Technical Report A

Number 89

Computer Laboratory

Making form follow function

An exercise in functional
programming style

Jon Fairbairn

June 1986

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1986 Jon Fairbairn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Making Form Follow Function

An Exercise in Functional Programming Style

Jon Fairbairn

University of Cambridge Computer Laboratory

Abstract

The combined use of user-defined infix operators and higher order functions allows
the programmer to invent new control structures tailored to a particular problem area.

This paper is to suggest that such a combination has beneficial effects on the ease of
both writing and reading programmes, and hence can increase programmer productivity.
As an example, a parser for a simple language is presented in this style.

It is hoped that the presentation will be palatable to people unfamiliar with the
concepts of functional programming.

1. Introduction

It is widely accepted that the most important aspects of the task of programming are
the design of data structures and of algorithms. It is the intention of this paper to suggest
that the design of notation can be a part of programme design, and an important part
at that. A secondary objective of this paper is to present some functional programming
techniques in a manner acceptable to a wider audience.

I hope to demonstrate that these techniques improve the readability and writability
of programmes. In this style of programme development the programmer is at liberty to
define what amount to new control structures, tailored to the problem at hand. The net
effect can be to make the programme very close in appearance to its specification, or, to
make the form of the programme follow its function.

The central notions are higher order functions, user-defined operators and the use
of (lazy) lists to represent input streams. Although few conventional languages permit
all of these, the style of programming may still be useful to the imperative programmer,
Unfortunately most conventional languages would not permit the neat structure that is

used here.

2 Making Form Follow Function

The example I have chosen for this paper is the writing of parsers, a task for which
this style of programming is particularly suitable, but a similar method has been applied
with some success to programmes dealing with graphical structures [Henderson 1982} and
to a small simulator for logic gates. The parser will be for a simple language with the

following grammar:
<programme> ::= <declaration> ; <programme>
| <assignment> ; <programme>
| <command>
<command> ::= <assignment> | <expression>
<declaration> ::= Declare <name>
<assignment> ::= <name> +— <expression>
<expression> ::= <term> + <expression>
| <term> — <expression>
| <term>
<term> ::= <factor> X <term>
| <factor> + <term>
| <factor>
<factor> ::= <name> | <integer>
| (<expression>)

Fortunately this gives us a clear, regular description of the problem. The exercise was
to convert this description into a programme. With the suitable definition of operators
for succession (p), alternation (}) and an operator as to introduce semantic interpretation

functions, a parser for this grammar can be written in a functional language like this:

Letrec programme 2 (declaration b literal “” o programme as build-sequence)
' | (assignment o literal “;” b programme as build-sequence)
| command,

command = assignment | ezpression,
declaration = literal “Declare” b name as build-declaration,
assignment = name b literal “—" b expression as build-assignment,

expression 2 (lerm o literal “+” b ezpression as build-infiz)
| (term b literal “—" b expression as build-infiz)
| term,

term 2 (factor b literal “x” b term a8 build-infiz)
| (factor b literal “<+” b term a8 build-infiz)
| factor,

Jactor £ ((name | integer) as build-factor)
| (literal “(" b ezpression o literal “)” as parenthesised-ezpression)

2. Explanation

This is a representation of a recursive descent parser. The notation used is essentially
the applicative language Ponder [Fairbairn 1983] [Tillotson 1985}, but the example would
be much the same in any other functional language that permits the definition of infix
operators. Letrec begins a series of mutually recursive definitions, each of the form <name>
2 <value> (the symbol £ means “equals by definition”). So a name is defined in the
programme for each of the symbols of the grammar. It is assumed that functions that
recognise terminal symbols such as name and integer have already been defined.

Although the programme closely resembles the grammar, there are differences. The
most obvious difference is that succession is represented by juxtaposition in the gram-
mar and by o in the parser. The next difference is that the programme contains more
information than the grammar — a programme that simply responded “That matches
the grammar” or “that doesn’t match the grammar” when presented with some sample
input would be of limited use. As well as how to parse, the programme also tells what
to do with the result: functions such as build-sequence are applied (by the operator as)
to the results of parsing the sub-expressions, in order to produce the result of parsing the
combined expression.

The idea is simply that the operators b and | will take parsers as arguments and
produce parsers that accept the strings belonging to their succession and alternation re-
spectively. The basic idea is similar to that of Burge [Burge 1975], but what makes the
difference is the effect that infix operators have on the appearance of the programme:
a|b|ec|d ismuch easier to read than or a (or b (or ¢ d)).

In this implementation a parser is represented as a function that takes a list of tokens
and produces either an indication of failure or a parse tree and a list of the tokens remaining

on the input. So if parser accepts <tok;> <toka>, then
parser (tok1 utokgutokg::..) = ((toh s tokg), (tok,g:: ..))
(= is the list construction operator), otherwise

parser (tok:...) = nil

4 Making Form Follow Function

(nsl is the result of parsing something that doesn’t match).

Now we can see how to write the function that parses alternatives: parser | parserg
will produce a new parser that tries parsery on the input and if that fails, tries parsers.
So | is a function that takes two parsers and produces a third. One could imagine writing

such a function in a conventional language:

Proc or (parsery, parserg) =
Begin Proc parserg (input) =
If parsery (input) succeeds
Then parsery (input)
Else parserg (input)
Return parserg
End;

Of course, this would not work in most languages, because of restrictions on returning
procedures from procedures, but I think it illustrates the general idea. Notice that the
input on which a parser operates is passed as a parameter. The absence of side effects in
functional languages ensures that when parsers finds that parser; fails, the input that is
passed to parserg is precisely as it was before parser; was called.

. When a parser succeeds the result returned is the parse tree together with the remain-
ing input. So parsery b parserg just applies parser; to the input and if it succeeds applies

parserg to the remainder of the input that is returned as part of the result of parser;.

3. Advantages

The programme given above is just a recursive descent parser written in a functional
language. It would have been possible to write a programme that performed the same
function in a more conventional manner, defining procedures to parse each of the grammar
items in terms of explicit tests on the input. The method used here has the immediate
advantage that the correspondence between the programme and the grammar that it parses
is obvious. This means that the effort needed to explain the programme (to someone
familiar with functional programming, at least) is much less, so fewer comments are needed
in the code. This in turn means that the modification (and keeping comments in step with

modification!) is much easier.

5

The example is perhaps less than perfect in that parser generators already confer most
of the suggested advantages, but it must be remembered that I only chose the example
to be a problem familiar to most programmers. Notwithstanding that, I have found this
method of writing parsers to be an improvement over the use of parser generators in a
number of ways. The first is that it is more direct — the interface with the rest of the
compiler is under the control of the programmer. The more important advantage is that
the parser can be extended beyond the power of most parser generators, to parse languages

that permit syntactic extensions, for example.

4. Drawbacks

The picture painted so far is rather rosier than reality. Although the correspondence
between the grammar and the programme for this example is almost exact (I have omit-
ted the data-type information — not all functional langnages require this anyway), some
grammars are not so easy to translate as one might hope.

The most serious problem is that the programmed | operator does not behave in
precisely the same way as the operator in grammars. A programme containing parser |
parser ¢ will (as described) try parser; on the input and then try parserg if parser; fails.
The snag is that if parser ; succeeds on an initial substring of a larger expression accepted
by parser ¢, only parser; will be tried!. This means that rules such as <expression> must
be coded with the longest rules first. A better alternative is to ‘factor out’ the offending
substring (see below).

The other problem arises when the grammar contains left-recursive rules. The naive

coding of such a rule as

<> = <> <r> | <8>

t It is possible to define | so that it tries both, and returns a list of successful parses, as in
|Wadler 1985], but this method can result in parsers that are very inefficient because they parse
initial strings several times. Once these inefliciencies have been optimised out, the parsers look

almost identical to the ones suggested here.

6 Making Form Follow Function

will begin with a recursive call to the parser for <I>, which in turn begins with a recursive
call to the parser for <I>, and so on ad infinitum. Careful analysis of the rule will show
that an <I> is an <s> followed by an arbitrarily long sequence of <r>s. What is needed to
solve the problem of infinite recursion is to re-code the production for <I> so that it says
just that. We can then write an operator that parses such sequences, so that the parser
looks like

| £ s then-an-arbitrary-sequence-of r.

I think that this is clearer anyway (although a shorter name for the operator might be
preferred).

An alternative coding of this would be to introduce a new grammar operator *, as
is often done, and write <I> as <s> <r>*, which produces the same set of expressions as
before, but with different parse trees. It is not difficult to write a function for *.

Similarly a notation for optional grammar items can be introduced, allowing expression

to be coded as
ezpression £ term b [(literal “4-” | lteral “—") b ezpression] as build-infiz

mimicking the extended BNF notation <term> {(+|—) <expression>]. This overcomes the

problem of parsing the initial <term> twice.

5. Extensions

As well as the option and arbitrary repetition operators mentioned above, other ex-
tensions to this method prove useful when dealing with more complicated grammars.

If attributes of the parsed sub-expressions are included in the data upon which the
parser works, parsers for attribute grammars may easily be written. A simple example of
this would be to code the binding powers of the +,—, x and + as integer priorities. The
parser could then parse an expression of priority n, being either an expression of priority
n — 1 or two such expressions separated by an operator of priority n. This would not make
the present example any shorter, but would have obvious benefits if the grammar included

relational operators and so on, each at a different level of priority.

7

Similarly higher level grammars may be simulated by writing new operators for list-

of-thing and such like to correspond to the meta-rules.

8. Lexical Analysis

Lexical analysers can also be written in this style, by giving a definition of each lexeme
in terms of its characters, and then defining a lexeme to be the alternation (using |) of all
the distinct lexemes, and then using * to make them into a list.

For instance we might code-a parser for a <name> as:

name £ letter b (letter | digit)* as build-name

7. Comments

o The only real reliance on lazy evaluation and the freedom from side effects is in the
use of the lazy list of tokens for the input. This kind of lazy list can be modelled fairly
easily in a decent imperative language, by the use of explicit suspension functions.

¢ The operators b and | are useful for things other than parsing — any task that can be
solved by successive applications of methods, or by one of a number of methods, can
be attacked with these operators. Compare the tacticals used in LCF [Paulson 1985).

o Although this technique relies heavily on higher orde; functions, the run-time penalty
is minimal because applications of operators such as b can be expanded out at com pile
time. This, of course, suggests that the operators might be written using macros in a

conventional language,

Bibliography

|Burge 1975):
W.H. Burge
Recursive Programming Techniques

Addison Wesley 1975

[Fairbairn 1983):
Jon Fairbairn
Ponder and its Type-system
Technical Report 31, University of Cambridge Computer Laboratory, 1983

|Henderson 1982):
P. Henderson
Functional Geometry

in 1982 ACM Symposium on Lisp and Functional Programming, August 1982

[Paulson 1985):
~ Lawrence C. Paulson
Interactive Theorem Proving with Cambridge LCF — A Users Manual
Technical Report 80, Cambridge University Computer Laboratory, November 1985

[Tillotson 1985):
Mark Tillotson

Introduction to the Functional Programming Language Ponder

Technical Report 65, Cambridge University Computer Laboratory 1985

8

[Wadler 1985):
Philip Wadler .
How to Replace Failure by a List of Successes
In Lecture Notes in Computer Science 201, Springer Verlag 1985

