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Are Cyber-Blackouts in Service Networks Likely?
Implications for Aggregate Cyber Risk Management

Ranjan Pal∗, Konstantinos Psounis, Abhishek Kumar, Jon Crowcroft,
Pan Hui, Leana Golubchik, John Kelly, Aritra Chatterjee, Sasu Tarkoma

Abstract

Service liability interconnections among networked IT and IoT driven service
organizations create potential channels for cascading service disruptions due to
modern cybercrimes such as DDoS, APT, and ransomware attacks. The very re-
cent Mirai DDoS and WannaCry ransomware attacks serve as famous examples
of cyber-incidents that have caused catastrophic service disruptions worth billions
of dollars across organizations around the globe. A natural question that arises in
this context is: what is the likelihood of a cyber-blackout?, where the latter term is
defined as the probability that all (or a major subset of) organizations in a service
chain become dysfunctional in a certain manner due to a cyber-attack at some or
all points in the chain. The answer to this question has major implications to risk
management businesses such as cyber-insurance when it comes to designing policies
by risk-averse insurers for providing coverage to clients in the aftermath of such
catastrophic network events. In this paper, we investigate this question in general
as a function of service chain networks and different loss distribution types. We1

show somewhat surprisingly (and discuss potential practical implications) that fol-
lowing a cyber-attack, the probability of a cyber-blackout and the increase in total
service-related monetary losses across all organizations, due to the effect of (a) net-
work interconnections, and (b) a wide range of loss distributions, are mostly very
small, regardless of the network structure - the primary rationale behind the results
being attributed to degrees of heterogeneity in wealth base among organizations,
and Increasing Failure Rate (IFR) property of loss distributions.

1 Introduction

Global commerce is undergoing a profound digital transformation. As it becomes in-
creasingly electronic and IoT-driven, critical exposures in this sector are getting highly
data-driven. As a result, the majority of modern business and economic risks are subse-
quently becoming cyber in nature. More importantly such cyber-risks are often networked
and accumulate in a variety of different ways, thereby affecting many lines of business.
As an example, commercial companies in diverse sectors such as automobiles, electronics,
energy, finance, aerospace, etc., and their mutual trading relationships are characterized
by systemic network linkages through major software providers (e.g., Oracle for DBMS

∗Corresponding Author, Email: rp631@cam.ac.uk, rpal@usc.edu
1R. Pal and J. Crowcroft are with University of Cambridge, UK; K. Psounis and L. Golubchik are

with University of Southern California, USA; A. Kumar and S. Tarkoma are with University of Helsinki,
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support). A cyber-attack (e.g., a zero day attack) motivated by a vulnerability in a
software version can have a catastrophic cascading service disruption effect that might
amount to net commercial losses worth billions of dollars across the various service sec-
tors. As well-documented commercial cyber-attack examples in reality, the very recent
Mirai DDoS (2016), NotPetya ransomware (2017), and WannaCry ransomware (2017) at-
tacks caused havoc among firms in various industries (having trading relationships among
them) across the globe, resulting in huge financial losses for the firms due to them being
deemed dysfunctional in providing service to customers.

1.1 Research Motivation

In the wake of major targeted corporate cyber-attacks (e.g., attacks on Sony, Target)
in the past half decade, risk mitigation has become a top board-level concern across
many organizations worldwide. As a result, transfer based risk management products
like cyber-insurance, which currently has a rapidly growing market (Source - Betterley
Annual Report, 2015 [1], Advisen annual report 2016) is a major go-to solution for the
current corporate sector worldwide, in the event of a cyber-attack. However, market sur-
veys suggest that demand for cyber-insurance significantly exceeds the capacity currently
provided by the insurance industry. The primary reason that most insurers give for being
cautious about expanding capacity is the accumulation risk posed by cyber-threats. The
main fear among insurers here is that cyber-threats are inherently scalable and systemic
through their spread via network interconnectivity - a single malicious email generated by
a botnet activity as part of a social engineering attack can result in an entire organization
becoming dysfunctional with respect to the service it provides, and in turn potentially
affecting business services of all other organizations that depend on it. In the event of
cascading service disruptions due to a major cyber-attack, if all these organizations were
to hold responsible their parent organization(s) on which they depend on for providing
services, it is quite likely that the insurance company of a certain root organization would
need to bear the responsibility of covering a huge aggregate/accumulated risk of all or
multiple organizations in the service chain [2]. Shouldering this responsibility clearly may
not be aligned with satisfying the budget constraints and profit requirements of most
commercial risk-averse cyber-insurers, leave alone risk-tracking and risk-data availability
challenges they might need to overcome to implement accumulative coverage policies [2].

Our Focus - Given a service chain network, our focus in this paper is to estimate the
probability that all or a major subset of organizations (network nodes) in the network
become dysfunctional in a certain manner (e.g., unable to provide cloud connectivity,
inability to protect customer privacy, disruption of energy services) to provide service in
the event of a cyber-attack, a situation which we define as a cyber-blackout [See Section
4.1 for details]. A robust estimate of the probability of a cyber-blackout is a necessary
pre-requisite for considering the expansion of the service capacity of risk management
products such as cyber-insurance. In scenarios of cascading cyber-risks, the probability
value will act as a valuable input to cyber-insurance firms to allocate optimal portfolios
among insurance and re-insurance investments. In addition, we will also investigate the
practical implications of the likelihood and scale of cyber-blackouts on cyber-insurance
ecosystems of today and the near future.

1.2 Research Contributions

We make the following research contributions in this paper.

• We design a graph-based model of service obligations, GSOM, between organiza-
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tions in a service chain network. Our model specifies a set of nodes that represent
service organizations together with the edges that represent service liability rela-
tionships between them. In the event of a cyber-attack, given the values of losses
(either deterministic or stochastic) at the nodes in the network, GSOM computes
via solving a fixed-point problem, the vector of service valuations that clears the
network, and identifies the nodes in the chain that are dysfunctional to provide
service. GSOM is very useful for analyzing how service-related losses propagate
through an organizational service chain (see Section 3).

• Using GSOM, given the joint distribution of service-related losses across the network
nodes (organizations) in the event of a cyber-attack, we analyze the probability of
contagion that target organizations become dysfunctional due to a given organiza-
tion somewhere in the network becoming dysfunctional. In this regard, we answer
two important questions: (i) how likely it is that a given set of target organizations
will become dysfunctional due to contagion from a single source organization, as
compared to the likelihood that they become dysfunctional from direct losses to
their own service-related assets that does not require dependency on other nodes?,
and (ii) how much does the underlying network of service dependencies contribute
to the increase in the probability of dysfunction of target nodes and corresponding
expected value of losses, compared to a situation when there are no network links,
i.e., each organization completely relies on its own resources to provide customer
service?. Our analysis is very useful for analyzing the chance of a cyber-blackout
event. As part of our results, we derive a general formula that surprisingly shows
that the probability of a cyber-blackout is larger mostly in the absence of network
connectivity than that in the presence of network connectivity, implying that simple
network spillover effects have a limited impact with respect to service obligations
between heterogeneous (in terms of monetary assets) organizations. We also show
that network spillover effects are surprisingly small mostly under a wide range of
joint distributions for plausible values of model parameters, regardless of the ser-
vice dependency network topology. (see Section 4 for details) - the rationale behind
these results being attributed to degrees of heterogeneity in organizational wealth,
and the Increasing Failure Rate (IFR) property of loss distributions.

• We expand the set of cyber-attack sources from a single node to multiple nodes,
and study the negative impact of simultaneous attacks on the entire network of
organizations. Under a wide range of general loss distributions, we again surprisingly
show that the increase in total (summed over all nodes in the organizational network)
value of service-related losses due to network interconnections are mostly small,
regardless of the network structure (see Section 5 for details).

2 Motivation Examples for Cyber-Blackout Study

In this section, we provide motivational background for our paper by describing various
well known attack scenarios that are capable of launching a cyber-blackout, thereby po-
tentially presenting an accumulative coverage setting for a cyber-insurance provider. We
describe coverage accumulation scenarios for six key example processes [4] of cyber-loss
in today’s digital age. The examples highlight how correlated cyber-losses could impact
a portfolio of cyber-insurance policies, and peep into the rationale of how a large number
of accounts/organizations might suffer systemic losses from a single underlying cause.
Cyber Data Exfiltration - This process relates to the systemic release of confidential
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customer records from many corporate enterprises (organizations). Some of the highest
profile cyber-incidents (e.g., the Sony, Target, and Equifax cyber-incidents [4]) have been
data breaches2: the loss of confidential data from organizations that breach the privacy
of their customers, employees, clients, or counterparts. This has proved costly to the
enterprise, resulting in notification costs, credit monitoring services, and compensation
pay outs to all the individuals/organizations whose data was compromised, together with
regulatory fines, response and forensic costs, and sometimes substantial litigation costs.
The total accumulative losses to data breaches (both, first-party, and third-party losses
faced from organizations in the service chain complaining of privacy breach of their data)
faced by individual organizations have been instrumental in driving the expansion of the
cyber-insurance market, as companies seek protection and risk partners in helping with
response services.

Another burning example of cyber-data exfiltration might arise from the recently op-
erative General Data Protection Regulation (GDPR) [8]. The key theme of GDPR, op-
erative in the EU from May 25th, is that each of us owns our own data. Any company
(EU local/EU multinational/companies worldwide operating with data of EU subjects
including residents, citizens, and tourists) must therefore explicitly request permission to
use any of our personal data, explaining why it would like to do so, and for how long. If
we so agree, we can later withdraw our permission at any time. All of these rights must
be provided to us by each company free of charge. One consequence is that each com-
pany must know, and (dynamically) document, what information (if any) they have about
each individual. This may be a particular challenge for large, established corporations,
since data about individuals may be spread across different business units and multiple
databases, spreadsheets, off-site backup copies, or even paper archives, that would make
synchronous dynamic updating of data difficult. Thus, will open up avenues for cyber-
data exfiltration thereby leading to the aforementioned situation of accumulative losses
due to a data breach.

Denial-of-Service Attack - This process relates to attacks that disable websites and
disrupt online business activity across multiple organizations. Denial-of-Service (DoS) and
Distributed DoS attacks are common methods of disrupting website business activities by
bombarding them with traffic (e.g., the Mirai botnet-induced DDoS attack [9]). Half of all
major U.S. organizations experienced a DoS attack on their websites in the past few years,
and one in eight of those attacks overwhelmed website resilience and rendered Internet
services unavailable (Source - SANS Institute). In April 2007, following a diplomatic row
with Russia over a Soviet war memorial, Estonia was subject to DDos attacks which caused
temporary shut down of infrastructure including everything from online banking and
mobile phone networks to government services and access to health care information [16].
For a given organization, the cost of the business interruption caused by a DDoS attack of
any particular duration is determined by the Internet dependency of the insured company
i.e., the amount of revenue that would be lost per hour of Internet failure or connectivity
loss. The capture of this information makes it possible to assess the accumulative loss
of revenue that a given insured organization may be liable for (due to organizational
dependencies in a service chain), from the potential for Internet outage in general. As
another line of recent target applications for DDoS attacks is the catastrophic disruption
of critical infrastructure services in the electricity, manufacturing, and transportation
sectors by APT-driven DDoS attack vectors. A well known instance of such an attack
type led to a series of power blackouts in Ukraine [10] in the last few years that caused

2Types of data include personal identity information (PII), payment and credit card information
(PCI), protected health information (PHI), commercial confidential information (CCI), and intellectual
property (IP).
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significant damage to people’s life and business activities. Such scenarios are also subject
to accumulative coverage settings for cyber-insurers.

Cloud Service Provider Failure - This process relates to the scenario when large num-
ber of organizations have business operations disrupted by losing cloud-based functionality
in the event of a major cloud service provider (CSP) suffering a service disruption due
to a cyber-attack. The digital economy is increasingly dependent on cloud services and
a rapidly growing number of companies make use of a CSP by outsourcing elements of
their data storage, analytics, and information technology functions. If a CSP were to fail
(e.g., AWS outage (2011), Gmail outage (2010), Microsoft Sidekick outage (2009) [4])
then their customers would suffer business losses, and hold the CSP liable for the loss.
A CSP failure could also be the source of the exfiltration of confidential data records,
or claims for data and software loss if data files were irrevocably deleted. This provides
an accumulation issue for cyber-insurance where there is potential for a large number of
organizations (and their subsequent business clients in a service chain) to make a claim for
business interruption if a major provider of cloud services were to have a lengthy outage
or failure, from any cause. The systemic dimension of cyber-risk concerns the triggering
of large numbers of claims from companies that are CSP customers. The customers and
their insurers may attempt to recover their loss payouts from the CSP (and possibly the
insurer of the CSP).

Compromise of Financial Transactions - This process relates to theft of large sums
in cyber-attacks on multiple enterprises (organizations) that carry out financial transac-
tions. Insurers offer coverage to the financial services sector to cover losses that they
might suffer from cyber-attacks, or computer based fraud, theft, or disruption occurring
from compromising payment systems or technologies for managing financial transactions.
Criminals have always targeted the money held in financial institutions, and physical
bank robbery has given way to cybercrime as the preferred technique (e.g., Carbanak
APT Attack (2013-2015), Drinkman and Kalinin Attack (2013) [4]). Although very large
numbers of companies of all different types carry out financial transactions, ranging from
retail to e-commerce, the transaction systems that carry the financial flows are the specific
liabilities of financial transaction companies. The potential for widespread and systemic
claims across all the different sectors of the economy from subverting payments after the
point of sale are constrained by the legal liabilities being confined to the financial services
companies operating the payment transfers. Thus, transaction risk is mostly aggregated
in banking and payment management companies, and investment management systems.

Cyber-Extortion Through Ransomware - This process relates to the event when
many companies are held to ransom by payoff seeking hackers disabling IT functionality.
Cyber extortion is a rapidly growing area of organized cybercrime using ransomware -
malicious software that lock up data or disrupt business until companies make a payoff.
This has been a common method of extorting individuals and small businesses for some
years (e.g., LA Children’s Presbyterian Hospital Attack (2016) [11], Bitfinex Attack(2017)
[12]). Cyber criminals are increasingly scaling up their operations and using extortion
more commonly against larger companies as they gain confidence and technical expertise.
In 2017, UK hospitals effectively shut down and had to turn away non-emergency patients
after WannaCrypt ransomware ransacked its networks [5]. In the same year, Maersk, the
world’s largest container shipping company, was hit by NotPetya ransomware attack [6].
Although ransomware that encrypts data and locks computers is the most common type of
extortion, companies may also be asked to make payoffs to avert the threat of other cyber-
attack types including denial-of-service attacks, data exfiltration breach, and sabotage to
deny a company internet or cloud services. Insurance repayment for extortion is a common
coverage in many standalone affirmative cyber liability products in the market, and around
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three quarters of products offer this. Following from the previously mentioned process
examples, accumulative risk is something a cyber-insurance company needs to deal with
in the case of ransomware extortions.
Aggregate Losses due to Cyber-warfare - Highly untraceable acts of modern cyber-
warfare or cyber-terrorism by nation states aimed to achieve political and corporate gains,
can lead to aggregate losses incurred by organizations. On this note, as per a recent report
by Bloomberg Businessweek [13], data center equipment run by Amazon Web Services
and Apple may have been subject to surveillance from the Chinese government via a
tiny and virtually undetectable microchip inserted during the equipment manufacturing
process. These illicit microchips were capable of instructing the device in which they
were embedded in, to communicate with unauthorized computers located elsewhere on
the Internet and preparing the device’s operating system to accept new code, and hence,
enabling attackers to alter how the device functioned, however they wanted. As an exam-
ple, attackers could use this to steal intellectual property (IP) of organizations and their
service providing clients, resulting in a situation of aggregate information leak targeted
at the host [14]. For the microchip case, Netflix (Entertainment), BBC (News Broadcast-
ing), Capital One Financial Corporation (Finance), Twitter (Social Media), and various
departments of the US government were clients of Amazon Web Services [23][24]. Simi-
larly, Best Buy (Consumer Electronics), Verizon Communications (Telecommunications),
AT & T (Telecommunications), Sprint (Telecommunications), T-Mobile U.S. (Telecom-
munications), were clients of Apple [17]. Here, Amazon, Apple may be held liable by
their clients for IP loss damages inflicted during such attacks, thereby contributing to
accumulative risk for a cyber-insurance company (includes self-insurance) to deal with.
Aggregated Risk in IoT-Driven Smart Cities - In the near future, people are likely
to populate their homes, offices, and neighborhood with a dense network of potentially bil-
lions of tiny transmitters and receivers which have ad-hoc networking abilities. These IoT
devices can directly communicate amongst themselves, creating a new unintended commu-
nication medium that completely bypasses the traditional norms of communications such
as telephony and the Internet. In a recent work, Ronen et.al., [7] has successfully demon-
strated that even though IoT devices might be manufactured by popular and reputed
firms deploying industry-standard cryptographic techniques, they can be still misused
by hackers to spread infectious malware from one IoT device to all physically adjacent
neighbors, causing city-wide disruptions which are very difficult to stop and investigate
[7]. In the case of “city” insurance agencies insuring their clients in the future, aggregate
cascading risks due to unavailability of service is something they might have to deal with.

3 System Model

In this section, we propose our graph-based model of service obligations, GSOM, between
organizations in a service chain network that will be used in this paper to investigate and
analyze cyber-blackout probabilities.

3.1 Basic Ingredients of GSOM

GSOM has four basic ingredients: (i) a set of n nodes N = {1, 2, ...., n} characterizing
organizations, (ii) an n × n liability matrix P̄ = (p̄ij) where p̄ij ≥ 0 is the payment due
from node i to node j in the event of a claim made by j on i in the aftermath of a cyber-
attack (e.g., an organization claiming that due to CSP failure, it incurred a business loss
worth a certain monetary amount) with p̄ii = 0, (iii) ~c = (c1, c2, ...., cn) εRn

+, representing
the vector of wealth/resource amount held by each node i ∈ N , that is not yet subject

8



to a cyber-attack, and (iv) ~b = (b1, b2, ...., bn) εRn
+, representing the vector of liability-free

losses accrued by each node i ∈ N , in the aftermath of a cyber-attack. We make the
general assumption in the paper that organizational claims, wealth, and losses can be
expressed monetarily in the event of a cyber-attack. Also note that the liability matrix
embeds the service chain network. For each node i ∈ N , the following relationship holds:

wi = ci +
∑
j 6=i

p̄ji − p̄i, (1)

where wi is the net wealth of node i in the aftermath of a cyber-incident (given that the
claim payouts are appropriately meted out), and is unrestricted in sign, and p̄i is the net
liability of i. A negative value of wi denotes the inability of organization i to payout
claims made by organizations liable on i. Observe that the net liability of i is expressed
as

p̄i = bi +
∑
j 6=i

p̄ij.

Similarly, the net non-liability (assets) of organization i in the aftermath of a cyber-attack
is given by ci +

∑
j 6=i p̄ji.

3.2 GSOM for Post-Attack Scene

Having discussed the basic elements of GSOM, our primary goal here is to build GSOM to
handle the case when resources that have not yet been hit by a cyber-attack are suddenly
subject to a loss that might trigger service disruption in a service chain network.

Let the amount ci for each node i be subject to a random shock or loss of value
Xi in the event of a cyber-attack, where Xi is a random variable taking values in the
interval [0, ci]. Thus, in the aftermath of the attack, resource amount ci for node i is
reduced to ci − xi, where xi is the instance of Xi. Let F (x1, x2, ...., xn) be the joint
cumulative function of these losses, that is central to analyzing the process of the spread
of “organizational dysfunctionality” due to cyber-attacks. We importantly note that a
necessary (but not sufficient and complete) component to estimating or approximating
F () is the use of techniques like Monte Carlo simulation, percolation theory, or statistical
mean field models, that popularly capture the spread of the infection (attack) vector (e.g.,
a virus, worm, bot) across a network, and is not the focus of our paper. The interested
reader is referred to [18] [19] [20] [21] to get insights about some ways to mathematically
evaluate this necessary component contributing to the value of F (). In our work, we adopt
a conservative (and hence more challenging) approach of assuming general continuous
forms of F () for the purpose of analysis, without focussing our efforts (via the use of the
aforementioned necessary component) on finding/assuming specific continuous forms of
F () that might be setting-dependent.

Define the relative liabilities matrix A = (aij) to be the n×n matrix with the entries:

aij =

{
p̄ij
p̄i
, if p̄i > 0

0, if p̄i = 0

Thus, aij is the proportion of organization i’s monetary obligations owed to organiza-
tions j in the aftermath of cyber-attack. Here, aij ≤ 1 for each i and subsequently matrix
A is substochastic.

Given a loss realization vector ~x = (x1, ...., xn) ≥ 0, our aim is to evaluate a vector
that corresponds to the payments that balance monetary assets and liabilities at each node
(organization). Based on the values in this vector, we will know whether an organization
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Table 1: Table of Important Notations

N set of organizations
P̄ = (p̄ij) payment matrix
−→c vector of wealth held by each organization i
−→
b vector of liability-free losses
P̄i net liability of i
Xi random variable representing loss to i on random shock
F (x1, ....xn) joint cdf of losses at organization

A = (aij) relative liability matrix
−→
P (−→x ) clearing vector
βi proportion of i’s monetary liabilities to other nodes
λi leverage ratio of organization i w.r.t. ci−→
S vector of monetary shortages at organizations

does have the ability to handle liabilities from other organizations in the service chain, in
the event the latter hold the former liable for service disruptions due to a cyber-attack.
In this paper, we term the vector as a clearing vector due to its relevance in balancing
assets and liabilities. Mathematically, we represent the clearing vector as ~p(~x) = {pi(~x)};
~p(~x) ∈ Rn

+, and it is evaluated as the solution to the following fixed point equation:

pi(~x) = p̄i ∧

(∑
j

pj(~x)aji + ci − xi

)
+

, (2)

where the structure (·)+ above indicates that if the value inside the parenthesis is less than
zero, the value is zero. ∧ denotes the min operator, where ~x∧~y = (min[xi, yi], ..,min[xn, yn])
The solution to this equation, for each node i, is evaluated under a pro-rata allocation
mechanism, i.e., the amount of unresolved liabilities at node i (when its net assets are
less than its net liability) is allocated in a proportional manner across its neighbors in the
network induced by the liability matrix. A pro-rata allocation is a standard allocation
mechanism in financial debt theory [3] [22], and we adopt this standard in our paper while
allocating service liability debts. Given a solution to (2), an organization i is said to be
dysfunctional if pi(~x) < p̄i(~x) implying that its assets are less than the liability it owes to
other organizations in the service chain network.

3.3 Uniqueness of the Clearing Vector

Here, we investigate on the uniqueness of clearing vector obtained as the solution to the
fixed point equation in (2). In this regard, we have the following theorem.

Theorem 1. The clearing vector is unique if from every organizational node i there exists
a chain of positive obligations to some organizational node k that has positive obligations
to itself.

Proof. It follows from [3] that a solution to (2) can be constructed iteratively as
follows. Given a vector ~x, define the mapping Φ : Rn

+ → Rn
+ as

Φi(~p) = p̄i ∧

(∑
j

pjaji + ci − xi

)
+

. (3)

10



Starting with ~p0 = p̄, let ~p1 = Φ(~p0), ~p2 = Φ(~p1),..., and so on. This iteration yields a

monotone decreasing sequence ~p0 ≥ ~p1 ≥ ....... Since it is bounded below it has a limit
p′, and since Φ is continuous p′ satisfies (2). Hence it is a clearing vector. We now claim
that p′ is in fact the only solution to (2). Suppose by way of contradiction that there is
another clearing vector, say p′′ 6= p′. Then, the net worth of all organizational nodes must
be the same under the two vectors, i.e.,

p′A+ (c− x)− p′ = p′′A+ (c− x)− p′′.

Rearranging the terms it follows that

(p′′ − p′)A = p′′ − p′; p′′ − p 6= 0.

This means that the matrix A has eigen value 1, which is impossible because under our
assumption A has spectral radius less than 1 - equivalent to the condition that from every
organizational node i there exists a chain of positive obligations to some organizational
node k that has positive obligations to itself. Thus, p′ is the only solution to (2) and
equivalently the clearing vector is unique. �.
Theorem Implication - The uniqueness of the clearing vector provides the benefit
of practically dealing with a single vector of liability payments, over the challenge of
computationally searching for multiple vectors. The assumption that matrix A has a
spectral radius less than 1 is quite practical in the sense that a chain of obligations
ending in an obligation loop around the same organization, i.e., self-liability, is common
in practice. As an example, the concept of self-liability could arise in the context of the
popular notion of self-insuring an organization, which is common in business sectors.

4 Estimating Blackout Chance - Single Source Case

In this section, we estimate the probability of a cyber-blackout among a given set of
organization nodes due to a contagion/cascading effect, when a particular source node
becomes dysfunctional to provide service in the aftermath of a cyber-attack. This sec-
tion is divided into three main parts: in the first part we provide a non-trivial general
estimate of cyber-blackout probability irrespective of the loss distribution function; in
the second part we estimate the cyber-blackout probability for a certain popular family of
loss distributions, i.e., the Beta distribution, and study the effect of the underlying service
network topology on the estimate; finally we study the effect of various distributions on
the estimate of cyber-blackout probability. A collection of important notations used in
the paper is provided in Table I.

4.1 Analysis Setup

We first re-iterate the definition of the terms organizational dysfunction and cyber-blackout.
As previously mentioned, organizational dysfunction happens when a given organization
is unable to provide service to customers who rely on the former. Service could be of myr-
iad forms, one popular example being the ability to protect customer private information;
another example of a critical nature being the ability to provide non-interrupted energy to
different customer segments in the industry. Potential impact of organizational dysfunc-
tion could result in monetary business losses, and loss of reputation resulting in loss of
business. A cyber-blackout happens when individual organization dysfunction contributes
to a cascade (due to a contagion effect) of organizational dysfunctions, where each subse-
quent organization that became dysfunctional was relying on other organizations that had
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already become dysfunctional. Note here that an organization could be a single user as
well. A practical example of a cyber-blackout is service disruption in a power grid caused
by a cyber-attack which in turn causes a cascade of power unavailability issues in different
sectors (e.g, manufacturing, transportation) of the industry, thereby leading to business
disruptions that cause commercial losses. In our work we characterize dysfunctionality in
a monetary fashion by mapping it to the case when the monetary value of the available
resources of an organization is less than what it owes other organizations (in the event of
their unability to provide service) which are liable on the former for service. More for-
mally, given a solution to (2), an organization i is said to be dysfunctional if pi(~x) < p̄i(~x)
implying that its assets are less than the liability it owes to other organizations in the
service chain network.

In order to formulate our results, we need the following notation. Let D be the set
of nodes that we are interested in investigating whether they can go dysfunctional due
to a cascading disruption effect resulting from a cyber-attack on a given source node i
that made i dysfunctional. Let βi = p̄i

bi+p̄i
be the proportion of node i’s service-related

monetary liabilities to other organizational entities (nodes) in the system. We assume that
βi > 0, i.e., each node has a non-zero service liability external to itself. Recall that wi > 0
is node i’s initial net worth in the aftermath of it being subject to a cyber-incident, and ci
represents the vector of wealth/resources held by node i that is not yet subject to cyber-
attack. We assume that wi < ci, since otherwise i could never go dysfunctional directly
through losses in ci post a cyber-attack that affects ci. We define the ratio λi = ci

wi
≥ 1

to be the leverage ratio of i with respect to ci, and denotes the vulnerability of i - more
the ci, greater the potential of loss in ci through a cyber-attack, leading to i being more
vulnerable.

4.2 Estimate of Blackout Probability

In this section, given D and a node i 6∈ D, we first derive a general estimate of the
cyber-blackout probability without taking into account specific forms of loss distribution
functions. In this regard, we are interested in two quantities: (i) a probability estimate
that all organizations in D go dysfunctional, and (ii) the mathematical condition which
guarantees the impossibility of a cascading effect from i to D. The first quantity has
implications to a cyber-insurer in the insurance industry who might be responsible for
covering aggregate or accumulative risks of the organizations in D, and the value of this
quantity will help the insurer design and manage its portfolio mechanisms to prevent it
from going bankrupt. The second quantity has implications on individual organizations
regarding boosting their investments in cyber-security so much as to prevent them get-
ting dysfunctional and subsequently saving face and money, and furthermore arresting a
cascading service disruption process.

We have the following proposition regarding a general bound-based estimate of the
cyber-blackout probability independent of the specific forms of loss distribution functions.

Proposition 2. Suppose that only organizational node i suffers a loss in its ci from a
cyber-attack, i.e., xj = 0, ∀j 6= i, and that no organization is dysfunctional prior to i
suffering the loss. Fix a set of nodes D not containing i. The probability that the loss
causes all nodes in D to become dysfunctional is upper bounded by

P

(
Xi ≥ wi +

1

βi

∑
j∈D

wj

)
. (4)
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A cascading effect from i to D is impossible if∑
j∈D

wj
wi

> βi(λi − 1). (5)

Proof. Let D(~x) ≡ D̄ be the dysfunctional set resulting from the loss vector X,
whose coordinates are all zero except Xi. By assumption i causes other nodes to become
dysfunctional, hence i itself must become dysfunctional, i.e., i ∈ D̄. To prove (4), it
suffices to show that

βi(Xi − wi) ≥
∑

j∈D̄−{i}

wj ≥
∑
j∈D

wj. (6)

The second inequality in (6) follows from the assumption that no nodes are in default
before the loss and the fact that we must have d ⊆ D̄− {i} for all nodes in D to default.
For the first inequality in (6), define the shortage at organizational node j to be the
difference sj = p̄j − pj. From (2) we see that the vector of shortages ~s satisfies

~s = (~sA− w +X)+ ∧ p̄.

Using (3) we have sj > 0 for j ∈ D̄ and sj = 0 otherwise. We use a subscript D̄ as in sD̄
or AD̄ to restrict a vector or matrix to the entries corresponding to nodes in the set D̄.
Then the vector of shortages as the nodes of D̄ satisfies

sD̄ ≤ sD̄AD̄ − wD̄ +XD̄, (7)

hence
XD̄ − wD̄ ≥ sD̄(ID̄ − AD̄). (8)

The vector sD̄ is strictly positive in every coordinate. From the definition of βj we also
know that the jth row sum of ID̄ − AD̄ is at least 1− βj. Hence,

sD̄(ID̄ − AD̄) · 1D̄ ≥
∑
j∈D̄

sj(1− βj) ≥ si(1− βi). (9)

From (7) it follows that the shortage at node i is at least as large as the initial amount
by which i becomes dysfunctional, that is,

si ≥ Xi − wi > 0. (10)

From (8) - (10) we can conclude that∑
j∈D̄

(Xj − wj) ≥ si(1− βi) ≥ (Xi − wi)(1− βi). (11)

This establishes (6) and the first statement of the proposition. The second statement
follows from the first by recalling that the loss to ci’s cannot exceed their value, i.e.,
Xi < ci. Therefore, by (4) the probability of contagion in the context of organizational
dysfunctionality is zero if

ci ≤ wi +
1

βi

∑
j∈D

wj.

Dividing through by wi we see that this is equivalent to the condition∑
j∈D

wj
wi

> βi(λi − 1),
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which is the second statement of the proposition. Hence we have proved Proposition 2.
�

Proposition Implication - Note that the bounds in the theorem are completely general
and do not depend on the distribution of the losses, or on the network topology. The
condition in (5) is intuitive and states that dysfunction contagion from i to D is impossible
if the total net worth of the nodes in D is sufficiently large (could be made possible by
making proper investments in cyber-security) relative to the net worth of i weighted by
(a) the exposure of the system to organizational node i as measured by βi, and (b) the
vulnerability of i as measured by the leverage ratio λi. More generally contagion will
be weak if unless originating node is highly leveraged and has a relative high proportion
of obligations to other nodes (e.g., if originating node is an organization like Amazon
providing cloud services to multiple other organizations [23][24]). A similar interpretation
applies to (4).

Cyber-Insurance Perspective - In the context of cyber-insurance, the proposition im-
plies that insurers should incentivize organizations (through appropriate contract design)
to boost up their cyber-hygiene so that an organization’s net worth is high. This has been
a challenging problem in the cyber-insurance space, and one particular solution direction
for networks has recently been explored by the authors in [25].

Contagion vs Independent Losses - We now investigate results tying the probability
of a cyber-blackout through contagion from a given organizational node i to a given subset
D of nodes, to the probability of the same under direct independent losses (e.g., losses
incurred by organizations due to cyber-attacks that take advantage of poor cyber-hygiene
practices in the organizations) experienced at the nodes. We say that the contagion effect
with respect to organizational node dysfunction is weak if

P

(
Xi ≥ wi +

1

βi

∑
j∈D

wj

)
≤ P (Xi > wi)

∏
j∈D

P (Xj > wj). (12)

The expression on the left bounds the probability that nodes in D become dysfunctional
through contagion from i, while the expression on the right is the probability (computed
using the loss distribution for individual nodes) that the same nodes become dysfunctional
through independent direct losses. The intuition for weak contagion is as follows: the RHS
of the expression has the product of events, which means we consider the case where all
nodes in D and node i get dysfunctional in an independent fashion. Thus, we have a
sequence of ‘less than 1’ terms making the RHS smaller and smaller, yet it never gets
small enough to become smaller than the LHS, that represents the network contagion
effect. It goes without saying that the inequality depends heavily on wi and βi, and specific
conditions in this regard are stated in the implications of Theorem 3 (see later). Note that
in practice the assumption of direct independent losses is somewhat unrealistic: in practice
one would expect the losses to different nodes be positively associated (correlated). In that
case the probability of organizational dysfunction is even larger, and the above equation
would hold here as well. We say that the contagion effect is strong if

P

(
Xi ≥ wi +

1

βi

∑
j∈D

wj

)
> P (Xi > wi)Πj∈DP (Xj > wj). (13)

The intuition for a strong contagion effect is just the converse of that for a weak
contagion effect.
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4.3 Distribution-Based Estimate of Cyber-Blackout Probability

Having provided a general estimate of the cyber-blackout probability, we now estimate
this probability under the effect of a given loss distribution across different nodes in the
organizational network. Let us assume that the cyber-losses at a given organizational node
i scales with the portfolio ci of the organization. Based on recent data from Symantec
[26], this is a reasonable assumption to make irrespective of whether cyber-attackers target
organizations big or small. Let us also assume that the distribution of these relative losses,
i.e., with respect to ci, is the same for the nodes, and independent among the nodes (note
that this does not imply absolute losses are independent).

Then, there exists a distribution function H : [0, 1]→ [0, 1] such that

F (x1, ....., xn) = Π1≤i≤nH

(
xi
ci

)
. (14)

Beta distributions provide a flexible standard family with which to model the distribution
of relative losses that lie in the interval [0, 1], and generalizes other distributions that work
with bounded intervals [27]. We work with Beta densities of the form

hp,q =
yp−1(1− y)q−1

B(p, q)
, 0 ≤ y ≤ 1, p, q ≥ 1, (15)

where B(p, q) is a normalizing constant. Note that (15) is general enough to allow a mode
anywhere in the unit interval. The subset with p = 1, q > 1 has a decreasing density and
seems the most realistic, whereas the subset with q = 1, p > 1 has an increasing density
and could be considered “heavy-tailed” in the sense that it assigns greater probability to
greater losses. We have the following result regarding a distribution specific estimate of
the cyber-blackout probability.

Theorem 3. Assume relative loss distributions across all organizational nodes are i.i.d.
Beta distributed, and the net worth of every node is initially non-negative. Let D be a non-
empty subset of nodes and let i 6∈ D. Then a contagion effect with respect to organizational
dysfunction is impossible if ∑

j∈D

wj > wiβi(λi − 1), (16)

and is weak if ∑
j∈D

wj ≥ wiβi
∑
j∈D

λi − 1

λj
. (17)

Proof. Proposition 2 implies that contagion is weak from i to D if

P

(
Xi ≥ wi +

1

βi

∑
j∈D

wj

)
≤ P (Xi > wi)Πj∈DP (Xj > wj). (18)

On the other hand this certainly holds if wi + 1
βi

∑
j∈D wj > ci, for then contagion is

impossible. In this case we obtain, as in (5)∑
j∈D

wj
wi

> βi(λi − 1). (19)

Suppose on the other hand that
(
wi + 1

βi

∑
j∈D wj

)
≤ ci. By assumption the relative

losses Xk

ck
are independent and beta distributed as in (15). In the uniform case p = q = 1,
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(18) is equivalent to[
1−

(
wi
ci

+
1

βici

)∑
j∈D

wj

]
≤
(

1− wi
ci

)
Πj∈D

(
1− wj

cj

)
. (20)

We claim that (20) implies (18) for the full family of Beta distributions in (16). To see
why, first observe that the cumulative distribution Hp,q of hp,q satisfies

1−Hp,q(y) = Hq,p(1− y).

Hence (18) holds if

Hq,p

(
1− wi

ci
− 1

βici

∑
j∈D

wj

)
≤ Hq,p

(
1− wi

ci

)
Πj∈DHq,p

(
1− wj

cj

)
. (21)

But (21) follows from (20) because Beta distributions with p, q ≥ 1 have the submulti-
plicative property

Hq,p(xy) ≤ Hq,p(x)Hq,p(y), x, y ∈ [0, 1].

It therefore suffices to establish (21), which is equivalent to

1

βici

∑
j∈D

wj ≥
(

1− wi
ci

)(
1− Πj∈D

(
1− wj

cj

))
. (22)

Given any real number θj ∈ [0, 1], we have the inequality

Πj(1− θj) ≥ 1−
∑
j

θj. (23)

Hence a sufficient condition for (22) to hold is that

1

βici

∑
j∈D

wj ≥
(

1− wi
ci

)∑
j∈D

wj
cj

). (24)

After rearranging the terms and using the fact that λk = ck
wk

for all k, we obtain (17).
This concludes the proof of Theorem 3. �

From the argument in (21), it is evident that the same result holds if the losses
to each node j are distributed with parameters pj, qj in (15) with pi ≤ minj∈D pj and
qi ≥ maxj∈D qj.
Theorem Intuition - As noted in Proposition 2, the condition in (16) states that the
contagion from i to D is impossible if the total net worth of the nodes in D is sufficiently
large (could be made possible by making proper investments in cyber-security) relative
to the net worth of i weighted by (a) the exposure of the system to organizational node
i as measured by βi, and (b) the vulnerability of i as measured by the leverage ratio λi.
The condition in (17) compares the total net worth of D relative to that of i with the
leverage ratio of i relative to that of the nodes in D. With other parameters held constant,
increasing the relative net worth of D (again via making higher investments in security)
makes contagion weaker in the sense that it strengthens the inequality; increasing the
leverage ratio of i relative to that of the nodes in D has the opposite effect because there
is higher potential to target unattacked resources worth ci. Importantly, the two effects
are mediated by βi - a lower βi makes D vulnerable to i and makes D less sensitive to the
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degree of leverage at i. Now recalling that λj =
cj
wj

, we can write (17) in the following

equivalent form: ∑
j∈D cjλ

−1
j∑

j∈D λ
−1
j

≥ ciβi(1− λ−1
i ). (25)

Written this way, the condition states that contagion from i to D is weak if the average
size of the nodes in D weighted by their inverse leverage ratios is sufficiently large relative
to i - evident as a result of high net worth of nodes in D. On the right side of the
inequality in (25), ciβi measures the organizational system’s exposure to node i’s assets
worth ci, and the factor (1− λ−1

i ) is greater when node i is more highly leveraged. Thus
inequality (25) is harder to satisfy, and D is more vulnerable to contagion from i, if large
(high asset) nodes in D are more highly leveraged, or if node i is more highly leveraged.
Theorem Implications - A key implication to Theorem 3 is that without substantial
node heterogeneity (see Corollary 2 for specific mathematical conditions), contagion with
respect to organizational dysfunction will be weak irrespective of the structure of the net-
work induced by the liability matrix (also validated experimentally on real and synthetic
data in Section 6). More generally, from Proposition 2, contagion will be weak unless
originating node is highly leveraged and has a relative high proportion of obligations to
other nodes. Consequently, with respect to node heterogeneity, the following result is
immediately obvious.

Corollary 1. Assume that all nodes i have the same value c for ci. Under the assumptions
of Theorem 1, contagion is weak from any node to any other set of nodes.

Proof. The result follows from the fact that βi(1 − λ−1
i ) < 1, and the fact that when

ci = c, for all i, (25) holds for all i and D. Thus, we have proved Corollary 1. �
The implication of this corollary is that organizational heterogeneity with respect to

resources characterized by ci’s is a necessary condition (though not sufficient) for a cascad-
ing service disruption effect to take place. Since in reality organizations are heterogeneous,
cyber-blackouts are possible, though under certain conditions (see Corollary 2)

Now suppose that c1 ≥ c2 ≥ ..... ≥ cm, Since losses are proportional to ci, a loss
to c1 maximizes the contagion to other nodes. This fact is formalized via the following
corollary.

Corollary 2. If c1 ≥ c2 ≥ ..... ≥ cm, then contagion from organizational node 1 to nodes
2,.....,m is weak if c2 ≥ β1(c1−w1) and cj ≥ (cj−1−wj−1), j = 2, ....,m, strong otherwise.
Contagion is impossible if c2 − cm + wm > β1(c1 − w1).

Proof. The result directly follows from (20) and (22). �
The implications of this corollary are that the lower bounds for cj ensure that the

potential spillovers from other nodes cannot lead to the full set D of nodes into dysfunction
regardless of the liability network topology. This does not imply that the network structure
has no effect on the probability of contagion - it just showcases the fact that in quite a few
situations the probability of contagion with respect to organizational dysfunction will be
lower than the probability of an organization being rendered dysfunctional due to direct
losses (see Section 6 for an experimental validation).
Cyber-Insurance Perspectives- In the context of cyber-insurance, the implications of
Proposition 2 carry over, in addition to Theorem 3 and the subsequent corollaries bolster-
ing the future increase in global cyber-insurance market valuation, as risk-averse insurers
would not have to worry much about strong contagion effects in selling cyber-insurance
policies. In addition, the common knowledge among organizations about inevitable node
heterogeneity with respect to monetary assets, will psychologically lead them to invest
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in cyber-insurance as well as security enhancing practices due to a certain fear of risk
cascading.

With respect to the scale of aggregate risk coverage burden on an insurance company,
cyber-blackouts may be quite unlikely if set D is large, which reduces the likelihood of an
insurance agency going bankrupt, and this implication holds irrespective of the underlying
liability network topology. When D is a small set of heterogeneous organizations, an
insurance company is also less likely to be bankrupt, even if some organizations in the set
are large-sized and incur large losses. Now as for the case of simultaneous independent
direct losses on all of the organizations in D which might positively contribute to cyber-
blackout probability - in practice, this is a very low probability event for large-sized D.

4.4 Extending the Distribution Space

A drawback with the Beta distribution is that the probability of ci going to zero in the
aftermath of a cyber-attack, is zero. This clearly may not be true in practice and we
cannot rule out the (potentially futuristic) scenario where the ci’s could be wiped out
due to a big cyber-hit - something analogous to a cyber 9/11. In this section, we aim
to extend our analysis by accounting for popular loss distributions other than the Beta
distribution, that do not suffer from the above-mentioned drawback.

In order to capture the non-positive probability of ci’s going to zero, we propose the
following model: Let X0

i ≥ 0 be a primary loss (potentially unbounded in size) and let
Xi = (ci ∧X0

i ) be the resulting loss to ci for organizational node i - i.e., we truncate the
loss to put mass at ci thereby setting up the way to assign positive probability to ci going
to zero. Assume that the primary losses have a joint distribution of the form:

F 0(x0
1, ......., x

0
n) = Π1≤i≤nH

0

(
x0
i

ci

)
, (26)

where H0 is a distribution function on the non-negative real line. More specifically, we
assume (for now) that the primary losses are i.i.d. and that a given x0

i affects every unit
of ci equally. A random variable with distribution function G and density g is said to have
an increasing failure rate (IFR) distribution if g(x)

1−G(x)
is an increasing function of x. Given

the assumption that Yi =
X0

i

ci
are i.i.d., Yi’s are IFRs. Other popular examples of IFR’s

are normal, exponential, and uniform distributions ; more generally, all log-concave distri-
butions. Our model showcases the IFR property common to multiple popular distribution
families, and helps us extend results in the previous sub-section to distributions beyond
the Beta distribution. We have the following result regarding a non-specific distributional,
i.e., IFR-distributed estimate of the cyber-blackout probability.

Theorem 4. Assume relative primary loss distributions across all organizational nodes
are i.i.d. IFR-distributed, and the net worth of every node is initially non-negative. Let
D be a non-empty subset of nodes and let i 6∈ D. Then a contagion effect with respect to
organizational dysfunction is impossible if∑

j∈D

wj > wiβi(λi − 1), (27)

and is weak if ∑
j∈D

wj ≥ wiβi
∑
j∈D

λi
λj
. (28)
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Proof. Through relabeling, we can assume that the source node for contagion is i =
1 and that the infected nodes are D = {2, 3, ....,m}. By Proposition 1 we know that
contagion is weak from 1 to D if

P

(
X1 > w1 +

1

β1

∑
2≤j≤m

wj

)
≤ Π1≤j≤mP (Xj > wj). (29)

Since X1 = c1 ∧ X0
1 , the left-handed side is zero when w1 + 1

β1

∑
2≤j≤mwj > c1. Thus,

contagion is impossible if ∑
2≤j≤m

wj
w1

> β1(λ1 − 1). (30)

Let us therefore assume that w1 + 1
β1

∑
2≤j≤mwj ≤ c1. Define the random variables

Yi =
X0

i

ci
. Then weak contagion from 1 to D holds if

P

(
Y1 >

w1

c1

+
1

β1c1

∑
2≤j≤m

wj

)
≤ Π1≤j≤mP

(
Xj >

wj
cj

)
, (31)

where the latter holds from the assumption that Yi are i.i.d. By assumption that Y1 is
IFR, hence we have from [28]

P (Y1 > s+ t|Y1 > s) ≤ P (Y1 > t), ∀s, t ≥ 0.

It follows that

P

(
Y1 >

∑
1≤k≤m

wk
ck

)
≤ Π1≤j≤mP

(
Xj >

wj
cj

)
(32)

Together with (31) it shows that contagion from 1 to D is weak provided that

P

(
Y1 >

w1

c1

+
1

β1c1

∑
2≤j≤m

wj

)
≤ P

(
Y1 >

∑
1≤k≤m

wk
ck

)
. (33)

This clearly holds if
w1

c1

+
1

β1c1

∑
2≤j≤m

wj ≥
∑

1≤k≤m

wk
ck
, (34)

which is equivalent to

1

βc1

∑
2≤j≤m

wj ≥
∑

2≤j≤m

wj
cj

=
∑

2≤j≤m

λ−1
j . (35)

Since c1 = λ1w1, we can re-write (35) as∑
2≤j≤m

wj
w1

≥ βλ1

∑
2≤j≤m

λ−1
j . (36)

We have therefore shown that if contagion from 1 to D = {2, 3, ...,m} is possible at
all, then (36) is a sufficient condition for weak contagion with respect to service dys-
functionality. From (36) we see that a simple sufficient condition for weak contagion
is cj ≥ β1c1, j = 2, ...,m, and the condition

∑m
j=2 wj > β1(c1 − w1) make contagion

impossible. Thus, we have proved Theorem 4. �
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Theorem Intuition and Implications - We have the following very powerful system
implication as a result of Theorem 4 and Corollary 2, given a single node i (that got
hit by a cyber-attack) and an organization set D - the conditions for weak contagion
and the impossibility of contagion with respect to organizational service dysfunction is the
same irrespective of the loss distributions and the underlying network topology, as long as
the distributions satisfy the general IFR property. Thus, in a sense the specificity of loss
distributions is “irrelevant” to the conditions necessary for a cyber-blackout. The intuition
is similar to that of Theorem 3. With respect to node heterogeneity, the following result
is immediately obvious from Theorem 4.

Corollary 3. Assume that all nodes i have the same value c for ci. Under the assumptions
of Theorem 3, contagion is weak from any node to any other set of nodes.

Proof. It is evident upon writing (36) as∑
j∈D cjλ

−1
j∑

j∈D λ
−1
j

≥ βici.

Hence we have proved Corollary 3. �
Cyber-Insurance Perspective - With respect to cyber-insurance, the implications of
Theorem 4 are the same as those from Theorem 3.
Non i.i.d. Primary Losses - In the beginning of this section, we had assumed that
primary losses across organizational nodes are i.i.d. However, this assumption is conser-
vative in practice. Here, we provide the conditions for weak contagion for specific but
practical loss variables characterized by a Pareto-like or a heavy-tailed densities of the
form P (Xi > x) ≈ ax−µ for some positive constants a and µ. First, we generate de-
pendent random variables from independent random variables via a standard statistical
procedure as follows: let Y1, ...., Ym be independent random variables, each distributed as
tν - the Student t distribution with ν > 2 degrees of freedom. Let Ŷ1, ....Ŷm have a stan-
dard multivariate Student t distribution with tν marginals. Clearly, Ŷj’s are uncorrelated

but not independent. In order to make losses positive, we set X̃j = Ỹj
2
, for each j, where

X̃j has a Pareto-like tail.

Proposition 5. With dependent primary losses, X̃i,

P (X̃i >
m∑
j=1

wj) ≤ P (X̃j > wj, j = 1, .....,m),

for all wj ≥ 0, j = 1, 2, .....,m.

Proof. The proof follows via a direct application of Bound II for the F distribution
(see [29]). �.

The proposition implies that even with heavy-tailed losses, we may find that service
dysfunction of a set of nodes through contagion originating from a single organizational
node is less likely than service dysfunction via direct losses to individual nodes, if the
losses are dependent.

5 Expanding Attack Source and Target Sets

In the previous section, we studied the impact of the dysfunctionality of a single organi-
zational node on another target set D of organizational nodes. In this section, we study
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the impact of (multiple) successful cyber-attacks on the entire organizational network.
More specifically, we model our goal as an estimate of the effect of the underlying lia-
bility network on the net losses in the overall system due to (simultaneous) successful
cyber-attacks on ci’s of different organizational nodes i. In this regard, we first need to
form a measure of the total systemic impact of loss due to cyber-attack. In this work,
we shall take the systemic impact of a loss to be the total loss in value summed over all
organizational nodes in the network. Given a loss realization ~x, the total reduction in
resources (assets) across all nodes in the network is∑

i

xi + S(~x); S(~x) =
∑
i

(p̄i − pi(~x)). (37)

The term
∑

i xi is the direct loss in value from reductions in liability payments to the i’s
from their external network environment. The term S(~x) is the indirect loss in value from
reductions in liability payments by the nodes to other nodes as well to themselves (due to
self-liability). An overall measure of the riskiness of the network system is the expected
loss in value, L, given by

L =

∫
(
∑
i

xi + S(~x))dF (~x). (38)

The question we wish to examine is what proportion of these losses can be attributed to
network connections between organizations?

5.1 Examination Setup

Let ~x be a loss value (instance) due to a cyber-attack, and correspondingly let D = D(~x)
be the set of nodes that goes dysfunctional given ~x. Under our assumptions, this set is
unique because the clearing vector is unique. For notational simplicity we suppress ~x in
the ensuing discussion. As in the proof of Proposition 4.1, define the shortage in liability
payments at organizational node i to be si = p̄i − pi, where ~p is the clearing vector. By
definition of D, we have

si =

{
> 0, ∀i ∈ D
= 0, ∀i 6∈ D

Also as in part of Proposition 4.1, let AD be the |D|×|D|matrix obtained by restricting the
relative liabilities matrix A to D, and let ID be the |D| × |D| identity matrix. Similarly
let ~sD be the vector of shortages si corresponding to the nodes in D, let ~wd be the
corresponding net worth vector defined in (1), and let ~xD be the corresponding vector of
losses. The clearing condition in (3) implies the following equation, provided si < p̄i (the
condition that the net worth of any node is positive), for all i:

~sDAD − (~wD − xD) = ~sD. (39)

Recall that AD is substochastic, and by assumption, there exists a chain of obligations
from any given node k to a node having strictly positive obligations to the itself. It follows
that limk→∞A

k
D = 0D, hence ID − AD is invertible and

[ID − AD]−1 = ID + AD + A2
D + ........ (40)

From (39) and (40), we conclude that

~sD = (~xD − wD)[ID + AD + A2
D + ........]. (41)
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Given a loss instance ~x with resulting dysfunctional organization set D = D(~x), define
the vector u(~x) ∈ Rn

+ such that

uD(~x) = [ID + AD + A2
D + ......] · 1D, ui(~x) = 0, ∀i 6∈ D. (42)

Combining (37), (41), and (42) shows that the total losses for a given ~x can be expressed
as

L(~x) =
∑
i

(xi ∧ wi) +
∑
i

(xi − wi)ui(~x). (43)

The first term represents the direct losses to remaining resources at each organizational
node, and the second term represents the total shortage summed over all the nodes. The
right side becomes an upper bound on L(x) if si = p̄i for some i ∈ D(~x). We call the
coefficient ui = ui(~x) the depth of organizational node i in D = D(x). The rationale for
this terminology is as follows. Consider a Markov chain on D with transition matrix AD.
For each i ∈ D, ui is the expected number of periods before exiting D, starting from
node i. Expression (42) shows that node depths measure the amplification of losses due to
interconnections among nodes in the dysfunctional set. We note here that the concept of
node depth is dual to the notion of eigenvector centrality (or eigenvector-driven centrality
measures) [30]. To see the connection, let us restart the Markov chain uniformly in D
whenever it exits D. This modified chain has an ergodic distribution proportional to
1D · [ID + AD + A2

D + .......] and its ergodic distribution measures the centrality of the
nodes in D. It then follows that node depth with respect to AD corresponds to centrality
with respect to the transpose of AD.

We can now bound the magnitude of the node depths in the dysfunctional set. We
first define a set D of nodes to be α-cohesive if every node in D has at least α of its
liabilities to other nodes in D, i.e.,

∑
j∈D aij ≥ α, for every i ∈ D [31]. The cohesiveness

of D is the maximum α, which we denote by αD. As a lower bound for ui, it follows from
(42) it follows that

ui ≥
1

1− αD
, ∀i ∈ D. (44)

Thus, the more cohesive the dysfunction set, the greater the depth of the nodes in that
set and the greater the amplification of the associated loss. We can also bound the node
depths from above. Recall that βi is the proportion of i’s liability to other nodes in the
network. Let βD = max{βi : i ∈ D}. We obtain the upper bound assuming βD < 1 as
follows:

ui ≤
1

1− βD
, ∀i ∈ D. (45)

The bounds in (44) and (45) depend on the dysfunctional set D, which in turn depends
on ~x. A uniform upper bound is given by

ui ≤
1

1− β+
, ∀i ∈ D; β+ = max βi < 1. (46)

We are now in a position to compare the expected systemic losses in a given network
of interconnections, with the expected losses without such interconnections, in order to
gauge the effect of service disruption contagion in a network.

5.2 Comparing Expected Systemic Losses

Consider the following system setting as already discussed in Section 2. We fix a set of
n organizational nodes, N = {1, 2, ...., N}, vectors ~c, and ~b as before. Assume that the
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net worth wi of node i is non-negative before a loss due to a cyber-attack is realized, and
that liability network interconnections are determined via the n × n matrix P̄ . Let us
now have another system setting where we eliminate all connections between nodes, i.e.,
let P̄ 0 be the n× n matrix of zeros. Each node i in this setting has resources ci that are
yet to be attack-targeted, and self liabilities, bi. In order to keep an organization’s net
worth unchanged, we introduce “fictitious” resources ci and self liabilities bi to maintain
balance. More specifically, if ci−bi < wi, we give i a new class of resources in the resource
amount c′i = wi − (ci − bi). If ci − bi > wi, we give i a new class of self liabilities in
the amount b′i = wi − (ci − bi). We assume that the new resources are safe, i.e., they
are not subject to cyber-attacks, and that the new liabilities have the same priority as
other liabilities. Let F (x1, ......xn) be a joint loss distribution that is homogeneous in
resources, i.e., F (x1, ......, xn) = G(x1

c1
, x2
c2
, ......xn

cn
), where G is a symmetric c.d.f. We do

not assume that losses across nodes are independent. We say that F is IFR if its marginal
distributions are IFR; this is equivalent to saying that the marginals of G are IFR. Let
L̄ be the expected total losses in the original network and let L̄0 be the expected total
losses when the connections are removed. We have the following result relating L̄ and L̄0.

Theorem 6. Let N(~b,~c, ~w, P̄ ) be an organizational network system and let N0 be the anal-
ogous system with all the network connections removed. Assume that the loss distribution
is homogeneous in resources and IFR. Let β+ = maxi βi < 1, and let δi = P (Xi ≥ wi).
Then the ratio of expected losses in N0 is at most

L̄

L̄0

≤ 1 +

∑
i δici

(1− β+)
∑

i ci
. (47)

Proof. By assumption, the marginals of F are IFR distributed. A general property of
IFR distributions is that “new is better than used in expectation”, i.e.,

E[Xi − wi|Xi ≥ wi] ≤ E[Xi], (48)

from [28]. It follows that

E[(Xi − wi]+] ≤ P (Xi ≥ wi)E[Xi] = δiE[Xi]. (49)

By (43) we know that the total expected losses L̄ can be bounded as

L̄ ≤
∑
i

E[Xi ∧ wi] + E[
∑
i

(Xi − wi)ui(X)]. (50)

From (46) we know that ui ≤ 1
1−β+ for all i; furthermore we clearly have Xi − wi ≤

(Xi − wi)+ for all i. Thus,

L̄ ≤
∑
i

E[Xi ∧ wi] + (1− β+)−1
∑
i

E[(Xi − wi)+]. (51)

From this and (49) it follows that

L̄ ≤
∑
i

E[Xi ∧ wi] + (1− β+)−1
∑
i

δiE[Xi], (52)

which reduces to

L̄ ≤
∑
i

E[Xi] + (1− β+)−1
∑
i

δiE[Xi]. (53)
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When the network connections are excised, the expected loss is simply the expected sum
of the losses, that is L̄0 =

∑
iE[Xi]. By the assumption of homogeneity in resources we

know that E[Xi] ∝ ci] for all i. We conclude from this and (53) that

L̄

L̄0

≤ 1 +

∑
i δici

(1− β+)
∑

i ci
.

Thus, we have proved Theorem 6. �
Theorem Implications - The theorem shows that increases in losses due to liability
network interconnections will be very small unless β+ (the maximum proportion of obli-
gations by any node in the network) is close to 1, or the rate at which an organization
becomes dysfunctional is high, both of which are quite unlikely in practice. Moreover,
the latter statement also holds when the losses across nodes are dependent or correlated,
regardless of the network structure.

Cyber-Insurance Perspective - Since the losses due to networked connectivity is pri-
marily amplified due to a high β+, which in turn implies high dysfunctionality rate of an
organization, it is imperative that cyber-insurers impose a strict control policy via their
contracts with the organizations to ensure the highest standards of cyber-hygiene from
the latter that results in low/moderate values of β+. This in turn would reduce the prob-
ability of a cyber-blackout and also mitigate the chances of cyber-insurers going bankrupt
in the process of covering correlated aggregate risk. An intuitively evident insurance pol-
icy mechanism in this regard is to premium discriminate between good hygiene and bad
hygiene organizations [32]. Such policies have been shown to be market efficient in the
economic sense.

Figure 1: Experimental Parameters for Real-World Data - (a) ci and wi values (left), (b) βi values
(middle), and λi values (right)

Figure 2: Performance on Real-World Data (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR)
(right)
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Figure 3: Performance on Instance #1 of Synthetic Data (a) Contagion Ratio (CR) (left), (b) Likelihood
Ratio (LR) (right)

Figure 4: Performance on Instance #2 of Synthetic Data (a) Contagion Ratio (CR) (left), (b) Likelihood
Ratio (LR) (right)

6 Experimental Evaluation

Experimenting with multiple real-world data sets related to cyber-attacks and their sub-
sequent impact is an extremely difficult task, as data on cyber-security is really hard
to obtain. As a result, in this section, we experiment on both real-world and synthetic
banking sector application data obtained post a cyber-attack in the European Union.
In this regard, we study the effects of parameters ci, wi, λi, and βi on strong and weak
contagion phenomena, in turn studying how our theoretical results apply in practice. We
also experiment on synthetic data to study the effect of network topology on contagion
phenomena.

6.1 Experimental Setup

One of the responsibilities of the European Banking Authority (EBA) is to ensure the
orderly functioning and integrity of financial markets and the stability of the banking
system in the EU. A primary supervisory tool to conduct such an analysis is via a stability
test exercise. The aim of such a test is to assess the resilience of banking institutions to
adverse market developments, as well as to contribute to the overall assessment of systemic
risk in the EU banking system, where the systemic risk could be due to a cyber-attack. We
collected data for a cyber-attack induced stress test done in 2015. Detailed information
on inter-bank exposures needed to calibrate a full network was not publicly available. As
a result, as aforementioned, we also generated 50 instances of synthetic random networks
between banks in the 2015 data set to study the effect of network topology on the contagion
phenomena.
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For the real data set, 90 banks from 21 countries participated in the stress test. For
each bank, the EBA reports each bank’s total exposure at the dysfunction state to other
banks. The EAD measures a bank’s total claims on all other banks, so we take this as the
size of each bank’s in-network assets. Subtracting this value from the total assets gives
us ci. For wi (see Figure 1(a)), we use the equity values reported by the EBA, which
then allows us to calculate λi = ci

wi
(see Figure 1(c)). The only remaining parameter we

need is βi, the fraction of a bank’s liabilities owed to other banks. This information is
not included in the EBA summary, nor is it consistently reported by the banks in their
statements. As a rough indication, we assume that each bank’s in-network liabilities
equal its in-network assets3. This gives us βi = EAD

assets−equity (see Figure 1(b)). Some of
the smallest banks have a problematic data, so as a simple rule we omit the ten smallest.
We also omit any countries with only a single participating bank. This leaves us with 76
banks, out of which we work with 50 largest banks. For synthetic data sets, we estimate
the parameters ci, wi, λi, and βi in the same manner as for our real-world data set.

We examine the potential for contagion from the failure of the five largest banks (Bank
#’s 1-5 in the figures). Taking each of these in turn as the triggering bank, we then take
the dysfunctional set D to be consecutive pairs of banks, e.g., the first dysfunctional set
under Bank #1 is Bank numbers 2 and 3, the next dysfunctional set consist of Bank
numbers 3 and 4, and so on. As peformance metrics we study ‘Contagion Ratio’ (CR)
and ‘Likelihood Ratio’ (LR), where we define CR to be the ratio of the LHS of inequality
(17) to the RHS of the inequality. We term CR as ‘weak’ if it is greater than 1. We define
LR to be the relative probability of organizational dysfunction through independent direct
cyber-shocks and through contagion, calculated as the ratio of the RHS of (18) to LHS.

6.2 Experimental Results

From Figures 2(a)-4(a), we observe that CR is weak for most organizations, validating
our theory that cyber-blackouts through strong contagion effects are less likely. CR fails
to be weak only when banking organizations in the dysfunction set D are much smaller
(in monetary worth) than the triggering bank. Moreover, the value of CR reported for
each bank shows how much βi would have to be to reverse the direction of inequality (17).
In this sense the plots in Figure 2(a) are robust to the estimated values of βi. Expanding
the size of set D makes contagion weaker because of the relative magnitudes of wi and
λ−1
i . High values of LR indicate the dominance of the probability of organizational node

dysfunction through independent shocks over node dysfunction through contagion. Our
plots show that the LR is mostly greater than 1, validating our theory that contagion
does not play a major role in organizational dysfunction in the event of a cyber-attack.
From Figures 3 and 4 (2 of the 50 random synthetic instances), we observe that network
topology does not have a significant role in shaping the contagion phenomenon, i.e.,
majority of organizations are in the weak contagion zone. However, the CR ratios differ
from topology to topology as evident in differences in the plot structure between Figure 2
and Figures 3-4. Even we do not have information on the organizational liability topology
of our real-world data, it is evident there is a structure to that topology compared to those
characterizing synthetic data.

3Based on Federal Reserve Release, the average value of βi for commercial banks in the USA is about
3%, so our estimates for European banks would appear to be conservative.
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7 Related Work

In this section, we cite works most related to ours in this paper. However, we would like
to emphasize upfront that a rigorous analysis of cyber-blackout phenomena in a network
is absent in literature for cyber-insurance or network risk management settings, and our
efforts here in this direction are completely new to the best of knowledge. We structure
this section in two parts that form a tangential relationship to our work in this paper: (a)
cyber-insurance market success, and (b) risk estimation in network contagion settings.

7.1 Success of Cyber-Insurance Markets

In this work we investigated worst case scenarios for a cyber-insurer to cover aggregate
cyber-risks. However, a pre-cursor is to have working successful markets in the first place.
To this end, recent research works on cyber-insurance [33][18][34] have mathematically
shown the existence of economically inefficient insurance markets. Intuitively, an efficient
market is one where all stakeholders (market elements) mutually satisfy their interests.
These works state that cyber-insurance satisfies every stakeholder apart from the regu-
latory agency (e.g., government), and sometimes the cyber-insurer itself. The regulatory
agency is unsatisfied as overall network robustness is sub-optimal due to network users
not optimally investing in self-defense mechanisms, whereas a cyber-insurer is unsatisfied
due to it potentially making zero expected profit at times. Lelarge et al. in [18] recom-
mended the use of fines and rebates on cyber-insurance contracts to make each user invest
optimally in self-defense and make the network optimally robust. However, their work nei-
ther mathematically proves the effectiveness of premiums and rebates in making network
users invest optimally, nor does it guarantee the strict positiveness of insurer profits at all
times. In a recent work [35][36], the authors overcome the drawbacks of the mentioned
existing works, and propose ways to form provably efficient monopolistic cyber-insurance
markets by satisfying market stakeholders, including a risk-averse cyber-insurer, in envi-
ronments of interdependent risk. In addition, recent major successful cyber-attacks on
large commercial organizations have significantly increased board-level concerns to main-
tain business reputation amongst clients, and subsequently accelerated the adoption of
cyber-insurance products in the industry.
Drawbacks - These works do not investigate aggregation risk likelihoods for a cyber-
insurer in a networked setting - a prime determinant for the expansion of the insurance
industry.

7.2 Estimation in Attack Spread Settings

In Section III, we emphasized that evaluating F () actually involves mathematically cap-
turing the spread of the infection (attack) vector (e.g., a virus, bot), and is not the focus
of this paper. Here, we are only interested in the process of the spread of “organizational
dysfunctionality” due to cyber-attacks. The interested reader is referred to [18][19][20]
to get insights on statistical mean field models to mathematically evaluate F (). To the
best of our knowledge, no work exists on the spread of “organizational dysfunctionality”
due to cyber-attacks as we imply in the paper. In terms of the process of the spread
of attacks in networks, a related literature has directly originated from the study of
cascades. Various models have been developed in the computer science and network sci-
ence literatures, including the widely-used threshold models [37] and percolation models
[38][39][40][41][42][43][44][45]. A few works have applied these ideas to various economic
settings, including [46] and [47] in the context of economic fluctuations; [31] in the con-
text of contagion of different types of strategies in coordination games; and more recently,
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[48] and [49] in the context of spread of an epidemic-like financial contagion, where the
seminal papers of [50] and [51] developed some of the first formal models of contagion
over financial networks.
Drawbacks - Attack propagation does not imply service disruption. To this end, none
of the above works investigate the propagation of service dysfunctionality in a network.

8 Discussion and Summary

Our work in this paper has looked into the future of cyber-insurance coverage for the
inter-dependent IT service sector, with respect to quantifying the probability of a cyber-
blackout. However, the cyber-blackout scenario though quite relevant for current general
cyber-insurance scenarios (energy, property, marine, aviation, etc.), is not considered,
i.e., excluded, while selling insurance policies at present, simply due to insurance agencies
being considerably risk-averse on a ruin event arising for correlated and aggregate risk.
In future, with respect to blackout events, the insurance industry will likely evolve to
address quantifiable cyber-risk large enough to produce a market for it but small enough
to be manageable. Re-insurance is a possible option to cover large-valued risks due to a
blackout event, but for any sorts of reinsurance the risks of the individual policies must
be aggregated. In this regard, the regulations affecting the risk of each company would
not be treated differently than any other risk that differs across companies / individual
policies. In the case of big service providing companies (e.g., Google), the latter currently
do not burden themselves with the risk of those using their services. In future, this pattern
is likely to continue unless legally mandated or as part of some special service offering.
In that regard, we foresee companies like Google to essentially just become the insurer
themselves.
Summary - In this paper, we studied the general question: is a cyber-blackout in a service
organizational network likely? More specifically, we estimated the probability that all or a
major subset of nodes in the network become dysfunctional to provide service in the event
of a cyber-attack, a situation which we define as a cyber-blackout. The motivation for our
research stems from the fact that service liability interconnections among networked IT-
driven service organizations create potential channels for cascading service disruptions
due to modern cybercrimes such as DDoS, APT, and ransomware attacks, and cause a
bankruptcy-scare effect amongst cyber-insurers via covering aggregate cyber-risk.

As part of our research contributions, we first designed a graph-based model of service
obligations, GSOM, between organizations in a service chain network. In the event of
a cyber-attack, given the values of losses at the nodes in the network, GSOM computes
the vector of service valuations that clears the network, and identifies the nodes in the
chain that are dysfunctional to provide service. Using GSOM, we then analyzed (i)
how likely it is that a given set of target organizations will become dysfunctional due
to contagion from a single source organization, as compared to the likelihood that they
become dysfunctional from direct losses to their own service-related assets that does not
require dependency on other nodes?, and (ii) how much does the underlying network
of service dependencies contribute to the increase in the probability of dysfunction of
target nodes and corresponding expected value of losses, compared to a situation when
there are no network links. As a surprising result, we showed that the loss probability
is larger in the absence of network connectivity than that in the presence of network
connectivity, implying that simple network spillover effects have a limited impact (except
under specific conditions) with respect to service obligations between organizations. We
also showed that total additional losses due to network spillover effects are surprisingly
small under a wide range of joint distributions for plausible values of model parameters.
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Finally, we expanded the set of attack sources from a single node to multiple nodes, and
studied the negative impact of simultaneous attacks on the entire network. We again
showed that the increase in losses due to network interconnections are very small (except
under a certain less likely condition), independent of the network structure and under
general assumptions about the joint loss distribution. The primary rationale behind our
results are attributed to degrees of heterogeneity in wealth base among organizations, and
Increasing Failure Rate (IFR) property of loss distributions.
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