
5.6 Results for three feature sets . 54
5.7 Feature selection . 54

5.7.1 The filter method . 55
5.7.2 The wrapper method . 56
5.7.3 Results with reduced features . 58

5.8 Summary . 59

6 Related work 63
6.1 Machine learning for first-order theorem proving 63
6.2 Machine learning for axiom selection . 64
6.3 Machine learning for interactive theorem proving 65
6.4 Machine learning for SAT solvers . 65
6.5 Summary . 66

7 Conclusion 67
7.1 Key results . 67
7.2 Future work . 69
7.3 Final remarks . 70

Bibliography 79

Appendices 81

A Distribution and correlation of features 83

B Varying hyper-parameters 111

Chapter 1

Introduction

1.1 Computer algebra systems

Computer algebra is the formal manipulation of symbols which represent mathematical
objects such as numbers, polynomials, rational functions, systems of equations, and alge-
braic structures. Algebraic computations follow the rules of algebraic algorithms rather
than using approximate numeric values. Examples of algebraic computations include fac-
torization of polynomials differentiation, integration, series expansion of functions, and
simplification of mathematical expressions [72]. With computer algebra, we can solve
a wide range of problems which cannot easily be tackled with pencil and paper using
traditional methods.

Computer algebra systems are software packages that are used for carrying out alge-
braic computations. One of the first computer algebra systems was developed in the 1960s
by Martin Veltman, who designed a program for high energy physics called Schoonschip
[96]. Soon after that, another computer algebra system MATHLAB [38] was created by
Carl Engelman, which was already able to perform quite a few tasks such as differentiation,
polynomial factorization, direct and inverse Laplace transforms and so on. Popular early
computer algebra systems also include muMATH [109], Reduce [55], Derive (based
on muMATH) [46], and Macsyma [89]. In the last sixty years, great progress has been
made on the theoretical background of symbolic and algebraic algorithms. As of today,
the most popular commercial systems are Mathematica [108] and Maple [56], which
are commonly used in almost all branches of science, including physics, mathematics,
chemistry, biology, robotics and economics [45, 103, 95].

Computer algebra systems are designed to help humans solve large problems. They
automate the problem solving process, and usually obtain more reliable results than hand
calculations. Ideally, such computer algebra systems should be fully automatic and there-
fore easy to use. In practice they are not; users need to choose from many decision
procedures, heuristics, and parameter settings for performing the computation. However,
it is not easy to make the right choice when studying a particular problem. Furthermore,
these choices are often critical: some problems are infeasible with one choice but easy
with another. I call the problem of finding the right setting for the computer algebra
system the algorithm selection problem (decision procedures, heuristics, and parameter
setting are referred to as algorithms).

9

1.2 Real closed fields (RCFs)

Computer algebra is a huge area with many applications. In this work, I will focus on
three instances of the algorithm selection problem for computer algebra tasks which all
relate to real closed fields (RCFs) [7]. The theory of RCFs concerns (possibly quantified)
boolean combinations of polynomial equations and inequalities over real numbers. Below
I give an overview of the three instances and point out the algorithm selection problem
that arises from them. Details will be covered in Chapter 3, 4 and 5 respectively.

1. The first application includes making a problem-dependent selection of the best RCF
decision procedure (Z3 with Strategy 1, Mathematica and QEPCAD) and the
best time limit (0.1s, 1s, 10s, 100s) on individual RCF subproblems in the automatic
theorem prover MetiTarski.

MetiTarski combines a resolution theorem prover (Metis) with a set of axioms
and a collection of decision procedures for the theory of RCFs. During its proof
search, it generates a series of RCF subproblems which are reduced to true or false
using an RCF decision procedure. The theory of RCFs is decidable and there
exists a variety of decision procedures to decide statements over RCFs. Specialised
variations of RCF decision procedures have their own strengths and weaknesses for
restricted classes of formulas. In practice, there is currently no single RCF decision
procedure which is good for all problems. Which decision procedure is the most
appropriate one to call is highly dependent on the (usually geometric) properties
of the RCF problem being considered, which is in turn largely influenced by the
structure of the original MetiTarski problem. Hence, selecting the most suitable
decision procedure is a non-trivial task.

Moreover, many of the RCF subproblems do not contribute towards MetiTarski’s
final proof, and time spent deciding their satisfiability is wasted. Setting a time
limit on individual RCF subproblems reduces the wasted time but too tight a limit
could affect MetiTarski’s proof. Hence, it is important to make a good choice for
the time limit on individual RCF subproblems.

2. The second application is choosing a heuristic (sotd, ndrr, Brown) to select the
variable ordering for cylindrical algebraic decomposition (CAD).

CAD is one of the main practical tools in computational algebraic geometry, par-
ticularly for quantifier elimination over RCFs. When using CAD, we often have a
choice over the variable ordering used, which can dramatically affect the feasibility
of a problem. Various heuristics have been developed to help with this choice, but
no one heuristic is suitable for all problems.

3. The third application is predicting whether Gröbner basis preconditioning is useful
or not on a particular problem.

Gröbner basis computation is a key tool for solving many fundamental problems
involving polynomial equations. We can apply Gröbner basis preconditioning when
using CAD for a problem with multiple equalities. Wilson et al. [106] showed this
usually gives a better CAD, but sometimes a worse one. There is no fixed rule for
predicting whether Gröbner basis preconditioning gives a better CAD.

10

In all three of these tasks, we have the problem of algorithm selection. At the same
time, there is no universal optimal choice for most problems. The fact that the best
choice is dependent upon the problem considered makes the algorithm selection problem
a good candidate for applying machine learning techniques. The following section aims
to provide a high-level introduction to machine learning and motivate the use of machine
learning techniques; a more thorough discussion will be given in Section 2.2.

1.3 Machine learning

Machine learning is the process of fitting a complex function based on properties learned
from labelled data [9]. It is a data-driven process, as we learn everything from data, rather
than following explicitly programmed instructions. Machine learning seems to be a good
fit for the algorithm selection problem as it is designed to model relationships which are
too complex for a complete analytical approach. My research concerns whether machine
learning is applicable to the field of computer algebra. In particular, I investigated the
effectiveness of machine learning techniques to the three instances of algorithm selection
in computer algebra over RCFs described in the previous section.

In my work, I take some algebraic measures (features) of the problems as input and
produce the predicted algorithm as output. This is a standard classification problem
where each algorithm defines a class of problems for which it is the best choice. By
running all possible algorithms on a large number of sample problems, we can determine
the best one in each case, and produce training samples for supervised learning. In
literature, selection algorithms are often ranked by their average performance over a set
of benchmark problems. A selection algorithm is considered good or useful when its
performance is better than any of the individual current algorithms. We show that by
applying machine learning, we can indeed improve on the performance of the individual
algorithms when evaluated on a set of unseen problems.

1.4 The hypothesis

My hypothesis is that machine learning can be applied to help solve the algorithm selection
problem in computer algebra systems. In particular, I consider a number of fundamental
computer algebra problems related to RCFs, namely quantifier elimination and CAD com-
putation, and explore the applicability of machine learning to certain algorithm selection
tasks within these problems. In this thesis, I conduct an experimental study and provide
evidence that leading machine learning techniques (such as support vector machines) can
indeed be applied to this task, and produce better results than the baseline methods.

1.5 Contributions

The main contribution of the dissertation is to show support of my hypothesis, and the
specific contributions are as follows.

• Chapter 3: Choosing decision procedures and time limits in MetiTarski

11

1. The application of machine learning to select the best decision procedure (Z3
with Strategy 1, Mathematica and QEPCAD) in MetiTarski was inves-
tigated. As a benchmark, machine learning process outperformed any fixed
decision procedure, and choosing the best decision procedure proved 163 out
of 194 problems, showing that machine learned selection achieved an 84% op-
timal choice.

2. A further experiment was conducted to select between Z3 and Mathematica
and to set the best time limit (0.1s, 1s, 10s, 100s) on RCF calls for a given
MetiTarski problem. The machine learned algorithm for selection performed
better on our benchmark set than any of the individual fixed settings used in
isolation.

• Chapter 4: Choosing a heuristic for CAD variable ordering

1. The application of machine learning to the problem of choosing a heuristic to
select the variable ordering for CAD and quantifier elimination by CAD (sotd,
ndrr, Brown) was investigated, using the nlsat dataset of fully existentially
quantified problems (removing all quantifiers gave a corresponding problem
set for evaluating CAD alone). The machine learning algorithm selected an
optimal heuristic for 76% of the quantifier-free problem and 77% of the quan-
tified problems (compared with 58% and 64% for a random choice and 64%
and 74% for the best performing heuristic (Brown)), indicating that there is a
relationship between the simple algebraic features and the best heuristic choice.

2. The experimental data showed that if machine learning is not available then
Brown heuristic is a great alternative, with sotd performing only slightly worse.
Ndrr as an individual heuristic performed rather poorly, and is best suited to
be used within a hybrid heuristic to break ties.

• Chapter 5: Predicting the usefulness of Gröbner basis preconditioning

1. I investigated the usefulness of machine learning in the task of deciding whether
to use Gröbner bases preconditioning on CAD inputs. Using machine learning
yielded better results than either always using Gröbner basis preconditioning
or no preconditioning.

2. Experiment results show that a reduced feature sets can be extracted that
results in a more effective learning in the experiment: the feature subset sug-
gested by the filter method successfully predicted average 79% of the problems
and using the feature subset suggested by the wrapper method successfully
predicted average 78% of the problems from 50 runs of the 5-fold cross valida-
tion (compared to 75% when always using Gröbner basis preconditioning by
default).

3. The optimal feature subset contains algebraic properties from both the original
input and its Gröbner basis. The properties related to the first projected
variable affects heavily to the complexity of the rest of the algorithm.

12

The work described in Chapter 4 and 5 are joint work with a research group at the
University of Bath (Dr Matthew England and Dr David Wilson). In Chapter 4, the work
has been published already [58, 59]. The dissertation itself is my own work, with assistance
from England and Wilson in providing scripts to format the examples, and to construct
the CADs in Qepcad. The three heuristics used in this experiment were implemented by
England in Maple. The entire machine learning experiment was conducted by myself;
the results were analysed and discussed by both research groups. In Chapter 5, the initial
application was proposed by the Bath group. The experiment was done and analysed by
me.

1.6 Organisation of the dissertation

Chapter 2 covers the important background knowledge for the three listed computer
algebra applications and the background knowledge of machine learning, with an emphasis
on support vector machines. Chapter 3 describes two separate but similar experiments:
applying machine learning to the problem-dependent selection of the most efficient RCF
decision procedure and the problem-dependent selection of the best time limit setting on
individual RCF subproblems in the theorem prover MetiTarski. Chapter 4 investigates
the application of machine learning to the problem of choosing a heuristic to select the
variable ordering for CAD and quantifier elimination by CAD. Chapter 5 investigate the
application of machine learning to the prediction of whether Gröbner basis preconditioning
is useful or not. In Chapter 6, I review related work. I conclude the dissertation with a
summary in Chapter 7 and also describe future directions for my work.

13

14

Chapter 2

Background

2.1 Computer algebra

I give here the relevant background to understand the tasks for which I employ machine
learning techniques. For further background, we refer to the relevant text books [10, 29].

2.1.1 RCFs

Decision procedures are of great use in the formal verification of safety-critical systems
and formalized mathematics. We are concerned with decision procedures for the theory
of RCFs, which is a theory in the language of ordered rings (that is, structures containing
quantified boolean combinations of equalities and inequalities involving addition, subtrac-
tion and multiplication of multivariate polynomials with rational coefficients) about fields
which share the algebraic properties of the field of real numbers.

For our purposes, the most important fact about the theory of RCFs is that it is a
decidable theory. In other words, there is an algorithm for deciding the truth, in any real
closed field, of any proposition in the language of ordered rings. This was proved by Tarski
[99]. Completeness of the theory of RCFs means we can prove results over all RCFs, while
still being sure that they are valid over R. This is important from a computational point
of view, as R is uncountable with uncomputable basic operations.

Two examples of RCFs are the field of real numbers R and the field of real algebraic
numbers Ralg. In the classical approach, we can perform computation over the real alge-
braic numbers Ralg instead of R. An algebraic number is a real number that is a root of a
(non-zero) univariate polynomial with rational coefficients. This structure is a countable
real closed field with computable basic operations, and thus provides a logically sufficient
computational substructure for making RCF decisions. If a solution exists in Ralg, then
this is also a solution in R, as Ralg is a subfield of R. Note, this field contains no tran-
scendental elements such as π or e, although recent research has addressed this issue by a
combination of transcendental constants and infinitesimals with nonlinear real arithmetic
[2, 35].

The connection between Ralg and other RCFs is the key property which allows com-
puter algebra systems to be used in tackling RCF problems. The rest of the chapter
describes three computer algebra problems concerning RCFs.

15

2.1.2 Quantifier elimination (QE) and cylindrical algebraic de-

composition (CAD)

The task of QE [48] for the first-order language over RCFs is a central problem in computer
algebra. We start by defining the problem and then discuss the approach of solving QE
via computing CAD. Here, a first-order formula φ over RCF consists of atomic formulas
in the form of polynomial (in)equalities p(x1, . . . , xk) ≤ 0 or p(x1, . . . , xk) = 0, and
the standard operations of negation, conjunction, disjunction, first order universal and
existential quantification applied onto atomic formulas. Then, the problem of QE is
defined as follows.

Definition 1 Let Qi ∈ {∃, ∀} be quantifiers and φ be some quantifier-free formula. Then
given

Φ(x1, . . . , xk) := Qk+1xk+1 . . . Qnxn φ(x1, . . . , xn), (2.1)

quantifier elimination is the problem of producing a quantifier-free formula ψ(x1, . . . , xk)
equivalent to Φ.

Tarski proved that QE is computable in the theory of RCFs [99]. However, the com-
plexity of Tarski’s method is non-elementary (indescribable as a finite tower of exponen-
tials). Later, a more efficient method for computing QE, using CAD, was introduced by
Collins [26].

Definition 2 A sign-invariant CAD is a decomposition of the n-dimensional real
space into connected semialgebraic sets (described by polynomial relations), called cells,
such that a given set of polynomials has constant sign on each cell. The decomposition is
called cylindrical, if projections of any two cells onto their first i coordinates are either
identical or disjoint (with respect to a given variable ordering).

CADs with other invariance structures still sufficient for QE have also been investigated
[74, 75], but we will work with the above variant.

Given a quantified first order formula, the CAD of its polynomial terms can be used to
implement QE. The simplest approach is to ignore the quantifers of the original formula
and then rebuild the quantifier-free formula based on the associated cells. More specif-
ically, by computing the sign-invariant CAD for each polynomial term occurring in the
formula, we can evaluate the quantifications separately for each polynomial (in)equality.
Since in each cell each polynomial is sign-invariant, the corresponding polynomial term
is truth-invariant. Hence, an equivalent quantifier-free formula is simply given by dis-
junctions of the truth cells of the different decompositions. Other, more sophisticated
CAD algorithms use the quantifier structure of the formula for short-cuts and improve-
ments [27, 85, 61]. The most famous example for this is Partial CAD [27] where the
algorithm stops the lifting step once it already knows that cells will be false based on
quantifier information.

The CAD algorithm was a major breakthrough when introduced, despite its doubly
exponential complexity in the number of variables, since Tarksi’s method is infeasible in
practice. For some problems, QE is possible through algorithms with better complexity
(see for example the survey by Basu [7]), but CAD implementations remain the best
general purpose approach. Although CAD was first introduced to implement quantifier
elimination over the reals, it has since been applied to applications including robot motion

16

planning [105], programming with complex valued functions [32], optimisation [44] and
epidemic modelling [19].

I now give a brief overview over Collins’ algorithm [4] for computing CADs. The
algorithm works in two stages. First, the projection stage calculates sets of projection
polynomials Si in variables (x1, . . . , xi). This is achieved by repeatedly applying a projec-
tion operator to a set of polynomials, producing a set with one fewer variable. We start
with the polynomials from φ and eliminate variables this way until we have the set of
univariate polynomials S1.

Then in the lifting stage, decompositions of real spaces in increasing dimensions are
formed according to the real roots of those polynomials. First, the real line is decomposed
according to the roots of the polynomials in S1. Then over each cell c in that decompo-
sition, the bivariate polynomials S2 are taken at a sample point and a decomposition of
c× R is produced according to their roots. Taking the union gives the decomposition of
R2 and we proceed this way to a decomposition of Rn. The resulting decomposition is
cylindrical and each cell is a semi-algebraic set.

2.1.3 Variable ordering in CAD

When using CAD, we have to assign an ordering to the variables. This dictates the order
in which the variables are eliminated during projection and thus the sub-spaces for which
CADs are produced en route to a CAD of Rn. For some applications this order is fixed
but for others there may be a free or constrained choice. When using CAD for quantifier
elimination we must project quantified variables before unquantified ones. Furthermore,
the quantified variables should be projected in the order they occur, unless successive
ones have the same quantifier in which case they may be swapped. The ordering can
have a big effect on the output and performance of CAD [18, 36, 11]. In fact, Brown
and Davenport [18] present a class of problems in which one variable ordering gives an
output of double exponential complexity in the number of variables and another gives
an output of a constant size. Heuristics have been developed to help with this choice,
with Dolzmann et al. [36] giving the best known study. However, it was shown that even
the best known heuristic could be misled (see Bradford et al. [11]). There is no single
heuristic which is suitable for all problems. The best heuristic to use is dependent upon
the problem considered. However, the relationship between problems and heuristics is far
from obvious and so we investigate whether machine learning can help with these choices.
I will discuss this in detail in Chapter 4.

2.1.4 Gröbner basis

A useful tool for a more efficient computation of CADs is the Gröbner basis, first intro-
duced by Buchberger [20], together with an algorithm to compute them (Buchberger’s
algorithm). Intuitively, the Gröbner basis of a set of multivariate polynomials is a gener-
ating set of a polynomial ideal that has certain nice algorithmic properties. I will not give
a formal derivation of its algebraic properties here, as it is not in the scope of this thesis,
but rather refer to [20] for details. However, it has been shown that the Gröbner basis is
one of the main practical tools for solving systems of polynomial equations [25, 12, 84], and
interestingly, computing the Gröbner basis of a system of polynomial (in)equalities can
be used as a preconditioning step before applying CAD. Wilson [106] has shown that this
preconditioning step often results in a sharp drop in CAD complexity and construction

17

time. Since the Gröbner basis generally removes any redundancies from a set of polyno-
mials by reducing polynomials with respect to each other or identifying common factors,
this will usually lead to simpler projection sets by having simpler polynomials to start
with. However, computing the Gröbner basis is not universally beneficial, as the Gröbner
basis might introduce extra polynomials of possibly high degree, and there is no fixed rule
to decide if Gröbner preconditioning is beneficial or not. In my experiments (Chapter 5),
I apply machine learning techniques to help decide whether Gröbner preconditioning is
useful depending on the problem instance.

2.1.5 MetiTarski

Automated reasoning for mathematical proof is a key component that many software
verification and program analysis tools rely on. Automated theorem proving (ATP) [73]
involves computer programs that can prove theorems automatically. ATP has been suc-
cessfully used in many fields, e.g. mathematics, computer science, engineering, and social
science. Many applications require reasoning about special functions such as logarithms,
sines, cosines and so forth. MetiTarski is an ATP which can prove inequalities involving
those special functions [1, 2]. Paulson and Akbarpour have shown how MetiTarski can
be used to prove safety properties about hybrid systems. For example, in the collision
avoidance system, the key property to check is if the gap between two cars is larger than
0. As a result, the following formula with special functions is derived:

0 ≤ x ≤ 2 =⇒ 12− 14.2 exp(−0.318x)+

(3.25 cos(1.16x)− 0.155 sin(1.16x)) exp(−1.34x) > 0

MetiTarski can prove this formula within a second. MetiTarski can also prove a
wide variety of problems derived from the verification of Nichols plots. These typically
involve the arctangent, logarithm and square root functions.

2.1.6 RCF decision procedures

MetiTarski works by eliminating special functions, substituting rational function up-
per or lower bounds, transforming parts of the problem into polynomial inequalities, and
finally applying a external decision procedure for the theory of RCF. RCF decision pro-
cedures are used to simplify clauses by deleting literals that are inconsistent with other
algebraic facts. RCF decision procedures are also used to discard redundant clauses that
follow algebraically from other clauses [2].

In this thesis, machine learning is applied to find the most efficient RCF decision
procedure for a given MetiTarski problem. Three RCF decision procedures were tested:
Z3 with Strategy 1 [83], Mathematica [108] andQepcad [15]. The SMT solver Z3 [34]
has an internal module called nlsat [63] that implements an efficient method for deciding
purely existential RCF sentences. Combined with strategies tailored to the types of RCF
problems generated by MetiTarski, it has been used to successfully prove problems of
up to 11 variables. Z3 with Strategy 1 [83] is a refined version of Z3, which is currently the
default algebraic decision procedure used byMetiTarski. Passmore et al. showed that by
applying model sharing and omitting the standard test for irreducibility with Z3, its proof
performance could be substantially improved. The decision procedure Qepcad [15] is an

18

interactive command line program for performing Quantifier Elimination with Partial
CAD. It is very efficient on single variable problems, but can only deal with problems in
less than four variables in reasonable time / memory constraints. Mathematica [108]
contains a family of highly advanced RCF decision procedures (including CAD, Gröbner
Bases and more), which allow MetiTarski to handle efficiently problems with up to 4
or 5 variables.

2.2 Machine learning

Machine learning is the process of learning rules from and making predictions on data.
The emphasis of machine learning is to program by example rather than to program the
exact instructions to solve the task. Machine learning methods have been successfully used
in many applications. For example, in speech recognition, machine learning techniques
learn patterns of speech signals to understand the words [3]. In facial recognition, they
work by finding patterns in images that match those of faces [82]. They are also used to
develop classifiers for detection of disease in medical diagnosis [69].

Supervised learning [9] is one of the fundamental methods in machine learning. It
infers a function from data labelled with the corresponding correct outputs and then can
be used on new examples. Each example is a pair consisting of a set of input variables and
a desired output value. By contrast, unsupervised learning aims to find hidden structure
in unlabelled data.

The work in this dissertation uses supervised learning exclusively. The support vector
machine (SVM) learning algorithm is among the best supervised learning algorithms. It
was selected for the work of this dissertation. In the rest of the chapter, we will give a
brief overview of the basic concepts relevant to SVM, and how to extend the basic binary
SVM model to multiclass SVMs and common feature selection approaches. For a more
thorough treatment, we refer to Cristianini [30] and Bishop [9].

2.2.1 Support vector machines (SVMs)

The SVM is a very popular machine learning technique. It is a supervised learning method
used for classification and regression. Classification refers to the assignment of input
examples into a given set of categories (the output being the class label). Regression refers
to a supervised pattern analysis in which the output is real-valued. In the classification
task, input data are called training data and each is marked as belonging to one of K
classes. The SVM training model maps the data into a higher-dimensional space where
the K classes are separated by a hyperplane. This higher-dimensional space is called
the transformed feature space, as opposed to the input space occupied by the training
instances. The goal of the SVM model is to maximise the gap between the separating
hyperplane and so that the expected generalisation error is minimised.

The rest of the section presents the SVM method in more detail. We first motivate
the use of SVMs, and then consider the simplest case where data is linearly separably in
the input space. Next we introduction the notation of margins and margin separation.
We will also give a brief discussion of kernels, which allow us to apply SVMs efficiently in
very high dimensional feature spaces, and finally, soft margin SVMs, which is an approach
of dealing with outliers in the dataset.

19

2.2.1.1 Motivation for using SVMs

SVMs were selected as the machine learning technique for this dissertation for a number of
reasons. SVMs deliver a unique solution, since the optimality problem is convex. This is
an advantage compared to various machine learning techniques, e.g. Neural Networks [54],
which have multiple solutions associated with local minima and may not be robust over
different samples. Furthermore, SVMs are memory efficient, since the decision boundary
is decided only by a small subset of training points in the decision function (called support
vectors). By introducing kernel methods, SVMs can be efficiently applied in very high
dimensional feature spaces, and are flexible in modelling diverse sources of data. Also,
SVMs generally provide low generalization error. In the recent paper [42], Delago et al.
evaluated 179 classifiers arising from 17 families over the whole UCI machine learning
classification database. Four classifiers of SVMs ranked within top 10 classifers among
179 classifiers, and the SVM with a radial basis function kernel achieved 92.3% of the
maximum accuracy. Additionally, SVMs are well supported with existing software. The
main software used in my experiments is SVMLight [62].

2.2.1.2 Linear classifiers

First, we take a look at the simplest case: the binary classification problem. This is the
task of separating two sets of data points in space, each corresponding to a given class.
We seek to separate the two data sets using simple boundaries. Once the boundary is
found, new examples are then predicted to belong to a category based on which side of
the boundary they fall. The data for a two-class learning problem consists of objects
labelled with +1 (positive examples) or −1 (negative examples). Each data instance is
represented as a vector x of real numbers (referred to as features). A labelled example
is then denoted (x, y) where y ∈ {+1,−1}. We take a set of these labelled pairs and
attempt to construct a discriminant function f that maps input vectors x onto labels
y. The goal is to find a f which minimizes the number of errors (f(x) 6= y) on future
examples.

A linear classifier is based on a linear discriminant function of the form

f(x) = ω
T · x+ b, (2.2)

where ω
T · x denotes the inner product of the vectors ω and x. We call ω the weight

vector, and b the bias. The decision boundary divides the space into two sets, depending
on the sign of ωT · x+ b. The linear classifier is defined as

hω,b(x) =

{

+1, for ωT · x+ b ≥ 0

−1, for ωT · x+ b < 0
(2.3)

If we can find a linear classifier such that all training examples are classified correctly,
then we call the data linearly separable.

2.2.1.3 Functional margin and geometric margin

Given a hyperplane ω
T · x + b = 0, and a training example (xi, yi) in the training set

S = {(xi, yi); i = 1, 2, ..., n}, the sign of yi(ω
T ·xi+b) is used to judge the correctness of the

classification. If yi(ω
T · xi + b) > 0, then our prediction on this example is correct. This

20

introduces the concept of functional margin. The functional margin of the hyperplane
ω

T · x+ b = 0 with respect to the training example (xi, yi) is defined as

γ̂i = yi(ω
T · xi + b). (2.4)

The functional margin of the hyperplane (ω, b) in terms of S is the minimum value of the
functional margin over all training samples:

γ̂ = min
i
γ̂i. (2.5)

However, the functional margin is not a very good measure of confidence of the prediction.
Observe that the value of hω,b(x) only depends on the sign of ωT · x + b, but not its
magnitude. We can make the functional margin arbitrarily large by scaling ω and b
without changing anything meaningful.

For the margin to be a direct measure, we are rather interested in the normalized
value of the functional margin, which brings in the notion of the geometric margin. Tak-
ing the same training set S, the geometric margin of (ω, b) with respect to a training
example (xi, yi) is defined as

γi = yi
ω

T · xi + b

‖ω‖
=

γ̂i
‖ω‖

. (2.6)

The geometric margin of (ω, b) in terms of S is also defined as the minimum value of the
geometric margin over all training samples:

γ = min
i
γi. (2.7)

The geometric margin can be viewed as the signed distance from the point to the plane
and is invariant to rescaling of the parameters.

To summarize, the functional margin gives the position of the training point with
respect to the plane, independent of the magnitude, while the geometric margin gives the
distance between the given training point and the given plane.

2.2.1.4 Maximum margin separation

Often, there are multiple solutions for a classifier that can classify the data in the training
set. In these cases, we want to find the one with the smallest generalization error. The
support vector machine approaches this problem through maximum margin separation,
where the hyperplane that has the largest distance to the nearest training data point of any
class (geometric margin) is chosen. Intuitively, a large margin represents high confidence
in a classification decision. Recall that scaling (ω, b) does not change the geometric
margin, but does scale the functional margin. Hence, without loss of generality, we can
introduce scaling constraints to set the functional margin of (ω, b) to 1. More specifically,
we assume that the constraints yi(ω

T · xi + b) ≥ 1 always hold.
Figure 2.1 shows a maximum margin boundary computed by a linear SVM. Circles

are positive examples and squares are negative examples. The region between the two
dashed lines defines the margin area with

−1 ≤ ω
T · x+ b ≤ 1. (2.8)

21

x1

x2

ω

T · x
+
b =

0

2‖
ω
‖

ω

T · x
+
b =

−
1

ω

T · x
+
b =

1

b‖
ω
‖

ω

Figure 2.1: Maximum margin separation

The solid line in the middle is the hyperplane, which is defined by the set of nearest
examples. These nearest examples are called the support vectors. In the figure, there are
four support vectors (two solid circles and two solid squares) on the edge of the margin
area (f(x) = −1 or f(x) = +1). The margin is defined as the perpendicular distance
between the decision boundary and the closest of the data points. To maximise the margin
value, we basically seek to solve the following optimization problem:

argmax
ω,b

1

‖ω‖
, (2.9)

subject to

yi(ω
T · xi + b) ≥ 1. (2.10)

The optimisation problem of maximising 1

‖ω‖
is equivalent to minimising 1

2
‖ω‖2, and we

now have the following:

argmin
ω,b

1

2
‖ω‖2, (2.11)

subject to the constrains given by Equation 2.10. This is a constrained quadratic pro-
gramming optimization problem, for which several standard algorithms exist. However,
in the following I will give a different representation of the optimization, which will be
very useful when introducing the concept of kernels.

In particular, we introduce Lagrange multipliers together with Karush-Kuhn-Tucker
(KKT) conditions to obtain the dual form of our optimization problem, which is referred
to as the primal. I will not give a formal derivation of the theory of Lagrange duality
here, as it is not in the scope of this thesis, but rather refer to [43] for details. Here,

22

we are mainly interested in showing how this can be applied to our maximum margin
optimization problem.

In order to derive the dual form of the original optimisation problem, KKT multipliers,
αi ≥ 0, where i = 1, . . . , n are introduced, and we define the Lagrangian to be

L(ω, b, α) =
1

2
‖ω‖2 −

n
∑

i=1

αi[yi(ω
T · xi − b)− 1]. (2.12)

We now seek to minimise L(ω, b, α), and set the derivatives of L with respect to ω

and b to 0. As for the derivative with respect to ω, we obtain

∂

∂ω
L = ω −

n
∑

i=1

αiyixi = 0, (2.13)

which implies that ω can be expressed as a linear combination of the training vectors

ω =
n

∑

i=1

αiyixi. (2.14)

As for the derivative with respect to b, we obtain

∂

∂b
L =

n
∑

i=1

αiyi = 0. (2.15)

By substituting Equation 2.14 and Equation 2.15 back to Equation 2.12, we get

L(ω, b, α) =
n

∑

i=1

αi −
1

2

n
∑

i,g=1

αiαgyiygx
T
i · xg, (2.16)

Recall that we obtained the equation above by minimizing L with respect to ω and b.
Hence, we have

argmax
α

n
∑

i=1

αi −
1

2

n
∑

i,g=1

αiαgyiygx
T
i · xg, (2.17)

subject to αi ≥ 0 and Equation 2.15. This form is known as the dual form of the problem.
Note that our optimisation problem is now expressed in terms of the inner product of our
sample data. This fact will be key when introducing kernel methods. I will give more
detail of how kernel methods work in the following section.

Furthermore, note that due to the KKT dual complementarity conditions, we need to
satisfy the following two constraints simultaneously

αi ≥ 0 (2.18)

αi(−yi(ω
T · xi + b) + 1) = 0. (2.19)

This implies that the corresponding αi for all the points for which we have

yi(ω
T · xi − b)− 1 > 0 (2.20)

23

is set to zero. We can see that those points do not matter, and only the points which
satisfy

yi(ω
T · xi − b)− 1 = 0 (2.21)

are relevant. These points are exactly our support vectors, and only they influence the
decision boundaries. Since we have only few support vectors compared to the size of the
full training data, this allows support vector machines to scale very well with large sets
of data.

2.2.1.5 Kernel methods

Sometimes, the data are not linearly separable in the original space. One approach to
tackle these instances, is to map the original space into a transferred feature space in which
separation is easier. Instead of computing the coordinate transformation into feature
space, which is in general computational expensive, SVMs use kernel methods, which
simply project all pairs of data into the feature space. Suppose we have a mapping function
φ, mapping the original input space to the feature space. The dual form (Equation 2.15)
of our optimization problem then becomes:

argmax
α

n
∑

i=1

αi −
1

2

n
∑

i,g=1

αiαgyiygφ(xi)
T · φ(xg), (2.22)

subject to αi ≥ 0 and Equation 2.15. Note that the above problem depends on the data
only through dot products in feature space. If the kernel function K(xi,xg) defined as

K(xi,xg) = φ(xi)
T · φ(xg) (2.23)

can be computed efficiently, then we can avoid the computationally expensive step by
skipping the explicit mapping of the data to a higher dimensional feature space.

To do this, we need to verify that kernel function K is indeed an inner product.
Given a function K, instead of trying to find the explicit representation for φ, Mercer’s
theorem [77] gives another way of testing if it is a valid kernel. In a finite feature space, a
symmetric matrix of all possible K(xi,xg) values can be defined and shown to be positive
semi-definite if and only if K is a valid kernel function. There are two desirable properties
when choosing a kernel function in an application. Firstly, the kernel should capture
the similarity between implicit representations of data in feature space. Secondly, it
should require less computation than the explicit calculation of the corresponding feature
mapping φ.

SVM-Light was used for the work, which supports four kernel functions: the linear
kernel, the polynomial kernel, the radial basis function kernel and the sigmoid tanh kernel.
For each kernel function, there are associated parameters which must be set.

Linear kernel

The linear kernel function is the simplest kernel, which represents a simple scalar product
of the two feature vectors:

K(xi,xg) = x
T
i · xg.

where xi and xg are feature vectors. It does not require any user supplied parameters
and usually only performs well when the data is close to being linearly separable.

24

Polynomial kernel

The polynomial kernel represents the similarity of training samples in a feature space over
polynomials of the original variables:

K(xi,xg) = (γxT
i · xg + r)d, γ > 0

where xi and xg are feature vectors and γ, r and d are kernel parameters.

Radial basis function kernel

The radial basis function kernel, also called the Gaussian kernel, is a polynomial kernel
of infinite degree. Its features are all possible monomials of input features with no degree
restriction:

K(xi,xg) = exp(−γ||xi − xg||
2), γ > 0

where xi and xg are feature vectors and γ is kernel parameter.

Sigmoid tanh kernel

The sigmoid tanh kernel takes the tanh of a scaled and shifted scalar product, with the
general expression

K(xi,xg) = tanh(γxT
i · xg + r)

where xi and xg are feature vectors and γ and r are kernel parameters.
Earlier studies suggest that the radial basis function (RBF) kernel is in general a

reasonable first choice [57]. Keerthi and Lin [65] showed that if complete model selection
using the RBF kernel has been conducted, there is no need to consider linear SVM as
the linear kernel is a special case of RBF. In addition, both theoretical and experimental
analysis demonstrated that the sigmoid kernel behaves like RBF for certain parameters,
but not better than RBF in general [71]. Moreover, an earlier experiments applying
machine learning to an automated theorem prover [13] also found the radial basis function
(RBF) kernel performed well in finding a relation between the simple algebraic features
and the best heuristic choice. Hence the radial basis function (RBF) kernel was selected in
the work of this dissertation. The performance of RBF kernel highly depends on the choice
of parameters. Compared to Sigmoid tanh kernel and polynomial kernel, the RBF kernel
only has a single parameter, which also reduces the complexity of the model selection.
I will discuss the parameters of the RBF kernel and parameter optimization method for
selecting the optimal parameters in Section 3.5.

2.2.1.6 Soft margin classifier

In Section 2.2.1.2, we discussed linear classifiers by assuming that the data are linearly
separable. In Section 2.2.1.5, kernel methods were introduced to help with nonlinear
cases. However, even with a transformation of the feature space, some data sets may not
be linearly separable. Additionally, the data set itself may contain noisy data, generally
referred to as outliers, which are far away from any expected position. With the previously
described hard margin SVM model, the classifier is very susceptible to outliers since the
location of the hyperplane is restricted only by a few support vectors. If some of the
outliers are support vectors they will heavily influence the classifier.

25

x1

x2

Figure 2.2: Outlier in the dataset

In Figure 2.2, squares are positive examples and circles are negative examples. The
solid circle is an outlier. If we ignore the example, we could easily find a reasonable
hyperplane (the solid line in the middle) to separate the rest of the points. However, with
the outlier, the decision boundaries become the narrow dashed lines shown in the figure,
and the margin value is much smaller. Even worse, if the outlier is even further to the
upper right, there would be no hyperplane that can separate the dataset.

In order to deal with this situation, we modify the previously described hard margin
SVM to allow some sample points to lie within a certain distance or even on the wrong
side of the decision boundary. This approach is called the soft margin approach. To do
this, slack variables, ξi ≥ 0, where i = 1, ..., n are introduced, with one slack variable for
each training data point. The previous condition

yi(ω
T · xi + b) ≥ 1 (2.24)

is then changed to

yi(ω
T · xi + b) ≥ 1− ξi (2.25)

Of course, if the slack variable ξi is large enough, any hyperplane could satisfy the condi-
tion. Ideally the number of points with non-zero values for the slack variables should be
minimised. Thus the new optimisation problem becomes:

argmin
γ,ω,b

1

2
‖ω‖2 + C

n
∑

i=1

ξi (2.26)

subject to:

yi(ω
T
xi + b) ≥ 1− ξi. (2.27)

where the parameter C represents a trade-off between training error and margin. In
SVMLight, the parameter C is split into two to allow for unbalanced sets [78]. The

26

target function is changed to

argmin
γ,ω,b

1

2
‖ω‖2 + C+

n
∑

i:yi=1

ξi + C−

n
∑

g:yg=−1

ξg (2.28)

The SVMLight parameter j (equal to 1 by default) is used to set the ratio of C+ to
C− and typically should be equal to the ratio of the number of negative samples to the
number of positive samples in the training set:

j =
C−

C+

=
number of negative training examples

number of positive training examples
(2.29)

2.2.2 Multi SVMs

Since SVM methods are binary, we have to do more work in the case of multi-class
problems: either determine all the decision functions at once or reduce the problem to a
set of multiple binary classification problems [8, 104]. One of the most commonly used
multiclass classifiers is known as the one-versus-all approach. Suppose the dataset is
classified into K classes. Then, K binary SVM classifiers are created where each classifier
is trained to distinguish one class from the remaining K − 1 classes. During the testing
phase, the test sample is placed in the class giving the largest fk(x) (most positive or least
negative) value, where fk(x) is the solution from the kth SVM classifier (k = 1, . . . , K).
In my thesis, the one-versus-all approach is used. This one-versus-all approach has the
advantage that the number of binary classifiers to construct equals the number of classes.
However, it also suffers from the problem that the different classifiers contain unbalanced
data. Suppose for K classes, that each has an equal number of training samples. During
the learning phase, the ratio of training samples of one class to rest of the classes will only
be 1

K−1
. This ratio, therefore, shows that training sample sizes will be unbalanced. This

problem is addressed by the j parameter in SVMLight, which allows separate weights
to be applied to positive and negative slack variables during the optimisation.

2.2.3 Feature selection

Feature selection is the process of selecting a subset of relevant features in the training set
and using only this subset as features in the classification task. In itself, it is a broad and
important area in machine learning, and I give here the relevant background to understand
the tasks for which I use feature selection methods. For further background, we refer to
[67, 49, 50].

Feature selection techniques are used for four main purposes.

1. To shorten the learning time.

2. To increase classification accuracy by eliminating noisy features.

3. To enhance generalisation by removing irrelevant features (as many irrelevant fea-
tures in the dataset can result in over fitting).

4. To provide a better understanding of the underlying process from which the data
was generated.

27

A feature selection algorithm generally consists of a search technique for suggesting
feature subsets, along with an evaluation measurement for the feature subsets. The sim-
plest algorithm is to test each possible subset of features and to find the one with the
minimum generation error. This is an exhaustive search of the space, and is computa-
tionally intractable for most problems. It is therefore necessary to employ approaches to
explore only a part of the potential search space. There are two main approaches that
deal with feature selection: the wrapper approach and the filter approach [67].

Wrapper method evaluates subset of features according to their performance (e.g.
accuracy) to a given predictive model. Wrapper In the following figures I present a
detailed view of the features used in the experiments described in Chapters ?? and ??.
Figures ?? show the distribution of features of the data set used in Chapter ?? in form
of histograms, while Figures ?? show the distribution of features of the data in Chapter
??. In addition, I examined some of the pairwise correlations present between features in
both sets. In Figures ?? I present the projection of the data set onto a number of feature
pairs. For some feature pairs we can observe a noticeable correlation, which is often simply
explained by the nature of the feature (e.g. the proportion of x occuring in polynomials is
likely to be correlated with its occurance in monomials). For others, no obvious correlation
exists, which adds to justify the inclusion of both features in the set.methods requires to
train a new model for each subset, and thus are very computationally expensive. However,
they usually provide the best performing feature set for that particular type of model.

Unlike the wrapper approach, the filter approach is independent of the classifier used.
The characteristics of the training data are used to select feature subsets (for example,
the correlation between features and class, or the redundancy between features). Filter
methods are usually faster than wrappers, but they produce a feature set which is not
tuned to a specific predictive model. Filter methods are commonly used as a preprocessing
step for wrapper methods, allowing a wrapper to be used on larger problems. For example,
in applications such as the text processing, the number of features may reach tens of
thousands. Directly applying wrapper methods could be very slow and even infeasible
for the problem. In the work described in Chapter 5, the number of features is 28, which
allows the use of both wrapper and filter approaches and their results are compared.

28

Chapter 3

Choosing decision procedures and
time limits in MetiTarski

The goal of this thesis is to examine how machine learning can be applied to the field of
computer algebra. I conducted three machine learning experiments to determine the use-
fulness of machine learning in computer algebra applications over RCFs. All three share
some commonalities in their methodology. In this chapter, I describe the experiments
of applying machine learning to the problem-dependent selection of the best decision
procedure and selection of the best time limit setting on individual RCF problems in the
theorem prover MetiTarski. The experiments mainly served as preliminary experiments
to determine whether machine learning was work at all in the given application area. At
the same time, we introduce here some aspects of methodology that we reuse for the other
experiment, such as the performance measure for classifiers, the selection of kernels and
parameter values, and the combination of classifiers for multi-class SVMs.

3.1 Decision produces

During execution, MetiTarski reduces terms with special functions to polynomial inequal-
ities over RCFs and relies on external decision procedures to solve these inequalities.
As discussed in Section 2.1.6, different implementations of RCF decision procedures have
their own strengths and weaknesses for restricted classes of formulas and there is no single
RCF decision procedure which is optimal for all problems. Which decision procedure is
the most appropriate one to call is highly dependent on the (usually geometric) properties
of the RCF problem being considered, which is in turn largely influenced by the struc-
ture of the original MetiTarski problem. However, the relationship between MetiTarski
problems and the preferred decision procedure is far from obvious. I want to find out
whether machine learning can help with the choice of the appropriate decision procedure
for a given problem.

Three RCF decision procedures were tested: Z3 with Strategy 1 (the default option)
[83], Mathematica [108] (specified by the -m option) and Qepcad [15] (specified by
the -qepcad option). For convenience, in the rest of the chapter, I use Z3 to denote Z3
with Strategy 1. However, it should be clear that it is a non-standard version of Z3.

Technical Note: all computations were performed in Qepcad 1.62, Mathematica
8.0.1 and Z3 4.0 on a 2.4GHz Intel processor. This same machine and softwares were
used for the experiments in Section 3.8.

29

3.2 Evaluation of decision procedures

For each problem, I called MetiTarski with each of the decision procedures. In addition,
I recorded the running time for each problem with each decision procedure. A time limit
of 60 seconds was set for each proof attempt. The best decision procedure is the one with
the fastest runtime. We use a threshold in this comparison, counting a proof as the fastest
only if it is faster by a 1% margin than all other proofs found. If more than one decision
procedure yielded the minimal runtime, both decision procedures were considered the
best. If none of them finished within the time limit, none of the decision procedures were
considered the best. This approach is based on Bridge et al.’s work on machine learning
for first-order theorem proving [14].

3.3 Problem features

To apply machine learning, we need to identify features of the MetiTarski problem that
might be relevant to the correct choice of the RCF decision procedure. A feature is an
aspect or measure of the problem that may be expressed numerically. I characterised
MetiTarski problems by a vector of real numbers or features. For each problem, each
vector of features was associated with label +1 or −1, indicating in which of two classes
it was placed. Take Z3 as an example: in the learning set for Z3, each problem is labelled
+1 if Z3 found a proof and was the fastest to do so, or −1 if Z3 failed to find a proof or
was not the fastest.

The features used for the current experiment were of two types. One consisted of
the indication of various special functions : ln, sin, cos, etc. Each feature represented the
presence of the specified function in the problem. For example, the feature value related
to the function ln was equal to 1 if ln appeared in the given problem, otherwise the value
was equal to 0. (Here we get a special case that π is also counted for one feature, since in
MetiTarski, instead of having a constant value, π is processed in the same way as other
special functions.) The other type of feature was related to the number of variables in
the given MetiTarski problem. There are four features, indicating whether the problem
involves 0, 1, 2, or more variables. I chose this representation for two reasons. First, it
has the same boolean nature as the other feature type. Second, most of the problems
have no more than two variables in the problem set. Having more variables in a problem
will greatly increase the difficulty of the proof search as CAD is doubly exponential in the
number of variables. Decision procedures usually return quickly if the formula has only a
few variables. Table 3.1 shows the 22 features that were identified in all problems. Figure
3.1 shows a sample problem in our problem set. The problem would yield the following
feature vector:

[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0] .

Here, each component corresponds to a feature from Table 4.1. and this vector encodes
the presence of the special functions exp, sin, and cos, and the number of variables, which
is equal to one.

30

Table 3.1: Description of the features used.

Feature number Description

1 Presence of the abs function

2 Presence of the arcsin function

3 Presence of the arctan function

4 Presence of the cbrt function

5 Presence of the cos function

6 Presence of the cosh function

7 Presence of the exp function

8 Presence of the ln function

9 Presence of the log function

10 Presence of the max function

11 Presence of the min function

12 Presence of the pi function

13 Presence of the pow function

14 Presence of the sin function

15 Presence of the sinh function

16 Presence of the sqrt function

17 Presence of the tan function

18 Presence of the tanh function

19 Number of variable is equal to zero

20 Number of variable is equal to one

21 Number of variable is equal to two

22 Number of variable is large than two

3.4 Performance measures for classifiers

For each SVM classifier, we need to have a means of measuring its performance. Per-
formance measures are useful in judging the effectiveness of the learning and help to
determine the best parameter values to set.

Below, I discuss some standard measures. I will first introduce four basic common
measures given in the confusion matrix for a two-class classifier (see Table 3.2).

Several standard terms are defined from the confusion matrix: The accuracy (ACC)
is the proportion of the total number of predictions that were correct:

ACC =
TP + TN

TP + FP + FN + TN

The recall is the proportion of positive cases that were correctly identified:

recall =
TP

TP + FN

31

Figure 3.1: Sample MetiTarski problem: Chua-1-VC1-L-sincos.tptp

fof(‘Chua’, conjecture, ! [X] : ((0 <= X & X <= 289)

=> 2.84 - 0.063*exp(-0.019*X) - 1.77*exp(0.00024*X)

*cos(0.0189*X) + 0.689*exp(0.00024*X)*sin(0.0189*X) > 0)).

include(‘Axioms/general.ax’).

include(‘Axioms/exp-upper.ax’).

include(‘Axioms/exp-lower.ax’).

include(‘Axioms/sin.ax’).

include(‘Axioms/cos.ax’).

Table 3.2: Confusion matrix for a two class classifier

Predicted Class

Positive Negative

Actual Class
Positive True positives (TP) False negatives (FN)

Negative False positive (FP) True negatives (TN)

The precision is the proportion of the predicted positive cases that were correct:

precision =
TP

TP + FP

The false positive rate (FPR) is the proportion of negatives cases that were incorrectly
classified as positive:

FPR =
FP

FP + TN

The true negative rate (TNR) is defined as the proportion of negatives cases that were
classified correctly:

TNR =
TN

TN + FP

The false negative rate (FNR) is the proportion of positives cases that were incorrectly
classified as negative:

FNR =
FN

TP + FN

From the confusion matrix, the main performance measure is the ACC measure. However,
it may not be a reliable performance measure when applied to problems having unbalanced
classes. For example, if there were 100 MetiTarski problems in total and in only 5 of
them did Z3 fail to make the most efficient proof, the classifier could easily be biased into
classifying all the samples as positive labels. The overall accuracy would be 95%, but in
practice the classifier would have a 100% recognition rate for the positive class but a 0%
recognition rate for the negative class.

32

Other performance measures are considered good when we encounter unbalanced data
set. For example, a good measurement for evaluating the performance of binary classi-
fications is Matthew’s correlation coefficient (MCC) [5], which takes into account all the
four basic measurements:

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where the denominator is set to 1 if any sum term is zero. This measure has the value
1 if perfect prediction is attained, 0 if the classifier is performing as a random classifier,
and −1 if the classifier exactly disagrees with the data.

Finally we define another commonly used measure: the F1-score, which is defined in
terms of precision and recall

F1 =
2× precision× recall

precision+ recall
.

The F1-score reaches its best value at 1 and worst score at 0. We note that F1-score does
not take into account the value of TN .

The F1-score and Matthew’s coefficients are the main measurements I used in the
experiment to determine the best parameters during the learning process. Note that
the final performance is the joint performance of the set of SVM classifiers (see Section
3.6). To determine the efficacy of the machine learned selection process, the number of
problems successfully proved was used and compared to the number of problems proved
by always fixing one individual decision procedure.

3.5 Kernel selection and parameter optimization

As stated in Section 2.2.1, SVMs use kernel functions to map the data into higher dimen-
sional spaces where the data may be more easily separated. The application of SVMs to
any classification problem requires the choice of an appropriate kernel and its associated
parameters, and the accuracy of the learning model is largely dependent on them. The
radial basis function (RBF) kernel was selected for this experiment. The performance
of RBF kernel highly depends on the choice of parameters. In order to optimize the as-
sociated parameter setting, I used a validation set alongside the training set. The basic
idea is to choose the kernel and parameters that yield the classifier that maximises some
performance measure on the validation set; in this case the accuracy, the Matthews coef-
ficient, or the F1-score. The actual experiment is then assessed on a test set that was not
used in either training or validation.

There are three parameters involved in RBF kernel function. The first one is the
weight factor j, which is used to correct the imbalance in the training set and was set to
the ratio between the number of negative samples and the number of positive samples.
Besides the parameter j, two other parameters are involved in the SVM fitting process.
The parameter γ determines how far the influence of a support vector reaches. The
behaviour of the RBF kernel is very sensitive to the γ parameter: when γ is too large, the
region of influence of the support vector is possibly limited to the support vector itself.
However, when γ is too small, the region of influence of any selected support vector would
include the whole training set. Thus a small γ will produce low bias and high variance
results, while a large γ will give higher bias and low variance results. The parameter C

33

governs the trade-off between margin and training error. It defines how much penalty the
SVM optimizer receive for each misclassified training example. When C is set to a large
value, the optimizer will choose a smaller-margin hyperplane if that hyperplane does a
better job of getting all the training points classified correctly, whereas a very small value
of C will cause the optimizer to look for a larger-margin separating hyperplane, even if
that hyperplane misclassifies more points.

The choice of optimal values for γ and C is not trivial. The parameter selection
process needs to be done so that the classifier can accurately predict testing data. As
discussed above, a common setting for the experiment is to separate the data set into
three parts, with approximately half of the problems placed in a learning set, a quarter
put in a validation set used for kernel selection and parameter optimization, and the final
quarter retained in a test set used for judging the effectiveness of the learning.

To choose γ and C, a grid-search optimisation procedure [57] was used with the
training and validation set, involving a search over a range of (γ, C) values to find
the pair which would maximize the score of the corresponding performance (accuracy,
Matthews coefficient or F1 score). I tested a wide range of values of γ (varied between
2−15, 2−14, 2−13, . . . , 23) and C (varied between 2−5, 2−4, 2−3, . . . , 215) in the grid search
process (the ranges are suggested by [57]). Following the completion of the grid-search,
the values for γ and C giving optimal performance scores were selected.

3.6 Combining classifiers for choosing decision pro-

cedures

SVMs were originally designed for binary classification. However, many real-world prob-
lems have more than two classes. For example, in this experiment, we have three classes
to represent three decision procedures (Z3, Qepcad and Mathematica). I use one-
versus-all to represent these classes. Membership in the positive class implies that the
decision procedure represented by this classifier is the most efficient one among the three
for the given problem. Membership in the negative class implies that the decision proce-
dure represented by this classifier did not terminate within the given time limit or is not
the most efficient one. If each predictive classifier obtained by the samples in the learning
set was perfect, then for any problem from the test set only one classifier would place it
in the positive class and all the other classifiers would place it in the negative class. Then
the best decision procedure would be the one for which the problem was classified in the
positive class. However, in practice, more than one classifier will return a positive result
for some problems, while for others, no classifiers may return a positive.

Assuming that the requirement is to select only one decision procedure as the best
choice, we want to find a way to select one even in these ambiguous cases. Our choice here
relies on the margin value. The margin for a single sample is a measure of the distance
of the sample to the decision line. In SVMLight, the output value from a classifier
is not simply a class label (“+1” or “−1”), but the margin value. The classifiers with
optimal parameter settings were applied to the test set to output the margin values for
each classifier. A large margin represents high confidence in a correct prediction. More
specifically, a large positive margin represents high confidence for the problem being
classified in a positive class, while a large negative margin represents high confidence for
the problem being classified in a negative class. Thus the relative magnitudes of the

34

classifiers were considered in the experiment. The classifier with most positive (or least
negative) margin was selected to indicate the best decision procedure for the selection.

3.7 Results

The experiment was done on 825 MetiTarski problems in a variant of the Thousands
of Problems for Theorem Provers (TPTP) format [98]. They were taken from the entire
MetiTarski problem set at the time the work was done. The only filtering applied was to
omit the existential problems, of which there are 39, because none of the three decision
procedures works for them. The data was randomly split into three subsets, with approx-
imately half of the problems placed in a learning set (418 problems), a quarter put in a
validation set (213 problems) used for kernel selection and parameter optimization, and
the final quarter retained in a test set (194 problems) used for judging the effectiveness
of the learning. The data was not stratified (the ratio of number of positive samples and
negative samples differs in each data set) at the time when the experiment was conducted.
Though the ratio of the samples were not strictly enforced, it was found the actual differ-
ence of the ratio is within 10% percentage. While this may affect the exact makeup of the
learning and test populations, it does not materially affect the validity of the results, given
the small variation. Since this was a preliminary experiment, it was not re-run with cor-
rected software. However, I address this issue in my other two experiments. The learning
set and validation set were combined and used for learning after parameter optimization
process, the learned model was then tested on the separate test set.

The total number of problems proved out of 194 testing problems was used to measure
the efficacy of the machine learned selection process. The key question was whether or not
the overall selection process does better than assigning a problem to any fixed individual
decision procedure. Thus the learned selection was compared with using each of the
decision procedures on their own. The selection results are given in Table 3.3.

Table 3.3: Number of problems proved

Decision procedures Number of problems Percentage of test set

Machine Learning 163 84%

Z3 160 82%

QEPCAD 153 79%

Mathematica 158 81%

Using machine learning to select the best decision procedure yields better results than
any fixed individual decision procedure. Though the improvement is only marginal, it is
clear that the machine learned algorithm works in the given context. Note that there is an
upper limit for our benchmark set which corresponds to the case when the best decision
procedure is always selected for each problem. Such a perfect algorithm would prove 172
out of 194 test problems (there are 22 problems in the test set, which cannot be proved
by any of the three decision procedures within time limit). We see there is still room for
improving the selection process.

35

3.8 Time limits on RCF decision procedure calls

In MetiTarski’s proof search, the RCF tests typically dominate the overall processor
time, while the time spent in resolution is much smaller. Only unsatisfiable RCF subprob-
lems contribute to a MetiTarski proof. If the RCF time limit is too long, some problems
may not be solved because the RCF decision procedure wastes too much time trying to
prove the satisfiability of irrelevant RCF subproblems. By limiting the amount of time on
individual RCF problems, MetiTarski can minimise the time wasted on difficult RCF
problems and focus on easier ones, potentially moving the proof forwards. However, if
the RCF time limit is too short, important clause simplification steps may be missed
when RCF calls time out. The next experiment was to apply machine learning to the
problem-dependent selection of the best time limit setting for RCF decision procedure
calls in MetiTarski.

This experiment is similar to the previous one. Two RCF decision procedures, Z3 [34]
andMathematica [108] were used. Machine learning was applied to select which decision
procedure to use and which time limit to set on RCF calls for a given MetiTarski
problem. In each individual run, MetiTarski called Z3 or Mathematica with various
time limits on RCF calls: 0.1s, 1s, 10s, or 100s. A time limit of 100 CPU seconds was
set for each proof attempt. For each MetiTarski problem, the best setting to use
was determined by running Z3 or Mathematica with various RCF time limits and
choosing the one which gave the fastest overall runtime. Each MetiTarski problem
was characterised by a vector of real numbers or features. The features used for this
experiment were the same as in Table 3.1. Each vector of features was associated with
label +1 or −1, indicating in which of two classes it was placed. Taking the setting of
Z3 with 1s RCF time limit as an example, a corresponding learning set was derived with
each problem labelled +1 if Z3 with 1s RCF time limit found a proof and was the fastest
to do so, or −1 if it failed to find a proof in that time limit, or was not the fastest.

The experiment was done on the same 826 MetiTarski problems (one new problem
was added at the time the experiment was conducted), except a new split was imposed on
the data set. The data was randomly split into a learning set (414 problems), a validation
set (204 problems) and a test set (208 problems). The total number of problems proved
out of 208 testing problems was used to measure the efficacy of the machine learned
selection process. The learned selection was compared with fixed RCF time settings. The
selection results are given in Table 3.4. We can see that the machine learned algorithm
for selection performs better on our benchmark set than any fixed individual settings used
in isolation.

3.9 Summary

Machine learning was applied to the problem-dependent selection of the most efficient
decision procedure and the selection of the best time limit setting for RCF decision pro-
cedure calls in the theorem prover MetiTarski. The machine learned selection yielded
better results than any individual fixed option (both for the case of decision procedure
selection and time limit setting). Though the improvement is only marginal, the machine
learned algorithm for selection performs better on our benchmark set. The results are
promising for continuing work in the area. Some of the methodology used here is also
used in the following experiments. However, there were some aspects that were improved

36

Table 3.4: Selection results for time limit setting

Time limit setting Number of problems Percentage of test set

Machine Learning 176 85%

Z3 (0.1s) 164 79%

Z3 (1s) 171 82%

Z3 (10s) 168 81%

Z3 (100s) 168 81%

Mathematica (0.1s) 143 69%

Mathematica (1s) 162 78%

Mathematica (10s) 172 83%

Mathematica (100s) 170 82%

in the later experiments. As this was a first preliminary experiment for exploration of the
field, I chose not to rerun it in the improved setting.

One improvement was to use a 5-fold cross validation process instead of holding out
samples for training and validation sets. This approach avoids holding out some data for
validation and thus makes full use of the training set for the optimization of parameters.
Another improvement would be to normalize the features to zero mean and unit variance.
And also we noticed the improvement is marginal, it would be good to conduct more
repetitions of runnings with randomly partitioned data, which allows for better measuring
the significance of the machine learning results.

Exploring more feature types relevant to the classification process is also essential for
improving the efficacy of the machine learned selection process. Future work could be
done by following this line. Possible features could be the number of atomic formulas, the
number of symbols and so on. Also, a more sophisticated feature selection process could
be applied given many features. Analysing the results of the feature selection process also
gives some insight as to why some decision procedures or heuristics perform better than
others in certain problem cases, which can help with developing new decision procedure
or heuristics.

37

38

Chapter 4

Choosing a heuristic for CAD
variable ordering

In the computation of a CAD, the order in which the variables are projected during the
projection phase plays a significant role: some problems are even infeasible in one ordering,
while easily solvable in another. There are various heuristics for selecting a suitable
variable ordering given an instance, and no single one is suitable for all problems. The
choice of the best heuristic depends on the problem considered. However, this relationship
between problems and heuristics is far from obvious. To tackle this problem, I applied
machine learning for the task of selecting a variable ordering for both CAD itself and
quantifier elimination using CAD, utilising the nlsat dataset [79] of fully existentially
quantified problems.

I have already covered the relevant background on CAD and machine learning in
Chapter 2. In the rest of this chapter, I will describe the methodology of the experiment,
comparing three heuristics and analyse the results. At the end, I will give a summary and
ideas for future work.

4.1 CAD implementation

For this experiment, we focus on a single CAD implementation, namely Qepcad [16].
Qepcad was chosen as it is a competitive implementation of both CAD and quantifier
elimination. Qepcad was used with its default settings, which implement McCallum’s
projection operator [74] and partial CAD [27].

4.2 Heuristics

In the experiment, three existing heuristics for picking a CAD variable ordering were used:

Brown: This heuristic chooses a variable ordering according to the following criteria,
starting with the first and breaking ties with successive ones:

(1) Eliminate a variable first if it has lower overall degree in the input.

(2) Eliminate a variable first if it has lower (maximum) total degree in those terms
in the input in which it occurs.

39

(3) Eliminate a variable first if there is a smaller number of terms in the input which
contain the variable.

It is named after Brown, who suggested it in [17].

sotd: This heuristic constructs the full set of projection polynomials for each permitted
ordering and selects the ordering whose corresponding set has the lowest sum of total
degrees for each of the monomials in each of the polynomials. It is labelled sotd for
sum of total degree and was suggested by Dolzmann, Seidell and Sturm [36], whose
study found it to be a good heuristic for both CAD and quantifier elimination by
CAD.

ndrr: This heuristic constructs the full set of projection polynomials for each ordering
and selects the ordering whose set has the lowest number of distinct real roots of the
univariate polynomials within. It is labelled ndrr for number of distinct real roots
and was suggested by Bradford et al. [11]. Ndrr was shown to assist with examples
where sotd failed.

All three heuristics may identify more than one variable ordering as a suitable choice.
In this case, we selected the alphabetically first one.

4.3 Data

Problems were taken from the nlsat dataset [79], which I chose over more traditional
CAD problem sets (such as Wilson et al. [107]) as the latter have an insufficient number
of problems to suitably apply machine learning. In addition, I chose to restrict the data
set to instances with only three variables. This has two reasons: first, since we have only
a small number of variables, it is feasible to test all possible variable orderings. Secondly,
we avoid the possibility that Qepcad will produce errors or warnings related to well-
orientedness with the McCallum projection [74]. Out of the set, 7001 three-variable CAD
problems were extracted for the experiment.

Two experiments were undertaken, one applying machine learning to CAD itself, and
another to quantifier elimination using CAD. These two experiments are separate, since
for quantified problemsQepcad can use partial CAD techniques to stop the lifting process
early if the outcome is already determined, while for unquantified ones the full process is
completed; the two outputs can be quite different.

The problems from the nlsat dataset are all fully existential (satisfiability or SAT
problems). A second set of problems for the quantifier-free experiment was obtained by
simply removing all quantifiers. An example of the Qepcad input for a SAT problem is
given in Figure 4.1 with the corresponding input for the unquantified problem in Figure
4.2. The first line declares three variables in the input problem, the second line indicates
the number of free variables in the problem. For example, there are zero free variables
in the quantified case and three free variables in the quantifier-free case. The next lines
show the commands that were used to calculate the cell counts, which are relevant for
the evaluation of the different heuristics. Note that in the quantified case, Qepcad can
collapse stacks when sufficient truth values for the constituent cells have been discovered
to determine a truth value for the base cell. Hence, since our problems are all fully
existential, the output for all quantified problems is always a single cell: true or false. In

40

these cases we are not interested in the number of cells in the output, but rather the total
number of cells constructed during the process. Therefore, the commands in Figures 4.1
and 4.2 differ: for the quantified problems, Qepcad uses the d-stat command following
construction to obtain the number of cells constructed in the partial CAD; while in the
quantifier-free case, d-fpc-stat is used to compute the number of cells produced in the
CAD of R3.

For quantified problems there are better alternatives to building a CAD (see for ex-
ample the work of Jovanovic and de Moura [63]). However, the decision to use only SAT
problems was based on the availability of data. An advantage to this choice is that a fully
existential or fully universal quantification allows for all six possible variable orderings.
Future work may include expanding the experiments to consider mixed quantifiers.

Figure 4.1: Sample Qepcad input for a quantified problem.

(x0 ,x1 ,x2)

0

(E x0)(E x1)(E x2)[[((x0 x0) + ((x1 x1) + (x2 x2))) = 1]].

go

go

go

d-stat

go

finish

Figure 4.2: Sample Qepcad input for a quantifier-free problem.

(x0 ,x1 ,x2)

3

[[((x0 x0) + ((x1 x1) + (x2 x2))) = 1]].

go

go

d-proj -factors

d-proj -polynomials

go

d-fpc -stat

go

4.4 Evaluating the heuristics

Since each problem has three variables and all the quantifiers are of the same kind, all
six possible variable orderings are admissible. For each ordering, we had Qepcad build
a CAD and then counted the number of cells. The best ordering was defined as the one
resulting in the smallest cell count. If more than one ordering gave a minimal count, both
orderings were considered best. The decision to focus on cell counts (rather than say
computation time) was made so that the experiment could validate the use of machine

41

learning to CAD theory, rather than just the Qepcad implementation. That is to say,
the cell count is a structural property of the resulting CAD, rather than a property of
the specific CAD implementation. Furthermore, it is usually the case that cell counts and
timings are strongly correlated.

The heuristics (Brown, sotd and ndrr) were implemented in Maple by England
[40] and for each problem the orderings suggested by the heuristics were recorded and
compared to the cell counts produced byQepcad. Note that none of three heuristics takes
into account the quantifier structure of the problem, but rather work on only properties
of the polynomials. As discussed above, some heuristics are more expensive than others.
However, since none of the costs were prohibitive for our data set the cost of an heuristic
is not considered here.

Finally, the machine learning task was to predict which of the three heuristics will give
an optimal variable ordering for a given problem, where optimal means that it produced
the lowest cell count in the resulting CAD.

4.5 Problem features

To apply machine learning, we need to identify features of the CAD problem that may
be relevant to the correct choice of heuristic. Table 4.1 shows the 11 features that we
identified, where (x0, x1, x2) are the three variable labels used in all our problems. The
features were chosen as easily computable properties which might affect the performances
of the heuristics.

Table 4.1: Description of the features used. The proportion of a variable occurring in
polynomials is the number of polynomials containing the variable divided by total number
of polynomials. The proportion of a variable occurring in monomials is the number of
terms containing the variable divided by total number of terms in polynomials.

Feature number Description

1 Number of polynomials.

2 Maximum total degree of polynomials.

3 Maximum degree of x0 among all polynomials.

4 Maximum degree of x1 among all polynomials.

5 Maximum degree of x2 among all polynomials.

6 Proportion of x0 occurring in polynomials.

7 Proportion of x1 occurring in polynomials.

8 Proportion of x2 occurring in polynomials.

9 Proportion of x0 occurring in monomials.

10 Proportion of x1 occurring in monomials.

11 Proportion of x2 occurring in monomials.

Each feature vector in the training set was associated with a label, +1 or −1, indi-
cating in which of two classes it was placed. To take Brown heuristic as an example, a
corresponding training set was derived with each problem labelled +1 if Brown heuristic
suggested a variable ordering with the lowest number of cells, or −1 otherwise.

42

The features could all be easily calculated from the problem input using Maple. For
example, if the input formula is defined as the set of polynomials

{−6x20 − x32 − 1, x40x2 + 9x1, x0 + x20 − x2x0 − 5}

then the problem will have the feature vector

[

3, 5, 4, 1, 3, 1,
1

3
, 1,

5

9
,
1

9
,
1

3

]

.

After the feature generation process, the training data (feature vectors) were normalized so
that each feature had zero mean and unit variance across the set. The same normalization
was then also applied to the validation and test sets.

4.6 Parameter optimization

We used SVM-Light with a RBF kernel to do the classification for this experiment. As
discussed in Section 3.5, given a training set, we can easily compute the value of parameter
j by looking at the ratio of the number of negative samples to the number of positive
samples. However, it is less trivial to find the optimal values of γ and C. In order to
determine good values for these parameters, we employed a five-fold cross validation [66].

The overall data was partitioned into two sets, with approximately 75% of the problems
placed into a training set (5280 problems) and 25% of them retained in a test set (1721
problems). Both sets were stratified to maintain relative class proportions (i.e. in each
partition, the ratio between positive and negative samples is the same). For the five-
fold cross validation we further partitioned the training set into five subsets of equal
size that all contain the same number of positive (+1) and negative (-1) samples. We
then perform five runs, where in each run, one subset is used as the validation set, while
the remaining four subsets are combined and used as the training set. As in Section
3.5, a grid-search optimisation procedure was used on each run to determine the best
parameter setting for that run. The grid-search optimisation procedure involves a search
over a range of (γ, C) values, where γ varied between 2−15, 2−14, 2−13, . . . , 23, and C varied
between 2−5, 2−4, 2−3, . . . , 215. The score of Matthews coefficient for each (γ, C) pair from
all five runs was then averaged and the pair with the highest average performance score
was chosen as the parameter setting for the classifier on the full training data, and the
learned model was then tested on the separate test set. Figure 4.3 illustrates the five-fold
cross validation process.

4.7 Results

We used the number of problems for which a selected variable ordering is optimal to
measure the efficacy of each heuristic and compared the efficacy of the heuristic selected
by machine learning with the efficacy of each individual heuristic.

Table 4.2 breaks down the results into a set of mutually exclusive outcomes that
describe all possibilities. The column headed ‘Machine Learning’ indicates whether the
machine learning selected heuristic was the best one. The next three columns indicate
which of the heuristics performed best. All 13 possibilities are listed above. Note that at

43

Figure 4.3: 5-fold cross validation

least one of the fixed heuristics must have a ‘Y’ since, by definition, the optimal ordering is
obtained by at least one heuristic. For each of these cases we list the number of problems
for which this case occurred for both the quantifier-free and quantified experiments.

For many problems more than one heuristic selects the optimal variable ordering and
the probability of a randomly selected heuristic giving the optimal ordering depends
on how many optimal heuristics we have. For example, a random selection would be
successful 1/3 of the time if one heuristic gives the optimal ordering or 2/3 of the time if
two heuristics do so.

In Table 4.2, case 1 is where machine learning cannot make any difference as all
heuristics are equally optimal. We compare the remaining cases pairwise. For each pair,
the behaviour of the fixed heuristics are identical and the difference is whether or not
machine learning picked a winning heuristic (one of the ones with a Y). We can see that
in all cases but one the machine learning algorithm selects an optimal heuristic more often
than not (in Cases 8 and 9 machine learning selects optimally for 50% of Quantifier-Free
examples and 47% of quantified examples). For each pair we can compare its selection
with a random selection. For example, for the pair of cases 2 and 3, sotd and ndrr are
successful heuristics and Brown is not. A random selection would be successful 2/3 of
the time. For the quantifier-free examples, the machine learned selection is successful
146/(146 + 39) or approximately 79% of the time.

We repeated this calculation for the quantified case and the other pairs, as shown in
Table 4.3. In each case the values have been compared to the chance of success when
picking a random heuristic. There are two distinct sets in Table 4.3: those where only
one heuristic was optimal and those where two are. We see that the machine learning
selection is better than random choice in every case in both experiments.

44

Table 4.2: Categorising the problems into a set of mutually exclusive cases characterised
by which heuristics were successful.

Case Machine Learning sotd ndrr Brown quantifier-free Quantified

1 Y Y Y Y 399 573

2 Y Y Y N 146 96

3 N Y Y N 39 24

4 Y Y N Y 208 232

5 N Y N Y 35 43

6 Y N Y Y 64 57

7 N N Y Y 7 11

8 Y Y N N 106 66

9 N Y N N 106 75

10 Y N Y N 159 101

11 N N Y N 58 89

12 Y N N Y 230 208

13 N N N Y 164 146

Table 4.3: Proportion of examples where machine learning picks a successful heuristic.

sotd ndrr Brown Quantifier-free Quantified

Y Y N 79% (>67%) 80% (>67%)

Y N Y 86% (>67%) 84% (>67%)

N Y Y 90% (>67%) 84% (>67%)

Y N N 50% (>33%) 47% (>33%)

N Y N 73% (>33%) 53% (>33%)

N N Y 58% (>33%) 59% (>33%)

By summing those cases in Table 4.2 where machine learning selects the optimal
heuristic, as well as the cases where each individual heuristic performs best, we get Table
4.4. This compares, for both the quantifier-free and quantified problem sets, the learned
selection with each of the heuristics on their own.

Of the three heuristics, Brown seems to be the best, albeit by a small margin. Its
performance is a little surprising, both because the Brown heuristic is less well known
(having never been formally published) and because it requires little computation (taking
only simple measurements on the input).

Table 4.4: Total number of problems for which each heuristic picks the best ordering.

Machine Learning sotd ndrr Brown

quantifier-free 1312 1039 872 1107

Quantified 1333 1109 951 1270

45

For the quantifier-free problems there were 399 problems where all three heuristics
picked the optimal variable ordering, 499 where two did and 823 where one did. Hence
for the problem set the chances of picking a successful heuristic at random is

100

1721

(

399 + 499× 2

3
+ 823× 1

3

)

≃ 58%

which compares to 100 × 1312/1721 ≃ 76% for machine learning. For the quantified
problems the figures are 64% and 77%. Hence, machine learning performs much better
than a random choice in both cases. Further, if we were to use only the heuristic that
performed the best on this data, the Brown heuristic, then we would pick a successful
ordering for approximately 64% of the quantifier-free problems and 74% of the quantified
problems. We see that a machine learned choice is also superior to simply using any one
heuristic.

4.8 A comparison of the three heuristics

In the process of applying machine learning to pick a heuristic for selecting a variable
ordering, a large amount of data was generated. For each of the 7001 three-variable
examples in the nlsat database a CAD was constructed for all six variable orderings,
and all three heuristics were used to predict a variable ordering. Previous work on CAD
heuristics has involved small data sets [36] (used 48 examples to obtain their conclusions),
so such a large data set may lead to fresh insight. From the experimental results, the
conclusion of which heuristic performed best varies depending on the criteria used. In
this section, I give a comparison of the three heuristics and highlight their performance
under different criteria.

Table 4.5 shows the number of problems and their relative occurrence in the problem
set where each heuristic was the most competitive of the three. From this table, we see
that Brown heuristic is most likely to make the best choice, both when quantified and
when quantifier-free.

Whilst selecting an optimal variable ordering is important, it is also relevant to consider
the actual savings in cell counts. When a heuristic selects a non-optimal variable ordering
it may differ from the optimal choice by as little as 2 cells or as many as thousands of
cells. Table 4.6 summarises this behaviour by computing the average cell count for each
problem over the six variable orderings, then computing the percentage saved (with a
negative percentage indicating an increase in cell count) for the variable ordering each
heuristic selects. The mean and median of the savings of each heuristic are given in Table
4.6.

Next, we investigated how much of a cell count saving is offered by each heuristic, and
made the following calculations for each problem:

(1) The average cell count of the six orderings;

(2) The difference between the cell count for each heuristic’s pick and the problem average;

(3) The value of (2) as a percentage of (1).

These calculations were made for all problems in which no variable ordering timed out
(5262 of the quantifier-free problems and 5332 of the quantified problems). The data is

46

Table 4.5: Number of problems and their relative occurrence in the problem set where
each heuristic was the most competitive.

sotd ndrr Brown

quantifier-free 4221 (60.29%) 3620 (51.71%) 4523 (64.61%)

Quantified 4603 (65.75%) 4000 (57.13%) 5166 (73.79%)

shown in form of boxplots in Figure 4.4. The boxes indicate the second and third quartiles,
separated by the median. The vertical range indicates the range of the data set, and the
mean is shown as a circle. The mean and median values are also given in Table 4.6 (and
marked in Figure 4.4 with circles and lines respectively). Outliers are discounted, which
are points further than 3

2
times the interquartile range away from the upper and lower

quartiles.

Figure 4.4: Percentage of cell count saving offered by each heuristic (mean and median).
The range of the data is indicated (discounting outlier values).

While Brown heuristic makes the best choice most frequently, for quantifier-free prob-
lems the average saving of using sotd is actually larger. However, for quantified problems
Brown heuristic delivered more savings. Ndrr performs the worst on average, but there are
classes of problems where it makes a better choice than the others. For example, consider
the problems where at least one ordering timed out. Table 4.7 describes how often each
heuristic avoids a time out. We see that for quantified problems ndrr does the best.

47

Table 4.6: How much of a cell count saving is offered by each heuristic (mean and
median).

Mean average Median value

sotd ndrr Brown sotd ndrr Brown

quantifier-free 27.32% -0.20% 25.27% 29.47% 0.00% 32.28%

Quantified 19.47% 4.15% 21.03% 14.68% 0.00% 16.67%

Table 4.7: How many times each heuristic avoids a time out.

sotd ndrr Brown

quantifier-free 559 537 594

Quantified 512 530 478

4.9 Summary

The experimental results confirmed our hypothesis, that no one heuristic is superior for all
problems and the correct choice will depend on the problem. Each of the three heuristics
tested had a substantial set of problems for which they were superior to the others and
so the problem was a suitable application for machine learning.

Using machine learning to select the best CAD heuristic yielded better results than
choosing one heuristic at random, or just using any of the individual heuristics in isolation,
indicating there is a relation between simple algebraic features of the problem and the
best heuristic choice. This could lead to the development of a new individual heuristic in
the future.

The experiments involved testing heuristics on 1721 CAD problems, certainly the
largest such experiment that I am aware of. For comparison, the best known previous
study on such heuristics [36] tested with 48 problems. From the experimental results,
the conclusion of which heuristic is the best varies depending on the criteria. If machine
learning is not available then Brown heuristic is the most competitive for our example set,
and this is despite it involving less computation than the others.

48

Chapter 5

Predicting the usefulness of Gröbner
basis preconditioning

Similar to how CAD computation is useful for solving systems of polynomial (in)equations
and inequalities, Gröbner basis calculation is one of the main practical tools for solving
systems of polynomial equations. Furthermore, a study by Wilson [106] shows an in-
teresting connection between both algorithms. In particular, applying a Gröbner basis
calculation to systems of polynomial (in)equalities to precondition the input problem
before invoking CAD may often reduce the number of cells generated during the CAD
construction. However, Gröbner basis preconditioning is not always beneficial. As there is
no fixed rule to decide if Gröbner basis preconditioning is beneficial or not, we investigate
whether machine learning can help with the prediction.

In the rest of this chapter, I present the methodology of the experimental work under-
taken. I applied machine learning to a single classification problem, predicting whether
Gröbner basis preconditioning is beneficial or not for a given set of problems. In addition,
a series of feature selection experiments was carried out to determine which measured
features are significant. The learning results were analysed and compared using different
feature subsets. Finally I will give a summary and ideas for future work.

5.1 Gröbner basis preconditioning for CAD

Our goal is to apply machine learning to the problem of predicting whether Gröbner
basis preconditioning is beneficial to CAD problems or not. More specifically, we want
to examine this in the context of conjunctions of polynomial (in)equalities. Suppose we
want to decide the validity of the formula

e1 = 0 ∧ · · · ∧ ek = 0 ∧ B(f1, . . . , fl),

where B is a boolean combination of inequations (6=) and inequalities (>,<) on some
polynomials fj where j ∈ 1, · · · , l, and e1 = 0, · · · , ek = 0 is a set of polynomial equations.
Applying a Gröbner basis preconditioning to the input does the following: rather than
computing a CAD for the system of equations E (i.e. e1 = 0∧e2 = 0∧· · ·) and inequalities
B directly, we first compute a (purely lexicographical) Gröbner basis on E, and output a
set of polynomials GB which is equivalent to E in the sense that it generates the same
ideal. The CAD step is now performed on the Gröbner basis GB (instead of E), together
with B.

49

Note that Gröbner basis preconditioning is computationally very cheap compared
to CAD construction. However, it may be the case that the CAD calculation on the
preconditioned input is less efficient than on the original input; hence it is not always
beneficial to perform the CAD on the preconditioned input. The question therefore is less
whether we want to compute the Gröbner basis of the input, but rather whether we want
to use it. This distinction allows us to always compute the Gröbner basis of the input
and use some of its algebraic properties as features for our learning algorithm.

5.2 Data

I conducted an initial experiment using the same problem set (the nlsat dataset [79]) as
in Chapter 4. For Gröbner basis preconditioning to be useful, a problem needs to contain
a conjunction of at least two equalities. The Gröbner basis of a single polynomial is that
polynomial itself, so preconditioning is possible, but not useful in this case. From the
data set, 493 three-variable problems and 403 four-variable problems were extracted that
meet this criterion. Gröbner basis preconditioning was applied to each problem. Cell
counts with and without using Gröbner basis preconditioning were collected separately
using Maple. It turns out that Gröbner basis preconditioning is always beneficial for the
extracted three-variable and four-variable problems. This is an interesting finding for the
nlsat dataset, however it means that the nlsat dataset cannot be used for a meaningful
machine learning experiment.

I also considered other traditional CAD problem sets (such as Wilson et al. [107]),
however none of them have a sufficient number of problems for machine learning as far
as we know. Hence, we decided to generate problems for the experiment. The problem
generation process was designed to generate unbiased data sets for learning, while being
computationally feasible for the experiment.

In total, 1200 problems were generated in Maple using the randpoly (random poly-
nomial generator) command. The code in Figure 5.1 was used to generate the problems
for the experiment. For each problem, two sets of polynomials (E and B) were generated
with each of them containing three polynomials. The set E represents the set of con-
joined polynomial equations, while B represents the set of polynomial inequations and
inequalities. The set of polynomials was generated by fixing the number of variables to
three and the number of terms to two for each polynomial. Total degrees varied between
2 and 4 (as illustrated in Figure 5.1, 400 problems are generated for each variation) and
the coefficients of the polynomials vary between −20 and 20.

5.3 Evaluating the heuristics

Originally, 1200 three-variable problems were generated as previously described. For each
problem, the CAD cell counts both with and without applying Gröbner basis precondi-
tioning were recorded and compared. A time limit of 300 CPU seconds was set for each
problem, which resulted in 1062 problems that finished the run within this time limit.
These 1062 problems constitute the dataset. The usefulness of Gröbner basis precondi-
tioning was determined by whether it reduced the cell count or not, compared with a
direct CAD.

Technical Note: all computations were performed in Maple 17 on a 2.4GHz Intel

50

Figure 5.1: Sample Maple command for random polynomial generation. The value of
num varies between 2 and 4.

E := [randpoly ([x,y,z], terms = 2,

degree = num , coeffs = rand (-20 .. 20)),

randpoly ([x,y,z], terms = 2,

degree = num , coeffs = rand (-20 .. 20)),

randpoly ([x,y,z], terms = 2,

degree = num , coeffs = rand (-20 .. 20))

];

B := [randpoly ([x,y,z], terms = 2,

degree = num ,coeffs = rand (-20 .. 20)),

randpoly ([x,y,z], terms = 2,

degree = num ,coeffs = rand (-20 .. 20)),

randpoly ([x,y,z], terms = 2,

degree = num ,coeffs = rand (-20 .. 20))

];

processor. The CAD method used is the one described in Chen et al. [24], where first
Cn is decomposed cylindrically in the variable ordering, and then the decomposition is
refined to a CAD of Rn. The two phases are analogous but not equivalent to projection
and lifting (see [23] for details). A purely lexicographical order with x ≺ y ≺ z was used
as a monomial order for the Gröbner base (denoted plex(z, y, x)).

5.4 Problem features

In order to apply machine learning, we need to identify relevant features of the problems.
Table 5.1 shows the 28 features that were identified, where (x, y, z) are the three variable
labels used in all our problems. They were chosen as easily computable features of the
problems that relate to the cell count of its CAD. The features used for the current exper-
iment mainly fall into two sets. The first set of features were generated from polynomials
of the original problem, the other set of features were obtained from polynomials after
applying Gröbner basis preconditioning. In addition, Wilson [106] proposed the following
metric:

TNoI(F) =
∑

f∈F

NoI(f),

where NoI(f) is the number of indeterminates present in a polynomial f , and F denotes
the set of polynomials in the problem. The measure TNoI itself showed a promising
correlation to whether the preconditioning is beneficial or not. Moreover, the logarithm
(base 2) of the ratio of TNoI (equivalently the difference of the logarithms) has an even
stronger correlation to changes in the cell counts. Hence the difference of the logarithms
of TNoI was also included in the feature set. In addition, we also consider the logarithm
of the ratio of the maximum total degrees (tds) and the sum of total degrees (stds). The
definition of the tds and stds measures is

51

tds(F) = max
f∈F

tds(f),

stds(F) =
∑

f∈F

tds(f).

Note it should be clear that stdsmeasure here differs from the sotd heuristic described
in Section 4.2. The stds measure here only calculates the sum of the total degrees of the
input polynomials, and no projection is involved. However, the sotd heuristic constructs
the full set of projection polynomials for each permitted ordering and selects the ordering
whose corresponding set has the lowest sum of total degrees for each of the monomials in
each of the polynomials. The stds measure is computationally much cheaper than the
sotd heuristic.

In addition to training a classifier using all the features provided in Table 5.1, I trained
classifiers using two subsets of the all features in order to understand whether one set ap-
peared more useful than the other. One feature subset contains 12 features about the set
of polynomials from the original problem before applying Gröbner basis preconditioning
(Feature Numbers 1 to 12 from Table 5.1), while the other subset contains 13 features
about the set of polynomials after applying Gröbner basis preconditioning (Feature Num-
bers 13 to 25 from Table 5.1). The number of polynomials for the input problems was
always six, so this is not included in the first feature set. However, the number of poly-
nomials after Gröbner basis preconditioning varies and hence is included in the second
feature set. For convenience, in the rest of the chapter, I use all features to denote all
28 features in Table 5.1, before features for features obtained from the input polynomials
before applying Gröbner basis preconditioning, and after features for features obtained
from the polynomials after applying Gröbner basis preconditioning.

I applied the feature generation process to create training sets with three feature sets
(all features, before features, after features) separately. In spite of the use of different
feature sets, each feature vector in the training set was associated with a label (the
corresponding tuples in the three feature subsets have the same label). A training set
was derived, with each problem labelled +1 if Gröbner basis preconditioning is beneficial
for CAD construction, or −1 otherwise. The features were calculated from the problem
input using Maple. For example, suppose that the input formula is defined using the set
of polynomials

E := {−12yz − 3z, 17x2 − 6, −2yz + 5x}

B := {−2yz − 9y, −15x2 − 19y, 6xz + 3}

Computing a Gröbner basis for E, we obtain a new set of polynomials GB

GB := {17x2 − 6, 4y + 1, z + 10x}.

Then the problem will have the all features vector
[

12, 12, 2, 2, 1, 1,
2

3
,
2

3
,
2

3
,
1

3
,
5

12
,
5

12
, 6, 10, 10, 2, 2, 1, 1,

2

3
,
1

2
,
1

2
,
1

3
,
1

3
,
1

4
, 0.263, 2.585, 0

]

,

where each component corresponds to a feature in Table 5.1; the before features vector
will be

[

12, 12, 2, 2, 1, 1,
2

3
,
2

3
,
2

3
,
1

3
,
5

12
,
5

12

]

,

52

Table 5.1: Description of the features used

Feature number Description

1 TNoI before GB.
2 stds before GB.
3 tds of polynomials before GB.
4 Maximum degree of x among all polynomials before GB.
5 Maximum degree of y among all polynomials before GB.
6 Maximum degree of z among all polynomials before GB.
7 Proportion of x occurring in polynomials before GB.
8 Proportion of y occurring in polynomials before GB.
9 Proportion of z occurring in polynomials before GB.
10 Proportion of x occurring in monomials before GB.
11 Proportion of y occurring in monomials before GB.
12 Proportion of z occurring in monomials before GB.
13 Number of polynomials after GB.
14 TNoI after GB.
15 stds after GB.
16 tds of polynomials after GB.
17 Maximum degree of x among all polynomials after GB.
18 Maximum degree of y among all polynomials after GB.
19 Maximum degree of z among all polynomials after GB.
20 Proportion of x occurring in polynomials after GB.
21 Proportion of y occurring in polynomials after GB.
22 Proportion of z occurring in polynomials after GB.
23 Proportion of x occurring in monomials after GB.
24 Proportion of y occurring in monomials after GB.
25 Proportion of z occurring in monomials after GB.
26 lg(TNoI before) - lg(TNoI after)
27 lg(stds before) - lg(stds after)
28 lg(tds before) - lg(tds after)

with components corresponding to Feature Numbers 1 to 12 in Table 5.1; and the after
features vector will be

[

6, 10, 10, 2, 2, 1, 1,
2

3
,
1

2
,
1

2
,
1

3
,
1

3
,
1

4

]

,

with component corresponding to Feature Numbers 13 to 25 in Table 5.1.
After the feature generation process, the training data (feature vectors) were stan-

dardised so that each feature had zero mean and unit variance across the training set.
The same standardisation was then applied to features in the test set, using the mean
and standard derivation from the training set.

5.5 Cross-validation and grid-search

I conducted the experiment on the 1062 conjoined polynomial (in)equalities. The data
was partitioned into 80% training (849 problems) and 20% test (213 problems), stratified

53

to maintain relative class proportions in both training and test partitions. We recall that
there are two parameters involved when using a RBF kernel: a penalty parameter C and γ
for RBF kernel itself. We used a grid-search optimisation procedure along with a five-fold
stratified cross validation (see Section 4.6) to find optimal parameter values for C and γ.

I repeated this procedure for the all features set, the before features set and the after
features set.

5.6 Results for three feature sets

I compared the machine learning outcomes, between results obtained with all features
used, with just the before features, and with just the after features. The classification
accuracy was used to measure the efficacy of the machine learning selection process. The
test set contained 159 positive samples and 54 negative samples (there are 159 problems
where applying Gröbner basis preconditioning is beneficial). In approximately 75% of the
cases Gröbner basis preconditioning was beneficial for CAD construction for the given
problem; this was used as a baseline for measuring the efficacy of the classifiers. The
selection results are given in Table 5.2. We can see that only using before features has
no improvement compared to the baseline case; while both all features and after features,
demonstrated better results than baseline. The selection result of using all features is
inferior to only using after features. This seems to indicate that the features that matter
mainly concern the algebraic properties of the polynomials after preconditioning. How-
ever, we cannot conclude this directly: early research has shown that a variable that
is completely useless by itself can provide a significant performance improvement when
taken with others [49]. To be absolutely confident about which features were significant
and which were superfluous, further feature selection experiments were carried out. The
results show that the optimal feature subsets contains features from both before features
and after features. We will see more details in the following sections.

Table 5.2: Predicted accuracy

Heuristics Number of problems Percentage of test set

Always applying GB 159 75%

All features 162 76%

Before features 159 75%

After features 167 78%

5.7 Feature selection

Given the fact that after features is a subset of all features, there is an indication that
not all the features contribute to the machine learning process, only a small number of
features are needed for learning to be effective. Moreover, the reduced feature set is
often beneficial for better understanding the underlying concept. Consequently some fea-
ture selection methods were applied. I have already discussed various feature selection

54

techniques in the machine learning background chapter (see Section 2.2.3). In this exper-
iment, both filter and wrapper methods were applied for feature selection, and the results
were compared. The feature selection experiments were conducted in Weka (Waikato
Environment for Knowledge Analysis) [51], which is a popular machine learning library
written in Java. Weka supports several standard machine learning tasks, for example
data preprocessing, clustering, classification, regression and feature selection. Each data
point is also represented as a fixed number of features. The inputs for this experiment are
samples of 29 features, where the first 28 are the real-valued features from Table 5.1, and
the final one is a “nominal” feature denoting its class. I will describe two feature selection
methods (the filter method and the wrapper method) in the following two sections.

5.7.1 The filter method

A popular filter method, the correlation based feature selection method, was applied
(see Hall [52]). Unlike other popular filter methods (see [50]), correlation based feature
selection measures the rank of feature subsets instead of individual features. The feature
subset which contains features highly correlated with the class, but uncorrelated with each
other is preferred. The heuristic below is used to measure the quality of a feature subset,
and takes into account feature-class correlation as well as feature-feature correlation.

Gs =
krci

√

k + k(k − 1)rii′
(5.1)

Above, k is the number of features in the subset, rci denotes the average feature-class
correlation of feature i, and rii′ is the average feature-feature correlation between feature
i and i′. Here, the numerator of Equation 5.1 indicates how much relevance there is
between the class and a set of features, while the denominator measures the redundancy
among the features. The higher this measure, the better the feature subset.

In order to apply this heuristic to estimate the merit of a feature subset, it is neces-
sary to compute the feature-class correlations and feature-feature correlations. With the
exception of the class attribute, all 28 features are continuous. In order to have a common
measure for computing the correlations in Equation 5.1, we first discretize the numeric
features using the method of Fayyad and Irani [41]. After that, a correlation measure
based on the information-theoretical concept of entropy is used, which is a measure of the
uncertainty of a random variable. The entropy of a variable X is defined as

H(X) = −
∑

i

p(xi)log2(p(xi)). (5.2)

The entropy of X after observing values of another variable Y is defined as

H(X|Y) = −
∑

j

p(yj)
∑

i

p(xi|yj)log2(p(xi|yj)). (5.3)

where p(xi) is the prior probabilities for all values of X , and p(xi|yi) is the posterior
probabilities of X given the values of Y . The information gain (IG) [88] measures the
amount by which the entropy of X decreases by additional information about X provided
by Y , and it is given by

IG(X, Y) = H(X)−H(X|Y). (5.4)

55

The symmetrical uncertainty (SU) (a modified information gain measure) is then used to
measure the correlation between two discrete variables (X and Y) [87]:

SU(X, Y) = 2.0×

[

H(X)−H(X|Y)

H(X) +H(Y)

]

(5.5)

Treating each feature as well as the class as random variables, we can apply this as our
correlation measure. More specifically, we simply use SU(c, i) to measure the correlation
between a feature i and a class c, and SU(i, i

′

) to measure the correlation between features
i and i′. These values are then substituted as rci and rii′ in Equation 5.1.

We recall that the aim of this correlation based filter method is to find the optimal
subset of features which maximises the metric given in Equation 5.1. Although the size
of the feature set in this experiment was small, consisting of only 28 features, the number
of possible subsets is still very large. There are

228 − 1 ≃ 2.7× 108

subsets, which is too many for exhaustive search. Instead a greedy stepwise forward
selection search strategy was used for searching the space of feature subsets, which works
by adding the current best feature at each round. The search begins with the empty
set, and in each step the score (as in Equation 5.1) is computed for every single feature
addition, and the feature with the best score improvement is added. If at some step none
of the remaining features provide an improvement, the algorithm stops, and the current
feature set is returned. The best feature subset found with this method is shown in Table
5.3.

Table 5.3: Feature selection results suggested by the filter method, ordered by impor-
tance

Feature number Description

14 TNoI after GB.

13 Number of polynomials after GB.

2 stds before GB.

26 lg(TNoI before) - lg(TNoI after)

21 Proportion of y occurring in polynomials after GB.

15 stds after GB.

23 Proportion of x occurring in monomials after GB.

19 Maximum degree of z among all polynomials after GB.

25 Proportion of z occurring in monomials after GB.

27 lg(stds before) - lg(stds after)

5.7.2 The wrapper method

The wrapper feature selection method evaluates attributes by using accuracy estimates
provided by the actual target learning algorithm. Evaluation of each feature set was

56

conducted with a learning scheme (as with earlier experiments, a support vector machine
with radial basis function kernel function was used). The SVM algorithm is run on the
dataset, with the same data partitions as described in Section 5.5. Similarly, a five-fold
cross validation was carried out. The feature subset with the highest average accuracy
was chosen as the final set on which to run the SVM algorithm.

In more detail, in each training/validation fold, starting with an empty set of features,
each feature was added and a model was fitted to the training data set and the classifier
was then tested on the validation set. This was done on all the features, resulting in a
score for each where the score reflects the accuracy of the classifier. The final score for
each feature was its average over the five folds. Having obtained a score for all features in
the manner above, the feature with the highest score was then added in the feature set.
Then, the same greedy procedure as described for the filter method (see Section 5.7.1),
was applied to obtain the best feature subset.

Considering the large number of cases, the parameters (C, γ) were selected from an
optimised sub range instead of performing the full grid search range as in Section 5.5.
Ideally one would optimise over a large parameter selection range, but a reduced range
suffices to demonstrate the performance of a reduced feature set. In the previous exper-
iments with all features, before features and after features, I found that C taken from
25, 26, 27, 28, 29, 210 and γ taken from 2−5, 2−6, 2−7, 2−8, 2−9, 2−10 generally provided good
classifier performance (the best parameter settings from all features, before features and
after features all fell into this range). The 36 pairs of (C, γ) values were tested and an
optimal feature subset with the highest accuracy was found for each. The feature subset
that gave the highest accuracy was then selected as the final feature set. The best feature
subset found is shown in Table 5.4, where we can see that most of the features related to
variable z (feature numbers 9, 12 and 13). This makes sense since the projection order
we used was x ≺ y ≺ z. The variable z is projected first and hence affects the complexity
the most.

Table 5.4: Feature selection results suggested by the wrapper method, ordered by im-
portance

Feature number Description

14 TNoI after GB.

9 Proportion of z occurring in polynomials before GB.

22 Proportion of z occurring in polynomials after GB.

4 Maximum degree of x among all polynomials before GB.

12 Proportion of z occurring in monomials before GB.

Furthermore I examined the performance on even further reduced feature sets, ob-
tained by the feature ranking given by the wrapper method. The overall prediction
accuracies are shown in Figure 5.2. For instance, the predictor obtained from only using
a single feature (the best ranked feature was TNoI after GB for both filter and wrapper
methods) scored an accuracy score of 0.756 in that run, with the performance steadily
increasing with the size of the feature set until the fifth feature. Taking any sixth feature
into the set did not improve the performance noticeably, and hence resulted in the cutoff

57

Figure 5.2: Performance of a sample run with different sizes of feature sets

chosen by the wrapper method.
In addition, given the now relatively low dimensionality of the feature space as obtained

by the wrapper method, I performed an error analysis on the misclassified data points.
Figure 5.3 shows 40 misclassified data points and their features 4 and 14, while Figure
5.4 shows the remaining features 9, 12, 22 of the same samples. While most of the
features do not seem to exhibit any prominent pattern, it is interesting that feature 4 of
all misclassified samples is either 1 or 2. Compared to the whole data set, which consisted
to roughly a third of samples with a feature 4 value of 3 or 4, this seems to indicate that
the algorithm performs better on instances with a higher maximum degree of x among all
polynomials before GB.

5.7.3 Results with reduced features

Having obtained now the reduced feature sets, I applied the same experiment again to
compare the performance of the learning when using the smaller feature sets. The data
set was partitioned into 80% training and 20% test set, and were stratified to main-
tain relative class proportions in both training and test partitions. Again, a five-fold
cross validation and a finer grid-search optimisation procedure over the range of (C, γ)
pairs was conducted where γ varies between 2−15, 2−14, 2−13, . . . , 23 and C varies between
2−5, 2−4, 2−3, . . . , 215 (as described in Section 4.6) to determine the parameter selection,
and the selected features were used. The classifier with maximum averaged Matthew coef-
ficient was selected and the resulting classifier was then evaluated on the test. The testing

58

Figure 5.3: Feature 4 and 14 of misclassified data

data was also reduced to contain only the features selected. The classification accuracy
was used to measure the performance of the classifier. In order to better estimate the
generalisation performance of classifiers with reduced feature sets, the data was permuted
and partitioned into 80% training and 20% test again and the whole process was repeated
for 50 times. For each run, each training set was standardised to have zero mean and unit
variance, with the same offset and scaling applied subsequently to the corresponding test
partition. Figure 5.5 shows boxplots of the list of accuracy generated by 50 runs of the
five-fold cross validation. Both reduced feature sets generated similar results and show a
large improvement on the base case where Gröbner basis preconditioning is always used
before CAD construction. The average overall prediction accuracy of filter subset and
wrapper subset is 79% and 78% respectively; all the 50 runs of wrapper subset performed
above base line, while the top three quantiles of the results of both sets achieve higher
than 77% percentage accuracy.

5.8 Summary

Distribution and Correlation of Features We investigated the application of machine learn-
ing to the problem of predicting whether Gröbner basis preconditioning is beneficial to
CAD problems or not. The experiments involved testing on 1062 randomly generated
problems. I conducted the initial experiment on three feature sets (all features, before
features and after features) to predict whether Gröbner basis preconditioning is benefi-
cial or not for CAD construction. Three feature sets were tested in order to understand
whether one set appeared more useful than the others. Using the machine learned selec-

59

Figure 5.4: Feature 9,12 and 22 of misclassified data

tion (with all features and after features) yielded better results than always using Gröbner
basis preconditioning by default. The results from using only before features ties with the
baseline case. I also did a series of feature selection experiments; the results showed that
the optimal feature subsets contains features from both before features and after features.
The results also demonstrated that not all features contribute to the machine learning
process; having fewer features may even improve learning efficiency. Though a large
number of features were examined, it turned out that only less than half of all features
are required for effective learning in this experiment. Different feature selection methods
gave rise to different feature subsets, while both of them showing an improvement over
the baseline case. The prediction of which features were needed could not be reasonably
made beforehand, and so the feature selection method is important and it may indicate
something useful to be learned about computer algebra algorithms.

There are many ways in which this work could be extended to further explore the ben-
efit machine learning can offer in the formulation of problems for CAD. My experiments
involved testing on randomly generated problems due to the limited availability of data,
and thus the data was quite uniform. An obvious extension to the work in this section is to
experiment on a wider data set to see if these results, both the benefit of machine learning
and the superiority of Gröbner basis preconditioning, hold more generally. Furthermore in
the current experiment, the variable ordering for CAD and Gröbner basis preconditioning
was fixed. Ideally, we could also investigate the efficiency of machine learning on both,
Gröbner basis preconditioning and the variable ordering simultaneously. These problems

60

Figure 5.5: Boxplots of 50 runs of the 5-fold cross validation with both the feature sets
suggested by filter and wrapper methods

are interrelated: the choice of variable ordering could affect the choice of Gröbner basis
preconditioning or not and likewise, performing Gröbner basis preconditioning could af-
fect what the best variable ordering is. Hence, the best variable ordering without Gröbner
basis preconditioning can be different to the best one after preconditioning, and the best
overall may or may not involve preconditioning. A key extension for future work would be
to use machine learning to predict both variable ordering and the usefulness of Gröbner
preconditioning together, and investigate if a better performance can be obtained.

61

62

Chapter 6

Related work

The term algorithm selection was first introduced by Rice [91] to formalize the problem:
Which algorithm is likely to perform best for my problem? Computer algebra systems
often have the issue of algorithm selection since there is rarely one single best algorithm
for the entire problem space. Computer algebra systems often use meta-algorithms to
make these choices, and their decisions are based on numerical parameters [21]. For
example, Mathematica uses a meta-algorithm for solving systems over cylindrical cells
described by cylindrical algebraic formulae. This allows cells produced from a CAD to be
used easily in further computation [97].

In this dissertation, another approach was taken to address the algorithm selection
problem, instead of the traditional meta-algorithms approach. Namely, we employed ma-
chine learning for the task of selecting the best decision or heuristic in three instances
of computer algebra applications over RCFs. Although the approach taken here for the
particular case of computer algebra is novel, there is existing work in similar fields. The
related work presented in the rest of the section covers these closely related topics, namely
machine learning in theorem proving, in automated/interactive theorem provers, and in
Boolean satisfiability (SAT) problems and quantified Boolean formula (QBF) solvers.
Machine learning was applied to demonstrate that the performance of cutting edge algo-
rithms as well as actual solutions can be accurately predicted based on cheaply computable
features.

6.1 Machine learning for first-order theorem proving

In general, the proof finding process in theorem proving involves a very large search
space. Research has been done to improve proof automation by applying machine learning
techniques to learn from proof search heuristics.

E is an automatic theorem prover for first order logic with equality developed by
Schulz [94]. In E, there is an automatic mode, which picks heuristics for selecting clauses,
literals, the term ordering, and other parameters using binary or ternary valued features.
The features include properties like “Are the axioms (non-negative clauses) in the problem
unit, Horn, or non-Horn clauses?”, “Do the goals contain variables or are they ground?”.
The space of all problems is partitioned into different classes based on these features. Each
of the resulting classes is assigned to a separate search heuristic, which is selected using
prior experimental results. In general the automatic mode shows a better result than the
first heuristic picked even by an expert. However, since the classes are predefined by the

63

developer, there is also a risk of over-specialization.
Recent work by Bridge et al. [14, 13] took a different approach to tackling the heuris-

tic selection problem in E. The approach taken was to use existing heuristics and to
automatically learn to select a good heuristic using simple features of the conjecture and
the associated axioms. Five top-performance heuristics (most likely to be selected by the
auto mode of E) were selected for the experiment. Heuristic selection based on simple fea-
tures of the conjecture and the associated axioms was shown to do better than any single
heuristic, and did much better than random heuristic selection. Bridge conducted feature
selection experiments; the results showed only a few features were required for effective
learning. Compared to the automatic mode in E, this approach allows real-valued fea-
tures to be used for learning and assumes fewer predefined connections between features
and heuristics. The approach described in this dissertation is based on this work, while
different application areas are investigated. The initial motivation for exploring machine
learning in computer algebra systems largely follows from the success of this research.

6.2 Machine learning for axiom selection

Most automated theorem provers fail to discharge proof obligations generated by interac-
tive theorem provers if there are a large number of background facts involved. Irrelevant
clauses in resolution problems increase the search space, making proofs hard to find within
a reasonable time limit. As a result, it is essential to find ways to automatically select
relevant axioms. Sledgehammer is a subsystem of Isabelle/HOL [80], which dis-
charges interactive proof goals with assistance from automatic theorem provers. Recent
research done by Kühlwein et al. [70] applies machine learning to Sledgehammer [86].
Mash [70] implements a weighted sparse naive Bayes algorithm. When Sledgehammer
is invoked, it exports new facts and their proofs to the machine learner and queries it to
obtain relevant facts. Overall, this work goes some way to showing that there is a place
for machine learning in theorem proving, and that useful results can be found.

Earlier research has applied machine learning for axiom selection for systems based
on set theory and higher-order logic. Urban’s Mizar Proof Advisor (MPA) is able
to select suitable axioms from the huge Mizar library for an arbitrary problem within the
Mizar Problems for Theorem Proving (MPTP) [101]. MPTP is a system for translating
the Mizar Mathematical Library (MML) [92] into untyped first-order format suitable for
automated theorem provers and for generating corresponding theorem-proving problems.
MPA was used to improve the performance of the MPTP system by applying machine
learning to the previous proof experience extracted from MML, and then suggesting a limited
number of premises that are most likely to be useful for proving an arbitrary formula. A
feature-based machine learning framework was used, where features are symbols presented
in formulas. The training system runs on the existing server mode implemented in SNoW
[22], using a naive Bayes algorithm. The output for the learner is MML theorems ordered
by their expected utility (chance of being useful in the proof).

Following the success of MPA, Urban developed the MaLARea System (machine
learning for automated reasoning) [102] applying similar ideas. The SNoW system with
theDistribution and Correlation of Features naive Bayesian learning mode was also used
here. Information about all successful proofs found so far is collected and used for training.
Each training example contains all the symbols of a solved conjecture as features and the
names of the axioms needed for its proof as the target output. The trained classifier is

64

then used to prune axioms for future runs. A list of axiom names was ranked according
to their expected usefulness, and this ranking was further used for future proofs (the top
n high rank axioms from the classifier were selected if the next run will limit the number
of axioms to n).

6.3 Machine learning for interactive theorem proving

Komendantskaya and Heras’s ML4PG project [68] attempts to show that it is possible
to apply machine learning to interactive theorem provers. The ML4PG system provides
a link between a theorem prover (Coq) [6] and machine learning tools (MATLAB [90]
and Weka [51]). It allows users to gather patterns of the form proof tree, goal structures
or proof steps. The gathered data is passed to the machine learning tool, which returns
clusters of lemmas that show similarities to the non-trivial proof. The results of clustering
give hints to users to further inspect the proofs of the clustered lemmas to see if there is
a proof pattern that could help advance the problematic proof. In their conclusions, it
would appear that clustering based on goal structures provides the best results.

Kaliszyk et al. [64] took a different approach by learning proof dependencies from
formalizations done in the Coq system. A feature-based machine learning framework
was used, where the features are the set of defined constants that appear in theorems
and definitions. Three machine learning methods (Naive Bayes [9], K-Nearest Neighbour
(KNN) [28] and a modified version of the MePo filter [76]) and their combinations were
compared on a dataset of 5021 toplevel Coq proofs coming from the CoRN repository
[31]. Each of the learning algorithms orders the available premises by their likelihood of
usefulness in proving the goal. Combining the three learning methods resulted in the best
performance, which suggested on average 75% of the needed proof dependencies among
the first 100 predictions. This experiment shows that learning the relevant parts of the
library necessary for proving a new Coq conjecture is possible.

6.4 Machine learning for SAT solvers

SAT solvers are programs used to automatically decide whether a propositional logic
formula is satisfiable or not. They have been used in many formal verification and program
analysis applications. Many SAT solvers exist [47], and different solvers perform best on
different set of problems. Machine learning can be applied to select the best solver for
the given problems.

Xu et al. developed a system called SATzilla2007 [110], which builds runtime pre-
diction models using linear regression techniques based on features extracted from the
Boolean satisfiability problems and the algorithm’s past performance. This approach is
often referred to as the empirical hardness approach. They computed the runtime for
each selected candidate solver on each problem, and identified distinct features suggested
by domain experts (most of the features are derived from those suggested by Nudelman et
al. [81]) for building supervised learning model. The ridge regression model was used to
build a model that optimizes a given performance (such as mean runtime, percentage of
instances solved, or score in a competition) for each solver. The solver with best predicted
performance was selected.

Different from SATzilla2007, their recent version SATzilla2012 [111] is based on

65

cost-sensitive classification models. For each new instance, a cost-sensitive classification
model [100] is applied for every pair of solvers in the portfolio, predicting which solver
performs better on a given instance based on the instance features. Finally the solver with
highest vote (or the one with the second-highest number of votes if the first one failed) is
run. They also pre-determine whether the feature extraction process is too expensive or
not using a classification model. A backup solver is used if the feature extraction process
is predicted to take too long or the predicted solver could not complete its run.

QBFs are a generalization of the SAT problem in which the variables are allowed to
be universally or existentially quantified. Samulowitz and Memisevic [93] explore the use
of multinomial logistic regression [53] for QBFs. They developed 10 variable branching
heuristics, where machine learning can be used to predict run-times and to choose the
optimal heuristic from them. The training set was obtained by running each heuristic
for each problem instance: the winning heuristic (that with the fastest runtime) for each
problem instance is recorded. They selected 78 features based on the basic properties
appropriate for SAT problems, but in addition with those specific to QBFs (e.g. number
of universal quantifiers, quantifier alternations).

6.5 Summary

For the work described in this dissertation, a different application area was studied. Based
on the promising results obtained by the existing research on applying machine learn-
ing techniques to theorem proving (automatic/interactive theorem provers, SAT/QBF
solvers), I investigated if machine learning is also applicable in a similar, yet different
area: computer algebra systems over RCFs. In computer algebra systems, the fact that
the choice of which algorithm to use is dependent on the particular problem being tackled
is a good motivation for machine learning since there is hope that relevant features can
be extracted. I give further discussion of the key results and future work of this thesis in
the next chapter.

66

Chapter 7

Conclusion

The problem of algorithm selection in computer algebra system is very important and
can dramatically affect the feasibility of a solution. But the right choice is not obvious
even for an expert in the field. The aim of this thesis was to see if machine learning is
applicable to the algorithm selection in computer algebra systems. With promising results
from three instances of computer algebra applications over RCFs: (i) choosing decision
procedures and time limits in MetiTarski; (ii) choosing a heuristic for CAD variable
ordering; (iii) predicting the usefulness of Gröbner basis preconditioning, we can give a
positive answer. The remainder of this chapter summarises the key results and suggests
how the work can be extended in future.

7.1 Key results

We summarise the key results described in this thesis.

Chapter 3: Choosing decision procedures and time limits in MetiTarski

Machine learning was applied to the problem-dependent selection of the most ef-
ficient decision procedure and the selection of the best time limit setting for RCF
decision procedure calls in MetiTarski. The experiments were done on 825 Meti-
Tarski problems in a variant of the Thousands of Problems for Theorem Provers
(TPTP) format [98]. In the experiment of selecting the best decision procedure,
three RCF decision procedures were tested: Z3 with Strategy 1, Mathematica
and QEPCAD. For each problem, the best decision procedure to use was deter-
mined by running each of the decision procedures on the problem and choosing the
one with the fastest runtime. The experimental results confirmed our thesis that
no one decision procedure is superior for all problems and the correct choice will
depend on the problem. The machine-learned selection process in this application
performed better than any fixed decision procedure. As a benchmark, choosing
the best decision procedure proved 163 out of 194 problems, showing that machine
learned selection achieved an 84% optimal choice.

A further experiment was conducted to select between Z3 and Mathematica and
to set the best time limit on RCF calls for a given MetiTarski problem. In each
individual run, MetiTarski called Z3 or Mathematica with various time limits
on RCF calls: 0.1s, 1s, 10s, or 100s. The machine learned algorithm for selection

67

performed better on our benchmark set than any of the individual fixed settings
used in isolation.

Although a small data set was used and some marginal improvement was obtained,
it is clear that the machine learned algorithm for selection can be useful, and this
motivated our investigation of its application to the field.

Chapter 4: Heuristic selection of CAD variable ordering
The choice of variable ordering for CAD is very important and can dramatically
affect the feasibility of a problem. We have investigated the use of machine learning
for making the choice of which heuristic to use when selecting a variable ordering
for CAD, and quantifier elimination by CAD. Using machine learning to select
the best CAD heuristic yielded better results than random choice: selecting an
optimal heuristic for 76% of quantifier-free problems and 77% quantified problems
(compared with 58% and 64% for a random choice and 64% and 74% for the best
performing heuristic (Brown)), indicating that there is a relationship between the
simple algebraic features and the best heuristic choice. This relationship could be
further explored to help develop of new individual heuristics in the future. From the
experimental results, the conclusion of which heuristic is the best varies depending
on which criteria used to judge. We highlight the strong performance of Brown

heuristic, surprising both because it requires the least computation and since it is
not formally published. (To the best of our knowledge it is mentioned only in notes
to a tutorial at ISSAC 2004 [17]).

Chapter 5: Predicting the usefulness of Gröbner basis preconditioning
Applying a Gröbner basis calculation to the systems of polynomial (in)equalities
to precondition the input problem before invoking CAD may often reduce the num-
ber of cells generated during CAD construction. However, Gröbner basis precondi-
tioning is not always beneficial. I investigated the application of machine learning
to the problem of predicting whether Gröbner basis preconditioning is beneficial to
CAD problems or not. Three feature sets (all features, before features and after
features) were tested in order to understand whether one set appeared more useful
than the other. Using machine learned selection (with all features and after fea-
tures) yielded better results than always using Gröbner basis preconditioning by
default.

A series of feature selection experiments was also conducted. The results show
that not all features contribute to the machine learning process; less than half
of the features were required for effective learning in this experiment. Using a
reduced feature set yielded better results: the feature subset suggested by the filter
method successfully predicted average 79% of the problems and using the feature
subset suggested by the wrapper method successfully predicted average 78% of the
problems from 50 runs of the 5-fold cross validation (compared to 75% when always
using Gröbner basis preconditioning by default). Results from feature selection
experiments show that the optimal feature subset contains features from both before
features and after features. The properties related to the first projected variable
affects heavily to the complexity of the rest of the algorithm.

68

7.2 Future work

I summarise the possible extensions of this work and ideas for future investigation.

• Chapter 3: Choosing decision procedures and time limits in MetiTarski

1. The current feature set only contains two types of features: one related to the
various special functions and the other related to the number of variables in
the problem. A possible future extension could be exploring more feature types
relevant to the machine learned selection process. Possible features could be
the number of atomic formulas, the number of symbols and so on. Also, a
more sophisticated feature selection process could be applied as described in
Chapter 5.

2. I note there are other variations of RCF strategies which can be called by
MetiTarski. For example, interval constraint propagation (icp) [33], QEP-
CAD with icp, Mathematica with icp, Z3 with icp. Specialised variations
of RCF decision procedures have their own strengths and weaknesses for re-
stricted classes of formulas. It would be interesting to test if machine learning
can assist with the selection among more strategies.

• Chapter 4: Heuristic selection of CAD variable ordering

1. Although a large data set of real world problems was used, we note that in some
ways the data was quite uniform. A key area of future work is experimenta-
tion on a wider data set to see if these results, both the benefit of machine
learning and the superiority of Brown heuristic, hold more generally. An initial
extension would be to relax the parameters used to select problems from the
nlsat dataset, for example by allowing problems with more variables. Another
restriction with this dataset is that all problems have one block of existential
quantifiers. Possible ways to generalise the data include randomly applying
quantifiers to the the existing problems, or randomly generating whole prob-
lems as in Chapter 5.

2. We do not suggest SVMs as the only suitable machine learning method for this
experiment, but overall an SVM with a radial basis function kernel worked well
here. It would be interesting to see if other machine learning methods could
offer similar or even better selections. Further improvements may also come
from more work on feature selection. The features used here were all derived
from the polynomials in the input. One possible extension would be to consider
also the types of relations present and how they are connected logically (likely
to be particularly beneficial if problems with more variables or more varied
quantifiers are allowed).

3. Other heuristics can also be tested, for example the greedy sotd heuristic [36]
which chooses an ordering one variable at a time based on the sotd of new
projection polynomials or combined heuristics, (where we narrow the selection
with one and then break the tie with another).

69

Finally, we note that there are other CAD implementations. In addition to
Qepcad there is ProjectionCAD [39], Mathematica [97], RegularChains
[23] and SyNRAC [60] in Maple and Redlog [37] in Reduce. Each implemen-
tation has its own intricacies and often different underlying theory so it would
be interesting to test if machine learning can assist with these as it does with
Qepcad.

• Chapter 5: Predicting the usefulness of Gröbner basis preconditioning

1. Randomly generated problems were used in the experiment due to the limited
availability of data sets, thus the data was quite uniform. It would be interest-
ing to experiment with a wider data set to see if these results, both the benefit
of machine learning and the superiority of Gröbner basis preconditioning, hold
more generally.

2. In the work described in this thesis, Gröbner basis preconditioning replaces
equalities with their Gröbner basis (with respect to the same fixed variable
ordering as the CAD is constructed with). Ideally, we could also investigate
Gröbner basis preconditioning together with variable ordering. A key extension
for future work will be to see if machine learning can offer benefit in the predic-
tion of both variable ordering and the usefulness of Gröbner preconditioning
together in the formulation of problems for CAD.

7.3 Final remarks

My aim in this thesis was to see whether machine learning is applicable to the algorithm
selection problem arising in computer algebra systems, in particular on problems in RCFs.
I performed three substantial experiments and each one yielded a positive outcome. This
confirms my thesis that machine learning can be beneficial for computer algebra. I did
not select computer algebra problems for my experiments according to their likelihood
of being amenable to machine learning: indeed, RCFs are not unique amongst computer
algebra problems in requiring the user to make an algorithm selection. I hope that the
positive results I have demonstrated will encourage further application of machine learning
in the field of symbolic computation.

70

Bibliography

[1] Behzad Akbarpour and Lawrence C Paulson. Extending a resolution prover for in-
equalities on elementary functions. In Logic for Programming, Artificial Intelligence,
and Reasoning, pages 47–61. Springer, 2007.

[2] Behzad Akbarpour and Lawrence C Paulson. Metitarski: An automatic theorem
prover for real-valued special functions. Journal of Automated Reasoning, 3(44):175–
205, 2010.

[3] MA Anusuya and Shriniwas K Katti. Speech recognition by machine, a review.
arXiv preprint arXiv:1001.2267, 2010.

[4] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposition I:
The basic algorithm. SIAM Journal of Computing, 13:865–877, 1984.

[5] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus AF Andersen, and Henrik Nielsen.
Assessing the accuracy of prediction algorithms for classification: an overview.
Bioinformatics, 16(5):412–424, 2000.

[6] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. The Coq proof assistant reference manual: Version 6.1. 1997.

[7] S. Basu. Algorithms in real algebraic geometry: A survey. Available from:
www.math.purdue.edu/∼sbasu/raag survey2011 final.pdf, 2011.

[8] Kristin Bennett and OL Mangasarian. Combining support vector and mathematical
programming methods for induction. Advances in Kernel Methods—SV Learning,
pages 307–326, 1999.

[9] Christopher M Bishop et al. Pattern Recognition and Machine Learning, volume 1.
springer, 2006.

[10] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry.
Springer, 1998.

[11] R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising problem
formulations for cylindrical algebraic decomposition. In J. Carette, D. Aspinall,
C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Computer Mathematics,
volume 7961 of Lecture Notes in Computer Science, pages 19–34. Springer, 2013.

[12] Russell Bradford, James H Davenport, Matthew England, and David Wilson. Op-
timising problem formulation for cylindrical algebraic decomposition. In Intelligent
Computer Mathematics, pages 19–34. Springer, 2013.

71

[13] James P. Bridge. Machine learning and automated theorem proving. Technical Re-
port UCAM-CL-TR-792, University of Cambridge, Computer Laboratory, Novem-
ber 2010.

[14] James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine learning
for first-order theorem proving - learning to select a good heuristic. J. Autom.
Reasoning, 53(2):141–172, 2014.

[15] Christopher W Brown. QEPCAD B: a program for computing with semi-algebraic
sets using CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[16] C.W. Brown. QEPCAD B: A program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[17] C.W. Brown. Companion to the Tutorial: Cylindrical algebraic decomposition,
presented at ISSAC ’04. Available from:
www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf, 2004.

[18] C.W. Brown and J.H. Davenport. The complexity of quantifier elimination and
cylindrical algebraic decomposition. In International Symposium on Symbolic and
Algebraic Computation, ISSAC ’07, pages 54–60. ACM, 2007.

[19] C.W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic methods for
investigating equilibria in epidemic modelling. Journal of Symbolic Computation,
41:1157–1173, 2006.

[20] Bruno Buchberger. Bruno buchbergers PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of symbolic computation, 41(3):475–511, 2006.

[21] Jacques Carette. Understanding expression simplification. In International Sympo-
sium on Symbolic and Algebraic Computation, pages 72–79. ACM, 2004.

[22] Andrew J Carlson, Chad M Cumby, Jeff L Rosen, and Dan Roth. Snow user guide.
1999.

[23] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In International Symposium on Sym-
bolic and Algebraic Computation, ISSAC ’09, pages 95–102. ACM, 2009.

[24] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang. Computing cylindri-
cal algebraic decomposition via triangular decomposition. In International Sympo-
sium on Symbolic and algebraic computation, pages 95–102. ACM, 2009.

[25] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Gröbner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 174–183. ACM, 1996.

[26] G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proceedings of the 2nd GI Conference on Automata Theory and
Formal Languages, pages 134–183. Springer, 1975.

72

[27] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation, 12:299–328, 1991.

[28] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967.

[29] David A Cox, John Little, and DONAL OSHEA. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Algebra.
Springer, 2007.

[30] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press,
2000.

[31] Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C—CoRN, the constructive
Coq repository at Nijmegen. In Mathematical Knowledge Management, pages 88–
103. Springer, 2004.

[32] J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification in
the presence of complex numbers, functions with branch cuts etc. In 14th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC ’12, pages 83–88. IEEE, 2012.

[33] Ernest Davis. Constraint propagation with interval labels. Artificial intelligence,
32(3):281–331, 1987.

[34] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[35] Leonardo De Moura and Grant Olney Passmore. Computation in real closed in-
finitesimal and transcendental extensions of the rationals. In Automated Deduction–
CADE-24, pages 178–192. Springer Berlin Heidelberg, 2013.

[36] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In
Proceedings of the 2004 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’04, pages 111–118. ACM, 2004.

[37] A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer logic.
SIGSAM Bulletin, 31(2):2–9, 1997.

[38] Carl Engelman. Mathlab: a program for on-line machine assistance in symbolic
computations. In Proceedings of the November 30–December 1, 1965, fall joint
computer conference, part II: computers: their impact on society, pages 117–126.
ACM, 1965.

[39] M. England. An implementation of CAD in Maple utilising problem formu-
lation, equational constraints and truth-table invariance. Department of Com-
puter Science Technical Report series 2013-04, University of Bath. Available at
http://opus.bath.ac.uk/35636/, 2013.

73

[40] Matthew England, David Wilson, Russell Bradford, and James H Davenport. Using
the regular chains library to build cylindrical algebraic decompositions by projecting
and lifting. In Mathematical Software—ICMS 2014, pages 458–465. Springer, 2014.

[41] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In IJCAI, pages 1022–1029, 1993.

[42] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do
we need hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research, 15:3133–3181, 2014.

[43] R. Fletcher. Practical Methods of Optimization; (2Nd Ed.). Wiley-Interscience, New
York, NY, USA, 1987.

[44] I.A. Fotiou, P.A. Parrilo, and M. Morari. Nonlinear parametric optimization us-
ing cylindrical algebraic decomposition. In Decision and Control, 2005 European
Control Conference. CDC-ECC ’05., pages 3735–3740, 2005.

[45] Richard J Gaylord, Paul R Wellin, Bill Titus, Susan R McKay, Wolfgang Christian,
et al. Computer simulations with mathematica: explorations in complex physical
and biological systems. Computers in Physics, 10(4):349–350, 1996.

[46] Jerry Glynn. Exploring Math from Algebra to Calculus with Derive: A Mathematical
Assistant for Your Personal Computer. Math Ware, 1992.

[47] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability
solvers, 2008.

[48] Erich Grädel. Finite Model Theory and Its Applications, volume 2. Springer, 2007.

[49] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selec-
tion. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[50] M Hall. Correlation-based feature selection for discrete and numeric class machine
learning. In Intentional Conference on Machine Learning. CA. Morgan Kaufmann
Publishers, 2000.

[51] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009.

[52] Mark A. Hall and Geoffrey Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Transactions On Knowledge And Data Engi-
neering, 15:1437–1447, 2003.

[53] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[54] Simon Haykin and Neural Network. A comprehensive foundation. Neural Networks,
2(2004), 2004.

74

[55] Anthony C Hearn et al. REDUCE 2 user’s manual. Department of Computer
Science, Stanford University, 1970.

[56] André Heck and Wolfram Koepf. Introduction to MAPLE, volume 1993. Springer,
1993.

[57] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support
vector classification. Technical report, Department of Computer Science, National
Taiwan University, 2003.

[58] Zongyan Huang, Matthew England, David Wilson, James H Davenport, and
Lawrence C Paulson. A comparison of three heuristics to choose the variable or-
dering for cylindrical algebraic decomposition. ACM Communications in Computer
Algebra, 48(3/4):121–123, 2015.

[59] Zongyan Huang, Matthew England, David J Wilson, James H Davenport,
Lawrence C Paulson, and James P Bridge. Applying machine learning to the prob-
lem of choosing a heuristic to select the variable ordering for cylindrical algebraic
decomposition. In Intelligent Computer Mathematics — International Conference,
CICM 2014, Coimbra, Portugal, July 7-11, 2014. Proceedings, pages 92–107, 2014.

[60] H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective implementation of a
symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In
Conference on Symbolic Numeric Computation, SNC ’09, pages 55–64, 2009.

[61] Hidenao Iwane, Hitoshi Yanami, and Hirokazu Anai. An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for optimization problems.
In Proceedings of the 2011 International Workshop on Symbolic-Numeric Compu-
tation, SNC ’11, pages 168–177, New York, NY, USA, 2011. ACM.

[62] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods — Support Vector Learning,
chapter 11, pages 169–184. MIT Press, Cambridge, MA, 1999.

[63] Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. In Auto-
mated Reasoning, pages 339–354. Springer, 2012.

[64] Cezary Kaliszyk, Lionel Mamane, and Josef Urban. Machine learning of Coq proof
guidance: First experiments. In 6th International Symposium on Symbolic Compu-
tation in Software Science, SCSS 2014, Gammarth, La Marsa, Tunisia, December
7-8, 2014, pages 27–34, 2014.

[65] S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector ma-
chines with gaussian kernel. Neural Comput., 15(7):1667–1689, July 2003.

[66] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In 14th International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[67] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial
intelligence, 97(1):273–324, 1997.

75

[68] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. Machine learn-
ing in proof general: interfacing interfaces. arXiv preprint arXiv:1212.3618, 2012.

[69] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art
and perspective. Artificial Intelligence in medicine, 23(1):89–109, 2001.

[70] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban.
Mash: Machine learning for sledgehammer. In Interactive Theorem Proving, pages
35–50. Springer, 2013.

[71] Hsuan-Tien Lin and Chih-Jen Lin. A study on sigmoid kernels for SVM and the
training of non-PSD kernels by SMO-type methods. Technical report, Department
of Computer Science, National Taiwan University, 2003.

[72] Richard Liska, Ladislav Drska, Jiri Limpouch, Milan Sinor, Michael Wester, and
Franz Winkler. Computer algebra, algorithms, systems and applications. 1999.

[73] Donald W. Loveland. Automated Theorem Proving : A Logical Basis. Fundamental
studies in computer science. North-Holland Pub. Co. New York, Amsterdam, New
York, 1978.

[74] S. McCallum. An improved projection operation for cylindrical algebraic decompo-
sition. In B. Caviness and J. Johnson, editors, Quantifier Elimination and Cylindri-
cal Algebraic Decomposition, Texts & Monographs in Symbolic Computation, pages
242–268. Springer, 1998.

[75] S. McCallum. On projection in CAD-based quantifier elimination with equational
constraint. In International Symposium on Symbolic and Algebraic Computation,
ISSAC ’99, pages 145–149. ACM, 1999.

[76] Jia Meng and Lawrence C Paulson. Lightweight relevance filtering for machine-
generated resolution problems. Journal of Applied Logic, 7(1):41–57, 2009.

[77] J. Mercer. Functions of positive and negative type, and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 209(441-458):415–446,
1909.

[78] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining statis-
tical learning with a knowledge-based approach: a case study in intensive care
monitoring. Technical report, Technical Report, SFB 475: Komplexitätsreduktion
in Multivariaten Datenstrukturen, Universität Dortmund, 1999.

[79] New York University. The benchmarks used in solving nonlinear arithmetic. Online
at http://cs.nyu.edu/ dejan/nonlinear/, 2012.

[80] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer, 2002.

[81] Eugene Nudelman, Kevin Leyton-Brown, HolgerH. Hoos, Alex Devkar, and Yoav
Shoham. Understanding random sat: Beyond the clauses-to-variables ratio. In
Mark Wallace, editor, Principles and Practice of Constraint Programming CP 2004,

76

volume 3258 of Lecture Notes in Computer Science, pages 438–452. Springer Berlin
Heidelberg, 2004.

[82] Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector ma-
chines: an application to face detection. In Computer Vision and Pattern Recogni-
tion, IEEE Computer Society Conference on, pages 130–136. IEEE, 1997.

[83] Grant Passmore, Lawrence C Paulson, and Leonardo de Moura. Real algebraic
strategies for Metitarski proofs. Intelligent Computer Mathematics, pages 358–370,
2012.

[84] Grant Olney Passmore and Paul B Jackson. Combined decision techniques for the
existential theory of the reals. In Intelligent Computer Mathematics, pages 122–137.
Springer, 2009.

[85] GrantOlney Passmore and PaulB. Jackson. Abstract partial cylindrical algebraic
decomposition i: The lifting phase. In S.Barry Cooper, Anuj Dawar, and Benedikt
Lwe, editors, How the World Computes, volume 7318 of Lecture Notes in Computer
Science, pages 560–570. Springer Berlin Heidelberg, 2012.

[86] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience
with sledgehammer, a practical link between automatic and interactive theorem
provers. In Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL
2010, volume 2 of EPiC Series, pages 1–11. EasyChair, 2012.

[87] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

[88] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[89] Richard H Rand. Computer algebra in applied mathematics: An introduction to
MACSYMA. Pitman Boston, 1984.

[90] MATLAB Release. The Mathworks. Inc., Natick, Massachusetts, United States,
2012.

[91] John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

[92] Piotr Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs
and Programs, pages 311–330, 1992.

[93] Horst Samulowitz and Roland Memisevic. Learning to solve QBF. In Proceedings
of the 22Nd National Conference on Artificial Intelligence - Volume 1, AAAI’07,
pages 255–260. AAAI Press, 2007.

[94] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

[95] Inna K Shingareva and Carlos Lizárraga-Celaya. Maple and Mathematica: a problem
solving approach for mathematics. Springer, 2009.

77

[96] H Strubbe. Calculations with SCHOONSCHIP. Technical Report CERN-DD-73-16,
CERN, Geneva, Jun 1973. Part of this text will be presented at the Third Collo-
quium on Advanced Computing Methods in Theoretical Physics held in Marseille
on 25-29 June 1973.

[97] A. Strzeboński. Solving polynomial systems over semialgebraic sets represented
by cylindrical algebraic formulas. In International Symposium on Symbolic and
Algebraic Computation, ISSAC ’12, pages 335–342. ACM, 2012.

[98] Geoff Sutcliffe. The TPTP problem library and associated infrastructure. Journal
of Automated Reasoning, 43(4):337–362, 2009.

[99] A. Tarski. A decision method for elementary algebra and geometry. In B.F. Caviness
and J.R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decom-
position, Texts and Monographs in Symbolic Computation, pages 24–84. Springer,
1998.

[100] K. M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE
Trans. on Knowl. and Data Eng., 14(3):659–665, May 2002.

[101] Josef Urban. MPTP–motivation, implementation, first experiments. Journal of
Automated Reasoning, 33(3-4):319–339, 2004.

[102] Josef Urban. Malarea: a metasystem for automated reasoning in large theories.
In Proceedings of the CADE-21 Workshop on Empirically Successful Automated
Reasoning in Large Theories, Bremen, Germany, 17th July 2007, 2007.

[103] Hal R Varian. Computational economics and finance: modeling and analysis with
Mathematica, volume 2. Springer, 1996.

[104] Jason Weston and Chris Watkins. Support vector machines for multi-class pattern
recognition. In 7th European Symposium on Artificial Neural Networks, Bruges,
Belgium, April 21-23, 1999, Proceedings, pages 219–224, 1999.

[105] D. Wilson, J.H. Davenport, M. England, and R. Bradford. A “piano movers”
problem reformulated. In 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC ’13. IEEE, 2013.

[106] David J Wilson, Russell J Bradford, and James H Davenport. Speeding up cylindri-
cal algebraic decomposition by gröbner bases. In Intelligent Computer Mathematics,
pages 280–294. Springer, 2012.

[107] D.J. Wilson, R.J. Bradford, and J.H. Davenport. A repository for CAD examples.
ACM Communications in Computer Algebra, 46(3):67–69, 2012.

[108] Stephen Wolfram. The MATHEMATICA R© book, version 4. Cambridge university
press, 1999.

[109] Chris Wooff and David Hodgkinson. muMath: a microcomputer algebra system.
Academic Press Professional, Inc., 1987.

[110] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. J. Artif. Int. Res., 32(1):565–606, June 2008.

78

[111] Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown.
Satzilla2012: improved algorithm selection based on cost-sensitive classification
models. Balint et al.(Balint et al., 2012a), pages 57–58, 2012.

79

80

Appendices

81

Appendix A

Distribution and correlation of
features

In the following figures I present a detailed view of the features used in the experiments
described in Chapters 4 and 5. Figures A.1 to A.11 show the distribution of features of
the data set used in Chapter 4 in form of histograms, while Figures A.12 to A.39 show
the distribution of features of the data in Chapter 5. In addition, I examined some of
the pairwise correlations present between features in both sets. In Figures A.40 to A.52,
I present the projection of the data set onto a number of feature pairs. For some feature
pairs we can observe a noticeable correlation, which is often simply explained by the
nature of the feature (e.g. the proportion of x0 occurring in polynomials is likely to be
correlated with its occurrence in monomials). For others, no obvious correlation exists,
which adds to justify the inclusion of both features in the set.

83

Figure A.1: Number of polynomials.

Figure A.2: Maximum total degree of polynomials.

84

Figure A.3: Maximum degree of x0 among all polynomials.

Figure A.4: Maximum degree of x1 among all polynomials.

85

Figure A.5: Maximum degree of x2 among all polynomials.

Figure A.6: Proportion of x0 occurring in polynomials.

86

Figure A.7: Proportion of x1 occurring in polynomials.

Figure A.8: Proportion of x2 occurring in polynomials.

87

Figure A.9: Proportion of x0 occurring in monomials.

Figure A.10: Proportion of x1 occurring in monomials.

88

Figure A.11: Proportion of x2 occurring in monomials.

Figure A.12: TNoI before GB.

89

Figure A.13: stds before GB.

Figure A.14: tds of polynomials before GB.

90

Figure A.15: Maximum degree of x among all polynomials before GB.

Figure A.16: Maximum degree of y among all polynomials before GB.

91

Figure A.17: Maximum degree of z among all polynomials before GB.

Figure A.18: Proportion of x occurring in polynomials before GB.

92

Figure A.19: Proportion of y occurring in polynomials before GB.

Figure A.20: Proportion of z occurring in polynomials before GB.

93

Figure A.21: Proportion of x occurring in monomials before GB.

Figure A.22: Proportion of y occurring in monomials before GB.

94

Figure A.23: Proportion of z occurring in monomials before GB.

Figure A.24: Number of polynomials after GB.

95

Figure A.25: TNoI after GB.

Figure A.26: stds after GB.

96

Figure A.27: tds of polynomials after GB.

Figure A.28: Maximum degree of x among all polynomials after GB.

97

Figure A.29: Maximum degree of y among all polynomials after GB.

Figure A.30: Maximum degree of z among all polynomials after GB.

98

Figure A.31: Proportion of x occurring in polynomials after GB.

Figure A.32: Proportion of y occurring in polynomials after GB.

99

Figure A.33: Proportion of z occurring in polynomials after GB.

Figure A.34: Proportion of x occurring in monomials after GB.

100

Figure A.35: Proportion of y occurring in monomials after GB.

Figure A.36: Proportion of z occurring in monomials after GB.

101

Figure A.37: lg(TNoI before) - lg(TNoI after)

Figure A.38: lg(stds before) - lg(stds after)

102

Figure A.39: lg(tds before) - lg(tds after)

Figure A.40: Correlations between proportion of x0 occurring in polynomials and mono-
mials.

103

Figure A.41: Correlations between proportion of x1 occurring in polynomials and mono-
mials.

Figure A.42: Correlations between proportion of x2 occurring in polynomials and mono-
mials.

104

Figure A.43: Correlations between maximum degree of x0 among all polynomials and
proportion of x0 occurring in polynomials

Figure A.44: Correlations between maximum degree of x1 among all polynomials and
proportion of x1 occurring in polynomials

105

Figure A.45: Correlations between maximum degree of x2 among all polynomials and
proportion of x2 occurring in polynomials

Figure A.46: Correlations between TNoI before GB and stds before GB.

106

Figure A.47: Correlations between TNoI before and after GB.

Figure A.48: Correlations between stds before and after GB.

107

Figure A.49: Correlations between tds before and after GB.

Figure A.50: Correlations between lg(TNoI) difference and TNoI before GB.

108

Figure A.51: Correlations between lg(stds) difference and stds before GB.

Figure A.52: Correlations between lg(tds) difference and tds before GB.

109

110

Appendix B

Varying hyper-parameters

In two of the experiments, I performed a grid-search algorithm to determine the hyper-
parameters (C, γ) of the RBF kernel function used in the learning. While our grid-search
returned one optimum, I further examined the neighbourhood of the optimal solution
to ensure that the process was stable with respect to these parameter choices. In the
following tables I display the Matthews correlation coefficients for the optimal parameter
choice found by the grid optimization, as well as 8 neighbouring parameter pairs in the
grid. In particular, Tables B.1 to B.6 shows the values for the different heuristics used in
Chapter 4, while Table B.7 refers to learning used in Chapter 5. Since the MCC scores
for the choices around the optimum are fairly close to the optimum, the process seems to
be stable.

Table B.1: MCC scores of classifier for Brown heuristic with quantifier free data

lgγ = −1 lgγ = 0 lgγ = 1
lgC = −2 0.435 0.453 0.467
lgC = −1 0.445 0.474 0.469
lgC = 0 0.468 0.472 0.462

111

Table B.2: MCC scores of classifier for Brown heuristic with quantified data

lgγ = −1 lgγ = 0 lgγ = 1
lgC = −2 0.342 0.351 0.337
lgC = −1 0.349 0.366 0.332
lgC = 0 0.345 0.346 0.312

Table B.3: MCC scores of classifier for sotd heuristic with quantifier free data

lgγ = −8 lgγ = −7 lgγ = −6
lgC = 12 0.387 0.409 0.38
lgC = 13 0.414 0.456 0.346
lgC = 14 0.401 0.422 0.388

Table B.4: MCC scores of classifier for sotd heuristic with quantified data

lgγ = −3 lgγ = −2 lgγ = −1
lgC = 1 0.286 0.332 0.332
lgC = 2 0.302 0.343 0.328
lgC = 3 0.318 0.335 0.336

Table B.5: MCC scores of classifier for ndrr heuristic with quantifier free data

lgγ = −3 lgγ = −2 lgγ = −1
lgC = 0 0.452 0.446 0.435
lgC = 1 0.445 0.568 0.427
lgC = 2 0.439 0.43 0.429

Table B.6: MCC scores of classifier for ndrr heuristic with quantified data

lgγ = −1 lgγ = 0 lgγ = 1
lgC = −1 0.38 0.384 0.386
lgC = 0 0.38 0.403 0.391
lgC = 1 0.388 0.395 0.376

112

Table B.7: MCC scores of classifier for Gröbner basis preconditioning

lgγ = −9 lgγ = −8 lgγ = −7
lgC = 5 0.5 0.511 0.521
lgC = 6 0.505 0.536 0.521
lgC = 7 0.517 0.515 0.528

113

	Introduction
	Computer algebra systems
	Real closed fields (RCFs)
	Machine learning
	The hypothesis
	Contributions
	Organisation of the dissertation

	Background
	Computer algebra
	RCFs
	Quantifier elimination and cylindrical algebraic decomposition
	Variable ordering in CAD
	Gröbner basis
	MetiTarski
	RCF decision procedures

	Machine learning
	Support vector machines (SVMs)
	Motivation for using SVMs
	Linear classifiers
	Functional margin and geometric margin
	Maximum margin separation
	Kernel methods
	Soft margin classifier

	Multi SVMs
	Feature selection

	Choosing decision procedures and time limits in MetiTarski
	Decision produces
	Evaluation of decision procedures
	Problem features
	Performance measures for classifiers
	Kernel selection and parameter optimization
	Combining classifiers for choosing decision procedures
	Results
	Time limits on RCF decision procedure calls
	Summary

	Choosing a heuristic for CAD variable ordering
	CAD implementation
	Heuristics
	Data
	Evaluating the heuristics
	Problem features
	Parameter optimization
	Results
	A comparison of the three heuristics
	Summary

	Predicting the usefulness of Gröbner basis preconditioning
	Gröbner basis preconditioning for CAD
	Data
	Evaluating the heuristics
	Problem features
	Cross-validation and grid-search
	Results for three feature sets
	Feature selection
	The filter method
	The wrapper method
	Results with reduced features

	Summary

	Related work
	Machine learning for first-order theorem proving
	Machine learning for axiom selection
	Machine learning for interactive theorem proving
	Machine learning for SAT solvers
	Summary

	Conclusion
	Key results
	Future work
	Final remarks

	Bibliography
	Appendices
	Distribution and correlation of features
	Varying hyper-parameters

