Technical Report A

Number 946

Computer Laboratory

End-to-end deep reinforcement
learning in computer systems

Michael Schaarschmidt

April 2020

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 2020 Michael Schaarschmidt

This technical report is based on a dissertation submitted
September 2019 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Sidney Sussex
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

End-to-end deep reinforcement learning
in computer systems

Michael Schaarschmidt

Summary

The growing complexity of data processing systems has long led systems designers to
imagine systems (e.g. databases, schedulers) which can self-configure and adapt based
on environmental cues. In this context, reinforcement learning (RL) methods have since
their inception appealed to systems developers. They promise to acquire complex decision
policies from raw feedback signals. Despite their conceptual popularity, RL methods are
scarcely found in real-world data processing systems. Recently, RL has seen explosive
growth in interest due to high profile successes when utilising large neural networks (deep
reinforcement learning). Newly emerging machine learning frameworks and powerful
hardware accelerators have given rise to a plethora of new potential applications.

In this dissertation, I first argue that in order to design and execute deep RL algorithms
efficiently, novel software abstractions are required which can accommodate the distinct
computational patterns of communication-intensive and fast-evolving algorithms. I propose
an architecture which decouples logical algorithm construction from local and distributed
execution semantics. I further present RLgraph, my proof-of-concept implementation
of this architecture. In RLgraph, algorithm developers can explore novel designs by
constructing a high-level data flow graph through combination of logical components. This
dataflow graph is independent of specific backend frameworks or notions of execution,
and is only later mapped to execution semantics via a staged build process. RLgraph
enables high-performing algorithm implementations while maintaining flexibility for rapid
prototyping.

Second, I investigate reasons for the scarcity of RL applications in systems themselves. I
argue that progress in applied RL is hindered by a lack of tools for task model design which
bridge the gap between systems and algorithms, and also by missing shared standards for
evaluation of model capabilities. I introduce Wield, a first-of-its-kind tool for incremental
model design in applied RL. Wield provides a small set of primitives which decouple
systems interfaces and deployment-specific configuration from representation. Core to
Wield is a novel instructive experiment protocol called progressive randomisation which
helps practitioners to incrementally evaluate different dimensions of non-determinism. I
demonstrate how Wield and progressive randomisation can be used to reproduce and
assess prior work, and to guide implementation of novel RL applications.

Acknowledgements

First and foremost, I want to thank my supervisor, Eiko Yoneki, for supporting me in
taking on this endeavour in the first place. When starting out, the intersection of systems
and reinforcement learning was unknown but exciting territory. I owe it to her constant
encouragement and unending patience in shaping out ideas to eventually find my place
between these two fields.

The projects at the centre of this dissertation would also not have been possible without
collaborators and supporters. I am particularly indebted to Kai Fricke for our long and
productive collaborations in open source reinforcement learning, RLgraph, and Wield. 1
also thank Sven Mika for extensive design discussions and implementation help in RLgraph.
In this context, I also thank all the open source contributors and users who through their
feedback and contributions shaped my understanding of real-world reinforcement learning.

The beginning of my PhD was also enriched by Valentin Dalibard who helped me
understand subtleties of optimisation techniques. I also thank Felix Gessert for our
collaboration on web caching which sparked my initial interest for tuning in systems.

[am also grateful to both Google and the Computer Laboratory for supporting my
research through a Google PhD fellowship and a Robert Sansom studentship respectively.
I am profoundly grateful to my parents and sister for their invaluable support and advice
which carried me throughout a long decade of studies. Finally, I thank Adnan Halilovic,
Arne Tonsen, Kai Bruns, Felix Clausberg, and Maximilian Schuch for their friendship and
support.

Contents

1 Introduction

1.1 Contributions
1.2 Dissertation outline
1.3 Related publications
Background
2.1 Reinforcement learningo
2.1.1 The reinforcement learning problem
2.1.2 Episodes and experience
2.1.3 Temporal difference learning
2.1.4 Policy gradients
2.2 Deep reinforcement learning oL
2.2.1 Function approximation with deep neural networks
2.2.2 Deep reinforcement learningo
2.2.3 Common heuristics
2.2.4 Reinforcement learning terminology
2.3 Iterative optimisation
2.3.1 Bayesian optimisation
2.3.2 Random-search and evolutionary methods
2.4 Reinforcement learning in computer systems
2.5 SUMMAry

RLgraph: Modular computation graphs for reinforcement learning

3.1 Reinforcement learning workloads L.
3.1.1 Useofsimulators
3.1.2 Distributed reinforcement learning
3.1.3 Useof accelerators
3.1.4 RL implementations and design problems
3.1.5 Design summary

3.2 RLGraph overview

3.3 Design
3.3.1 Components
3.3.2 Building the component graph
3.3.3 Building for static graphs L.
3.3.4 Define-by-run component graphs

3.4 Execution

341 Agent API.

17
19
19
20

23
23
23
24
25
26
27
27
28
29
30
31
31
32
32
33

5

3.4.2 Local execution Lo
3.4.3 Implementing algorithms
3.4.4 Device managemento
3.4.5 Distributed execution engines
3.5 Incremental building and sub-graph testing
3.6 Graph optimisationso
3.6.1 Automated graph generation
3.6.2 Relationship to compilers 0L
3.7 Limitations
3.7.1 Multi-agent communication
3.7.2 Graph flexibility oo
3.7.3 Gradient-free optimisation
3.8 Summary

RLgraph evaluation
4.1 Evaluation aims
4.2 Build overhead and backends L.
4.3 Executionon Ray o
4.3.1 Setup
432 Results.
4.3.3 Robustness
4.3.4 Implementing new coordination semantics
4.4 Multi-GPU mode
4.5 Distributed TensorFlow
4.6 Exploratory workflows for algorithm design
4.7 SUMMATY o oo e

Wield: Incremental task design with progressive randomisation
5.1 Optimisation in computer systems
5.1.1 Tterative optimisation
5.1.2 Analytical performance models
5.2 Practical considerations and limitations
5.3 Wield Overview e
5.4 Task design abstractionso
5.4.1 Designing states and actions with task schemas
5.4.2 Converters
5.4.3 Task architectures L.
5.5 Task evaluation protocols.
5.5.1 The case for workload randomisation
5.5.2 Progressive randomisationo
5.5.3 Prior work viewed through progressive randomisation
5.6 Data augmentation from demonstrations
5.6.1 Algorithms
5.6.2 Demonstration abstractions
5.6.3 Alternative approaches to learning from demonstrations
5.7 Case study: database indexing L.
5.7.1 The compound indexing problem
5.7.2 Designing a problem model with Wield

6

5.7.3 Indexing demonstrations

5.7.4 Wield workflows: Putting it all together
5.8 Future workflows and deployment 0.
5.9 Summary

Wield evaluation

6.1 Evaluation aims
6.2 Learned indexing
6.2.1 Workload
6.2.2 Experimental setup
6.2.3 Fixed blackbox optimisation
6.2.4 Randomised blackbox optimisation
6.2.5 Generalisation Lo
6.2.6 Utility of weak demonstrations
6.2.7 Discussion
6.3 Device placement
6.3.1 Setup
6.3.2 Evaluating the hierarchical placer
6.3.3 Implementing a placer with Wield
6.3.4 Discussion
6.4 Progress and design costs oL
6.4.1 Hidden design costso
6.4.2 Hyperparameter tuning and customisation
6.4.3 Evaluating progress and usability
6.5 Summary
Conclusion and future work
7.1 Extending RLgraph
7.1.1 Programming modelso L
7.1.2 Execution models and hardware
7.2 RL applications and Wield oo
7.2.1 Model-based planning
7.2.2 Integrating domain expertise
7.3 Lessons learned

Bibliography

119
119
119
119
120
121
123
125
126
128
128
128
129
132
136
136
136
137
137
138

139
140
140
140
141
141
141
142

143

List of Figures

2.1
2.2

3.1

3.2

3.3

3.4
3.5

3.6
3.7
3.8

3.9

3.10

3.11

3.12
3.13

4.1

4.2

4.3
4.4

The standard reinforcement learning problem.
States can require extensive feature engineering to combine workload metrics
and system configuration, e.g. by simple concatenation.

Environment vectorisation on CartPole. A single-threaded worker vectorises
action selection, then sequentially acts on a list of simulator copies.
High-level overview of single-learner task parallelism. Even in single learner
scenarios, multiple levels of task-parallelism require fine-tuning of a multi-
tude of hyper-parameters for distributed coordination..
RLgraph software stack. o
Example memory component with three API methods.
Simplified dataflow between API methods and selected graph functions for
a training update method. The update-API method of an agent calls no
graph functions but API methods of sub-components, which in turn call
further sub-components. Where necessary, API methods are resolved by
calling graph functions implementing backend-specific computations.
RLgraph execution architecture overview.
Agent-driven and environment driven execution modes.
Implementation example. (1) Users create subcomponents of an agent
component. (2) The agent API is implemented by connecting components.
(3) Input type definitions restrict allowed dataflow for the static graph
constructed during the build. 00000
TensorBoard visualisation of RLgraph’s IMPALA learner. All operations
and state variables are organised logically in component subgraphs.
TensorBoard visualisation of DeepMind’s IMPALA learner (left half of the
graph). . . .
TensorBoard visualisation of DeepMind’s IMPALA learner (right half of
the graph).
Graph-internal and graph-external distributed coordination.
DQN training results with bug-free implementation, loss-fault injection, and
sampling fault-injection. L L

Component graph trace overhead for a single component and two common
agent architectures.
Corresponding backend build overheads induced by the modular graph
function and variable creation.o oo
Act throughput on ALE Pong for a varying number of simulator copies.
Distributed sample throughput on ALE Pong.

13

4.5
4.6
4.7
4.8
4.9
4.10

5.1

5.2

2.3

5.4

6.1
6.2

6.3

6.4

6.5

6.6
6.7
6.8

6.9
6.10

6.11

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Learning performance on ALE Pong. 81

Replicated learning performance on ALE Pong. 82
Single versus 2-GPU learning performance on ALE Pong. 84
Distributed sampling throughput on DeepMind lab tasks. 85
Ray worker 1 performance. L 87
Ray worker 2 performance. L0 87
Conceptual overview of Wield in relation to existing auto-tuners, reinforce-

ment learning frameworks like RLgraph, and systems. 93
Basic task architectures. In (a), a single task node contains one differen-
tiable multi-task architecture with a shared network. (b) refers to a task
graph simply collecting multiple independent learner instances with no
communication or interaction. In (c), a hierarchical arrangement uses two

task nodes where task T2 can only act based on decisions made by T1. . . 98
Index creation times as a function of document size and the number of
attributes k spanned by anindex. 109
Action parsing scheme for MongoDB indexing case study. 111
Randomised query generation. 120
99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the fixed blackbox task. 121
Index sizes of the created indices in the fixed blackbox setting with fixed
weight initialisation. L 122

99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the fixed blackbox task with random weight

initialisation. L 123
99th percentile (left) and mean (right) relative latency improvements against

unindexed configuration in the randomised blackbox task. 124
Index sizes against sizes of the full index in the randomised blackbox setting.124
Continuing training yields further reward improvements. 125
99th percentile (left) and mean (right) relative latency improvements against

unindexed configuration in the randomised generalisation task. 125
Relative index sizes in the randomised generalisation setting. 126
99th percentile (left) and mean (right) relative latency improvements in the

randomised generalisation task. Instead of no-op, a prefix rule was used. . 127
Mean latency improvement and relative index sizes using a human demon-

strator in a fixed blackbox scenario. oL 127
Fixed seed evaluation of Grappler’s placer. 130
Random seed evaluation of the hierarchical placer in a fixed task. 131
Randomised blackbox graph configuration trials. 131
Repeated random seed trials for the workload parameters of failed trial 2. . 132
Evaluating graph A (corresponds to trial 1). 133
Evaluating graph E (corresponds to trial 5). 133
Open source hierarchical placer versus Wield placer 133
Evaluating graph E (corresponds to Wield trial 5). 135
Evaluating graph F (corresponds to Wield trial 6). 135

14

List of Tables

4.1

0.1

0.2

6.1
6.2

6.3

6.4
6.5

6.6

6.7

6.8
6.9

Breaking down random seed performance for Atari Pong.

Progressive randomisation protocol overview. Each class specifies a different
level of non-determinism.
Prior work classified. A * indicates results being reported as the median
or mean across random seeds. If a range is given without =, this refers to
results being reported on multiple datasets at different sample counts.

DQID training parameters used in the indexing case study.
Example wall clock times for training one model. One episode refers to
creating the entire application index set.
Index usage statistics for the randomised blackbox task. Numbers in
parentheses indicate standard deviations.
Improvements against initial execution time found by Grappler’s placer.
Best run times found by Grappler against random search across trials. Each
trial corresponds to one randomised graph problem.
Best runtimes found by Grappler and Wield’s placer in the fixed graph
setting. L
Relative improvements of the respective best solution against the mean of
the first twenty measurements for the randomised blackbox experiment.
Cross graph generalisation breakdown of Grappler models.
Cross graph generalisation breakdown of Wield models.

15

16

Chapter 1

Introduction

Over the past decades, the proliferation of ever more powerful data processing systems and
large scale distributed computing has given rise to a myriad of tuning challenges. What
are the best configuration parameters for a given workload and a particular deployment
environment? How should behaviour vary under changing workloads and unforeseen
inputs? Exponentially growing data volumes and the rising complexity of systems software
necessitate automated approaches to these problems.

In this context, statistical machine learning methods based on learned feature repre-
sentations have come into focus. Developers of systems software such as databases or
schedulers are investigating them to tune all aspects of configurations and deployment.
Even further, they propose to eventually replace key systems components (e.g. query
planners) with learned models [PAA*17]. However, unlike application domains such as
natural language processing [BCB15, VSPT17] or computer vision [KSH12, SZ15] which
heavily rely on supervised training data, systems optimisation problems cannot easily be
given supervised solutions. For example, resource management problems are frequently
NP-complete, and practical systems rely on heuristics to identify approximate solutions.

Hence, systems designers have turned their attention to reinforcement learning (RL)
algorithms as a class of methods which learn decision policies from performance signals
without supervision. In combination with neural networks as function approximators (deep
reinforcement learning (DRL)), they have been used to solve tasks across a growing number
of domains [NCD106, MKS*15, SHM*16, SSST17, FL17]. In systems, recent research
into RL applications spans a diverse range of domains such as scheduling [MSV'19],
networking [MNA17], database management [MP18, MNM™19], and device placement
[IMPL*17, MGP"18]. In controlled settings, these experiments often demonstrate substan-
tial improvement against off-the-shelf algorithms or hand-designed heuristics.

Yet, despite a wealth of successful proof-of-concepts in research, RL solutions are rarely
(if at all) employed in real-world systems environments. Emerging deep RL approaches
promise to yield significant performance improvements by learning to adapt to fine-grained
workload properties. However, these methods come at the cost of long training times,
additional hyperparameters requiring calibration, and brittle algorithms due to aggressive
use of stochastic approximations. My dissertation investigates these challenges from a
systems design perspective. What software primitives should be used to implement these
methods? How is domain knowledge translated to RL problem representations?

Successful real-world applications exist in other domains, e.g. content recommendation
at Facebook [GCLT18]. However, they are characterised by extremely large deployments

17

18

where outsized economical gains can be realised from small improvements. Problem
environments of this scale only exist in few organisations, and systems deployments relying
on RL must justify both development overhead and non-trivial computation cost.

Implementing and executing these machine learning methods themselves also poses new
systems challenges. Reinforcement learning workloads significantly differ from supervised
workloads in resource usage and communication patterns. Supervised training mechanisms
have undergone significant standardisation, e.g. widespread use of synchronous distributed
stochastic gradient descent. This in turn has allowed machine learning frameworks to
provide training abstractions for neural networks which transparently manage distributed
training from single-node to date-centre scale [AIM17]. These training mechanisms are
largely independent from the neural network architecture and loss function used.

Reinforcement learning workloads in contrast continue to evolve rapidly. They are
driven by empirical evaluation of new training modes and recombination of training
heuristics. Where training data is usually available in advance for supervised learning (e.g.
on a distributed file-system), reinforcement learning agents must interact with one or more
problem environments to collect new experience. RL workloads have not found similar
standardisation, as new algorithm designs continue to leverage new learning semantics
and communication patterns. Research implementations suffer from performance issues
and lack re-usability due to tight coupling of execution semantics and training algorithm.

This dissertation focuses on systems abstractions for deep reinforcement learning from
two perspectives. First, I consider software support for RL workloads by introducing a
modular programming model for deep RL. I present RLgraph, a framework which decouples
execution semantics from algorithm logic to combine flexible prototyping with scalable
execution. Users compose algorithms by creating dataflow between high-level logical com-
ponents, and RLgraph combines them as named subgraphs into end-to-end differentiable
computation graphs through a staged build process. Through this separation of concerns,
RLgraph achieves high-performing, incrementally testable and reusable implementations
which address the implementation difficulties around brittle RL algorithms.

Second, I investigate applications of reinforcement learning to the optimisation of data
processing systems themselves. The trade-offs discussed above call into question if current
deep RL approaches can close the gap to real-world deployments. Answering this question
is complicated by fragmented research approaches and missing shared benchmarks for
fine-granular optimisation problems in systems. New results are difficult to compare,
assess, and reproduce. To begin addressing these challenges, I propose Wield, a software
framework which standardises training workflows and problem modelling when applying
RL to real-world systems. Developers can use Wield to iteratively identify, train, and
evaluate reinforcement learning representations. Wield further introduces a novel evaluation
protocol focused on distinguishing RL model capabilities under different randomisation
assumptions. Where RLgraph is concerned with algorithm design and execution, Wield
covers the necessary problem modelling and evaluation to make effective use of RLgraph.
I use RLgraph and Wield to investigate the following thesis:

A reinforcement learning engine that decouples logical dataflow from execution seman-
tics can flexibly execute reinforcement learning workloads across different application
semantics, and resolve the tension between robust and scalable implementations and
fast prototyping.

Further, new software tools and evaluation mechanisms are needed to analyse

1.1 Contributions 19

and ultimately overcome the gap between experimental successes and real-world
deployments of RL in systems optimisation.

1.1 Contributions

In this dissertation, I make two principal contributions to introduce an end-to-end software
stack for reinforcement learning in computer systems:

1. My first contribution is RLgraph, an architecture for decoupling definition of rein-
forcement learning algorithms from their execution semantics. RLgraph separates
logical dataflow design from execution through a staged build process. The main
novelty compared to prior deep RL implementations lies in the incremental dataflow
instantiation where any arbitrary combination of sub-graphs can be executed and
tested individually. This allows users to compose new algorithms through reusable
components, and to then execute these algorithms on different deep learning frame-
works and distributed execution engines. The resulting implementations achieve
robust learning performance and high sampling throughput as a result of incremental
testing and strict separation of concerns.

2. My second contribution is Wield, a software tool for incremental model design in
reinforcement learning. While algorithmic frameworks like RLgraph facilitate rapid
implementation of novel algorithms, systems primitives for mapping domain problems
to reinforcement learning models themselves are lacking. Moreover, reasoning about
model capabilities is difficult due to highly sensitive algorithms and a lack of common
evaluation protocols. To facilitate systematic model construction, Wield introduces
a novel classification scheme called progressive randomisation which helps delineate
model capabilities under different randomisation assumptions.

The designs, architectures and algorithms presented in this dissertation are the result of my
own work. However, collaborators have helped me implement several of the components
described in this dissertation.

The RLgraph project (§3) is a collaboration with Sven Mika who contributed to design
and implementation of many modules but especially to the static build mechanism (§3.3.2)
and the component class (§3.3.1). For RLgraph’s experimental evaluation, he also in
particular contributed the IMPALA implementation used to demonstrate distributed
TensorFlow (TF) capabilities (§4.5). Kai Fricke implemented the cloud orchestration
for Ray and distributed TensorFlow, and helped carrying out learning and throughput
experiments for these engines (§4). In the Wield project, Kai Fricke further helped with
implementation and experiments on the device placement case study (§6.3).

1.2 Dissertation outline

The remainder of my dissertation is structured as follows:

e Chapter 2 gives an overview of reinforcement learning as the central technique my
work is based on. Here, I focus on algorithmic aspects independent of systems issues.
I further give a brief overview of iterative optimisation techniques commonly used in
systems tuning.

20

Chapter 3 begins with an analysis of RL workloads. I first characterise RL appli-
cations in difference to supervised learning and identify common implementation
patterns. I then survey existing frameworks and RL abstractions to motivate key de-
sign problems in RL. This motivates RLgraph, my programming model and execution
engine for deep reinforcement learning which is introduced in this chapter.

Chapter 4 evaluates how algorithms designed with RLgraph can be built towards
different execution contexts. I further show that RLgraph generates high-performing
execution plans by comparing training performance and throughput to both a recent
framework and a tuned-standalone implementation. Finally, I illustrate how RLgraph
enables composition of new algorithmic variants by motivating and implementing a
distributed algorithm variant.

Chapter 5 introduces Wield, a framework for task modelling towards systems
applications of reinforcement learning. I first analyse the practical gap between
decades of experimental work in systems applications of RL and the lack of real world
deployments. Second, I introduce progressive randomisation as an experimental pro-
tocol. Finally, I discuss mechanisms such as learning from imperfect demonstrations
to incorporate domain knowledge and improve training results in applied RL.

Chapter 6 evaluates the application of Wield via case studies on compound indexing
in databases and automated device placement for machine learning workloads. I
further use progressive randomisation to reproduce and assess prior published work.

Chapter 7 summarises conclusions of this dissertation. I further describe a number
of future directions for both RLgraph and Wield.

1.3 Related publications

As part of the work described in this dissertation, I have authored the following peer-
reviewed papers and preprints:

[SFY19] Michael Schaarschmidt, Kai Fricke, Eiko Yoneki. "Wield: Systematic Rein-

forcement Learning With Progressive Randomization”. arXiv preprint arXiw:1909.06844,

2019.

[WSY19] Jeremy Welborn, Michael Schaarschmidt, Eiko Yoneki. ”Learning Index
Selection with Structured Action Spaces”. arXiv preprint arXiw:11909.07440, 2019.

[SMFY19] Michael Schaarschmidt, Sven Mika, Kai Fricke, Eiko Yoneki. ”RLgraph:
Modular Computation Graphs for Deep Reinforcement Learning”. In: Proceedings
of the 2nd Conference on Systems and Machine Learning (SysML), Palo Alto, CA,
April 2019.

[SGDY16] Michael Schaarschmidt, Felix Gessert, Valentin Dalibard, Eiko Yoneki.
”Learning Runtime Parameters in Computer Systems with Delayed Experience
Injection”. In: NIPS Deep Reinforcement Learning Workshop, Barcelona, Spain,
December 2016.

1.3 Related publications 21

I have also co-authored the following publications which have influenced my under-
standing of optimisation in computer systems, but did not directly contribute to the work
in this dissertation:

[GSWT17] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik Witt,
Eiko Yoneki, Norbert Ritter. ”Quaestor: Query Web Caching for Database-as-a-
Service Providers”. In: Proceedings of the 43rd International Conference on Very
Large Databases (PVLDB 2017), Munich, Germany, August 2017.

[DSY17] Valentin Dalibard, Michael Schaarschmidt, Eiko Yoneki. ” BOAT: Build-
ing Auto-Tuners with Structured Bayesian Optimization”. In: World Wide Web
Conference, Systems and Infrastructure Track (WWW), Perth, Australia, April,
2017.

[DSY16] Valentin Dalibard, Michael Schaarschmidt, Eiko Yoneki. ” Tuning the
Scheduling of Distributed Stochastic Gradient Descent with Bayesian Optimization”.
In: NIPS Workshop on Bayesian Optimization, Barcelona, Spain, December 2016.

22

Chapter 2

Background

The contributions of my dissertation are in systems applications and computational
aspects of reinforcement learning (RL). This chapter hence surveys different aspects of
reinforcement learning and optimisation.

I begin by reviewing key RL concepts with focus on recent techniques combining RL
with deep neural networks (§2.1). In Section 2.2, I discuss the heuristics and algorithms
which characterise the wave of novel applications in deep reinforcement learning. Finally,
I connect a number of related black-box optimisation techniques to RL (§2.3).

2.1 Reinforcement learning

2.1.1 The reinforcement learning problem

The reinforcement learning problem (Fig. 2.1) is described by an agent interacting with an
environment represented as a sequence of states s € S [SB17]. In each state s;, the agent
selects an action a; from its action space A, observes a reward r;, and advances to a new
state s;11. The agent seeks to maximise cumulative expected rewards E[> ", v'r;] where
future rewards are discounted by v € [0, 1]. To this end, the agent seeks to improve its
behavioural policy m(a|s) from which it selects its actions to learn the optimal policy 7*.

Both the environment and 7 may be stochastic, i.e. taking the same action on the same
state may result in different transitions. The policy may be represented as a probability
distribution from which actions are sampled. Formally, Markov Decision Processes (MDP)
are used to describe the reinforcement learning problem where state transitions are modeled
via transition probabilities P,(s;, s;+1), and transitions only depend on s; and a; (satisfy
the Markov property). An MDP is defined through the set of states S, the action space
A, the transition probabilities P, (s, s¢11), and the reward function R,(s¢, s;11) describing
rewards observed after performing actions.

In practice, the state is often only partially observable. In the framework of Partially
Observable Markov Decision Processes (POMDP), environment dynamics are assumed
to be governed by an MDP, but only partial or noisy state information is available.
Applied problems especially in computer systems typically require significant ”state
engineering”. This is because unlike in domains like games or robotics, where a natural
state representation may arise from the current frame of a video game or the physical
sensors of the robots, data processing systems expose large amounts of system information
at different time scales and formats. In this case, RL practitioners must manually select,

23

24 Background

Agent

State s, Action a
Reward r

Environment

Figure 2.1: The standard reinforcement learning problem.

0 _

! 0

Current 0 1

configuration g) 0

1

! 0

1 1

1 1

Workload wy System L \ 1

(e.g. database, — State sy

scheduler) 0.5
— 3.3

0.5 0

3.3 0

0 2

0 4

E.g. load > 50

averages 4 2.0
Wi, Wi-1,.. 5.0 —

2.0
Engineered state Concatenate
features

Figure 2.2: States can require extensive feature engineering to combine workload metrics
and system configuration, e.g. by simple concatenation.

pre-process and aggregate information which they believe to form the system state (Figure
2.2). T discuss state and action representations for systems applications in Chapter 5.

2.1.2 [Episodes and experience

In this dissertation, I consider the episodic reinforcement learning problem where agent
interactions with the environment are partitioned into finite length episodes. Instead of
operating under an infinite time horizon, the agent discounts rewards towards the end
of an episode which is marked by a terminal state. After reaching a terminal state, all
further actions let the agent remain in this state, and no further rewards are given. Many
applied problems naturally lend themselves to episode semantics. For example, games
may represent a single level which can be won or lost as an episode. In computer systems,
processing a single workload instance (e.g. a set of queries) and measuring its performance
is often used to represent individual episodes.

Episode semantics are of great relevance to computational aspects of reinforcement
learning. They can form logical units of execution for sample trajectories. Between

2.1 Reinforcement learning 25

episodes, the environment needs to be reset to restore it to an initial state sy (which
may be sampled from a distribution of initial states). For some problems, resetting the
environment (e.g. by re-deploying or reconfiguring a system) can take substantial time.

The term ”sample trajectories” above refers to the fact that the methods I discuss
in the following are Monte Carlo methods. They operate on incomplete knowledge of
the environment, and computations are based on sample averages. The agent collects
experience in the form of sample trajectories (sequences of states, actions, rewards and
terminal information), and averages returns for each state and action pair.

A core idea towards practically solving RL problems is the concept of using value
functions to evaluate sample trajectories. A value function V,(s) of a policy 7 is used by
an agent to estimate expected returns of being in a state s and taking actions according
to m. Formally, the state-value function (for an episode of length 7") V,(s) is given as:

V7T<8) =]ETI'

T
> AV realse = s] (2.1)
k=0

Value functions hence enable the evaluation of a given trajectory under a policy. In deep
reinforcement learning, neural networks are used to represent value functions (§2.2).

An extensive survey of RL methods is given by Sutton and Barto [SB17]. Here, I
briefly summarise temporal-difference and policy-gradient RL algorithms.

2.1.3 Temporal difference learning

Temporal difference (TD) algorithms update their value function estimates based on a
combination of observed reward and their own prior estimates. They are hence bootstrap
methods. After visiting a state and observing a reward, initially random (or initialised
with some inductive bias) value function estimates are updated. For example, in Q-
learning [WD92], a popular TD-method, a state-action value function called Q-function
Qx(s,a) = E[Ry|s; = s, a] is learned to estimate for each state and action pair the expected
discounted rewards from taking a in s and following 7 after. The aim of Q-learning is to
identify the optimal Q-function

Q" (s, a) = max Qx(s, a) (2.2)

The optimal policy for the agent follows by simply selecting the action with the optimal
value in each step (i.e. highest estimated returns). The value function V;(s) can then be
expressed via () and the expectation across all actions:

VW(S) = anﬂ[@ﬁ(sa CL)] (23)

It then follows that V*(s) = max, Q*(s,a). When expressing Q* and V* through a Bellman
equation:

Q*(s,a) = Ey [r +4V*(s')|s, a, 7], (2.4)
one can then substitute V* using the relation above:
Q*(s,a) = Egy [r +ymaxQ*(s',a’)|s, a] : (2.5)

Here, s’ is an often-used shorthand for s;y; (with s = s;). This equation provides a simple
update algorithm as any state and action pair (s,a) can update its g-value estimate by

26 Background

combining the reward observed after taking a and arriving in s’ with the return estimate
from s itself. TD methods hence combine dynamic programming with Monte Carlo
methods (as discussed by Sutton [SB17]). During training, the agent greedily selects the
action with the highest estimated g-value or a random action with some probability € to
explore (e-exploration).

Note that Q-learning does not require episode semantics due to its incremental nature.
It can simply update after each step without concerning itself with prior or future events,
as they are entirely encapsulated within). The discount factor v modulates how many
steps ahead the agent incorporates into its action selection. While Q-learning converges to
the optimal policy in the case of finite MDPs [WD92], visiting and computing Q-values for
all pairs (s, a) is impractical for real-world problems. I describe how Q-learning algorithms
are implemented in practice using neural networks in Section 2.2.

2.1.4 Policy gradients

In Q-learning, the policy is implicitly derived through greedy action selection. In contrast,
policy gradient methods directly represent the policy 7(als, #) via a differentiable parameter
vector # € RP. While policy gradient methods often still use value functions to evaluate
trajectories and learn #, the value function is not needed to select actions, as they are
directly output by 7. In the following, I will sometimes omit # in subscripts when referring
to m, i.e. I will write @, for Q,.

In practice, 7 is represented as a parametrised probability distribution, e.g. a Gaussian
distribution may be used for continuous actions, or a categorical distribution for discrete
actions. Importantly, policy gradient methods can be used to learn both stochastic and
deterministic policies (the deterministic policy gradient theorem [SLH*14] is beyond the
scope of this dissertation). Consider a normal distribution N (u, X|s, §) parametrised by
6 which estimates mean p and covariance X for each s. A deterministic 7 would select
action p as the maximum likelihood estimate, while a stochastic policy would sample from
N(u,X).

In Q-learning, the Q-function must be evaluated for all actions for action selection.
Sample requirements can hence become impractical for large action spaces, and using a
continuous action space in Q-learning requires discretisation. Policy gradient methods can
naturally handle continuous action spaces via parametrised probability distributions. They
also directly include exploration by sampling and learning to adjust co-variance estimates,
and hence do not require bolt-on techniques such as epsilon-exploration.

A key result used as the basis for modern policy gradient methods is the policy gradient
theorem. The policy gradient theorem provides an analytical expression to estimate the
gradient of a performance measure J(¢) with respect to policy parameters 6:

Vo (0) =V Y _ u(s) > Qr(s,a)my(als) (2.6)

seS a€A

x Z,u(s) ZQﬂ(S,G)VQﬂ'Q(CL‘S) (2.7)

ses acA

Here, pu(s) refers to the on-policy state distribution. By expanding this term and substi-

2.2 Deep reinforcement learning 27

tuting the derivative of the logarithm (In(x)’ = 1/z), the following expression arises:

Vomg(als)

D hls) D2 Quls,a)Vomalals) = 3 u(s) Y molals) Qs (s,)= (2.8)
ses acA ses acA
= By an|@r (8, a)Voln m(als)] (2.9)

For the detailed proof I refer the reader to the original paper [SMS199] or the latest edition
of Sutton and Barto’s seminal textbook [SB17]. Crucially, the derivative of J() does
not depend on the derivative of p(s) This means policy gradient methods can improve
7 without knowledge of system dynamics. They simply repeatedly estimate Vy.J(6) by
collecting new state transitions and using the expression above.

Gradient estimation in policy gradient methods can be improved by separately training
a baseline which estimates V,(s). This allows to use the so called advantage A,(s,a) =
Qx(s,a) — Vi(s) for Q. (s,a). Intuitively, the policy gradient update modifies the distri-
bution to increase the likelihood of good actions, where goodness is judged by @).. An
empirical estimate of @, is the (discounted) reward observed when taking a in s. However,
the absolute reward value is less relevant than how much better the reward for a specific
a in s was than the average estimate of the state value (V;(s)). This difference is called
the advantage. Various other heuristics exist to reduce the variance of gradient estimates
without introducing bias. Schulman et al. discuss common variants in their work on
generalised advantage estimation [SML*15].

In the formulation above, policy gradients are called an on-policy method because
updates are based on actions carried out by . In contrast, an off-policy method can learn
from experience collected by any policy. Q-learning algorithms are off-policy because the
bootstrap estimate of @Q,(s',a’) utilises greedy action selection (max,), as opposed to the
action that was actually taken in the next state (which may differ due to exploration).
Recent research has explored various hybrid methods where e.g. a baseline is learned
off-policy to improve performance [GLT*17, GLG"17]. Due to fewer hyper-parameters,
simpler variants often prevail in practice.

2.2 Deep reinforcement learning

2.2.1 Function approximation with deep neural networks

Reinforcement learning algorithms rely on functions of the state which map states to
Q-values or probability distributions of actions. Real-world problems usually either have
extremely large discrete state spaces (e.g. all legal positions on a chess board), or continuous
state spaces. This means that during learning or at test time, almost every state is unseen.
The concept of function approximation in deep RL refers to using a neural network as a
non-linear function approximator.

While various other state representations exist (e.g. linear models, Gaussian processes),
this dissertation focuses on reinforcement learning with neural networks.

Over the past decade, deep neural network architectures (e.g. convolutional [KSH12]
or recurrent [HS97]) have seen practical success in a wide range of applied domains
such as computer vision [SZ14, KSH17], natural language processing [BCB15, WSC*16,
BGLL17], and robotics [FL17, LPK*18]. The concept of training neural networks with
backpropagation can be traced back over 30 years (a detailed history of neural network

28 Background

training is available by Schmidhuber [Sch15]). However, recent progress in data processing
capabilities (hardware accelerators) and software support from open source machine
learning software have led to an unparalleled rise in research into all aspects of neural
network training. Popular deep learning frameworks such as TensorFlow [ABC'16],
PyTorch [PGC*17], MXnet [CLL*15] or CNTK [SA16] enable developers to prototype,
train, and deploy neural network representation from high-level building blocks.

These developments have provided a fertile environment for the surge of interest
in combining neural networks with reinforcement learning. In deep RL, the network
receives states as inputs and outputs Q-values, state-values, or parameters for a probability
distribution. The term ”outputs” must be clarified insofar the final network layers must
be specifically engineered to support various action representations.

In deep RL, the neural network architecture typically consists of at least two components.
A variable number of hidden layers learns a representation of input features. A flexible
number of action layers is bolted on top of the hidden layers to represent different action
outputs (e.g. parameters of a normal distribution) or value estimates. This is in contrast
to classification tasks where the network simply outputs final class probabilities.

2.2.2 Deep reinforcement learning

A turning point for deep reinforcement learning as a new subfield came via Mnih et al.’s
work on learning to play Atari games from video input via deep convolutional architectures
[MKS*13, MKS*15]. The neural network’s parameters 6 are updated iteratively (indexed
by i) using the following loss function (7 subscripts omitted for readability):

Jz(ez) =]Es,a'vﬂ'[(yi - Q(Sa a; 92))2] (210)

with y =7 + v maz,Q(s',d’;0;,_1) (the Q-target). The gradient of the loss function
VGi Jz<01> = Es,afvﬂ[(T + Y m&xa’Q(S,a a/; 91‘71) - Q(87 a; 91))V91Q<3, a; 61)] (211)

is then optimised via mini-batch stochastic gradient descent. Deep Q-Network (DQN)
extends Q-learning by a number of heuristics used to stabilise training. First, a replay
memory [Lin93] is used to store observations. Instead of updating Q-values after each
sample and thus training from correlated sequences, a mini-batch of uncorrelated experi-
ences is sampled periodically to estimate the gradient. This allows for training samples to
be reused and also avoids feedback loops encountered in naive Q-learning where training is
dominated by sampling from one state region. Second, a so called target network is used
to improve training stability. As noted above, Q-learning uses a bootstrap estimate of the
next state (the Q-target y) to update the Q-value for a given state-action pair. This can
cause divergence and oscillation if the agent gets stuck in feedback loops, e.g. due to noise
in the environment.

DQN avoids this via a fixed Q-target where a second neural network (the target
network) with fixed parameters 6, , (for some lag t) is used to estimate updates, while the
training network with current parameters is employed for action selection. The parameters
of the fixed value function are periodically updated by copying the parameters of the
training network.

Algorithm 1 illustrates the DQN algorithm with e-exploration and a state preprocessing
function ¢ which down-samples and transforms input images. DQN’s conceptual simplicity

2.2 Deep reinforcement learning 29

Algorithm 1 DQN algorithm as introduced by Mnih et al.
Initialise replay memory D to capacity N
Initialise action-value Q-function with random weights 6
for episode =1, M do
Initialise sequence s; = 1 and preprocessed sequence ¢; = ¢(s1)
for t=1,T do
With probability e select random action a;
Otherwise select a; = max,Q*(¢(st), a;0)
Execute action a; and observe reward r; and image x;
Set Si11 = S, Gy, Ty and preprocess ¢yr1 = P(Sp41)
Store transition in replay memory
Sample uniformly at random from D: (s;,a;, 7}, 541)

Set
T for terminal ¢;
i r; + 7 mazyQ(si41,a’;0), for non-terminal ¢4
Perform an gradient descent step on (v; — Q(s;, a;,0))?
end for
end for

and off-policy nature makes it a popular choice for new practitioners, as the replay memory
D can be initialised from prior experience trajectories.

While many of the elements in DQN had been researched in prior work, Mnih et al.’s
contribution lies in combining them with various other heuristics to learn different Atari
tasks with the same architecture. For example, successfully solving Atari tasks with the
original DQN architecture requires to combine multiple game-frames into a single state
since a single frame does not capture motion. Further, both gradients and reward values
were clipped to specific ranges to stabilise updates.

Even when using numerous custom heuristics and tuned hyper-parameters, DQN (and
other early DRL approaches) are highly sensitive to weight initialisation and small changes
in parameters (§3.1). Further, tens of millions of frames were required to solve Atari tasks.
More difficult environments (e.g. Montezuma’s revenge) could not be learned at all due
to sparse rewards. Nonetheless, DQN-style algorithms remain among the most popular
applied algorithms. Since Mnih. et al.’s initial work on DQN, a plethora of variants and
improvements have been proposed. I summarise key developments below.

2.2.3 Common heuristics

A growing body of research is investigating all aspects of value estimation, reward dis-
counting, exploration, gradient estimation, and experience prioritisation. A number of
core techniques has emerged over the past years which are now canonically used in RL
implementations. Replay memories are usually implemented with prioritised experience
replay [SQAS15] where experience tuples are prioritised according to their loss values
to focus training on high-loss states. Double DQN describes a technique where action
selection and evaluation are decoupled in the update step by using the training network to
select the action for ', and the target network to estimate its Q-values [HGS16] which
significantly improves training performance. In dueling DQN, a separate value-stream is

30 Background

introduced to the network to decompose Q-values into state-value and advantage estimates
Q(s,a) = A(s,a) + V(s) [WSH*16]. A further common technique is to not use 1-step
rewards to bootstrap Q-estimates but a forward view of multiple steps (n-step Q-learning)
[SB17]. Less commonly used is distributional DQN where instead of computing expected
returns, the discrete distribution of rewards is approximated [BDM17]|. The so-called
Rainbow algorithm combines these and other improvements into a single architecture
[HMvH"18]. Many of these techniques have in turn created inspired bodies of work, but
enumerating them is beyond the scope of this dissertation.

Similar to rapid developments in Q-learning, a multitude of new policy optimisation
algorithms has emerged. Trust region policy optimisation (TRPO) addresses several
problems of naive policy gradients [SLAT15]. Specifically, policy performance can collapse
from a single update as the gradient descent step to update parameters ¢ can unfavourably
shift the resulting actions for many states. This is particularly problematic when using few
environment samples, or when environment noise leads to imprecise gradient estimates.
TRPO limits updates in the policy space (as opposed to parameter space #) by solving
a constrained optimisation where the constraint is expressed via the Kulback-Leibler
divergence between prior and updated policy. This optimisation is solved via natural
gradient descent combined with line-search.

Despite being theoretically attractive and also more data efficient than naive policy
gradients, TRPO has seen limited practical success due being difficult to implement and
computationally expensive to scale as a second-order method. Proximal policy optimisation
(PPO) attains similar performance but implements a conceptually simpler optimisation
which can be executed via simple stochastic gradient descent [SWD™17]. This is achieved
by bounding the likelihood ratio between prior and updated policy through a clipped
objective function. In a popular variant, collected sample trajectories are repeatedly sub-
sampled, and multiple updates are applied until a pre-defined threshold in KL-divergence
is reached. PPO-variants are widely used in practice due to being significantly more sample
efficient and robust than policy gradients.

Inquiries closer to systems are concerned with parallel, distributed and asynchronous
training methods. I discuss these execution mechanisms separately in §3.1 in the context
of deriving the requirements for RLgraph, my framework for designing and executing
RL algorithms. The multitude of subtle algorithmic variations means practitioners must
choose which heuristics apply to their problem. For example, a problem with expensive
evaluation (i.e. time to obtain a reward) can benefit from a more expensive optimisation
to minimise sample requirements. Algorithmic frameworks must hence provide a set of
well-tested standard implementations and enable transparent configurations of variants.

2.2.4 Reinforcement learning terminology

For clarity, I contextualise the algorithms above in relation to other RL sub-fields. The
algorithms I discussed are principally single-task, model-free reinforcement learning algo-
rithms. Solving real-world problems with physical agents (e.g. robots) may require solving
a varied sequences of tasks (e.g. navigate, open doors, manipulate objects).

My analysis of systems design challenges also focuses on single-task learning. First,
multi-task approaches are often based on combinations of single-task approaches. Second,
solving non-trivial instances of single-task problems remains difficult and requires significant
analysis, hyperparameter tuning, and large numbers of samples. I then separately explain

2.3 Iterative optimisation 31

how design assumptions translate to multi-task scenarios. In the same vein, I first discuss
single-agent scenarios. N.b. the distinction where multi-agent scenarios can both refer
to multiple agents learning a single task, or multiple agents training on independent or
causally related tasks.

The term model-free refers to the fact that the algorithms above learn a policy or
value function without using a prediction of the next state or next reward. In model-
based reinforcement learning, the agent learns a model f: S x A — S of global system
dynamics, i.e. siy1 = f(s4,a¢), to use for action evaluation. Historically, model-based
control has been particularly successful in physical control systems such as robotics where
motion trajectories may follow known dynamics with closed-form solutions. A survey
of these traditional approaches is given by Kober et al. [KBP13|. In the context of
deep reinforcement learning, exploratory approaches have tested network architectures
incorporating planning modules [HS18, WRR*17].

2.3 Iterative optimisation

In this section, I briefly summarise a number of related optimisation techniques. The
overview restricts itself to the relationship of these methods to RL. For comprehensive
treatments, I refer the reader to e.g. Audet’s survey on black box optimisation [Aud14]
and a review of Bayesian optimisation [SSW*16]).

2.3.1 Bayesian optimisation

Bayesian optimisation (BO) is a black-box optimisation technique based on building a

probabilistic model of an objective function. In common variants, A Gaussian Process
(GP) with mean

m(x) = E[f(z)] (2.12)

and covariance function (or kernel)

k(z,2) = E[(f(x) — m(x))(f (") — m(z"))] (2.13)

is a stochastic process where each finite subset of random variables can be described via a
multi-variate normal distribution (c.f. Rasmussen’s handbook on GP modeling [RW06)):

f(x) ~ GP(m(z), k(z, ")) (2.14)

An acquisition function is used to identify the next best point to evaluate with a common
choice being the expected improvement. The GP is updated to condition the model on each
new observation by analytically computing the posterior predictive distribution. A tutorial
with practical details on acquisition and covariance functions is given by Snoek et al.
[SLA12]. While popular for hyper-parameter optimisation, Gaussian progress regression
can also be used to address reinforcement learning problems. For example, PILCO is a
model-based RL algorithm which solves continuous control tasks by fitting a dynamics
model with a GP [DR11].

GP-based approaches are attractive in data-sparse environments as they can often
identify substantial improvements within few (<25-50) trials. As non-parametric models,

32 Background

a main drawback is computational efficiency in the number of samples, as updating the
posterior requires an expensive matrix inversion. Neural network approaches in contrast
succeed when feature-rich representations of input data can be learned. Moreover, GP
performance relies on the kernel as an accurate model of the distance between two points
in the input region. For non-smooth objective functions (e.g. in combinatorial problems),
BO typically fails to find an efficient solution unless provided with a hand-crafted kernel.

2.3.2 Random-search and evolutionary methods

Various other approaches may be used to solve tuning problems. Simple random search
has been shown to be effective for black-box optimisation tasks [BBBK11]. Mania et al.
showed that an augmented random search could also identify high-performing policies for
continuous control tasks commonly used as benchmarks for policy gradient algorithms
[MGR18]. Random search variants are particularly attractive on tasks which are cheap to
evaluate, as e.g. the variant explored by Mania et al. is over an order of magnitude more
computationally efficient than common policy gradient methods.

A similar argument was made earlier by Salimans et al. who argued evolutionary
methods could provide an alternative to RL due to admitting simpler distributed ex-
perimentation [SHCS17]. Evolutionary methods mutate parameters judged by a fitness
function. While sacrificing an order of magnitude in sample complexity against gradient-
based methods, evolutionary methods require minimal synchronisation between parallel
actors. Random search or evolutionary methods also rely on fewer hyper-parameters than
Q-learning or policy gradient algorithms.

In this dissertation, I investigate optimisation problems in computer systems where
runtime is almost entirely dominated (> 95%, c.f. Chapter 6) by waiting on the problem
environment to execute and evaluate decisions. The trade-off offered by computationally
cheap methods is hence undesirable.

2.4 Reinforcement learning in computer systems

This section presents recent representative application areas of RL in systems. In Chapter
5, I classify prior work in detail through my evaluation protocol. The works here both
address RL for blackbox optimisation where RL competes with the techniques discussed
in the prior section. They also include dynamic decision-making problems where an RL
agent fully replaces algorithmic components (e.g. a scheduler).

Early work on RL in systems can be found between 1990 and 2000 in routing (Q-routing)
and protocol optimisation [BL94, KM97, KM99]. These works compare tabular Q-learning
variants to traditional shortest path algorithms and note the future potential of function
approximators. Practical implementations of using neural networks in combination with
RL in systems can be found as early as 2006 in Tesauro et al.’s work on server resource
allocation [TJDBO06]. The authors encoded as state the current and prior request arrival
rates, and decided which server to allocate to respond to a request. A one-layer neural
network was trained via Q-learning. Learning was further helped by initially making
online decisions using a rule. A decade after Tesauro’s work, Mao et al. [MAMK16] again
used RL for resource management, and applied policy gradients to a simplified simulated
scheduling problem.

2.5 Summary 33

The broader availability of deep RL implementations has since given rise to new
research into many traditional systems domains. The dominating theme is that traditional
systems research has yielded algorithms and systems carefully optimised for a multitude
of objectives and classes of workloads (e.g. generic patterns like read-only workloads,
long-running transactions). RL in contrast promises to make fine-grained per instance
decisions which exploit high-granular workload properties.

Recent applications include investigations into many networking problems which can
benefit from existing protocol simulators. Valadarsky et al. for example learn simulated
routing decisions on small topologies but report difficulties training on larger network
structures [VSST17]. Neural packet classification [LZJS19] learns a stochastic policy to
generate decision trees which minimise classification time. Pensieve [MNA17] proposes to
adapt client-side video streaming rates using policy gradients.

In databases, Marcus et al. utilised proximal policy optimisation to investigate learning
join orders in PostgreSQL [MP18]. Join ordering is an attractive learning task as execution
time is low, i.e. either obtaining a cost estimate from the query planner or executing the
query directly to evaluate runtime. Their initial join-order project was later extended to
a RL-based query optimiser which bootstraps training from the PostgreSQL optimiser
[MNM*19]. Krishnan et al. [KYG'18] completed a similar study of RL applicability
in join ordering using DQN. Durand et al. further proposed to tune data-partitioning
with DQN [DPP*18]. In NoDBA, Sharma et al. [SSD] investigated a simplified indexing
problem where single-column indices are selected for a relational database.

Later work in scheduling [MSV*18a] has focused on effective state representations
wherein Spark [ZCFT10] dataflow jobs are encoded via graph neural networks. Multiple
output tasks are used to select parallelism and job stage to execute. The resulting
controller, trained in a Spark simulator, significantly improves job completion times. Li
et al. proposed a scheduler for distributed stream processing where action selection in a
large action space was addressed via a k-nearest neighbour approach [LXTW18].

Mirhoseini et al. demonstrated how to use attention-based and hierarchical methods
known from neural machine translation to effectively perform TensorFlow device placements
[MPL*17, MGP"18]. Jia et al. later demonstrated with FlexFlow [JZA18] that a hand-
crafted simulator combined with greedy search (and no RL) could significantly outperform
these solutions. The hierarchical placer however does not require a simulator, and FlexFlow
did not evaluate how a comparable RL algorithm would perform when trained in their
simulator. In a similar context of static optimisation, Ali et al. [AHM™19] used DQN to
select order and type of compiler pass optimisations using the LLVM tool-chain.

Algorithm choices in the work I surveyed were often not motivated from an RL
perspective. An example of this is to learn a discrete stochastic policy with on-policy
training for a deterministic problem (e.g. for join ordering [MP18]). This could be due to
a lack of understanding of algorithmic properties and the applicability of specific heuristics,
thus indiscriminately relying on open source implementations.

2.5 Summary

This chapter introduced the reinforcement learning problem and different approaches
to solve it. First, I discussed two common classes of algorithms, QQ-learning and policy
gradient methods. I then highlighted how using neural networks as function approximators
in conjunction with a number of other heuristics has sparked a wave of new research.

34 Background

I further described follow-on developments to improve initial deep RL variants which
are now canonically used in practical implementations. Finally, I surveyed a number of
competing tuning methods and prior work in systems-RL.

In the next chapter, I will present an analysis of execution and design aspects of
reinforcement learning algorithms, before I introduce RLgraph, my backend-agnostic
engine for design and execution of RL algorithms.

Chapter 3

RLgraph: Modular computation
graphs for reinforcement learning

Emerging research and novel applications of deep reinforcement learning have given rise
to a multitude of computational challenges. RL applications exhibit highly varied task
parallelism, communication patterns, and resource requirements. Their execution semantics
are also much different from supervised workloads due to the need to interact with one
or more problem environments during training. Systems design has thus far not caught
up with the rapidly evolving needs of these new applications. In this chapter, I make the
following contributions:

e [first present a survey of reinforcement learning workloads and design challenges. I
also discuss assumptions in existing abstractions and subsequently argue why they
are insufficient to meet evolving requirements (§3.1).

e Based on this analysis, I introduce RLgraph, an architecture which decouples the
design of reinforcement learning mechanisms from execution semantics to support
different distributed execution paradigms and flexible application semantics (§3.2 -
§3.8).

I begin by discussing reinforcement learning workload characteristics to derive the
requirements for RLgraph. Parts of this chapter have been published as a research paper
[SMFY19].

3.1 Reinforcement learning workloads

This section motivates systems design for RL by considering the following questions:

e How are RL algorithms benchmarked, and how do these benchmarks drive research
progress?

e In what ways do these workloads differ from other machine learning tasks?

e What do these differences imply for the implementation of RL software systems?

35

36 RLgraph: Modular computation graphs for reinforcement learning

3.1.1 Use of simulators

Simulators are essential tools of RL research. The first wave of deep RL algorithms following
Mnih et al.’s work have often been evaluated on the Arcade Learning Environment (ALE,
[BNVBI13]). ALE presents a simple action and observation interface to classical Atari
2600 games (e.g. Pong, Breakout). A single-threaded program can execute thousands
of steps (state transitions) per second. The MuJoCo (for Multi-Joint dynamics with
Contact [TET12]) physics engine provides a similar test bed for continuous control tasks
[DCH*16]. MuJoCo tasks require agents to coordinate multiple joints to learn mechanical
tasks such as walking, swimming, hopping, or controlling a humanoid. OpenAl gym
(in the following as ” gym” [BCP*16]) provides a unified interface to these benchmarks
and various other simulators. Gym has become the de-facto standard for implementing
environment interfaces in the open source RL community. Implementing the gym interface
for a custom environment only requires implementing step and reset methods to advance
the state/reset the environment, and two properties to describe the shape and types of
states and actions.

For ad-hoc optimisation and control problems in computer systems, simulators are
often not readily available. On the one hand, systems applications of RL interface software
systems which are easy to parallelise, copy, and inspect for internal state like simulators. On
the other hand, executing training workloads on databases, compilers, stream processors
or distributed data processing engines requires substantial resources. Moreover, one state
transition (e.g. evaluating a configuration on a workload) may take seconds to minutes,
thus requiring sample-efficient approaches. I discuss the unique challenges of RL in systems
in Chapter 5.

Listing 3.1 shows the basic gym interface which is sufficient for execution in gym-
compatible frameworks. The interface can be extended with additional methods to pass a
random number seed, or to render the environment.

ALE and other simulators provide convenient test-beds for research due to a number
of benefits:

e Computationally cheap. Simulators for classical games are inexpensive to execute.
A single-threaded controller can scale to thousands of frames (210 x 160 pixels, 7 bit
colour palette) per second. This includes neural network forward passes to compute
actions and more expensive update operations. They are hence easily parallelised.

e Stop-and-go execution. Simulators such as ALE do not have real-time require-
ments as the game is not advanced until the step-function is invoked. This dramat-
ically simplifies execution semantics because expensive update-steps block action
requests on the network. Real-time environments require asynchronous learning and
acting in separate processes.

e Deterministic. While real-world environments exhibit noisy and stochastic be-
haviour, debugging and analysis can be helped by deterministic simulators. This
in turn requires to manually inject stochasticity for more realistic training. For
example, Mnih et al. created a random initial state in Atari games by first taking a
random number of no-op actions.

These properties have made ALE/MuJoCo simulators the most popular choices during
a first wave of deep RL research following the publication of DQN. They influenced views

O© 0 NO O WN =

W W WWNNMNNNMNMNNNNMNNMNNMNNNRE,E PR, RPR,R PR PP PR PP
WNPFP,P OO NOYTOOPDWNRPEP, O OO NOOPdWNNEF~ O

3.1 Reinforcement learning workloads

37

class GymInterface(object):
"""Abstract environment for OpenAI gym execution."""

def __init__(self, observation_space, action_space):
Shape, type, and number of state inputs.
self.observation_space = observation_space
Shape, type, and number of actioms.

self.action_space = action_space

def step(self, action):

Advances the environment a single step by executing an action.

Args:
action (any): Actions to execute.

Returns:

state (any): Next state observed after executing action.

reward (float): Reward observed after executing action.

terminal (bool): True if action led to a terminal state.

info (any): Optional meta data.

raise NotImplementedError
def reset(self):
nnn

Resets the environment and returns an initial state.

Returns:

state (any): Initial state after resetting (may be random).

raise NotImplementedError

Listing 3.1: OpenAl gym environment interface.

38 RLgraph: Modular computation graphs for reinforcement learning

on executing training workloads (inexpensive parallelism) and evaluation. While ALE for
instance provides a variety of game tasks (e.g. Pong, Breakout, Lunar Lander), quantifying
task difficulty and in turn understanding algorithmic improvements on tasks has proven
difficult. They are prone to over-fitting as the evaluation tests the same game the agent
was trained on. Limited overlap between the systems and RL community meant a virtual
absence of systematic software design and evaluation techniques, as research initially
centred around variations of ad-hoc script implementations.

These challenges have called into question algorithmic improvements based on tun-
ing problem-specific heuristics. Henderson et al. observed that subtle implementation
issues and random initialisation drastically affect performance [HIBT17]. Mania et al.
subsequently demonstrated that an augmented random search outperformed [MGR18]
several policy optimisation algorithms on supposedly difficult control tasks. Further work
on policy gradient algorithms observed that the performance of popular algorithms may
depend on implementation heuristics (e.g. learning rate annealing, reward normalisation)
which are not part of the core algorithm [IEST18].

In the wake of these findings, researchers have recently proposed new specialised
simulators to benchmark specific properties such as generalisation capabilities (CoinRun
[CKH™18]) or agent safety (e.g. DeepMind safety gridworlds [LMK™17]). To interface open
source implementations of DRL algorithms, practitioners in emerging applied domains
have similarly adopted gym-style interfaces in novel simulators. For example, Siemens
have introduced a benchmark for industrial control tasks [HDT*17]. Others have built
gym-bridges and new problem scenarios on top of existing simulators such as the ns3
networking simulator (ns3-gym [GZ18]).

The substantial sample requirements (up to billions of state transitions [BLT*16]) of
model-free algorithms have resulted in implementation efforts to be overwhelmingly focused
on interfacing simulators. Emerging simulator tasks can be implemented in photo-realistic
environments using agent-interfaces to game engines such as Unity [JBV*18a]. Unlike
cheaper early simulators, game engines compete with neural networks for accelerator
resources. The trend towards high-fidelity task simulations requires larger distributed
training environments to achieve higher sample throughputs. Implementations consequently
need to accommodate a wide range of resource sharing scenarios. Next, I analyse how
simulators have affected the development of scalable training mechanisms.

3.1.2 Distributed reinforcement learning

The light-weight nature of early simulators has given rise to many parallelisation schemes.
I give an overview of key algorithms below.

The first widely popular of such schemes was the asynchronous advantage actor-critic
(A3C, also by Mnih et al. [MBM16]). In the original A3C paper, a single-node many-core
machine was used to train a policy by means of workers asynchronously updating a shared
global policy. Each worker interacts with its own environment simulator instance, collects
a number of state trajectories (a tunable hyper-parameter), locally computes gradients for
an update, and then applies this update to the globally shared policy network. After each
update cycle, workers copy the global parameters (which may have been updated many
times by other workers) to their local copy. Mnih et al. advertised A3C as a faster and
cheaper alternative to DQN because it does not require a GPU (each actor computes its
update on a CPU), while training substantially faster than a single-threaded agent. A3C

3.1 Reinforcement learning workloads 39

30000

20000 .

10000 I

O_

Total frames/s

1 2 4 8 16 32 64
Environment copies for single-threaded worker

Figure 3.1: Environment vectorisation on CartPole. A single-threaded worker vectorises
action selection, then sequentially acts on a list of simulator copies.

serves as an example design implicitly relying on cheap simulators.

Similar to advances in policy optimisation, distributed and parallel variants of Q-
learning implement a multitude of synchronisation mechanisms. Gorila is an early dis-
tributed DQN variant which shards learners and parameter servers and uses a central
replay memory in which distributed actors insert new samples [NSBT15]. Distributed
prioritised experience replay (APE-X [HQB"18]) is a more recent variant encompassing
several levels of parallelism. Workers asynchronously collect environment trajectories
and do not compute updates. Instead, they perform preprocessing to ease computational
burden on the learner. Trajectories are inserted into one or multiple replay buffers which
provide prioritised sample batches to an asynchronous learner thread.

Note that in distributed training, each worker, irrespective of the distributed coordi-
nation mechanism, may itself employ further parallelism by vectorising action selection,
i.e. batching states from multiple environment copies into a single forward pass. A single-
threaded worker can substantially increase throughput on cheap tasks by sequentially
acting on multiple environments and batching action selection in the neural network
(Figure 3.1).

Figure 3.2 illustrates a single-learner task architecture with distributed sample collection.
The learner schedules a set of actors which may be distributed across a cluster but which
can also be separate threads or processes on the same node. Actors interact with dedicated
environment copies but do not execute update operations. They batch-process new sets of
states from environments, and merge trajectory data from separate environments. The
learner post-processes trajectories (e.g. by computing discounted returns), then schedules
updates on accelerators.

Sample collection, weight synchronisation, and updates may all be synchronous or
asynchronous which gives rise to additional considerations to store trajectories. Distributed
communication and coordination strategies in RL are constrained by algorithms’ ability
to incorporate off-policy data on the one hand, and by accelerator throughput and
communication cost on the other hand.

Research into better replay mechanisms remains an active topic [KOQ%19]. The
conceptual simplicity of many distributed training schemes also leaves much to be desired
for replay implementations, irrespective of algorithms used. Common distributed training
schemes transmit the same states repeatedly as actors blindly recollect and retransmit

40 RLgraph: Modular computation graphs for reinforcement learning

Processes trajectories, Parallel updates
executes updates, across accelerators
coordinates acting e .

Learner

CPU

________________ [My] R

Synchronises
network weights

Transmits new trajectories

Manages simulators,
merges trajectories

Batched Simulator 1] [Simulator n]
simulators [D Task process/thread

Figure 3.2: High-level overview of single-learner task parallelism. Even in single learner
scenarios, multiple levels of task-parallelism require fine-tuning of a multitude of hyper-
parameters for distributed coordination.

trajectories without regard for communication cost.

3.1.3 Use of accelerators

The increasing availability of GPUs and specialised accelerators [JYP*17, JYPP18] has
given rise to newer distributed training schemes. In distributed policy optimisation,
Babaeizadeh et al.[BFT*17] for instance suggested a GPU-variant of A3C in which both
action selection and learning are queued and batched to a centralised GPU. Others observed
no benefit from the noise introduced by asynchronous updates, and instead proposed a
synchronous variant (A2C) to facilitate GPU batching ([WMGT17], also described by
Clemente et al. in parallel [CMC17]). A central challenge in asynchronous distributed
policy optimisation is incorporating off-policy data, i.e. data collected from a prior policy
m—y (for a typically small integer k). The IMPALA algorithm further advanced scalable
policy optimisation through a novel off-policy correction facilitating aggressive use of
caching to optimise GPU throughput [ESM*18].

Decoupling sample collection from updates improves throughput and is especially useful
when learning multiple problems in parallel with varying trajectory lengths. A feedback
loop between algorithmic insights, improved accelerators and larger tasks in more powerful
simulators drives new training schemes. To summarise key aspects of distributed RL:

e The mechanisms are generally invariant to modifications in network architecture or
loss function, as long as no gradient estimation bias is introduced.

e Algorithmic improvements are in practice only selectively benchmarked for computa-
tional scalability due to cost.

e Practitioners must select between a growing body of distribution schemes even at
the level of single agents solving single tasks.

3.1 Reinforcement learning workloads 41

Multi-learner and multi-agent scenarios create further complications in synchronising
training and resource sharing. As new simulators, accelerators and algorithms advance,
RL frameworks must provide mechanisms to explore new training semantics.

3.1.4 RL implementations and design problems

The growing interest in RL has given rise to a wide array of implementation styles and
design patterns which can be traced back to original research implementations. Here, I
describe how deep RL tasks are commonly implemented and executed on popular machine
learning frameworks. The recent wave of new research and applications in deep learning
has been fuelled not only by hardware improvements but also by deep learning frameworks
simplifying design and training of neural networks [CLL*15, ABC*16, SA16, PGC*17].

Neural network architectures are most commonly implemented using Python, and
by interfacing high level APIs provided by popular engines like TensorFlow [AIM17] or
PyTorch [PGC*17]. These frameworks implement large toolboxes of neural network layers,
optimisation methods (e.g. gradient descent), and high-performing numerical operations.
They also map high level numerical operations to efficient GPU kernels (e.g. CUDA,
OpenCL), or to multi-threaded CPU execution, thus drastically accelerating development.
The core entity these frameworks operate on are tensor objects as multi-dimensional arrays
with support for storing gradients for automatic differentiation. In deep learning workflows,
developers typically manage I/O with Python glue code, as runtime is dominated by neural
network operations executed in C/C++ on accelerators.

After network construction, there is little or no conditional branching required to
perform inference or to train the network. Irrespective of the network architecture, forward
passes and updates require a series of matrix multiplications and additions to perform
layer operations. These numerical operations can be effectively represented via static
computation graphs whereby e.g. in TensorFlow calling layer operations adds computation
nodes to a dataflow graph. This computation graph can then be statically optimised
(details on TensorFlow programming semantics are given by Abadi et al. [AIM17]).
Alternatively, in define-by-run frameworks such as PyTorch [PGC*17], operations are
executed imperatively by an interpreter which traces graph definition through program
execution, thus facilitating dynamic graphs. I discuss graph construction for RL in §3.3.

As a result, supervised deep learning workflows have seen a high degree of standardisa-
tion. This allows developers to focus on effective architecture design. Listing 3.2 illustrates
this using the Keras [C*15] neural network API. Layers, loss functions, optimisation
mechanism and training are abstracted via an object-oriented API. Crucially, training
inputs and labels are generally available in advance to facilitate straight-forward batching
and I/0.

In contrast, as discussed in §3.1, RL workloads exhibit heterogeneous communication
and parallelism patterns as they interact with one or more environments while processing
trajectories. These workload characteristics, combined with fast-evolving empirical research,
have thus far made it difficult to provide standardised software support for designing and
executing reinforcement learning models.

RL algorithms are consequently not natively integrated into frameworks like TensorFlow
but implemented in bolt-on libraries. Many open source RL implementations can be
categorised as reference implementations. For example, OpenAl baselines [DHK*17]
and Google’s Dopamine [BCG™18] provide collections of well-tuned algorithms on gym

42 RLgraph: Modular computation graphs for reinforcement learning

Networks are assembled by sequentially stacking layers.
model = Sequential()

model.add(Dense (32, activation=’relu’, input_dim=10))
model.add(Dense (32, activation=’relu’))
model.add(Dense (10, activation=’softmax’))

sgd = SGD(1r=0.001)

model.compile(loss=’categorical_crossentropy’,
optimizer=sgd,
metrics=[’accuracy’])

High level models facilitate training and evaluation.
model.fit(input_data, input_labels, epochs=20, batch_size=256)
score = model.evaluate(test_inputs, test_labels, batch_size=256)

Listing 3.2: Assembling neural networks with the Keras API.

benchmarks. Nervana Coach [CLN17] contains a similar collection but with added tools for
visualising progress and generic facilities for hierarchical learning and distributed training.
Batched PPO [HDV17] contains a single tuned implementation of a popular algorithm
(proximal policy optimisation (PPO) [SWD*17]) whereby all control flow and environment
stepping have been merged into one end-to-end TensorFlow graph. Keras-rl [Plal6]
provides a loose collection of algorithms (e.g. DDQN [HGS16], DDPG [LHP*16]). Horizon
focuses on building end-to-end pipelines for off-policy training at Facebook [GCL™18].

These algorithm collections typically share some components between algorithms (e.g.
network architectures) but ignore many of the practical considerations discussed above.
Retooling such reference implementations to different execution and batching modes or
device strategies (multi-GPU support, cluster environments) requires significant work.
This is also because these implementations typically contain hard-coded heuristics for the
use in specific simulators. As algorithm performance critically depends on tuning state
preprocessing and learning heuristics [HIB*17, TES*18], developers must tediously analyse
undocumented steps (e.g. reward clipping, state normalisation, gradient clipping) to re-use
reference implementations.

Higher level frameworks focus on providing common APIs and abstractions. Ray RLIlib
[LLNT18] defines a set of abstractions for scalable RL with focus on task parallelism. RLIib
relies on Ray’s actor model [NMWT] to execute RL algorithms via centralised control.
Ray is a distributed execution engine supporting both parallel tasks (e.g. simulations) and
actors (e.g. stateful RL agents) through a unified programming interface. Ray manages
resource sharing between tasks through a multi-level scheduling model where a global
scheduler keeps track of shared state via an object store, and a local scheduler manages
per-server resources. RLIib is a reinforcement learning library serving as an example
application for Ray. At the core of RLIib’s hierarchical task parallelism approach lies a
set of optimiser classes. Each optimiser implements a step() function which distributes
sampling to remote actors, manages buffers, and updates weights.

For example, an AsyncReplayOptimizer implements distributed prioritised experience
replay [HQB'18]. Each step, the optimiser loop fetches samples from remote actors, inserts
them into local replay buffers, and performs training on an asynchronous learner thread

3.2 RLGraph overview 43

by sampling from the buffers. The advantage of RLIib is the separation of the execution
plane in the optimiser and definition of the RL algorithm’s model within a policy graph.
However, each optimiser encapsulates both local and distributed device execution. This
means for example that only the dedicated multi-gpu optimiser class supports splitting
input batches synchronously over multiple GPUs. A further disadvantage of this optimiser
driven control flow is that RLIib mixes Python control flow, Ray calls, and TensorFlow
calls in its components. Algorithms implemented in RLlib are hence not easily portable as
training can principally only be executed on Ray. Sample pre- and post-processing are
coupled with distributed training.

3.1.5 Design summary

Existing abstractions almost exclusively focus on simulator workloads with the implicit
assumption of computationally cheap stop-and-go simulators. When interacting with
non-simulated environments, e.g. a physical system such as robots, or data processing
engines (e.g. databases), training control flow may be driven by external system events.
When learning on real systems, learning is often bottlenecked by sample collection, not
communication overhead or accelerator throughput. In summary, RL frameworks must:

e resolve the tension between fast prototyping through reusable components and robust
interfaces,

e offer flexible distributed and local execution patterns agnostic to simulation-driven
or external control flow,

e and transparently manage configurations for a large number of optional learning
heuristics to incrementally test and validate training behaviour.

Many existing implementations are designed to work well in their target domain (e.g.
reproducing ALE results) but neglect these considerations. They either sacrifice flexibility
by only reproducing selected algorithms without intention of reuse, or focus on parallelism
but restrict algorithms to narrow design assumptions.

3.2 RLGraph overview

I present RLgraph, a reinforcement learning framework designed to address these difficulties.
RLgraph provides a bridge between the deep learning functionalities needed for deep RL
found in popular machine learning frameworks, and the control flow needed to coordinate
RL scenarios. I base RLgraph on these design principles:

e Separating algorithms and execution. RL algorithms require complex control
flow to coordinate distributed trajectory collection and training logic. Separating
these aspects is difficult but essential to avoid re-implementing execution and device
strategies (§3.4.4).

e Shared components, strict interfaces. Deep learning frameworks enable quick
prototyping of neural networks by exposing APIs to combine different types of layers.
Providing a similar set of interchangeable components towards RL is complicated
by the multitude of learning and execution semantics. This is exacerbated by

44 RLgraph: Modular computation graphs for reinforcement learning

implementations containing definitions in multiple execution contexts, e.g. Python
control flow interleaved with calls to TF runtime. Tight coupling of components,
and in turn a lack of well-defined component boundaries means that re-usability is
severely constrained. To ensure re-usability of both high-level abstractions and narrow
heuristics, logical components should only interact using well-defined interfaces
(evaluated in §4.6).

e Training heuristics as first class citizens. Brittle implementations arise when
performance-critical heuristics are not configurable or tested, but hard-coded. Algo-
rithms may still learn sub-optimally with faulty heuristics, as training performance
variance is high even in best case scenarios. Heuristics consequently must be im-
plemented and used as first-class citizens, and ultimately understood to be core
performance elements.

e Sub-graph testing. An undesirable consequence of incorporating stochastic ap-
proximations at all levels are numerical sensitivity and non-determinism [NWS18b].
RL algorithms can require an overwhelming number of hyperparameters (often in
excess of 25). Testing partial dataflow is highly desirable but tedious to realise in
static graph frameworks. RL frameworks must provide mechanisms to incrementally
build and test complex dataflow (§3.5).

I introduce RLgraph, a modular, backend-independent framework to construct and
execute deep reinforcement learning algorithms. By separating logical component com-
position and execution, RLgraph can support static graph and define-by-run execution
(§3.4). RLgraph is open source'.

At the centre of RLgraph’s design is a component graph architecture responsible for
assembling and connecting algorithmic components (e.g. buffers or neural networks) as
named subgraphs, and for exposing their functionality via a common API. This component
graph exists independently of implementation-specific notions, and instead relies on
generalised dataflow types and operations. The component graph is built into a backend-
dependent computation graph via a graph builder which generates operations, graph state,
device assignments, and an API registry.

A graph executor expands the component graph to add operations for local and
distributed device strategies, e.g. by creating subgraph replicas for GPUs. At runtime,
the graph executor serves requests to the agent API. In define-by-run mode where no
static graph is constructed ahead of execution, the build process is used to validate that
all defined operations can execute without error.

Figure 3.3 gives a high-level view of RLgraph in relation to deep learning frameworks
and distributed execution engines. At the user-level, RLgraph exposes an agent API which
allows plug-and-play execution of pre-built RL models on common simulators or custom
applications. Pre-built models can be declaratively configured to enable rapid exploration
of network architectures, execution models, and training heuristics. These models are
implemented using RLgraph’s component composition and executed on a combination of
local and distributed execution engines. Next, I introduce RLgraph’s design abstractions.

https://github.com/rlgraph/rlgraph, accessed 25.08.2019

https://github.com/rlgraph/rlgraph

3.3 Design 45

Pre-built models,

API, Component configuration .
inference

Model design,

RLgraph component graph dataflow composition

Local backends
TensorFlow PyToreh variables/operations
Distributed TF | | Horovod Ray | Distibuted
execution engine
. Execution,
Hardware: CPU, GPU, TPU, FPGAs... orchestration

Figure 3.3: RLgraph software stack.

3.3 Design

Which software primitives or abstractions are appropriate for composing RL algorithms?
Continuous environment interaction creates data streams which are processed through
a series of computations which drastically differ in cost, from down-sampling images to
gradient-descent steps. Dataflow programming as a series of numerical transformations is
the paradigm behind popular machine learning frameworks like TensorFlow [ABC*16].
End-to-end graph representations enable compile-time optimisations (§3.6.2), model se-
rialisation, and minimise context switches between host language and graph runtime to
improve performance [YABT18, PTST17]. In existing implementations, I observe:

e An impedance mismatch exists between the largely functional transformations in
static graphs and RL algorithms which require complex control flow and communi-
cation between high-level logical entities.

e This mismatch causes implementations to loosely tie together graph-based dataflow
for numerical operations and imperative scripting to facilitate communication and
logic, thus creating a host of bugs and design issues discussed in the prior section.

The aim of my design is to facilitate algorithm design at the level of logical high level
components (e.g. buffers, data pre-processors, neural networks, action distributions) while
preserving the advantages of end-to-end static graphs.

RLgraph must (i) allow users to group computations within familiar logical entities
which encapsulate internal graph state and (ii) combine these entities into a graph while
respecting different execution considerations such as distributed communication, resource
assignments, and local/global state sharing. The arrangement of components into distinct
coordination semantics (e.g. distributed asynchronous) must be independent of the logic
contained within components.

3.3.1 Components

RLgraph’s module abstraction is hence a Component class which encapsulates arbitrary
computations via so called graph functions. Components provide an object-oriented
interface to building static computation graphs.

Consider a replay buffer component which exposes functionality to insert trajectories
and sample mini-batches according to priority weights. Implementing this buffer in an

46 RLgraph: Modular computation graphs for reinforcement learning

imperative language such as Python is straight-forward, but including it as part of a static
graph requires creating and managing state variables through control flow operators (e.g.
to update priorities in an appropriate data structure). Composing multiple components in a
re-usable way is difficult due to the impedance mismatch between class-based programming
in a driver language, and functional transformations within a dataflow graph.

Existing high-level APIs for neural networks such as Sonnet, [Deel7], Keras [CT15],
or Gluon [R*18] focus on assembly and training of neural networks. Implementing RL
workloads in these frameworks requires mixing imperative Python control flow with deep
learning graph objects, leading to the design issues discussed in §3.1.

PrioritisedReplay

Scope/name: prioritised-replay
Device: CPU
Backend: TensorFlow

SegmentTree Variables:
(sub component) buffers & indices
[graph fn | API
A 4
graph fn : g
insert records
TensorFlow (A_PI)
operations \’
graph fn] get_records (API)
graph fn] update (API)

Figure 3.4: Example memory component with three API methods.

Figure 3.4 shows a concept of a prioritised replay [SQAS15] component. Components
are identified by name which corresponds to the scope used when e.g. creating TensorFlow
variables. Scoping is a concept to logically group state and computations into named
sub-graphs. RLgraph names components and maps them to appropriate scopes if scoping
is used by the underlying static graph. Component functionality is exposed via API
methods which are declared via method decorators. Components encompass state and
computations. They are executed on a configurable device, and state may be read from
and written to from the same or a different device. When a component is built (§3.3.2),
its internal state is defined based on input spaces, i.e. inputs to the graph or results of
intermediate dataflow. For example, the input to a storage buffer may use a type and
layout inferred from a series of transformations of graph inputs.

The difference between a native object method and an RLgraph API method is that
API methods are traced in the build process into an intermediate representation. An
operation registry is built which maps corresponding tensor operations to required input
arguments. In define-by-run mode, the registry is used to control gradient-taping for
automatic differentiation and conversion of input data to tensor types. Graph functions
implement backend-specific functionality for API methods. Graph functions:

e Group dataflow computations corresponding to logical high-level entities.

3.3 Design 47

API method
------- Dataflow
agent.update()
Graph N
function RN
‘;/ \\4 ‘~\\‘$
buffer.sample_batch() loss.calc_loss() optimizer.step()
; v
%
buffer._graph_fn_sample)
network.forward() loss.loss_per_item()
a2 :
v

segment_tree.lookup()

layer._graph_fn_apply()

Figure 3.5: Simplified dataflow between API methods and selected graph functions for a
training update method. The update-API method of an agent calls no graph functions
but API methods of sub-components, which in turn call further sub-components. Where
necessary, API methods are resolved by calling graph functions implementing backend-
specific computations.

e Receive as input and return symbolic graph nodes in static graph operation.
e Receive and return tensor values in define-by-run mode.

e Can invoke other graph functions and API methods to coordinate computations.

This dataflow between components (and thus algorithm logic) is constructed in a backend-
independent manner, as illustrated in Figure 3.5. The purpose of encapsulating computa-
tions within components is to flexibly combine stateful computations in static graphs.

The API decorator used to tag API methods and graph functions also modulates input
and output dataflow to ensure components can be connected seamlessly. Dataflow between
RL components often involves collections of high-dimensional matrices which may be
arbitrarily nested or arranged. For example, experience trajectories may be sequences of
state-transition tuples (s, a;, 1y, S;11). Arbitrary composition of components hence requires
a compatible dataflow. In RLgraph, compatibility is ensured via space objects which define
type and layout (i.e. dimensionality) of dataflow.

Each space object can be viewed as a prototype of the dataflow expected to arrive at a
graph function. Hence, space objects allow to construct dataflow graphs which may later

48 RLgraph: Modular computation graphs for reinforcement learning

use backend-specific dataflow implementations in place of spaces. For example, records
inserted into the priority buffer component may be unstructured collections of matrices.
To access contents in a record, developers normally need to perform manual splitting and
merging operations to manipulate individual entries. The layout of nested records (e.g.
names of keys in a map) is hard-coded either in the function accessing the record, or via
named function parameters. Numerical operations offered by deep learning frameworks do
not operate on host-language container abstractions (e.g. Python lists or dictionaries, or
C++ containers) but require framework-specific tensor objects.

Listing 3.3 illustrates this aspect for the insert_records functionality. Developers can
either use native containers which require manual un-nesting (1.), or can hard-code tensor
arguments in inflexible interfaces (2.). RLgraph API methods can request to flatten nested
operations (and re-nest results based on key-structure) (3.). They can also request to split
nested arguments and to unflatten and merge split results (4.).

API decorators hence allow developers to modify dataflow layouts to avoid hard-coding
them into computations. While the prototype has been implemented in Python due to
its popularity, the same principles could be implemented in any other host language to
construct computation graphs. In summary, RLgraph components:

e offer an objected oriented API to construct backend-independent end-to-end compu-
tation graphs,

e allow control of execution behaviour and dataflow layout through API methods,
e can be composed and nested,

e and enable fine-grained control of devices for executing computations and managing
internal state locations.

Next, I explain how components are used to construct the component graph.

3.3.2 Building the component graph

Algorithm logic is implemented by beginning with a root component as a graph container.
Sub-components are then added to the root, and API methods are implemented to create
dataflow between components. RLgraph’s high level agent API (§3.4.1) is one example of
a set of API methods exposing domain-specific functionality. Another example is a testing
API used to test individual API methods when building single components (§3.5). To
build the graph, the build algorithm traces all API methods from the root component its
input spaces.

The component graph is a control-flow-graph (CFG) made up of API methods as
vertices V' and edges indicating dataflow between two API methods a;, as. The CFG has
the following properties:

e The root component’s API methods are the entrance blocks, and there can be
arbitrarily many exit blocks.

e Edges between API methods are restricted by component membership. An edge
between a; and as can exist under the following conditions:

— ay € C1 and ay € (', i.e. both API methods belong to the same component C.

3.3 Design 49

1

2# 1. "records" is a Python dictionary containing

3# TensorFlow tensors

4 def insert_records(records):

5 # Method must assume unnested structure or flatten dict.

6 for name, tensor_op in records.items():

7 # Do something with tensor_op to create new graph nodes
8 assign_op = tf.assign(self.variables[name], tensor_op)
9

10

11# 2. Separate hardcoded arguments.

12def insert_records(states, actions, rewards, terminals):
13 # Fixed arg handling reduces re-usability.

14 s_assign_op = tf.assign(self.states, states)

15 a_assign_op = tf.assign(self.actions, actions)

16

17

18 # 3. RLgraph: Decorator can flatten, split, merge nested dataflow.
19 @rlgraph.api_method(flatten=True)

20def _graph_fn_insert_records(records):

21 # Assign op, generic container operations.

22 self.buffer.assign(records)

23

24

25# 4. Record container is flattened (un-nested) and split,
26# insert function called once per key,

27# results are re-nested, auto-merged.

28 @rlgraph.api_method(flatten=True,

29 split=True, add_auto_key_as_first_param=True)

30def _graph_fn_insert_records(key, records):

31 # Records is now a single tensor-op

32 # or tensor-value in define-by-run mode

33 return self.assign_variable(self.records[key], records)
34

Listing 3.3: RLgraph decorators modulate dataflow to increase re-usability and flexibility.

50 RLgraph: Modular computation graphs for reinforcement learning

Dataflow type definitions necessary to build this API method:
spaces = dict(
states=FloatBox((210, 160, 3), add_batch_rank=True)
time_step=int,
use_exploration=bool

)

Defined within agent class, attached to root.
O@rlgraph_api(component=self.root_component)
def get_preprocessed_state_and_action(root, states,
time_step=0, use_exploration=True):
Preprocessed states is the result of an API method call,
either graph-op or tensor.
preprocessed_states = self.preprocessor.preprocess(states)
Call another API method.
return self.policy.sample(preprocessed_states)

Listing 3.4: API methods can be composed by calling own or other components’ API
methods.

— a; € Cy and ay € Cy and Oy is a (direct or indirect) sub-component of C;.

Components cannot call API methods of parent components to avoid implicit
dependencies through cyclic call-chains.

e API method vertices can create edges using bounded loops and conditionals. Dynamic
unbounded loops and recursion are not allowed in API methods but in graph functions
which can implement arbitrary computations.

API methods can be combined within API functions and graph functions.

For example, Listing 3.4 illustrates an API method which preprocesses a state and
retrieves an action by calling API methods on other components. At component build
time, calling an API method does not create any backend operation (in static graph mode),
and no values are passed through (in define-by-run mode).

The component graph is built dependent on the input spaces to the root component, or
more precisely to all input arguments. In the example, input spaces for states, time_step,
and wuse_exploration must be provided. The shape of states is an input argument usually
provided e.g. via the gym interface. Only spaces to the root component need to be
provided as input spaces to sub-components can be inferred from computations. For
example, the preprocessor component may down-sample input states to a different shape,
and the sub-sequent API call is dependent on that updated shape. The second phase of
the build mechanism, where backend specific operations are defined, uses these shapes to
ensure input placeholder, internal state variables, and results of API calls conform to the
expected layouts and types.

The component algorithm builds a directed acyclic graph (DAG) of records for API
methods via depth first search. Calls to API methods of root components are sources, and
their final results (or rather the operations that produce them) are sinks.

A simplified graph assembly procedure is shown in Algorithm 2. The root component
exposing the external interface and the input spaces for the external API are passed to the

3.3 Design 51

Algorithm 2 Simplified component graph build procedure

Input: component root, input_spaces spaces
apt = dict()
Call all api methods once, check input dataflow types.
for method, record in root.api do
input_op_records = list()
Create one input record per API input param.
for param in record.input_args do
Check if space defined for param, fail otherwise.
if param_name in input_spaces then
input_op_records.append(Op(param.space))
end if
end for

Traverse graph from root for this method.
out_ops_records = method(in_ops_records)

Register method with graph inputs and output ops.
api[method] = [input_op_records, out_ops_records]

Tag last out-op-records.
for op_record in record.out_op_columns[—1] do
op_record.is_terminal_op = True
end for
end for
return ComponentGraph(root, api)

component graph builder. This builder generates the backend-independent dataflow graph
and the API by iterating over all API methods defined in the root component. For each
method, a component graph operation is created for each of its parameters and looked up
in the input graph (type checks omitted). The component graph is traversed by calling
API method decorators which infer parameters and return values for each API called
through the graph, and these are stored in records. Finally, the API method is registered
in a registry which contains the input spaces and final output operations (nodes in the
graph).

The component graph identifies the API of the graph and is used to identify missing
input definitions or dependencies by failing as early as possible. It also enables graph-level
device strategies as the graph can be rewritten before building backend operations (§3.4).

The component graph enables both push based (define-by-run) and pull based execution.
Pull-based refers to the mechanisms whereby in frameworks like TensorFlow, evaluating a
specific node in the graph is achieved by passing the node reference to the graph runtime.
The runtime will then execute all dependent operations in the graph, which may require
user inputs to provide values for input placeholder graph nodes. RLgraph hence needs to
map API methods to graph nodes, i.e. which graph operations to call when users request
execution of a specific API method. Session and operation handling are automated via a
graph executor, and users only need to specify API methods they want to execute (§3.4).
In push-based operation, input arguments are simply marshalled through API methods by

52 RLgraph: Modular computation graphs for reinforcement learning

with tf.Graph().as_default(), \
tf.device(local_job_device + ’/cpu’), \
pin_global_variables(global_variable_device):
tf.set_random_seed (FLAGS.seed)

Create (Queue and Agent on the learner.

with tf.device(shared_job_device):
queue = tf.FIFOQueue(l, dtypes, shapes, shared_name=’buffer’)
agent = Agent(len(action_set))

Listing 3.5: Example device management fragment from DeepMind open source imple-
mentation. Nested assignments create complicated dependencies.

function execution.

Execution of operations is restricted by design. Users cannot execute arbitrary opera-
tions within the underlying computation graph. To call a specific computation, it must
be exposed as an API method. If arbitrary operations could be accessed from outside
a graph function, they could also be used to extend the graph and create undesirable
read-write dependencies between device boundaries of different components. Placeholders
for graph extensions would also need to be defined manually based on the intermediate
layout (i.e. the shape of the inputs to the operation within the graph function), which is
generally not know in advance. Existing open source implementations particularly suffer
from difficult-to-debug ad-hoc graph construction and re-wiring of operations (§3.1).

3.3.3 Building for static graphs

Next, I explain how end-to-end static computation graphs are created from the component
graph representation. This section covers mechanisms to combine component subgraphs
into larger graphs corresponding to complete algorithms. Conceptually, this is achieved
by mapping input space definitions to the root component to dataflow input nodes in
the corresponding graph backend. Input nodes with spaces and types derived from input
spaces are then marshalled to individual components through the operation records in the
intermediate representation.

The aim of this is to create connections between operations in graphs by invoking
graph functions, with inputs traced from input nodes, and outputs being routed to the
graph functions requiring them. Each graph function represents a subgraph and the build
process iteratively connects them according to the dataflow dependencies given via the
intermediate representations.

The difficulty lies in managing the corresponding internal state, local and global devices
(for distributed execution (§3.4)) for each sub-task in the computation. While different
programmatic approaches exist, TensorFlow for example utilises context managers to
assign devices to states and computations. Listing 3.5 is taken from DeepMind’s open
source implementation of a distributed policy optimisation algorithm?.

The example illustrates how implementations create 1/O dependencies via ad-hoc
assignments. In the code, lines 1-2 indicate that all following code is first assigned under a
"local job device” CPU and a default graph. In line 3, another context manager is used to

’https://github.com/deepmind/scalable_agent/blob/master/experiment.py#L496

https://github.com/deepmind/scalable_agent/blob/master/experiment.py#L496

3.3 Design 53

assign all global variables created under this context to a global device. Global variables
are variables in the context of a distributed computation graph which are accessed by
all nodes, and which are hosted on a specific device (in this case the learner). In line 7,
another context manager is used to create a queue and agent under the shared device.

Algorithm logic is intertwined at every level with distributed execution and task-device
assignment. As every operation is created under multiple context managers, a single
misplaced operation can cause program execution to slow down an order of magnitude e.g.
because local state is accidentally read from a remote device. Such problems are difficult
to identify because they do not constitute bugs from the perspective of the runtime.

The purpose of RLgraph’s build process is to avoid interspersing job and device
assignments with dataflow definitions. The backend build mechanism incrementally creates
a computation graph by combining component subgraphs. Each graph function in a
component constitutes a sub-graph that can be built, device-assigned, and executed
individually (e.g. for testing §3.5). Each component further can create in-graph state via
variable creation which again can be separately device-assigned. I explain device strategies
in §3.4.4. The build algorithm contains these phases:

1. Graph input placeholders are generated for the input arguments to all API methods
at the root function, based on input space definitions.

2. Placeholders which represent nodes in a symbolic TensorFlow computation graph are
stored as operations in the operation records created when building the component
graph.

3. From this initial set of records containing operations, the algorithm iteratively builds
the backend graph by marshalling operations through the component graph until no
operations are left to process:

3.1. Operations are processed once the components they connect to are input-
complete. A component is input complete if none of its API methods are
waiting on graph inputs.

3.2. If a component is complete, its internal state is created by calling the generic
state creation method with its dependent input spaces. Optionally a device
assignment and variable sharing context is activated, otherwise the global
default device is explicitly assigned.

3.3. Graph functions as logical units of computations are called to create graph
operations when all input operations are available. Graph functions are assigned
to a default device or a device provided in a device map which enables manual or
automatically optimised assignments of components to devices. Individual graph
functions are called multiple times if the corresponding inputs are (potentially
nested) container operations.

3.4. Outputs of graph functions are again stored in records and, if required, re-nested
or merged if the graph function is called multiple times with different arguments,
each time creating a new static graph fragment.

Constructing static graphs in this manner avoids implicit device and variable sharing.
Each iteration (i.e. processing a single operation record), the build algorithm asserts
dataflow compatibility when connecting operations across components. This is achieved

54 RLgraph: Modular computation graphs for reinforcement learning

by comparing the input and output spaces (i.e. dataflow prototypes) of the corresponding
operations.

The resulting static graph is not logically different from ad-hoc implementations.
Building the component graph and from it the static backend graph could be merged
into a single procedure where graph operations are immediately created and marshalled
through the components. This would create two disadvantages.

First, knowledge of component graph enables device strategies that require making
copies of specific sub-graphs to split data across devices. The component graph can be
modified before building backend operations to accommodate such strategies. Second,
building the component graph is about an order of magnitude faster than building
the backend graph since no backend operations are created. Separately building the
component graph and creation of backend operations enables more fine-grained debugging
and accelerates development. To summarise, this section used the example of TensorFlow to
illustrate how RLgraph composes high-level RL components into end-to-end differentiable
dataflow graphs.

3.3.4 Define-by-run component graphs

This section covers the alternative paradigm of dynamic graphs which implicitly arise from
executing an imperative program. I discuss the tradeoffs of dynamic and static graphs
and explain how RLgraph supports both through its component graph. In define-by-run
or eager mode, no static graph is built ahead of execution (a static representation may be
inferred from execution, §3.6.1).

Define-by-run frameworks such as PyTorch enable fast development cycles because
they support imperative evaluation of numerical operations with built-in automatic dif-
ferentiation. This allows developers to utilise mature debugging tool-chains from host
languages. They also facilitate dynamic network architectures where the layer structure
can be modified between each call.

In supervised learning scenarios with large batch sizes, training time is dominated by
computing updates on accelerators [ARR"16]. CPUs manage I/O by loading training data
from input sources (e.g. distributed file systems) and transferring it to device memory.
RL workloads in contrast are characterised by CPU-intensive environment evaluation,
processing of sample trajectories, and communication between workers and learners. RL
implementations in design-by-run frameworks is hence complicated by the fact that there is
no natural boundary between data and computation logic. In static graphs, each operation
and its inputs must be intentionally placed within or outside the graph, thus allowing
specific tradeoffs. For example, preprocessing a short state trajectory may be faster in a
host-language than in a graph runtime like TensorFlow due to invocation overhead.

This fragmented dataflow (where fragmentation refers to execution context switches)
does not allow for the application of end-to-end optimisations such as device placement
[MGP*18] or automated graph rewrites for hardware-specific compilation [CMJ™ 18] (§3.6).
Moreover, distributed execution and scheduling become more difficult as schedulers have no
access to fine-granular task details (as in an end-to-end graph) but must execute programs
as black-box tasks (e.g. Ray, [MNWT17], §3.4.5).

Define-by-run frameworks nonetheless enjoy increasingly popularity among developers
especially in exploratory implementations where performance is secondary. TensorFlow
similarly has introduced an eager execution mode due to the difficulties around designing

3.4 Execution 55

and debugging static graphs. Framework providers must identify abstractions which
combine the fast prototyping and debugging of define-by-run mode with scalable execution
mechanisms and optimisations. To resolve this tension, framework developers are exploring
new mechanisms to trace imperative control flow for automated graph generation (§3.6.1).
RLgraph can provide define-by-run execution with the following considerations:

e The backend build process generates static graph operations from a set of input spaces
and connects them through the component graph. However, from the perspective of
the build process, there is no difference between static operations and define-by-run
operations, which are simply tensors objects holding numerical values.

e Instead of generating input placeholders for a static graph, the build process samples
from the input space. Graph functions and API methods do not return static tensor
operations but immediate computation results.

e Any static component graph can also be executed as a define-by-run graph. This
follows because allowed control flow in static graphs is a restricted sub-set of the
control flow available in imperative languages [YAB*18].

e Not all define-by-run graphs can be built as static graphs if they use language features
not supported by static runtimes.

Prior RL frameworks or high level deep learning APIs do not support both define-by-run
and static graph frameworks through a single abstraction. They are designed for one
framework or paradigm, or only support different paradigms on an entire algorithm level.
For example, Ray RLIib provides parallelisation mechanisms on the Ray execution engine
which can parallelise both e.g. TensorFlow and PyTorch algorithms. Implementations are
separate so algorithmic logic must be entirely reimplemented per backend.

RLgraph supports end-to-end static graphs and define-by-run mode on a component
level. Dataflow between algorithms is shared through all API methods. Only graph
functions performing backend-specific computations need to implement framework-specific
logic. In the future, I expect automatic graph generation to be able to reduce backend-
specific code further.

[implemented a define-by-run graph building and execution mode for RLgraph support-
ing PyTorch as a popular define-by-run framework for three reasons. First, in define-by-run
model, users can realise complex control flow which may be difficult to address in static
graphs (e.g. recursion). Second, they can also choose define-by-run mode to implement
features like dynamic neural networks. While the component graph is always static, graph
functions can express dynamic behaviour. Third, even with tools for automatic graph
generation from imperative code, algorithms need to be structured in a way that allows to
leverage graph generation to connect computation fragments into end-to-end graphs.

Next, I explain how RLgraph executes algorithms across deep learning frameworks and
execution engines.

3.4 Execution

The prior sections have covered the generation of differentiable dataflow graphs from
high-level components. This section discusses how different execution scenarios, from

56 RLgraph: Modular computation graphs for reinforcement learning

General purpose API: get_action, update, export,..

¢

Agent API
RLgraph
local Graph Graph
execution i | executor/ Builder
layer devices/ _
’ profiling OP registry
Local backends
Distributed
coordination [Ray executor] [Distributed TF/PS]
layer
Ray Ray TF TF

Worker_1] = |Worker_n Worker_1] = | Worker_n
Vectorised Local Graph executor
sample RLgraph syncs variables to PS,
collection agent manages plugins (Horovod)

Figure 3.6: RLgraph execution architecture overview.

single-threaded simulators to large scale distributed engines, can be accommodated from
the execution-agnostic representation.

RLgraph’s execution abstraction is a graph executor. It serves as a bridge between
the API defined in an agent and the computation graph/operations generated by the
build process. Figure 3.6 provides an overview of RLgraph’s execution stack. Users of
pre-existing implementations interact with the high-level APT (§3.4.1). The API passes
requests to the graph executor which builds up inputs for the corresponding operations
from the op registry, executes operations, and returns results (§3.4.2). The graph executor
also manages scaffolding for each backend and can interleave build stages with device
management (§3.4.4) and optional optimisations (§3.6). Execution on distributed execution
engines is handled via dedicated executors which coordinate workers (§3.4.5).

3.4.1 Agent API

This section covers the agent API which I use for backend-independent distributed coordi-
nation. I first reiterate the main challenges for algorithm execution.

e When designing algorithms, the number of parallel environments, their step-times,
and evaluation costs in later deployments are not known. For example, an algorithm
could collect individual episode trajectories within a single thread, or produce a large
set of parallel trajectories with different termination state and trajectory length at

3.4 Execution 57

unknown intervals. Pre- and post-processing tasks might be performed by the same
process, or could be distributed.

Execution-agnostic implementation hence means that dataflow logic is modularised
so that all steps (i) can be invoked individually, (ii) can accommodate all possible
trajectory layouts, (iii) and can be executed from internal stored graph state or purely
functional by passing in all necessary information. This is needed to accommodate
different synchronisation schemes which store state in-graph, or in external caches
or databases.

The agent API describes a set of dataflow definitions which all algorithms must
implement to utilise execution coordination. The API must serve the following purposes:

1.
2.

3.

Provide a simple to use high-level RL interface for practitioners,
Allow rapid design exploration through component combination,

Support heterogeneous single-node and distributed execution with customised con-
currency, parallelism, and control flow.

Listing 3.6 shows the main methods in the API. Agents are instantiated by providing the
agent object with a component configuration containing a (nested) list of components
and their configurations. The internal state of each component is fully described by
configuration and input space definitions to avoids reproducibility problems.

abstract class rlgraph.agent:
Builds graph.
def build(options=None)

Get predictions for states, control behaviour with flags.
def get_actions(states, explore=True, apply_preprocessing=True)

Update from buffer or external data.
def update(batch=None, sequence_indices=None, apply_postprocessing=True)

Write trajectories to buffer.
def observe(states, actions, rewards, terminals, env_id)

Read component/model state.
def get_weights(components=None)

Write model state.
def set_weights(weights)

Reads internal state of the graph.
def read_variables(variables)

Import model parameters.
def import_model (path)

Serialise model parameters.

58 RLgraph: Modular computation graphs for reinforcement learning

def export_model (path)

Listing 3.6: High level agent API.

A. Opaque execution control flow, B. Application-driven control flow,
environment control delegated RL APl is invoked explicitly based

to framework. on environment.

Training parameters ‘ External environment, e.g. ’

remote service, robot
A

Y

4 RL agent

Glue |/ [Application code]
code |\ :
| Environment i act(),
(e.g. gym) i Observe(),
..... v _update()
[RL agent API]

Figure 3.7: Agent-driven and environment driven execution modes.

A usability limitation of many open source RL libraries is their control flow assumption.
The popularity of OpenAl gym has led implementations to assume a reactive environment
driven by a single-threaded training loop (Figure 3.7). This agent-driven (environment
waits on agent updates) design has been adopted for instance by OpenAl baselines
[DHK*17], Nervana Coach [CLN17], and Ray RLIib [LLN*18].

Agent-driven execution is undesirable for domains where the environment cannot
be provided via a convenient simulation handle. In environment-driven execution, an
application invokes the agent API to retrieve actions and perform updates according to
unknown application requirements. For example, one research user of RLgraph utilises RL
for an interactive learning application where hundreds of users interact concurrently at
a random schedule. The application needs to perform updates when a specified number
of samples has been reached across all users. The update must process an unordered
collection of trajectory fragments from terminal and non-terminal episodes. Such semantics
are not supported by existing libraries which assume a specific episode and update schedule.
For example, none of the libraries I surveyed support updating from concurrent episode
trajectories without requiring the user to perform parts of the algorithm’s post-processing
in their application.

I designed the RLgraph API to be agnostic with regard to execution semantics. This
means the API can both be consumed by common gym simulators executors, distributed,
parallel and asynchronous executors for large scale simulations (§3.4.5), and external
applications with custom semantics. This requires the API to include the following
functionality:

e Pre-processing of states (e.g. down-sampling of images) and post-processing of
trajectories (e.g. computing value estimates) must be available separately. In
distributed execution, it is often convenient to distribute parts of pre- and post-
processing to environment worker threads, so learner tasks are not burdened by
them. In contrast, users from external applications may not be aware of pre- and
post-processing workflow. They must be able to rely on them being performed
correctly as part of the update.

3.4 Execution 59

e All pre- and post-processing must be able to operate on batches of trajectories
invariant to the current state of each trajectory (terminal or non-terminal). This
is achieved by using an additional array of boolean indices when updating from a
batch of trajectories. A ”"true” value indicates the end of an episode fragment in an
environment, and for the case of a single environment, this index is equivalent to the
terminals of the episode. Without such an index, non-terminal episode fragments of
multiple environments could not be distinguished.

e The internal state of component subgraphs and model parameters must be trans-
parently readable and writable. Distributed execution engines employ a multitude
of coordination schemes ranging from requiring users to implement manual syn-
chronisation to engine-specific global state sharing (e.g. distributed TensorFlow
[AIM17]).

3.4.2 Local execution

Local execution refers to the way requests to the agent API are resolved within a single
process by invoking a graph executor. The graph executor evaluates if input arguments
correspond to the prototype dataflow definitions given via input spaces. Supporting
different machine learning frameworks requires implementing a graph executor with two
key methods to build and execute graphs. A separate graph executor per framework is
necessary due to the differences in how machine learning frameworks provide functionality
such as device assignment, state management, and operation execution.

I exemplify this via the TensorFlow and PyTorch executors I implemented in my
prototype. Building component graphs to the TensorFlow backend requires initialising
a graph, a session, optional scaffolding for profiling, checkpointing and result statistics,
and additional build arguments in case parts of the graph are meant to be declared
global shared state. Executing an API method requires translating its output to the
corresponding TensorFlow graph operations before invoking a session.

The PyTorch executor does not interfere with the build process as there is no session
or graph scaffolding. Data can be moved across devices with ad-hoc calls on a tensor
object during execution with corresponding runtime penalties for memory allocation
and data transfer. The main consideration in define-by-run execution is the automated
tracking of gradients when converting input arguments to tensor objects which are subject
to gradient accumulation. The PyTorch executor executes API methods by retrieving
not graph operations but the function object which is then called with tensor-converted
input arguments. Gradients are attached if the method requires computing an update.
Sub-sequent calls to dependent API methods and graph functions across components are
subject to define-by-run versions of dataflow manipulation.

Evaluating decorators between API methods introduces some over-head in define-by-run
mode. Recall that components can also be flexibly combined due to dataflow modifications
when connecting them, realised via API methods. This means in define-by-run mode, every
graph function evaluation begins and ends with evaluating potential layout transformations.
Otherwise, this functionality would need to be hard-coded into components which hinders
reusability. As I show in the evaluation, execution time for non-trivial model sizes is
dominated by neural network operations.

The component build mechanism facilitates optimisations. Consider any number of n
evaluations of dataflow structure evaluations g : R — R" of a method f; : R" — R" with

60 RLgraph: Modular computation graphs for reinforcement learning

r e R™

y = g9(f1(9(f2(g(fn(2))))- (3.1)
The structure of this call-chain is known ahead of execution due the intermediate component
graph. This means that if any sub-subsequence f;, fi11--- , f, does not require dataflow

manipulations, the call-chain can be contracted to a single API evaluation by removing all
intermediate edges between API function evaluation and methods within the sub-sequence:

y = g(fi(f2(fu(2))). (3.2)

A typical example of this is any stack-like structure (e.g. neural network layers). If
inference performance is critical to the application, a tracing mechanism similar to the
build mechanism can be used to extract underlying graph structure (§3.6.1).

3.4.3 Implementing algorithms

When implementing algorithms, agent API, executor and graph are utilised in the following
structure:

1. Developers implement the agent API, create components such as neural networks,
optimisers and probability distributions, and define dataflow between components
through API methods attached to a root component (Figure 3.8). Users can also
implement other ad-hoc APIs, RLgraph for example also has a light-weight testing
interface used for generating sub-graph tests (§3.5).

2. The root component is passed to a graph executor which is instantiated based on
the backend framework configured. The graph executor creates a graph builder and
invokes the different build phases.

3. Calls to the agent API are routed to the graph executor which in turn requests
operations or methods from the API registry created during graph building.

4. There is no other interaction between users and the model than through registered
API methods. All backend-specific functionality and dataflow modifications are
centralised into executors and API method/graph function decorators.

Crucially, the dataflow created by users exploring new algorithms is independent of the
specific graph executor /backend used.

3.4.4 Device management

In the context of graph construction (§3.3), I discussed how device semantics in deep
learning frameworks can cause implementations to tightly couple execution instructions
with algorithmic logic.

Deep learning frameworks frequently provide built-in mechanisms for device strategies.
These abstractions simplify distributed training for supervised learning with a static
data-set, but alone are insufficient for reinforcement learning. Hierarchical pre- and post-
processing of sample trajectories and sample transfer between workers and learners (as
opposed to importing a dataset once from a distributed file system) necessitate fine-grained
device assignments to optimise throughput.

3.4 Execution 61

(1) Component creation: Define unconnected subgraph hierarchies.

AgentComponent

[Preprocessor] [Exploration] [NeuraINetwork]

Segment tree Conv layer

i | Dense layer

Subcomponents

(2) Implement Agent API: Connect through untyped/backend-independent dataflow.

(a) act(states,

AgentComponent use_exploration,
apply_preprocessing)

(b) if apply_preprocessing

preprocessor.process(states) (c) policy.get_action(

preprocessed states
. use_exploration)

Policy
Replay buffer Preprocessor Exploration NeuralNetwork |
Segment tree i | Conv layer ! (d) Return
: i final action
' | Denselayer | | 9graphnodeto
i\ API, save
""""""""""""" in registry

Policy subgraph
components

(3) Define dataflow layouts for API
Type descriptions serve as prototype dataflow when building differentiable graph:

states = FloatBox(dtype=float32, shape=(640, 480))
use_exploration = Bool()
apply_preprocessing = Bool()

Figure 3.8: Implementation example. (1) Users create subcomponents of an agent com-
ponent. (2) The agent API is implemented by connecting components. (3) Input type
definitions restrict allowed dataflow for the static graph constructed during the build.

Device management in RL has not found much attention in the literature beyond
show-casing how specific algorithm implementations can achieve high GPU utilisation
[CMC17, ESM*18, LLN*18, HQB"18]. Prior research has focused on how to structure
distributed dataflow to improve device utilisation, but not how to provide building blocks
that enable new device strategies.

In consequence, existing RL frameworks do not offer modular device strategies. In
RLgraph, devices can be managed both on graph level and component level:

1. Component-level assignments. Component level assignment allows to create
internal state and computations for each component subgraph under a device context.

2. Graph-level assignments. Graph-level strategies leverage the fact that the compo-
nent meta-graph can be modified before building. For example, to distribute sample
trajectories across devices, component-sub-graphs can be copied and sample data

62 RLgraph: Modular computation graphs for reinforcement learning

split across graph copies. Further, it can be beneficial to declare some sub-graphs as
globally (i.e. cluster-wide) shared state in parameter-server architectures [LAP*14].

The need for both component and graph-level device management can be exemplified
through distributed policy optimisation algorithms such as IMPALA [ESM*18]. IMPALA
performs learning by letting a set of actors perform environment trajectory rollouts. Their
samples are inserted into a globally shared blocking queue. The learner dequeues rollouts
from the queue, post-processes them, and moves them to a staging-area. In parallel, a
previous batch is removed from the staging area to compute the update. Some value
estimation heuristics cannot be effectively parallelised on accelerators because they require
a linear scan of sample trajectories.

Figure 3.9 visualises dataflow and device assignments in RLgraph’s IMPALA imple-
mentation using TensorFlow’s TensorBoard tool. When RLgraph builds its component
graph to a TensorFlow graph, component names are used to generate scoped operation
and device assignments. Here, device assignments are highlighted in color where green
components are assigned to a GPU and blue components to CPUs. Blocks with both
colours indicate that the component has sub-components on another device, e.g. the loss
function computing importance weights on the CPU and back-propagation on the GPU.

Visualisations can be used as an interactive dataflow debugging tool if the graph
is organised into logically meaningful components. This is not the case for ad-hoc
implementation styles. Figures 3.10 and 3.11 are visualisations generated for DeepMind’s
open source implementation of IMPALA by the algorithm authors. Computations and
device assignments are not systematically grouped in the graph. Specifically, the logical
grouping in the implementation (where code is organised into functions and classes) does
not automatically induce logical grouping in graph construction.

3.4 Execution 63

Figure 3.9: TensorBoard visualisation of RLgraph’s IMPALA learner. All operations and
state variables are organised logically in component subgraphs.

ing

Modular computation graphs for reinforcement learn

RLgraph

64

alomz

i
RESC < a1ybuibe:
»wom_s wabe S

[e
“ap-dnoife 2 WUl

+5dop™dnoib e >
+sdap=dnoib «a- >

sdep~dnoub « @

o
< Luu
D> o
~-ap-dnois™™ !
whow—h
A 2 El
$dop=dnoib wee- > s ; Zm:m
L uing - uaipelodoy
O wum-—m p f6-opnt umo_mmwwhm IS
)¢ - “UollAUaTWNU siuaipel - ~
sdap~dnoub - A,w e
: 216, 20w
PPYUBISSY - doldsN |- ttioukiod &um“_ﬁ_cﬁ
“uebe doldsiy e sjuaipelb ur
Eu
~0)-0RIA
[
dooN

"(ydeis oy jo jrey ySu) Ieures] Y TYJINI S.PUINAeS(] JO UOIRSI[RNSIA PIROGIOSUA],

+0|[STPAPMIS wite > >
“vBbeis anefiboyy
o
o
g
&
Jnanl oE
™)
T $ =
g & 3 e Scalay.
2, & & %,
‘e, %
& 5oy, &
< dougs;
femuun-uodes anes Jeriuun~yodas i¥asivy
%ﬂq anen

@S Seoi
_w‘e%oam:&mﬁozoou D

"(ydeis a1y jo Jrey 939[) Ioures] VTVJINI S.PUINAO9(] JO UOIJeSI[RNSIA PIROGIOSU], :

IT°¢ om3Ig

“agleiwoufjod

0T'€ oIM31 g

R K K - o —
= S-0JInw = [S-O)I Inw sz E “ “0I|S"PaPIs: ISP “or eanybuibels anjeAAqdipo }«— “l|s™papuIs
wns a3 Zuing lsiieis LONENG e o Lwey S ey () ()
@ 4 s ' k3
8 8 % % 3 3
¢ g W :
e [GolINW >« 0zsU0D R LTE—— 1o01is swaipesd suBorwioy~aoem
ppe gTwns leojjoL
»
% LY &
5 % 7 s o
550/ [B101 [+ C Dz [0 g o O3 e siwaipeld D
'l Sooe o [50] wﬁ_ovm.u —\ 2 |-$50650 0 Senier ,%o 07SanjeA % o dols
12tensors 3
~ ~ 2
&
~papLls () —
alefibs “ybuibeig
g
%
S
suspesd. &> swopes = GO >0 Lsuop
.owomoﬁ Jreunos L"wng
54.00
G-gJInu e -
9z-adeys <>+—o pz odeys
usipeld wm%;mwm _.wmamzwwm
%,
9
[G-0jinul

e
Usipeis o

3.4 Execution 65

3.4.5 Distributed execution engines

Closely related to device management is distributed execution. The emergence of deep
learning workloads has given rise to a multitude of distributed learning schemes for
synchronous and asynchronous data and model-parallel training [DCM*12, LAP*14,
RRWNI11, PLT*16|. Frameworks increasingly provide higher level distributed abstractions
which do not require developers to explicitly implement synchronisation. These abstractions
however only support well-defined workflows such as supervised training where practitioners
have converged to a standard set of methods, e.g. data-parallel synchronous stochastic
gradient descent.

RL workloads are not usually supported by such higher level abstractions due to their
heterogeneous processing and communication patterns (§3.1). This poses two challenges
for RL frameworks:

e Choice of execution engine. Novel machine learning workloads have given rise
to a new generation of execution engines. Improving distributed or decentralised pa-
rameter exchange is a growing area of research. As these workloads (e.g. generative
adversarial models [GPM™14], multi-agent communication [FAdFW16, REH"18,
FAWF*18]) require new communication semantics, there is no one-size-fits-all solu-
tion to accommodate changing requirements.

e Separating algorithm logic from execution. As execution semantics may vary
from algorithm to algorithm, distributed coordination should be independent from
algorithm logic.

Existing implementations opt to reduce complexity by narrowing flexibility. Reference
implementation collections often outright do not include generic distribution mechanisms.
Consider OpenAl baselines [DHK*17] as a widely implementation collection provided
by the original authors of some algorithms (e.g. PPO [SWD™17]). Some algorithms
implicitly utilise a custom MPI-based distributed synchronous mechanism where sample
workers each interact with an environment, and a single learner collects their samples,
updates, and synchronises new weights to the workers. This mechanism is hard-coded
and not configurable. Other frameworks such as Ray RLIlib [LLN*18] provide distributed
abstractions which can be combined freely with algorithm logic at the cost of locking users
into executing training on the Ray platform [MNWT17].

RLgraph isolates distributed coordination from component graph logic to support
different distributed execution paradigms. From RLgraph’s perspective, there are two
types of distribution mechanisms:

1. External API consumers. External consumers realise distributed mechanisms
purely by interacting with RLgraph’s API to read and write agent state, insert into
buffers, or call updates from internal buffers or external trajectory data.

2. Internal graph-aware mechanisms. Internal mechanisms may be framework-
specific distributed engines which rely on implementations using special operators or
program design.

Examples of the first mechanism are custom communication strategies implemented via
e.g. MPI or distributed execution engines such as Ray [MNW*17]. The second class of
distributed execution method concerns mechanisms such as the distributed TensorFlow

66 RLgraph: Modular computation graphs for reinforcement learning

(1) External coordination: Learners and actors instantiate graphs, consume RLgraph API.

Local Local graph
executor

update() RLgraph OO
Ray object sto‘re/v --------- API O

\ RayWorker O
A 30 Rigraph Q)
ctor API O

T

D RLgraph Local executors map concurrent trajectory data
to local graphs, synchronisation is fully
externalised via third party object store, Ray, MPI, ..

RayCoordinator

D External distribution abstractions

(2) Internal coordination: Executors modify graph-internals for synchronisation.

Local
TF-Learner executor

update() RLgraph O
--------- =9

Local graph

Graph synchronisation
delegated to TF
TF-Worker 8 runtime which directly

syncs graph weights via RPC
A act() RLgraph Q ynes grap 9
ctor o, O {

D RLgraph Local executors create graph-internal
scaffolding, initialise servers, mark parts
D Internal distribution abstractions of graph as shared state in build process.

Figure 3.12: Graph-internal and graph-external distributed coordination.

runtime [ABC*16, YAB*18]. Distributed TF can schedule an individual graph across
device and host boundaries. End-to-end graph scheduling is theoretically appealing because
it enables both compile-time optimisations (§3.6.2) and fine-grained scheduling decisions
at the level of individual graph operations.

This comes at the cost of a more complicated programming model. Distributed Ten-
sorFlow is most commonly used with a between-graph replication model. Instead of
centralising control via an executor invoking tasks of remote workers, users must manually
create client processes for different tasks and explicitly create in-graph synchronisation
mechanisms. For example, the authors of IMPALA [ESM™18] describe workers communi-
cating with a learner via a globally shared queue. The queue is part of both the learner’s
and worker’s graph.

Figure 3.12 illustrates the difference between internal and external coordination. The
main consideration for enabling flexible distribution strategies is to separate these abstrac-
tions from graph construction through the executor. Since the graph executor knows each

3.5 Incremental building and sub-graph testing 67

high-level component as a named subgraph, it can straightforwardly interpret high-level
build instructions such as "mark the policy network as globally shared”. This is achieved
by interleaving the build process with execution-initialisation stages which ensure the
necessary modifications (job assignment, state synchronisation) are applied to the relevant
component subgraph. Viewing and building algorithm components through logically
organised and named subgraphs is hence the central abstraction for flexible execution.
Again, this is in contrast to making such modifications directly in the code which defines
the graph, thus prohibiting modifications at build time.

To exemplify this approach, I implemented a Ray execution package interacting with
RLgraph’s external API. The Ray package consists of two abstractions, Ray executors and
Ray workers. An executor implements a distributed coordination loop which schedules
actor tasks and collects their results. Ray workers are actor classes which can execute
any desired task but most commonly are used to interact with one ore more environment
simulators. For example, a synchronous batch executor trains according to the following
steps:

e The executor instantiates a local agent on the master node by building a component
graph towards the desired backend. It also creates workers as actor objects via Ray.

e Until the specified number of training steps is completed, a step function is called:

— The executor fetches weights from the local agent via the agent API.

— Weights are synced to workers by calling a Ray task fetching weights from the
distributed shared Ray memory to write the worker graphs, again using the
agent API.

— Next, the executor schedules sampling tasks for each worker. Workers interact
with one or more environment copies to collect sample trajectories and post-
process data.

— The executor waits on task completion, merges trajectories from sample workers
into a single batch, and calls the agent API to perform updates.

I evaluate this design in §4.3 against Ray’s native reinforcement learning library
RLIib. Executors and workers closely mirror RLlib’s optimiser abstraction with the crucial
difference that the agent API and build process are entirely separate from Ray. In contrast,
RLIib’s learning, sample collection and processing mechanisms are tightly coupled with
Ray task code. Next, I explain how graphs can be incrementally built and tested using
the test-generation interface.

3.5 Incremental building and sub-graph testing

Brittle RL algorithms necessitate new approaches to testing. This endeavour is complicated
by multiple sources of non-determinism (recently investigated by Nagarajan [NWS18b,
NWS18al) :

e Weight initialisation. Neural network weights representing policies or value
function parameters are commonly initialised from Normal distributions [GB10].

68 RLgraph: Modular computation graphs for reinforcement learning

e Stochastic policies. Policy gradient algorithms act by sampling from a policy
distribution. Value-based algorithms induce random exploration via heuristics like
e-exploration.

e Stochastic environments. Problem environments may exhibit random state
transitions.

e Stochastic gradient estimation. Mini-batch stochastic gradient descent updates
decorrelate trajectories by sampling random batches from buffers.

e Non-deterministic devices. Accelerators may not default to deterministic execu-
tion. For example, NVIDIA hardware does not guarantee the same bit-wise results
for some neural network kernel implementations?®.

The difficulties of analysing non-deterministic behaviour are exacerbated by unclear
sources of algorithmic performance (§3.1). Novel results can also be expensive or otherwise
impractical (e.g. requiring specific hardware) to reproduce. Consider IMPALA, a recent
distributed policy optimisation algorithm [ESM™18]. Reproducing learning capabilities
on the benchmark tasks in the related publication requires running the algorithm for up
to 10 billion frames for multi-task learning. This necessitates a cluster of worker nodes
and costly accelerators to be run for hours to days. On public cloud services, this can
translate to several thousand dollars in cost to run a single experiment across different
random initialisations. This does not account for hyper-parameter tuning and debugging
of new implementations (§6.4).

Resource requirements can cause insurmountable difficulties when implementing and
benchmarking algorithms. Researchers may not have access to the resources needed to
perform in-depth ablations on new techniques. Published research in turn is then difficult
to evaluate due to this missing analysis, creating a vicious cycle of uncertainty around
algorithms. In Chapter 6, I illustrate the true cost of reproducing and evaluating published
results to assess learning capabilities. This ”implementation risk” means practitioners
often have to rely on open source implementations.

Systems research has not caught up with these developments. Existing RL libraries
(83.1) do not provide systematic incremental testing facilities. Accompanying benchmarks
results can give evidence of performance at a specific point in time. The brittleness of
implementations however means small modifications can lead to drastic loss in training
performance going unnoticed (§4.3).

I argue that the lack of systematic testing is largely due to lack of systematic algo-
rithm construction. Coarse-grained implementations mix and combine neural network
construction, update logic, state management, and execution semantics. Instantiating
specific modules is not possible without code modifications. Manually determining correct
inputs for intermediate operations for testing purposes is tedious. RLgraph’s abstractions
lend themselves to modular, incremental testing:

e There is no conceptual difference between building a single component, a composition
of components, or an entire algorithm. Execution scaffolding is always generated via
graph builder and graph executor.

3https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/%index.html#
reproducibility, accessed 25.08.2019

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/%index.html#reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/%index.html#reproducibility

3.5 Incremental building and sub-graph testing 69

e Input and internal state of each component are based on well-defined spaces. Inputs
for subcomponents can be trivially generated by sampling from the spaces used to
build the component.

Tests are generated via a testing utility which builds any given component and its
subcomponent.

70 RLgraph: Modular computation graphs for reinforcement learning

State has 64 floats with a batch and time dimension.
state_space = FloatBox(shape=(64,), add_batch_rank=True, add_time_rank=True)

Action is container space: 1 discrete, 1 continuous action.
action_space = Dict(discrete=IntBox(), cont=FloatBox(), add_batch_rank=True)

Create recurrent neural network from layer specification.
network = NeuralNetwork.from_spec([
{"type": "dense", "units": 128, "activation": "linear"},
{"type": "lstm", "units": 64, "activation": "linear"}

D

Network is a sub-component of policy.
policy = Policy(network, action_space)

Construct sub graph from spaces, generate API and scaffolding.
test = ComponentTest(policy, dict(nn_input=state_space),
action_space=action_space))

Execute with sampled inputs from the input space.
action = test.test(policy.get_action, state_space.sample())

Listing 3.7: Testing sub-graphs from arbitrary spaces.

Listing 3.7 illustrates how a policy object, i.e. an object representing m(s|f) via a neural
network with parameters # and action distributions, is constructed from input spaces
specifications and sub-components. A state space with a batch and time rank is defined
(indicating data along the trajectory timestep dimension and the batch dimension), and an
action space container containing one discrete and one continuous output. Next, a neural
network is specified from a list of layers and passed to a policy object which includes
it as a sub-component. The policy component generates a set of output distributions,
e.g. a Categorical distribution for the discrete action, and a Normal distribution for the
continuous action. The policy component and its subcomponents are built as a component
graph, and its API methods can now be tested with inputs generated from the defined
spaces. Listing 3.7 exemplifies a sub-graph integration test where several features (recurrent
policies, container action spaces) are tested together.
RLgraph implementations are hence tested along the following dimensions:

e Component unit tests. Each component’s API methods are tested separately.

e Dataflow integration tests. The build process for the specific combination of
components in a given algorithm is tested to detect problems when changing dataflow.

e Incremental learning tests. Training performance is evaluated on a series of
small test environments (e.g. grid-worlds, controlling a cart-pole). This allows to
incrementally evaluate sensitivity to learning heuristics.

Some learning failures cannot be detected through this scheme. Consider the popular
Deep Q-Networks (DQN [MKS*15]). While many variants exist, a set of commonly used
heuristics comprises loss-prioritised replay sampling [SQAS15], double Q-learning [HGS16],

3.5 Incremental building and sub-graph testing 71

n-step learning, and dueling network architectures to decompose Q(s,a) into V(s) and
A(s,a) [WSH*16].

Notions of environment difficulty in relation to a specific heuristic are not well-defined.
A heuristic causing learning to fail (in terms of reaching pre-defined rewards thresholds)
can be a sign of a faulty implementation if the base algorithm works. Conversely, an agent
solving a task with and without a heuristic such as prioritised importance sampling is
not evidence of the heuristic being implemented correctly. I illustrate this by running the

200
—— DD-DQN
— Loss bug
1501 .
_% —— Sampling bug
=
o
o 1001
i)
2
o
H 50
0 . : :
0 50 100 150 200

Training episode

Figure 3.13: DQN training results with bug-free implementation, loss-fault injection, and
sampling fault-injection.

cart-pole balancing problem environment using a DQN architecture and RLgraph’s gym
execution package. Figure 3.13 shows a double-dueling DQN (DD-D@N) with prioritised
replay (i.e. canonical heuristics), and two faulty variants. In Loss bug, I injected an error
where value estimation of subsequent states sry; from terminal states sr is not set to
zero, thus resulting in critical overestimation of Q-values in the update. In Sampling bug,
I introduced a separate sign-bug in selecting samples by priority resulting in using the
least relevant samples for updates instead of the most relevant.

[ran each variant with 10 different random seeds and plot the mean episode reward
with a 1 standard deviation confidence interval (shaded area). The loss injection bug
causes the agent to fail to improve its reward. The sampling bug’s learning curve is not
meaningfully distinguishable from the correct (to the best of my knowledge) one.

This behaviour is exemplary for the difficulties in evaluating RL algorithms in new
environments. The impact of any learning heuristic is only empirically demonstrable.
Consequently, practitioners cannot rely on selective benchmark results as indicators for
correct implementations. In §4.3.3, I show how learning on existing frameworks can degrade
between versions. In summary, RL implementations require fine-grained incremental testing
mechanism which RLgraph facilitates through its subgraph instantiation from prototype
dataflow.

72 RLgraph: Modular computation graphs for reinforcement learning

3.6 Graph optimisations

In the prior sections, I have explained how RLgraph’s modularisation helps design re-usable
and testable implementations. Beyond programmability, algorithm implementations may
benefit from a range of optimisations. In this section, I discuss how some emerging methods
could be implemented into RLgraph.

3.6.1 Automated graph generation

To address difficulties in implementing end-to-end static graphs in imperative programming
languages, the automated generation of graph fragments from imperative code has gained
increasing attention. Specifically, graph functions in RLgraph using a static graph backend
and which require control flow need to use special operators for branching and loops.
Using custom control flow operators with restricted semantics creates large and unintuitive
implementations.

RLgraph simplifies building differentiable graphs through its modularisation. Graph
functions must always return an operation as the build process needs to connect inputs
and outputs of graph function to an end-to-end graph. Within graph functions, backend
code cannot be mixed, i.e. there can be no host-language control flow interspersed with
tensor operations since this would partition the graph.

To resolve the tension between fast prototyping in imperative control-flow and the
performance benefits enjoyed by static graphs, framework providers are considering new
approaches towards automated graph generation. For example, in TensorFlow, a novel
framework called AutoGraph [MDWT18] converts host-language control flow to static
graphs by converting Python code into an intermediate representation and analysing both
control flow and stateful dependencies (writing and reading graph state). Similar to device
and job assignment, graph conversion is provided via context managers.

Graph generation could be integrated into the build process so graph functions with
Python control flow are auto-converted to static-graph fragments. RLgraph could also
exploit graph generation to unify backend-dependent code in graph functions.

(1) Python-control flow at graph construction time
Control flow is not in graph, only one graph fragment constructed.
@rlgraph.graph_fn
def _graph_fn_sum(x, norm=True):
norm is a Python bool
if norm is True:
return tf.abs(x)
else:
return x

(2) Condition depends on boolean tensor norm.
Use special control flow operator.
Both graph fragments are created.
O@rlgraph.graph_fn
def _graph_fn_sum(x, norm):

norm is a tensor

return tf.cond(

3.6 Graph optimisations 73

pred=norm,
true_fn: lambda: tf.abs(x),
false_fn: lambda: x

)

(3) Graph function with autograph conversion.
Graph functions invoke auto-graph,
@rlgraph.graph_fn(graph_generation=True)
def _graph_fn_sum(x, norm):
norm is a tensor used in a Python conditional via AutoGraph
if norm is True:
return abs(x)
else:
return x

Listing 3.8: Control flow paradigms in graph functions.

Listing 3.8 illustrates different modes of conditional evaluation. First, native control
flow can be used to statically decide which graph fragment to construct depending on a
boolean flag (1). The flag is not evaluated at runtime since only one of the fragments is
included in the static graph. Next, the boolean flag is a tensor evaluated at every call to
decide which branch to execute, and a special conditional operator must be used to create
graph-branching (or loops). This means control-flow cannot be shared between backends.
In (3), graph generation could be used which converts the native Python control flow
evaluating a tensor-value in the ”if” condition to the graph representation in (2). PyTorch
as a define-by-run framework can evaluate native Python control flow but needs similar
tracing mechanisms to export programs into deployable serialisation formats.

3.6.2 Relationship to compilers

The proliferation of hardware accelerators and new deployment scenarios (e.g. mobile,
embedded, edge devices) has also given rise to new static compilation and runtime
optimisation tooling. They address two questions:

1. How can a given symbolic graph definition be optimised for a target hardware
backend?

2. For a compiled graph, how should workload dependent execution properties be
modified at runtime to improve scheduling?

For example, TVM [CMJ*18] is a compiler architecture for deep learning which
auto-generates hardware-optimised kernels from high-level graph definitions. Runtime
optimisations include both hyper-parameter tuning during training (e.g. population-
based training [JDO'17]) and automated device placements [MGP*18, JZA18]. While
theoretically appealing, compile-time optimisations have received sparse attention in the
RL literature due to the multitude of other concerns. The lack of systematic graph
construction in existing frameworks also makes integration of these techniques difficult.

Finally, mobile and edge (e.g. on IoT sensors) deployments of neural network models
in domains like computer vision often rely on a combination of pruning, compression,
and graph rewriting techniques [LBM 117, ZGMX18]. It is unclear if these techniques are

74 RLgraph: Modular computation graphs for reinforcement learning

readily applicable to shrink policy networks in RL. As algorithms are known to be sensitive
to small changes in the input distribution [KSM*17], further investigation is needed.

RLgraph could naturally integrate novel optimisations in its build mechanism. The
prototype implementation contains one example of graph rewriting for device strategies,
i.e. automatically splitting workloads across multiple accelerators.

3.7 Limitations

Decoupling execution semantics from logical dataflow decomposition increases flexibility for
applications built on top of RLgraph. This comes at the cost of enforcing an implementation
style which may be unintuitive for researchers used to implementing an algorithm and
its execution logic in a single module. RLgraph is best suited for users who need to
maintain and incrementally build up implementations for longer-term research or real-
world deployments. While algorithmic researchers may prefer ad-hoc implementations,
they benefit from RLgraph’s incremental testing and graph assembly to obtain performance
insights. Here, I discuss a number of current limitations and how they can be addressed in
future work.

3.7.1 Multi-agent communication

Current multi-agent scenarios are biased towards centralised learners and two-layered task
hierarchies. In Chapter 5, I describe how a task-graph architecture on top of RLgraph
facilitates task decomposition.

Emerging multi-agent scenarios include competitive and cooperative learners which
may exchange not only weights but also instructions, questions, rewards, or gradient to
enable rich communication semantics. A number of existing multi-agent implementations
(e.g. in RLlib or PyYMARL [SRAW™19]) assume nested parallelism but do not consider
these new scenarios. Multiple policies or agents are organised into unordered sets of
individual models.

To provide declarative generalised multi-agent semantics, I propose to implement an
agent graph architecture wherein each node refers to a single RLgraph graph. Specifically,
a single RLgraph architecture can theoretically include many independent optimisations
for unrelated or hierarchically arranged tasks. The disadvantage of a large shared graph
for all tasks is that individual tasks cannot be independently scheduled, and that changing
communication between tasks requires modifying implementation of that graph.

A more flexible design for multi-agent execution restricts each RLgraph graph to a single
differentiable graph with explicit interfaces for communication. Developers create multi-
agent scenarios by first declaring individual agents. They can then specify communication
channels and task hierarchies by creating edges in the agent graph.

Existing execution engines are not well suited to decentralised multi-agent scenarios
where agents create ad-hoc communication channels and asynchronously interact with
shared or separate problem environments. Distributed TensorFlow is best suited for
single-end-to-end graphs while Ray focuses on centralised hierarchical parallelism.

3.8 Summary 75
3.7.2 Graph flexibility

RLgraph implements all-or-nothing semantics with regard to building static graphs. Since
RLgraph encapsulates graph construction, device assignment, and session management,
it does not allow static graph designs whereby parts within an algorithm are outside
of RLgraph, other than preprocessing of inputs and post-processing of outputs. This
restriction does not apply to define-by-run mode. If a new design requires semantics not
supported by the graph building mechanism, substantial development may be needed
to add a feature throughout the framework. For some research use cases, a stand-alone
implementation can be preferable.

3.7.3 Gradient-free optimisation

A key purpose of RLgraph’s build process is to facilitate end-to-end differentiable graphs
with dynamic control-flow. Gradient-based optimisation is the most popular optimisation
paradigm in training deep neural networks. However, gradient-free approaches (e.g.
evolutionary strategies [SHCS17, SMC*17] , augmented random search [MGR18]) may in
the future serve as alternatives. They are simple to parallelise and can achieve competitive
results. The overhead of the build procedure to ensure an end-to-end static computation
graph may not be justified if automatic differentation is not required.

3.8 Summary

In this chapter, I argued for the separation of algorithm logic from execution when imple-
menting RL approaches. I based this argument on an analysis of workload characteristics
and design challenges encountered in fast-changing algorithms (§3.1). I then gave an
overview of RLgraph and described how it decouples logical component composition from
physical execution plans (§3.2). I subsequently described RLgraph’s key abstractions,
graph building mechanisms from a component intermediate representation, and high level
agent APT (§3.3). Finally, I explained how different local and distributed backends engines
and execution semantics can be integrated (§3.4).

In summary, RLgraph is a programming model to design reinforcement learning
algorithm and execute them in different application contexts and execution paradigms. It
offers a high-level plug-and-play frontend API for practitioners, and extensive dataflow
composition tools for researchers. The main contribution lies in mapping high-level
subgraph abstractions to end-to-end differentiable dynamic control flow without requiring
users to explicitly construct this dataflow graph. RLgraph’s abstractions can also be
used outside of RL, but other domains have already established stronger standardised
workflows.

Using RLgraph, researchers and practitioners benefit from being able to rapidly
explore new designs without tedious manual tensor manipulation due to space-independent
components. In Chapter 4, I show that RLgraph generates high-performance execution
plans across backends while incurring negligible overhead from its abstractions.

76

RLgraph: Modular computation graphs for reinforcement learning

Chapter 4

RLgraph evaluation

4.1 Evaluation aims

In this chapter, I evaluate my prototype of the decoupled component graph architecture.
RLgraph must be able to generate high-performing execution plans for different execution
engines. The aim of the evaluation is not to benchmark these frameworks or reproduce
published benchmark results. Instead, I analyse how RLgraph helps address RL-specific
design challenges. I focus on answering these questions:

1. What overhead does RLgraph’s build process incur for different backends? (§4.2)

2. How does RLgraph perform using third-party execution engines compared to native
libraries? (§4.3.2)

3. Are there benefits in robustness in large evolving codebases when using RLgraph?
(84.3.3)

4. How does RLgraph compare to tuned one-off implementations?

5. How can algorithm designers use RLgraph to compose new methods (§4.6)?

4.2 Build overhead and backends

I first evaluate RLgraph’s graph construction mechanism. There are two sources of
overhead. First, the intermediate representation is created by tracing dataflow from root
component API definitions. Second, the backend-build mechanism creates an executable
computation graph and operation definitions.

Figure 4.1 shows the runtimes of constructing three component graphs. Tracing a
single component’s API (an experience buffer for sample trajectories) takes less than 50
milliseconds. A more involved architecture such as double-dueling DQN with a number of
image preprocessors and multiple optimisers traces for approximately 500-600 ms with 61
components. More important than the number of components is the number of operations
to trace between components. A third architecture, Proximal Policy Optimisation (PPO),
uses 51 components but requires the component graph procedure to build only 381
operation records (versus 947 for DQN). As expected, runtime for component tracing does

7

78 RLgraph evaluation

1.00

TensorFlow trace
PyTorch trace

©
g
o1

Runtime (s)
o
[ox
(@]

-

=
N
ol

0.00 _Expefience DQN PPO

buffer

Architecture

Figure 4.1: Component graph trace overhead for a single component and two common
agent architectures.

not vary (beyond hardware variation) for the static and define-by-run backends, as no
graph functions are built. Both DQN and PPO are built for the same environment layout
(ALE Pong from image inputs), and are configured with the same network architecture.

2.0
BN TensorfFlow build

/I PyTorch build

Runtime (s)
= =
o o1

©
o

%Qper'ience DQN PPO
buffer

Architecture

Figure 4.2: Corresponding backend build overheads induced by the modular graph function
and variable creation.

Figure 4.2 depicts the corresponding overhead from the second build phase of build-
ing/testing backend operations. Note that build overhead here only refers to the extra
time required to iteratively create graph fragments. It does not include the time required
to create operations or variables which would have to be done irrespectively of using
RLgraph (i.e. in an ad-hoc implementation). The build overhead only weakly correlates
to the number of components or records, as PPO is much more expensive to build than
DQN. The reason lies in the fact that graph functions (i.e. operations) can internally call
other API methods and operations. PPO uses an in-graph iterative update procedure
which uses dynamic control flow to invoke several nested graph functions. Building the
graph functions from within the nested dataflow requires additional build iterations.

PyTorch builds DQN substantially faster than TensorFlow as it does not need to

4.2 Build overhead and backends 79

connect individual graph fragments, but executes each API method once by marshalling
prototype tensors through the graph. This reverses when building PPO, as the iterative
optimisation is fully executed in define-by-run mode. As the build includes multiple
mini-batch gradient updates to test functionality, its runtime exceeds static graph mode.
The main take-away is that building individual components creates less than 50 ms in
combined overhead irrespective of graph semantics. This makes per-component building
practical to incrementally debug and test dataflow. Building entire architectures can add
1-2 seconds overhead to test-run all dataflow in define-by-run mode. This is nonetheless
negligible when compared to typical runtimes of RL experiments (hours or even days).
The experiments in this section were run on a commodity server class machine using

the Google Cloud Platform (GCP) with 8 CPUs.

2000

—
~
o
(@]

—<— TF RLgraph
—8— PT RLgraph
—®— PT hand-tuned

Env frames per second
[y
IS
(@)
o

1 2 4 8 16 32
Parallel Pong environments

Figure 4.3: Act throughput on ALE Pong for a varying number of simulator copies.

Next, I analyse run-time overhead caused by RLgraph’s abstractions. Using a static
graph backend does not incur overhead because RLgraph’s intermediate representation is
discarded after the build. Executing API requests only requires a lookup for the operation
to invoke via e.g. TensorFlow’s session interface. The define-by-run backend incurs
overhead caused by intermediate evaluations of API decorators.

In Figure 4.3, I evaluate act (i.e. forward passes through the Q-network) performance
on different backends. T use a standard 3-layer convolutional architecture followed by a fully
connected layer corresponding to the widely used ALE benchmark. I also implemented a
hand-tuned bare-bones PyTorch implementation of the same architecture and evaluated
all variants on the ALE Pong environment. When using few environments, the hand-tuned
PyTorch implementation outperforms RLgraph. For TensorFlow, the overhead of invoking
a session is not amortised by potentially (statically optimised) execution. As batch size
(i.e. number of environments providing new states) increases, TensorFlow gains favourably
and outperforms both PyTorch variants.

Regarding the use of different backends, I conclude that:

e The build overhead of RLgraph’s component architecture is negligible compared to
the duration of RL workloads. The relative difference in overhead between define-by-
run and static backends is a secondary consideration for running workloads. Building
individual components for testing incurs a negligible delay for interactive debugging
workflows.

80 RLgraph evaluation

e For runtime performance, RLgraph’s define-by-run mode incurs overhead compared
to a bare-bones implementation. When batching forward passes through environment
vectorisation, runtime is dominated by neural network operations while overhead
remains fixed.

e TensorFlow’s static graph backend outperformed defined-by-run mode for larger
networks when using vectorised action selection. For all following experiments, I
report results using the TensorFlow backend.

4.3 Execution on Ray

4.3.1 Setup

Next, I evaluate RLgraph on the distributed execution engine Ray in comparison to Ray’s
native library, RLlib (v0.5.2) [LLN*18]. First, I evaluate if RLgraph’s design creates
performance advantages or introduces overhead when compared to a native library tightly
integrated with an execution engine. Second, I demonstrate how developers can rapidly
explore new Ray execution semantics via RLgraph’s execution-agnostic API.

The relevant performance dimensions are (i) experience collection throughput as a
measure for implementation efficiency and (ii) learning success measured by reaching a
score in a known benchmark.

For this comparison, I implemented distributed prioritised experience replay (Ape-X
[HQB'18]), a recent Q-learning algorithm on RLgraph’s Ray executor. I configured both
RLIib and RLgraph with the same training hyper-parameters (using RLIib’s own optimised
configuration). Experiments were performed on Google Cloud with the centralised learner
being hosted on a GPU instance with 1 active V100 GPU, 24 vCPUs and 104 GiB RAM.
Sample collection nodes had 64 vCPUs and 256 GiB RAM. Ape-X utilises asynchronous
sampling tasks. New samples are initially inserted into one ore more sharded buffers. The
learner schedules sampling tasks which retrieve batches for updating.

4.3.2 Results

Figure 4.4 shows sampling performance on the Pong environment. The x-axis represents the
number of policy-evaluators/Ray-workers respectively (RLIlib, RLgraph), each initialized
with a single CPU, and y-axis shows environment frames per second (including frame
skips). Each worker executed 4 environments, and I used 4 instances of replay memories to
feed the learner. All settings were run with 8 sample nodes except 256 workers (16 sample
nodes) to ensure sufficient memory. RLgraph outperforms RLIib by a large margin (185%
on 16, 60% on 256 workers) despite implementing the same algorithm with equivalent
hyper-parameters and model architecture. Performance for 16 workers is highest due to
better resource utilisation. Improved performance is not caused by one single insight but
rather compound effects:

e RLgraph’s environment interaction processing was implemented from scratch. Ex-
isting implementations, including RLIlib’s, can be traced back to example code
in open source which was not optimised for performance. For example, RLgraph
micro-batches worker-side post-processing, and further samples exploration actions
without graph invocations.

4.3 Execution on Ray 81

175000
B RLLib

150000 mmmE RLgraph
1250001

100000
75000

50000

Environment frames/s

25000

OA

16 32 64 128 256
Number of workers

Figure 4.4: Distributed sample throughput on ALE Pong.

e [also observed memory leaks when interacting with Ray’s object store. This caused
RLgraph’s implementation to undergo several rewrites during debugging (and thus led
to uncovering various improvements related to intermediate result materialisation).

e RLgraph also completes its sampling tasks faster due to improved implementations
in low-level data structures. For example, RLIib used a recursive implementation for
its priority management segment tree. An iterative implementation yielded 30-40%
improvements for insertion and replay sampling tasks.

Since RLgraph’s publication, RLIlib has also undergone changes to adopt a more functional
approach similar to RLgraph, and the memory leaks in its object store have since been
resolved. RLgraph’s sample throughput is not at the cost of learning performance (Fig.

21
— RLIb
— RLgraph

[EY
<

|
[N
<

Mean worker rewards
(@]

21071k 2k 3k 4k Sk 6k Tk 8k
Time In seconds
Figure 4.5: Learning performance on ALE Pong.

4.5). To compare learning, I adopted RLIlib’s provided tuned Pong configuration (32
workers). In RL, the same code using the same hyper-parameters can vary drastically
across runs, so reliably comparing learning is difficult [HIBT17]. T ran 10 random seeds

82 RLgraph evaluation

and average across the 3 best runs (both libraries did not learn anything for some seeds as
expected). In line with throughput, RLgraph learns to solve (i.e. achieving the maximum
episode reward of 21) Pong substantially faster than RLIib.

RLIib’s published results on Ape-X throughput do not include updating without stating
this explicitly, and later reported results including updates! are up to 130 k frames per
second on 256 workers (versus 170 k max for RLgraph). Some performance differences
may be attributed to different hardware setup (fewer CPUs on head node, GCP GPU
latency). Experimental versions of a new Ray backend include improved garbage collection
of which RLgraph would benefit to the same extent as RLIib.

My results show RLgraph’s execution-agnostic design can integrate with an external
execution engine and perform competitively. While RLIib could adopt more efficient
implementations, my main insight is that RLgraph can be used on Ray via few wrapper
classes. Implementing other distributed semantics on Ray with RLgraph only requires
extending the generic Ray executor to implement a coordination loop (§4.3.4).

4.3.3 Robustness

I argue that RL programming models without fine-grained modularisation and testing
are unsuitable for maintaining larger code-bases due to the brittle nature of algorithmic
performance in RL workloads. I repeated the learning experiment with a subsequent
version of RLIib (v0.6.0) and compared again to RLgraph. Both libraries had undergone
substantial changes between experiments (4 months).

21
—— RLIb
— RLgraph

[y
<

|
[N
<

Mean worker rewards
(@]

21071k 2k 3k 4k Sk 6k 7k 8k
Time in seconds
Figure 4.6: Replicated learning performance on ALE Pong.

Figure 4.6 shows results from the repeated experiment (again running 10 random seeds).
While RLgraph closely mirrors prior training results, RLlib performs significantly worse
due to undocumented changes. In a cursory analysis, the authors attempted to improve
sample throughput by discarding batches whenever the learner blocks on queued training
samples. Update throughput decreased, thus slowing down learning.

Table 4.1 gives a detailed breakdown of random seed performance across initial and
replicated experiments. An experiment is considered a success if a maximum reward 7,4,

!Source: RLIib authors, https://github.com/ray-project/ray/issues/2466, accessed 25.08.2019

https://github.com/ray-project/ray/issues/2466

4.3 Execution on Ray 83

def _step(self, samples):
1. Sync local learners weights to remote workers.
weights = ray.put(RayWeight(self.local_agent.get_weights()))
for ray_worker in self.ray_env_sample_workers:
ray_worker.set_weights.remote(weights)

2. Schedule samples and fetch results from RayWorkers.
sample_batches = []
num_samples = 0
while num_samples < self.update_batch_size:
batches = ray.get([worker.execute_and_get_timesteps.remote(samples)
for worker in self.ray_env_sample_workers])
Each batch has exactly worker_sample_size length.
num_samples += len(batches) * self.worker_sample_size
sample_batches.extend(batches)

env_steps += num_samples
3. Merge samples.
batch = merge_samples(sample_batches, decompress=self.compress_states)

4. Update from merged batch.
self.local_agent.update(batch, apply_postprocessing=False)
return env_steps

Listing 4.1: Implementation of distributed coordination on RLgraph. Here, a centralised
learner consumes the agent API to facilitate distributed synchronous policy optimisation.

of 20 is reached and a failure if r,,,, is below -10 (untrained initial value is -21). While
Ray RLLib can solve Pong, it does so significantly less often than RLgraph as subtle
implementation problems affect training.

Framework : 700 > 20 Tpee < —10 (fail) —10 > 7,0, < 20 (straggler)

RLgraph 15 3 2
RLIib 6 11 3

Table 4.1: Breaking down random seed performance for Atari Pong.

RLgraph’s modularisation helps visualising and understanding dataflow in computation
graphs when compared to fragmented programming models such as RLIlib’s. When
executing on Ray, computation graphs are fragmented into separate tasks represented
by Ray actors, as opposed to end-to-end differentiable graphs such as in distributed
TensorFlow [AIM17, YAB"18]. In RLIib, task code is scattered across agent classes, policy
graphs, and backend-specific utilities. Debugging dataflow between components is difficult
due to a lack of consistent modularisation across imperative function calls.

84 RLgraph evaluation

4.3.4 Implementing new coordination semantics

Executing RLgraph under different coordination semantics on Ray only requires changing
the centralised coordination loop responsible for task scheduling and result processing.
In Listing 4.1, I implement distributed synchronous coordination which simply schedules
sampling tasks, merges samples, and passes environment trajectories to a local learner
via the agent API. Weights are synchronised to workers after every update. The example
further illustrates how local updates (i.e. line 22) are decoupled from the Ray executor
which only consumes the agent API.

4.4 Multi-GPU mode

Effective use of hardware accelerators (e.g. GPUs) depends on large training batches
available at high frequency to utilise accelerator memory bandwidth. This is at odds with
interacting with an environment where even a simulator may take seconds to build up a
large sample trajectory. High GPU utilisation is hence primarily achieved in off-policy
scenarios where sample batches can be retrieved from an asynchronous buffer without
waiting on environment interaction.

A key design choice in RLgraph is that distributed processing is decoupled from
local device management. For example, Ray executors, irrespective of their distributed
coordination logic, request an update from the agent API which can transparently choose
to schedule update operations across multiple devices. I evaluate RLgraph’s multi-gpu
mode using the Ape-X executioner as it can generate high sample throughput to make
effective use of multiple GPUs. I repeat the learning experiments from the prior sections
and compare impact.

21

)

T

S 10/

o

g g

S

%—10- —— Single GPU

= —— Multi-GPU-Sync
—21

0 1k 2k 3k 4k b5k 6k 7k 8k
Time in seconds
Figure 4.7: Single versus 2-GPU learning performance on ALE Pong.
Figure 4.7 shows how multi-GPU acceleration provides significant speed-up in training.

Importantly, this speed-up is achieved without changing a single line of code in RLgraph’s
Ray execution package.

4.5 Distributed TensorFlow 85

4.5 Distributed TensorFlow

I also evaluate RLgraph using the distributed TensorFlow backend on DeepMind’s (DM)
importance-weighted actor-learner architecture (IMPALA) [ESM™18].

The authors have open-sourced an optimised implementation?. IMPALA perhaps
best represents the end-to-end computation graph paradigm, where even environment
interaction is fused into the TF graph. RLgraph provides generic execution components
for graph-fused environment stepping based on DeepMind’s implementation (adapted by
Sven Mika). IMPALA executes updates by letting each actor perform a rollout step and
input its samples into a globally shared blocking queue. The learner dequeues rollouts and
uses a staging area to hide GPU latency.

" B Deepmind IMPALA
720000 e R
g graph IMPALA
€
2 15000
5
£ 10000
c
e
2 50001
L
O.

16 32 64 128 256
Number of workers

Figure 4.8: Distributed sampling throughput on DeepMind lab tasks.

Figure 4.8 compares throughput using the large network described in the paper on a
DM lab 3D task (which are more expensive to render than Atari tasks). I use a single
V100 GPU for the learner and let 4 workers each share a 8 vCPU instance. RLgraph
achieves about 10-15% higher mean throughput (5 runs) for fewer workers until both
implementations are limited by updates. DM’s implementation exhibited higher variance
due to subtle differences in preprocessing tensors after unstaging. DM’s code also carried
out unneeded variable assignments in the actor. Removing these yielded 20% improvement
in a single-worker. I did not reproduce learning experiments for the published IMPALA
benchmark tasks due to prohibitive cost. Tests on toy environments and individual
IMPALA components however indicate expected training behaviour.

The purpose of the IMPALA comparison is to demonstrate RLgraph’s abstractions
can be used even when delegating distributed execution and environment management
entirely to a backend-specific execution engine. This is in contrast to using a third-party
engine as a consumer of RLgraph’s API. Performance differences are a consequence of
minor inefficiencies. The main take-away is that end-to-end graphs, while being more
difficult to implement without a build-system, are not prone to the problems encountered
in mixed-backends. Using Ray, implementations were highly sensitive to data-type and
copy errors where wrongly referenced objects could drastically slow down code.

2Code at: https://github.com/deepmind/scalable_agent, accessed 25.08.2019

https://github.com/deepmind/scalable_agent

86 RLgraph evaluation

4.6 Exploratory workflows for algorithm design

Next, I discuss how RLgraph can be used to compose new algorithmic variants. Many new
algorithms do not introduce theoretical frameworks but recombine existing abstractions.
Consider the distributed Q-learning variant Ape-X [HQB'18] I used as a benchmark
against RLlib. I decompose Ape-X in algorithmic elements and execution elements.

At its core, Ape-X utilises a double-dueling DQN loss-function [WSH'16] to train a
Q-Network. To accelerate distributed training, the following execution modifications to
the original DQN [MKS*15] workflow were introduced:

e Acting and learning are decoupled so the learner is not bottlenecked by sample
processing.

e Distributed actors collect sample in local buffers. Each actor has a different ex-
ploration policy, e.g. by sampling a different initial value for e-greedy exploration.
Moreover, they compute sampling priorities for collected trajectories by computing
the temporal-difference loss, without applying updates. They also pre-process sample
trajectories by computing n-step discounts.

e Periodically, actors send preprocessed samples to a global shared buffer. The learner
samples from this buffer according to precomputed priorities in one thread and
passes them (e.g. via a queue) to a separate learner thread. The learner thread
computes Q-learning updates which yields new loss values to be used as sample
priorities which are written to the shared buffer.

e The learner periodically transmits Q-function weights 6 to actors.

The execution semantics of Ape-X rely on Q-learning to be off-policy but are otherwise
orthogonal to the loss function. To illustrate how RLgraph facilitates algorithmic compo-
sition, I create an algorithmic variant based on combining the Soft Actor Critic (SAC)
[HZAL18, HZH*18] and Ape-X.

SAC describes a collection of algorithms combining off-policy updates with a stochastic
actor-critic policy based on a maximum entropy framework. In the maximum entropy
regime, agents do not only maximise the discounted reward but also the expected entropy
of the policy to control stochasticity [ZMBDO08]. Harnooja et al. evaluate several SAC
variants which significantly outperform prior model-free methods in various continuous
control benchmark tasks. As the primary objective of SAC is to combine off-policy learning
with continuous stochastic policies, no evaluation was executed on discrete tasks.

I modified SAC (contributed to RLgraph by open source contributor Janislav Jankov)
to i) interface discrete problems and ii) execute using Ape-X semantics. This is based
on the observation that Ape-X incurs unfavourable exploration characteristics due to
manually defined epsilon-greedy strategies. A discrete stochastic policy naturally explores
by sampling from the parametrised policy distribution. Further, in my distributed Ape-X
experiments the learner was bottlenecked by sampling training batches from buffers, not
update throughput. This was experimentally verified by creating a fixed size queue between
controller and learner, and counting all instances where the controller was blocked on
a full queue, thus indicating the learner not keeping up. Queue blocking did not occur
regularly beyond warm-up. I hence hypothesise:

4.6 Exploratory workflows for algorithm design 87

200 200
—— Soft Apex —— Soft Apex
- 150+ Apex - 150 — Apex
]]
S S
L e
v 100 v 100
o o
2 2
o o
w50, H 50,
0! , ; , , 0! , , , ,
0 100 200 300 400 500 0 100 200 300 400 500
Training episode Training episode
Figure 4.9: Ray worker 1 performance. Figure 4.10: Ray worker 2 performance.

e Centralised distributed training scenarios on high-dimensional input states (e.g.
images) are bottlenecked by sample collection and communication overhead when
sending samples to a centralised learner. This allows more computationally expensive
training mechanisms.

e SAC decouples value estimation from a stochastic policy actor. While the learner
trains not only the policy but multiple separate value functions and the entropy
temperature parameter, actors only need to synchronise policy parameters.

A Soft Ape-X (or distributed discrete Soft Actor Critic) learner can hence utilise underused
learner resources. It further solves the exploration problem in Ape-X through on-policy
exploration and the augmented entropy objective.

A discrete policy in standard policy optimisation methods is represented by a cat-
egorical distribution. However, SAC’s training mechanism requires action samples to
be differentiable with regard to distribution parameters which is not the case for the
categorical distribution. A continuous approximation to the categorical distribution is
available via the Gumbel-Softmax distribution [JGP16].

I implemented a Gumbel-Softmax distribution and acting policy as an RLgraph com-
ponent which can be used by the SAC implementation. The only additional modification
required is to convert Gumbel-Softmax samples to discrete actions in the output by
computing the arg-max for the sampled probability vector. I then combined discrete SAC
with Ape-X for a distributed discrete SAC or ”soft Ape-X” which did not require any
modifications on the Ape-X executor.

Figures 4.9 and 4.10 show training performance (10 random seeds) on the classic
CartPole balancing benchmark as a minimal example task, comparing both algorithms.
Each were run for 100k time steps, resulting in a variable number of episodes (episode length
correlates to reward). Two Ray workers (left and right figures respectively) were used on
a single node with a single off-policy buffer and a centralised learner. On the CartPole
task, Soft Apex outperforms the naive Apex variant. Shaded regions indicate confidence
intervals for rewards achieved in by the respective training episode (dark shaded area
CI=65, light shaded area CI=95). Despite performing a more expensive update (as Soft
Apex computes updates separately for value function and policies), both implementations
achieved the same update throughput. As hypothesised, update throughput was not
limited by the learner but sample 1/0.

Benchmarks on larger discrete tasks such as ALE or DeepMind lab would require costly
hyperparameter sweeps. Here, I highlight the exploratory workflow enabled by RLgraph.

88 RLgraph evaluation

Testing the initial viability only required to implement a Gumbel-Softmax distribution
component and a corresponding action adapter component which interprets distribution
samples. All other algorithmic and execution components could be combined as is.

4.7 Summary

In this chapter, I investigated RLgraph’s abstractions as a means to implement and
execute RL workloads across a number of different execution paradigms. My experiments
demonstrate my thesis that the decoupled component graph architecture:

1. incurs negligible overhead through its build process. The static graph backend via
TensorFlow adds no runtime overhead as build abstractions are discarded. The
define-by-run backend introduces some overhead for intermediate evaluations.

2. generates high-performance execution plans on multiple distributed backends with
highly customised device strategies.

3. produces modular, incrementally testable implementations which result in robust
learning performance, significantly outperforming prior implementations.

4. is extensible to different device and execution paradigms due to its separation
of concerns. Since components make no implicit dependency assumptions and
transparently configured through spaces, they are fully re-usable.

5. helps composing new algorithmic variants through reusable building blocks.

To summarise, RLgraph’s programming model results in high-performing implementa-
tions at the cost of low initial build and runtime overhead. In Chapter 6, I illustrate how
RLgraph can be used to implement a highly customised application scenario by combining
multiple agents.

The fast-moving nature of empirically driven RL research on the one hand combined
with high individual customisation per algorithm on the other hand means framework
designers cannot commit to a single execution architecture or learning paradigm. In
Chapter 7, I discuss how RLgraph can support new emerging paradigms.

Chapter 5

Wield: Incremental task design with
progressive randomisation

The emergence of deep neural networks as powerful function approximators has caused a
surge of interest in systems applications of RL. The shared motivation across these new
inquiries stems from two goals. First, learned controllers would relieve systems designers
from manually engineering automation solutions in ever-larger systems. Second, learned
controllers promise to adapt system behaviour to workload distribution, thus outperforming
best-effort heuristics.

The notion of applying RL to systems problems is not novel (§2.4) but translating
experimental successes to practical deployments remains difficult. In this chapter, I
argue that research in this domain suffers from fragmentation and lack of experimental
standardisation. In the absence of shared tasks, experiments are performed in customised
environments with hand-picked workloads. State, action and reward representations further
depend on difficult to reproduce manual featurisations. RL frameworks like RLgraph or
RLIlib assume pre-existing environments. They operate on state and action descriptions
provided through standardised interfaces (gym). They are not concerned with how the
problem representation itself is designed. In applied domains like computer systems,
practitioners must manually explore effective problem state representations and actions
based on domain knowledge.

I present Wield, an architecture to accelerate applied RL research. Wield provides the
following mechanisms:

1. A set of common abstractions to model systems optimisation tasks as RL problems
(85.4). Wield’s abstractions are shared by different online and offline workflows
requiring to convert trajectory data between agent and system representations.
Wield further introduces a task graph abstraction to decompose learning tasks into
independent and hierarchically related sub-tasks as a means to handle large state
and action spaces (§5.4.3).

2. It delineates randomisation in training, testing and workload generation by providing
different blackbox and generalisation protocols, each at different levels of determinism.
To this end, Wield introduces an experiment protocol and classification scheme called
progressive randomisation (§5.5).

3. It introduces demonstration abstractions for training scenarios where pre-existing

89

90 Wield: Incremental task design with progressive randomisation

trace data can be enriched using weak supervision to generate off-policy training
data (§5.6).

Reinforcement learning applications in systems compete with a wealth of optimisation
approaches. I begin by discussing common tuning approaches to determine (i) the trade-offs
involved in using RL and (ii) set expectations with regard to practical utility for different
use cases. Parts of this chapter have been published as a preprint and are under peer
review [SFY19].

5.1 Optimisation in computer systems

5.1.1 Iterative optimisation

Optimising configurations to tune deployments is a central challenge in computer systems.
In recent years, designers and practitioners have increasingly adopted automated tuning
workflows using so-called auto-tuners.

Spearmint is an early framework to provide Bayesian optimisation (BO) as a generic
tuning mechanism. Its high-level interface omitting operational details of Gaussian
Processes sparked a wave of research into practical applications of BO [SLA12]. For example,
CherryPick is a cloud-configuration tuning framework which interfaces Spearmint to select
VM types for cloud workloads [ALCT17]. Arrow is a similar cloud-configuration system
which includes low-level performance metrics to reduce search time [HNFM18]. OtterTune
is a domain-specific framework to provide end-to-end BO for databases [VAPGZ17].
Instead of indiscriminately tuning (potentially many) parameters, OtterTune performs
factor analysis and clustering to identify performance-critical settings which are then
fine-tuned via BO.

OpenTuner [AKV*14] is an auto-tuner library combining several optimisation tech-
niques such as random search and evolutionary algorithms in parallel. OpenTuner’s key
contribution is a meta optimiser which allocates more resources to methods which yield
higher improvements across iterations. Golovin et al. describe an internal tool at Google,
Vizier, which serves as an auto-tuning service similarly selecting from several search tech-
niques [GSM*17]. To manage large parameter spaces, BOAT decomposes problems into
semi-parametric sub-problems [DSY17]. This enables users to inject domain-knowledge
by implementing parametric functions of sub-problem behaviour. BOAT significantly
outperforms other auto-tuners in domains with expensive evaluations, e.g. larger systems
experiments. Uncovering parametric relationships however requires extensively manual
analysis.

The main difference between deep RL and these auto-tuners is that neural network-
based models can outperform other approaches due to learning representational structure
in high-dimensional problem inputs. This comes at significant additional design cost (§5.7).

5.1.2 Analytical performance models

Less automated approaches fit pre-designed parametric models by executing partial
workloads. Ernest for instance [VYF116] predicts resource requirements for analytics
workloads by executing small input samples. The performance profile of the sample
execution is used to fit a parametric model of resource costs and predict a configuration. A

5.2 Practical considerations and limitations 91

similar approach was proposed by Paragon which classifies cluster scheduling workloads by
comparing test runs with prior workloads to match new workloads to cluster server types
[DK13]. Quasar extends Paragon to include resource constraints and scale-up/scale-out
scenarios in large scale cluster management [DK14].

Optimus is a scheduler for deep learning workloads on top of Kubernetes which learns
training speed for different resource configurations to dynamically allocate resources
[PBC*18]. A model of the training loss curve is obtained by decomposing training into
forward and backward pass cost and communication overhead and fitting respective
coefficients via a least squares solver. Prior approaches also include offline feature analysis
where workload traces are clustered to identify common workload scenarios and prepare
per-scenario responses. Teabe et al. successfully employed this strategy to improve
hypervisor scheduling [TTH16]. Kumar et al. presented a similar scheme to determine
waiting durations on aggregation queries [KARS15].

These empirical performance models are similar to RL methods in that they also
iteratively incorporate system feedback to update a model. Unlike the deep RL approaches
I focus on in this dissertation, they do not utilise representational learning but hand-
constructed parametric performance models. This creates a trade-off where representational
learning can result in higher performance at the cost of requiring orders of magnitude
more training data. Moreover, training neural networks incurs higher computational cost
and introduces additional hyper-parameters. Finally, hand-designed feature models with
closed-form analytical expressions or simple heuristics exhibit predictable performance.

The overhead of building deep-learning based approaches in systems can only be
justified if performance improvements against other approaches result in large cost or
resource savings.

5.2 Practical considerations and limitations

Systems research focuses on the study and design of software artefacts. New algorithms
or system designs are often evaluated with emphasis on practical utility. However, a
"deployment gap” exists between a fast growing body of research on the one hand, and
limited practical systems utilising RL on the other hand. I discuss limitations which may
have prevented experimental successes from practical use.

A key limitation is the use of task models which are only practical on simplified
workloads and deployments. This goes hand-in-hand with missing discussions on model
scalability. A canonical example of this issue are resource management problems where
the number of actions is linear (or superlinear) in the number of resources, and a proof of
concept on a small number of resources is proposed as indicative for a solution to the full
scale problem. I discuss task models in §5.4.3.

Research in this domain also suffers from severe reproducibility issues. This is partially a
consequence of missing common benchmarks for fine-grained decision making. For example,
traditional database benchmarks like the TPC suite of tests [Tral0] are application-driven,
i.e. the benchmark constitutes one representative use-case. Such fixed queries ensure fair
comparisons on e.g. transaction throughput of query optimisers. However, training and
evaluation deep learning methods on a handful of queries known in advance can cause
non-transferable designs and overfitting. This leaves researchers implementing customised
new workload variants which are not typically released. If generalisation is evaluated,
test set design criteria remain opaque. I argue for randomisation and the need for new

92 Wield: Incremental task design with progressive randomisation

evaluation protocols in Section §5.5. In Wield’s evaluation, I show how slight variations of
query sets and task difficulty drastically affect training results.

Moreover, in systems applications of RL, states, action and reward models often rely
on processing system metrics or updating system configurations (§5.4.3). Models cannot
be reproduced without full details on these preprocessing steps alongside model hyper-
parameters. As a result, research is fragmented, and progress on similar problems difficult
to assess.

Finally, the use of custom-tailored simulators is prevalent in applied RL. Recent work
into new applications of RL has often relied on simulators which are not released, and
which cannot be assessed. Unless strongly grounded in a prior problem model (such
as protocol analysis, motion dynamics based on real world physics), reliance on custom
simulators makes practical transfer in systems unlikely. A further consequence of missing
shared benchmarks are missing shared baselines. RL models can unsurprisingly outperform
baselines not tuned towards specific workloads. This does not answer the question on how
good a specific representation is at finding effective representations.

If an RL model finds an effective set of device assignments or query plan, a natural
baseline to compare against is variants of random search [MGR18]. Succinctly, researchers
must distinguish in their baselines between adapting to a workload (as opposed to e.g.
rule-based heuristics), and the quality of this adaptive mechanism. For example, Li and
Talwalkar found that random search matched prior approaches in neural architecture search
[LT19]. Architecture search, i.e. automated design of neural network architectures for a
given task and data-set, was earlier highlighted as a potential RL application [ZL17]. The
term random search here can refer to a variety of search strategies ranging from directly
sampling a solution to augmented random searches which randomly mutate network
parameters based on rewards. They resemble evolutionary methods.

In summary, value function approximation with ever-larger neural networks is unlikely
to be sufficient to address the deployment gap. The lack of sample efficiency, algorithmic
brittleness, and problematic scalability of action spaces in large-scale systems calls into
question how model-free approaches can reach practical utility. This does not imply there
are no practically viable applications. However, evaluating the utility of current approaches
is obscured by the complications discussed in this section.

Wield makes two contributions towards these challenges. First, it helps design RL
task representations through its abstractions which decouple system interface, represen-
tation, and data layouts. Second, it provides an instructive experimentation protocol to
incrementally evaluate model capabilities.

5.3 Wield Overview

Delineating progress requires systematic assessment and comparison of approaches. The
aim of Wield is to provide reusable abstractions to standardise task design for systems
applications of reinforcement learning. The same abstractions can further be used to
interface traditional auto-tuners as baselines. Wield also provides different optimisation
and randomisation modes to evaluate sensitivity to workload and optimisation stochasticity
(85.5).

Figure 5.1 gives a conceptual overview of Wield. On a high level, Wield acts as an
interface between a data processing system (e.g. database, distributed stream processing
engine, scheduler) and RL frameworks such as RLgraph (or another auto-tuner or any

5.4 Task design abstractions 93

DBMS Computation graph

System under control 888 ®\A®

Define layout in schema State and action schema

v

Translate between

agents and system Converter

x 1 Wield

—+| OpenTuner
Task graph RLgraph

Organise agent
implementations in
task graph

€

Incrementally < Co
increase workload Progressive
difficulty / randomisation =
randomisation <_|

Figure 5.1: Conceptual overview of Wield in relation to existing auto-tuners, reinforcement
learning frameworks like RLgraph, and systems.

implementation exposing a task interface). The highest level abstraction in Wield are
workflows which coordinate execution of online (interacting with a system) or offline (with
historical datasets) training, evaluation, and serialisation by invoking Wield’s individual
abstractions.

Models use task graphs to describe hierarchies of tasks wherein a single node may
be a single RLgraph graph, or a blackbox optimisation, or a supervised learning task.
Tasks use converters to map between agent and system view of data, and schemas to
standardise programmatic layouts of inputs, reward, and actions. By separating task
design and system-specifics, task architectures can be used across similar systems or
problem structures which only differ in the system interface (e.g. different databases
with distinct query languages but otherwise similar query processing). Finally, imperfect
demonstrations and data sets can be used in data augmentation worfklows to manage or
generate off-policy training data.

5.4 Task design abstractions

Wield’s task abstractions unify common workflow streams via standardised physical layouts.
Layout refers to identifying the Markov Decision Process representation of an optimisation
problem, i.e. the concrete dimensions, data types and processing steps for all inputs and
outputs of an RL agent. Specifically, Wield uses:

e Schemas as centralised task descriptions shared by all worfklows. Unlike simulators,
decision processes extracted from systems often have programmatic data layouts
which vary depending on deployment details.

e Converters which allow applications to convert between agent and system repre-
sentations of a decision process.

94 Wield: Incremental task design with progressive randomisation

e Task graphs which allow users to decompose tasks into collections of DAGs.

In this section, I motivate these abstractions and explain how they can be used to express
systems tasks.

5.4.1 Designing states and actions with task schemas

Schemas are motivated by the observation that states for systems problems need to be
designed. They help structure this design. In contrast, game simulators like ALE have
fixed state dimensions across games. All methods can rely on a fixed base representation
(i.e. the game frame) for reproducible and comparable experiments. Wield schemas
encapsulate input-dependent state and action layout construction. Input-dependent here
refers to states where layout may depend on the specific problem instance.

Consider an RL model for a query processing task for databases. States may contain
tokenised versions of queries with tokens mapped to integer encodings, i.e. each query
operator and column name maps to an integer. The input vocabulary depends on the
database schema due to variable numbers of columns and tables, and on the query language
used for its query operators. In combination with the current workload (e.g. a query
instance), states contain relevant aspects of the current system configuration, e.g. capacity
of task queues, resource usage statistics, previous decisions on dependent tasks. Different
input types and layouts (i.e. dimensions of state arrays) are required per deployment.
Wield schemas allow developers to express a state layout as a function of system parameters.

States can also encode bias towards decision horizons. For example, Tesauro et al.
describe a choice of state encoding in the context of server resource allocation via a
discretised mean request arrival rate [TJDB06]. Their state includes both the current
mean arrival rate and the one from the prior observation interval to relate the impact of
actions to arrival rate. In workload management tasks, the workload generating process is
generally unknown, and future workloads (e.g. request rates or job size) may be independent
or correlated to current decisions (c.f. Mao et al.’s discussion on this regarding value
function estimates [MVSA18]). State features and preprocessing, e.g. temporal smoothing,
must encode such assumptions.

In summary, state design for RL in is an iterative process which differs from feature
design for supervised learning as the state must also capture transition dynamics. To help
researchers explore, compare and version state designs, Wield standardises them through
schemas. Environments implementing the gym interface normally include both problem
dynamics and task layouts. In Wield, I argue that these should be separated.

Compact feature representations from high-dimensional inputs can also be generated
by using e.g. a variational auto-encoder [KW14] which learns a latent representation in an
unsupervised manner. Separating feature representation from prediction and control by
training the latter on a learned compact representation can drastically improve training
performance [HS18]. This separation of concerns does not relieve systems designers from
selecting which system metrics to incorporate.

Similar to state design, action structure must be designed manually as agent outputs
need to be translated to structured system calls, e.g. by generating a special query to
update the state of a database. Simple action representations include single binary or
categorical decisions where an action selects one of a small number of resources or task
slots, e.g. which task to schedule next from a task queue, or which device to assign to an
operation on a single node.

5.4 Task design abstractions 95

The term ”action structure” refers to interpreting the outputs of a neural network. For
example, in Q-learning, a neural network used to represent the Q-function is designed by
creating a final action selection layer with one neuron per possible integer action. The
outputs are interpreted as Q-values. To output multiple distinct actions, multiple of such
action layers may be created. RL practitioners must explicitly consider how decision
problems can be mapped to convenient (i.e. as few distinct actions as possible) action
representations.

Small-scale single-task action structures are popular in experimental applications as
they correspond to well known RL problems and implementations such as Atari games,
where a single integer action is selected. However, such representations may not scale to
larger problem instances if the number of actions directly corresponds to problem size.
Consider a task in the database domain which selects single columns in a database table (e.g.
for index creation, join order, ..). The number of columns in a normalised database design
is typically a small integer (n < 100) which facilitates a direct integer-action mapping.
Such designs are prevalent across prior work in systems-RL [SSD, MNA17|. Scaling this
to compound indices spanning multiple columns exponentially increases number of actions
(e.g. combining 3 of 15 columns results in 3375 discrete actions), and in turn the experience
required to explore them.

Similarly, a cluster scheduler trained to schedule a handful of resources will not scale
to data-center scale with tens of thousands of resources where each resource represents an
action. In the absence of a prior, a policy would have to learn from scratch the similarity
between resources (e.g. similar performance between the same hardware configuration of
different nodes in a rack). This would require an impractical number of samples to explore
action combinations in large discrete action spaces. Large discrete action spaces may
require task decomposition. If similarity metrics between actions can be defined in advance,
actions can also be selected in a multi-stage approach whereby first an action in a promising
region of the action space is selected, and a nearest-neighbour lookup is subsequently
performed to identify a fitting local action [DAEvH'15]. In §5.7, T describe a combinatorial
optimisation problem where such an approach is not possible as no covariance function
can be given ahead of time.

Listing 5.1 illustrates a simplified single-task schema. The example illustrates how
system-specific configurations (here database operators and database schema) are used to
define layouts for states and actions. Observe that this schema describes a query processing
task but is independent of the query language, as operators are configurable parameters.

In summary, task schemas conceptually define physical layouts of states and actions
based on problem parameters. In practice, task schemas in Wield describe input spaces
which can then be translated to RLgraph in order to generate a compatible computation
graph.

5.4.2 Converters

Converters are adapters which express how system metrics, configuration parameters, and
query languages or custom protocols correspond to numerical representations within an
optimisation. A schema specifying a layout can be used by different converters, and a
converter may work with different schemas. Schemas constrain how decision model is
encoded structurally (layout), converters specify how this encoding is achieved from raw
system information (content). Listing 5.2 shows the conversion API provided by Wield.

96 Wield: Incremental task design with progressive randomisation

class CombinatorialSchema(Schema) :
def __init__(self, schema_spec):

SELECT, FROM, AND, LIKE, IN,
self.selection_ops = schema_spec[’selections’]
SORT, GROUP_BY, MAX,
self.aggregation_ops = schema_spec[’aggregations’]
self.tables = schema_spec[’tables’]
self .max_query_len = schema_spec[’max_query_len’]
Num of colums to select per step.
self .max_action_colums = schema_spec[’max_action_colums’]
self._num_cols = 0O
self._build_inputs()
self._build_outputs()

def _build_inputs():
"""Represents tokenised queries as states."""
Build input vocabulary
vocab = {}
idx = 0
for op in self.selection_ops:
vocabl[op] = idx
idx +=1
for op in self.aggregation_ops:
vocab[op] = idx
idx +=1
for table in self.tables:
for col in table[’columns’]
vocab[col] = idx
idx +=1
self._num_cols +=1
self.states_spec = IntBox(low=0, high=idx,
shape=(self.max_query_len,))

def _build_outputs():
"""Selects a set of columns per step."""
num_actions = 1 + math.pow(self._num_cols, self.max_action_colums)
self.actions_spec = IntBox(low=0, high=num_actions)

@property
def actions_spec(self):
return self._actions_spec

Oproperty
def states_spec(self):
return self._states_spec

Listing 5.1: Simplified task-schema defining state and action layout based on deployment-
specific parameters in a database task

5.4 Task design abstractions 97

def system_to_agent_state(system_state)
def system_to_agent_action(system_action)
def agent_to_system_action(agent_action)

def system_to_agent_reward(system_metrics)

Listing 5.2: Wield converter API to translate between agent and system views.

Unused conversions such as agent-to-system reward conversion are omitted. System-to-
agent action conversion is used to map demonstrator actions to numerical representations
(85.6). Converters use layouts provided by schemas to implement the conversion API. T
give an implementation example in §5.7 when discussing a concrete case study.

5.4.3 Task architectures

Schemas and converters help decouple system-specifics from task representation in RL for
individual tasks. Next, I introduce Wield’s task graph abstraction which helps break down
problems into separate decisions. Task graphs organise tasks into task architectures with
two categories:

1. Shared-parameter tasks are multi-task architectures where a single end-to-end
differentiable architecture has multiple task output networks which each emit separate
actions per step. For example, in my indexing case study §5.7, a single neural network
outputs multiple separate indexing keys to form a compound index.

2. Independent tasks are task architectures where separate learners focus on different
sub-tasks, e.g. in the case of hierarchical decomposition or parallel independent
tasks.

Shared-parameter tasks can be realised in Wield by making use of RLgraph’s branching
task mechanism. Branching here refers to a common practice of utilising multiple policy
or Q-networks on top of a single shared neural network learning a problem representation.
Users define a set of named actions and corresponding spaces, and RLgraph automatically
creates the corresponding multi-task shared parameter architecture on top of a shared value
function or policy. The corresponding task graph only has a single vertex, encapsulating a
single learner.

Non-trivial task graphs occur through hierarchical and independent task decomposition
(Figure 5.2). Hierarchical task decomposition refers to tasks organised as directed acyclic
graphs where outputs from single tasks (vertices) are used as input states (edges) to other
task vertices. Independent tasks refer to a scenario where multiple learners interact with
an environment, possibly learning at different time scales and schedules.

Hierarchical reinforcement learning has been studied in a variety of contexts with the
most well known approach being the options framework [SPS99]. There, a top-level policy
chooses between different sub-policies (options) to execute over a time-frame (until the
sub-task terminates). A large body of work in this domain exists on information sharing,
automated goal discovery, and task transfer [BL14, VOS*17, BHP17, NGLL18]. In Wield,

98 Wield: Incremental task design with progressive randomisation

T1

.
.
’
.
.
.
,
’
’
,
’
’
N
~
~
~
~
N
~
~
N

(a) Trivial task-graph with (b) Task graph as collection
one learner node of independent tasks

T1

T2

(c) Task graph with dependent tasks, T2
act is invoked with T1 outputs

Figure 5.2: Basic task architectures. In (a), a single task node contains one differentiable
multi-task architecture with a shared network. (b) refers to a task graph simply collecting
multiple independent learner instances with no communication or interaction. In (c),
a hierarchical arrangement uses two task nodes where task T2 can only act based on
decisions made by T1.

I focus on workflows where a systems designer manually identifies sub-tasks as a means of
encoding domain knowledge.

Hierarchical designs to organise resources at different granularities are also a core
element of systems research (e.g. cache hierarchies, hierarchical scheduling). However,
hierarchical RL has found limited attention in the systems community as a means to
manage large state and action spaces. Mirhoseini et al. first utilised hierarchical RL for
TF device placement [MGP*18]. In their work on device placement for computational
graphs, the action space of available devices is a small as operations are placed on a single
node, thus choosing between (an aggregate) CPU device and one or more GPUs. There
can however be tens of thousands of operations in a single graph, and learning device
interactions on the level of individual numerical operations creates a impractically large
space of state combinations. The hierarchical scheme used by the authors first computes a
grouping where each operation is classified into a placement group by a grouper task. A
placer task learns to assign each group to a device.

One source for the limited utilisation of hierarchical approaches may be a lack of
software tooling. In my survey of RL in systems (§2.4), a majority of authors utilised open
source implementations such as OpenAl baselines [DHK™17]. As these popular libraries
focus on single-agent scenarios with rigid control flow assumptions, hierarchical designs
are not supported.

Task graphs in Wield simplify factorisation of tasks into different sub-tasks which may
train and act jointly, or at different time-scales. Task objects primarily encapsulate distinct
RLgraph agents or any other optimisation implementing gym-style interfaces. Hierarchical
tasks often require to transform the output of one task before inputting it to a subsequent
task, e.g. by enriching it with additional environment information or preparing a specific

5.5 Task evaluation protocols 99

input format. Nodes in a task graph hence further encapsulate pre-and post-processing
for each sub-task. Edges in the graph are implicitly created by creating one task as a
sub-task of another task in the same task-graph. When performing inference, task outputs
are routed through the task graph based on user-defined directed edges between tasks,
and the results of all tasks during execution are returned. In Chapter 6, I illustrate how
task graphs can be used in practice to design hierarchical tasks.

5.5 Task evaluation protocols

5.5.1 The case for workload randomisation

A key obstacle when assessing model capabilities is the use of fixed workloads. As I
discussed in §2.4, in domains like database management or query processing, benchmarks
often focus on narrow application scenarios with small query sets (e.g. TPC-C [Tral0]).
Other clients such as YCSB focus on read and write throughput for key values stores
[CST*10] but only include high-level read and scan scenarios. Leis et al. proposed the
Join Order Benchmark which contains 113 queries specifically designed to investigate join
estimation capabilities in query optimisers [LGM™15]. While hand-designed workloads
can highlight particular weaknesses or strengths of a system, they nevertheless are prone
to over-fitting small test sets. Researchers may be misled to design feature representations
sensitive to particular properties of hand-picked test-sets.

I argue that the design of RL applications can benefit from synthetic workload mecha-
nisms with configurable task difficulty as a means to understand training and test-time
behaviour. In both my evaluation of RLgraph and my motivation for incremental testing
in RL, I described the impact of random seeds when evaluating training of a DQN variant
on an ALE task (§4.3), a topic which has also gained attention in the RL community
[HIBT17, MGR18].

To reason about non-determinism when evaluating stochastic optimisation mechanisms,
researchers must delineate deterministic and non-deterministic elements in their workload
and optimisation procedure. In Wield, I construct workloads from the perspective of
changing between several evaluation and randomisation modes. I distinguish between
blackbox and generalisation mode from the perspective of workload generation. In blackbox-
mode, a single workload instance (e.g. a single set of queries or jobs) is generated, and a
model is trained and evaluated on that same instance. In generalisation mode, training is
executed on different instances than the ones used in the final evaluation.

Both modes can be executed with varying levels of randomisation. Workload deter-
minism refers to deterministic behaviour of task instances. Training determinism refers
to deterministic initialisation and sampling during training. For example, in black-box
mode the generation of the single task instance and the training initialisation can both be
deterministic. Similarly, in generalisation, both the instances used during training and
the final test instances can be randomly generated or held fixed. This invites problematic
practices such as cherry-picking and presenting only successful combinations of workloads
and weight initialisation values.

In the RL literature, all combinations of blackbox and generalisation modes can be
found. Comparing results is difficult if authors do not to report which workload elements
are held fixed or are subject to randomisation. Researchers in computer systems have thus
far not identified shared sets of evaluation protocols towards randomisation issues.

100 Wield: Incremental task design with progressive randomisation

Class Randomisation implementation Example use cases

Co Fixed blackbox task, Iterate representation
Fixed optimisation parameters until sufficient

C, Fixed blackbox task, Model sensitivity
Random optimisation parameters to weight initialisation

Cy Randomised blackbox task, Model sensitivity
Random optimisation parameters to task parameters

Cs Fixed in-distribution generalisation, Understand sample
Random optimisation parameters requirements

Cy Randomised in-distribution generalisation, Production use in
Randomised optimisation parameters controlled environments

Cs Fixed out-of-distribution generalisation, Robustness against
Randomised optimisation parameters unforeseen inputs

Ce Randomised out-of-distribution generalisation, Production
Randomised optimisation parameters use without customisation

Table 5.1: Progressive randomisation protocol overview. Each class specifies a different
level of non-determinism.

5.5.2 Progressive randomisation

I propose an evaluation protocol called progressive randomisation. Progressive randomisa-
tion incrementally and explicitly increases dimensions of non-determinism.

The protocol is based on the observation that different randomisation modes can serve
different phases of design. For example, holding a workload fixed to study robustness
against random initialisation is valuable when a designer is uncertain if a model design
can solve a task at all. Conversely, using a fixed optimisation can be useful to study the
impact of workload parameters on optimisation outcomes. Evaluation difficulties are not
inherent to a specific mode of randomisation or evaluation. They arise when conflating
sources of performance variation or misinterpreting model capabilities.

In supervised learning, projects such as DAWNBench [CKN*18] have suggested metrics
like time-to-accuracy to compare model designs and hardware choices to understand trade-
offs in deep learning systems. In contrast, shared deep RL tasks such as the Malmo
Minecraft challenge [JHHB16] or Unity agents [JBVT18b] are focused on task performance
in simulated worlds where randomisation is incidental. That is, tasks may include some
degree of randomisation and generalisation but these are not varied to analyse their
contribution to agent performance (or lack thereof). Task variation in these scenarios
is further constrained by experimental cost. Bsuite [ODHT] is a novel benchmark for
analysing agent behaviour which varies random seeds to score agent performance but
which does not distinguish different generalisation modes or randomised tasks.

Table 5.1 lists the different evaluation modes in the protocol and their purpose. It also
lists example applications. Fixed optimisation parameters in practice refer to the random
weight initialisation strategies in neural networks, and further to the random seed used
when sampling mini-batches for stochastic gradient descent as well as policy decisions.

5.5 Task evaluation protocols 101

Fixed blackbox refers to always training on the same task, while fixed generalisation refers
to a fixed test task. Randomised generalisation implies that for each reported experiment
result, a new test task was generated.

Intentionally, not all possible combinations of non-determinism are present in the
protocol. Fixed optimisation parameters are initially useful to produce repeatable results
and debug non-optimisation components of a task (Cj). For subsequent design concerns,
they should be randomised as results from a fixed optimisation seed yield little insight
about wider model usability (avoiding ’lucky’ seeds).

Generalisation semantics are complicated by task-specific concerns. Consider fixed
in-distribution generalisation (C5). ”In-distribution” refers to workload assumptions where
the test task is taken from the same distribution training tasks were generated from. For
example, a database task may be evaluated on different sets of queries while a scheduler
task may receive held out jobs. A problem with fixed or randomised generalisation tasks
is that there are typically no useful measures of how different test tasks are from training
examples. More specifically, for randomised training tasks it is rarely reported if parts or
the entirety of a test task could be seen during training.

Nonetheless, the description of a model to e.g. be in C5 for a certain task gives
useful indication of expected behaviour. Here, I refer to being in a class as to meeting
application-specific performance objectives under the given randomisation assumptions.
For example, a model in C5; which meets randomised blackbox objectives can be used as
a direct search tool in practice without requiring to retune hyper-parameters, whereas a
model in C) tuned for a fixed blackbox objective is customised to a single deployment or
task context. Distinguishing model classes helps set expectations and allows researchers
to effectively communicate evaluation designs.

Generalisation concerns in deep reinforcement learning are poorly understood. They
are not captured analytically but rather empirically per task. A model may be in different
classes depending on the number the samples is trained on. Even for the same hyper-
parameters, a substantial fraction of random weight initialisation and optimisation seeds
may fail. I illustrate this by applying progressive randomisation when reproducing prior
work in Chapter 6.

I propose to further describe models based on these empirical properties. Specifically,
I propose to include

e the number of state transitions experienced during training n,
e the number of random seeds used for weight initialisation and optimisations s,
e and the observed frequency f where learning objectives were achieved.

For example, a model may be described as C;(n = 107, s = 10, f = 0.4) to communicate
empirical success when experiencing 10 million state transitions and trying 10 different
random seeds. In the following notation, I may omit s and f from notation when only
discussing sample count or class membership. Communicating success rates is especially
important when considering the cost of training a model against its claimed performance
improvements.

As sample collection cost varies drastically between tasks, conditioning class membership
on sample size is useful for estimates on model transfer on tasks with different sample
collection cost. For example, the same model may be in C}(n = 10*) but in C3(n = 107)

102 Wield: Incremental task design with progressive randomisation

as robustness to inputs increases with number of states observed, or it may increase its
success frequency.

In summary, progressive randomisation encourages shared understanding of model
capabilities across problem domains. Several dimensions regarding model scale, the cost
of featurisation, and other hidden cost are not captured by the protocol. The protocol
also does not replace standard considerations on experiment design or statistical analysis.
Reaching a training objective may be an ill-defined term inviting moving of goal-posts for
many applications. Optimising performance of a data processing system may be a best-
effort consideration, unless a service level objective is defined ahead of experimentation.
The classification system is intentionally simple to serve as a low-overhead summary of
design assumptions.

While only a starting point, progressive randomisation constitutes the first explicit
evaluation protocol for deep reinforcement learning focused on delineating workload
randomisation. I provide an example of using it as an instructive protocol in Chapter 6.

5.5.3 Prior work viewed through progressive randomisation

An experimental classification protocol can be both instructive (guiding experimentation)
and descriptive (helping compare and qualify prior work). To illustrate its utility as
an analytical tool, I use progressive randomisation as a lens on selected prior work in
research and applied RL. Table 5.2 classifies prior work. For example, the evaluation
of RLgraph’s implementations on ALE pong concerned fixed blackbox scenarios with
randomised optimisation parameters. I discussed learning success against different random
seeds in §4.3.3.

The classification immediately illustrates problem progress. For example, in the device
placement problem, Mirhoseini et al.’s initial work [MPL*17] with manual operation
grouping required orders of magnitudes more samples than their subsequent work using a
hierarchical approach [MGP*18]. Both operated in a fixed blackbox setting. Addanki’s et
al.’s [AVGT19] and Paliwal et al’s recent work [PGN*19] utilising graph neural networks
then illustrates progress towards generalisation through permutation-invariant representa-
tions. I found subtle differences in evaluation randomisation which can be made make
explicit through progressive randomisation. For example, Addanki et al. generate random
variations of computation graphs for training and testing, but both sets are fixed (Cj).

A similar progress pattern can be observed in database tasks. In their first work on join
order enumeration, Marcus et al. [MP18] used a policy optimisation method on a fixed set
of training and test queries, the Join Order Benchmark (JOB) [LGM™15]. Training with
randomised optimisation parameters yields Cs(n & 10°). In subsequent work, Marcus et
al. proposed a learned query optimiser [MNM™19] which they evaluate on several tasks,
including a fixed set of out-of-distribution queries (Cs(n ~ 10* — 10°, s = 50, f = 1.0),
results averaged across seeds). Training workloads in database applications were often
generated by augmenting fixed existing query sets (TPC-H, IMDB). It would be desirable for
the systems-RL community to develop shared standards on training and test randomisation.

Many approaches do not report explicitly how workload randomisation and optimisation
parameters were selected which makes classification difficult. If a fixed task is presented
without reporting number of training trials, seeds, or randomisation assumptions (i.e. a
potentially cherry picked single random seed), I assume C. Few works I surveyed explicitly
report on failure modes, despite often using appendices to share training hyper-parameters.

5.5 Task evaluation protocols 103

This highlights the need for more explicit evaluation protocols. In Chapter 6, I also
attempt to reproduce and classify a result listed here to assess published claims.

Wield: Incremental task design with progressive randomisation

104

"syunood aydures JuaILIp ye sjeseyep oidiynur uo pajiodal Suieq SHMSDI 0f SIBJAI ST ‘A2 JNOYIIM
UOAIS ST 0SURI ® J] "SPoos WIOPURI SSOIDR URIUI 10 URIPOW 9} Se pojIodol U] SINSOI SOIRIIPUL ,, Y "POYISSR[D YI0M IO :g'G 9[qR],

(=Fi=s01~u)% soA SSOT Jo oures UIpN [81SHS| orezeydly

(02 = 5 °00000F = ©)%) ou odesn ArowaN (6T NDJ] sunumer ydeis uorpejnduro))

LOT=/08=75'0T — ;01 = ©)<D ou oW} UOTINDAXS AIN) [6T JANIN] Teziunyd() A1eng) pauresr] y 09N

((=F1=501 — 0T = u)") ou Kouayer “mndysnoayJ, (6T DY) 1017100 UOTISa8U0))

[A8T - ASIN] (euoa(]) s1ogsnyo Suisseoord eyep

(=Fu=s01=u)"D ou sowr) uoneiduroo qol syredg I0J SUWI}LIOS[R SUINPOYDS SUILIRYT|

((=F9=9501 — 01 =)&) ou IOII9 UOIIOIPaI] [STMOHFO] suonjorpard Ljeurpre))

L0T=/¢=5000€CT = 1)t sok UOI}RISUSS WRISOI] [L1TT1dD] weisold o) oSensuer]

((=F'i=5"01 — 0T = w)&H OU oUW} UOIJRIST JUISOP JUSIPRIL) (6T DAV ruemedeld 901a9(]

(cLo=/f0z=s01x¢=u)p sok PIoyse1y) 91008 3uoJ TV uorjenyesd sururely ydeisy

((=1i=s01=u)D OU 9T} UOTIRISII JUSDSOP JUAIpRID) [T JOHIN] 1ueureor[d 9d1A0p], [ROIYDIRISIH

LOT=/F=50Txc=u)1D OU OUII} UOTJRIOIT JUIISOP JUSIPRIL) (LT TdIN] yueweoeld 001A0p A1,

[STJIA] uorjerswmus 1op1o urol 10J

(=fi=s501~=u)H ou OUII) UOIINIVXS AIoN() 10} Surures| jyusuredIojural dea(y

((=fi=s,01=u) ou AIouwowr ‘ouwr) UOIYedNIsse]) [61S[7T] uoryeoyisseo joxoed [eImaN
aA109[qo

(1)) porrodar sseld 1soySIH poxIq SINUbEI(e) IOAN

5.6 Data augmentation from demonstrations 105

Finally, applications reviewed here were not typically defined through a fixed objective
such as winning a game or reaching a score threshold. Performance objectives were
explorative, e.g. outperforming problem-specific baselines. This can obfuscate practical
utility without cost-benefit analysis on implementation cost.

5.6 Data augmentation from demonstrations

Systems developers utilise their domain expertise to encode a state representation, action
model, and reward structure. To interface RL algorithms, systems designers inherently
must encode prior knowledge on workloads.

Another way of encoding domain knowledge is through supervision. In supervised
machine learning, training labels for widely used benchmarks were created through hand-
curation [DDS*09], or more recently tool-assisted through weak supervision [RBE*17].
Demonstrations are also a common tool in RL in scenarios where an expert can without
difficulty identify and perform a correct action (§5.6.3). In Wield, I explore the potential
of rule-based weak supervision to enrich trajectory data based on domain knowledge. This
is motivated by human users generally not being able to identify optimal solutions by
intuition (i.e. solutions to high-dimensional optimisation problems). I first discuss an
algorithmic variant for reinforcement learning from demonstration.

5.6.1 Algorithms

I briefly summarise Deep-Q learning from demonstrations DQFD, a DQN variant developed
by Hester et al. for real world applications of DQN [HVP*17]. They argue that in problems
where a simulator may not be available, prior control data from expert configurations may
be used to pretrain to a safe initial model. Their algorithm is based on the observation that
training a Deep Q-network using an unmodified DQN loss function creates the problem of
"ungrounded” Q-values. For many state action pairs, no demonstration data is available
as the expert demonstration has no reason to choose actions believed to be sub-optimal.
This in turn means when training the Q-function, no realistic value estimates for these
state-action pairs exist, and expert updates would update towards the highest ungrounded
value (due to choosing the highest Q-value). Non-demonstrated action values would have
unspecified Q-values in relation to the expert action, leading to unpredictable behaviour
when training online and updating Q-values from new observations.

Hester et al. hence suggest to combine DQN variants with a supervised loss term which
specifies how expert actions and non-expert actions differ in Q-values. This is achieved by
assigning an ’expert margin’ to demonstration actions by extending double Q-learning
[HGS16], a Q-learning variant which corrects biased Q- estimates in the original DQN by
decoupling action selection from action evaluation. The double DQN loss

Tpa(Q) = (R(s,a) +1Q(st+1, af}; 0') — Q(s, ;6))? (5.1)

where

max

A1 = argmaz,Q(sey1,a;0) (5.2)

uses the target network (as explained in §2.2, parametrised by €')) to evaluate the action
selected using the training network (parametrised by ¢). DQfD combines this loss with

106 Wield: Incremental task design with progressive randomisation

another expert loss function Jg:

Je(Q) = rgeaj([Q(s, a) +U(s,ag,a,mg)] — Q(s,ag) (5.3)
[(s,ap,a) is called a large-margin function which outputs 0 for the expert action mg, and
a margin value > 0 otherwise. By adding the expert margin mpg to the loss of Q-values of
incorrect actions, the update biases the Q-function towards the expert actions. A difference
in Q-values between expert actions and other actions of at least the margin is enforced
[PGP14] for each state.

In DQIfD, the large margin function evaluates to a single fixed positive margin (e.g.
1.0) or zero. The main advantage of DQfD its conceptual simplicity, as the margin value
provides a single hyper-parameter to express expert confidence. This comes at the cost of
assuming all expert actions are equally better than other actions. It also does not allow
for negative examples to be combined with positive examples.

I propose to modify DQfD to not use a single margin value m, but a margin matrix
M.. M, is constructed from a vector of margin values per sample, i.e. each state-action
pair (s;,a;) can have a unique margin value mg,. Second, I observe that in this variant,
the margin functions can also be used for negative examples. More generally, multiple
demonstrations can be given for the same pair (s;, a;). This requires to modify the expert
loss Jg to compute element-wise losses using minimisation or maximisation for positive
and negative margins respectively for each element ¢ in a mini-batch:

JE(Q) _ maXaEA[Q(S> CL) + Z(S, ag, a, mEz)] - Q<87 aE') mEg; > 0 (54)
mingea[Q(s,a) + (s, ap, a,mg,)| — Q(s,ag) mg, <0

This distinction is needed to ensure the Q-value of non-expert actions is directionally
adjusted by taking the maximum or minimum estimate including the margin respectively as
the expert loss (i.e. forcing all other actions to be worse or better than the demonstration).

Requiring a demonstrator to assign individual margins is not a practical strategy for
the sample sizes required in reinforcement learning. In Wield, I provide demonstration
abstractions to facilitate both positive and negative demonstrations. Instead of providing
unique margins per sample, I propose to partition demonstrations into equivalence classes
via labelling functions, which I introduce in the next section.

5.6.2 Demonstration abstractions

Demonstration abstractions are used to enrich incomplete trajectories. This is based on
the observation that system trace data and logs cannot generally be assumed to contain
complete trajectory information which could directly be used for off-policy training. For
data augmentation, I distinguish the following cases:

1. Full trajectories Full trajectories implies that states, actions, rewards can be
directly extracted from traces. They can be available when a system is profiled for
debugging and analysis purposes, or when a deployment is explicitly instrumented
for later optimisation. For example, databases may write full information on all
queries where execution time crosses a pre-defined threshold (i.e. a slow query log),
but not for all executed queries due to storage requirements.

5.6 Data augmentation from demonstrations 107

2. States and actions Workload and configuration information is available to construct
a state, and system decisions to infer actions. No reward is available because the
relevant system metrics were not collected or cannot be matched to states and actions
effectively.

3. States only Only workload information is available but no results of a system
interacting with inputs. For example, in the context of databases, only example
queries may be available, or input job descriptions for scheduling problems.

Other combinations are possible, e.g. logs only containing systems decisions (actions) but
not workload inputs. Inverse reinforcement learning addresses the problem of recovering a
reward function from states and actions to subsequently construct a policy [NROO]. Inverse
reinforcement learning is beyond the scope of this dissertation because system performance
objectives are typically known (e.g. throughput and latency service level objectives).

Due to a lack of available datasets, I focus on the third case where only workload
information is available. As systems designers adopt more fine-grained decision making
mechanisms, I expect wider adoption of trajectory data collection.

A labelling function f : s — (a,r) maps a state s to an action a and reward r. The
state s must consider the context of prior decisions for labelling functions to be able
to construct a state sequence., i.e. the state must satisfy the Markov property. This
is in contrast to supervised labelling where individual inputs can be labelled without
consideration for other data points (as supported by tools like Snorkel [RBET17]), as they
are evaluated independently.

Consider a workload trace consisting of a set of database queries, or a list of job
descriptions to be processed by a scheduler. To relate system configuration to workload,
the state representation should combine relevant configuration parameters and current
workload information. In Wield, I iteratively construct demonstration trajectories from
raw workload traces represented as a sequence of workload items W = wy, wy, ..w, by the
following steps:

1. The system state is initialised with the initial configuration cy.

2. A state sq is generated using a converter which combines wqy and cq according to its
conversion function.

3. A labelling function produces ag, 79 = f(so)-
4. An updated configuration representation ¢; is produced from ay.
5. Repeat until all w; are processed.

This procedure can be repeated for arbitrarily many labelling functions to generate multiple
trajectories from a single workload sequence W. 1 give a practical example of creating
demonstrations using labelling functions in Section 5.7.

5.6.3 Alternative approaches to learning from demonstrations

Learning from demonstration or expert supervision is a long-studied topic of interest
in RL. For example, DAGGER (for Dataset Aggregation) is an approach for imitation
learning which requires an expert to continuously provide new input [RGB11]. Interactive

108 Wield: Incremental task design with progressive randomisation

approaches like DAGGER more closely mirror the workflow of interactive tuning tools used
e.g. in databases. While Wield could be extended to support interactive demonstrations,
I believe interactive approaches to be impractical for scalable systems tuning. First,
additional computational resources are cheaper than expert time to guide training. Second,
unlike many perceptual tasks in computer vision or natural language understanding,
humans cannot easily give accurate demonstrations for increasingly complex systems. A
human presented with an intermediate result may not be able to provide useful feedback.

Behavioural cloning fits expert trajectories as a supervised learning problem, and was
more recently also studied in the context of generative adversarial models [WMR*17, HE16].
Behavioural cloning as a simple (i.e. no further data generation mechanisms) supervised
problem is limited by requiring large amounts of expert trajectories and poor generalisation
to out-of-sample inputs.

The demonstration methods used in Wield are also conceptually limited. Their
optimisation mechanisms are brute-force overrides of value estimates. Their purpose is to
demonstrate how expert knowledge can be systematically integrated into reinforcement
learning design workflows. Emerging work is concerned with helping learners assign
confidence into expert demonstrations [WCB*19].

5.7 Case study: database indexing

Next, I motivate an application example and discuss its representative problem properties.

5.7.1 The compound indexing problem

In database management, a key task for database administrators is to create secondary
indices for stored data. Such index data structures can accelerate query execution times
by orders of magnitudes. This is achieved by providing fast look-ups for specific query
operators such as range comparisons (B-trees) or exist queries (Bloom filters). A single
index can span multiple attributes, and query planners employ a wide range of heuristics
to combine existing indices at runtime, e.g. by partial evaluation of a compound (multi-
attribute) index. The compound indexing can thus be described as follows.

For a fixed set or distribution of database queries, one must identify the combination
of indices which minimizes overall workload latency and memory usage of indices. Both
objectives can be phrased as constraints, e.g. meeting a service level objective on a latency
percentile, while not using more memory than is provisioned to the database server.

Determining optimal indices is an attractive optimisation problem due to non-intuitive,
data-driven behaviour by the query planner. If an ineffective index is chosen, performance
may degrade due to unnecessary index lookups, thus creating more indices does not
equal faster queries. Instead, index performance depends on attribute cardinality and
query distribution. This creates an interesting opportunity to use RL to adapt indices
based on query execution feedback. Sharma et al. previously used RL on a simplified
single-column indexing problem [SSD]. I study the full problem where indices may span
multiple attributes.

In practice, indices are currently identified using various techniques ranging from offline
tool-assisted analysis [ACKT04, DDD"04] to online and adaptive indexing strategies
[GK10, IMKG11, HIKY12, PIM15]. Managed database-as-a-service (DBaa$S) offerings

5.7 Case study: database indexing 109

600

R —— Single key (k=1)

\:—/ Compound k=2

g 400{ —t+— Compound k=3

c

0

s}

3

O 200+

S

©

£
047 N5 N N7 8
10 10 10 10 10

Documents in collection

Figure 5.3: Index creation times as a function of document size and the number of
attributes k spanned by an index.

sometimes offer a hybrid approach where indices for individual attributes are automatically
created but users need to manually create compound indices.

I study MongoDB as a popular open source document database where data is organised
as nested J/BSON documents. While a large body of work exists on adaptive indexing
strategies for relational databases and columnar stores [PIM15], compound indexing in
document databases has received less attention. Index selection is a representative problem
for systems-RL because:

e Evaluation times scale unfavourably with problem scale. Index creation time increases
with database size. I illustrate this by creating synthetic compound indices of different
index and collection sizes in MongoDB (Figure 5.3).

e The problem is partially solvable as some indices may be correct while others are
not. This is attractive for evaluating training progress, as opposed to all-or-nothing
problems.

e Combinatorial selection where similar indices (e.g. covering similar fields) may not
yield similar performance, i.e. a covariance function is not known and cannot easily
be specified.

Combinatorial optimisation problems are common across a wide range of system optimisa-
tion problems such as compiler optimisation, device assignment, join order evaluation, or
job scheduling.

Document databases are offered by all major cloud service providers, e.g. Microsoft’s
Azure CosmosDB offers native MongoDB support [Mic18], Amazon’s AWS offers Dy-
namoDB [Amal8], and Google Cloud provides Cloud Datastore [Gool8|. The document
database services I surveyed offer varying specialised query operators, index design, and
query planners using different indexing heuristics. The aim of automatic index selection
is to omit this operational task from service users. I initially focus on common query
operators available in most query dialects. In MongoDB, queries themselves are nested
documents:

db. find($and : [{"name” : {"Seq : " Jane” },{" country” : {"$eq : ” England’ } }])

The MongoDB query planner uses a single index per query with the exception of $or
expressions where each sub-expression can use a separate index. An index may span

110 Wield: Incremental task design with progressive randomisation

between 1 and k£ document attributes. The index is specified via an ordered sequence of
tuples (f1,$1), .-, (fn, Sn) Where each tuple consists of a field name f; and a sort direction
s; (ascending or descending). At runtime, the optimiser employs a number of heuristics to
determine the best index to use.

Via index intersection, the optimiser can partially utilise existing indices to resolve
queries. For example, prefiz intersection means that for any index sequence of length
k, the optimiser can also use any ordered prefix of length 1..k — 1 to resolve queries
which do not contain all £ attributes in the full index. Consequently, while the tuple
ordering of the index does not matter for individual queries, the number of indices for the
entire query set can be significantly reduced if index creation considers potential prefix
intersections with other queries. Similarly, sort-ordering in indices can be used to sort
query results via sort intersection in case of matching sort patterns. For example, an
index of the shape [(f1, ASC), (f2, DESC)| can be used to sort ascending/descending
and descending/ascending (i.e. inverted) sort patterns, but not ascending/ascending or
descending/descending.

Creating the full compound index for every single query is not a viable solution because
it can both impractically increase storage cost and also slow down execution as all indices
need to be updated after each insert. Moreover, not every query may benefit from an
index in the case of low selectivity attributes. If a query predicate requires to evaluate
most documents in a collection (or rows in a table), sequentially reading can be faster as
it requires fewer disk seeks than working through an index.

Here, I show how to model compound indexing as a reinforcement learning problem
based on the idea that execution feedback from query and index creation can be used to
find a minimal (w.r.t. index size) combination of indices meeting runtime objectives.

5.7.2 Designing a problem model with Wield

In this subsection, I discuss state, action and reward model for indexing. Identifying
an effective index for a query requires knowledge of the query shape comprised of its
operators and attributes. To leverage intersection, the state must also contain information
on existing indices which could be used to (partially) evaluate a query. I model the state
by combining

e a tokenised representation of the query and

e a matrix containing column selectivity estimates and a binary vector indicating 1 for
query attributes present in the query and 0 for all others.

Selectivity estimates are obtained by querying distinct column values when beginning
training. The representation is based on the observation that indexing decisions must
consider query operator structure (e.g. "or” predicates can evaluated with separate indices)
and also data distribution. Without encoding selectivity estimates, the learner would have
to indirectly observe the effects of different cardinalities by memorising the effects of each
operator on each specific column.

For each query, the agent must output an index (or none) spanning at most k at-
tributes where k is a small integer. Indices covering more than 2-4 attributes are rare in
practice. This is also because compound indices containing arrays, which require multi-key
indices (each array element indexed separately), scale poorly and can slow down queries.

5.7 Case study: database indexing 111

Query: find({$and: [{name: {$eq: 'jane'}, {age: {$gt: 20}}]}).count()

Index-

context: [(name, 1)] \

Tokenizer: [$and name_1 IDX_ASC $eq age $gt AGG_COUNT .. 0]

Strip values, extract shape

Look up discrete indices
in vocabulary

Forward
pass

One action output
per index attribute

T~
k////

actions:
3: Ascending index on second input attribute
0: no-op, no further keys required

System-
actions: [(age, 1)]

Figure 5.4: Action parsing scheme for MongoDB indexing case study.

Additionally, as discussed above, index intersection makes indices order- and sort-sensitive,
thus requiring to also output a sort order per key.

The action representation should scale independently of the number of attributes in
the document schema. Consider a combinatorial action model where the agent is modelled
with one explicit action per attribute, and a separate action output per possible index-key.
A 3-key index task on 10 attributes would already result in thousands of action options per
step (5 x 10%) when including extra actions for possible sort patterns (ascending/descending
permutations).

This approach would not generalise to changing schemas or data sets. I propose a
positional action model wherein the number of actions is linear in k. When receiving a
query, I extract all query attributes and interpret an integer action as creating an index
on the ith input attribute, thus allowing the agent to learn the importance of key-order
for prefix intersection. To distinguish sort patterns, I create an extra action per key (one
ascending, one descending with ascending default). This results in 1 + 2k actions for a
k-key index (one output for no-op).

Figure 5.4 illustrates action parsing for £ = 2 and a simple query on name and age
attributes. In the example, the name field is already indexed so when the query is tokenised,
a special index token (IDX_ASC) is inserted to indicate the existing index. The tokenised
sequence is mapped to integers via the embedding layer and passed through the network,
which outputs k integer actions. In the example, the agent decides to implement one
additional single-key index by outputting 3 and 0, where 3 implies an ascending index on

112 Wield: Incremental task design with progressive randomisation

the second input attribute, and 0 is used for no-op if fewer than k keys are required in the
index.

For rewards, the optimal indexing strategy is the minimal set of indices Z meeting
performance level objectives such as mean latency or 99th latency percentiles for a set of
queries Q. Let t(q) be the time to execute a query ¢ € Q under an index set Z and let
m(Z) be the memory usage of the current index set.

The choice of reward function is guided by cost of evaluation. Consider a sparse reward
function which evaluates query runtimes once after an agent has made a decision on each
query (evaluate once). When evaluating once per episode and providing a default zero
reward for all intermediate steps, learning the impact of individual actions towards the
global reward is more difficult, and the required sample size increases correspondingly.
Such a reward can be necessary if intermediate evaluation is difficult to construct, i.e. when
a game is either won or lost but the intermediate game state does not allow predicting a
winner.

In indexing, the evaluation is always available as the entire query set could be theo-
retically executed after each indexing decision. The structure of the problem admits an
incremental reward computation. I define the per-step reward as

r=—w,m(Z) —wo (Z t(qi)> (5.5)

i

with o being the desired aggregation function, e.g. the arithmetic mean (or 99th percentile)
of query execution times. Both terms are weighted by w,, / w; respectively to express
preference of memory cost against execution times. Note that while each state transition (a
transition corresponds to deciding on a single query) includes the entire query set runtime,
this can be evaluated incrementally through caching:

1. Each step, the agent receives a query state and decides to create an index or not.

2. Only queries interacting with the columns in the index could theoretically prefix
or intersect the index. They are executed and their runtime cached. Prior cached
runtimes are invalidated.

3. All other query’s runtimes are read from a cache as they are assumed to be unchanged.

Using this reward design, the agent observes the full query set performance against
the cost of the index at each step without needing to perform a full evaluation. While
undesirable from the theoretical view of an agent learning from raw feedback with minimal
reward design, incremental evaluations are effective in sample-constrained environments.
As algorithmic capabilities for credit assignment improve, expert-designed incremental
evaluations may not be needed. In Wield, I hence implemented

e A schema mapping

— query operators and schema information to integer indices to define state inputs,

— and in the same schema, an output mapping based on the number of allowed
keys in the index.

e A converter implementing:

5.7 Case study: database indexing 113

— conversions between queries to tokenised input sequences, using the layout
defined in the schema.

— conversion between integer actions and index columns to be combined in an
index.

Listing 5.3 illustrates action and reward conversion for the indexing problem (state
conversion omitted due to size of the tokeniser).

5.7.3 Indexing demonstrations

To facilitate learning from demonstrations for indexing, I give examples for intuitive
demonstration rules grounded in the problem semantics.

1. A positive margin rule which simply suggests the full index with a small expert
margin. Creating the full index, i.e. combine all attributes of each query into an
index, improves latency but results in many unneeded indices. The labeling rule
simply copies all columns in the query body as the action and specifies a positive
expert margin (example in Listing 5.4).

2. An alternative positive rule which defaults to no-op. To avoid creating unneeded
indices, this rule creates a bias for not creating any indices at all initially.

3. A negative margin rule to discourage reverse-order indexing which decreases prefixing,
i.e. a query with column-order ¢y, ¢y, c3 should not try to create an index in the
reverse order cs, ¢y, c¢q. The labeling rule provides the reverse order index as the
action and specifies a negative expert margin.

These rules are neither exhaustive nor optimal. They illustrate how basic problem
semantics can be encoded weak in supervision rules. If available, an index recommendation
tool by a commercial database provider could be used to generate demonstrations. In
Wield’s evaluation, I discuss the performance improvements and tuning difficulties arising
when using weak supervision.

5.7.4 Wield workflows: Putting it all together

Wield’s abstractions are coordinated in workflows which consume the interfaces provided by
schemas, converters, and demonstration rules. For example, the demonstration workflow:

1. Imports a data set using a converter to map system-representations to agent states,
actions, rewards, and terminals.

2. If provided, applies demonstration labelling functions to generate actions and/or
rewards.

3. Delegates offline training to an RL agent configured via the corresponding schema
layouts for states and actions.

In contrast, an online workflow facilitates interaction with a live system through a system
interface which executes converter outputs on the system, e.g. by sending a HT'TP request
to update a configuration parameter. Online workflows consist of these steps:

114 Wield: Incremental task design with progressive randomisation

def system_to_agent_action(system_action, meta_data):
index_columns = system_action["index"]
action, attribute_order = {}, {}
action_values = []
i=1
for attribute in meta_data["query"].attributes:
attribute_order[attribute] = i
i+=1
Find position of index attribute in input attributes.
for index_tuple in index_columns:
input_position = attribute_order[index_tuple[0]]

if index_tuple[1] == "ASC":
action_values.append(1 + (input_position - 1) * 2)
elif index_tuple[1] == "DESC":

action_values.append(1l + (input_position - 1) * 2 + 1)
Map to action names.
for i, name in enumerate(self.actions_spec.keys()):
action[name] = action_values[i]
return action

def agent_to_system_action(agent_action , meta_data):
index_tuples = []
query_attributes = meta_data["attributes"]
for name in self.schema.actions_spec.keys():
action_value = actions[name]
if action_value != self.noop_index:
action_input_field = int((action_value - 1) / 2) + 1
if action_input_field <= len(query_attributes):
attribute = query_attributes[action_input_field - 1]
sort_direction = "ASC" if action_value % 2 == 1 else "DESC"
index_tuples.append((attribute, sort_direction))
System command is list of attributes to combine in index.
return index_tuples

def system_to_agent_reward(system_metrics):
runtime = system_metrics["runtime"]

index_size = system_metrics["index_size"]

return - (self.runtime_weight * runtime)

- (self.size_weight * index_size)

Listing 5.3: Indexing action converter based on positional action parsing.

5.7 Case study: database indexing 115

Maps system metrics to state inputs.
class DemonstrationRule(object):

def __init__(self, converter, schema):
Layout, parsing.
self.converter = converter

self.schema = schema

def generate_demonstration(self, state):
State is a query.
tokens = self.converter.tokenise(state)
attributes = [c for ¢ in tokens if ¢ in self.schema.attributes)
Filter for ascending/descending sort orders.
sort_order = [s for s in tokens if ¢ in self.schema.sort_tokens)
Full index copies all attributes and their sort order.
return [(a, s) for a, s in zip(attributes, sort_order)]

Listing 5.4: Simplified demonstration rule for full indexing.

1. Based on schema definitions, a task graph for an RL model is created. The task
graph in turns generates computational graphs for each task node, e.g. via RLgraph.
Pre-trained model-weights can be restored from checkpoints if available.

2. A workload schedule is generated based on progressive randomisation assumptions
and evaluation mode, i.e. blackbox mode or generalisation with fixed or randomised
training and test sets.

3. To train a model, a system controller first initiates the workload schedule. In the
case of query indexing, this means beginning to create indices from the current model
by converting queries.

4. The system controller coordinating the workflow then keeps alternating between
executing queries and creating indices by converting queries to agent states, agent
actions to system actions, and system metrics to rewards via its converter.

5. Following completion of a workload schedule, the model is evaluated on a test
schedule which in the case of black-box optimisation may be the same as the training
schedule.

6. Final model parameters, serialised workload schedule, random seeds, and training
parameters are exported to be fully reproducible.

All workflows rely on converters o transform representations when alternating between
system and agent, demonstration rule, or other decision making mechanisms serving as
baselines. Wield can hence be viewed as a design tool on top of RLgraph, where Wield’s
responsibility is to identify RL representations which RLgraph can execute.

Research into systems applications of reinforcement learning thus far has relied on one-
off implementations which can lead to tight coupling of model, system-specific interfaces,
and workload semantics. By separating systems semantics from workload coordination,
and task layout from conversion between agent and system view, Wield provides re-usable

116 Wield: Incremental task design with progressive randomisation

workflows which can be quickly adapted to new systems and task designs. For example,
Jeremy Welborn in collaboration with me used Wield on top of RLgraph to explore
structured action representations in PostgreSQL indexing [WSY19].

5.8 Future workflows and deployment

The indexing case study illustrates how problem implementation is assisted by Wield’s
software primitives. Here, I discuss near-time directions for model design.

First, the identification of effective state and action representations is an iterative
manual process. Wield structures the implementation but currently does not provide
means to help identifying states and actions. Several approaches may be used to support
representation design:

e Feature analysis. While not specific to RL, statistical methods such as principal
component analysis can be used to extract relevant system parameters for the state
representation. This could be automated if users supply system configurations and
profiling traces (e.g. in database tuning [VAPGZ17]).

e Structure search. More ambitious research could target automated hierarchical
decomposition of state and action spaces. While feasible to implement as search
problems, automated architecture designs require a large number of evaluations. By
substantially expanding total hyperparameters, experimental approaches may be
viable only in settings with cheap simulators.

e Learning latent representations. Another approach to dealing with large num-
bers of configuration parameters and performance metrics is to use e.g. a variational
auto-encoder to learn a compact latent representation [HS18]. This in particular
means a policy network can purely learn to act on the compact representation.

Their viability greatly varies based on the cost of evaluation and the availability of prior
experience data, with feature analysis providing most near-time utility.

A befitting analogy may be a comparison to early database management systems.
They primarily standardised access to data storage. Modern database engines include
a plethora of utilities to help manage all aspects of data processing. Similarly, future
versions of Wield or similar tools will both assist in the design phase, and in the training
phase through monitoring, integrated tuning, and model lifecycle management.

5.9 Summary

In this chapter, I analysed reinforcement learning as a decision making and optimisation
mechanism in computer systems. The starting point to my analysis is the observation that
despite a wealth of experimental successes, real-world systems incorporating reinforcement
learning approaches remain sparse. Successes of deep RL in games have revived interest in
this line of research. Moreover, I argued that simply using neural networks as function
approximators is not sufficient to address the practical gap, and that novel evaluation
modes and software systems are required to support emerging learned system components.

5.9 Summary 117

To accelerate research, I introduced Wield, a framework for practical task design in
RL. To study practical system behaviour, Wield focuses on standardising workflows when
learning on real-world systems. To this end, Wield provides the following abstractions:

e Schemas and converters as programmatic task description mechanisms which can be
translated to executable computation graphs by frameworks such as RLgraph.

e Progressive randomisation as a set of evaluation modes with explicit staged randomi-
sation of both optimisation and workload aspects.

e Contextual labelling rules to create fine-grained imperfect demonstrations for work-
load data.

e Task graphs as a means to model multi-task and hierarchical learners to decompose
large state and action spaces.

By focusing on incremental evaluation through randomisation, Wield is a first-of-its-kind
tool in the emerging area of learned computer systems. Combined, Wield and RLgraph
provide a comprehensive software stack for designing, evaluating, and executing deep
RL algorithms. In the following chapter, I evaluate Wield’s abstractions guided by the
perspective of progressive randomisation.

118 Wield: Incremental task design with progressive randomisation

Chapter 6

Wield evaluation

6.1 Evaluation aims

In this chapter, I evaluate my Wield prototype. The evaluation focuses on the following
properties:

e The benefits of Wield’s abstractions for implementing RL models in contrast to
one-off implementations (§6.3).

e The utility of progressive randomisation as an instructive experimentation scheme
(§6.4.3).

e Practical obstacles to deploying RL in systems tasks, considering the disparity
between experimental successes but limited practical deployments (§6.4).

High-profile successes of RL (e.g. AlphaGo [SHST18], OpenAl Five[Opel8]) have relied
on orders of magnitudes more resources than most organisations can access. In what
I consider resource-insensitive research, the aim is to demonstrate RL can solve a task
without consideration for cost.

My goal in evaluating applications at smaller scale, both in the number of samples
collected and deployment, is not to draw conclusions about these resource-insensitive
experiments. Instead, my aim is to gather experimental evidence towards my initial thesis
of limited real world deployments. What optimisation or generalisation capabilities do
common algorithms exhibit at what cost? Is the gap between alleged capabilities and
observed real-world utility in computer systems closing?

6.2 Learned indexing

6.2.1 Workload

In this section, I incrementally evaluate the compound indexing task. Using progressive
randomisation requires configurable query workloads. To this end, I implemented a query
workload generation mechanism which synthetically generates query shapes of specifiable
difficulty (via the number of predicates and operator distribution). To configure a workload,
allowed query operators, number and distributions of aggregation and selection operators

119

120 Wield evaluation

can be specified. For individual query generation, I use templated queries with sampling
functions. They sample query predicate values from workload distributions based on real
attribute values (e.g. Figure 6.1).

find({$and: [{"attr_1": {$operator_1: VALUE_1}, ..., {"attr_n": {operator_n: VALUE_n}]}.count()

| |

Sampled logical List of sampled Sampled
p_ o9 predicates, e.g. aggregation
combination
age > 20

Figure 6.1: Randomised query generation.

Each training episode consists of a random or fixed set of queries, depending on
randomisation mode. Importantly, query sets and schedules of training episodes (order of
query sets) can be deterministically reproduced through random seeds. When training
for generalisation, a different set of queries is sampled each episode (training covers a
distribution of tasks), as well as in the final evaluation of the trained model. In black-box
optimisation mode where the aim is to optimise a single fixed set of queries, I chose the
index set associated with the highest reward during training. For the final evaluation, I
recreate these indices and measure final index sizes and run times.

6.2.2 Experimental setup

I ran experiments on a real-world dataset, the Internet Movie Database (IMDB [imd18]).
I imported datasets for titles and ratings (title.akas, title.basics, title.ratings) comprising
~10 million documents into one collection (15 attribute fields). All experiments were run
on a variety of commodity server class machines (e.g. 24 cores (Xeon E5-2600), 198 GB
RAM), and using MongoDB v4.0.2.

I consider rule-based and auto-tuning baselines. One rule-based strategy I use to
compare results is full indexing (Full in the following) wherein I simply create a compound
index covering all fields in a query (respecting its sort order). I experimented with other
rules based on only indexing unindexed fields but they failed to reliably improve latency.
Full indexing improves latency but creates a large index-set.

I also compare my model to the OpenTuner [AKV*14] framework. OpenTuner exposes
a generic tuning interface and uses an ensemble of search techniques ranging from evolution,
hill-climbing, bandits, particle swarms to random search. Meta-techniques are used to
allocate a larger proportion of trials to well-performing techniques. I chose OpenTuner in
particular because defining a covariance function for indexing is difficult, and evolution-
based methods permutating index variants appear promising. To use OpenTuner for
indexing with Wield’s abstractions, I created integer parameters corresponding to database
attributes to combine into a compound index.

I test generalisation across with OpenTuner as follows. During training, where each
episode samples a different set of queries, OpenTuner attempts to find the index con-
figuration performing best across episodes. At test time, I evaluate OpenTuner’s best
found index set across the entire workload distribution. This helps answer the question if
per-query decisions improve performance over less specific workload-wide indices.

6.2 Learned indexing 121

Parameter Value
Learning rate 0.0001
Batch size 16
Layer size 128
Prioritised replay size 1000
Initial exploration-e 1.0
Final exploration-e 0.05

Exploration-e¢ decay steps 500
Target network sync interval 24

Updates per transition 4
DQID expert-margin 0.5
DQID expert-reward 0.5

Size/runtime weights (equal) 1.0

Table 6.1: DQfD training parameters used in the indexing case study.

o
GCJ T T - = -
c

506 — 08

5| — T 5 .

= 3

£ £0.6 —

L?OA E

2 g 0.4

@© [_—

—. 0.2 kS

T . 202 .

= l g _

500] - — = — | Z00{ - — —
Pretrain Online Default Full Open Pretrain Pretrain Online Default Full ~ Open Pretrain
+Online Tuner +Online Tuner

Figure 6.2: 99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the fixed blackbox task.

6.2.3 Fixed blackbox optimisation

I first evaluate the model described in §5.7 in a blackbox optimisation setting. Following the
progressive randomisation scheme, I begin by sampling a workload to tune hyperparameters
in a fixed workload with fixed optimisation parameters (Cy). Each workload comprises
20 templated queries sampling predicate values from actual IMDB entries. Each query
comprised 1-3 selection predicates, a logical aggregation (e.g. "and”, ”or”) of predicates,
and a global aggregation (sort, count, limit). I sort queries by length to improve intersection
(longest first).

A similar but smaller scenario was described by Sharma et al. [SSD] who used 15
fixed queries and single-key indices. In my experiments, the agent and OpenTuner were
allowed to create indices combining up to 3 distinct attributes. Each experiment variant is
executed for 100 episodes (five trials) where one episode corresponds to iterating across
all queries in the task. Algorithm hyper-parameters were identified through iterative
experimentation. I list parameters in table 6.1, and discuss tuning cost in §6.4.

Figure 6.2 shows 99th percentile and mean latency of the generated indices after
training. For each run, I show the relative latency improvement against the default
configuration (no index), and the relative index size improvement against the full indexing

122 Wield evaluation

< i

< 1.0 - L

R=

308

g’ T +

2067 = -

D

S —

404

Q

£0.2

a U. T
(V0] + . -

Pretrain Online Default Full ~ Open Pretrain
+Online Tuner

Figure 6.3: Index sizes of the created indices in the fixed blackbox setting with fixed weight
initialisation.

Total time Pct.

Waiting on system 60698 s 95.1 %
Agent interaction/evaluation 3122 s 4.9 %
Mean episode duration 766 s n/a
Min episode duration 578 s n/a
Max episode duration 943 s n/a

Table 6.2: Example wall clock times for training one model. One episode refers to creating
the entire application index set.

strategy. The runtime component in the reward was optimised for mean latency. Results
show large performance variation even with fixed network initialisation and workload
as a consequence of noise in query execution times. This could likely be improved by
re-executing queries at the cost of longer experiments.

In this instance of the fixed blackbox-task, both online training strategies (with and
without pretraining) identified low latency index configurations. Pretrain refers to using a
no-op labelling with positive margin, and a reverse-prefix function with negative margin to
create demonstrations for each query. OpenTuner improved slightly against full indexing
but did not identify strategies as effective as the learned ones. Figure 6.3 contains the
corresponding index sizes (normalised against the full indexing strategy). OpenTuner
created more compound indices than the full strategy. Queries have varying length, so it
is possible to create an index spanning more columns than used by any query. Pretraining
creates almost no indices as the blackbox task was pretrained with a slight preference
for no-op. Both learned strategies used significantly less memory than full indexing.
Differences between learned strategies are not significant. Both exhibit outliers failing to
improve latency.

Table 6.2 breaks down wall clock times for training one model. Over 95% of time was
spent waiting on index creation, with the remainder on updating the model and evaluating
queries. Training does not require accelerator hardware and can be executed cheaply on a
CPU due to small batch sizes and low sample throughputs. The distributed strategies
discussed in the evaluation of RLgraph are not applicable, unless a simulator is available
or many database servers accessible. The limited total number of experiences puts greater
weight on hyperparameters and feature selection.

To summarise, the proposed model with a fixed blackbox task but random optimisation
parameters is in C;(n = 2000,s = 5, f = 1.0). I define as success if the pretrain+online
variant improves mean latency by at least 50% against the default configuration since

6.2 Learned indexing 123

%

+ A
-

=

0.5

o
o

0.0 1 — -

o
[N}

i

+
IS
o

99th pctl. latency improvement
||
Mean latency improvement
(@)
~
[T

Pretrain Online Default Full Oben Pretrail Pretrain Online Default Full Open Pretrain
+Online Tuner +Online Tuner

Figure 6.4: 99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the fixed blackbox task with random weight initialisation.

mean latency was the reward objective. Pretraining did not help performance in the fixed
task. Neither method was able to learn to avoid any unneeded indices in the given number
of samples. Random weight initialisation seeds did not significantly affect latency of the
identified solutions but affected the size of the solution.

Next, I randomise the optimisation seed, i.e. network weights and mini-batch sampling
strategies (C). Figure 6.4 shows latency results using random initialisation. While
learned latencies achieve similar improvements as in the fixed configuration, a noticeable
observation on this different fixed task is full index performance. In the prior query set
used in Cj, the full index performs significantly worse than the learned strategies on query
latency. Index sizes did not show meaningful difference to Cj..

Analysis of slow queries in the prior query set shows that count queries with an or
logical operator (which can combine multiple indices) do not benefit from indexing all
individual query predicates. In the task sampled for C, the full index achieves similar
latency improvements as the learned strategies.

The relative performance against a baseline which may be used to make a case for
a novel approach can vary drastically per workload-sample. While task variation seems
to impact performance, the learned variants manage to improve latency while using less
space than the baselines (full indexing, OpenTuner).

6.2.4 Randomised blackbox optimisation

I now expand the blackbox setting to sample a different query set per experiment to
obtain further insight into sensitivity to workload variation, i.e. a randomised blackbox
(Cy) scenario. Figures 6.5 and 6.6 show these relative effect sizes. Runtime improvements
show substantial variation across different blackbox tasks Co(n = 2000,s = 5, f = 0.8).
Pretrain+Online achieves better latency improvements on average than online-only training,
and also improves against the full indexing strategy, while only using half the memory.
OpenTuner similarly improved latency but at the cost of creating full indices.

Table 6.3 breaks down index statistics for different modes (standard deviations in
parentheses). Created refers to the number of indices created, usage to the number of
times each index was used, Unused to the indices not used at all, and Unused size to the
size of all unused indices (all given as means across the different blackbox tasks).

First, Pretrain + Online did not have the fewest indices but Online failed to improve
99th percentile latency. 99th percentile latency was highly sensitive to incorrect indices.

124 Wield evaluation
=) 1.0
o L. * o L.
Sool T I 7 | =
30.8 0.8
';0.6 .20.6
2 >
204 20.4 J
o] +
. ©
502 c02
a l — - 3
£0.0 = — 1 = | =00 — =
< Pretrain Online Default Full Oben Pretrain Pretrain Online Default Full Open Pretrain

+Online

Tuner

+Online

Tuner

Figure 6.5: 99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the randomised blackbox task.

x 1.25 T
[}

o

c

Z1.00 —

> 1

¢0.75

<)

o -

Foso| = |

S

@ +

80.25 +

v - =

0.00 Pretrain Online Default
+Online

Full

Open Pretrain
Tuner

Figure 6.6: Index sizes against sizes of the full index in the randomised blackbox setting.

Queries with an or predicate may use multiple indices so usage counts do not necessarily
sum-up to the number of queries. I measure the combined size of unused indices as I
hypothesized that it may be difficult to learn to avoid very small unused indices due to
small impact on reward. OpenTuner created the most indices but the average usage per
index and the number of unused indices indicate that no effective strategy was found to
leverage prefix intersection. Over half of its indices were not used. The main observation is
that despite substantial real-world training time (up to 24 hours including all pre-training
and orchestration for one training run), the trained strategies are evidently not optimal,
as the unused indices could be removed. This does not take into account the true cost of
calibrating this experiment for months (which I discuss in §6.4). Collecting a single set of
five trials, which must be on the same hardware due to large variations in query execution
times across CPU configurations, takes up to weeks.

I make no claim beyond the progressive randomisation classifications for the given
number of samples. Implementing a simulator is another popular choice in applied RL
but introduces significant design and transfer cost as the simulator may need retuning per
database model. Here I focus on the feasibility of direct system evaluation which is closer
to practical auto-tuning workflows.

While impractical for full experiments, I ran some randomised blackbox trials at double
the number of episodes and show the reward curves in Figure 6.7. Importantly, rewards
continue to improve, indicating that users can trade solution quality against experiment
runtime. However, analysis of e.g. trial 3 with a sudden reward jump reveals that an
undesirable solution was found whereby the agent could save substantial index size by
allowing higher latency. This implies yet another tuning difficulty whereby tuning rewards

6.2 Learned indexing

125

Mode Created Usage Unused Unused size (GB)
Pretrain + Online 10.2 (2.64) 1.01 (0.1) 3.6 (L5) 0.64 (0.21)
Online 8.6 (3.01) 1.16 (0.23) 2.4 (1.36) 0.53 (0.24)

Full index 18.4 (1.62) 0.68 (0.11) 9.2 (1.6) 2.17 (0.35)
OpenTuner 19.8 (0.4) 053 (0.09) 11.8 (1.72) 2.2 (0.59)

Table 6.3: Index usage statistics for the randomised blackbox task. Numbers in parentheses

indicate standard deviations.

—20

—40

Rewards

100
Training episode

150

Figure 6.7: Continuing training yields further reward improvements.

for a shorter runtime may not be indicative of successful convergence later, again depending

on the exact query configuration.

6.2.5 Generalisation

Next, I consider generalisation where all modes are evaluated on a randomly sampled final
set of queries and trained across a distribution of query sets.

Figures 6.9 and 6.9 show latency and size metrics. I used the same hyper-parameters
as in the blackbox evaluation. Recall that OpenTuner was used to find the best average
index set across the query set distribution. Results illustrate the distinction between using
a blackbox auto-tuner and a learned model. The index sets created have similar median

latency improvements across all learned strategies

and OpenTuner. The difference is that

£1.0 N 1.0 +

; T

£0.6 s —

. o ==

5 £ 0.6 -

g 04 T Sos4y L L :

35} - Q

~02 = = ke

e 2 0.2

= PR

=00 - T | =00 - —

> — » ; ; , —
Pretrain Online Default Full Open Pretrain Pretrain Online Default Full ~ Open Pretrain
+Online Tuner +Online Tuner

Figure 6.8: 99th percentile (left) and mean (right) relative latency improvements against
unindexed configuration in the randomised generalisation task.

126 Wield evaluation

1.2
6 T

10 — €L

208

g *

206 l

(@]

[9Y]

504

3

202

n — -

Pretrain Online Default Full Open Pretrain
+Online Tuner

Figure 6.9: Relative index sizes in the randomised generalisation setting.

OpenTuner creates a significantly larger index set to cover the distribution of possible
query sets while the learned models only create the indices for the particular test set (even
if incorrect ones). How good are generalisation decisions and how do they compare to the
indexing decisions made in a blackbox scenario? Median improvements of 99th percentile
and mean latency were significantly higher in the randomised blackbox scenario (20-40%).
Using the same latency score criterion, randomised generalisation achieved

Ci(n = 2000, s =5, f = 0.6)

Index sizes against the full index were also higher. The number of unused indices for
both learned strategies was much higher than in the blackbox setting, with up to one
third of indices created not used by any query. Comparing latency improvements against
OpenTuner, which produces a best effort across the entire workload distribution, shows no
significant improvement from making query-specific generalisation decisions.

In-distribution generalisation also raises the question of test-task similarity. Since
both test and training tasks are randomly generated sets of queries, training queries
can appear in the test set. I hashed tokenised query shapes (after stripping concrete
values in predicates) to quantify this similarity. Across experiments, I observed 30 — 55%
of queries in the test set being seen during training. However, there was no correlation
between higher similarity and performance. Overall, the generalisation experiment confirms
prior observations about limitations of Deep Q-learning. I hence did not test further
generalisation modes.

6.2.6 Utility of weak demonstrations

Do imperfect demonstrations create useful inductive bias? I observed slight (but likely not
significant) improvements in effect sizes when using a no-op labelling rule in randomised
blackbox scenarios. In post-hoc analysis, this could be explained through the observation
that bad indices can hurt performance. Thus, an additive model where the learner is
biased towards no indices, and only adds good indices is preferable to a subtractive model
where a learner is biased towards suboptimal indices.

However, my experiments also illustrate the additional tuning issues introduced by
weak demonstrations in RL. The pretrain expert margin needs to be tuned in combination
with online reward scales so that online training can override value estimates.

The notable difference between system tasks and other RL domains requiring human
perception or control is that a demonstrator cannot easily assess demonstration quality.
Manually obtaining a high-performing index set requires iterative analysis.

6.2 Learned indexing

127

£1.0 1.0
Q . = T _ "
s LT : T
208 508 —
é ~
= o
=06 | Bos _
c > .
[} e

— Q
E50.2 _L — c 0.2

J_ (]
é‘{i 0.0 — L 1 = 0.0 _—

Pretrain Online Default Full Open Pretrain Pretrain Online Default Full Open Pretrain

+Online

Tuner

+Online

Tuner

Figure 6.10: 99th percentile (left) and mean (right) relative latency improvements in the

randomised generalisation task. Instead of no-op, a prefix rule was used.

=
o

- . — — . + | (10 — -

-+ * T - +
£0.8 = = . = -~
g . Z08

>
50.6 = -
£ $0.6 *
>
204 &
E w04
c 0.2 g
5 £02
=00 — —

Pretrain Online Default
+Online

Full

Open Pretrain
Tuner

Pretrain Online Default
+Online

Full

Open Pretrain
Tuner

Figure 6.11: Mean latency improvement and relative index sizes using a human demon-
strator in a fixed blackbox scenario.

I also evaluated a more sophisticated rule based on knowledge of query optimiser
prefixing rules. The rule tests if query columns can be prefixed into any existing index,
and otherwise creates a full index. It also tests reverse sort order combinations, i.e. if
sorting is required, does an inverted index exists that can be used to execute the sort?
Figure 6.10 depicts latency results in a randomised generalisation setting using the prefix
rule. In generalisation experiments, I pretrained from 1000 synthetically generated and
labelled episodes. The rule ("Pretrain’) on its own improved latency, but combining it with
online training yielded worse results than both online training or pretraining individually.
Even semantically well-grounded rules may not create better inductive bias than random
weight initialisation.

I also ran a separate experiment testing the utility of human intuition. This was done
using a fixed query set for which I created manual demonstrations based on knowledge of
schema and data distribution, but without iterative refinement. Figure 6.11 shows mean
latency and index sizes (99th percentile latency showed both learned strategies close to
full indexing). After retuning hyper-parameters (expert margins and training steps), the
human demonstrator achieved the best index size with about 10% improvement against
the from-scratch strategy.

When comparing to randomised blackbox results pre-trained by no-op, no-op provided
a more useful inductive bias than expert human intuition. Overall, if the agent is not meant
to exactly imitate demonstrator behaviour, weak demonstrations can be helpful if fine-
tuned, but also detrimental to performance. Better confidence score schemes also introduce

128 Wield evaluation

additional hyperparameters. Neither indexing rule gives desirable default behaviour. In
well-conditioned problems (i.e. smooth objective function), rule-based pretraining may be
more useful.

6.2.7 Discussion

Results in this section indicate RL can be in principle be used to directly optimise database
behaviour. Wield was used to generate demonstrations, interface OpenTuner, and explore
different workload randomisation modes. Experimental results point towards some utility
in a randomised blackbox scenario with Cy(n = 2000, f = 0.8,s = 5). Generalisation
performance was both observed with lower success rate and also with worse performance
than black-box results. Strikingly, generalisation decisions did not produce better latency
results than using an auto-tuner trained across the task distribution without query-set-
specific decisions. They did however as expected produce smaller index sets.

Long experiment durations even for relatively small databases are the main hurdle
to gain more robust insights and iteratively improve models. The results presented
here required months of calibration. Similar to the observed behaviour when evaluating
Atari Pong on RLgraph, training also fails for some workloads. These results call into
question the widespread use of fixed tasks (e.g. Join Order Benchmark [LGM'15]) in
prior applications of RL to databases. Learners may easily overfit to particular input
features or task instance properties. Hyperparameters can accidentally be tuned to ensure
a particular solution is uncovered during exploration.

6.3 Device placement

Next, I investigate the device placement problem of assigning parts of computation graphs
onto different compute devices to minimise operation runtimes. If multiple accelerators are
available, how should a large computation be distributed across them when considering
the cost of allocating device memory and communication? The corresponding RL task
selects one device for each operation.

Better placements yield graph runtime improvements which amortise tuning costs in
sub-sequent experiments. I apply Wield and progressive randomisation to investigate
capabilities of prior work, before implementing a new placer.

6.3.1 Setup

All experiments were run on TensorFlow 1.13 and using Google Cloud compute instances
with four K80 GPUs. Results for the hierarchical placer in the original publication were
reported on slower K40 GPUs, but these were no longer available for renting.

I first attempt to reproduce some of the results reported for the hierarchical device
placement module of TensorFlow [MGP*18]. The implementation is available open source
as part of the TensorFlow distribution (as part of a module called grappler)!. It contains
high level utilities to evaluate a TF graph definition on given hardware configurations. I
will in the following refer to the hierarchical placer as Grappler or Grappler’s placer. Note
that this module internally consists of two components, one for grouping operations into

'https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/grappler, ac-
cessed 23.9.2019

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/grappler

6.3 Device placement 129

device groups (‘grouper’), and one for placing device groups (’placer’). The term ’placer’
hence refers to both the module specifically responsible for placing groups, and the overall
architecture.

Grappler’s placer generates a placement configuration and instantiates a corresponding
computation graph, evaluates its runtime, and runs optimisation with a fixed time budget.

6.3.2 Evaluating the hierarchical placer

My goal of rerunning Grappler’s placer on some of the workloads reported is to classify it
in the progressive randomisation scheme. Are the available set of hyperparameters and
the sample counts in e.g. C or Cy7 The consequence of the hyperparameters being in C}
would mean that the module needs to be re-tuned for every problem, thus significantly
increasing deployment. In contrast, randomised blackbox success would imply that a large
set of graphs could be optimised without calibration.

As a benchmark, I use the neural machine translation (NMT) architecture reported in
the paper (and in prior work [MPL*17]). While some architectures were trained in a large
distributed setting (i.e. 16 independent nodes with each 4 GPUs to evaluate placements),
reported NMT results ([MGP*18], Figure 3) illustrate strong performance improvements
within hours of training using a single node. NMT is an attractive benchmark task because
the variants tested consist of an encoder-decoder architecture with multiple recurrent
layers. When translating, input and output sequences are unrolled dynamically, and prior
work on device placement shows that non-trivial placements split data across GPUs and
time-step dimensions.

Grappler’s placer was not able to run evaluations on the NMT implementation provided
by Google? with its own graph evaluation utilities. Serialisation of a number of metagraph
components failed, so Grappler could not initialise the corresponding TensorFlow graph.
The results presented here were obtained by directly instantiating the TensorFlow graph and
calling the training operations (implementation helped by Kai Fricke). This significantly
increases set-up cost per measurement. Each measurement was given a single warm-up
run, and the subsequent second runtime was used for the reward. The open source
implementation decays its learning rate to 0 within 1000 updates, corresponding to the
results reported in the paper. My results were run at least 1000 steps.

I begin with the fixed random seed, fixed workload setting (Cy). Figure 6.12 illustrates
runtime of the training operation (one iteration of mini-batch stochastic gradient descent).
I used the random seed supplied by the default configuration in the open source implemen-
tation, and repeated the experiment 10 times. Grappler identified improved placements in
most runs with a mean final improvement (measured as the mean of the final 10 steps
against the initial runtime) of 52%. One run failed to substantially improve (5%) final
runtimes. Note that invalid placements were removed from the plots.

I break down both the final relative improvements and the best-seen improvements
during training in 6.4. Results show that i) all trials identified significant improvements
during training, and ii) some trials diverged so the final model underperformed. Again,
divergence even occurs with a fixed random seed and a fixed workload, likely due to
noise in the reward. The authors compared to expert and algorithmic graph partitioning
baselines which are reasonable alternatives when considering the large number of operations
in a graph which make direct application of auto-tuners difficult. As a sanity check, I

2https://github.com/tensorflow/nmt, accessed 23.9.2019

https://github.com/tensorflow/nmt

130 Wield evaluation

3.50

w
e
ol

I

!

w
o
S

N}
~
o

Runtime (s)

N
o1
S

— Grappler op runtime
2.254 Random op runtime

0 200 400 600 800 1000
Graph evaluation

Figure 6.12: Fixed seed evaluation of Grappler’s placer.

Trial Final model Best seen
Trial 1 57.0% 69.0%
Trial 2 67.0% 71.0%
Trial 3 25.0% 69.0%
Trial 4 51.0% 73.0%
Trial 5 5.0% 74.0%
Trial 6 70.0% 73.0%
Trial 7 69.0% 69.0%
Trial 8 47.0% 73.0%
Trial 9 68.0% 70.0%
Trial 10 66.0% 69.0%

Table 6.4: Improvements against initial execution time found by Grappler’s placer.

contrast learned values against entirely random placements. I do not aim to reproduce
their baselines but rather to assess model capabilities under randomisation assumptions.

In Figure 6.13, the same graph is evaluated on 10 randomly chosen seeds (fixed workload,
randomised optimisation parameters, C7). Mean improvement was 72% with all random
seeds achieving over 70% improvement. A possible source of non-determinism is noise
in the placement evaluation, with subtle differences in rewards leading to policy shift.
While restricted to a single graph, reproduced results confirm the paper’s claims of reliable
improving runtimes in black-box settings by at least 30%, i.e. C(n = 1000, s = 10, f = 1.0).
This runtime object was chosen conservatively against the minimum reported improvement
across graphs in the paper.

In Figure 6.14, I now modify task parameters by varying batch size and unroll lengths
in the recurrent network to create a randomised blackbox setting (C5) where both graph
and optimisation seed are varied. Final runtimes are hence expected to differ due to
different graph sizes. Three trials succeeded, one trial failed entirely (1), and one trial (5)
diverged again from an effective configuration (Cy(n = 1000, s = 6, f = 0.83)).

I re-ran random search again on all graphs. Table 6.5 compares runtimes of best place-
ments across trials. Random placements are significantly worse than learned placements
for the same sample budget.

Did trial 2 fail due to posing a more difficult placement task, or due to random

6.3 Device placement 131

— Training op runtime

3.001
@2.75-
(0]
£ 2.50-
€
& 2.251

2.001

0 200 400 600 800 1000

Graph evaluation

Figure 6.13: Random seed evaluation of the hierarchical placer in a fixed task.

5 4
?4‘ — Trial 1
~ — Trial 2
QE) — Trial 3
g 3 — Tr!al 4
S — Trial 5
@ Trial 6

N

NPy

\LUJf n‘ ’/ \

”"‘Hmoaf k“‘H’ “

0 200 400 600 800 1000
Graph evaluation

Figure 6.14: Randomised blackbox graph configuration trials.

initialisation parameters? The idea behind progressive randomisation in case of unknown
failures is to decrease randomisation levels and re-evaluate the failed task. I hence re-ran
the failed trial as a fixed blackbox task with randomised optimisation parameters. Figure
6.15 shows results of rerunning the same task nine more times for a total of ten trials.
Results include more fails and diverged results but also succeeding runs. Three trials
failed to improve placements significantly. Performance variation is further higher than
in the published result which I initially evaluated in the fixed blackbox scenario. While
cost-prohibitive, it would be desirable to evaluate a larger range of distinct blackbox tasks.
Variations in task configuration seem to affect failure rate.

Finally, I consider generalisation capabilities. I first evaluate the final trained model in
each trained randomised graph (Figure 6.14) against all other trials’ learned models. That
is, I measure the relative runtime overhead of model A on graph B against the model that
was trained on B itself.

Figure 6.16 and 6.17 show two examples of this cross-graph comparison. Final models
perform significantly worse against the best seen solutions when training specifically on
the respective graph, with overheads against the best solution ranging between 20% - 50%.
Analysis of the produced device placements shows:

e During training on a particular graph, non-trivial placements are identified during
exploration. These use all devices.

132 Wield evaluation

Trial Grappler Random search

2.1s 281 s
1.42 s 1.86 s
1.95s 2.67 s
1.59 s 2.15 s
1.94 s 2.65 s
1.63 s 213 s

SO W N~

Table 6.5: Best run times found by Grappler against random search across trials. Each
trial corresponds to one randomised graph problem.

— Trial 1 A
61 — Trial 2
— Trial 3
— — Trial 4
OR) — Trial 5 |
2 k Trial 6
£ 24} , — Trial 7
S M ' Trial 8
€ M — Trial 9
3 — Trial 10
21 - —_
0 250 500 750 1000

Graph evaluation

Figure 6.15: Repeated random seed trials for the workload parameters of failed trial 2.

e Diverged runs may identify effective placements through exploration but final place-
ments default to single-device (CPU only) or single-GPU. When evaluating generalisa-
tion, placements for slightly varied graphs frequently defaulted to trivial single-GPU
decisions.

The failure to identify non-trivial placements for slightly varied graphs is hence both a
result of models diverging and limited model capability. In-distribution generalisation
capabilities may be improved by training a placer across many different graph samples
and using more training data. In summary, Grappler’s placer is effective in blackbox tasks
(Cy). It does not exhibit generalisation capabilities.

6.3.3 Implementing a placer with Wield

Reproducing Grappler’s placer yielded several insights into placement behaviour. I use
Wield and RLgraph to implement a novel hierarchical placer. The aim is to illustrate how
Wield can be used to implement a hierarchical task architecture by combining RLgraph
agents using Wield’s abstractions. Instead of customising a hard-coded architecture, my
goal is to implement a placer by transparent configuration and combination of components.
The key design differences to the Grappler’s placer are:

e Rewards are computed incrementally. Wield’s placer places half of the device groups,
leaves placements for the remainder of the graph unchanged, and evaluates placement

6.3 Device placement 133

0.25 0.5
0 0
L0.20 £0.41
7]]
= =
§0.15 0.3
© (3]
ae) he
3 0.10 © 0.2
< <
Q Q
- M ’ 01_”
0.00- 0.0

A B C D E A B C D E F
Evaluating graph: A Evaluating graph: E
Figure 6.16: Evaluating graph A Figure 6.17: Evaluating graph E
(corresponds to trial 1). (corresponds to trial 5).
4 .51 — Grappler
Wield
4.0
O
o 3.5
£ \
£ 3.0 /\
E \,;4,(\“‘ &
2.5 y
2.01
0 200 400 600 800 1000

Graph evaluation

Figure 6.18: Open source hierarchical placer versus Wield placer

runtime. This is in contrast to Grappler’s placer which evaluates placement decisions
for the entire graph at once.

e Grouper and placer networks both use a proximal policy optimisation agent instead
of a standard policy gradient. They are unmodified RLgraph implementations.

e Wield’s placer uses a structured neural network representation described by Addanki
et al. [AVGT19] (network implementation adapted by Kai Fricke). The neural
network computes an embedding for each device group based on summing up the
properties of neighbouring device groups to inform device transfer cost. Their work
relies on hand-designed groups while Wield’s placer learns grouping and placing
through two independent learners. The neural network is implemented as an RLgraph
component.

I reran Wield’s placer on the neural machine translation architecture. To calibrate
Wield hyper-parameters, I ran five trial experiments to identify effective learning rate
schedules and incremental reward modes before final experiments. Figure 6.18 compares
operation runtimes over the course of training. Due to experimental cost, I terminated
some experiments early after no more improvement was observed. However, results show
consistent improvement within 500 graph evaluations, and better placements were rarely
observed in subsequent evaluations. Table 6.6 shows the best found runtimes for each
trial in the fixed blackbox setting. Both approaches regularly found high-performing
configurations with about 50% mean improvement against their initial runtimes.

134 Wield evaluation

Trial Grappler Wield

Trial 1 1.59 s 1.54 s
Trial 2 1.58 s 1.59 s
Trial 3 1.55 s 1.55s
Trial 4 1.58 s 1.54 s
Trial 5 1.58 s 1.63 s
Trial 6 1.58 s 1.68 s
Trial 7 1.56 s 1.6s

Trial 8 1.58 s 1.56 s
Trial 9 1.56 s 1.56 s
Trial 10 1.56 s 1.59 s

Table 6.6: Best runtimes found by Grappler and Wield’s placer in the fixed graph setting.

Performance was highly sensitive to running the grouper and the placer agents at
different learning rates and update schedules. The placer agent cannot begin identifying
effective placements before operations are grouped. Hence, I executed the grouper which
combines operations to device groups at a much higher initial learning rate than the placer.
Flexibly executing tasks at different time schedules and update schedules through task
factorisation is not possible in the rigid Grappler implementation.

Trial Grappler Wield
Trial 1 22.6% 37.4%
Trial 2 37.4% 38.2%
Trial 3 37.8% 32%

Trial 4 36.7% 37.4%
Trial 5 37.2% 41.5%
Trial 6 34.5% 48%

Mean 34.4% (5.4%) 39.1% (4.9%)

Table 6.7: Relative improvements of the respective best solution against the mean of the
first twenty measurements for the randomised blackbox experiment.

The most noticeable observation when evaluating both placers was divergence after
identifying the best-performing configurations. Grappler’s provided default configuration
updates for 1000 training steps after which the learning rate has decayed to zero. Due
to cost, I could not investigate in more detail how other learning rate schedules might
prevent divergence. Precisely timing decays for each specific task instance would at least
double cost (e.g. sweeping 10 different learning rate schedules, then evaluating 10 different
random seeds).

I also repeated the randomised blackbox experiment with 6 new graphs (Cs) to
evaluate sensitivity to graph variations. Table 6.7 compares runtime improvements across
trials between Grappler and Wield. Mean improvements are similar and differences not
statistically significant. Finally, I also repeated the cross-graph generalisation experiment to
investigate generalisation capabilities of the structured neural network representation. Since
the network computes a permutation invariant embedding of operation neighbourhoods,
higher robustness to input variants should be observed.

6.3 Device placement

135

g
o

=
o

o
»

Overhead against best
o

o
o

A B

C D E F

Evaluating controller: E

Figure 6.19: Evaluating graph E
(corresponds to Wield trial 5).

|
o
w

Overhead against best
4
N

|
<
IS

RN

A

B

D E F

Evaluating controller: F

Figure 6.20: Evaluating graph F
(corresponds to Wield trial 6).

Results (Figures 6.19 and 6.19) show a strong contrast across generalisation trials.
When cross-evaluating models, both large overheads against the best blackbox solution
(left) and significant improvements (right) were observed. I show a detailed breakdown
of both approaches’ generalisation capability by showing how the final model trained
on a graph (rows) performs in terms of relative runtime improvement on another graph

(columns) (Tables 6.8 and 6.9).

Tested graph A B C D E F

Model A 0.31 035 0.28 0.31 0.27 0.23
Model B 0.31 0.37 0.29 0.32 0.27 0.26
Model C 0.25 03 023 0.26 0.22 0.18
Model D 0.1 0.15 0.06 0.1 0.06 0.03
Model E 0.16 0.21 0.14 0.16 0.14 0.09
Model F 0.28 0.32 0.26 0.29 0.25 0.21

Table 6.8: Cross graph generalisation breakdown of Grappler models.

Tested graph A B C D E F

Model A 021 0.6 054 0.5 0.39 0.19
Model B -0.3 033 024 0.09 -0.02 -0.22
Model C -0.08 0.44 0.36 0.23 0.15 0.05
Model D 0.09 0.34 0.32 0.16 0.05 -0.08
Model E -0.04 045 042 -049 -0.62 -0.83
Model F 0.39 0.42 0.65 058 0.53 0.44

Table 6.9: Cross graph generalisation breakdown of Wield models.

Results show Grappler’s placer in the randomised generalisation setting only in few
instances produces substantial improvements against the initial placement (> 30%), with
a classification of Cy(n = 1000,s = 36, f = 0.22). Wield’s placer achieves Cy(n =
1000, s = 36, f = 0.47) and exhibits generalisation capabilities with model F. Overall, the
Wield placer built through combining RLgraph and Wield abstractions performs like the
custom-built tuned Grappler on blackbox tasks, and indicates potential on generalisation.

136 Wield evaluation

6.3.4 Discussion

In this section, I first incrementally evaluated capabilities of the open source Grappler placer.
Reproducing Grappler results was instructive when contrasting them against published
results on just a single blackbox task. While Grappler’s placer improved results on NMT
tasks with high empirical frequency, it failed entirely on some trials. Using progressive
randomisation, my results point towards a classification of Cy(n = 1000,s = 6, f = 0.83).

Grappler’s placer also failed to exhibit generalisation capabilities even to slight input
variations. In particular, models diverged after identifying effective placements, and
learning rate schedules would need to be tuned to high precision to prevent this.

My experiments highlight the significant cost associated with merely evaluating a model
for which a full set of pre-tuned parameters exist. When including all cost of calibration
of the custom evaluation due to bugs in the open source code, it cost $5000 to assess the
hierarchical placer on public cloud infrastructure. Identifying effective hyperparameters if
none were available would have generated significant additional cost. Finally, I showed that
using Wield and RLgraph, a competitive placer could be implemented by using RLgraph’s
algorithm implementations and Wield’s design abstractions.

6.4 Progress and design costs

6.4.1 Hidden design costs

Using Wield and RLgraph, the overhead of developing RL models concentrates on state,
action and reward design. Here, I discuss aspects of design cost which have received limited
attention in the systems-RL literature.

Most applications I discussed in §2.4 executed training towards single objectives such
as throughput or latency. They often report results for different individual objectives.
Using weighted combinations of objectives may seem like an intuitive solution but this
obfuscates the practical difficulty when balancing objectives. The reward contribution
of each objective may change per problem instance. This results in solutions yielding
different, potentially undesirable trade-offs unless weighing or normalisation schemes are
tuned per problem.

For example, in the indexing case study I used a weighted combination of mean
query execution time and memory usage of the corresponding indices. Neither individual
objective is useful for optimisation, as training towards minimal runtime yields unneeded
indices, and training towards minimal memory yields zero indices. Absolute runtimes
and sizes depend on the query set. Even if each objective component is rescaled or
normalised, training may result in different trade-offs being identified. This often resulted
in undesirable solutions where some required indices were not created as the saved memory
was identified to be yield higher reward gains than the improved latency. An alternative
reward scheme may optimise only index size, subject to latency constraints.

Real world RL applications need to balance a multitude of objectives, and designing
weights, normalisation schemes, or penalties to induce desired behaviour requires extensive
analysis.

6.4 Progress and design costs 137

6.4.2 Hyperparameter tuning and customisation

Hyperparameter tuning is understood to be a critical part of deploying machine learning
applications. Despite this 'common sense’ knowledge, published work is often opaque
regarding the full design cost. In RL, high sensitivity to hyperparameters and environment
noise amplify the problem:

1. When iteratively designing an MDP representation, distinguishing ineffective features
from ineffective hyperparameters is difficult without repeatedly sweeping parameter
values between design changes. Moreover, during initial design, no detailed records
of experiment trials may be kept.

2. Due to known difficulties in reproducing results, researchers may seek to avoid
the impression of results being overly reliant on hyperparameters, as opposed to
algorithmic innovation. Results are perceived to be more valuable if they are achieved
with 'minimal tuning’.

Researchers are hence reluctant to provide implementation cost estimates. Based on the case
studies I conducted, I conservatively estimate the experimental overhead for implementing
novel RL applications to be at least 10-100 times the final experimentation cost. In
supervised applications such as machine translation or image recognition, practitioners
have moved to implementing custom applications by fine-tuning large pretrained models
(e.g. transformers [VSP*17, DYY*19]).

While such standardisation has not taken place in RL, improved algorithmic robustness
would enable similar transfer. Wield modularises task construction from a systems design
perspective. Designing subsequent tasks in similar systems is accelerated by reusing
decoupled task elements.

6.4.3 Evaluating progress and usability

A starting point to this dissertation has been the observed disparity between research
interest and deployments in RL in systems. From that arose the question to what extent
the success of deep neural networks has changed this, or has the potential to lead to more
deployments.

The results presented in this chapter, using the lens of progressive randomisation, help
categorise the utility of emerging RL techniques in computer systems. Specifically, I have
observed:

e Deep RL mechanisms can successfully solve randomised blackbox optimisation (C)
tasks directly interfacing real-world systems. This is achieved with varying reliability
and requires extensive calibration.

e The recent emergence of structured representations [BHB"18] such as graph neural
networks has led to applications reporting successful generalisation capabilities
[MSV+*18a, AVG'19]. These structured representations improve within-distribution
generalisation through permutation invariance in the state.

e Generalisation capabilities remain difficult to reason about due to limited analysis
into randomised workload generation mechanisms and the prevalent use of fixed task
sets.

138 Wield evaluation

What do these observations imply for practical usage of RL in systems? A randomised
blackbox model can be relied on as a 'plug and play’ optimisation tool which needs to be
trained per problem instance.

A within-distribution generalisable model can be used without requiring retraining if
the workload distributions are known in advance. This is not typically the case for generic
systems software components which organisations use to assemble their infrastructure
(e.g. databases, message queues, stream processors, schedulers, application servers). A
more realistic perspective may be pre-designed models with initial hyperparameters which
require calibration per deployment.

Overall, it is likely that practical RL solutions in the nearer future will be restricted
to large organisations which can afford the resources required to train and tune models.
Real-world use-cases in domains such as finance or advertising where small optimisations
can yield large financial gains should also be expected to increase. Examples of existing
applications in advertising are Facebook’s notification system [GCLT18] or Alibaba’s
ad-bidding system [JSLT18].

While RL applications may continue to capture the imagination of systems researchers,
the difficulties discussed point towards near-time applications being more limited in scope
than some may expect. Many of the prior works I discussed in Wield’s progressive
randomisation analysis relied on the same algorithms used here. They should be subject
to similar limitations which need wider discussion.

6.5 Summary

In this chapter, I evaluated RL models designed with Wield on two combinatorial optimisa-
tion tasks. I demonstrated how Wield facilitates a number of essential design components
to accelerate building and evaluating RL models. The evaluation has highlighted both
the potential of RL in a systems automation workflow, and the difficulties arising when
evaluating such models:

e The high design cost combined with algorithmic sensitivity continues to restrict
use-cases to scenarios where improvements create substantial value. Users must
carefully weigh off potential gains versus hand-crafted heuristics.

e Progressive randomisation helps understand where a model’s capabilities may fit in
compared to an existing heuristic. As a classification mechanism, It helps assess if
prior work is suitable for a novel application.

e Wield enables encoding of pre-existing domain knowledge through labelling rules
or direct demonstrations (per-instance). The practical utility of demonstrations is
limited by brute-force demonstration algorithms. Experiments here were limited by
lack of high-quality human demonstrations which are commonly used in high-value
domains such as autonomous vehicles [BKO18].

Together, these results show the need stated in my thesis for identifying effective evaluation
protocols and task design mechanisms. In the final chapter, I conclude the findings of my
dissertation and discuss further future directions.

Chapter 7

Conclusion and future work

Rapid developments in reinforcement learning applications have created the need for
software systems supporting these new workloads. For systems designers, they also pose
the question how new learning techniques can be used to enhance or replace traditional
algorithms. In Chapter 3, I discussed how RL workloads differ from supervised workloads,
and analysed the design challenges arising from brittle, fast evolving algorithms. To
address these challenges, this dissertation has introduced a modular programming model
which enforces a strict separation of concerns:

e Decoupling execution patterns from modularised algorithmic components enables
fast exploration of new agent designs.

e By enforcing a strict build mechanism with typed dataflow, RLgraph provides
incremental testing of performance-critical heuristics.

e Results show significant improvements in training performance compared to unstruc-
tured implementations.

RLgraph’s evaluation highlights the original motivation for this thesis regarding the need for
novel systems abstractions which can accommodate RL workloads. As the field continues
to progress at accelerating pace, it is likely that current systems will be replaced by more
automated designs. I view RLgraph as a point in the design space built on principles which
can inform future iterations. In Section 7.1, I discuss directions for extending RLgraph,
and more broadly consider future systems design for RL.

In Chapter 5, I began from the observation of limited real-world systems use cases
despite a wealth of research interest and experimental successes. I argued that successful
RL applications were not solely a question of increased data processing capabilities. Instead,
I hypothesised that there was both a lack of shared design understanding and missing
clarity on the capabilities and use cases of RL in the systems community. In my analysis
of prior work, I identified a lack of software abstractions for systematic task design and
evaluation with consideration for varying levels of non-determinism.

With Wield, I introduced a software approach based on decoupling programmatic
systems design aspects from reinforcement learning representation. As part of Wield, I
further proposed a classification scheme to help delineate model capabilities under different
task determinism assumptions. In Wield’s evaluation, I illustrated its practical utility
through two different case studies.

139

140 Conclusion and future work

In conclusion, the contributions of this work serve to demonstrate the thesis stated
in the introduction. First, that decoupling algorithm logic and execution facilitates
robust scalable implementations by resolving tension between prototyping and distributed
execution. Second, that novel evaluation protocols and implementation tools decoupling
system-specific protocols from model representations are required to systematically evaluate
RL applications in systems. While this dissertation has focused on systems design, the
implementation and evaluation techniques I presented can serve as the foundation for novel
algorithmic research. Without systematic algorithm construction, practitioners must rely
on brittle one-off implementations. Without systematic randomisation, they can over-or
underestimate performance improvements on fixed workloads.

7.1 Extending RLgraph

7.1.1 Programming models

RLgraph as a programming model has been designed around the limitations of first
generation machine learning frameworks. TensorFlow as one of the most popular machine
learning frameworks centred around manually constructing a static computation graph with
complex asynchronous state manipulation in an imperative host language. While PyTorch’s
define by-run mechanism allows more flexible construction of dynamic neural network
approaches, static graphs allow compile-time optimisations and simplify deployment. Even
though RLgraph’s separation of algorithm logic and backend implementation is backend-
agnostic, much design efforts went towards mapping non-differentiable imperative code to
an end-to-end differentiable static graph with dynamic in-graph control flow.

Recent approaches seek to simplify the generation of differentiable static graphs. With
TensorFlow eager [AMP19] in combination with AutoGraph [MDW™18] for automatic
graph generation, framework designers propose to combine the flexibility of define-by-run
approaches with automated graph generation. More radical approaches seek to integrate
differentiability into language design itself [[EF*19].

For RL software design, the gap between prototyping approaches in define-by-run
and more scalable static graph approaches may shrink. In RLgraph, fully embracing
define-by-run or eager designs means the build phases could be simplified. The main build
phase could be used to test functionality, and otherwise use JIT tracing or AutoGraph-like
functionality to extract a graph definition. RLgraph’s incremental subgraph instantiation
mechanisms makes it exceptionally suitable to investigate automated graph rewriting,
architecture search, and randomised test mechanisms.

7.1.2 Execution models and hardware

RLgraph focuses on single-learner execution models which remain the dominant paradigm
in applications. In Wield, I proposed a simplified task graph for multi-learner tasks design
which however assumes co-located execution. The purpose of Wield’s task decomposition
is sample efficiency in centralised scenarios (e.g. device placement).

Systems software supporting multi-learner models with arbitrary inter-agent depen-
dencies will be required to support decentralised deep reinforcement learning applications.
Emerging accelerator hardware for low-power neural network execution may give rise to
'RL on the edge’ scenarios. Current RL frameworks often do not account for deployment

7.2 RL applications and Wield 141

due to the limited real-world viability of many approaches. As algorithms improve, I
expect RL frameworks to include considerations for custom hardware compilation and
model minimisation which are prevalent in supervised training pipelines.

7.2 RL applications and Wield

7.2.1 Model-based planning

This dissertation has concentrated on model-free deep RL as the main driver of recent
applications in systems research. In the wider RL domain, the ability to plan and reason
about the world through an internal model is widely accepted as a core element of future
intelligent agents [PLV*17, HS18, KBM*19].

In systems research, incorporating planning into deep RL applications has been scarcely
utilised, despite workload forecasting being used in large scale resource management (§5.1).
One reason for this may be an initial research focus on deterministic problems. For
example, both in device placement and in the indexing case study, state transitions are
deterministically computed via updated device state of the graph or updated query/index
encoding respectively.

A model predicting future states is hence not required. A model predicting execution
times based on state and action is valuable in the absence of a simulator but may much
increase training data requirements. Thus far, researchers have opted to either directly
experiment on real systems to evaluate models, or to construct high-fidelity simulators
which may be calibrated through a small number of real executions [AVGT19]. Future
work may seek to jointly train execution prediction models with policies, in particular for
stochastic environments based on partially observable workload generation mechanisms.
A counter-argument is that the substantial experience required to train a world model
may be directly used to learn a controller.

7.2.2 Integrating domain expertise

In this dissertation, I have explored the use of rule-based demonstrations as a means
of inductive bias. Lately, the notion of combinatorial generalisation through structured
representation has come into focus [BHB*18, VCC'18]. A limitation of structured rep-
resentations is that users must manually encode structured representations by defining
entities and relations.

The difficulty in automating these approaches is the relative ease with which human
experts can define important entities and relationships, as compared to the cost of
discovering them from unstructured system data. Ample room exists for future systems
software to enables experts to more effectively encode domain knowledge into structural
representations or other form of imperfect demonstrations, e.g. to facilitate transfer
learning between similar systems. The use of imitation learning in systems is hindered by
the difficulty with which demonstrations are generated.

142 Conclusion and future work

7.3 Lessons learned

Conducting research in an emerging discipline brings both opportunities and additional
uncertainty. Deep reinforcement learning in particular is characterised by extremes. When
beginning this thesis work, high profile successes in narrow domains had given rise to
out-sized expectations on real world applications. I was not exempt from these expectations.

In computer systems, outlooks were also fuelled by new literature focusing on out-
performing benchmarks while being short on experimental cost and algorithmic limitations.
My own work thus started with a sense of cognitive dissonance. How could simple use cases
be so sensitive to small variations and hyper-parameters, while using the same algorithms
which had produced flagship successes? To resolve these observations, I first looked towards
more complexity as a solution, and attempted to layer additional techniques upon already
exquisitely complicated methods.

When this failed to provide clarity, my work eventually turned from applications
towards building blocks for RL. I imagined tools would provide greater levers for others,
while also de-risking myself against difficulties on application work. However, the fast-
moving nature of machine learning research means any tool will eventually be obsoleted by
novel programming models and frameworks, and the best hope is to provide guidance for
these future iterations. In Wield, this lesson led me to focus more on transferable concepts
(progressive randomisation) rather than software.

Conclusion and future work 143

144 Conclusion and future work

Bibliography

[ABC*16]

[ACK*04]

[AHM*19]

[AIM17]

[AKV*14]

[ALCT17]

[Amal§]

[AMP*19]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. TensorFlow: A System for Large-Scale Machine Learning. In
OSDI, volume 16, pages 265-283, 2016. Cited on pages 28, 41, 45, and 66.

Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. Database Tuning Advisor for Microsoft
SQL Server 2005. In VLDB. Very Large Data Bases Endowment Inc., August
2004. Cited on page 108.

Ameer Haj Ali, Qijing Huang, William Moses, John Xiang, Ion Stoica,
Krste Asanovic, and John Wawrzynek. AutoPhase: Compiler Phase-
Ordering for High Level Synthesis with Deep Reinforcement Learning. CoRR,
abs/1901.04615, 2019. Cited on page 33.

Martin Abadi, Michael Isard, and Derek G. Murray. A Computational
Model for TensorFlow: An Introduction. In Proceedings of the 1st ACM
SIGPLAN International Workshop on Machine Learning and Programming
Languages, MAPL 2017, pages 1-7, New York, NY, USA, 2017. ACM. Cited
on pages 18, 41, 59, and 83.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. OpenTuner:
An Extensible Framework for Program Autotuning. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation,
PACT 14, pages 303-316, New York, NY, USA, 2014. ACM. Cited on pages
90 and 120.

Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkatara-
man, Minlan Yu, and Ming Zhang. CherryPick: Adaptively Unearthing the
Best Cloud Configurations for Big Data Analytics. In NSDI, pages 469-482,
2017. Cited on page 90.

Amazon Inc. Amazon DynamoDB. https://aws.amazon.com/dynamodb/,
Last accessed 8th February 2020, 2018. Cited on page 109.

Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie,
Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng
Hong, Rajat Monga, and Shanqing Cai. TensorFlow Eager: A Multi-Stage,
Python-Embedded DSL for Machine Learning. CoRR, abs/1903.01855, 2019.
Cited on page 140.

145

https://aws.amazon.com/dynamodb/

146

Bibliography

[ARR*16]

[Aud14]

[AVG*19]

[BBBK11]

[BCB15]

[BCG+18]

[BCP*16]

[BDM17]

[BFT+17]

[BGLL17]

Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David
Brooks. Fathom: Reference workloads for modern deep learning methods. In
Workload Characterization (IISWC), 2016 IEEE International Symposium
on, pages 1-10. IEEE, 2016. Cited on page 54.

Charles Audet. A survey on direct search methods for blackbox optimization
and their applications. In Mathematics without boundaries, pages 31-56.
Springer, 2014. Cited on page 31.

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta,
Hongzi Mao, and Mohammad Alizadeh. Placeto: Learning Generalizable
Device Placement Algorithms for Distributed Machine Learning. CoRR,
abs/1906.08879, 2019. Cited on pages 102, 104, 133, 137, and 141.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. Algo-
rithms for Hyper-Parameter Optimization. In J. Shawe-Taylor, R.S. Zemel,
P.L. Bartlett, F. Pereira, and K.Q). Weinberger, editors, Advances in Neural
Information Processing Systems 2/, pages 2546-2554. Curran Associates,
Inc., 2011. Cited on page 32.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. Cited on pages 17 and 27.

Marc G. Bellemare, Pablo Samuel C Castro, Carles Gelada, Saurabh Ku-
mar, and Subhodeep Moitra. Dopamine. https://github.com/google/
dopamine, 2018. Cited on page 41.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAl Gym. CoRR,
abs/1606.01540, 2016. Cited on page 36.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional
Perspective on Reinforcement Learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pages 449-458. PMLR, 2017.

Cited on page 30.

Mohammad Babaeizadeh, Turi Frosio, Stephen Tyree, Jason Clemons, and
Jan Kautz. Reinforcement Learning through Asynchronous Advantage
Actor-Critic on a GPU. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. Cited on page 40.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive
exploration of neural machine translation architectures. arXiw preprint
arXiv:1703.03906, 2017. Cited on page 27.

https://github.com/google/dopamine
https://github.com/google/dopamine

Bibliography

147

[BHB*18]

[BHP17]

[BKO18]

[BL94]

[BL14]

[BLT*16]

[BNVB13]

[C+15]

[CKH*18]

[CKN*1§]

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, Caglar Giilgehre, H. Francis
Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia
Li, and Razvan Pascanu. Relational inductive biases, deep learning, and
graph networks. CoRR, abs/1806.01261, 2018. Cited on pages 137 and 141.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Archi-
tecture. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,

2017, San Francisco, California, USA., pages 1726-1734. AAAI Press, 2017.
Cited on page 97.

Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. ChauffeurNet:
Learning to Drive by Imitating the Best and Synthesizing the Worst. CoRR,
abs/1812.03079, 2018. Cited on page 138.

Justin A Boyan and Michael L Littman. Packet routing in dynamically
changing networks: A reinforcement learning approach. Advances in neural
information processing systems, pages 671-671, 1994. Cited on page 32.

Emma Brunskill and Lihong Li. PAC-inspired Option Discovery in Lifelong
Reinforcement Learning. In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 201/, Beijing, China, 21-26 June 201/,
volume 32 of JMLR Workshop and Conference Proceedings, pages 316-324.
JMLR.org, 2014. Cited on page 97.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-
wright, Heinrich Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés,
Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.
Cited on page 38.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
Arcade Learning Environment: An evaluation platform for general agents.
J. Artif. Intell. Res.(JAIR), 47:253-279, 2013. Cited on page 36.

Frangois Chollet et al. Keras. https://keras.io, 2015. Cited on pages 41
and 46.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman.
Quantifying Generalization in Reinforcement Learning. arXiv preprint
arXw:1812.02341, 2018. Cited on page 38.

Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao,
Jian Zhang, Peter Bailis, Kunle Olukotun, Christopher Ré¢, and Matei
Zaharia. Analysis of DAWNBench, a Time-to-Accuracy Machine Learning
Performance Benchmark. CoRR, abs/1806.01427, 2018. Cited on page 100.

https://keras.io

148

Bibliography

[CLL*15]

[CLN17]

[CMC17]

[CMJ*18]

[CST*10]

[DAEvH*15]

[DCH*16]

[DCM*12]

[DDD*04]

[DDS+09)

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flex-
ible and Efficient Machine Learning Library for Heterogeneous Distributed
Systems. CoRR, abs/1512.01274, 2015. Cited on pages 28 and 41.

Itai Caspi, Gal Leibovich, and Gal Novik. Reinforcement Learning Coach.
https://github.com/NervanaSystems/coach, December 2017. Cited on pages
42 and 58.

Alfredo V. Clemente, Humberto Nicolas Castejon Martinez, and Arjun
Chandra. Efficient Parallel Methods for Deep Reinforcement Learning.
CoRR, abs/1705.04862, 2017. Cited on pages 40 and 61.

Tianqgi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. http://arziv.org/abs/1802.04799v2,
2018. Cited on pages 54 and 73.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. Proceedings
of the 1st ACM symposium on Cloud computing - SoCC' ’10, pages 143-154,
2010. Cited on page 99.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag,
Timothy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber,
Thomas Degris, and Ben Coppin. Deep Reinforcement Learning in Large
Discrete Action Spaces. 2015. Cited on page 95.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking Deep Reinforcement Learning for Continuous Control. In
Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-2/4, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 1329-1338. JMLR.org, 2016. Cited on page 36.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale
distributed deep networks. In Advances in neural information processing
systems, pages 1223-1231, 2012. Cited on page 65.

Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and
Mohamed Ziauddin. Automatic SQL Tuning in Oracle 10G. In Proceedings

of the Thirtieth International Conference on Very Large Data Bases - Volume
30, VLDB 04, pages 1098-1109. VLDB Endowment, 2004. Cited on page 108.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In C'VPR09, 2009. Cited on page
105.

Bibliography 149

[Deel7] DeepMind. Sonnet: TensorFlow-based neural network library. https:
//github.com/deepmind/sonnet, 2017. Cited on page 46.

[DHK*17] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Pe-
ter Zhokhov. OpenAl Baselines. https://github.com/openai/baselines,
2017. Cited on pages 41, 58, 65, and 98.

[DK13] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware schedul-
ing for heterogeneous datacenters. In ACM SIGPLAN Notices, volume 48,
pages 77-88. ACM, 2013. Cited on page 91.

[DK14] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and
QoS-aware cluster management. In ACM SIGPLAN Notices, volume 49,
pages 127-144. ACM, 2014. Cited on page 91.

[DPP*18] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mahmoud
Mohsen, David Broneske, Gunter Saake, Maya S. Sekeran, Fabian Ro-
driguez, and Laxmi Balami. GridFormation: Towards Self-Driven Online
Data Partitioning using Reinforcement Learning. In Rajesh Bordawekar
and Oded Shmueli, editors, Proceedings of the First International Work-
shop on Exploiting Artificial Intelligence Techniques for Data Management,
atDM@QSIGMOD 2018, Houston, TX, USA, June 10, 2018, pages 1:1-1:7.
ACM, 2018. Cited on page 33.

[DR11] Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A Model-
Based and Data-Efficient Approach to Policy Search. In Lise Getoor and
Tobias Scheffer, editors, Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pages 465-472. Omnipress, 2011. Cited on page 31.

[DSY16] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. Tuning the
Scheduling of Distributed Stochastic Gradient Descent with Bayesian Opti-
mization. CoRR, abs/1612.00383, 2016. Cited on page 21.

[DSY17] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. BOAT: Building
Auto-Tuners with Structured Bayesian Optimization. In Proceedings of the
26th International Conference on World Wide Web, WWW "17, pages 479—
488, Republic and Canton of Geneva, Switzerland, 2017. International World
Wide Web Conferences Steering Committee. Cited on pages 21 and 90.

[DYY*19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le,
and Ruslan Salakhutdinov. Transformer-XL: Attentive Language Models
Beyond a Fixed-Length Context. CoRR, abs/1901.02860, 2019. Cited on page
137.

[ESM*18] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable Distributed
Deep-RL with Importance Weighted Actor-Learner Architectures. CoRR,
abs/1802.01561, 2018. Cited on pages 40, 61, 62, 66, 68, and 85.

https://github.com/deepmind/sonnet
https://github.com/deepmind/sonnet
https://github.com/openai/baselines

150

Bibliography

[FAAFW16]

[FAWF+18]

[FL17]

[GB10]

[GCL*18]

[GK10]

[GLG*+17]

[GLT+17]

[Gool§]

[GPLL17]

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon White-
son. Learning to Communicate with Deep Multi-Agent Reinforcement
Learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2137-2145,
2016. Cited on page 65.

Jakob N. Foerster, Christian A. Schroder de Witt, Gregory Farquhar, Philip
H. S. Torr, Wendelin Boehmer, and Shimon Whiteson. Multi-Agent Common
Knowledge Reinforcement Learning. CoRR, abs/1810.11702, 2018. Cited on
page 65.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot
motion. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 2786-2793. IEEE, 2017. Cited on pages 17 and 27.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 249-256,
2010. Cited on page 67.

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen
He, Zachary Kaden, Vivek Narayanan, and Xiaohui Ye. Horizon: Face-
book’s Open Source Applied Reinforcement Learning Platform. CoRR,
abs/1811.00260, 2018. Cited on pages 17, 42, and 138.

Goetz Graefe and Harumi Kuno. Self-selecting, Self-tuning, Incrementally
Optimized Indexes. In Proceedings of the 15th International Conference on
Ezxtending Database Technology, EDBT 10, pages 371-381, New York, NY,
USA, 2010. ACM. Cited on page 108.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner,
and Sergey Levine. Q-Prop: Sample-Efficient Policy Gradient with An
Off-Policy Critic. In Proceedings International Conference on Learning
Representations (ICLR). OpenReviews.net, April 2017. Cited on page 27.

S. Gu, T. Lillicrap, R. E. Turner, Z. Ghahramani, B. Scholkopf, and S. Levine.
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient
Estimation for Deep Reinforcement Learning. In Advances in Neural Infor-
mation Processing Systems 30, pages 3849-3858. Curran Associates, Inc.,
December 2017. Cited on page 27.

Google Inc. Google Cloud Datastore. https://cloud.google.com/
datastore/, Last accessed 8th February 2020, 2018. Cited on page 109.

Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and Percy Liang. From
Language to Programs: Bridging Reinforcement Learning and Maximum
Marginal Likelihood. In Regina Barzilay and Min-Yen Kan, editors, Pro-
ceedings of the 55th Annual Meeting of the Association for Computational

https://cloud.google.com/datastore/
https://cloud.google.com/datastore/

Bibliography

151

[GPM*14]

[GSM*+17]

[GSW+17]

[GZ18]

[HDT*17]

[HDV17]

[HE16]

[HGS16]

[HIB+17]

[HIKY12]

Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 1051-1062. Association for Computational Linguistics,
2017. Cited on page 104.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
Adversarial Networks. CoRR, abs/1406.2661, 2014. Cited on page 65.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. Google Vizier: A Service for Black-Box Optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 1487-1495. ACM, 2017. Cited
on page 90.

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik Witt, Eiko
Yoneki, and Norbert Ritter. Quaestor: Query Web Caching for Database-
as-a-Service Providers. PVLDB, 10(12):1670-1681, 2017. Cited on page 21.

Piotr Gawlowicz and Anatolij Zubow. ns3-gym: Extending OpenAl Gym
for Networking Research. CoRR, abs/1810.03943, 2018. Cited on page 38.

Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander
Hentschel, Thomas A Runkler, and Volkmar Sterzing. A Benchmark
Environment Motivated by Industrial Control Problems. arXiv preprint
arXiv:1709.09480, 2017. Cited on page 38.

Danijar Hafner, James Davidson, and Vincent Vanhoucke. TensorFlow
Agents: Efficient Batched Reinforcement Learning in TensorFlow. CoRR,
abs/1709.02878, 2017. Cited on page 42.

Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, editors, Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems

2016, December 5-10, 2016, Barcelona, Spain, pages 4565-4573, 2016. Cited
on page 108.

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAT'16, pages 2094-2100. AAAI
Press, 2016. Cited on pages 29, 42, 70, and 105.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep Reinforcement Learning that Matters.
CoRR, abs/1709.06560, 2017. Cited on pages 38, 42, 81, and 99.

Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
memory Column-stores. Proc. VLDB Endow., 5(6):502-513, February 2012.
Cited on page 108.

152

Bibliography

[HMvH* 18]

[HNFM18]

[HQB*18|

[HS97]

[HS18]

[HVP*17]

[HZALI18]

[HZH*18]

[IEF+19]

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,
and David Silver. Rainbow: Combining Improvements in Deep Reinforce-
ment Learning. In Sheila A. Mcllraith and Kilian Q). Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pages 3215-3222. AAAI Press, 2018. Cited on page 30.

Chin-Jung Hsu, Vivek Nair, Vincent W. Freeh, and Tim Menzies. Arrow:
Low-Level Augmented Bayesian Optimization for Finding the Best Cloud
VM. In 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 660—-670.
IEEE Computer Society, 2018. Cited on page 90.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hes-
sel, Hado van Hasselt, and David Silver. Distributed Prioritized Experience
Replay. CoRR, abs/1803.00933, 2018. Cited on pages 39, 42, 61, 80, and 86.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997. Cited on page 27.

David Ha and Jirgen Schmidhuber. Recurrent World Models Facilitate Policy
Evolution. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolo Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pages 2455-2467, 2018. Cited on pages 31, 94, 116, and 141.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul,
Bilal Piot, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John
Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Learning from Demonstra-
tions for Real World Reinforcement Learning. CoRR, abs/1704.03732, 2017.
Cited on page 105.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor. CoRR, abs/1801.01290, 2018. Cited on page 86.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Se-
hoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and Applications.
CoRR, abs/1812.05905, 2018. Cited on page 86.

Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba,
Viral B Shah, and Will Tebbutt. Zygote: A Differentiable Programming
System to Bridge Machine Learning and Scientific Computing. arXiv preprint
arXww:1907.07587, 2019. Cited on page 140.

Bibliography

153

[TES*18]

[imd18]
IMKG11]

[JBV+18a

[JBV*18b)]

[JDO*17]

[JGP16]

[JHHB16]

[JRG*19]

[JSL*18]

[JYP*17]

Andrew llyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Madry. Are Deep Policy Gradient
Algorithms Truly Policy Gradient Algorithms? CoRR, abs/1811.02553,
2018. Cited on pages 38 and 42.

imdb.com. Imdb datasets. website, 2018. Cited on page 120.

Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
memory Column-stores. Proc. VLDB Endow., 4(9):586-597, June 2011.
Cited on page 108.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A General Platform for Intelligent
Agents. CoRR, abs/1809.02627, 2018. Cited on page 38.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A general platform for intelligent
agents. arXiv preprint arXiw:1809.02627, 2018. Cited on page 100.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen
Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu. Population Based
Training of Neural Networks. CoRR, abs/1711.09846, 2017. Cited on page 73.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization
with Gumbel-Softmax. CoRR, abs/1611.01144, 2016. Cited on page 87.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The
Malmo Platform for Artificial Intelligence Experimentation. In IJCAI pages
4246-4247, 2016. Cited on page 100.

Nathan Jay, Noga H. Rotman, Brighten Godfrey, Michael Schapira, and Aviv
Tamar. A Deep Reinforcement Learning Perspective on Internet Congestion
Control. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 3050-3059. PMLR, 2019. Cited on page
104.

Jungi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang.
Real-Time Bidding with Multi-Agent Reinforcement Learning in Display
Advertising. In Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh
Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selcuk
Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang, editors,
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018,
pages 2193-2201. ACM, 2018. Cited on page 138.

Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

154

Bibliography

[JYPP18§]

[JZA18]

[KARS15]

[KBM*19]

[KBP13]

[KM97]

[KM99]

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,
Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA 2017,
Toronto, ON, Canada, June 24-28, 2017, pages 1-12. ACM, 2017. Cited on
page 40.

Norman P. Jouppi, Cliff Young, Nishant Patil, and David A. Patterson.
Motivation for and Evaluation of the First Tensor Processing Unit. IFEE
Micro, 38(3):10-19, 2018. Cited on page 40.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model
Parallelism for Deep Neural Networks. http://arziv.org/pdf/1807.05358v1,
2018. Cited on pages 33 and 73.

Gautam Kumar, Ganesh Ananthanarayanan, Sylvia Ratnasamy, and Ion
Stoica. Hold Them or Fold Them? Aggregation Queries under Performance

Variations. Technical report, UC Berkeley TR UCB/EECS-2015-267, 2015.
Cited on page 91.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Koza-
kowski, Sergey Levine, et al. Model-based reinforcement learning for Atari.
arXiv preprint arXiww:1903.00374, 2019. Cited on page 141.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. I. J. Robotics Res., 32(11):1238-1274, 2013. Cited on page
31.

Shailesh Kumar and Risto Miikkulainen. Dual reinforcement g-routing:
An on-line adaptive routing algorithm. In Artificial neural networks in
engineering, 1997. Cited on page 32.

Shailesh Kumar and Risto Miikkulainen. Confidence based dual reinforce-
ment g-routing: An adaptive online network routing algorithm. In IJCAI,
volume 99, pages 758-763. Citeseer, 1999. Cited on page 32.

Bibliography

155

[KOQ*19]

[KSH12]

[KSH17]

[KSM*17]

[KW14]

[KYG+18]

[LAP*14]

[LBM*17]

[LGM*15]

[LHP*16]

Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will
Dabney. Recurrent Experience Replay in Distributed Reinforcement Learn-
ing. In 7th International Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. Cited
on page 39.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1097-1105, USA, 2012. Curran Associates Inc.
Cited on pages 17 and 27.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Commun. ACM, 60(6):84-90,
May 2017. Cited on page 27.

Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lazaro-
Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix,
and Dileep George. Schema Networks: Zero-shot Transfer with a Generative
Causal Model of Intuitive Physics. 2017. Cited on page 74.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference
on Learning Representations, ICLR 201/, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014. Cited on page 94.

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR, abs/1808.03196, 2018. Cited on page 33.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scal-
ing Distributed Machine Learning with the Parameter Server. In OSDI,
volume 14, pages 583-598, 2014. Cited on pages 62 and 65.

Nicholas D. Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev,
Claudio Forlivesi, and Fahim Kawsar. Squeezing Deep Learning into Mobile
and Embedded Devices. IEEE Pervasive Computing, 16(3):82-88, 2017.

Cited on page 73.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. How good are query optimizers, really? Proceedings
of the VLDB Endowment, 9(3):204-215, 2015. Cited on pages 99, 102, and 128.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. Cited on page 42.

156

Bibliography

[Lin93)

[LLN*18]

[LMK*17]

[LPK*18]

[LT19]

[LXTW18]

[LZJS19]

IMAMK16]

[MBM™*16]

[MDW*18]

IMGP+18]

IMGR18]

Long-Ji Lin. Reinforcement learning for robots using neural networks.
Technical report, DTIC Document, 1993. Cited on page 28.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLIib:
Abstractions for Distributed Reinforcement Learning. In International
Conference on Machine Learning, pages 3059-3068, 2018. Cited on pages 42,
58, 61, 65, and 80.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt,
Andrew Lefrancq, Laurent Orseau, and Shane Legg. Al Safety Gridworlds.
CoRR, abs/1711.09883, 2017. Cited on page 38.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. Learning hand-eye coordination for robotic grasping with deep learn-
ing and large-scale data collection. The International Journal of Robotics
Research, 37(4-5):421-436, 2018. Cited on page 27.

Liam Li and Ameet Talwalkar. Random Search and Reproducibility for
Neural Architecture Search. CoRR, abs/1902.07638, 2019. Cited on page 92.

Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free Control for
Distributed Stream Data Processing using Deep Reinforcement Learning.
PVLDB, 11(6):705-718, 2018. Cited on page 33.

Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural Packet Classification.
CoRR, abs/1902.10319, 2019. Cited on pages 33 and 104.

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula.
Resource Management with Deep Reinforcement Learning. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, pages 50-56. ACM,
2016. Cited on page 32.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. February 2016.
Cited on page 38.

Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K.
Lee, Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko.
AutoGraph: Imperative-style Coding with Graph-based Performance. CoRR,
abs/1810.08061, 2018. Cited on pages 72 and 140.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le,
and Jeff Dean. Hierarchical Planning for Device Placement. 2018. Cited on
pages 17, 33, 54, 73, 98, 102, 104, 128, and 129.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search
provides a competitive approach to reinforcement learning. CoRR,
abs/1803.07055, 2018. Cited on pages 32, 38, 75, 92, and 99.

Bibliography 157

[Mic18] Microsoft. CosmosDB - A globally distributed database for low latency and
massively scalable applications, with native support for NoSQL. website,
2018. Cited on page 109.

[MKS*13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602, 2013. Cited
on page 28.

[MKS*15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, 2015. Cited on pages 17, 28, 70,
and 86.

[MNA17] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17, pages
197-210, New York, NY, USA, 2017. ACM. Cited on pages 17, 33, and 95.

[MNM*19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A
Learned Query Optimizer. arXiv e-prints, page arXiv:1904.03711, Apr 2019.
Cited on pages 17, 33, 102, and 104.

[MNW*17] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, William Paul, Michael I. Jordan, and Ion Sto-
ica. Ray: A Distributed Framework for Emerging Al Applications. CoRR,
abs/1712.05889, 2017. Cited on pages 54 and 65.

[MP18] Ryan Marcus and Olga Papaemmanouil. Deep Reinforcement Learning for
Join Order Enumeration. In Rajesh Bordawekar and Oded Shmueli, editors,
Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@QSIGMOD 2018, Hous-
ton, TX, USA, June 10, 2018, pages 3:1-3:4. ACM, 2018. Cited on pages 17,
33, 102, and 104.

[IMPL*17] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen,
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff
Dean. Device Placement Optimization with Reinforcement Learning. arXiv
preprint arXiw:1706.04972, 2017. Cited on pages 17, 33, 102, 104, and 129.

[MSV*18a] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. Learning Scheduling Algorithms for Data
Processing Clusters. CoRR, abs/1810.01963, 2018. Cited on pages 33 and 137.

[MSV*18b] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. Learning scheduling algorithms for data
processing clusters. arXiv preprint arXiv:1810.01963, 2018. Cited on page 104.

158

Bibliography

IMSV*19)

[MVSA18]

[NCD*06]

INGLLI18]

[NMW]

[NROO]

[NSB*15]

[NWS18a]

[NWS18b)]

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. Learning scheduling algorithms for data
processing clusters. In Jianping Wu and Wendy Hall, editors, Proceedings
of the ACM Special Interest Group on Data Communication, SIGCOMM
2019, Beujing, China, August 19-23, 2019, pages 270-288. ACM, 2019. Cited
on page 17.

Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and
Mohammad Alizadeh. Variance Reduction for Reinforcement Learning in
Input-Driven Environments. CoRR, abs/1807.02264, 2018. Cited on page 94.

AndrewY. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte,
Ben Tse, Eric Berger, and Eric Liang. Autonomous Inverted Helicopter
Flight via Reinforcement Learning. In Jr. Ang, MarceloH. and Oussama
Khatib, editors, Fxperimental Robotics IX, volume 21 of Springer Tracts in
Advanced Robotics, pages 363-372. Springer Berlin Heidelberg, 2006. Cited
on page 17.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-Efficient
Hierarchical Reinforcement Learning. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., pages 3307-3317, 2018. Cited on page
97.

Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov,
William Paul, Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami,
Michael I. Jordan, and Ion Stoica. Real-Time Machine Learning: The
Missing Pieces. Cited on page 42.

Andrew Y. Ng and Stuart J. Russell. Algorithms for Inverse Reinforce-
ment Learning. In Pat Langley, editor, Proceedings of the Seventeenth
International Conference on Machine Learning (ICML 2000), Stanford Uni-
versity, Stanford, CA, USA, June 29 - July 2, 2000, pages 663—670. Morgan
Kaufmann, 2000. Cited on page 107.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu,
and David Silver. Massively Parallel Methods for Deep Reinforcement
Learning. CoRR, abs/1507.04296, 2015. Cited on page 39.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone. Deterministic Im-
plementations for Reproducibility in Deep Reinforcement Learning. CoRR,
abs/1809.05676, 2018. Cited on page 67.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone. The Impact
of Nondeterminism on Reproducibility in Deep Reinforcement Learning.
https://arziv.org/abs/1809.05676, 2018. Cited on pages 44 and 67.

Bibliography

159

[OBGK18]

[ODH"]

[Opel§|

[PAAT17]

[PBC*18§]

[PGC*17]

[PGN*+19]

[PGP14]

[PIM15]

[Plal6]

[PLT*16]

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya
Keerthi. Learning State Representations for Query Optimization with Deep
Reinforcement Learning. In Sebastian Schelter, Stephan Seufert, and Arun
Kumar, editors, Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, DEEM@QSIGMOD 2018, Houston, TX,
USA, June 15, 2018, pages 4:1-4:4. ACM, 2018. Cited on page 104.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener,
Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepezvari, Satin-
der Singh, Benjamin Van Roy, Richard Sutton, David Silver, and Hado Van
Hasselt. Behaviour Suite for Reinforcement Learning. Cited on page 100.

OpenAl. OpenAl Five DOTA. https://openai.com/blog/openai-five/,
Last accessed 8th February 2020, June 2018. Cited on page 119.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al.
Self-Driving Database Management Systems. In CIDR, 2017. Cited on page
17.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.
Optimus: an efficient dynamic resource scheduler for deep learning clusters.
In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings of
the Thirteenth FuroSys Conference, FuroSys 2018, Porto, Portugal, April
23-26, 2018, pages 3:1-3:14. ACM, 2018. Cited on page 91.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and

Adam Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017. Cited
on pages 28 and 41.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet
Kohli, and Oriol Vinyals. REGAL: Transfer Learning For Fast Optimization
of Computation Graphs. CoRR, abs/1905.02494, 2019. Cited on pages 102
and 104.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted Bellman residual
minimization handling expert demonstrations. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 549-564.
Springer, 2014. Cited on page 106.

Eleni Petraki, Stratos Idreos, and Stefan Manegold. Holistic Indexing in
Main-memory Column-stores. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD 15, pages
1153-1166, New York, NY, USA, 2015. ACM. Cited on pages 108 and 109.

Matthias Plappert. keras-rl. https://github.com/matthiasplappert/
keras-rl, 2016. Cited on page 42.

Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris Papailiopoulos,
Ce Zhang, Michael I Jordan, Kannan Ramchandran, and Christopher Ré.

https://openai.com/blog/openai-five/
https://github.com/matthiasplappert/keras-rl
https://github.com/matthiasplappert/keras-rl

160

Bibliography

[PLV*17]

[PTST17]

[R*18]

[RBE*17]

[REH*18]

[RGB11]

[RRWN11]

[RWO6]

[SA16]

Cyclades: Conflict-free asynchronous machine learning. In Advances in
Neural Information Processing Systems, pages 2568-2576, 2016. Cited on page
65.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing,
Sebastien Racaniere, David Reichert, Théophane Weber, Daan Wierstra,
and Peter Battaglia. Learning model-based planning from scratch. arXiv
preprint arXiv:1707.06170, 2017. Cited on page 141.

Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and
Stanford InfoLab. Weld: A common runtime for high performance data
analytics. In Conference on Innovative Data Systems Research (CIDR),
2017. Cited on page 45.

Steffen Rochel et al. Gluon - A clear, concise, simple yet powerful and efficient
API for deep learning. https://github.com/gluon-api/gluon-api, 2018.
Cited on page 46.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen
Wu, and Christopher Ré. Snorkel: Rapid training data creation with weak
supervision. Proceedings of the VLDB Endowment, 11(3):269-282, 2017.
Cited on pages 105 and 107.

Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian
Togelius, Kyunghyun Cho, and Joan Bruna. Pommerman: A Multi-Agent
Playground. In Jichen Zhu, editor, Joint Proceedings of the AIIDE 2018
Workshops co-located with 14th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE 2018), Edmonton, Canada,
November 13-14, 2018., volume 2282 of CEUR Workshop Proceedings. CEUR-
WS.org, 2018. Cited on page 65.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning.
In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudik, editors, Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
volume 15 of JMLR Proceedings, pages 627-635. JMLR.org, 2011. Cited on
page 107.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances
in neural information processing systems, pages 693-701, 2011. Cited on page
65.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine learning. MIT
Press, 2006. Cited on page 31.

Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD International

https://github.com/gluon-api/gluon-api

Bibliography 161

Conference on Knowledge Discovery and Data Mining, pages 2135-2135.
ACM, 2016. Cited on pages 28 and 41.

[SB17] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, Second edition, volume 1. MIT press Cambridge, 2017. Cited on
pages 23, 25, 26, 27, and 30.

[Sch15] Juergen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85-117, 2015. Cited on page 28.

[SFY19] Michael Schaarschmidt, Kai Fricke, and Eiko Yoneki. Wield: Systematic
Reinforcement Learning With Progressive Randomization. arXiv e-prints,
2019. Cited on pages 20 and 90.

[SGDY16] Michael Schaarschmidt, Felix Gessert, Valentin Dalibard, and Eiko Yoneki.
Learning Runtime Parameters in Computer Systems with Delayed Experi-
ence Injection. NIPS Deep Reinforcement Learning Workshop, 2016. Cited
on page 20.

[SHCS17] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXw:1705.05864, 2017. Cited on pages 32 and 75.

[SHM*16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484-489, 2016. Cited on
page 17.

[SHS*18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis.
A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science, 362(6419):1140-1144, 2018. Cited on pages 104
and 119.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2951-2959. Curran Associates, Inc., 2012. Cited
on pages 31 and 90.

[SLAT15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), pages 1889-1897,
2015. Cited on page 30.

[SLH*14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. In ICML,
2014. Cited on page 26.

162

Bibliography

[SMC+17]

[SMFY19]

[SML*15]

[SMS+99]

[SPS99]

[SQAS15]

[SRAW+19]

SSD]

[SSS+17]

[SSW+16]

[SWD+17]

SZ14]

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman,
Kenneth O. Stanley, and Jeff Clune. Deep Neuroevolution: Genetic Algo-
rithms Are a Competitive Alternative for Training Deep Neural Networks
for Reinforcement Learning. CoRR, abs/1712.06567, 2017. Cited on page 75.

Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. RLgraph:
Modular Computation Graphs for Deep Reinforcement Learning. In Pro-
ceedings of the 2nd Conference on Systems and Machine Learning (SysML),
April 2019. Cited on pages 20 and 35.

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and
Pieter Abbeel. High-Dimensional Continuous Control Using Generalized
Advantage Estimation. CoRR, abs/1506.02438, 2015. Cited on page 27.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour,
et al. Policy Gradient Methods for Reinforcement Learning with Function
Approximation. In NIPS, volume 99, pages 1057-1063, 1999. Cited on page 27.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning. Artif. Intell., 112(1-2):181-211, 1999. Cited on page 97.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
Experience Replay. ICLR 2016, November 2015. Cited on pages 29, 46, and 70.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory
Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S.
Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft Multi-Agent
Challenge. CoRR, abs/1902.04043, 2019. Cited on page 74.

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. The Case for

Automatic Database Administration using Deep Reinforcement Learning.
Cited on pages 33, 95, 108, and 121.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of Go without human knowledge. Nature,
550(7676):354, 2017. Cited on page 17.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
de Freitas. Taking the Human Out of the Loop: A Review of Bayesian
Optimization. Proceedings of the IEEFE, 104(1):148-175, 2016. Cited on page
31.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. CoRR, abs/1707.06347,
2017. Cited on pages 30, 42, and 65.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. http://arziv.org/pdf/1409.1556v6, 2014.
Cited on page 27.

Bibliography

163

[S715]

[TET12]

[TJDBO6]

[Tral0]

[TTH16]

[VAPGZ17]

[VOC+18]

[VOS*+17]

[VSP*17]

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. Cited on page 17.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal,
October 7-12, 2012, pages 5026-5033. IEEE, 2012. Cited on page 36.

G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In Proceedings of the
2006 IEEFE International Conference on Autonomic Computing, ICAC 06,
pages 65—73, Washington, DC, USA, 2006. IEEE Computer Society. Cited
on pages 32 and 94.

Transaction Processing Performance Council. TPC benchmark C (standard
specification, revision 5.11), 2010. URL: http://www. tpc. org/tpce, 2010.
Cited on pages 91 and 99.

Boris Teabe, Alain Tchana, and Daniel Hagimont. Application-specific
quantum for multi-core platform scheduler. In Proceedings of the Eleventh
FEuropean Conference on Computer Systems, page 3. ACM, 2016. Cited on
page 91.

Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.
Automatic Database Management System Tuning Through Large-scale
Machine Learning. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1009-1024. ACM, 2017. Cited on pages 90
and 116.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph Attention Networks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. Cited on page 141.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,
Max Jaderberg, David Silver, and Koray Kavukcuoglu. FeUdal Networks
for Hierarchical Reinforcement Learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70

of Proceedings of Machine Learning Research, pages 3540-3549. PMLR, 2017.
Cited on page 97.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,

164

Bibliography

[VSST17]

[VYF*16]

[WCB*19]

[WD92]

[WMG+17]

[WMR*17]

[WRR*+17]

(WSC+16]

[WSH*16]

Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5998-6008, 2017. Cited on pages 17 and 137.

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. A
Machine Learning Approach to Routing. arXiv preprint arXiv:1708.03074,
2017. Cited on page 33.

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ton Stoica. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 363-378, 2016. Cited on page
90.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt,
and Masashi Sugiyama. Imitation Learning from Imperfect Demonstration.
arXiv preprint arXiw:1901.09387, 2019. Cited on page 108.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3):279-292, 1992. Cited on pages 25 and 26.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba.
Scalable trust-region method for deep reinforcement learning using kronecker-
factored approximation. In Advances in neural information processing
systems, pages H279-5288, 2017. Cited on page 40.

Ziyu Wang, Josh Merel, Scott E. Reed, Nando de Freitas, Gregory Wayne,
and Nicolas Heess. Robust Imitation of Diverse Behaviors. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 53205329,
2017. Cited on page 108.

Theophane Weber, Sébastien Racaniere, David P. Reichert, Lars Buesing,
Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol
Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, David
Silver, and Daan Wierstra. Imagination-Augmented Agents for Deep Rein-
forcement Learning. CoRR, abs/1707.06203, 2017. Cited on page 31.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiw preprint arXiv:1609.08144, 2016.
Cited on page 27.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot,
and Nando de Freitas. Dueling Network Architectures for Deep Reinforce-
ment Learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning,

Bibliography

165

[WSY19]

[YAB*18]

[ZCF+10]

[ZGMX18]

[ZL17]

[ZMBDOS]

ICML 2016, New York City, NY, USA, June 19-2/, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 1995-2003. JMLR.org,
2016. Cited on pages 30, 71, and 86.

Jeremy Welborn, Michael Schaarschmidt, and Eiko Yoneki. Learning Index
Selection with Structured Action Spaces. CoRR, abs/1909.07440, 2019. Cited
on pages 20 and 116.

Yuan Yu, Martin Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy
Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins, Michael Is-
ard, Manjunath Kudlur, Rajat Monga, Derek Murray, and Xiaoqiang Zheng.
Dynamic Control Flow in Large-scale Machine Learning. In Proceedings
of the Thirteenth EuroSys Conference, EuroSys 18, pages 18:1-18:15, New
York, NY, USA, 2018. ACM. Cited on pages 45, 55, 66, and 83.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster Computing with Working Sets. In Erich M.
Nahum and Dongyan Xu, editors, 2nd USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud’10, Boston, MA, USA, June 22, 2010. USENIX
Association, 2010. Cited on page 33.

Yiren Zhao, Xitong Gao, Robert Mullins, and Chengzhong Xu. Mayo: A
Framework for Auto-generating Hardware Friendly Deep Neural Networks.
In Proceedings of the 2nd International Workshop on Embedded and Mobile
Deep Learning, EMDL@MobiSys 2018, Munich, Germany, June 15, 2018,
pages 25-30. ACM, 2018. Cited on page 73.

Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement
Learning. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017. Cited on page 92.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey.
Maximum Entropy Inverse Reinforcement Learning. In Dieter Fox and
Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 1433-1438. AAAI Press, 2008. Cited on page 86.

166 Bibliography

	Introduction
	Contributions
	Dissertation outline
	Related publications

	Background
	Reinforcement learning
	The reinforcement learning problem
	Episodes and experience
	Temporal difference learning
	Policy gradients

	Deep reinforcement learning
	Function approximation with deep neural networks
	Deep reinforcement learning
	Common heuristics
	Reinforcement learning terminology

	Iterative optimisation
	Bayesian optimisation
	Random-search and evolutionary methods

	Reinforcement learning in computer systems
	Summary

	RLgraph: Modular computation graphs for reinforcement learning
	Reinforcement learning workloads
	Use of simulators
	Distributed reinforcement learning
	Use of accelerators
	RL implementations and design problems
	Design summary

	RLGraph overview
	Design
	Components
	Building the component graph
	Building for static graphs
	Define-by-run component graphs

	Execution
	Agent API
	Local execution
	Implementing algorithms
	Device management
	Distributed execution engines

	Incremental building and sub-graph testing
	Graph optimisations
	Automated graph generation
	Relationship to compilers

	Limitations
	Multi-agent communication
	Graph flexibility
	Gradient-free optimisation

	Summary

	RLgraph evaluation
	Evaluation aims
	Build overhead and backends
	Execution on Ray
	Setup
	Results
	Robustness
	Implementing new coordination semantics

	Multi-GPU mode
	Distributed TensorFlow
	Exploratory workflows for algorithm design
	Summary

	Wield: Incremental task design with progressive randomisation
	Optimisation in computer systems
	Iterative optimisation
	Analytical performance models

	Practical considerations and limitations
	Wield Overview
	Task design abstractions
	Designing states and actions with task schemas
	Converters
	Task architectures

	Task evaluation protocols
	The case for workload randomisation
	Progressive randomisation
	Prior work viewed through progressive randomisation

	Data augmentation from demonstrations
	Algorithms
	Demonstration abstractions
	Alternative approaches to learning from demonstrations

	Case study: database indexing
	The compound indexing problem
	Designing a problem model with Wield
	Indexing demonstrations
	Wield workflows: Putting it all together

	Future workflows and deployment
	Summary

	Wield evaluation
	Evaluation aims
	Learned indexing
	Workload
	Experimental setup
	Fixed blackbox optimisation
	Randomised blackbox optimisation
	Generalisation
	Utility of weak demonstrations
	Discussion

	Device placement
	Setup
	Evaluating the hierarchical placer
	Implementing a placer with Wield
	Discussion

	Progress and design costs
	Hidden design costs
	Hyperparameter tuning and customisation
	Evaluating progress and usability

	Summary

	Conclusion and future work
	Extending RLgraph
	Programming models
	Execution models and hardware

	RL applications and Wield
	Model-based planning
	Integrating domain expertise

	Lessons learned

	Bibliography

