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Abstract

This thesis presents a variety of models for probabilistic programming languages in
the framework of concurrent games.

Our starting point is the model of concurrent games with symmetry of Castellan,
Clairambault and Winskel. We show that they form a symmetric monoidal closed
bicategory, and that this can be turned into a cartesian closed bicategory using a
linear exponential pseudo-comonad inspired by linear logic.

Then, we enrich this with probability, relying heavily on Winskel’s model of
probabilistic concurrent strategies. We see that the bicategorical structure is not
perturbed by the addition of probability. We apply this model to two probabilistic
languages: a probabilistic untyped A-calculus, and Probabilistic PCF. For the former,
we relate the semantics to the probabilistic Nakajima trees of Leventis, thus obtaining
a characterisation of observational equivalence for programs in terms of strategies. For
the latter, we show a definability result in the spirit of the game semantics tradition.
This solves an open problem, as it is notoriously difficult to model Probabilistic PCF
with sequential game semantics.

Finally, we introduce a model for measurable game semantics, in which games and
strategies come equipped with measure-theoretic structure allowing for an accurate
description of computation with continuous data types. The objective of this model
is to support computation with arbitrary probability measures on the reals. In the
last part of this thesis we see how this can be done by equipping strategies with
parametrised families of probability measures (also known as stochastic kernels),
and we construct a bicategory of measurable concurrent games and probabilistic
measurable strategies.
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Chapter 1

Introduction

It is exactly fifty years ago that Dana Scott [Sco69] introduced domain theory. In
[Sco70] he put forward his ideas for a “mathematical theory of computation”, laying
down the foundations for the field of denotational semantics. Scott advocates the use
of continuous functions between certain partially ordered sets as an interpretation
for programs, following some principles: the mathematical representation should be
independent of any implementation details, but it must be sound (meaning that the
abstract representation should give an accurate account of program behaviour) and
designed compositionally: the semantics of a program must be obtained from the
semantics of its parts.

Since then, denotational semantics has evolved far beyond Scott’s domain-
theoretic model. A variety of models for programs is now available, reflecting
the need to support a wide range of programming features and study many aspects
of program behaviour.

To relate and unify these models, and to build more, the general framework of
category theory offers much help: in a category, the notion of composition is central,
so that in a majority of cases, presenting a semantic model as a category provides
it with a sound structural basis. In this situation, the interpretation of common
program constructs (function application, recursion, conditionals, etc.) is done by
applying general categorical principles guaranteeing correctness.

This thesis fits in a line of research in denotational semantics concerned with the
interpretation of programs as strategies in certain two-player games: this is known
as game semantics. More specifically, our results are about a theory of concurrent
games introduced in [RW11] and extensively developed in the past decade, most
notably by Glynn Winskel, Pierre Clairambault and Simon Castellan.

Our investigation into concurrent games is in the context of probabilistic computa-
tion. With an eye towards building models for probabilistic programs, we build on the
theory of probabilistic strategies put forward by Winskel [Win13a] and propose some
extensions; our contributions include several generalisations of existing concurrent
games models. We carry out some applications to programming language semantics,
but in this thesis the main point of concern is the mathematical development of
the models, and ensuring they enjoy the necessary categorical properties for future
application to the semantics of probabilistic programs. Following a growing trend
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towards the use of higher-categorical structures in semantics (see for instance [FS19]),
we take particular care to highlight some of the bicategorical aspects of concurrent
game models.

1.1 Background

We give some historical perspectives and scientific context for this work.

1.1.1 Game semantics

The development of game semantics for programming languages was driven by the
search for a “fully abstract” model for the functional language PCF [Plo77]. The
problem came out of domain theory, when Scott’s domain model turned out not
to capture the right notion of equivalence of programs in PCF: some programs
have different denotations, though they exhibit the same observable behaviour in all
contexts. In short, this is because domain theory is too large a model for PCF: some
continuous functions are not the representation of any PCF program. The search for
a mathematical characterisation of ‘PCF-definable’ functions is the essence of the
full abstraction problem.

Inspired by game-theoretic models for logic [Bla92, AJ94|, Hyland and Ong
[HO00] and Abramsky, Jagadeesan, and Malacaria [AJMO00] independently proposed
a solution to the problem which relies on a theory of two-player games. Although
this still follows the same categorical principles, it is far removed from domain theory.
We illustrate the contrast by considering the higher-order term

— Af.f 3:(Nat — Nat) — Nat.

Its representation in domain theory is simply a function from N, - N; to N,
defined by f — f(3). (In domain theory, the space of natural numbers is N, the
natural numbers with a bottom element representing divergence. The function space
N, — N} is the set of all continuous functions from N, to N, , ordered pointwise.)
Meanwhile its game semantics representation is a set of plays of the form:

(Nat — Nat) — Nat

The meaning of this diagram may not be immediately clear. The play is an interaction
between Player (the program, +) and Opponent (the execution environment, —). As
is often done to convey intuition in game semantics, let us describe the play above as
a concrete dialogue between the program and its environment. Reading the sequence
of moves above from top to bottom:
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Opponent: “What is the value of this program?”
Player: “What is the value of its argument f7”
Opponent: “f is a function. What is its argument?”
Player: “3.”

Opponent: “Then the value of f is n.”

Player: “Then the value of the program is n.”

The strategy representing the term contains all possible plays in an execution,
accounting for all possible execution contexts.

One key aspect should be emphasised: the higher-order term is reduced to an
exchange of first-order messages, and at no point is it necessary to build a function
space. This is due to the intensionality of the game model. Models in domain theory
are called extensional. (Our goal is not to draw a full comparison here, simply to
highlight this as an advantage of game models over domain theory ones; though of
course this is mitigated by the very technical nature of games.)

After the initial success obtained with PCF, the field of game semantics was
pushed much further. Games proved to be widely applicable, and we only cite a
few of the many computational features accounted for: first-order references [AM96],
general references [AHMO98|, control operators [Lai97], call-by-value computation
[HY97, AM97], nondeterminism [HM99], and probability [DH02].

1.1.2 Concurrent games based on event structures

Rideau and Winskel’s original concurrent games model appears in [RW11]. In this
work they show how event structures [NPW79], a fundamental model for concurrent
processes, can be used as the basis for a general games model in which plays are no
longer the central object. Their viewpoint is not the same as that of [HO00, AJMOO]
and their successors, and the new model is different in many ways:

e It is linear: no move can be played more than once;

e It is causal: event structures make explicit the causal dependency relation
between moves;

e The resulting mathematical framework is a bicategory, rather than a category;
this is a technical point, but arguably, the mathematical universe is richer and
has finer structure.

e Explicit branching point: in a concurrent strategy, every nondeterministic
choice made by a Player is represented explicitly. This is not the case in
traditional game semantics, since in any given play only the chosen path is
recorded.

This last point is important to us, because, as pointed out by Harmer [Har99], the
absence of explicit branching information makes the modelling of nondeterministic
and probabilistic computation less modular. (Another solution to this problem is to
use presheaves over plays, see [TO15, TO14].)
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The linearity requirement, on the other hand, was an obstacle to the develop-
ment of game semantics models for languages of the kind discussed above. So in
order to fully exploit the advantages of concurrent games, Castellan, Clairambault
and Winskel introduced games with symmetry [CCW14], based on event structures
with symmetry [Win07]. This significant generalisation allowed the same authors
to carve out a model of concurrent Hyland-Ong games in [CCW15], in which, for
instance, the original definability argument for PCF can be re-enacted. But the
games of [CCW15] are much more general, and thus concurrent games already have
far-reaching applications. Examples include the theory of programs with parallel
features [CC16, CCW17], non-angelic nondeterminism [CCHW18] and quantum
programming [CdVW19].

Independently of the above, and soon after the seminal paper [RW11], Winskel
developed a theory of probabilistic strategies [Winl3a] on concurrent games. By
exploiting a connection between event structures and domain theory, he defines a
notion of probabilistic event structures generalising previous attempts at probabilistic
models for concurrency [VVWO04, AB06]. The result is a model of concurrent
probabilistic strategies exhibiting the four characteristics listed above.

This thesis sets out to bring together this probabilistic model and the work on
games with symmetry of Castellan et al., with the objective of modelling general
programming languages with probabilistic features. Furthermore, we are concerned
with the support of continuous probability distributions, which are not readily
supported by the model of [Winl3a].

These objectives are not new; there is a large body of research on the denotational
semantics of probabilistic programs. In what follows we mention a few approaches.

1.1.3 Probabilistic programs and their semantics

A basic example of a probabilistic program is given by a single call to a random
primitive coin which, say, returns one of the boolean values tt or ff, each with prob-
ability % One can then build more sophisticated programs: if coin then 2 else 3,
Af.f coin, etc. ; soon it becomes tricky to correctly reason about their operational
behaviour.

The earliest examples of probabilistic programming languages are found in work by
Saheb-Djaromi [SD78, Sah80] and Kozen [Koz79]. Jones and Plotkin [JP89, Jon90]
studied semantics for a probabilistic language in the setting of domain theory, via
a monad called the probabilistic powerdomain. The approach is successful but not
entirely satisfying — see [JT98] for a detailed account. Recently other domain-
theoretic models have been defined and extensively studied by Goubault-Larrecq
[Goulb, Goul9]

The above models are of the extensional kind: a program is interpreted as a
function from an input space to the space of probability distributions on a output
space, or a variation thereof. There are also a variety of intensional approaches,
among them Danos and Harmer’s probabilistic game semantics [DH02], an obvious
precursor to the present work. This is a probabilistic version of Hyland and Ong’s
game model, which is fully abstract (in the sense of Plotkin [Plo77], i.e. without the
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need for a quotient) for an extension of PCF with probabilistic choice and first-order
references called Probabilistic Algol.

Closely related, also, is the line of research stemming from the relational and
coherent semantics of linear logic [Gir88, Gir87] often referred to as quantitative
semantics. Some pioneering work is by Lamarche [Lam92], a general approach is
developed in [LMMP13], and there is a series of papers focusing on probabilistic
computation, including [DE11, EPT11, ETP14]. Note that [ETP14] contains a
striking full abstraction result for a probabilistic extension of PCF without references.

Recent developments and probabilistic programming. The past few years
have seen a rise in the development of models for probabilistic programs. This is
largely due to the development of a set of tools and methods for statistical modelling
referred to as probabilistic programming [GHNR14]. The idea is for a statistical model
to be encoded as a probabilistic program, whose variables correspond to the random
variables in the model. The advantages of this approach for practitioners are, on
one hand, access to a wide range of features (data structures, conditionals, recursion,
higher-order functions, etc.) making for a succinct encoding of sophisticated models,
and on the other hand, access to built-in inference engines, giving approximate solu-
tions to inference problems at runtime. Implementing such systems efficiently is diffi-
cult, however. The expressive power of programming languages, albeit elegant, makes
well-known inference methods insufficient in general. Thus, extending those methods
to arbitrary probabilistic programs is the subject of active research, which triggered

the need for more theoretical guarantees. This has been very stimulating for the se-
mantics community: see for instance [BDLGS16, SYW*16, Stal7, HKSY17, VKS19].

We now detail the contributions of each chapter.

1.2 This thesis

In Chapter 2, we give an introduction to concurrent games, and to the games
with symmetry as first presented in [CCW15]. Our presentation is inspired by
that in the journal versions [CCRW17, CCW19]. Most of the material in this
chapter is obtained directly from the above papers, though in Sections 2.5 and
2.6 we offer a much more thorough description of the bicategorical structure of
the model than was previously available.

In Chapter 3, we introduce Winskel’s probabilistic strategies and enrich them with
symmetry. The extension is not particularly problematic and the results of
[Win13b], found in full details in a set of unpublished notes [Win|, provide most
of the tools. We introduce Markov strategies, which are needed in the next
chapter, show a “push-forward” property for maps of probabilistic strategies,
and discuss some categorical properties.

In Chapter 4, we describe an application to the semantics of a probabilistic extension
of the untyped A-calculus. We define sequential innocent probabilistic strategies,
and prove they are stable under composition. We show an adequacy result
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for the model, and compare the semantics of the language to a notion of
probabilistic Nakajima trees introduced by Leventis [Lev16]. This work was
done in collaboration with Pierre Clairambault, see the conference paper
[CP18].

In Chapter 5 we discuss another application, this time to a probabilistic extension
of PCF. We exploit the innocence condition of the previous chapter to prove
a definability result. The results of this chapter, together with a study of
the connections between probabilistic concurrent games and the probabilistic
relational model of [LMMP13], are joint work with Simon Castellan, Pierre
Clairambault and Glynn Winskel, see [CCPW18].

In Chapter 6, we discuss a generalisation of the bicategory of concurrent games with
symmetry of Chapter 2. In this generalised model, games and strategies come
equipped with measure-theoretic structure, allowing for an accurate description
of computation with continuous data types, e.g. real numbers. The objective
of this model is to support computation with arbitrary probability measures on
the reals. This is a relatively technical mathematical development: we give in
full details the construction of a bicategory of measurable games and strategies.

In Chapter 7, we enrich measurable games with probability using (basic) tools from
measure theory. The result is a generalisation of the model of Chapter 3, which
can in principle be used to model, say, a version of PCF with a real number
type and continuous distributions. (We leave this important application as
further work.)

The content of Chapters 6 and 7 originates in joint work with Glynn Winskel,
presented in [PW18]. But this work was done in games without symmetry; the
present development is so far unpublished.

We conclude in Chapter 8.
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Chapter 2

Concurrent games

The starting point of this thesis is a framework for games and strategies known as
concurrent games. Originally appearing in work by Rideau and Winskel [RW11],
theory and applications of concurrent games have been substantially developed by

Castellan, Clairambault and Winskel (see for example [CCW14, CCW15]). The ex-
tended versions [CCRW17, CCW19| have largely inspired the presentation given here.

The purpose of this chapter is to give a formal account of the construction of the
model. This will be useful in later chapters where this construction is extended with
probability.

The chapter is organised as follows. In Section 2.1 we introduce event structures
and the basic notion of games and strategies based on them. In Section 2.2 we see
that for our purposes additional structure is needed, symmetry in event structures.
In Section 2.3 we see how to compose strategies, and in Section 2.4 we discuss the
associativity of composition and identity strategies. In the remaining two sections,
2.5 and 2.6, we discuss some categorical properties of the model.

2.1 Basic games and strategies as event structures

We start with a brief introduction to event structures, which play a fundamental
role in the development of the model; we will see that both games and strategies are
instances of event structures.

An event structure consists in a partially ordered set of events equipped with
extra structure indicating which of the events are compatible. We first discuss how
this can be used to model nondeterministic processes.

2.1.1 Partial-order models of processes

Consider the set containing three events a, b, and ¢ under the partial order <
generated by a < ¢ and b < ¢. This may be represented as follows:

a b

Y

c
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As the graphical representation suggests, the relation < should be interpreted as
a dependency relation: the event ¢ can only occur once both events a and b have
occurred. In this example a and b are said to be concurrent, meaning that they are
causally independent and in an execution of the process one may find both events
occurring.

Now take the same set of events but with the order < instead defined by a < ¢
only. Suppose that a and b are known to be incompatible events: this is pictured as

e b

oO<t—e

with the wiggly line expressing this incompatibility. These two relations on events
(dependency and incompatibility) are combined in an elegant way in event structures,
originally introduced in [NPWT79]. In order to better convey the idea, we first define
a class of event structures whose definition is more intuitive. This is the class of event
structures with binary conflict, which contains most examples of event structures
found in this thesis:

Definition 2.1. An event structure with binary conflict is a tuple (E, <, #)
consisting of a set of event F, a partial order < on E, and an irreflexive conflict
relation # on E satisfying the following two axioms:

e for every e € E, the set [e] = {¢/ € E | ¢/ < e} is finite; and
o if e#te’ and ¢’ < €” then e#e”.

The set [e] is the causal history of event e; we also write [e) for [e]\{e}. The first
condition in the definition is the requirement that every event should be accessible
in finite time. The second says that conflict is hereditary: in the previous example, b
and c are incompatible, though this was kept implicit in the diagram. Indeed we only
draw e ~~¢’ when e and €’ are in minimal conflict: e#e¢’ and for any ey < e and
e; < €, either eg = e and e; = ¢ or —(eg#e1). As seen in the above figures, in order
to depict the dependency relation < it is sufficient to draw immediate causality
e — €', defined as e < ¢’ with nothing in between. (The order < is then recovered as
the reflexive, transitive closure.)

Event structures with binary conflict can be generalised to account for situations
in which, say, three events are pairwise compatible but mutually incompatible.
Instead of a conflict relation we take the dual: a consistency relation indicating
which subsets of events may occur together.

This extra generality comes at the cost of a slightly more involved definition, but
makes some of the abstract theory more natural.

Definition 2.2. An event structure is a tuple (E, <, Con) consisting of a set F,
a partial order < on F, and a nonempty set Con of subsets of F, satistying the
following axioms:

18



(Finite causes) for every e € F, the set [e] = {¢' € E | ¢/ < e} is finite;

for every e € E, {e} € Con;
e if X € Con and Y € X then Y € Con; and

e if X € Con, ee X, and ¢’ < e, then X u {¢'} € Con.

A configuration of an event structure F is a subset of events x © E which is
consistent (z € Con) and down-closed (if e € x and ¢’ < e then ¢’ € ). The set of all
finite configurations of E' is denoted by %' (F). It is a partial order under inclusion
c, with least element the empty configuration (.

When z,y € €(E), we write z—cy and say y covers x when there is e € F
such that y = z U {e}; we may also write x—°y. The axioms of event structures
ensure the following important fact: given x € € (E) there exists a covering chain
for x, i.e. a sequence z1, ..., x, of configurations such that J—<cx,—<... <cx,—<cx.
Covering chains are not necessarily unique.

Given a family (A;);es of event structures (with polarity), we define their (simple)
parallel composition to have events

“ie] A = UAz' X {Z}
el
with componentwise causality (and polarity). The consistent sets are those of the form
|lier X; for I, such that X; € Conyk, for each i € I. (Observe that any configuration
x € € (||ier A;) corresponds to ||;c; x; where each x; € €(4;), and at most finitely
many z; are nonempty).

2.1.2 Games and strategies

In concurrent games, event structures are used to represent both games and strategies

— s0 in programming languages, types and terms. Events correspond to moves, and
we use a polarity function to distinguish between moves of each player. An event
structure with polarity (esp) is an event structure (F, <, Con) equipped with a
polarity function pol : E — {+, —}. The polarity pol(e) indicates which of the two
players is responsible for the move e: Player (+) or Opponent (—).

We will often keep the data implicit and refer to an esp (F, <, Con, pol) simply
as E. Moreover we use the following notation: if x,y € € (F) and x < y, we write
x €ty (resp. x €~ y) if every e € y\z has positive (resp. negative) polarity. The
relations ——* and ——~ are defined analogously.

Definition 2.3. A game is an event structure with polarity.

So a game can be seen as a set of available moves for each player, along with
compatibility and causal constraints between them.

Informally, a strategy should specify Player’s behaviour at any point in the game,
according to the moves Opponent chooses to play. (Note, by strategy we always
mean a strategy for Player.) We encode this as another event structure with polarity
S whose events are in some sense labelled by those of the game, via a map o : S — A.
To ensure that the strategy S obeys the causal constraints imposed by the game,
the map o will be required to satisfy the axioms of a map of event structures.
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Definition 2.4. If £ and E’ are event structures, a map of event structures
f: EF — F'is a function on events which

o preserves configurations: for every x € € (F), the direct image fx € €(£');
and

e is locally injective: for every x € €(E) and e, ¢ € z, if f(e) = f(¢’) then e = €.
If £ and E’ have polarity, f must additionally preserve it.

The local injectivity condition gives for each x € € (F) a bijection z =~ fux.
Although maps of event structures are defined on events, their action on con-
figurations is sometimes easier to describe. So we begin by observing the following

property:

Lemma 2.5. Suppose f,g: E — E' are maps of event structures. If fr = gz for
every x € €(E), then f = g.

Proof. Let e € E. By assumption, fle] = gle] and f[e) = g[e). Because the
restrictions of f and g to [e] are injective, f(e) = fle]\f[e) = gle]\g[e) = g(e). O

It is also helpful to know when a function of configurations is generated by a map
of event structures:

Lemma 2.6. Let f : €(F) — € (F') be a monotone function which preserves
cardinality (| f(z)| = |z|) and preserves unions (f(x v y) = fx U fy). Then, there is
a map of event structures E — E' whose action on configurations corresponds to f.

The proof is straightforward and can be found in [Cas17]. We can now define
concurrent strategies:

Definition 2.7. For a game A, a strategy on A consists of an event structure with
polarity S, together with a map of event structures o : S — A which is

e receptive: if x € €(5) and ox <~ y for some y € €(A), there exists a unique
x’' € €(S) such that x € 2’ and o2’ = y;

e courteous: if e,¢’ € S are such that e — ¢’ and o(e) 4+ o(¢’), then pol(e) = —
and pol(e’) = +.

In words, the courtesy axiom says that a strategy may only specify additional
causal dependencies of Player moves on Opponent moves. The receptivity axiom
states that at any stage Player must be prepared to let Opponent play the moves
that the game A makes available to them.

Although sufficient in some contexts, for the purposes of this thesis games and
strategies as presented above must be enriched with extra structure. The issue is
with duplication: we expand on this in what follows.
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2.2 Symmetry in concurrent games

In order to model a programming language with no restriction on resource usage
(specifically, a non-affine language), it will be important to allow for moves of the
game to be played more than once. This is not possible with the above because
strategies must be locally injective.

One could consider an expanded version of the game where each move exists in
many copies, but this naive approach fails in ensuring that Player’s behaviour is
uniform with respect to Opponent’s particular choice of copy.

This issue is addressed by considering games and strategies based on event struc-
tures with symmetry [Win07], which extend event structures with extra information
expressing when configurations should be considered equivalent. The extra structure
and associated axioms will ensure that strategies are uniform.

We first define event structures with symmetry, and then see how the games and
strategies above can in turn be extended with symmetry.

2.2.1 Symmetry in event structures

There are multiple presentations of event structures with symmetry [Win07]; the
following best suits our purposes:

Definition 2.8. An isomorphism family on an event structure E is a set =~ of
bijections 6 : z =~ y, for z,y € €(FE), satisfying the following axioms

(Groupoid) =g contains all identity bijections, and is closed under composition and
inverse;

(Restriction) if (6 : x =~ y) € =g and 2’ < =z, then there exists ¢y < y and
(0" : 2’ = y') € =p such that ¢ < 6 (where C is inclusion of graphs); and

wtension) if (0 : x = y) € =g and x < 2/, then there exists y’ € with y < ¢/,
FEztension) if (6 d ', then th ists y' € € (F) with !
and (0" : 2’ = y') € =g, such that § < ¢’ (note that ¢ is not necessarily unique).

Additionally, if F has polarity, we ask that each # € ~g preserve it.

Definition 2.9. An event structure with symmetry (and polarity) is a pair
E = (E,~g) of an event structure (with polarity) and an isomorphism family on it.

We use £, A,B,S,T, etc. to denote event structures with symmetry; it is under-
stood that E, A, B, S, T, etc. denote the underlying event structures. To indicate that
a bijection 0 : x = y is in ~p, we will write 6 : x ~py. We do not distinguish between
the bijection 6, and its graph {(e,0(e)) | e € z}; in particular the set operations
c,—,u,ete. extend to bijections; and because elements of ~g preserve polarity
when it is there, the polarised extensions *, ——* etc. are also well-defined.

Example 2.10. A process featuring countably many copies of a single event can
be modelled as an event structure with symmetry € as follows: E = N; causality is
trivial (i < j iff i = j); all subsets are consistent; and the isomorphism family =g
contains all bijections 0 : x = y between finite configurations of E (i.e. finite subsets

of N).
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More generally, suppose A is an event structure with symmetry and polarity. An
expanded version of it is given by the essp A which has underlying esp 'A =||;cw A.
Its isomorphism family =4 contains those 0 :||ic, T; =||icw yi for which there is
Tiw=w and 0; 1, =4, Tr) such that 0(i,a) = (7(i),0;(a)) for each (i,a) € 'A.
(Lemma 2.15 below states that this satisfies the axioms for an isomorphism family.)

Definition 2.11. An map £ — &’ of event structures with symmetry is a map
f : B — E’ which additionally preserves symmetry: if # : x =gy then f0: fo =g fy.

2.2.2 Arenas

A general model of games and strategies with symmetry may then be defined, following
[CCW14]. There, a game can be an arbitrary event structure with symmetry, and
uniformity of strategies in enforced via a saturation condition.

The work in this thesis follows an alternative approach, introduced in [CCW15],
in which games are event structures with symmetry equipped with two further
isomorphism families, containing bijections only affecting moves of one of the two
players. This concept appears in [CCW15], and in more details in [CCW19], under
the name of thin concurrent game. We choose this approach over the saturated
strategies of [CCW14], as it will prove much more accommodating to probability.

Definition 2.12. A game with symmetry is a tuple A = (A, >4, >%,~7), where
A is a game and =4, =%, and =} are three isomorphism families on A such that

e the families ~7 and =~ are sub-families of = 4;

o if 0 € =, n =], then 0 is the identity bijection on some z € € (A);
o if f e =, and § =~ 0 for some ¢’ € =4 then #' € ~; and

o if e~ and § = ¢ for some ¢ € =~ then 0’ € ~7.

We extend the notation for symmetric configurations: if 6 : x = y is in the
isomorphism =%, we write § : x =% y. The following property of games with

symmetry is easily derived from the axioms:

Lemma 2.13. Let A be a game with symmetry and let 6 : x =7 y. Suppose v =~

1’ € €(A). Then there is a unique extension 0 < 0" : 2’ = /.

Proof. Suppose there are extensions ¢’ : 2’ =% ¢/ and §” : 2/ ~7 y”. Then the bijection

0" 0! .y >~ y” is in =}, but it is also a negative extension of id, € =7, so

necessarily in =, by the third axiom of Definition 2.12. Thus by the second axiom
0" 0 #'~! is an identity bijection, which implies the result. ]

We will be particularly interested in the following class of games:
Definition 2.14. An arena is a game with symmetry A whose underlying esp A is
e forest-shaped: if a < b and ¢ < b then either a < c or ¢ < a; and

e alternating: if a — b then pol(a) = —pol(b).
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Say an arena A is negative (resp. positive) if all its initial moves have negative
(resp. positive) polarity. If A is either negative or positive we say it is polarised.

The classic example of a game with symmetry is obtained via the construction of
I A in Example 2.10, given an essp A. The associated isomorphism family =, allows
for an arbitrary choice of copy index for the moves of A. When A is a polarised
arena, there are two sub-families ", and =, defined as follows:

e > contains bijections § : x =.,, y such that for each ¢ € w the bijection
0; : ;i = yr(; is in the isomorphism family =7, and moreover if 7(7) # 4, then
all initial moves of x; have negative polarity.

e > contains bijections 6 : z ~. , y such that for each i € w the bijection

0; : ;i = Yn(;) is in the isomorphism family ~%, and moreover if (i) # 4, then
all initial moves of x; have positive polarity.

Lemma 2.15. When A is a polarised arena, the tuple (\A, =14, =7, =) is an arena
with same polarity.

Proof. We first check that =, >, and =/, are isomorphism families. We check
the axioms for the first one.

(Groupoid) If z € €(1A) then the identity bijection 6 : x =~ x is in =4 since
(taking 7 to be the identity on w) all 6; : x; = z; are in = 4. If 6 : =4y, then we have
bijections 9;1 D Yi =4 Tr-1(y) for each ¢ and therefore O~y If0: 2=,y and
¢ : Yy =4 z with reindexing bijections 7y and 7, respectively, we can take m = 7, oy
and let (po0); : x; = 2y, clearly in =4 for each i. So p 06 € =,.

(Restriction) Let § : x =4y and 2’ < z. If v = |, {i} x 2; then we can
write 2/ = Ulew{z’} x xf, where for all ¢ we have 2z, < ;. The restriction of each
0;:x; = yp(i) to z} is a br]ectlon . —A yr (i), and so with the same reindexing 7
we have a br]ectlon 0 ax' =49, Where v = U {7} x yi.

The same argument can be used to check the (Extension) axiom, and given that
every bijection in an isomorphism family must preserve polarity, it is straightforward
to do the same verifications for =, and = _,A We show now that (1A, =4, =, _.A)
satisfies the axioms of a game with symmetry

The isomorphism famrhes =~ and =/, are subsets of 4 by definition. Suppose
0:2=~yisin >, n= and let (i,a) € x. By definition 6(i,a) = (7 (i), 6;a) for some
0; € ~; n =%, which must be the identity given that A is a game with symmetry.
Moreover if i # m(i), then the initial moves of x; have both negative and positive
polarity. But z; is nonempty since (i,a) € =, so we must have i = m(i) and € is the
identity bijection.

Suppose now that 6 : x =Y and 6 : y with reindexing 7 and =’
respectively, such that 6§ <= ¢'. For 1 € W, we have that 6, <= 6, and therefore
¢ € =~. Suppose 7'(i) # i. If x; has any initial moves, then 7 (i) = 7'(7) and so the
initial moves of z; must be negative since § € =, and 2/\z; only has negative moves
by assumption. O]
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2.2.3 Thin strategies

To ensure uniformity, a strategy on a game with symmetry A is defined as a map
o:S8 — A where S too is equipped with symmetry. There are extra conditions,
which we discuss below:

Definition 2.16. Given an arena A, a strategy on A consists of an event structure
with symmetry and polarity S, and a map o : S — (A4, =4), such that:

e the underlying map o : S — A is a strategy in the sense of Definition 2.7;

e 0 is ~-receptive: if 0 : =gy and 0f =~ 1) then there exists a unique 0’ € ~g
such that < ¢ and 06’ = v ; and

e o is thin: if x € ¥(S5) and id, <% 0 for some 0 € ~g, then 6 = id,, for some
' € €(S).

The ~-receptivity condition is very natural: informally, because o is a strategy
for Player, the symmetry of Opponent moves in the strategy should be canonically
induced from the symmetry of the game. Thinness is more subtle: it says that there
is no non-trivial “positive symmetry” in a strategy. This does not mean that Player
is not allowed to play several copies of the same move, only that those should not be
recorded as symmetric in S.

Thin strategies, introduced in [CCW15], can be considered “up to positive
symmetry”; in other words, it is possible to consider two strategies equivalent if
they only differ in Player’s choice of copy indices. The key insight of [CCW15] is
that thinness makes this equivalence a congruence for composition of strategies. In
this thesis, this issue arises in the construction of a bicategory of games and thin
strategies (specifically, when defining horizontal composition of 2-cells).

The next section shows how strategies compose.

2.3 Composing strategies

2.3.1 Interaction

We start with an important definition: the dual A+ of an event structure with polarity
A is the same event structure with polarity function reversed: pol,. = —pol,. If
A= (A, =4,>,,>%) is an arena, we define AL = (AL, >4, = ~7) i.e. the roles of
~* and =~ are swapped.

Suppose A is a fixed arena. Consider a strategy o : S — A, and a strategy
7:7T — At on the dual arena. Just as o specifies the behaviour of Player, 7 can be
thought of as a strategy for Opponent, sometimes called a counterstrategy.

We consider the situation where Player follows strategy ¢ and Opponent strategy
7. The goal of this section is to use constructions on event structures to understand

this interaction.
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In particular, the pullback

SAT
>N
s\ T

A/

always exists in the category of event structures with symmetry, where we abuse the
notation slightly: A refers to the ess (A, =~4) without the extra structure =~ and

~* and all polarity information is ignored (otherwise 7: 7 — A would not be a
valid map).

The ess S A T models the result of the interaction of strategies S and 7. Every
configuration of & A T corresponds to the synchronisation of a configuration of S
and a configuration of 7. Thus ¢ and 7 must agree on a set of moves, and the causal
constraints imposed on Player and Opponent must be compatible.

Formally, suppose x € €(S) and y € € (T') are such that ox = 7y. Then, by the
local injectivity condition on maps of event structures, so that there is a bijection
0:x=~oxr =71y =y. Wesay that such a bijection is secured if the transitive
closure of the relation < defined for (s,t), (s',t') € 6 as

(s,t) < (s, t) iff s<g s ort<pt

is also anti-symmetric.
An event structure is fully determined by its set of configurations [Win86]. Thus
the event structure with symmetry S A T is characterised by the following result:

Lemma 2.17 ([CCW19)). Configurations of S A T correspond to pairs (x,y) €
€ (S) x €(T) such that ox = Ty and the composite bijection T =~ ox = Ty = y 18
secured. The isomorphism family =g, comprises, for every z,z' € €(S A T), the
bijections 0 : z =~ 2" such that 1110 : 111z =g 112" and 1150 : [loz =7 1152,

2.3.2 Strategies as morphisms

For arenas A and B, a strategy from A to B is a strategy on the arena At || B.
Let C be a third arena, and suppose 0 : S — At || Band 7 : T — B* || C are
strategies. The composition of o and 7 will arise after the two strategies synchronise
on the game B, and this synchronisation is hidden so as to leave only A and C open
for playing.
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2.3.2.1 Interaction
We form the pullback

(SC)ya(AlT)
S|c AT
Al Blc

in which all polarity information is ignored, since in particular 7 and o disagree on the
polarity assigned to events of B. We denote by 7 ®S the pullback (S || C) A (A || T),
called the interaction of o and 7. The composite map 7 ®S — A || B || C induced
by the pullback diagram is written 7 ® o.

If ee T® S is mapped to the A- or the C-component of A || B || C, then its
polarity is determined as follows: we take it to be pol . ((T ®o)e) or pol((T ®o)e),
accordingly. For events mapped to the B-component, the polarity is ambiguous
because o and 7 disagree. But we can recover a form of polarity by assigning neutral
polarity to those events.

In addition to the negative/neutral/positive description of events of T'® S, the
following terminology will be useful: we say e € T'® S is a o-action if Il;e is a
positive event of S, and a T-action if Ilye is a positive event of T. No event is both
a o-action and a T-action, and negative events of T'® S are neither of the two.

2.3.2.2 Hiding and composition

To compose strategies 7 and o we need to hide the synchronisation events. Accordingly
we will hide from 7 ® S the events with neutral polarity. The remaining events are
called visible.

To do this we use the following general construction on event structures with
symmetry [CCW19]. Let £ be an essp and V' < E a subset of events closed under
symmetry, so if 0 : gy and e € x NV, then 6(¢) € V. Then E | V is the
esp with events V', and causality, consistency and polarity directly induced from
E. Importantly, a configuration x € € (EF | V') has a unique witness [z] € €(F)
obtained as the down-closure of x in E. The isomorphism family =gy is the set

{:0>y|z,ye €(F|V)and 30" : [x] = [y] with 0 < 0’}

giving anessp £ |V = (£ |V, =g v).
So from the map T®o : T ®S — A || B || C, to obtain a map to A || C we first
consider (T ®S) | V, where V' contains A-moves and C-moves only:

V={eeT®S|(r®o)(e) =(1,a) with a e A, or (3,¢) with c e C}.

We denote (T ®S) |V by T ®S. Restricting the map r® o to T © S gives a
map of event structures with symmetry 7©Qo : T ©OS — A || C. Polarity can be
recovered, unambiguously: polrgg(e) = polys (T O o)(e)).

The map 7 Qo : T ©8 — A’ || C satisfies all the axioms for a strategy from A
to C [CCW15]; it is the composition of 7 and o.
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2.3.3 Causally compatible pairs

Before continuing with the bicategorical development, we devote the rest of this
section to a more detailed description of the essps 7 ® S and T © S. The results we
present will be useful in the rest of the thesis.

By Lemma 2.17, configurations of T'® .S correspond to pairs (zg || z¢,za || 1) €
C(S || C)x €(A| T) for which the bijection

s || e = oxg || xc =za || TOr = 2A || 27

is secured. Since x4 and x¢ are determined by zg and xr (respectively), the pairs
(xg, x7) suffice to characterise the configurations of T'® S.

Definition 2.18. Configurations xg € € (S) and xr € € (T') are said to be causally
compatible when they are matching, i.e. there is x4 || 25 || zc € €(A || B || C)
such that cxg = 24 || xp and 727 = 2 || z¢, and the induced bijection xg || z¢ =
oxs || xc = x4 || TXT = T4 || 7 i secured.

So, configurations of (T ® S) correspond to causally compatible pairs, and
we write 27 ® xg for the configuration corresponding to the pair (zg,zr). This
notation, borrowed from [CC16], will significantly help the technical development.
Note however that & is not a total operator on configurations: writing xr ® xg
assumes that zg and xp are causally compatible.

Elements of the isomorphism family ~pgs can also be seen as matching pairs:

Lemma 2.19. Bijections 0 : xp ® xs = yr ® ys in Zpgs correspond to pairs
(0s,07), where Os : xs ~g ys and Oy : xp =7 yr and the two are matching, i.e.
00s || Oc = 04 || TOr for some 04 € ~4,0c € =c. We write 0 = 07 ® 0s.

Proof. By Lemma 2.17, a bijection ¢ : x7®xg = yr®ys is in =g only if 11,0 € =g ¢
and Iy0 € = 7. Writing 11,0 = 0g || ¢ and 11,0 = 4 || O, the bijections 05 and
Or are matching, since ofg || 0c = (T ® )0 = 04 || TO7.

Conversely, given matching 6s : zg =g ys and Op : xp = yp, we take 0 :
T ®Ts Zres Yr ® ys to be the bijection

©
rr®rs =g || v Zyall yr = yr ®ys

where ¢ stands for either

04|07 0s|0c
zgllze=xallzr = yallyr or zslze = ysl ye =yal yr

(The two bijections are equal by the matching requirement.) It is routine to check
that Hle = 95 H 90 and HQG = (9,4 H QT. ]

Lemma 2.20. Configurations of T'® S correspond to causally compatible pairs
(xg,27) € €(S) x €(T) which are minimal among those with the same projection
to A and C.

We write zpr @ x5 € €(T © S) for the configuration corresponding to (zg,zr).
As with x7 ® xg, this notation assumes that xg and xr are causally compatible and
that the pair is minimal.
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2.4 Copycat and associativity of composition

2.4.1 Identity strategies

The following strategy, known as copycat, will act as identity on a game A. It
comprises an essp (C4 and a map

(CA:(@A—MAL ||./4

As the name suggests, copycat might informally be described as the strategy on
AL || A in which Player reproduces on each side Opponent’s behaviour on the other.

Formally, the events, polarity and consistency of (C4 are those of At || A,
and the causality is that of A1 || A enriched with the pairs {((a,1),(a,2)) | a €
A and poly(a) = +} v {((a,2), (a,1)) | poly(a) = —}.

Note that because (C 4 is just At || A with added causal constraints, configurations
of C4 can be seen as a subset of those of A+ || A. The following characterisation
will be useful:

Lemma 2.21. %(@A) = {ZEI || To € %(A || A) | T ot 1 N T & ZL’Q}.

The isomorphism family ~«, contains bijections 0, || 05 : z1 || 22 = 2] || = with
0, : 2 = AL 21, 0y : o EAZEIQ, and 9% o 8% N By S b,.
Because of this characterisation, the relation x; © x5 defined as 11 27 21 N2y S

2o between configurations of A plays a significant role. It is a partial order, called
the Scott order.

2.4.2 Copycat is an identity

As it tends to be the case when composition is given by a universal construction,
there is no strict notion of identity in concurrent games. Indeed games and strategies
are not a category, but a bicategory, whose construction we will formally give in the
next section. Here we simply discuss in which weaker sense the copycat strategy is
the identity strategy on a game.

In general for a strategy o : S — A* || B, there are isomorphisms of essps
Ao : CpOS =S and p, : SO WU 4 = S making the following diagrams commute:

CpOS —22 5 8 SOC, —2— S
083(% / "Qa\ /
ALl B ALl B

Showing the existence of these isomorphisms is not an easy task [CCRW17], and
requires a careful analysis of the interactions (Cg ® S and S ® (C 4. We do not
reproduce the full proof here; however we give sufficient detail that similar proofs
can be carried out in the probabilistic setting.

We consider only the composition o ® «4: the argument for g © o is symmetric,
and anyway follows from the first case since o can also be seen as a strategy from
Bt to A*, and from this point of view pre-composition is post-composition.
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Recall that configurations of (C 4 are of the form y, || x4 for x4, ya € €(A) with
T4 CE ya (where = is the “Scott order”). Interaction with copycat does not induce
any causal loops (we say it is deadlock-free), so that configurations of S ® (C 4
correspond to pairs of configurations zg € €(S) and ya || x4 € €(4) such that
oxs = x4 || xp for some xp € €(B). Similarly, configurations of (Cs ® S are
(yp || xB) ®xg, where x5 = yp (so yp || xp € €((Cp)), and oxg = x4 || yp for some
TAE %(A)

Lemma 2.22 ([CCRW17, Casl7]). There are isomorphisms p, : SO 4 — S and
Ao : CpOS — S, making the above diagrams commute, and acting on configurations
as follows.

e To x50 (ya || za) € €(S © L), where oxg = x4 || xp and x4 = ya, po
associates the unique xs € €(S) such that % C xg and ozl = ya || 5.

e To (xp || yp) ©xs € €(CpOS), where oxg = x4 || v and yp € g, A\s
associates the unique x% € € (S) such that x5 E xg and ox = x4 || ys.

2.4.3 Associativity of composition

Consider three strategies 0 : S — AL || B, 7: T - B+ ||Cand p: R — C* || D.
Their composition is not associative on the nose, that is: pO (1O 0) # (pOT) O 0.
However, the strategies are isomorphic via a map oy, : (ROT)OS = RO(TOS)
such that

(ROT)OS LN RO(TOS)
oot PO(700)
At D

commutes. The map was given in [CCRW17] and extended to games with symmetry
in [Casl7]. It is obtained by first considering a canonical isomorphism

a® (ROET)®S=>RO(T®S)

between the two obvious ways to make o, 7, and p interact, and carefully restricting
this to an isomorphism o, ,, : (ROT)OS - RO (T ©S) involving only visible

events.

Lemma 2.23. There is a strong isomorphism of strategies o, ., : (pOT) O o =
pO(TO0) of strategies, natural in its arguments o, 7 and p, and such that o, ;o (O

r7)OQus) =2 O (xr O xg).

The isomorphisms «, A\, and p are instrumental in defining a bicategory of games
and strategies; this is what is done in [CCRW17, Casl7]. We give a different
presentation, noticing that games and strategies form part of a larger object (a
pseudo-double category) from which the bicategory eventually arises.

2.5 A pseudo-double category

We first give some motivation.
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The bicategorical story. Associators and unitors are examples of 2-cells — mor-
phisms between morphisms, of the form

s—L g

N

AL B

That the diagram commutes means that for any s € S, s and f(s) correspond to
the same move of the game. Because games are equipped with symmetry, we relax
this slightly, allowing s and f(s) to be different copies of the same move. All copies
of each Opponent move must appear in both S and S’ anyway, by the receptivity
property, so this relaxation is only interesting for Player moves. With this relaxed
notion of 2-cell, two strategies are considered isomorphic if they only differ in Player’s
choice of copy indices.

So in the bicategory of concurrent games, a 2-cell will be a map f: S — S’ such
that

+

where ~7 is an equivalence relation on maps defined as follows:

Definition 2.24. Two maps f, [ : S — &' of essps are said to be symmetric,
written f ~ f’) if for all x € €(S) the bijection v, = {(f(s), f'(s)) | s € x} is in the
isomorphism family ~g. If A is a game with symmetry, then we say g,¢' : S — A
are positively symmetric (g ~* ¢’) if they are symmetric with respect to the
isomorphism family =7

We will see that games (with symmetry), strategies and maps of strategies form
a bicategory. As a reminder, and to fix the notation, a bicategory consists of:

e a set C of objects;

e for each A, B € C, a category C|[A, B], whose morphisms are called 2-cells
and denoted with a double arrow, e.g. f : 0 = o' for 0,0’ € C|[A, B];

e for each A, B, C € C, a composition functor ©® : C[B,C]xC[A, B] - C[A,C];
e for each A € C, an identity morphism id4 € C[A, A];

e for each A, B € C and for each o € C[A, B], invertible 2-cells A\, : idg ® o = o
and p, : 0 ®idy = o, the left and right unitors; and

e for each A,B,C,D € C and for each ¢ € C[A,B], 7 € C[B,C] and 7 €
C|[C, D], an invertible 2-cell ayrp : (MO T) © 0 = 1O (1 © o) called the

associator.
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Unitors and associator are subject to naturality and coherence conditions which we
omit; a standard reference for this is [Lei98]. We do not normally distinguish between
the name of a category and that of its set of objects; if there is any ambiguity we
write |C| for the latter.

It is worth saying explicitly that the 2-cells of a bicategory can be composed in
two distinct ways: as morphisms in a hom-category C [A, B], and via the composition
functor ®. In the bicategory of games this is as follows: given

fl

S§—— & S — 5
N NS
At B Al B

we define their vertical composition as the map

S flof S’

\NJF/
g o.l/

At B
By constrast, for maps
s—L & T—2 T
2, N~
At || B B+ C

there exists a map
Tos 108
Tx ~* % o’
At ¢
called the horizontal composition of f and g. Understanding why the map g ® f

exists is technical, and an important contribution of [CCW19]; we will give more
details later on.

Generalised maps and lifting. The notion of maps between strategies can be
generalised further. In [CCRW17, Lemma 4.4] maps of the form

S f s T

al l

AL B —h el p
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are briefly discussed. The authors notice that for maps

S ! » S T d . T
| s o I
AL B ity BLc—2s , piye

they can construct a map

TS —% __,1mo8

TQU\L lTIQOJ

1
AL IC hi|[hs At e

Strictly speaking, our situation is different, since in [CCRW17] games have no
symmetry. We will consider a “weak” variant, with the square commuting only up to
~7, and see that the construction of g©® f proposed in [CCW19] readily extends. The
only additional requirement is that maps between games behave well with respect to
all three isomorphism families:

Definition 2.25. For games with symmetry A and B, a map of games f: A — B
is a map of essps which additionally preserves positive and negative symmetry: if
0 € =% then f0 e =~} and if § € =~ then f0 € ~.

Generalised maps of strategies are not given a central place in [CCRW17], yet
they are used to show a significant result about “lifting”, a method for constructing
strategies from maps of essps between the games themselves. We start by recalling
the definition:

Definition 2.26. Let A and B be games. Let f : A — B be a map of event
structures with symmetry which is courteous, receptive, and ~-receptive. Then the

composite

4 A AEY, 4B

is a strategy from A to B, called the lifting of f and denoted f Similarly for
a courteous, receptive and ~-receptive map g : B+ — A%, its co-lifting § is the
strategy

©s <5 B4 | BY5 4t | B
from A to B.

This construction is helpful because maps of essps are often easier to describe
than strategies. For instance, the symmetry of parallel composition is evident from
the isomorphism of essps

b: Al BB A

so when A and B are games this can be lifted to a strategy

b: @ays — (A B 1| B A
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In the bicategory of games and strategies, b is not strictly an isomorphism, but there
are invertible 2-cells L o
ca=b"1Ob bObL ! =y

making b an equivalence. To see why those 2-cells exist, we must investigate compo-
sition with a lifted map. This is where generalised maps come in.

Lemma 2.27 ([CCW19)]). Let f : B — C be courteous, receptive and ~-receptive,
and let 0 : S — AL || B be a strategy. Then, there is an invertible 2-cell f@ o~
(AL f)oo, ie.

CpOS —— S

|-

) At || B
fOo
lAin
At C
Proof. There are generalised maps
ids id@B
S y S Cp —— @5
Ul id|lid l" mBl B+ lf
AJ_HB AlEB AJ‘HB BJ‘||B¢>BLHC
which we can compose “horizontally”:
idee,, Oid
0S8 — 525 @08
ccg@al lf@a
1 AL|S n
A || B A~ C

This map is an isomorphism, which we combine with the unitor

S 2L @z0S8

N e

At || B
to get the result. O]

A pseudo-double category. By considering generalised maps of strategies, we
step outside of the bicategory: the maps are now between strategies on different
games. As it turns out, games, strategies, maps of games, and (generalised) maps of
strategies form a pseudo-double category. In a double category there are two kinds
of morphisms (referred to as horizontal and vertical), and therefore two kinds of
composition, for which the laws of identity and associativity are required to hold
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on the nose. In a pseudo-double category, the laws for horizontal composition are
relaxed and allowed to hold up to coherent invertible 2-cells, much like in a bicategory.
And indeed any pseudo-double category gives rise to a bicategory (its “horizontal
bicategory” ), obtained by forgetting the vertical dimension. Note that pseudo-double
categories have recently appeared in several places within game semantics: see for
instance [EH19, Mell9].

The formal definition is as follows. (The notation reflects that our pseudo-double
category of interest consists of games and strategies.)

Definition 2.28. A pseudo-double category & consists of two categories Dy and
Dy, together with functors

CCZID)O—>ID)1
src, tgt @ D — Dy
©: Dy xp, Dy — Dy

(where the pullback is over D; =5 Dy e D) such that for A € Dy, sre(wcy) =
tgt(wca) = A, and for (1,0) € Dy xp, Dy, sre(tOo) = sre(o) and tgt(r O o) = tgt(T).
Additionally Z is equipped with natural isomorphisms

ANacgQo=o0
p:o@Qey =0

a:MOT)Oo=n10(TO0)

subject to the same coherence axioms as in a bicategory, and such that src(\), tgt(A),
src(p), tgt(p), sre(a), and tgt(a) are identity maps in Dy.

Some standard terminology and notation: morphisms of D are called vertical
morphisms, and we write them f : A — B. Objects of D; are called horizontal
morphisms and written o : A - B (where A = src(o) and B = tgt(o); this matches
the usual concurrent games notation). Finally a morphism « in D; (known as a
2-cell) is pictured as a square

A5 B
£l Yo 19
A+ B

where f = src(a) and g = tgt(a). Squares can be glued either horizontally or
vertically, following one of the two notions of composition for 2-cells.

We will see that in the pseudo-double category ¢4 of concurrent games, Gy has
games as objects and maps of games as morphisms, while G; has strategies as objects
and generalised maps as morphisms. Later on it will be important to recover the
usual bicategory, and for this we will perform the following construction on ¥¢:

Definition 2.29. The horizontal bicategory H (%) of a pseudo-double category
2 has

e objects: objects of Dy;
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e morphisms: objects of Dy;

e 2-cells: globular morphisms of Dy, i.e. those o such that src(a) and tgt(«)
are identity maps in Dy. Instead of the square

A% B

| da |

A+ B
we often write a globular 2-cell as o : 0 = o’.

In our pseudo-double category, a globular map will be one of the form

S ! > T
o‘l ~T lT
At | B —— » AL || B
idy [lidg

1.e. a map in the usual sense.

Outline. The construction of a pseudo-double category of concurrent games and
strategies is very natural, and it seems important enough in its own right. Further-
more, we will see that the lifting and co-lifting constructions are justified by the
(established) double-categorical concepts of companions and conjoints.

Still, the result has practical relevance, since it allows us to identify symmetric
monoidal structure in the bicategory of concurrent games. A theorem of Shulman
[Shul0] states that if & is symmetric monoidal, and is isofibrant (in concurrent games
terms, “all isomorphisms can be lifted”), then the bicategory H(Z) is symmetric
monoidal. It is significantly easier to show that a pseudo-double category is symmetric
monoidal than to carry out the full proof directly in the horizontal bicategory. As we
will see in Section 2.6, symmetric monoidal structure is an important step towards
cartesian closure, and the latter is needed for applications in semantics.

So the rest of the section is as follows: in 2.5.1 we define the pseudo-double
category ¢ of concurrent games, discussing in particular the difficulty with horizontal
composition in the presence of symmetry. In 2.5.2, we explore lifting in more detail,
and in 2.5.3 we describe the symmetric monoidal structure of ¥.

2.5.1 The pseudo-double category ¥

We start with two categories.

e G has games A, B, etc. as objects, and maps f : A — B of games as mor-
phisms, with the usual notions of identity and composition for maps of event
structures.

e The objects of G, are strategies 0 : S — At | B, 7: T - C+ || D..., where
A,B,C,D, etc. are games. Its morphisms are tuples (f, g, h) with f a map of
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essps and g, h maps of games, such that

S ! > T
al ~7 lT
il . L

AL B ——— || D

The identity morphism on a strategy o : S — AL || B is (ids,id 4, idg), and the
composition operation (vertical composition) is the componentwise composition,
which is ensured to commute up to ~:

Lemma 2.30. Let (f,g,h) and (f',¢',h') be maps of strategies given by

s ! , S ! » S
| . [E . E
AJ_ ” B - N A/J_ H B/ - y A//J_ H B//
gk ol 14

Then (f' o f,g' o g,h oh) is a map of strategies from o to o”.

Proof. We check that merging the two squares preserves the commutativity up to
~T. For x € €(95), by definition of ~* there are two “canonical” symmetries

o0 (fo) = (g | W)(ox)  dpe:0"(f'(fx)) = (¢ | ) (0'(f2))

which are in =}, LB and 7, LB respectively. Since the map ¢t || I/ preserves
positive symmetry (as a map of games), the map

Spa0 (g 1 W) o2 0" ((f' 0 fla) = ((g' 0 9)" || (W o h))(ow)

~t
:A”J-”B”’

the definition of ~*, so we are done. n

is also in and it is clear that this coincides with the canonical bijection in

So Gy is our category of objects, and Gy our category of morphisms. The “domain”
and “codomain” functors src, tgt : G; — G are as expected:

ste(S 5 AL || B) = A
tgt(S > AL | B) =B
sre(f, 9,h) = g
tgt(f,g,h) = h
For the “identity” functor « : Gg — G, we use the following property:

Lemma 2.31. If f : A — B is a map of essps, then the map f+ | f: A || A —
B* || B is also a map (C 4 — (Cg, denoted «;-.

Proof. Tt preserves configurations since for every z || y € €((C4), y E z, so fy & fz
and therefore fz || fy = f(z || y) is a configuration of (Cg. It is locally injective
because f1 || f is, and preserves symmetry, since it preserves = and symmetries in
copycat are of the form ¢ || ¢ with ¢ = . O
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So we define « : Gp — Gy as «(A) = €4 and «(f : A — B) = («y, f, f).

We proceed with the horizontal composition functor &. The composition of
strategies 0 : S — AL || Band 7: T — Bt || C is the strategy 7O : TOS : AL || C
obtained via interaction and hiding, as defined in 2.3.2. Defining the action of the
functor ® on morphisms of Gy x¢, Gy is less straightforward. Suppose given maps

S ! » S T d > T
CTRE AR SR PR S
AL | B e 4 B B c LN AR

The situation for interactions can be summarised in a diagram, with polarity
ignored as usual:

T®S
1 Il
/Tl ’ S,&
m ;

hillg

sle ey s e AT T

a'llc! Al ~
ollc Allr

AIBIC—— A|B|C«— A|B]cC
hillhz2|lhs hil[h2|lhs
The outer diagram, as well as the inner-most square, commute on the nose, because
T®S and T'® S are defined as pullbacks. But because the two squares at the
bottom only commute up to symmetry, we are not in a position to apply the universal
property of 7' ® S’ in order to obtainamap g® f: T ®S - T' ®S'.
But it turns out that 7' ® &’ enjoys a stronger universal property:

Lemma 2.32 (Bi-pullback property, [CCW19]). If X is an ess and there are maps
0: X -8 |C andyp: X - A" || T such that (o' || C') o ~ (A" || ') o), then
there exists a map w : X — T ® S, unique up to ~, such that ¢ ~ I} ocw and
U~ 11, ow.

We can apply this to the above diagram. This givesamap w: T ®S - T' ® &',
defined up to symmetry such that (simplifying the diagram)

T®S g T @S
T@Ul ~ lr’@cr/
Al B e —le a8 ¢
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By restricting to visible events, we obtain a map w| TOS such that

TOS Ny o
TOO ~ ' Oo’
L
Al C > A || C

But the map w‘TQS is only defined up to ~, and it is not necessarily a map of
strategies: for this the diagram above must commute up to ~* with the projection
to the game (and ~* < ~). The next lemma, found in [CCW19], implies that there
is a unique 2-cell in the ~-equivalence class of w}TQS.

Lemma 2.33 ([CCW19)). Let 0 : S —> AL | B and o’ : 8" — A || B' be strategies,
and let g: A — A" and h : B — B’ be maps of games. Then, for every f : S — &’
such that o’ o f ~ (g* || h) o o, there is a unique f': S — S’ such that f ~ f' and
o of~(g|h)oo.

(The statement of the lemma in [CCW19] mentions only globular maps of strate-
gies. But in fact the proof is valid also for generalised maps.)

So we define g ® f to be the unique map 7 ©S — 7' ©® S’ in the ~-equivalence
class of w‘TQS.

It is often convenient to reason directly at the level of interactions, so we note
that ¢ ® f has a unique witness ¢g® f : T ®S — T' ® S’'. From the results in
[CCW19] we can derive:

Lemma 2.34. Suppose f and g are maps of strategies as above. Then there is a
unique map g® f: T ®S — T' ' ®S’ such that the diagram

T®S 2L Tes
T®Oo '@’
l thh2”h3 / l/ /
Al B C A B || C

commutes up to the isomorphism family =%, || =p || =& on A || B" || C".

Proof. Suppose there are two such maps w,w’. By Lemma 2.32, w ~ ’, and so by
Lemma 2.33, w and w’ must agree on A-moves and C-moves. We show by induction
on z that wr = w'z for every x € (T ® S). For x = ¢ this is clear, and by
the previous remark we only need to consider extensions x—c°¢y for e a B-move.
Without loss of generality, suppose e is a g-action. As w ~ w’, we have a bijection
¢ wYy=pgs w'y. Its projection to =g is a positive extension of the identity bijection
on the projection to S of wz (= w'x), therefore by thinness of S’ it must itself be
the identity. O]

So in particular g ® f restricts to ¢ ® f.

Theorem 2.35. There is a pseudo-double category & with
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objects: games with symmetry;

vertical morphisms: maps of games;

horizontal morphisms: strategies; and

2-cells: “generalised” maps of strategies.

Proof. We have given all the data. It remains to check (1) naturality of \,, p,, and
Q. (2) that the latter satisfy the necessary coherence axioms, and (3) that horizontal

composition is functorial (also known as the “interchange” law).
O

2.5.2 Lifting

We consider the lifting construction (Definition 2.26) in the context of double category
theory.
For & a (pseudo-)double category, the following are well-known concepts [GP04]:

Definition 2.36. Let f : A — B be a vertical morphism, i.e. a morphism in Dy. A
companion to f is a horizontal morphism f : A - B together with 2-cells

AHB A% A

Ll [,

B+ B A+ B
5 f

subject to coherence axioms [Shul0]. A conjoint of f is a horizontal morphism
f: B+ A which is a companion of f in the dual double category (the explicit data
is easily recovered).

The lifting construction for maps of essps is an instance of the above:

Lemma 2.37. If f: A — B is a courteous, receptive and ~-receptive map of essps,
then the strateqy f of Definition 2.26 is a companion to f in 9.

If va: At — Bt is a courteous, receptive and ~-receptive map of essps, then the
strategy f is a conjoint to f in 4.

Proof. From the definition of f it follows that the diagrams

«@ A © y (O B «@ A e y (O A
7 [ ] I
1 1
AL B L L giyB AL A —2Y 4B

commute, and this provides the required data. The axioms can be verified, and the
second part of the statement has a symmetric proof. n

Say 2 is isofibrant [Shul0] if every isomorphism has both a companion and a
conjoint. This is easily verified in ¥:
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Lemma 2.38. ¥ is isofibrant.

Proof. A map f : A — B can be lifted provided it is courteous, receptive and
~-receptive. It can be co-lifted if the map f* is courteous, receptive and ~-receptive.
When f is an isomorphism, both of the above are immediately satisfied. O

2.5.3 Symmetric monoidal structure
A symmetric monoidal pseudo-double category & is one where:

e Dy and D; are symmetric monoidal categories,

e the functor @ preserves the monoidal unit,

e the functors src and tgt are strict symmetric monoidal,
and additionally & is equipped with globular, invertible 2-cells

PaB: Cagn = CAQ Cp
Doraa)mm) (T 72) O (01 || 02) = (1 O 01) || (2 O 02)

subject to coherence axioms which we omit [Shul0]. Those axioms are considerably
less intimidating than those for a symmetric monoidal bicategory [Stal6|, which
makes the following result attractive:

Theorem 2.39 (Shulman [Shul0)). If Z is an isofibrant symmetric monoidal pseudo-
double category, then its horizontal bicategory H(Z) is symmetric monoidal.

The symmetric monoidal structure in ¢ is given by the parallel composition
operation and the associated structural maps. Unsurprisingly, the next result will
play a fundamental role:

Lemma 2.40. The category Essp of event structures with symmetry and polarity is
symmetric monoidal, with monoidal product || and unit &.

Proof. The parallel composition operation || extends to a functor in a natural way,
and there are isomorphisms

la:d|A—A aape: (AlB)[C—A|(B]C)
raAllg—A bus: AlB—B| A
There is a faithful functor Essp — Set sending the above to the structural data

associated with the symmetric monoidal category (Set, +, &f). From this we obtain
that all the necessary properties are satisfied. O

The category Gy has games as objects and maps of games as morphisms; the
category inherits the monoidal structure of Essp in an obvious way.

The category G, is also symmetric monoidal. For strategies o : S — AL || B and
7:T — C* || D, we define 0 ® 7 to be the composite

S| T (A B) [ (D) > (Al e || (B D)
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where the second arrow is the appropriate reordering. This is clearly a strategy. This
construction extends to 2-cells: given

S f1 >‘9/ 7- f2 >7‘/

o ~T lo_/ TJ/ ~t lq_/

J_l gt lIha 1L / 1 93 lIh2 ik /
A B A B ¢t D ¢t D

we construct their monoidal product as

fillfz

S|T > S| T

O'H‘rl ~* lO'IHTI

(gt 1)l (o3 12) Ly B |l (el | D
(A-[1B) || (¢+ || D) ——= » (AL B) (I D)

=| E

(A CH) I1HBIID) P (AT CH) B D)

(g1 llgz)lI (R || h2)

where the top square commutes up to ~* by definition of the positive symmetry
in (AL || B) || (C'* || D), and the bottom square commutes by naturality of the
structural maps in Essp.

Two final pieces of data are required: for every A and B, an isomorphism

dap B = C4 | ©p

and for every o1 : Ay - By, 11 : By - C; and 03 : Ay - By, 75 : By - Cs, an
isomorphism

Plor,00),(r1m) (T | T2) O (01 || 02) = (1 @ 01) || (2 O 02).

We give both maps by defining their action on configurations. For (z4 || zp) || (ya ||

yp) € €(Cap), das((@a || z5) | (ya | yp)) = (xa [ ya) || (z5 || y5), and for
(1 | 92) © (21 || 22) € C((T1 || T2) © (St || 52)), 1€t dioy00),(rama) (01 [ 42) © (1 |
T9)) = y1 O x1 || Y2 © z3. This is easily shown to preserve symmetry, polarised
inclusions, cardinality, and unions, so that by Lemma 2.6, ¢(s, 5,),(r1,7) and ¢4 5 are
generated by maps of essps.

Theorem 2.41. The pseudo-double category 4 is symmetric monoidal.
Proof. The axioms can be verified directly without any difficulty. O]
Using Shulman’s theorem, we immediately deduce:

Corollary 2.42. The bicategory H(9) is symmetric monoidal.
Rest of the chapter. Symmetric monoidal structure is not sufficient for our
purposes. So in the next section, we will impose some restrictions on the bicategory

H(¥), to get a sub-bicategory G of negative arenas and so-called negative, well-
threaded strategies. We will show that:
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e G is symmetric monoidal closed;
e (& has finite products; and

e there is a pseudo-comonad ! : G — G such that the Kleisli bicategory Gy is
cartesian closed.

We will give the necessary definitions along the way.

2.6 A cartesian closed bicategory

To interpret the higher-order languages we are concerned with in this thesis, we
construct a bicategory with more structure.

Our first step is to restrict the objects of the model to the negative arenas of
2.2.2. Then we restrict the morphisms:

Definition 2.43. A strategy o : S — A || B is negative if all initial moves of S
are negative. It is well-threaded if for every s € S, [s] contains a unique initial
move, denoted init(s).

This is a valid restriction:

Lemma 2.44. Negative and well-threaded strategies between negative arenas are
stable under composition.

Proof. Let 0 : S — At || Band 7: T — B! || C be negative and well-threaded, with
A, B, C negative arenas.

Maps of event structures preserve initial moves, so if e € S is initial, then it oe
is initial in A" || B, and therefore because e is negative it is necessarily a B-move.
Similarly, initial moves of T" are all C'-moves.

If ee T® S is initial, then IIje is initial in S || C' and Ilye is initial in A || T, so
by the above remarks e must be a C-move; in particular it is visible and negative.
This shows that 7 ® o is negative.

Let d € T ® S be visible and suppose e, ¢’ < d with e and ¢’ initial. If II5d is in
the T' component of A || T', then we must have Ilye, [Ise’ < Ilyd, which implies e = €’
because 7 is well-threaded.

If d is an A-move, then there must be B-moves ¢, € T'® S such that Il ¢, II1¢ <
I1,d, IIe < IIye and Ilhe! < I1y¢’. The moves ¢ and ¢’ can be chosen so that IT;¢ and
II;¢ are minimal in S, in which case we must have ¢ = ¢’ by well-threadedness of S.
Therefore e = €’ as 7 is well-threaded. O]

It is not difficult to see why negative and well-threaded strategies are closed
under ®, and the copycat strategy on a negative arena is negative and well-threaded.
In particular, any strategy obtained by lifting an isomorphism of negative arenas is
negative and well-threaded.

Hence, by restricting the strategies and arenas of H(%¥) in this way, we obtain a
symmetric monoidal bicategory, denoted G, with

e objects: negative arenas,
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e morphisms: well-threaded, negative strategies,
e 2-cells: (globular) maps of strategies,

and with symmetric monoidal structure inherited from H(%¥).
At this stage it is helpful to recall some notions of bicategory theory. First, for
bicategories C and DD, a pseudo-functor from C to D consists of:

e amap F': |C| — |D|;
e for each A, B € C, functors Fy g : C[A, B] — D[FA, FB], often written F;
e for each A € C, an invertible 2-cell ®4 : idpy = Fidy;

e for each A,B,C € C, 0 € C[A,B] and 7 € C[B, (], an invertible 2-cell
O, FTOFo= F(tr®o0),

subject to coherence axioms. We will write (£, ®), or simply F' for a pseudo-functor
with data as above.

For pseudo-functors F,G : C — D, a pseudo-natural transformation a :
F — @G consists of maps aq € C[FA,GA] for each A € C, together with for
each o € C[A, B], an invertible 2-cell a, filling the usual “naturality square”, i.e.
ay . agp ® Fo = Go ® ay, subject to more coherence axioms. Given two pseudo-
natural transformations a,b between pseudo-functors F' and G, a modification
p:a=>bis a family of 2-cells u4 : a4 = by which commutes (in the appropriate
sense) with the 2-cells a, and b,.

An adjunction in a bicategory C consists of two objects A, B € C, morphisms
o€ C|[A,B] and 0®* € C[B,A] and 2-cells n : idy = 0*©o and € : 0 ©0® = idp
satisfying the usual “triangle identities” [ML13|. (In this situation o is left adjoint
to 0®; we write 0 4 ¢°.) If n and € are invertible, we call (A, B, f, g,7n,¢) an adjoint
equivalence.

An equivalence is weaker than an adjoint equivalence in the sense that 1 and
¢ need not satisfy the triangle identities. But conveniently, every equivalence gives
rise to an adjoint equivalence between the same objects [ML13], so that whenever
an adjoint equivalence is required it is sufficient to exhibit an equivalence. We will
make much use of this.

A few more concepts will be introduced along the way as necessary. In doing
certain proofs, the coherence theorem for bicategories is an important tool: it
says that any diagram of 2-cells made up of instances of o, A and p must commute.

2.6.1 Closed structure

We now show that G is symmetric monoidal closed. The formal definition is as
follows:

Definition 2.45. A symmetric monoidal bicategory C is closed if for every object
B, the pseudo-functor — ® B has a right biadjoint, denoted B — —.

Unfolding the definition, to prove C is closed it suffices to give, for all objects A
and B,
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e an object A — B;
e a morphismevyp: (A—oB)®A—B
e an adjoint equivalence

evp,co(—®B)
/\,\
C[A, B — (] 1 C[A® B, C]
\’\_/

A

for every C' e C.

We show G is closed.

Given (negative and well-threaded) games A and B (without symmetry for now),
the game A — B is defined to be the event structure with events [+ bemin(B) At w B
(where min(B) is the set of initial events of B), polarity induced from A and B, and
causality relation

<( )8 v {((2,b),(1,(a,b))) | bemin(B),aeAi}.

loemin(s)
Observe that there is a canonical function x : A —o B — At || B, sending B to itself
and mapping every copy of At in A — B to the At component of A+ || B. Thus
the function y reflects order and preserves polarity, and the consistency relation
on A — B is defined so as to turn y into a valid map of event structures. Given
X € A— B, X € Cony_.p iff the restriction X’[X] is injective and x X € Cony1p.

When A and B are games with symmetry, we define three families of bijections
on A — B:

e The set @4 .p contains order-isomorphisms 6 : x = y such that x6 : yr = xy
is in =4 H =pB.

e The set =, 5 contains order-isomorphisms 6 : x =~ y such that x0 : yz = xy

is in ~7 | 5.

e The set 7 _, contains order-isomorphisms 6 : z =~ y such that x0 : yz = yy
isin >~ || 3.

The following technical lemma will be useful as we instantiate the lifting con-
struction with x later on:

Lemma 2.46. The map x : A — B — At || B is a courteous, receptive and
~-receptive map of essps.

Proof. Additional causal links in A — B are from initial moves of B to initial moves
of A. Because A and B are negative arenas, this respects courtesy.

We check receptivity. Let € (A — B) and yx—cy for some negative move
e. If e is a B-move, then z U {e} € (A — B) and we are done. If e is an A-move,
then because e is negative it cannot be initial in A. Let a be its predecessor in A; a
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must be in xz, so a = xe’ for some (necessarily unique) e’ € z. There is a unique
¢” € A — B such that ¢ — ¢” and ye” = e, so x U {€"} is the witness to receptivity.

Finally let @ : © ~4 .5 y and suppose xY8—()¢p : 2 >, W IS a negative
extension. By receptivity there are unique 2’ and 3 in ¥ (A — B) extending x and
y, and the (clearly unique) bijection ¢’ : 2’ =~ ¢/ extending 6 such that y0' = ¢ is an
order isomorphism, by courtesy of x. So 6’ € ~,_,g which concludes the proof. [

Lemma 2.47. The tuple A —o B = (A — B,~4 .5, =, .5, =1 .5) is a negative
arena.

Proof. We check that ~4 ,g is an isomorphism family. The map y preserves identities,
composition and inverses of bijections, so the (Groupoid) axiom is satisfied since
~,4 | =p is an isomorphism family.

If0:x>~., .y, and x < 2/, then xx < xa’ and therefore by the (Extension)
axiom for = 41 there exists ¢ : x2’ =~ ||~ 2 such that xy < z and x0 < ¢. From
the definition of A — B we see that there is at most one b € B such that y contains
elements of the form (1, (b,a)). If it exists, we can define v/ = y u {(1, (b,a)) : a €
2\xy}. Therefore yy' = z, and in particular ¢ is the image under x of some bijection
02’ =., .y such that § < ¢'. So the (Extension) axiom holds for ~4 .p.

Suppose now 6 : x =~, . y, and ' < x. Then, there is a bijection ¢ :
xa' =» | |=p> such that ¢ < x6. But since z < xy and x is a map of event structures
there exists ¢y < y such that yy’ = z, and in particular ¢ is the image under x of
some 0 : 2’ =., v, with #/ < 6. So the (Restriction) property is satisfied and
~,_.p is an isomorphism family. Reproducing this argument for =~ , and =}
is straightforward.

We now check the axioms from Definition 2.12. That =~ _5 and ~7 _, are subsets
of =, .p follows from the fact that =~ | =% and =~} | =5 are subsets of >, | ~3.
If0:2>~yisin=} pn=, pthen x0e =, | =5n=}| =5, so xf must be the
identity and in particular yz = yy. Observe that this implies that 6 is the identity
bijection on the restriction of x and y to the B component of A — B. Suppose
there exists e € x such that fe # e. Then e and e must be in different copies of A+,
so by definition init(e) # init(fe). But because 6 is an order-isomorphism, we have
init(fe) = O(init(e)) and so this implies init(e) # O(init(e)). This is a contradiction,
as init(e) and f(init(e)) are both in the B component of A — B on which 6 is the
identity:.

Finally, suppose 6 is in =, 5 and § <~ ¢’ for some ' € ~4_,5. Then we have
that x0 <= x0', where x0 € =15 and X0 € =41 | =p. So x0 € =1 p and so
0" € =, 5. The last axiom is checked in the same way. []

With this definition of A — B, the evaluation strategy ev4p is obtained by
lifting the map y : (A — B)* — AL || B and rearranging the bracketing of the game:
the composite

>~

Vg s (A—o B || (AN || B) S (A B)- || AY) | B

is a strategy (A4 — B)® A - B. To see that ev induces a family of adjoint
equivalences between hom-categories, we will use the following result.
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Lemma 2.48. For arenas A, B, C, there is an isomorphism of categories
O:G[A,B—-C]|—>G[A®B,C].
Proof. For 0 : S — AL || B — C, define ®(o) to be the composite

S5 AL | B—oC SN AL (B4 0) 2 (A1 B)* | C.
a strategy A® B + C.

We show that ® has an inverse. Given a strategy 7 : T — A || B+ || C, we
define a strategy 7' : T — A' || B —o C such that ®(7') = 7. For t € T, there are
two cases: either 7(t) is an A-move a, or 7(t) = e for some e € B+ || C. If 7(t) is an
A-move a, we set 7/(t) = 7(t). Otherwise, if 7(t) is a B+ || C-move e, we need to set
7'(t) = ¢ for some ¢ € B — C with (xgc)e’ =e. If e = (2,¢) for some c € C, then
¢/ =e will do. If e = (1,b) for b € B, then we can set € = (1, (init(¢), b)).

If v € €(T) and 'r—="y € € (At | B — C), then (AL || x)(7'z)—<=" (AL || x)y
and so by receptivity of 7 = (At || x) o 7, there is a unique 2’ € € (T") with z—<2’
and 72’ = (A1 || x)y. Then 72’ = y, since they are both negative extensions of
7'z with the same image under (A || x). So 7 is receptive, and the argument for
~-receptivity is the same. Thinness is a property of 7T, so 7’ is thin because 7 is.

We investigate the action of ® on 2-cells. Given strategies 0 : S — A || B — C
and 0/ : &' - AL | B — C, and a map f : 0 — o', define ®(f) to be the same
f: 8 — &' this is also a map ®(0) — $(0’) because x preserves positive symmetry.
Conversely if f : ®(0) = ®(0'), we show f : 0 = ¢’. Let x € S. By definition of
maps of strategies, the bijection {((AL || x)(a(s)), (A || x)((¢ o f)(s))) | s € =}
is in =7, || =500 s0 {os,(0" 0 f)s) | s € x} meets the conditions for being in

=~ || =5 ¢, and we are done. O
Lemma 2.49. The bicategory G is symmetric monoidal closed.

Proof. For arenas A and B, we have defined A —o B; the strategy ev4 p is the image
of @ 4_.5 under the functor ® of Lemma 2.48, so

€van - GDA%B — (.A — B H .A)J' H B.
We show that the functor ®~! together with
ev&c@ (—@CCB) -G [.A,B —o C] - G[A@B,C],

forms an equivalence of categories, from which one can always obtain an adjoint
equivalence. To do this we show that for any o : A - B —o C there is an isomorphism
evee © (0 ®«p) = ©(0), and that this is natural in o; from this the equivalence can
be immediately derived, because ® is an isomorphism.

So fix 0 : S — At || B — C, and consider the strategy on the LHS: (Cp_.c © (S ||
(©Cp). Its configurations are of the form (zp_.c,yp—oc) © (zs || (25,yp)) where
configurations of copycat are written as pairs; and the variable names emphasise
the matching conditions: xyp—.c = ys || Yo, 0xs = x4 || p—.c, and so on. The
isomorphism sends (25 .c, yp.c) @ (s || (25,y5)) to the unique z§, € €(S) such
that zf, Cg 25 and ®(0)(zs) = z4 || 25 || ve- O
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2.6.2 Finite products

Finite products exist in a bicategory provided it has binary products and a terminal
object — or more accurately, a pseudo-terminal object, but in G this happens to be
strict and given by the empty game . Indeed for any negative arena A, the only
negative strategy on A* || & is the empty one.

We recall the definition of binary products in a bicategory.

Definition 2.50. (e.g. [FS19]) A bicategory with binary products is a bicategory
C equipped with the following data for every A, B € C:

e an object A & B;
e projection morphisms w; : A& B — A and wy: A& B — B;

e for every C € C, an adjoint equivalence

(w1O—,w20-)

T
C[C, A& B] 1 C[C,A]l x C|C, B]
\’\<:>/

We proceed to define this data for G. Given arenas A and B, the arena A & B is
defined to have the same events, causality and polarity as A || B, with consistent sets
restricted to those of the form X4 || & for X4 € Cony and F || Xp for Xp € Cong.
The isomorphism families = ¢ 5, =, 5 and ;;{& p are restrictions of =4z, ;ZH 5 and
=~} p to C(A& D).

The projections w; : A& B - A and ws : A& B - B are obtained by colifting
the injections A* — (A & B)* and B+ — (A & B)*, respectively. Explicitly, this
gives strategies

@ €y = (A&B) | A @ Cp— (A&B)* || B
for every A and B. Finally, for every A, B,C we define a pairing functor
(—,—:G[C,A] x G[C,B] -» G[C, A& B]
assigning to each pair of strategies 0 : S — C* || A and 7 : T — C* || B the strategy
(o0,7): S&T —C+ | A&B

defined as the composition of 0 & 7: S& T — (C* || A) & (C* || B) with the map
(CH || A) & (C* || B) = C* || A& B identifying the two copies of Ct. The action
on 2-cells is straightforward: if f: S — S and g: T — T' are 2-cells 0 = ¢’ and
7 = 7’ respectively, then the map {(f,g):= f& g:S&T — S & T’ is easily seen to
be a valid 2-cell (o, T7) = (o', 7’).

Lemma 2.51. For every A, B,C, the following is an adjoint equivalence:

(m10—,m20-)

T
G|[C, A& B] 1 G[C, A] x G[C,B]

\_/

<_7_>
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Proof. Tt suffices to exhibit unit and co-unit natural isomorphisms.
(unit) We show that for every strategy p : R — C* || A & B, there is a strong
isomorphism of strategies

N p={w1 O p, @O p)

We construct amap 7, : R - (L4 OR) & (CpOR).

Note first that any initial move of R must be mapped to an initial move of
Ct || A& B, and because R is negative, it must be in the A & B component (initial
moves of Ct are positive). So, because p is well-threaded, events of R can be
partitioned as R4 w Rp where R4 (resp. Rp) contains those events depending on an
initial move e with p(e) in the A (resp. B) component. An event of R4 and one of Rp
cannot be consistent, since p reflects conflict, so any configuration x € €' (R) satisfies
xS Ry or x € Rp. By restricting the structure of R we get essps appropriately we
get strategies pa : R4 — Ct || Aand pp: Rp — C1 || B, and an iso R — R4 & Rp.
This is natural in R: by the condition on maps of strategies any f € f : p = p’ sends
events of R4 to those of R/,, and events of Rp to those of R;.

Consider the composition w; @ p. A configuration of (C4 O R is (24 || ya) O zr
where xg € € (R) with prr = x¢ || taya, where 14 : A — A& B is the usual injection.
So g < Ry; and we observe that (a minor variant of) the map \,, gives a natural
isomorphism py = w; ® p. A similar reasoning gives an iso pg = wy O p.

So we take 7, to be the composite isomorphism
Noaop

R;RA&RB (@AQR)&<(CA@R>,

natural in p.
(co-unit) For every o : C - A and 7 : C - B there is a strong invertible 2-cell

E(o,r) - (wl O] <0’ 7—>’ wy O <0a T>) = (07 T)

which by the remarks of the previous paragraph is equal to (A,, A;). This is clearly
natural, since A\, and A\, are.
O

2.6.3 A linear exponential pseudo-comonad

We define a pseudo-comonad ! on G. It is its Kleisli bicategory that we are ultimately
interested in: there, a strategy from A to B can play the moves of 4 as many times
as necessary.

Definition 2.52. A pseudo-comonad on a bicategory C consists of:

e a pseudo-functor ! : C — C;
e pseudo-natural transformations d4 : !A — lA and g4 : A — A;

e invertible modifications m, I and r as follows:

1A 24 1A /!A

w Am o Ve l§

NA 245 MA 1A «=— 114 ' 14
lea €14
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subject to coherence axioms [Lac00].

The action of ! on objects of G was defined in 2.2.2: recall in particular that
for any essp £ the essp !€ has underlying esp |;c, £, and isomorphism family ~p
making permutable the different copies of E: bijections 6 :||;c 2:=1E ||ico ¥i between
configurations of | F consist of a permutation 7 : w — w and bijections 6; : z; =g Y
for each 1.

The action of ! on strategies is as follows: if o : S — A || B then there is
a map !S — (A || B) sending (i,s) — (i,0(s)). The strategy !o is obtained as
the composite !S — (A || B) — AL || !B where the second map is the obvious
reindexing. Similarly, for every 2-cell f : o = o’ we get a 2-cell !f : lo = lo’ (and ! f
is strong whenever f is).

Lemma 2.53. There is a pseudo-functor ! : G — G whose action on objects,
morphisms and 2-cell is as above.

Proof. That ! has a well-defined action on strategies and 2-cells is a routine verification.
It is clear that ! also preserves identity 2-cells and vertical composition.

To turn ! into a pseudo-functor we need 2-cells ¢, , : IT©lo = (1 ©® ) and
P,y © 4= 4. The former is defined by Py, ((Jliew ¥i) © (|licw 1)) = ;e (¥i © )
(the causal compatibility conditions hold directly given the argument), while the
latter is @4 (||icw s, |liew ¥i) = |, (%4, ¥s), Writing configurations of €' ((C,4) as pairs
of configurations of !A.

The axioms follow from this definition without difficulty. n

We continue with the rest of the pseudo-comonad data. Some technical aspects
are subtle because of the extra symmetry induced by !: in particular it is the first
time the structural data requires 2-cells which do not commute strictly (but only up
to ~*) with the projection to the game.

We start by fixing a bijection « : w? — w; the particular choice does not matter.
Then note that for an essp £ the map d : 1€ — 1€ defined as §(i, (j,¢e)) = (a(i,7),€)
preserves symmetry (it is a valid map of event structures with symmetry) but does
not reflect it in general: suppose £ has a unique event =, so that the sets |F and ! F
can be identified with w and w?, respectively. Then, configurations {(1,1), (1,2)} and
{(1,3),(2,4)} are mapped to symmetric configurations (in !€ any two configurations
of same cardinality are symmetric) whilst not being symmetric in !!€ (it is easy
to see that no bijection 7 : w — w could be appropriate). The desire to turn !
into a monad on event structures was part of Winskel’s motivation for introducting
symmetry [Win07], as the monadic laws only hold up to ~. We are interested in
positive symmetry, so Winskel’s result has to be adapted, but the reasoning is exactly
the same:

Lemma 2.54 ([Win07]). The triple (!,0,¢) is a monad up to ~* on the category of
positive arenas and maps between them.

We see how this lifts to a pseudo-comonad on G. To construct the necessary
structural 2-cells it seems unavoidable to make use of “generalised” maps of strategies,
so we reason in the pseudo-double category ¢ defined previously. It is the case
[GP99] that every pseudo-double category is equivalent to a strict double category,
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so it is harmless to reason as if composition of strategies was strictly associative and
unital; this is what we will do.

For each negative arena A, define a strategy d 4 as the co-lifting of the map 0 4.
above. Similarly let e4 be the co-lifting of the injection g 4. : A+ — 1AL defined as
ea(a) = (0,a). Explicitly, we have strategies

61 @y — 1A 1A and ey : @y — 1AM A

respectively the comultiplication and counit of the pseudo-comonad. That these are
pseudo-natural in A is the statement of the next lemma.

Lemma 2.55. For every strategy o : S — AL || B, there are invertible 2-cells
0 :No @y = 050lo and g, : 0 ©®eq = e O lo, natural in o, making § and €
pseudo-natural transformations.

Proof. Define €, to be the map

€A o B

A —— A s B —+— B
| |
| ¢ ogves |
A —— 1A ——1B—— B
1A lo €B

It is not obviously invertible, since 5 : § — |S has no inverse. But configurations
of @p ®!S (the composition of ez and !o) are those (5 || yp)® |licw T where
the matching condition requires that (!0)s(|liew %) = €gzp. This implies that
opTy = xp, and all other 7 are empty. So configurations of (Cz ®!S correspond to
those of (Cs © S, making &, a isomorphism.

It is also not immediate that the map ¢, defined as

)
1A 2 nA 22 ug =5 uB
| |
RETYER
v v
A —— 1A —— 1B —— IIB
1A lo B

has an inverse: as per the discussion above, the map 0 4 : !4 — 1A is an isomor-
phism between the underlying event structures but does not reflect symmetry (and
consequently has no inverse in the category of essps).

But in fact the bijection id © dg5 : Cip OIS — @y © S does reflect symmetry.
To see this, let

0,000 (17 1929 © 1) =cuaos (N 2501155, © 16

i ] i J k i J i J k

be a symmetry between configurations of (Cyg ®!S. By Lemma 2.19, and by
definition of the symmetry on copycat, this is determined by a family of bijections:
i xij=np x;(i)m(j), Gij Vi =uB y;(i)m(j) and ¥y 1 zx =15 zé(k) for i, 7, k € w (where
7, m; and & are bijections w — w).
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The difficulty is to show that the image of ¢ : ||, zx s ||, 2f(,) under d5', the
bijection 85" : ||, \I; 2acig) = ||;1l; Z¢(acij) (v is the pairing function), is an element
of ~y5. For this it suffices to show that there are bijections k, k; : w — w, for i € w,
such that £(a(i, 7)) = a(k(i), k;(j)) for each i, j.

But by the matching condition of Lemma 2.19, the projection of d¢1) to !B

coincides with the bijection 056 : ||;||; Zag.) =15 ||; [|; Tor(iy i(;)» and since all initial
moves of S are B-moves, the result holds, we must have £(a(i, 7)) = a(n (i), (7))
as required. O

Finally we must exhibit coherence modifications as part of the pseudo-comonad
structure. These are obtained by combining the various 2-cells associated with
co-lifted strategies, and the monadic laws for | on positive arenas. For instance I 4 is
given by a 2-cell of the form

oA le g <P\

— A —— 1A —— 1A

H | ¢ [

:\HA :A\H_A()
"
lA - > 1A . A

where the 2-cell marked () is constructed using one of the monad laws for maps of
essps (Lemma 2.54).

Lemma 2.56. The data (!,6,e,m,r,1l) forms a pseudo-comonad on G.

2.6.4 The cartesian closed Kleisli bicategory

Going towards applications in semantics, we move to a cartesian closed setting
by considering the Kleisli bicategory for the pseudo-comonad !. Familiarity with
categorical models of linear logic should make the results of this section unsurprising;
the path we take is reminiscent of the Seely categories described (for 1-categories) in

g. [Mel09].

Definition 2.57 (e.g. [FGHWO8]). Let C be a bicategory and ! be a pseudo-comonad.
The Kleisli bicategory C, has objects those of C, and morphisms and 2-cells defined
by C,[A, B] = C[!A, B]. The composition in Cy of ¢ : !A — B and 7 : !B — C,
written go, f is defined as go!fod 4, and the identity morphism on A is the component
at A of the co-unit for I: €4 € C, [A, A].

Associator and unitors are defined using the pseudo-comonad data and shown to
satisfy the necessary coherence axioms; we omit the details as the thesis does not
require them.

Instantiating Definition 2.45 with the “cartesian” symmetric monoidal structure
yields the following: a cartesian closed bicategory is a bicategory ID with finite
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products equipped with, for objects A and B, an object A— B, a map Evap :
(A— B) & A — B, and an adjoint equivalence

EVB,CO(—&B)

— T
D[A,B-C] |  D[A&B,C]

\_/

Cur

Theorem 2.58. Let C be a symmetric monoidal closed bicategory with finite products.
Let ! be a pseudo-comonad on C and suppose that there is a natural family of adjoint
equivalences map : (A& B) — |A®!B. Suppose also that there is an invertible
modification

(A& B) —>—— (A& B)

JKim 1wy
m =m (1A & !B)
m
A®!B s NA®!IB

Then, the Kleisli bicategory C, is cartesian closed.

Proof. 1t is a standard result [Mel09] that C, has binary products induced from
those in C. Explicitly, A & B is the product in C, projections are defined as
@ (A& B) > A& B =5 Aand @y : (A& B) > A& B =2 B. The terminal
object in C, is the same as in C.

For the closed structure, define A—+ B =14 — B and define the map Ev4 p €
C/[A— B & A, B] to be the composite

'(A_DB&A)E"(A_DB)®'A6®'A9A—{>B®|A eviaA,B B.

Given o € C [A & B, C] we define its currying Cur(o) € C, [A, B = C]as A(com} p).
Because m4 p is an adjoint equivalence, by a straightforward argument there is an
adjoint equivalence

A (=)oma, B

— T
C[AB—-C] 1  C[A&B,.C]

\_/

A(_Oqu,B)

and because adjoints are preserved by natural isomorphism, to obtain the required
adjoint equivalence

Evp,co(—&ep)

— T
C[A,B—C|] 1  C[A&B,C|

(\_/

Cur
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it suffices to exhibit an isomorphism Evp ¢ o (6 & ep) = A7 (o) o m, natural in o.
This is given by the following pasting diagram:

W{oolm,epolma)

(A& B) —2— /(A& B) I(B—C) & B)

wﬂ'@ '(‘m/

m 'A&'B m

~

'A@'B e, "A®”B o®en (B—C)®!B

6|A®'€B
o®!B 'A® 'B €B-—»cQ®!B
A~ 1(o) 0®'B

(B—-C)®!B

\r/

We show that the bicategory G can be equipped with this structure. Fix a
bijection 3 : w w w — w, and for negative arenas A, B, define m 4 5 : (A & B) —
LA || !B and m3 55 : A || 'B — (A & B) as follows, for every i € w,a € A and b € B:

]

mA,B(i>a) = (1v (i7a)) m;\,[g(l, (i7a)) = (/B(lai)7a)
mA,B(iab) = (27 (iab)) m:4,8(27 (i7b)) = (ﬁ(Qai)vb>

We get two maps of essps, inverses up to positive symmetry in the case where A and
B are positive games.

Lemma 2.59. For positive games A and B, m g gom¥ p~"ids and my gom 4 5~
id g

Proof. Direct verification. n

So in particular, for A, B negative games, the lemma applies to maps m 41 51 and
miy. po which can also be checked to be courteous, receptive and ~-receptive.

It is an easy consequence of Lemma 2.27 that any isomorphism of essps lifts to
an equivalence. This can be generalised to isomorphisms of essps “up to ~*":

Lemma 2.60. Let A and B be games with symmetry, and let f: A — B and f* :
B — A be courteous, receptive and ~-receptive maps of essps such that fo f* ~*idg
and f*o f ~1idy. Then there is an adjoint equivalence

A B

f
—
—

f.
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in the bicategory G. Similarly, if g : B+ — At and g* : A+ — Bt are courteous,
receptive and ~-receptive maps of essps such that go g* ~%idgt and g* o g ~T id 41.
Then

A B

g
— A
 —

g

forms an adjoint equivalence in G.

Proof. There is an isomorphism « 4 = f O ]? obtained as follows:

A

A : > A —— A
TN
A H > B
2 | ¢
A f>B 2B
| v b
A—— B —/—A—— A
f f* A

In the diagram the 2-cell labelled (*) is constructed using the assumption that
feof~Tidy. There is also an iso f© f* = «p described using a symmetric diagram.
This proves the first part of the statement; the second part is similar. O

By the second part of Lemma 2.60, the co-lifting construction gives strategies
mang: (C!_A”!B - '(A& B)J‘ || A || !B and m}w : @!(A&B) — ('.A || 'B)J‘ || '(.A& B)
which together form an adjoint equivalence. This forms a natural transformation,
since for each 0 € G[A, A'] and 7 € G[B,B’] there is an invertible 2-cell m, . :
map Olc&T)=1lo@ITOmag.

Theorem 2.61. The Kleisli bicategory G, is cartesian closed.

Proof. By Theorem 2.58 it is enough to give a family of invertible 2-cells

wag: (04®08) Omag = miap O lm, 1) © 0aen

satisfying the modification axiom. For this we observe that the strategy {7, !my)
is isomorphic to the co-lifted strategy § where g : A+ & !B+ — (A & B)* has the
obvious action on events. (The isomorphism is a map (€ 4818 — (1€ 4 & 1ECp).)
Using this, the map w4 g is derived by repeated applications of Lemma 2.27. O

2.6.5 Colimits of strategies

Finally, we show the existence of certain w-colimits in hom-categories G [.A, B].
These will be used to interpret recursion operators, and more generally to describe
strategies via w-chains of finite approximations. Fix an arbitrary arena A. We study
colimits in G [, A], and the results apply to G [A, B] for any B since there is an
isomorphism G [A, B] = G [, A — B].
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For each i € w, let 0; : S; — A be a strategy, and let there be a chain

fo J1
g = 01 = ...

in G [, Al

Strong inclusions. The simplest case is that in which §; < §;,1 for every i,
the f; are inclusion maps, and o;(s) = 0;,1(s) for every s € S;. Note that this is
inclusion of event structures with symmetry, i.e. componentwise inclusion (S;, <,
,Cong,, =g,) < (Si+1, <s,,,, Cong,, ,, =g,,,). In this case, the colimit \/,_ o; exists
and can be obtained by taking the componentwise union:

\/Sz = U(Sl> <S¢7 COHSN gsi)-
€W 1€w

The map /.., 0i : Ve, Si — A s determined by the ;, and the 2-cells o; = \/
are the obvious inclusions.

€W Oi

Strong embeddings. Suppose more generally that the f; are embeddings, i.e.
injective, order-preserving maps of essps. The above construction still applies
because every embedding can be turned into an inclusion.

Indeed, given strategies 0 : S — A and 7 : T — A and an embedding f : 0 = T,
we can relabel events in 7 to obtain an essp 7' with 7 = 71 and S < 71. We get a
strategy 77 : 7T — A, a strong isomorphism 7 =~ 7' and a strong inclusion ¢ : ¢ = 77,
such that

P
\ I
o
commutes.
So we construct colimit for the o; by considering the chain of strong inclusions

| t t
Oy =0, =09 = ...

where Ug = 0y and each subsequent aj is obtained inductively by applying the above

to the composite o;_; =~ 0271 il 0,;. Standard reasoning then shows that the strategy

\/,, 01 is a colimit for the o;, with each o; = \/,_ 0! factoring through O'JT.
Preservation of colimits. Importantly, w-colimits of strong embeddings commute

with the various constructions of this chapter.

Proposition 2.62. Let 0;: S; — AL || B be a strategy for i € w, and let there be an

w-chain o ) o1 O of strong embeddings. If T € G[B,C], then there is a chain
id id
oy MOk 70O o0 1OR ... of strong embeddings, and we have T ® (\/,, 0i) =

Ve, (T © ;). Similarly, the colimit commutes with precomposition, tensor, currying,
pairing, and !.

Proof. Routine. O
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Chapter 3

Probability in concurrent games

In this chapter, we enrich the strategies of Chapter 2 with probability.

By way of illustration, consider a game A with three events a=,b" and ¢, and
trivial consistency, polarity, and symmetry. (Events are directly annotated with their
polarity; we will use this notation throughout the thesis.) Consider the following
strategy o : § — A:

Here Player waits until Opponent plays move a; and then plays either b or c,
nondeterministically. A probabilistic version of this strategy must additionally give a
probability coefficient to every possible outcome of the nondeterministic branching:

where p, and p,. are positive reals with p, + p. < 1. (The inequality is because Player
may choose not to play either.)

Though this may seem straightforward, there are difficulties in adding probability
to strategies in general. This is discussed in 3.1. Later on we see how probabilistic
strategies can be composed and organised into a bicategory (this involves defining
identities and composition in this setting), as in Chapter 2. This bicategory has good
structural properties, many of which can be lifted directly from the structure of G.

The work presented here is based on Winskel’s model of basic concurrent games
and probabilistic strategies [Winl3a]. The addition of symmetry, as well as the study
of the categorical structure, are contributions of this thesis.

3.1 Probabilistic strategies

We have seen in the example above how probability can be added to an event
structure with polarity representing a simple nondeterministic branching. When
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event structures are not tree-shaped, however, the addition of probability is more
subtle.
Consider for instance removing the conflict between b and ¢ in & above: define a
strategy 7: T — A to be
b+
b4

RAN
C

a
+

The situation for Player is no longer a simple nondeterministic choice; indeed b and
c may both be played in the same execution. We are still interested in the respective
probability of b and ¢ occurring, but we may also want to express probabilistic
dependency between the two events. So probability coefficients are assigned to
configurations rather than individual events. As we will see, this approach also allows
for a smoother integration with the rest of the structure: causality, consistency, and
(later on) symmetry.

More precisely, for each x € € (FE) we assign coefficients to positive extensions
of z, i.e. configurations y € € (F) such that « <t y. We write v(y | ) for this
coefficient, representing the conditional probability that y will occur given than x
has. If v(— | —) is to make sense as a form of conditional probability, we must have
v(z | z) =1, and a chain rule: v(z | x) =v(y | z)v(z | y), when z =t y = 2.

We must also ensure that v(— | z) is a probability distribution on the positive
extensions of x. If those extensions are pairwise incompatible, then indeed the sum
I y v(y | «) must be < 1; if instead extensions y, . . ., ¥, are not pairwise mutually
exclusive then we must account for any overlap, using the inclusion-exclusion principle.
This is condition (3) in the definition below, called drop condition in [Winl3a].
Condition (4) formalises the requirement that Player and Opponent, whenever they
are causally independent, are also probabilistically independent; and finally condition
(5) forces Player to play symmetric configurations with equal probability.

Definition 3.1. A conditional valuation on an esp S is a family (v(y | ))zc+y
of coefficients in [0, 1] satisfying

(1) v(z | x) =1 for all x € €(95);
(2) ifzctyct zthenov(z | z) =v(y | z)v(z | y);

(3) if x <% y1,..., Yy, then

SN 1) (Ui | 2) < 1
I

where [ ranges over nonempty subsets of {1, ..., n} such that u,c;y; € €(95);
) ifecty, x<” zandyu ze €(S), thenv(y | z) =v(y v 2z | 2);
(5) if0:x=gyand 0 =t 0 : 2’ =g ¢/, then v(z' | ) = v(y | y).

Conditional valuations are an intuitive way of making Player’s behaviour prob-
abilistic. Given a conditional valuation on an essp S, one can recover a form of
absolute (i.e. unconditional) probability v(z) for each configuration x € €(S). Due
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to the presence of Opponent events this will not strictly speaking be an unconditional
probability distribution; more accurately, v(z) is the probability that an execution
will reach configuration x, provided Opponent chooses to play all negative moves in
x.

To define v : €(S) — [0, 1] from the conditional family {v(y | z)},c+, we compute
the product of the conditional probabilities along a covering chain. A key observation
is that the particular choice of covering chain does not affect the resulting value:

Lemma 3.2. Ify € z € €(S) and there are chains

Yyt S awCtasc - C a1 ST, =a
yctaic ayctaye o), STl =
we have
v(ry | y) x v(zs | 22) X -+ X V(2 | Tpo1)
=v(y |y) x v(ay | 25) x - xv(a, | 2, ).

Proof. By induction on |z\y|. The equality holds trivially when = = y.

If z1 = x| = y then we can assume w.l.0.g. that & €~ x5 and J <~ . Then,
fix a chain of the form zy €~ xo U xh ST 21 € ... 2z S x; this has length strictly
less than |x\y|, so by the induction hypothesis we have

v(xg | @9) X -+ X v(x | Tpo1)

=v(z |mauah) x - xv(x| zp).

and by a symmetric argument the RHS is also equal to v(2 | 24) x -+ x v (= | #},_,),
from which we conclude using that v(z; | y) = v(z] | v).

If ;1 = y but y & x1, then by axiom (4) for conditional valuations we have
v(zy | y) = v(zg U | | 2). Then, by fixing a chain zo v ) St 2y € - Sz, St o
we get

b

v(ry |y) xolwy [ 25) x - x vz | 2n)

= v(za U] | 39) x v(ah | 2h) x -+ x v(z | 2], ;)

=v(rg Ul |m) xv(z |20 ) - xv(x]| 2£) by IH for 2} < «
=v(z | x2) - xv(z| 2) by axiom (2)
=wv(xz | xy) X - xv(x| T8 1) by IH for zo € x

which is the desired result as y = z;.

Finally if y < x; and y < 2, then v(z; | y) x v(z; v 2] | z1) = (2] |y) %
v(xy U ) | 2}), by axiom (2) for conditional valuations, so that the result follows
using the induction hypothesis for 1 € x and 2 < z. O]

The resulting function v : €(S) — [0, 1] is an instance of the following:

Definition 3.3. A valuation on an event structure with polarity S is a function
v:%(S) — [0,1] satistying
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(1) v(gF) = L;
(2) v(z) = v(y) when z =~ y;
(3) for every 2 S* y1, ..., Y,
v(z) = ;(—1)'”%(&)@%)

where [ ranges over nonempty subsets of {1, ..., n} such that u,y; € €(9);
(4) if 0: x =gy, then v(x) = v(y);
We check:

Lemma 3.4. If {v(y | z)}ucy is a conditional valuation on S, then defining v(x) =
v(xy | @) x v(xs | x2) X -+ x v(x | 2y—1) with respect to any covering chain & <
Ty S w9 ST w3 €& -0 ©7 x, 1 1 x, yields a valuation on S (the choice of
covering chain does not matter by Lemma 3.2).

Proof. Axioms (1)-(3) follow directly from the definition. For (4), it suffices to
observe that if 0 : x =~ y and g—cux,—<...—<Cux, 1—Cx is a covering chain for x,
then there is a covering chain J—cy,—< ... —cy,_1—<y for y such that 6 restricts
to 0; : x; =g y; for each i. The property then follows from axiom (5) for conditional
valuations. O

Note that valuations are necessarily anti-monotone:
Lemma 3.5. If v is a valuation on S and x < y € €(S) then v(z) = v(y).

Proof. If x <~ y, then v(y) = v(z) by the second condition in Definition 3.3, and if
x T y then the third condition simplifies to v(z) = v(y). Since for every inclusion
x C y there exists a chain x €™ 2y €~ 29 <1 --- =T 2, = y, the statement follows
by transitivity of >. n

Lemma 3.6. If v is a valuation on S, then the following satisfies the axioms for a
conditional valuation:

B ifu(x) £ 0
vy lx) =<1 if v(
0 if u(

r)=0andx =y
z)=0and x #y

for every x <t y e €(S).

Proof. We check the conditions of Definition 3.1 for the family {v(y | z)}. Condition
(1) follows directly from the definition. Suppose z <t y ' 2; we show that
v(z | x) =v(y | x)v(z | y). If any of the two inclusions is an equality, the statement
follows from (1). If both inclusions are strict and v(z) = 0, both LHS and RHS are
zero by definition. If v(z) = 0 and v(y) = 0, then clearly RHS = 0; but v(z) = 0
by Lemma 3.5, and so LHS = 0 as required. Finally if v(y) = 0, v(y | )v(z | y) =

%58 = ZE;; = v(z | z). So condition (2) holds.
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For (3), suppose © €* yy,...,y, in €(S). Because v is a valuation, we know that

o) = > (D) (Vi) (3.1)
g#I<{1,...,n}
Uiy €€ (S)
We check that Z@¢Ig{17,,.7n}(—1)|I‘+lv(ui€1y,~ | z) < 1. fo(r) = 0 then v(Usery; | ©) =
uiyie%”(S)

0 for every I so the inequality holds directly, and if v(z) > 0 then it it obtained by

dividing both sides of (3.1) by v(x).
Suppose z €~ y and x €7 z, with y U z € €(S). If v(z) = 0, then v(y) = 0,
and therefore v(y U z | y) = v(z | ) = 0. Otherwise, because z €~ y U z, we have

v(z) = v(y U 2), so that v(yu z |y) = ”(vy(;)z) = ZE;% = v(z | ). This proves (4).
Condition (5) is straightforward, since 6 : x =g y implies v(z) = v(y). O

Note that the above defines a one-to-one correspondence between valuations and
those conditional valuations satisfying the following property: if v(y | z) = 0 and
y € z <t w then v(w | z) = 0.

Conditional valuations are arguably more intuitive than valuations, since they
provide a more explicit representation for the probability coefficients assigned to
Player’s behaviour. They are also marginally more general, since nothing prevents
having, say, v(y | ) = 0 but v(z | y) = 0 for some = €% y S z; such a situation
cannot arise from a valuation. (The mismatch is not surprising: it is well-known in
probability theory that conditioning on a zero-probability event is not well-defined.)

Nevertheless, we shall see that valuations provide a convenient way of making
strategies probabilistic; in particular they allow for a cleaner definition of composition
for probabilistic strategies than is possible with conditional valuations. So in the first
part of this thesis where only discrete probability is considered, we stick to valuations,
albeit making informal use of the correspondence with conditional valuations, notably
when drawing pictures of strategies. !

Definition 3.7. A probabilistic strategy on a game A is a strategy 0 : S — A
together with a valuation vg on S.

In the following sections, we study two classes of probabilistic strategies:

e the Markov ones, in which any two Player actions are probabilistically inde-
pendent, conditionally on their causal history.

e the deterministic ones, in which the behaviour of Player is fully determined by
that of Opponent.

! Another reason to introduce conditional valuations is the essential role they will play when we
move to continuous probability distributions in strategies, in Chapter 7.
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3.2 Markov strategies
Recall the example strategy 7 : T — A at the beginning of 3.1,

/Vb+

A
C

a
+

A valuation v on 7" must respect v({a, b}) +v({a, c}) —v({a, b, c}) < 1, by condition (3)
of Definition 3.3. A suitable candidate for v({a, b, c}) is the product v({a, b})v({a, c}),
which always satisfies the above and indicates that events b and ¢ are probabilistically
independent (conditionally on a). In a Markov strategy, this will be the case for any
two Player moves, and indeed for any set of moves:

Definition 3.8. A probabilistic strategy o : S — A is Markov (we may alternatively
say the valuation v is Markov) if for any y,z € €(S) such that y U z € €(9),

v(y v 2)v(y nz) = v(y)v(z).

This condition can be equivalently written as v(yu z |ynz) = v(y|ynz)-
v(z | y n z), which says that y and z are probabilistically independent, conditionally
on their common history (y N z).

The following equivalent condition is convenient:

Lemma 3.9. A strateqy o : S — A is Markov if and only if for any x,z' € €(S), if
x—c*z then v(z') - v([s)) = v(x) - v([s]).

In conditional form, the above says v(z’ | x) = v([s]|[s)). So informally, a
strategy is Markov if the probability of playing an event s only depends on its
causal history. (This justifies the name “Markov”, as it is reminiscent of the Markov
condition for probabilistic graphical models. See [Pea00, KF09] for details.)

Proof. The “only if” direction is clear, taking y = x and z = [s]. We show the
converse. For y, z € €(S) with yuz € €(S), we show that v(yu z)v(ynz) = v(y)v(z)
by induction on |y U z|. Assume the equality holds, and suppose y—c*y" with s ¢ z.

Assume v(y) # 0; otherwise the statement holds directly. By assumption,

since we have both y—c*%y’ and y U 2—<°y U z, we have v(y' | y) = v([s] | [s)) =
v(y)
u(y)

vy vz |yuz), and thus v(y U z) = v(y U 2) - Note also that ¢y nz =y n z,

so we derive the equation as follows:
/
ol 0 2ol 02) = Sy o 2oty )
v
( /

= Loy u 2y n 2)

Finally, we prove a factorisation result:
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Lemma 3.10. A strategy 0 : S — A is Markov if and only if for all x € €(S),

pol?g)x:-&-
Proof. The (if) direction is an easy verification. For the (only if) direction, suppose
o is Markov. The argument is by induction on x. The property holds for z = &
since v() = 1 by definition.

Suppose the property holds for some = € €'(S) and suppose z—c*z'. If s is
negative then the property holds since v(z) = v(z’) and the positive events of x are
exactly those of z’.

Suppose s is positive. Notice that v(z’') = v(2’ | z) - v(z). By Lemma 3.9
v(a' | z) = v([s] | [s)), so using the induction hypothesis for x we get

o) =o(ls] [ [s)x [] wellle)= [] wlellle).

eew ez’
pol(e)=+ pol(e)=+

O

Markov strategies are not stable under composition, because the probabilistic
independence condition is not closed under hiding: two causally independent events
may have a hidden “common cause”, may not be probabilistic independent.

However, the interaction 7 ® S satisfies the Markov property:

Lemma 3.11. Let z € €(T ® S) and suppose x—=*°x'. Then,

vres(7) - vres([s)) = vres(v) - vres([s])-

Proof. If s is negative, then vrgs(x) = vrgs(y) and vrgs([s)) = vres([s]) by
Lemma 3.18 and we are done.

Suppose s is a c-action, and write * = 7y ® xg and 2’ = 2, ® 2. Write
[s) = 2r ® zg and [s] = 2/, ® z5. As xp S @, vp(xr) = vp(2f), and similarly
2r €7 2 so vp(zr) = vr(2)). Since S is Markov, vg(z’) - vs(zs) = vs(zs) - vs(25),
and therefore

vres(7) - vres([s)) = vr(ay) - vs(Ts) - vr(zr) x vs(2s)
= vr(zr) - vs(ws) - vr(zy) x vs(2s)

= vr@s () - vres([s])-

~

).
).

The proof for s a 7-action is symmetric. ]

The Markov property is a sub-condition of the sequential innocence condition
which we define in the next chapter. The lemma above is a necessary step in the
proof that sequential innocent strategies are stable under composition. We will see
that those strategies are sufficiently constrained for the hiding problem to disappear.

We continue with a discussion of deterministic strategies.
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3.3 Determinism and race-freeness

3.3.1 Deterministic strategies

In a deterministic strategy, Player behaves well-enough that simply assigning proba-
bility 1 to every configuration yields a valid probabilistic strategy. Note first that
this is not always the case. Recall the example strategy o : S — A above

There, assigning 1 to both {a,b} and {a, ¢} would violate condition (3) of valuations.

The issue here is that S contains a minimal conflict between two Player moves, b
and c. So we define deterministic strategies to be those in which this situation does
not happen, and the behaviour of Player is in some sense completely determined by
that of Opponent.

Definition 3.12. A strategy o : S — A is deterministic when for every x € €(5),
if —=* and 2—<*, with pol(s) = +, then = U {s,5'} € €(9).

Lemma 3.13. Ifo : § — A is deterministic, then the map v : €(S) — [0,1] as
v(z) =1 for every x € €(S) satisfies the axioms for a valuation.

Proof. We check that v satisfies all three axioms. The first two are straightforward,
since by definition v(J) = 1 and v(z) = v(y) whenever x €~ y. If x €% yy,..., Yy,

then because o is deterministic, Uery; € €(S) for every I < {1,...,n}. So
Wr)— Doy =1 3 (e
g#I<={1,...,n} g#I={1,....,n}
Vieryi€6 (S)
= 2 (=0
Ic{1,...,n}
where the last equality is a well-known combinatorial result. O]

The converse to Lemma 3.13 is false due to the possible presence of races in
games and strategies. By race we mean a minimal conflict between a Player move
and an Opponent move, as in the following game B:

at ~ b~

Races do not mix well with probability: take the strategy o : S — B where § = B
and o is the identity. Although v({a}) can be set to any p € [0, 1], the operational
behaviour is ambiguous: Player does not have control over the move b and may not
be able to play a at all.

Thus we introduce the class of “race-free” games [Win].

64



3.3.2 Race-free games

Definition 3.14. An event structure with polarity F is race-free if for all z € € (E),
whenever x €t y and x S~ z then y and z are compatible: y U z € € (F).

By extension we call race-free the games and strategies whose underlying esp is
race-free.

Lemma 3.15. If A is a race-free game, then any strateqy o : S — A is race-free.

Proof. Suppose x € €(S) with z—c*y and x—="z. The map o is defined on events, so
or—cToyand ox——~0z. By assumption, A is race-free so oyuoz = o(yuz) € € (A).
Note that oy—="0(y U z) so by receptivity of o there is a unique w € €(S) such
that y——~w and ow = o(y U 2).

We show that w =y U z, so y U z € €(S5) as required. We write y = x U {s*},
z=zuU{s },and w = cu {sT,t7}; we must show t = s’. By courtesy, s 4 ¢, and
therefore z U {t} € €(S). But ot = o5’ since cw = o(y v z), and by receptivity there
is a unique 2z’ with = < 2’ such that o2’ = 0z. Thus z U {t} = 2, i.e. s =, and in
particular w = y U z. O

It is stated in [Winl2, Lemma 2] that a game A is race-free if and only if the
copycat strategy @y : @C4 — At || A is deterministic. This will be required for
copycat to be the identity morphism in the bicategory we construct below.

Lemma 3.16. For a race-free game A, a strateqgy o : S — A is deterministic if and
only if the function v : €(S) — [0,1] : x — 1 is a valuation.

Proof. The (only if) direction is Lemma 3.13, so we check the converse. Suppose
o: S — A is not deterministic, so there exist configurations z—c*y; and z—cyp»
with y; U yo ¢ Con. But S is race-free by Lemma 3.15, so z—c"y,. By the valuation
axioms, v(z) = v(y1) + v(y2). It is clear that one cannot have v(z) = 1 for all

r e E(9). O
The probabilistic copycat strategy is defined accordingly.

Definition 3.17. The probabilistic copycat strategy on a (race-free) game A is
the copycat strategy @ : (C4 — At || A equipped with the constantly 1 valuation
v %(@A) - [0, 1].

So, from now on, we assume all games are race-free, and the rest of the chapter is
devoted to the construction of a cartesian closed bicategory of probabilistic strategies
on race-free games.

3.4 The bicategory PG

3.4.1 Composition of probabilistic strategies

Suppose 0 : S — A+ | Band 7 : T — B* || C are probabilistic strategies with
valuations vg and v respectively. Their interactionis T®o: T ®S — A|| B C,
and we can define a function vrgg on configurations of 7'® S as

vres(Tr ® xg) = vs(rs) X vr(zr)
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for every xr ® xg € € (T ® S). This satisfies the axioms for a valuation, treating
neutral events as positive. For 2,y € € (T ® S), we write z ™% 3 to mean that the
extension contains only positive and neutral events.

Lemma 3.18 ([Winl3al]). The map vrgs : €(T ® S) — [0, 1] satisfies the following
properties:

o UT®5(@) = 17.
* vrgs(x) = vres(y) if v =~ y; and

o forz S0 yi, oy, vres(z) — (=)  ures (Ui, vi) = 0, where I ranges
over nonempty subsets of {1,...,n} such that | J,.; yi is a configuration.

Then, the composition of 0 and 7is 7O o : T OS — A' || C, equipped with
the valuation vygg defined as

vres(z) = vres([T])

for every x € €(T ® 5), or equivalently,

vres(rr © rg) = vs(zs) X vr(zr)

for every zp ® x5 € € (T ©® S). Showing that this satisfies the axioms of a valuation
is easily deduced from Lemma 3.18 [Winl3a].

Remark 3.19. Chapters 6 and 7 of this thesis contain the development of a games
model for continuous probability distributions in a measure-theoretical setting. The
following points are worth clarifying.

e We sometimes refer to the probabilistic model presented here as “discrete”,
since coefficients are assigned directly to elements of €(5), in a way that is
reminiscent of probabilistic reasoning in discrete spaces (such as countable
sets). But this terminology is short-sighted, and somewhat misleading, since
event structures can be infinite, and real numbers can be encoded as infinite
sequences of events; then, by assigning coefficients to finite sequences one is
able to model all probability distributions on the reals. This is briefly discussed
in [Win]. We leave as further work the comparison of this approach with the
measure-theoretic framework of Chapters 6 and 7.

e The “discrete” model arises as a sub-bicategory of the probabilistic games
model of Chapters 6 and 7. Therefore, to avoid redundancy, the structural
proofs are omitted in this chapter. In particular we make no mention of the
ambient pseudo-double category, and build a bicategory directly. We do state
all definitions and results; they will provide some intuition for the general
case, and suffice for the time being. (In the next two chapters, on the untyped
A-calculus and PCF, only discrete distributions are considered.)
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3.4.2 2-Cells

The 2-cells in the bicategory of arenas and probabilistic strategies are maps of
strategies with an additional property relating valuations.

Definition 3.20. A map of probabilistic strategies from o : S — A* || B to
o8 — At || Bisamap f: 0 = o satisfying

vs(x) < vs(f)
for every x € €(.9).

Lemma 3.21. Maps of probabilistic strategies are stable under vertical and horizontal
composition.

Proof. For vertical composition, notice that if f : 0 = ¢’ and [’ : ¢/ = ¢”, then
vs(z) <wvg(fr) <wvs ((f o f)x).

For horizontal composition, let f:o0=0"and g:7=7. f 27 Q25 € (T O S5),
then (¢ ® f)(xr ® zg) is a configuration of TV ® S’, equal to yp © ys for some
causally compatible pair (yg,yr) € €(S") x €(1"), where there are bijections
Qg : fl’s%g/yg/ and QL g E YT Thus we have UT@S(xT(st) = 115(.2135)UT(.TT) <
vs(frs)or (ger) = vs(ys )or (yr) = vros (yrOys) = vres (9Of) (2rGxs)). O

This gives a bicategory.

Theorem 3.22. There is a bicategory PG having:
e objects: race-free arenas,
e morphisms A — B: probabilistic strategies;

o 2-cells: maps of probabilistic strategies.

3.5 Rigid maps and push-forward valuations

This section is an aside. We describe how rigid maps of event structures can be used
to transport a valuation from one strategy to another.

Definition 3.23. A map of event structures f : S — T is rigid if it preserves
causality, i.e. if s <g &' then f(s) <r f(s).

Rigid maps will play a fundamental role in the theory of measurable event
structures to be introduced in the second part of this thesis, because they correspond
precisely to those maps for which the induced map on configurations is a discrete
fibration.

For now we simply observe that rigid maps of strategies have the convenient
property that one can push-forward valuations across them. The concept is standard
in probability theory, where given a function f : X — Y one can turn a probability
distribution on X into one on Y (provided f is “measurable”).
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Here, given a map of strategies f : ¢ = 7 and a valuation v on S, define a map
fav € (T) — [0,1] as
(f)y) = D, w(@),

zef~Hy}

for y € €(T), where f~1{y} is the pre-image of y under f as a function of config-
urations, i.e. the set {z € €(S) | fr = y}. We show that when the underlying
f S — T isrigid, f,v satisfies the axioms for a valuation. A special case of this
result is known, for rigid maps of basic strategies without symmetry [Win15].

To handle the addition of symmetry the following technical lemma is key:

Lemma 3.24. Let f : 0 = 7 be a map of strategies, and let x,y € €(T) with
0 : x>~ y. Then there exists a bijective function o : f~Ha} — f~Hy} equipped with
a symmetry ¢, : z =g a(z) for every z € f~H{x}.

Proof. The proof is by induction on the size of §, where the case 0 = idy is
straightforward.

Suppose —c"6¢' : 2’ ~r 3/ and we are given a with symmetries ¢, as above. If
ze fHz} and z € 2/ € f7H{a'}, since ¢, : z =5 a(z), there is w € €(S) with a
bijection ¢,/ : 2’ ~g w extending ¢,. It must be the case that fw = v, because from
foy 2 =p fwand @ : ' =y we get a symmetry fo, 00 'y =p fw which
extends id, positively, and 7 is thin. So we define /(2’) = w. Since f¢, = 6 and f
is defined on events, we have f¢, = 6'.

The resulting o/ : f~{z'} — f~'{y'} is injective: assume o/(z") = /(") for some
2 2" e f7Ha'}. Assume 2’ and 2" are extensions of zy, z; € f~'{x}, respectively;
then the bijections ¢., : 20 =g a(z0) and ¢, : 21 =g a(z1) extend to ¢, : 2’ =g /(2')
and ¢, : 2" =g /(2"), so in particular a(zy) = a(z1) and therefore zy = z; (a is
bijective). So, writing 2 for 2 (and z;), we have id,—="¢_,' o ¢.,, which by thinness
of § implies 2z’ = 2”. That « is surjective uses a similar argument.

Now suppose 0—<="6" : &’ =1 3y/. Given that f is a map of strategies, for every
z € €(S) there are positive symmetries ¢, : 0z =} 72 and ¢, : o(a(z)) =} 7y. By
assumption, 7z €~ 72’ and Ty €~ 79/, which (by Lemma 2.13) determines unique
extensions o0z €~ u and o(a(z)) € w with a symmetry u ~r w extending o¢,. By
~-receptivity of o, this can be lifted uniquely to an extension of ¢,. O]

From this we can prove the push-forward result:

Lemma 3.25. Let f: 0 = o’ be a map of strategies such that the underlying map
s rigid, and let v be a valuation on S. Then, the map fyv is a valuation on T .

Proof. We check the four axioms of Definition 3.3. It is shown in [Win] that axioms
(1), (2), and (3) hold for f,v provided f is rigid and receptive. To see why the latter
holds, consider z € €(S) and fz <~ y € €(T). Applying 7 we get 7(fz) <~ 7y.
Recall f is a map of strategies, so by definition there is ¢, : 0z =¥ 7(fz), which by
Lemma 2.13 extends uniquely to some ¢ : w =¥ 7y. As 0z S~ w, by receptivity of
o we get a unique 2’ extending z such that oz’ = w. Because v is unique we must
have fz' =y.
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Finally, axiom (4) follows directly from Lemma 3.24: for any 6 : z =~ y, the

equality
D, vz = Y v(w)
zef Mz} wef~Hy}
is established using that axiom (4) holds for v. O

Whenever the conditions are met we call f,v the push-forward valuation of v
across f.

3.6 Bicategorical structure

The structure of G extends naturally to PG. All proofs will be given in Chapter 7
(see 7.4.4).

Lifting. The lifting and co-lifting constructions only produce instances of copycat,
and thus deterministic strategies. Observing this, it is not difficult to show that
Lemmas 2.27 and 2.60 still hold after the addition of probability. (Of course this
requires all games to be race-free, but objects of PG are race-free games.)

Products. Finite products are the same as in G; A & B is race-free whenever A
and B are. Recall that the pairing of strategies 0 : S - C+ || Aand 7: T — C* || B
is a strategy {(0,7): S& T — C* || A& B. Configurations of S & T are either empty,
or fully included in one of the two components. So for z € €(S & T'), we define
vser(7) to be 1if x = &, and (abusing notation) vg(z) or vr(x) accordingly.

As strategies are negative, the incompatibility between moves of S and 7T is
induced by Opponent, so that the above is a well-defined valuation.

Symmetric monoidal closed structure. Similarly, in setting up the monoidal
structure, all that needs re-defining is the action of ® on strategies: for o0 : § —
At || A and 7 : T — B || B, their tensor product c @7 : S || T — (A || B)* ||
(A" || B') can be equipped with the valuation vy : €(S || T) — [0, 1] defined by
vs|r(zs || #7) = vs(ws) x vp(xr). (Showing that this indeed defines a valuation is
slightly technical.)

All associated data is obtained in the same way as for G, using the remarks on
lifting above. It must also be checked that the 2-cells involved (the same as in G) are
valid maps of probabilistic strategies. We obtain that PG is a symmetric monoidal
bicategory. It is also closed: since o and A(o) have the same internal event structure
S, the valuation remains the same and the adjunction proof goes through with no
difficulty.

A linear exponential pseudo-comonad. When o : § — At || B is a proba-
bilistic strategy, we equip lo : !S — AL || |B with a valuation wvjg, treating ! as an
“infinitary tensor”:

us( || x;) = H vs(x;).

1EW 1Ew

%]
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The rest of the proof is done as in G. This gives a cartesian closed bicategory:
Theorem 3.26. The Kleisli bicategory PGy s cartesian closed.

In the next two chapters, we use this bicategory to give semantics to probabilistic
extensions of well-known languages: the untyped A-calculus (Chapter 4), and PCF
(Chapter 5). To interpret recursion in the latter, we will need to consider w-chains of
strategies.

Recursion. As in Chapter 2 we give an explicit description of w-colimits in the
situation where the diagram is made up of strong inclusions. In this setting, we
additionally assume that the valuation is preserved by the inclusion map: consider

a chain o il o1 i of strong inclusions and suppose that for every x € €(5;)
we have vg,(z) = vg,,,(Si+1). Then the colimit construction given in the previous
chapter extends directly: the strategy

\/ai:USi—nA

is equipped with the valuation x — vg,(x), where i is any index such that z € €(.S;).

More generally, given a chain consisting of strong embeddings, we construct the
colimit in the same way as in Chapter 2, using that a strong embedding can always
be factored as a strong inclusion composed with an isomorphism.
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Chapter 4

Innocence and the untyped
A-calculus

The work presented in this chapter was conducted in collaboration with Pierre
Clairambault, and shows how probabilistic concurrent strategies can be applied to a
probabilistic extension of the untyped A-calculus. We begin with a brief account of
the scientific context for this work; in particular we mention the various results from
which it draws inspiration.

A denotational model for the pure A-calculus can be obtained by finding a
reflezive object in a cartesian closed category C, i.e. an object U with morphisms
app € C[U,U—U] and A € C[U — U, U] such that appo A = idy_.y. A A-term
with n free variables can then be interpreted as a morphism U" — U, and the
induced equational theory is a well-defined A-theory — a congruence on A-terms
closed under f-reduction. (It is also the case that any A-theory can be obtained in
this way [Sco80].) If app and A are inverses of each other, the reflexive object is said
to be extensional and the induced A-theory also validates the 7 rule.

One may then consider reflexive objects in cartesian closed bicategories. There,
the condition on the pair (app, A) can be relaxed. In [See87, Zeil5] it is argued that
any adjunction (U, U — U, app, \) leads to a model, but it remains unclear that this
definition is completely appropriate: why, in particular, should the adjunction be
taken in one direction and not the other? To avoid any ambiguity we consider only
the extensional case, in which the adjunction must be an adjoint equivalence, and
hence the direction does not matter; see Definition 4.1 below. An example of this is
found in the cartesian closed bicategory of generalised species of structure [FGHWO08].

Reflexive objects can also be found in categories of games, as described for example
in the work of Ker et al [KNOO02], carried out in a model of Hyland-Ong games.
The reflexive object they consider is an arena U, the universal arena; it additionally
satisfies U =~ U — U, which implies (for abstract reasons [Sco80]) that the induced
A-theory is also closed under n-reduction (the model is said to be extensional). But
the main result of [KNOO02] is much stronger: the A-theory of U coincides with H*,
a well-studied A-theory with a central place in the model theory of the A-calculus.

To obtain this result the authors show that there is a precise correspondence
between, on one hand, innocent strategies, and on the other, Nakajima trees for
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A-terms. Innocence is a condition on strategies which plays a significant role in the
game semantics of PCF [HO00], while Nakajima trees are syntactic structures used

as a representation for A-terms; they are known to capture precisely the A-theory
H*.

The work presented in this chapter follows a similar approach to [KNOO02], but
focusses on a A-calculus enriched with an operator +, for probabilistic choice. We
consider a probabilistic head-reduction strategy for the calculus, in the spirit of
[EPT11]. The recent PhD thesis of Leventis [Lev16] provides an in-depth analysis of
the calculus and its operational semantics. In particular, Leventis puts forward a
probabilistic extension of Nakajima trees, and shows they characterise the proba-
bilistic analogue of H*.

In this chapter we define game semantics for the probabilistic A-calculus. Our
contributions are organised as follows:

e In Section 4.1, we show that the bicategory PGy has a reflexive object U which
additionally provides an interpretation for +,.

e In Section 4.2, we define and investigate “sequential innocence” for probabilistic
concurrent strategies. The condition is new, but largely based on innocence for
non-probabilistic concurrent strategies given in [CCW15].

e In Section 4.3, we show an adequacy result for the model of sequential innocent
strategies, saying that the probability of convergence of a A-term can be obtained
from its interpretation as a strategy.

e Finally, in Sections 4.4 and 4.5, we show how the probabilistic Nakajima trees
of [Levl6] can be recovered from probabilistic innocent strategies. (Unlike
[KNOO02|, this is not a one-to-one correspondence, due to the presence of
additional branching information in probabilistic strategies.)

4.1 Syntax and semantics of the probabilistic \-
calculus

We start with some syntactic background.

4.1.1 Syntax and operational semantics

The set A™ of terms of the probabilistic A-calculus is defined by the following grammar,
where p ranges over the interval [0, 1] and x over an infinite set Var:

M,N :=x | Xe.M | MN | M+, N.

Write Aty for the set of closed terms, i.e. those with no free variables, and X
for the the set of terms with free variables in T'.

The operator +, represents probabilistic choice, so that a term of the form
M +, N has two possible reduction steps: to M, with probability p, and to N, with
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probability 1 —p. Accordingly, the reduction relation we consider is a Markov process
over the set A*.

It corresponds to a probabilistic variant of the standard head-reduction [Bar84].
It is defined inductively:

M # N M # N
(Az.M)N 5 M[N/z] M+,N%>M  M+,N5HN

M5 M M5 M M#NP
M4, M5M  Az.M 5 e M MN % M'N

For M, N € AT, there may be many reduction paths from M to N. The
weight of a path 7 : M 2 ... 2% N is the product of the transition probabili-
ties: w(mw) = []._, pi- The probability of M reducing to N is then defined as
Pr(M — N) = 351y ()

Our goal in this section is to give a denotational semantics to A*-terms. We
identify a reflexive object in the bicategory PG, which gives a canonical interpretation
for standard A-calculus constructions; from this we will get for free a soundness result
for the semantics with respect to the usual Sn-equality.

We will also give an explicit semantics for the operator +,, but for this the
meaning of this interpretation is not clear. It is not until Section 4.4 that we will get
a satisfactory answer to this question, through a comparison of strategies and Béhm
trees, only possible after the introduction of innocence in Section 4.2.

4.1.2 A reflexive object in PG

As discussed in the introduction of this chapter, we define:

Definition 4.1. An extensional reflexive object in a cartesian closed bicategory
C is an object U equipped with an adjoint equivalence

We define an arena U, starting with the underlying esp U. It has
e cvents: (N x N)*| finite sequences of ordered pairs;

e causality: s < tif s is a prefix of ¢;

e consistency: no conflicts, Cony = Pr(U);

e polarity: pol,(s) = — if |s| is even, + if it is odd.
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So U is an infinite, alternating tree whose nodes are labelled with pairs of natural
numbers (i,n). In (i,n), the integer i is the copy index of the node: the symmetry
on U will reflect this. (The computational meaning of n is more subtle and will only
become clear through the comparison with Nakajima trees.)

Accordingly, the isomorphism families on U are defined via equivalence relations
on events. We define ~, ~, and ~_ to be the smallest equivalence relations satisfying:

RERD)
" (i,n)  (for pe{+ —})

- (i,n) ~
(4,n) ~
s ~, s and |s| even = s (i,n) ~ s - (j,n)
(4,n) ~

s~P s = s-(i,

s~_ s and |s| odd = s (4, " (4,n)

Then, for z,y € €(U), a bijection 0 : x =~ y is in >y if for every e € x, e ~ 0(e). The
families ~;; and =, are defined similarly using ~_ and ~,. The condition on |s| in
the definition of ~, ensures that only Player copy indices are altered by a bijection
in ~}; and the same holds for Opponent and ;.

This data forms a game with symmetry:

Lemma 4.2. U = (U, =y, =, ={;) is an arena.

Proof. That U is forest-shaped and alternating holds by construction. We check
that ~y, ~; and =/, are isomorphism families on U and satisfy the axioms of
Definition 2.12.

(=y is an iso family). Because ~ is an equivalence relation, it is easy to check
that: the identity bijection on z is in ~y; if 6 : x =y y then 67! : y =~y x; and if
O:x>~yyand:y=x~yzthen pof: x>y 2z Suppose that 6 : x>~y y and let 2/ < z.
In particular we have that e ~ f(e) for any e € 2’ and therefore the restriction
of # to x is in =~y. Suppose now that x—c*®z’ for some s. If v = ¢ then s = ¢
(the empty sequence) and 6 extends trivially. If x is nonempty, let ¢ be the unique
predecessor of s in z; write s =t - (i,n). By assumption, ¢ ~ 6(t), so for any j we
have s ~ 6(t) - (j,n) and since y is finite, j can be chosen so that s’ ¢ y. So writing
y' =1y u {s'}, there is an extension 6 < 0" : 2’ =~y ¢/'.

The proofs for ~;; and =, are similar, with an added subtlety when checking
the extension axiom: suppose Oz =~y y and r—*2', where s = t - (i,n) for some
t € x with |t| odd. By definition, s ~, s’ where s’ = 0(t) - (i,n). For the axiom to
hold with ' = y U {s'}, it remains to check s’ ¢ y. But if s € y, 07'(s') € z and
because 6 is an order-isomorphism, #!(s’) is a successor of t. By definition of ~,
0=1(s') =t (i,n) = s which was assumed not to be in .

(=, € =y and =; < =~y ). This follows from the fact that the equivalence
relations ~+ and ~_ are subsets of ~.

(If 0 € ={; " =;; then 0 is an identity bijection). If 0 : x = y is in =; N =, then
any e € z satisfies e ~, 6(e) and e ~_ f(e). An easy inductive argument shows that
e = 0le).

(If 0 € =f; and =t 0’ € = then ' € ;). It is enough to show ¢’ € =7, in the
case ' = 0 U {(s,s)}. We know that |s| = || is odd, since s and s are positive
events. We need to show that s ~* s’. Let ¢ and ¢’ be the immediate predecessors of
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s and s respectively, so that ¢t ~* ¢ and s =t (i,n) and s =t'- (j,m). Since s ~ ¢,
we have n = m, and because |t| = |t'| is even, s ~T §'. Checking the last axiom uses
a similar argument. O]

The object U, called the universal arena, is an extensional reflexive object in
PG: the adjoint equivalence of Definition 4.1 is obtained by lifting an isomorphism
U = U —U of event structures with symmetry and polarity. By Lemma 2.60 this
gives an adjoint equivalence in PG, which is sent to one in PG, by the (canonical)
pseudo-functor PG — PG;.

Lemma 4.3. The esspsU and U —U are isomorphic.

Proof. First we show that U and U — U are isomorphic as event structures. Recall
the function space construction on games: U — U has events those of U || U, which
for clarity we write as ({a} x N x U) u ({8} x U). The causality relation is defined
as the transitive closure of <y v {((8,¢€), (o, i,€)) | i € N} (where € € U is the
empty sequence).

The map

V:U—-U-—U
(a,i,8) —> (3,0) - s
(B,€) — ¢
(B, (i,n)-s) —> (i,n+1)-s

is a bijection on events, with inverse

V.U —U—=U
e— (B,¢)

(im) -5+ (o, 1, 8) ifn=0
L) s (B,(i,n—1)-s) otherwise.

U is an order-isomorphism: if e < € in U—U, then either e = (f3,¢), or
e = (o,1,8) and € = («,i,8") with s <y s, or e = (f,s) and ¢ = (§,s') with
s <y §'. In all cases ¥(e) < V(). If s < ¢ in U, then s is a prefix of &', and
it is easy to check that ¥~1(e) < ¥~1(¢’). Checking that ¥ preserves polarity is
straightforward. Thus U and U — U are isomorphic as esps.

The bijection W preserves symmetry. Suppose that 6 : © ~y .y y, and write
z = {a} x (Ujen{i} X Z(ai)) U {B} x 25 and y = {a} x (Ujen{i} X Y(an)) v {B} X 5.
By definition of =~ .4, there is a reindexing bijection 7 : N — N and bijections
O(a,i) € =v,7 € N and 05 € =y such that 0(a,4,s) = (o, 7(3),0(a,i)(s)) and 6(3,s) =
(B,65(s)) for every s. Now for any e € x, we must show that W(f(e)) ~ ¥(e). If
e = (o,i,5), then O(e) = (o, (i), 000, (s)), and ¥(0(e)) = (0,7(i)) - O(q, Z)(3). But
since 0(q,) € =y, we have that s ~ 6(,)(s) and therefore ¥(f(e)) ~ (4,0) - s = ¥(e).
Similarly if e = (8, (i,n)-s) (the case e = (5, ¢) is trivial), then 6(e) = (3, 05((4, ) :s)).
We know that (i,n)-s ~ 03((i,n) - s) and therefore 05((n,m) - s) = (n,m’) - s’ for
some m/, s such that s ~ s. We have U(e) = (n+1,m)-s ~ (n+1,m')-s" = ¥(0(e)).
This concludes the proof that W8 € >~;;. We omit the proof the ¥~! also preserves
symmetry, which can be verified similarly. m
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The isomorphism can be lifted to an adjoint equivalence in PGy:
Corollary 4.4. The arena U is an extensional reflexive object in PGy.

Proof. By Lemma 4.3, there is an iso ¥ : Y/ -U — U. Applying Lemma 2.60, we
get an adjoint equivalence
vl

— 3

u 1 U—-U
'

v

in PG. The canonical pseudo-functor PG — PG, is identity-on-objects and preserves
adjoint equivalences, which implies the result. (Unfolding this, the adjoint equivalence

app
4

u 1 U—-U
&X/

in PG, is given by app = g1 Oey and \ = @®5u—«>u-) n

4.1.3 Interpretation of A"

Closed terms of the probabilistic A-calculus are interpreted as probabilistic strategies
on U. Open terms M with free variables in I" are interpreted as strategies [M ]]F €
PG, [Z/{F, Z/l], where U" = & U. The interpretation of the A-calculus constructions
is standard:

[2]" = w,, the 2™ projection
e M]" = Ao A([M]™7)
[MN]" = Evg © Capp © [M]", [N]")

For the probabilistic choice operator, we define the sum of two strategies. Let
o:8 - (MUY | U and 7 : T — (UYL || U be strategies, and let p € [0, 1].
The essp S 4+, 7 has a unique initial Opponent move (as do S and 7 — wlog
call this move ¢), and continues as either S or T non-deterministically. That is,
it has events {e} w (S\{e}) w (T\{e}), and all structure induced from S and T,
with X € Congy p iff X € Cong or X € Cony. We define vgy () to be 1 if
r = g, {e}, pvs(z) if x € €(9), and (1 — p)vr(x) if € €(T). The obvious map
o4+,7:S+,T — (U")* | U is a strategy, and the interpretation of the syntactic
+, is simply [M +, N]" = [M]" +, [N]".

For general reasons [Sco80], because the reflexive object (U, app, \) is extensional,
the semantics validates the 8 and n equations: for any M, N € A",

[Az.M)N] = [M[N/z]] and [Ax.Mz]=[M].

However more work needs to be done in order to make sense of the probabilistic
interpretation. In the next section, we define sequential innocence for probabilistic
concurrent strategies. Then (in Section 4.3) we will prove an adequacy result relating
syntax and semantics, stating that the probability of convergence of a term (this will
be defined) can be recovered from the first level of Player moves in the (sequential
innocent) strategy representing it.
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4.2 Probabilistic innocence

Innocence is a condition on strategies which captures definability by a purely func-
tional program; we will see (in this chapter and the next) the precise sense in which
this holds. In ‘traditional’ game semantics, innocent strategies are those in which
Player’s behaviour at any point of the game depends only on a part of the current
execution trace called the P-view. In concurrent game semantics, the explicit causal
dependency relation allows for a clean definition of innocence, in which P-views are
replaced by grounded causal chains.

Definition 4.5. A grounded causal chain (gcc) in a strategy 0 : S — A is a set
of events p = {sg,...,s,} < S such that sg — ... — s, and s is initial in S.

Innocence is there to forbid interference between Player moves appearing in
distinct gces, where by interference we mean either causal dependence, conflict,
or probabilistic dependence. Note that innocence already appears in [CCW15] for
strategies without probability. The contribution of this thesis is essentially limited
to an extra constraint on the valuation.

4.2.1 Justifiers and visibility

By itself, innocence (and a fortiori probabilistic innocence) is not stable under
composition of strategies, without first restricting to wisible strategies. Visibility
appears already in Hyland-Ong games [HO00], and involves the notion of justification
pointers.

Definition 4.6. Let 0 : S — At || B be a strategy, and s € S be a non-initial move.
The justifier of s, denoted just(s), is defined as follows.

e If os is an initial A-move, then just(s) is the unique s’ € S such that s — s.
(08" is necessarily an initial B-move. Uniqueness is because o is well-threaded.)

e Otherwise, just(s) is the unique s’ € S such that os’ — os. (Uniqueness is
because arenas are forest-shaped and o is locally injective.)

This is depicted using dashed lines (justification pointers) from every non-
initial Player move to its justifier. We do not need to specify the justifier of an
Opponent move s: by the receptivity condition on strategies, this must necessarily
be the unique ¢ such that t — s.

Example 4.7. The identity strategy on the game A = {& — ®} in PGy is the
strategy €4 on AL || A defined by:

wn which the valuation is 1 everywhere.
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We can finally define:
Definition 4.8. A strategy o : S — A is visible if for every gec p in S, op € €(A).

An equivalent requirement, closer in spirit to the visibility condition in [HOO00],
is that any gce containing a non-initial move must also contains its justifier.

Visible strategies are closed under composition [CCW15], pairing, tensor and
currying. They also include copycat and all of the structural morphisms of Chapter 2.

4.2.2 Sequential innocence

Visibility should be understood informally as a way of enforcing that each gcc is a
well-defined thread. In this point of view, innocence prevents interference between
certain concurrent threads of a strategy, namely those spawned by Opponent.

The innocence condition for concurrent strategies appears in [CCW15, Casl7], and
this can likely be extended to probabilistic strategies by enforcing an independence
constraint on the valuation. But it will not be necessary in this thesis to carry
out this extension in full generality. We are concerned here with programming
languages without any concurrency primitives, so we only give a probabilistic version
of sequential innocent strategies. This makes the presentation significantly simpler.

Definition 4.9. A strategy o : S — A' || B is sequential innocent if it is visible
and satisfies the following properties:

e a subset X = S is a configuration if and only if 0 X € Cony1p and it is an
Opponent-branching forest (that is, causality is forest-shaped and if @ — b and
a — ¢ in X then pol(a) = +).

e the valuation vg is Markov.

The first condition is equivalent to the sequential innocence condition for non-
deterministic strategies given in [CCW15]. If o0 : § — A is sequential innocent,
then causality in S is itself forest-shaped, and if a — b and a — ¢ with pol(a) = —,
then necessarily b ~~c. In this sense the behaviour of Player is sequential, and any
concurrency in S is induced by Opponent.

Additionally, concurrent gees in S (necessarily Opponent-branching) cannot
interfere with each other without violating the requirements. In a Markov strategy
causal independence implies probabilistic independence; so there is no “probabilistic
interference” between concurrent gccs.

Sequential innocent strategies are stable under composition:

Lemma 4.10. If 0 : S — A' | Band 7 : T — B* || C are sequential innocent
strategies, then their composition T ® o 1s sequential innocent.

Proof. The first condition is preserved by composition: one can show that every
configuration of 7'®.S is an Opponent-branching tree, and this is preserved by hiding.
See [CCW15] for details. We show that vrgs is Markov.

Let z,2" € €(T © S) and z—c*2’. To avoid ambiguity in the rest of the proof,
we denote by [—]p and [—)g the down-closure operations in T'® S, and [—|g for the
down-closure in T'® S.
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We must show that vros(2) - vres([$)e) = vres(T) - vres([s]e), i-e vres([2]e) -

vres([[s)ole) = vres([z]e) - vres([s]e), observing that [[s]ole = [s]e-
We have [[s)ple S [[slole in €(T ® S), and because the causality relation in

T ® S is forest-shaped, there is a unique covering chain
[[$)o]le—<tur—< ... < tu,, 1 —°[s]e,
with u; = [e;]g for every i. There is a covering chain
[1]e—<w—<* ... < w, 1 —<°[']s
and since by Lemma 3.11 the interaction satisfies the Markov property, we have

| []e)
([7']e | wn-1) - vr@s(Wn1 | wn—2) ... vres(w: | [7]e)
= UT@S([S ‘ Up— 1) UT@S(un 1 ’ Up— 2) UT®5(U1 ‘ [[8)@ @)
(

le
= vres([sle | [[s)ole)

which concludes the proof. ]

vres([7']e

= Ur®s

For any arena A, the copycat strategy is sequential innocent, so there is a
sub-bicategory PG® of PG whose morphisms are sequential innocent strategies.
Furthermore, PG retains all the structure of PG: it is a symmetric monoidal closed
bicategory, with finite products and supporting a linear exponential pseudo-comonad.
In particular, the Kleisli bicategory PG}’ is cartesian closed.

Verifying the above properties is straightforward, with the key observation that
the tensor product creates no additional probabilistic dependencies. Details are
omitted.

4.3 Adequacy

Observe that the reflexive object U is still reflexive in PG!Si, because the morphisms
app and A are sequential innocent.

Further, the definition of [M] for M € A* is not affected by the restriction: all
strategies involved in the definition (4.1.3) are sequential innocent, and the sum
o +, 7 of sequential innocent strategies 0,7 € PG is also sequential innocent.

So in this section we prove an adequacy theorem bridging the operational and
denotational semantics of AT. We begin by defining notions of convergence for terms
and strategies.

4.3.1 Convergence
The normal forms for the reduction 2 defined in 4.1 are terms of the form
)\.CEO e 1. Y MD Ce Mkz—la

for non-zero n,k € N and M; € A™ for all 7. Such terms are called head-normal
forms (hnfs). In the pure A-calculus, each term has at most one head-normal form.
This is of course not the case in A*.
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The probability of convergence of a term M, denoted Pr (M), is the proba-
bility of M reducing to some hnf: Pry(M) = >, Pr(M — H). More generally
for any set N of terms we write Pr(M — N) = >\ Pr(M — N).

Finally we say that two terms M and N are observationally equivalent, writ-
ten M = N, if for all contexts C[ |, Pry(C[M]) = Pry(C[N]).

Now, given a strategy o : S — (IU")* || U, we obtain its probability of
convergence by summing the coefficients assigned to the first level of Player moves.
Opponent plays the initial move, so it is equivalent to consider the configurations
containing exactly 2 events:

Pry(o) = Z vs(x).

z€€(S)
|z|=2

We show an adequacy theorem for the interpretation of AT-terms in i:

Theorem 4.11 (Adequacy). For each M € A*r,
Pry (IM]") < Pry (M).

The proof involves a relation < between terms and strategies which we obtain
using a fixed point construction. This is an untyped alternative to the “logical
relations” technique traditionally used to show adequacy. This method was put
forward by Pitts [Pit93] and recently used to obtain adequacy results for A* — see
[EPT11, LP19], from which we draw much inspiration.

4.3.2 The relation <

The relation < is constructed so as to contain pairs (o, M) where o € PG} [U", U]
for some I', and M € A" has free variables in I". So we consider the set of relations
R with
R | PG U™ U] x X'y,
T

where I" ranges over finite sets of variables (and recall AT = {M € AT | fv(M) = T'}).

For each such relation R we will define a new relation ¢(R), and the relation <
will arise as a fixed point for ¢. We first introduce some notation. If I' and A are
sets of variables with I' € A, then any strategy o : S — (UY)*! || U gives rise to a
strategy o2 defined by the map

ot S > U U - U U

where the second arrow is the canonical injection (U")* | U — (U>)* || U.
Then, given o € PG} [UF,U] and 7 € PG [Z/{A,Z/{], define

c@Qr = Ev ©® (app O o, T)

and we write 0@y ... 7, for (c@Qry)...Qr,.
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Now fix an arbitrary relation R. For each I', define the relation ¢(R) to contain the
pair (o, M) € PG} [U",U] x ATr if the following condition holds: VA 2 T',Vn € N,
if 71,...7, e PGY [UA, U] and Ny, ..., N, € AT with all (7, N;) € R, then

Pry(c@rm...7,) < Pry(MN;...N,).

The action of ¢ is anti-monotone with respect to inclusion of relations, so in order
to find a fixed point for it we consider the map v defined for each pair of relations
(R*,R™) as

Y(RT,R7) = (¢(R7),¢(RT)).

The map 1) is monotone for the order on pairs defined as (R{, Ry) & (Ry, Ry) iff
R{ < Ry and R; < Ry, and moreover the order = makes the set of pairs of relations
a complete lattice.

Consider the set of pre-fixed points for ¥:

{(R1, R2) [ Y(Ry, Ry) E (Ry, Rp)}

We write (<, <™) for its glb, which by Tarski’s Theorem is a least fixed point
for ¢: Y(<*,<7) = («*,<7), or in other words ¢(<*) = <= and ¢(<7) = <.
From this we deduce easily that (<~,<%) is also a fixed point for ¢, so that
(«t,<7)Cc («,<"), i.e. <« € <™. As we will see now, the reverse inclusion holds
too, and we will take <« = <= = <™. We first note the following general fact:

Lemma 4.12. For any relation R, if M € X*r, then the set {o € PG} [U",U] |
(0,M) € ¢(R)} is closed under w-colimits of strong embeddings.

Proof. Observe first that if strategies n; € PG} [L{A, L{] form an w-chain, then

Pry(\/ mi) = sup Pry(m).
1EW 1ew

Now, let o il o1 EiY ... be a chain of strong embeddings in PG?i [Z/{F,Z/{],
and suppose (0, M) € ¢(R) for all 0. Let A 2T, 7,...,7, € PG} [L{A,M], and
Ny, ..., N, with each (7, Ny) € R.

Since colimits commute with all constructions, we have (\/,_ 0;,)Q7 ... 7, =
Ve, (0:QTy ... 7,), so that by the remark above,

Pry((\/ 0@ ...7) = sup Pry (0,07, ...7,).

By assumption, Pry(0;@Qr ... 7,) < Pry(MN;...N,) for each i, so

sup Pry(o;@Qry ... 7,) < Pry(MN;...N,),

1EW
hence (\/,., 0i, M) € $(R) and we are done. O

Then, to show <= < <* we consider for each strategy o € PG} [L{F,L[] a
sequence (0;);e, of finite-depth approximants. Let us say first what we mean by the
depth of a strategy:
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Definition 4.13. The depth of a sequential innocent strategy o : S — U+ || U,
depth(e), is the maximum number of Player moves in a gcc of S, and oo when all
gces have unbounded length.

Given a strategy 0 : S — (UY)* || U, and d € N, let 04 be the largest sub-strategy
of o with depth < d. It is clear that the o, approximate o in the sense that the
latter is the colimit in PG} [Z/{F,L{] of the chain 0p = 01 = ... (where all arrows
are inclusion maps).

Lemma 4.14. The relations <= and <™ satisfy <t < <7, so that <t = <™.

Proof. We show by induction that for all d € N, if 0 <= M then o4 <™ M. By
Lemma 4.12, this shows that o <t M.

For d = 0, 04 =~ 1, and so for any 71,...,7,, 04Q7m ...7, = L. In particular,
Pry(o4Qr ... 7,) = 0; from this we easily deduce (o4, M) € ¢p(<™) = <™.

For the inductive step, observe first the following general fact: if o = ¢’ is an
embedding, then Pry(o) < Pry(o’). Furthermore if (¢/, M) € ¢(R) for some R, then

(0, M) € ¢(R).

Assume oy <™ M. Because 0 <~ M, we have 04,1 <~ M by the remark of the
previous paragraph. To show that 04,1 <t M, we use that < = ¢(<™). Let A 2T,
and let 7,...,7, € PG} [Z/IA,Z/{] and Ny,...,N, with 7, <= N;. We show that

Pry(0441Q7 ... 7,) < Pry(MN;...N,).

Applying the induction hypothesis to the 7;, we get that (7;)q <t N; for each 1.
Since 0441 <~ M and <7 = ¢(<), we deduce that

PrU(0d+1@(Tl)d Ce (Tn)d) < Pl“u(MNl Ce Nn)

It suffices now to show that Pry(0411@Q(71)q...(7n)a) = Pry(0441@Q7 ... 7,), and this
is a straightforward induction on n, observing that in a composition of the form
Ev © {app ®y 0441, T), a T-event of depth > d cannot occur. ]

So we define < = <™ = <7. We move to the proof of the adequacy theorem.

4.3.3 Closure properties and proof of adequacy

At this point, we have defined a relation < < (J; PG [UF,U] x A*r such that

¢(<) = <. We now aim to show that [M]" < M for every M, which implies the
adequacy theorem. This involves checking that <o satisfies a number of properties.

Lemma 4.15. The relation < satisfies the following properties:
(1) If o< M and o = o', then o' < M.
(2) m, < x, where 7, € PG} [T, U] is the 2™ projection.
(3) o< (Ax.M)N iff o < M[N /x].

(4) If o< M and 1< N then o +,7<M +, N.
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Proof. (1) Straightforward, because o = ¢’ implies Pr (o) = Pry(o’).

(2) Notice that for any Ny, ..., N, Pry(xNy ... N,) = 1, so necessarily Pry(7,Qr ... 7,) <
Pry(zN;y...N,). So (m,,2) € ¢(<) = <.

(3) This follows directly from the fact that Pry((Az.M)NN; ... N,) = Pry(M[N/z|Ny ... N,)
for any Ny,..., N,.

(4) For any 71,...,7,, (0 4, 7)Qn...7, = (6Q7y...7,) +, (TQ7y ... 7,,) SO in
particular Pry((0+,7)@r ... 7,) = p-Pry(c@r ... 7,)+(1—p)-Pry(vQr ... 7,). It is
clear that Pry((M +pN)Ny...N,) =p-Pry(MN;...N,)+(1—p)-Pry(NN;...N,),
so the result follows. O]

We will also need the following characterisation:
Lemma 4.16. For every (o, M) € PG}’ [Z/{F,L{] X AT, the following are equivalent:
(1) o< M;
(2) for every A 2T and (1,N) € PG} [UA U] x XA, if T< N then 0@r < MN.

Proof. The (1) = (2) direction is immediate, since ¢(<1) = <. Assume (2) holds,
and we show (o, M) € ¢(<1). We must show that for every Ac T, neN, r,..., 7, €
PG} [L{A,Z/l] and Ny,..., N, € AT, if 7, < N, for all ¢ then Pry(cQr...7,) <
Pry(MN;...N,). Because by assumption, c@Qry <« M Ny, the property holds directly
for every n > 1. It remains to treat the case n = 0, i.e. show that Pry(o) < Pry(M).

But by Lemma 4.15(2), m, <z, and so 0@, < Mz and in particular Pry(c@r,) <
Pr(Mz). But standard reasoning shows o =~ A @, Cur(c@mn,), hence Pry(cQr,) =
Pry(o). An easy argument shows Pry(Mz) = Pry (M), so Pr(o) < Pr(M), and we
are done. [

We are now able to show the following:

Lemma 4.17. Let I' = xq,...,2,, and let M € Afp. Let A 2 T and suppose
Tty ..., Tn € PG [LIA,L{] and Ny, ..., N, € XA with 7; < N; for each i. Then,

[M]" @ (ri, .. )< M[Ny /2y, ... Ny 2]

Proof. The proof is by induction on M.

Case M = x. We must have x = z; for some j, then M[N;/z;] = N, and
[M]" & {0y, ...,0,) = 0;, so the result holds using Lemma 4.15(1).

Case M = Ax.N. We use Lemma 4.16 and show that for each © 2 A, p €
PG} [U°,U] and P e A*g with p< P,

(IM]" © (m, ..., m))@p< (M[N;/x;])P.

But ([M]' &{m,...,7.))@p = [N]"* O (r,..., T, p), and by the induction hypoth-
esis, [N]"* O {(m, ..., Tn, p) < N[Ni/x;, P/x]. But (M[N;/2;])P — N[N;/x;, P/x]
so we conclude by Lemma 4.15(3).

Case M = NN'. We show ([NN']" & (r,..., 7)) < (NN')[N;/x;]. This is
equivalent to ([N]" @ (r:))Q([N']" @ (7)) < N[N;/z;|N'[N;/x;], which follows from
the IH for NV and N'.

Case M = N +, P. Direct consequence of Lemma 4.15(4). O
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The adequacy property is a direct consequence of the lemma:

Theorem 4.18. For any M € X,
Pry([M]") < Pry(M).

Proof. By Lemma 4.17, [M]" < M, so ([M]" , M) € ¢(<), and thus Pry([M]") <
Pr, (M). O

4.4 Strategies and Nakajima trees

In this section we refine the computational meaning of the semantics through a
connection between innocent strategies and the probabilistic Nakajima trees of
Leventis [Lev16]. We start by defining the latter.

4.4.1 Probabilistic Nakajima trees

Nakajima trees. The Nakajima tree [Bar84] of a pure A-term M is in general
an infinite tree, which can be defined as the limit of a sequence of finite-depth
approximants. In fact those approximants will suffice for our purposes: given a
Aterm M and d € N, the tree NT4(M) is L if d = 0 or if M has no head-normal
form, and

- Zn—1TopT7 - Yy
Td 1 Td 1

NTd—l ( P Td 1
if d>0and M has hnf \2y...2, 1.y Fy... P._1.
In order to deal with issues of a-renaming, we adopt a convention also used
in [Lev16], whereby the infinite sequence of abstracted variables at the root of a
tree of depth d > 0 is labelled zg, x¢, ... so that any tree is determined by the pair
(y, (T))nen) of its head variable and sequence of subtrees.

Leventis’ probabilistic trees Nakajima trees for the A-calculus have striking
properties: they characterise observational equivalence of terms, and as a model they
yield the maximal consistent sensible A-theory (see [Bar84] for details). In his PhD the-
sis, Leventis [Lev16] proposes a notion of probabilistic Nakajima tree which plays the
same role for A*. Intuitively, because a term of the form Azg...z,—1.2 Py... P—y +,
AYo - Ym—1-w Qp ... Q1 has two hnfs, it may be represented by a probability distri-
bution over trees of the form of that above. Accordingly, two different kinds of trees
are considered: value trees, representing head-normal forms (without probability
distribution at top-level), and probabilistic Nakajima trees, representing general
terms:
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Definition 4.19. For each d € N, the sets PT¢ of probabilistic Nakajima trees
of depth d and VT of value trees of depth d are defined by VT° = &,

VT ={(y, (Tn)nen) | y € Var and Vn e N, T, e PT*} and
={T: VT > [0,1] | Xpepre T(t) < 1}
We can then assign trees to individual terms:

Definition 4.20. Given M € A" and d € N, its probabilistic Bohm tree of
depth d is the tree PT?(M) € PT* defined as follows:

PTYM) : VT* — [0,1]
t — Pr(M — {H hnf | VTY(H) = t})

where for any hnf H = A\zy...2, 1.y Fy... Px_1, the value tree of depth d of H
is defined as

VIYH) = (y, (PT " (Py),...,PT" " (P_y) ,PT ! (28),..))).

Consider for example the term M; = Axy.x (y +1 (Az.2)), a head-normal form.
The first steps in the construction of its value tree of depth d, for some fixed d >
are given as follows (where we use the symbol J; to denote the Dirac distribution at
t: 0,(t') = 1if t = ¢/, and 0 otherwise):

dod.d d
Axjaixy ... e xf

N

1 2
§6VTd_1(z‘f) + §5VTd_1()\z.z)5VTd*1<xg)5VTd—1(l,g) ..

where VT ! (z#) (for I € N) and VT? ' (\z.2) are

dldldl'”.x?l dldldl'”.xgl
5VTd 2 d lﬁVTd 2 d 1 5VTd 2 d 1>5VTd 2 d 1

and so on.
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As an aside, compare the above with the interpretation of M; as a strategy on U:

The strategy is an alternative representation of the term; but in this particular
example it corresponds precisely to the Nakajima tree representation. Ignoring the
depth superscript on the variable names in the latter, we see a correspondence between
the negative branching in the strategy and the branches in the value trees, and
between the positive branching and the variables indices at the head of probabilistic
trees. This correspondence will be formalised below. Note that the strategy is
pictured in “reduced form” [CCW15], meaning that the (countably many) symmetric
copies of each Opponent move are not pictured.

Probabilistic Nakajima trees precisely characterise observational equivalence in
At writing M =pr N if for every d e N, PT%(M) = PT%(N), we have:

Theorem 4.21 (Leventis [Lev16]). For any M,N € A", M = N if and only if
M =pp N.

In this sense probabilistic Nakajima trees provide a fully abstract interpretation
of the probabilistic A-calculus.

4.4.2 Nakajima-like strategies

In [KNOO2], the authors prove an ezact correspondence theorem for the pure A-
calculus: Nakajima trees precisely correspond to deterministic innocent strategies on
the universal arena.

For A* however, the correspondence is not so exact: although terms M and
M +, M have the same Nakajima tree, they have different interpretations in P S
where each probabilistic choice is recorded as an explicit branching point.! In what
follows, we identify a class of Nakajima-like probabilistic strategies for which the
exact correspondence does hold, and we show that any strategy can be reduced to a
Nakajima-like one, essentially by quotienting out the “redundant” branching. This
yields a notion of equivalence between strategies, defined as reduction to the same
Nakajima-like strategy.

In particular, PG?i does not yield a probabilistic A-theory in the sense of Leventis [Lev16].
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First, given a sequential innocent strategy o : & — U, define a relation ~ on
the events of S as the smallest equivalence relation such that if s; ~ s, s; — s9,
sy — s4 and there is an order-isomorphism ¢ : {s € S | so < s} = {s' € S| s, < ¢}
such that for all s > s,,

e 0s~T (coy)s, and

o vs([s] | [s2]) = vs([eo(s)] | [53]),

then sy &~ s5. Informally, ~ identifies events coming from the same syntactic construct
in two copies of a term in an idempotent probabilistic sum, as in M +, M (where
Opponent has played the same copy indices).

Definition 4.22. We say o : § — U is Nakajima-like if vg is non-vanishing and
for every s,s' € S, if s ~ s’ then s = ¢'.

In other words, a Nakajima-like strategy is one with no redundant branches.
Many A*-strategies do not satisfy this property, but all can be reduced to one that
does.

Given an innocent sequential strategy o : S — U" — U, construct a sub-strategy
070 : 879 > UY" with events S7° = {s € S | v([s]) > 0}. Then, let S,.x be the set
of ~-equivalence classes in S”°. We now show that this inherits a partial order
structure from S>°; we will then turn this into an essp.

Lemma 4.23. (1) If s ~ s then there is a bijection | : [s| = [s'] such that t ~ [(t)
for every t € [s]. (n.b. [s] is the down-closure, not the equivalence class of s.)

(2) The relation defined on ~-equivalence classes as s < t iff there exists s € s and
t et with s <t 1s a partial order.

(8) The order < is tree-shaped.

Proof. (1) By induction on the definition of ~. If s = s’ then this is clearly true,
taking [ to be the identity. Moreover the property is closed under applications of
transitivity and symmetry for ~. Now suppose s; ~ s} and there is such a bijection
l1: [s1] = [$)]- If 1 — 9, §] — s, with conditions implying se ~ s5. Then, because
causality in S~V is forest-shaped, [so] = [s1] w {s2}, and [sy] = [s}] w {sy}, we can
define [y : [sa] — [s5] as the extension of [; sending s to s).

(2) Reflexivity is clear. For transitivity, suppose s < t and t < u, so there is
ses, t,t' et and u € u with s <t and ¢/ < u. Since t ~ ¢/, by (1) there is §' € s
such that s/ < t'. So s’ < u and thus s < u. For antisymmetry, suppose s, s’ € s and
t,t' € t are such that s <t and ¢’ < §'. By (1), there is t” < s such that t" ~ t' ~ t.
But t <t’,sot =1t"= s and therefore s = t.

(3) Suppose s < t and u < t, so there is s € s, ¢,/ € t and u € u with s < ¢ and
u < t'. Since t ~ t', by (1) there is s’ € s such that s’ < ¢’. Since the order in S>° is
tree-shaped, s <wuworu<s,sos<uoruxs. O

With respect to the order defined in (2) above, there is a unique initial move
€ € Shak- Define a map oy @ Spax — U on s € Sy by induction on the length of the
unique chain € — --- — s. Define o, = . Now suppose ops = u e (UN)L | U
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and s — t. Then ot is taken to be any successor u' of v such that ' ~* ot for
every t € t (this always exists and is in fact unique when pol t = —). We define the
rest of the structure of the essp Spak, writing f : S — S, for the quotient map:

o consistency: X < Spax iff [X] is an Opponent branching-tree and o, X €
COH(UF)L”U.

o symmetry: 0 : v =gy if thereis ¢ : 2 =g w with fo = 0.

o probability: taken as the push-forward of vg under the quotient map f : S*° —
‘Snak-

Lemma 4.24. The map opnax : Snax — U 1S a sequential innocent strategy.

Proof. We first check that o, is indeed a strategy. It is courteous, because if
s = t and 0,8 P onact, then there are s € s and t € t with s —g t but s $v5 ¢,
so pol(s) = pol(s) = — and pol(t) = pol(t) = +. To show it is receptive, let
X € € (Snax) and oy x €~ y € €(U). The map f: €(S) — € (Snax) is surjective, so
there is x € €(S) such that fx = x, so there is a unique extension # €~ 2’ such that
ox' =y. Then x €~ fy, and (by surjectivity of f) this extension is unique among
those mapping to y, so opax is receptive. The argument for ~-receptivity is the same.
Finally, if ids, € 0 : X’ =g, X", then by definition of =g, idz = ¢ with fo =0
S is thin, so ¢ = id, for some ', so ' = idy and S,y is thin.

By construction, f : 8% — S,k is a weak map of strategies, so by Lemma 3.25,
the pushforward f,vg is a valuation on S,,x. We use the characterisation of Lemma 3.9
to show that the valuation vy, (= fsvg) is Markov. (In what follows we use that it
is non-vanishing.)

The proof uses the following observation. Let x—<5x%’ in € (Sphax), and for = €
f7Yx}, define a set A, = {ses|zu{s}e?(S)} Then for any z,y € f~'{x},
there is a bijection ¢ : A, =~ A, such that for all s € A,,

To see why such a ¢ exists, consider for each s € A, its unique predecessor t € x.
Then let u be the unique event of y such that f(t) = f(u); since f is a quotient map,
t ~ u, and so ¢(s) is taken as the appropriate successor of w.

We use this to show vy, is Markov. Let x——5x’ in €(Syax); then

Unak(X/) . erffl{x} ZseAz U(:E o {S})

Unak(X) Divef-1(x V(@)
B Zzef*l{x} 0(%) Dsea, %
- erffl{x} v(x)
v([s])
— S;gc o(5) for any z (see above )
. Vnak([8])
(

_ Una([s])
[s))’

Unak
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where the last step uses the observation of the previous paragraph (instantiated to
[s)—<%[s]) and that [s) = [¢') for any s,s" € A,.
m

So in summary, for any sequential innocent o € PG} [L{F,M], we construct a
Nakajima-like strategy o € PG}!Si [Z/{F,L{]. Write 0 =pt 7 when o, = Thak.

4.4.3 Nakajima trees correspond to Nakajima-like strategies

We can now make formal the connection between sequential innocent strategies and
probabilistic Nakajima trees. To do so we define a bijective map from the set of
Nakajima-like strategies of depth d on (U")* || U, to the set PT of probabilistic
Nakajima trees of depth d with free variables in I". Since probabilistic Nakajima
trees are defined together with value trees, it will be necessary to also consider a
class of value strategies:

Definition 4.25. A strategy o : S — (U")! || U is a value strategy if the initial
move € € S has a unique successor s, such that vg({e, s}) = 1.

We can now define maps going both ways:

Lemma 4.26. For every d € N and every I' Cg,, Var there are maps

. ~
{o € PGY [U",U] | o is Nakajima-like and depth(o) < d } = PT}
iy

and

@d

si T o is a Nakajima-like value strategy _F> d

{O’ € PG' [Z/{ ,Z/{] ’ and depth(o)<d (W VTF
T

which are inverses up to isomorphism of strategies.

Proof. By induction on d. The case for d = 0 is straightforward: the domain and
codomain of ¢ are empty, and those of ¥ are singletons.

In the general case, suppose ¢ is a Nakajima-like value strategy S — (\U")* || U
of depth < d. We define a value tree t = (y, (T},)nen) € VT ¢. The head-variable y is
determined by the (unique) minimal positive move s of S. Either os is the initial
move in the copy of U+ corresponding to some variable z € I': in this case we set
x = y; or os is mapped to a minimal positive move of U, in which case we set x = z¢
where os = (i, k) for some k.

By receptivity, s has w immediate successors tg,t1,.... Each of them induces
an essp &;, the subtree of S with root ¢;, which can be turned into a strategy
0 S; — (UTHEEIRNH L 74 such that o, is Nakajima-like (because o is) and has
depth < d — 1. Then, for each i, we define T, = ¥4 ! (0;), and we have defined

I+{xz{|keN}
@1‘1(0) as t = (Y, (Th)nen)-
Suppose now that 7 : 7 — (U"V)* || U is an arbitrary Nakajima-like strategy.
Then it is of the form Y, p; - 0;, where for each i € I, 0; : §; — (U")* | U is
a value Nakajima-like strategy of depth d, and moreover all the o; are distinct.
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So, by the drop condition, a Nakajima-like probabilistic strategy corresponds to a
probability distribution on value strategies. Using that @ is a bijection, a probability
distribution on value strategies is the same thing as one on value trees, and therefore
wd is a bijection. O

In the rest of the chapter, we show that this bijection preserves the interpretation
of At-terms, in the following sense:

Theorem 4.27 (Correspondence theorem). For any M € A* andd € N, U(([M]")ar) =
PTY(M), where [M]" is the mazimal sub-strategy of [M] with depth < d.

To alleviate notation we will simply write @ and ¥ for ¢ and ¥, when the context
is clear. The next section gives a detailed proof and some immediate consequences.

4.5 The correspondence theorem

The proof is by induction on d, and follows a similar argument as in the non-
probabilistic case [KNOO02], with the additional difficulty of dealing with infinite
width: a probabilistic Nakajima tree may be a probability distribution with infinite
support, and the first level of Player moves in a probabilistic strategy may be infinite.
The proof must therefore make use of finite-width approzimations; but the need to
approximate in both depth and width means that the order on probabilistic Nakajima
trees is more subtle than the naive probabilistic extension of the “subtree” order.
(For instance, PT?(M) is not in general a subtree of PT*™ (1))

The intricacies of Nakajima tree approximation are dealt with in the work of
Leventis in [Lev16]. In what follows, we describe the steps of his argument, and
reproduce them through game semantics, to get the desired correspondence result.

4.5.1 Leventis’ method for approximating trees

For each d € N, Leventis [Levl6] proposes a method for approximating the tree
PT?(M) using a sequence of trees T; € PT“(for i € N) with finite support. (That is,
the probability distributions 7; : VT — [0, 1] have finite support. In this sense the
T; have “finite width”.)

There are three steps in the design of the method:

e For d € N, define a partial order <4 on PT%
e Define for each term M a finite-width tree pt?(M) € PT% called its local tree.

e Show that for each term M there is a sequence of terms (L*(M));e, such that
the sequence of trees pt?(Li(M)) approximates PT4(M) in the order <.

Because of the mutually recursive definition, each of the above must be done also for
value trees. The details follow.
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Ordering trees. Let € € R with € > 0. Define by induction on d € N two relations
<4, and <3, on PT¢ and VT, respectively, as follows:

Vi<m,T; <qc T}
(. (Ty, .. Ty, ) <Upae (0, (T4, T2, )

VAS VTS, a T(t) < Yo 4 T'() + £
T <4 T

where 1. A = {te VT*| I € A with ' < <y t}and 1A = 1oA.
Define <4=<40 and <}=< w0+ Leventis shows the two relations are indeed partial

orders, and he gives sufficient conditions for T'e PT* to be the lub (w.r.t. <4) of a
sequence (7}, )ne, of trees, namely:

e forallnew, T, <47T; and

e for all ¢ > 0, there exists n € w such that T <4, T),.

Local trees. Recall that for a term M and value tree t € VT, PT(M)(t) is the
probability that M converges (by head-reduction) to a hnf h with VT%(h) = t. In
contrast, the local Nakajima tree pt¢(M) does not model the convergence behaviour
of M, but instead gathers static information about the term structure. To obtain
this we consider the canonical form of M, denoted can(M) and defined to be its
normal form with respect to the reduction

e (M +p, N)— XM+, e N  (M+,N)P— MP+, NP

which is strongly normalising and confluent [Lev16]. This pushes some instances
of +, to the top level, and indeed canonical terms M, N are obtained as sums of
values, as in the following grammar:
M,N ::=v|M+,N
vi=x | oM | Axw
Note that head-normal forms are values, but not all values are in head-normal form.

To enforce associativity, commutativity and idempotence of +, one can consider
canonical terms up to the following notion of syntactic equivalence:

Definition 4.28. Let =, be the equivalence relation on A*-terms generated by:

M+pNESynN+1 pM
(M +, N) 44 P=gn M +p, (N 0 P) ifpg#1

M 1, M=y M
M+1NESynM+1P
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Note that this is not a congruence; we are only concerned with “top-level” sums.
Canonical terms up to =g, correspond precisely to finitely-supported probability
distributions on values, written as convex sums » ., p;v;. (This representation will
be used in the definition of local trees.)

We note in passing that the semantics of A*-terms is invariant under »—, and
that =gyn-equivalent terms have Nakajima-equivalent interpretation:

Lemma 4.29. Let M and N be terms with free variables in I'. Then:

o If M — N, then [M]" = [N]", and so [M]. . =~ [N].

nak — nak”

o If M =gy N, then [M]. = [N].

nak — nak "

Proof. Using Lemma 2.27, it it routine to check that A® (0 +,7) = (A O 0) +,
(A®7) and app © (¢/ +, ') = (app ® ¢’) +, (app © 7') for any o, 7,0’ and 7’
(with the appropriate type). Similarly Cur(oc +, 7) = Cur(o) +, Cur(r), and
from this we easily deduce [Az.M +, N]" = [MAz.M +, \z.N]". To show that
[(M +, N)P]" = [(MP) +, (NP)]", it is enough to verify that Eve(app® [M]" +,
appOI [N]", [P]") = EvOi(app®i [M]', [P )+, Evei(app@i [N]", [P]"), which
can be done by a straightforward inspection.

For =4, we go through the equations in the definition above. There are obvious
isomorphisms of strategies o 4,7 = 7 +1_p o and (0 +,7) +qp = 0 +pg (T + 0 p).
Moreover, the Nakajima quotient o, was defined specifically so that (o +, O')ZZk >~
Onak and (0 +1 T)nak = Onak, from which the result follows. O

We now define local Nakajima trees and value trees. Leventis’ original presentation
is slightly different, but our definition requires fewer technical tools.

Definition 4.30. Suppose M € A", and let . _; p;v; be the probability distribution
corresponding to can(M). Then, for d € N, the local probabilistic Nakajima
tree of M of depth d is the tree pt?(M) € PT¢ defined as follows:

pt4(M) : VT —[0,1]

t— Z iy

ielv; hnf
th ('U,L' ) =t

where for any hnf H = A\zy...2,_1.y Fy... P._1, the local value tree of depth d
of H is defined as

vt?(H) = (y, (ptd_1 (Py),...,pt  (Pr_y), ptd! (xfi) e )) .

The finite-width approximants. The final step is to identify a sequence of trees
t; which approximate PT%(M) in the order <4 defined above. These are obtained
as the local Nakajima trees for a sequence of canonical terms L{(M), defined below.
The convergence proof uses that for any € > 0 there is k € N such that L*(M) is in
normal form “up to €”:
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Definition 4.31. For d € N and € > 0, the sets of canonical d,e-head-normal
forms and d, e-normal values are deﬁned by:
NF%¢ = {v | v value }
NFe = f\ag ... 20 1.yPy ... Pp_y | Vi, P, € NF*}
NEY = {M | M =g (X pivi) + (1= 2, pi) P,
with v; € NF and (1 — 3, p;) Pry(P) < ¢},

using the n-ary sum notation.

The terms L'(M) are defined by means of the reduction — between canonical
terms defined as follows:

M1 —, N1 M2 —L N2
M1 +p M2 d N1 +p NQ

Vi. Py —p Q;
)\SC(] - .$n,1.yP0 c.e Pm,1 -7 )\IL'O . ..xn,l.yQO - -mel

ATo .. Tpo1.(AY.M)PQy ... Py —p can(Axg ... 2y 1. (M[P/y])Qo - .. Qm-1)
Terms of A* have the following property.

Lemma 4.32 ([Lev16]). For every canonical term N there is a unique term L(N)
such that N —p L(N). For a (not necessarily canonical) term M, let L°(M) =
can(M) and L'™Y (M) = L(L'(M)). Then, for every d € N and € = 0, there exists
k € N such that L*(M) € NF®*.

One can then show that the necessary convergence conditions laid out above are
satisfied, so that:

Proposition 4.33 ([Lev16]). For any term M and d € N,

= \/ pt4(L'(M

tEw

We now reproduce the steps above with Nakajima-like strategies, aiming to show
a correspondence theorem. It will be helpful to note the following:

Lemma 4.34. For every M € Aty and i € w, [M]" = [L{(M)]".

Proof. Routine verification. O
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4.5.2 Local semantics

We proceed to define for each canonical M € A* with free variables in I' a strategy

[M]" € PG} [U",U]. The definition is similar to that of [M]", with the difference

that sub-terms of the form (Az.M)N are assigned a trivial strategy. Thus [M]"

provides no information about the behaviour of M under S-reduction. This is
reminiscent of the definition of the local tree pt?(M), and indeed ([M]})nax Will be
its semantic counterpart; see Lemma 4.37 below.

For a canonical M € AT we define:

r

Ty fM=z
2O (A([N]=D) if M = \e.N
[M]" = { Ev® app & [N]7,[P]") if M = NP with N # \z.N'
[N]" +, [P]" if M =N+, P
s otherwise.

\

The definition makes use of the strategy L, which is initial in the category PG} [L{ T u ]
This is only defined up to isomorphism, so for a concrete construction we may take

L {e} = UM || U, where € is the unique initial move of U, and the map has

evident action. We note the following property:

Lemma 4.35. If M, N € Aty with M =, N, then [M]" =pr [N]".
Proof. Straightforward. O]

We will show that the strategy ([M]})nak corresponds to the local tree pt(M)
under the map ¥?. Since the strategies and Nakajima trees involved have finite
width, the proof is a straightforward extension of Ker, Nickau and Ong’s “exact
correspondence theorem” for the A-calculus [KNOOQ2].

We first prove a technical lemma.

Lemma 4.36. Ifv e A" is a value which is not in head-normal form, then [U]F =~ 1.

Proof. If v = x then it is in hnf. Suppose v = v'M for M a canonical term. If v
is not in hnf, then either ' = (Az.N) in which case [M]" = L by definition, or
v’ is itself not in hnf, so by the induction hypothesis [¢/]' =~ L. Then [v'M]" =~
EvO app® L, [M]") = Eve (L, [M]") which we can easily check to be isomorphic
to L.

Finally if v = Az.v/ and v is not in hnf, then ¢’ is not in hnf so [v/]"* =~ L and
we conclude as above because A © (Cur(Ll)) = L. O

We are ready to state the correspondence result for local trees and strategies:
Lemma 4.37. For every d € N, the following hold:

e For every hnf H € Xp, [H], (and therefore ([H],)uarx) is a value strategy, and
gzjd(([H]Z)nak) = vt'(H).

e For every canonical term M € Xtp, WH(([M]})nak) = pti(M).
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Proof. The proof is by induction on d, and the base case (d = 0) is immediate.
Suppose d > 0.

If His a hof say H = Axg...%n_1.yPy... Pyu_y, then the strategy [H]' is
obtained from [yP, ... Ppn_1]" """ by repeated currying and composition with
the strategy A associated with the reflexive object U. Write A = ' zq, ..., 2, 1.
Then, the strategy [yFp ... Pm_l]A 1S — |UA)* || U is a value strategy whose top-
level Player move corresponds to the variable y. The subsequent w Opponent moves
correspond to the arguments given to y: the first m branches are the [Pi]A, and the
following branches are the appropriate copycat strategies. This corresponds precisely
to vt¢(H). (Remark: this deterministic step is the content of the correspondence
result in [KNOO2], of which we have given a very informal account.)

Now let M be an arbitrary canonical term. We show the result by induction on
the term structure: M is either a value or of the form N +, P for canonical terms N
and P. If M is a value not in head-normal form, then by Lemma 4.36 [M ]F ~ 1, so
in particular [M]. =~ L. It follows from the definition that pt?(M)(t) = 0 for all ¢,
so the result holds. If M is a value in head-normal form, then the result follows from
the reasoning of the previous paragraph, using that pt¢(M)(t) = 1 if t = vt¢(M), 0
otherwise.

Finally suppose M = N +, P for canonical terms N and P. By the induction
hypothesis, ¥ (([N],)nax) = pt4(N) and T (([P]})nak) = pt?(P). Let t € VT Recall
from Lemma 4.26 that to obtain the coefficient ¥ (([M +, P]g)nak)(t), we regard

([N +, P]g)nak as a convex sum of value strategies, and sum over those corresponding
to ¢t under @¢. Because the Nakajima quotient only identifies branches corresponding
to the same value tree, this process can be done directly on the strategy [N +, P]g.
But [N +, Pl, = [N]; +, [Py, and so P ([N +, Ply)uai) (t) = p- P (([N]g)natc) () +
(1 —p) - W(([P]})nar)(t). Tt is clear that ptd(N +, P)(t) = p- pt4(N)(t) + (1 — p) -
pt?(P)(t), so this concludes the proof. O

Lemma 4.38. For every canonical M € X*r, there is an embedding [M]" = [M]".

Proof. Strong embeddings are closed under horizontal composition and pairing, and
there is an embedding | = ¢ for any strategy o, so the result holds by induction on
M, inspecting the cases in the definition of [M]". O

Lemma 4.39. If 0,7 € PG} [L{F,Z/{] and there is an embedding o = T, then
U ((0a)nak) <a ¥((Ta)nax) for each d. If o,7 € PG [UT, U] are value strategies and
there is an embedding o = 7, then @((04)nax) <j PL((Ta)nax) for each d.

Proof. Mutual induction on d, where the base case holds immediately.

Let d > 0 and let o and 7 be value strategies. The embedding must preserve the
label of the unique Player move at depth 1, and that of its immediate successors.
Restricting the embedding to any branch, using that each branch is a substrategy
of depth < d — 1, we can apply the induction hypothesis and get the desired result,
since by definition <} is a branch-wise <.

Now, let o and 7 be arbitrary strategies, and let A < VT¢. Write o4 as a convex
sum Y., p; - 0; of value sub-strategies, and similarly let 75 = ] jer 4+ Th The
embedding of the statement can then be seen as consisting of an injection ¢ : [ — J,
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together with embeddings o; = 7,;) such that p; < ¢, for each 7 € I. By the
reasoning in the value case above, we have for each i that @((0;)nak) <§ P((7.(:))nak)-
So if @((0;)nax) € T A, then also @((7,(;))nax) € T A. Thus,

Do) t) = D, i

tetA el
q.)(a'i)nakeTA
< Z q.(:)
el
gzs(TL(i))n:aLkeTA
< 3 () (1)
tetA
This shows that ¥((04)nak) <a ¥ ((74)nak)- 0

Hence, using the embedding of Lemma 4.38, we get:

Corollary 4.40. For every M, W4 (([M]))nak) <a TX([M]})nak), and for every hnf
H, P(([H]p)nai) <a P (([H] ) nate)-

4.5.3 The strategy [M]. , as a lub
Lemma 4.41. If M € NF** then U4(([M]))nak) <de Y2((IM]5)nar)-

Proof. We show the statement by induction on d, together with the corresponding
property for values: if v € NF%| then then (([v]})nak) <a.e P2 (([V]})nax)-

The case d = 0 is 1mmed1ate For d > 0 we consider values first: for v =
Axy ...y 1.YyFPy ... P,_1 we have:

O(([0]a)naic) = (4, P ([Poa—)nar)s - -+ ¥ ([Pl mate) PTH (25), )
O(([0]g)nar) = (y W(([Po]d_l)nak),m, ([Pl )nate) PTH (a5), ).

Therefore, by the induction hypothesis and the definition of <} _,

P(([v]g)nar) <ie P(([V]g)nat).

We move to the case of a general M € NF¢. By definition, M =, (3,.;)pivi) +
(1 =3 p;) P where all v; € NF®* and (1 — .. p;) Pry(P) < . By Lemma 4.29, we
have

IIM]]d =PT Zpl [[U’L nak + 1 - sz [[P]] naks (41)

el
and the analogous statement for [M]}. Write T = W(([M]})nax) and 77 = @ (([M1]5)nax)-
To show T <4 T', let A be an arbitrary subset of VT We show that Duera T(t) <

Qe a T'(t) + &

We easily deduce from (4.1) that

2T = ) (1=2p) ) P(([Pla)na)(8).

teTA el el teTA
&(([vily)nar ) A
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Recall that the definition of ¥ involves the first layer of Player moves, so it is

clear that
D T(([P]g)nar) (£) < Pry(([P]3)nax) = Pry([P]")
tetA

where the equality is because d > 0. By the adequacy property (Theorem 4.11),
Pry([P]") < Pry(P), so that

1= 31p) Y (API) ) () <.

el teTA

Thus

Z T(t) < Z pi + €.

tetA el
P(([v:]5)nar)ET A

Now, the property we have shown above for d,s-normal values indicates that for

every v,
O(([vil)na) <t P([0:])nar);

and therefore if @(([[vl]] Jnak) € T A then &(([v l] Jnak) € T A. From this we deduce
that

Z T(t) < Z p; + €,

tetA el
W(([Ui]g)nak)eTeA

and since

NS o= Y om0 Y WP (),

tet. A iel iel  tel.A
Q(([vi]g)nak)eTeA

we have >, T'(t) < X 4 T7(1) + €, as required. O

We are finally in a position to show the following crucial step in the proof of the
correspondence theorem:

Theorem 4.42. For any M € X',

( [[M]] nak \/Lp LZ nak)
1EW
Proof. First, for every i € w, ®(([LH(M)]))nar) <a P([L(M)]})nax) by Corol-
lary 4.40, and since [L}(M)]" = [M]" (Lemma 4.34), S(([L'(M)])nar) <a D(([M]%)nak)-
This shows that &(([M]})nax) is an upper bound for the chain.
To show it is the least, by [Lev16], it suffices to show that for any € > 0, there

exists k € N such that @(([M]})nak) <ae P(([L¥(M)],)nar)- By Lemma 4.32, there
exists k € N such that L¥F(M) € NF%*. Lemma 4.41 says @(([[Lk(M)]]Z)nak) <de
@(([Lk(M)]Z)nak), and we conclude since [[Lk(M)]]F = [M]". O
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4.5.4 Wrapping up and full abstraction

Theorem 4.43 (Correspondence theorem). For any M € X*p andd € N, U (([M]})nar) =
PTY(M).

Proof. For any M,

[[M]] nak) \/ (( LZ nak) (Theorem 4.42)

1Ew

= \/ptd(Li(M)) (Lemma 4.37)

= PTYM) (Proposition 4.33).

We combine this with Leventis’ result, to get:

Theorem 4.44 (Full abstraction). For any M, N € AT, the following are equivalent:
e M = N;
e M =pr N;

° [[M]] =pr HN]]
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Chapter 5

Probabilistic PCF

Following the game semantics tradition, we investigate an application of concurrent
games to the functional language PCF [Plo77]. Specifically we see how to obtain using
probabilistic strategies a model for terms of Probabilistic PCF, i.e. PCF extended
with a probabilistic primitive. This leads to an “intensional” full abstraction result.

5.1 Syntax and operational semantics

Probabilistic PCF (PPCF) extends PCF with a probabilistic Boolean coin which
gives tt or ff with equal probability. The choice of coin over another probabilistic
primitive (such as the +, operator of Chapter 4), is not particularly significant:
although there are differences in expressivity, it can be shown ([ETP14]) that this
does not affect contextual equivalence.

The types of PPCF are those of PCF, so

A, B ::= Bool | Nat | A — B.
Its terms are those of PCF, augmented with the Boolean primitive coin:

M,Ny,Ny:i=x | Xe.M | M N |n|b|succM | pred M |if M Ny N,
| iszero M | Y M | coin

where n and b range over natural numbers and Booleans, respectively. Typing rules
are standard; we only show that for coin:

I' - coin : Bool

As for A", the operational semantics is given by means of a weighted reduction
relation, defined by the following rules:

(Az.M)N & M[N/z]  iftt Ny Ny > Ny ifff Ny Ny > N,

iszero0 > tt  iszeron+1->f  YM - M (Y M)

1
pred(n+1)>n  succn->n+1  coin S bif be {t, ff}
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M5 M M5 M M5 M
MN2AMN succ M & suce M’ pred M % pred M’

M5 M M2 M
iszero M 2 iszero M’ ifM NP LifM NP

This gives for every M and N a probability of reduction Pr(M — N), got by
summing over all reduction paths (as done in 4.1).

In AT, observational equivalence was defined with as observables the head-normal
forms; in PPCF, observables are ground type values:

Definition 5.1. Let M and N be PPCF terms such that ' = M : Aand ' - N : A.
We write M <. N if for every context C[-] such that — C[P] : Bool for every
'-P: A,

Pr(C[M] — b) < Pr(C[N] - b)

for b € {tt, ff}. The equivalence induced by this preorder, contextual equivalence,
is denoted ~ (.

5.2 Arenas with questions and answers

PPCF types are interpreted as arenas. There are two ground type arenas,

q q
VAN 4y

[Bool] = "~ " [Nag] = 0" wll=27

from which all types are interpreted inductively using [A — B] = [A] —[B] (=
[[A] — [B]). Observe, in both cases, the contrast between the initial question q,
indicating the start of the computation, and the answers tt, ff,0, 1, etc. , indicating
that the computation is terminated and returns with a particular value. This intuition
is still valid for higher-order types, see for example the arena for Bool — Bool:

o q
N
tt, ~f, t; ~f]

On the argument side, the roles of Player and Opponent are reversed: Player starts
the computation and Opponent provides a value.

This duality was not apparent in the semantics of A*. Since the language has no
constants, there are no ‘return values’ and it is sufficient for the model to describe
the dynamics of variable calls. (In other words, all moves are questions.)

Definition 5.2. A arena with questions and answers is an arena A equipped
with a labelling function 1bl : A — {Q, A} making each move either a question or
an answer, and such that:
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e initial moves are questions;
e answers are maximal;
e bijections in =4 preserve the labelling;

The addition of questions and answers to the objects of PG poses no difficulty; all
constructions extend in the obvious way. (Note that in the dual game A+ polarity is
reversed but the question/answer labelling remains the same as in A.) The definition
of a strategy o : § — A is not affected, but the labelling can be lifted: s € S is
assigned the same label as its image o(s).

With this extra structure in place we can apply a well-bracketing condition
on strategies, which ensures that Player respects the call/return discipline. The
condition is the same as in the concurrent games model of PCF [CCW15]; it is not
affected by the presence of probability.

Before we give the condition let us set some terminology. If o : S — A || B is a
strategy and the arenas A and B have questions and answers (assume from now on
all arenas have questions and answers), for X € Cong a question s € X is answered
in X if there is an answer s’ € X such that o(s) — o(s’). We say X is complete if
every question in X is answered in X. For a gcc p in 9, the pending question of
p is, if it exists, the latest (i.e. maximal) unanswered question p; € p.

Definition 5.3. A visible strategy o : & — AL || B is well-bracketed if the
following two conditions are met:

(a) For every gcc p={p1 — ... — py — ppr1} in S, if p,11 is an answer, then it
answers the pending question in p; — ... — p,.

(b) If p and ¢ are gees of S, forking at p; = (;, and merging at s as follows, with
both branches disjoint,

Pist > oo b pu
.Y
pLo - i Y s
Gigr > - B G

S

then the sets {pi1,...,pn} and {Gii1, ..., (n} are complete.

Well-bracketing is stable under composition [CCW15], so that we can define a
bicategory PG}* having arenas (with questions and answers) as objects and well-
bracketed and sequential innocent strategies as morphisms. Copycat, and therefore
all structural strategies, are well-bracketed, so that PG}:’Si is cartesian closed.

All strategies are probabilistic, but most PPCF primitives (all but coin) have a
deterministic interpretation; when this is the case we omit the valuation from the
graphical representation.
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5.3 Semantics of PPCF
We now give the semantics of PPCF terms as morphisms in PG, following the
standard methodology, whereby a type A is assigned an arena [A] as defined above,
and an open term I' - M : A a strategy [M]" : ![T] - [A]. The latter uses
the usual semantics of contexts: [z1: Ay,...,z,: A,] = &1, [Ai]]. (This is the
terminal object if n = 0.)

We give the interpretation of PPCF terms as well-bracketed, sequential innocent
strategies.

Constants. For b € B and n € N, define strategies [b] : 1 - [Bool] and [n] : 1 -+
[Nat] as

[Bool] [Nat]
q q
b b
b* nt

For a nonempty I, [[Q]]F and [[Q]]F are got by precomposing [b] and [n] with the
unique strategy [I'] - 1.

Probabilistic choice. The strategy [coin] is the following:

[Bool]

AN

1
2¢+mﬁ+2

with [coin]" : [I] - [Bool] defined as for constants.

A-Calculus constructions. The interpretation of variables, applications, and
abstractions uses the cartesian closed structure in a standard way:

[2]" = w,, the z™ projection
. M]" = Cur([M]"5)
[MN]" = Evo(IM]" L [NT)

Conditionals. For every ground type X € {Bool,Nat} we define a strategy
ifx : I([Bool] & [X] & [X]) - [X], and whenever T" - if M N7 Ny : X we set

[if M Ny NoJ" = ifx © (M, [N [N2]D-

The strategy ifnag is displayed below. Note that to make the representation more
convenient we draw it as a strategy ! [Bool] ® ! [Nat] ® ! [Nat] - [Nat] which
is not a morphism of the Kleisli bicategory PG,. But the two games ! [Bool] ®
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I[Nat] ® ! [Nat] and !([Bool] & [Nat] & [Nat]) are equivalent in PG, so this
suffices.
[Bool] ® ![Nat] ® ![Nat] —  [Nat]

. <r/,,//—q_

Yo

v

tty = ffy
\mb

. dy
S A,
ng Y nt

ng — >
0 nt

Operations on natural numbers. The interpretation of pred is given by:

[[Nat] —  [Nat]

L —d
aQq

T —

KT RS

and we do not give the diagrams for succ and iszero, which should be easy to
recover.

Fixpoints. Finally, for any M, the term Y M is interpreted as the colimit of the
w-chain
Yo [M]' = Y. [M]" = ...

where Yo [M]" = L and Y41 [M]" = Ev®y (o, Y, [M]"). The colimit exists, since
there is a strong embedding | = Y, [M ]]F and strong embeddings are preserved by
horizontal composition and pairing.

5.4 Definability

We continue with a definability result for finite sequential innocent strategies. We
define what finite means here:

Definition 5.4. Say a sequential innocent strategy o : S — A" || B is finite when:
e for every negative s € S, the set {s' € S| s — s} is finite;

e for every positive question s € S, all but finitely many answers in the set
{s'e S|s— s} are maximal.
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e there is a bound to the length of gces in S|
e For every z € €(5), v(z) € [0,1] n Q;

As in the game model for PCF [HO00], the definability result does not hold for
PPCF but for PPCF extended with a family of definition-by-cases primitives

case, M [Ny |-+ | N

with operational semantics given by

ML M
casey M [Ny |-+ | Ni] B case, M/ [Ny | -+ | Ny
1< k
case, i [Ny |-+ | Ni] > N,

and typing rule

I' = M : Nat '-N;: X
'+ case, M [Ny |-+ | Ni]: X

where X can be either Nat or Bool. We define

[case, M [Ny | --- | Ni]]" = caseX o ([M]", [N4], ..., [N:]D

where
casey : |([Nat] & & [X]) - [X]

is a strategy which inspects its first argument and, upon return of a value 4, continues
as the (i + 1) argument if ¢ < k, and stops otherwise.

Now, for p € (0,1) nQ, the binary choice operator M +, N is definable from coin.
From this we can easily encode, for every finite convex sum of rationals > ", p;, an
operator of natural number type, returning each ¢ with probability p;. Combining
this with the definition-by-cases construct, we can define finite rational convex sums
of terms: Y., pi - M;, in such a way that

ﬁzpi : MzN = Zpi : [I:M’L]]F :

el el
From this we derive:

Theorem 5.5 (Finite definability). Let A be a PPCF type, and let o : S — [A] be
a finite, innocent sequential strateqy such that vg is nonvanishing. Then there is a
(PPCF + case) term M such that - M : A and [M] = o.

Proof. The proof is by induction on the bound on the gces of 0. In the base case (in
which all gces have length 1), o must be trivial, and therefore we take take M to be
any diverging term.
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In the general case, because o is sequential innocent and finite, there are k£ Player
moves Si, ..., Sk, pairwise inconsistent, immediately following the initial Opponent
move. By the axioms on valuations we can write o as a convex sum Zle POk, Where
pi = vg([si]) for each i, and each oy, is a value strategy (in the sense of Definition 4.25,
adapted to the arena [A]). By finiteness of o, each p; is rational, so that by the
remarks immediately preceding the theorem it suffices to give for each 7 a term M;
such that [M;] = o;.

So we show the definability result holds for any finite (sequential innocent) value
strategy 7 : T — [A]. The proof is exactly that of [HO00]. Write A = A} — ... —
A, — Nat. The case where the return type is Bool treated similarly. Consider
Player’s first move ¢ after Opponent has started the game (this is unique and has
probability 1, since 7 is a value strategy). If ¢ answers the initial question directly
with an integer [, then M = )\f.l will do.

If instead t is an initial question in one of the A;, then we write A; = C; —

. — C,, — Nat. By receptivity of 7, the move t is followed by each Opponent
move available at this stage of the game, namely: the return values in Nat, and w
symmetric copies of the initial question in each [C}], which we write q“. The copies
are redundant, since by the axioms of symmetry each copy has the same future. So
for each j < m, write C; = D;; — ... — Dj;, — Nat and consider the branch
starting at qCJ' as a strategy 7; on

[[Dj’1—>...—>Dj7kj—>A1—>...—>An—>Nat]].

This has bound on gccs strictly smaller than that of o, so by the induction hypothesis
there is a term M; such that [M,] = ;. We abstract away the variables D,; to get
a term Ay;.M; of type Ay — ... — A, — Nat.

Going back to the move ¢, we consider the possible answers to it in Nat: let k£ be
the greatest one with a successor in the strategy (this exists by the second condition
on finite strategies). For each | < k, isolating the “I-branch”, we obtain as above a
strategy on A; — ... —> A,, — Nat, and thus, a term N; of type A. We define

M = Mf.case, (fi( M. M) ... (Ao M) [N | -+ | Ny,
and leave out the verification that [M] = 7. O
We conclude with a few remarks.

e From here the path to full abstraction is relatively standard, although the
addition of the definition-by-cases construct is more problematic than in [HOO0O,
DHO2], since it is not clear that the term casey M [Ny | - - - | Ni] is definable up
to observational equivalence in PPCF. This does not affect the full abstraction
result, since it follows from the main theorem in [ETP14] that PPCF + case
terms have no more distinguishing power than standard PPCF terms.

e In fact, full abstraction can be obtained from the results of [ETP14] even
without a finite definability result. This was carried out in collaboration with
Simon Castellan, Pierre Clairambault, and Glynn Winskel [CCPW18§].
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e We have seen that it is possible to give a “sequential innocence” condition
for probabilistic strategies in concurrent games. This is known to be difficult
with Hyland-Ong games, so the authors of [DH02] instead construct a model
for a probabilistic version of Idealised Algol, which does not require innocence.
Although Idealised Algol, which includes first-order references, can be modelled
with concurrent games [CCW19], its probabilistic extension is problematic:
the interaction of concurrency and state already involves nondeterministic
behaviour due to scheduling issues outside of Player’s control. It is notoriously
difficult to mix nondeterminism and probability, so this is a limitation of the
concurrent games model presented here. Recent work by Marc de Visme on
event structures with mized choice [dV19] seems like a promising solution,
which remains to be fully investigated in the context of games.
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Chapter 6

Measurable concurrent games

The preceding chapters were concerned with the addition of discrete probability to
concurrent games, and we have seen that to make a strategy o : S — A probabilistic
it suffices to equip it with a function v : €(S) — [0, 1] assigning a coefficient to each
configuration.

We now aim for a generalised model, supporting probabilistic programs with
continuous datatypes (e.g. with a type of real numbers). It is well-known that the
“naive” approach to probability, in which coefficients are assigned directly to individual
elements of a set, is not satisfying in the situation where this set is uncountable. To
remedy this problem is the purpose of the measure-theoretic approach to probability,
where coefficients are instead assigned to certain subsets of elements. This leads to
the following notion. (A standard textbook on measure and probability theory is

[Bil0g].)

Definition 6.1. A measurable space is a set X equipped with a o-algebra, that
is, a set X x of subsets of X containing X itself, and closed under completements
and countable unions. (This implies ¥ x is also closed under countable intersections.)
The elements of X x are called measurable subsets of X.

If we are to generalise probabilistic concurrent strategies to a continuous setting,
the set of configurations €’(S) must therefore be turned into a measurable space. It
is tempting to consider a fully generalised model in which any o-algebra on €(S)
gives a valid strategy. But this approach quickly proves too abstract in the context
of game semantics, where in order to get notions of composition and identity, one
requires well-understood connections between the measurable space structure, on
one hand, and causality, consistency, polarity, and symmetry, on the other.

Accordingly, we are led to a more involved notion of measurable event structure
with symmetry. This the topic of Section 6.1. We will see that this can be used to
construct an appropriate bicategory of “measurable games and strategies”, using the
same method as in the first part of this thesis. Sections 6.2 to 6.4 are devoted to the
development of this model. We defer to the next chapter the addition of probability.
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Figure 6.1: A fibred event structure f : £ — E’.

6.1 Measurable event structures

The key idea is best conveyed using fibrations of event structures, so this will be our
starting point. The presentation we give in 6.1.1 agrees with that given in [PW18],
where measurable event structures were introduced.

In 6.1.2, we will investigate an alternative, more general notion of measurable
event structures. Roughly speaking, to do this we move from discrete fibrations to
presheaves via the standard correspondence — but there are additional subtleties. We
compare the two notions in the spirit of existing work connecting event structures
and presheaves [Win99, SW10].

This new notion of measurable event structure is more easily enriched with
symmetry, which we add in 6.1.3. We build a symmetric monoidal category Mess
(of "measurable event structures with symmetry”), in which the usual category Ess
of event structures with symmetry embeds fully and faithfully.

6.1.1 Fibrations of event structures

Consider a process outputting two real numbers r; and 75 consecutively, each chosen
non-deterministically in R. An event structure representation of it is pictured as F
on the left of the arrow in Figure 6.1. Each ‘real line’ represents an uncountable set
of events, all pairwise in immediate conflict. Only a portion of the event structure is
displayed — there are in fact uncountably many such “r;” real lines, one for each
r; € R.

Configurations of F can have one of three forms: ¢, {r}, or {ry,ro} where
r1,79 € E and r; — ro. Our approach involves projecting them to the configurations
of a base event structure E’, displayed on the right of the figure. The goal is to
encapsulate the uncountable non-deterministic branching in E’ in fibres over the
configurations of E’: &, {a1} and {aq, as}.

Observe that the projection map F — E’ is rigid (i.e. preserves causal dependency,
cf. Definition 3.23). Rigid maps are appropriate in this context because they provide
a well-behaved notion of fibre:

Lemma 6.2. If f : E — E’ is a map of event structures, then f is rigid if and only
if the induced map € (E) — € (E') is a discrete fibration of partial orders, i.e. for
every x € €(F), if y € fx for some y € € (L"), then there ezists a unique =’ € € (E)
such that ' < x and fz' =y.

Proof. (Only if). Suppose that f: E — E’is rigid and that we have x € € (F) and
y € €(F') such that y < fx. The restriction of f to z is injective by assumption,
and (f|,) 'y is necessarily the only 2’ < x such that fa’ = y. It is a configuration,
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since it is consistent (as a subset of z) and down-closed (f preserves and reflects
causal dependency, and y is down-closed).

(If). Suppose now that f is not rigid, so there are e, €’ € E such that e — ¢’ but
f(e) + f(€'). Consider z = [¢/] and y = [f(¢')]. Then y < fx, but since f(¢') € y
and f(e) ¢ y, there can be no 2’ € ¥(E) such that 2’ < x and fz' =y (such an 2’
would not be down-closed). O

Accordingly, given a rigid map f : E — E’ and a configuration z € ¢ (E’), the
fibre over z is the preimage f~ 'z} = {z € €(F) | fz =z}. f x S ye C(F'), we
write 7., : f7H{y} — f~'{x} for the restriction map determined by Lemma 6.2;
T2y sends z € f7H{y} to the unique w < z such that fw = .

Once the configurations of E are organised as fibres, we turn them individually
into measurable spaces. (The measurable space structure on € (F) can then be
obtained via a coproduct construction, but it will not play any useful role in the
development.) We then require that the restriction maps are measurable functions
in the standard sense [Bil08]:

Definition 6.3. A measurable function from (X,Xy) to (Y, 3y) is a function
m : X — Y such that every U € Xy has a measurable preimage: m~'U € Yy.

The measurable event structures of [PW18] are defined as follows. To avoid
confusion with the alternative presentation we use in this thesis (to be introduced
below), we call them measurable fibrations of event structures.

Definition 6.4. A measurable fibration of event structures consists of a rigid
map f: E — E’, and for each x € €(E’), a o-algebra 3, on the fibre over z, such
that for every x < y € € (F£), the restriction map r,, is measurable.

6.1.2 Event structures and presheaves

For any category DD, there is a well-known categorical equivalence between discrete
fibrations C — D and contravariant functors D°° — Set to the category of sets,
better known as presheaves over D.

With this in mind, the following is not surprising:

Lemma 6.5. For cvery measurable fibration f : E' — E, the following defines a
functor My : €(E)® — Meas, where € (E) is a partial order seen as a category
and Meas s the category of measurable spaces and measurable functions:

M;z— (fHr}, 2,)

(z S y) — Tay
Proof. Direct verification. O]

The category Meas inherits many properties from Set; in particular it is complete
and cocomplete. (But note that it is not cartesian closed [AT61].) Thus we refer to
functors C°® — Meas as measurable presheaves, which in this thesis we often
simply call presheaves; there should be no ambiguity.

The converse to Lemma 6.5 is not true, as many presheaves on E are not repre-
sentable in this way. The representable ones can be characterised via a “separatedness”
condition:
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Definition 6.6. A presheaf M : €(F)® — Meas is separated if it satisfies the
following condition: for every z € € (F) and u,v € M(z), if M([e] € z)(u) =
M([e] € z)(v) for every e € x, then u = v.

(Note that M is separated if and only if, writing U : Meas — Set for the forgetful
functor, the presheaf U o M : €(FE)°® — Set is separated, in the topos-theoretic
sense [MM12], with respect to the Grothendieck topology on € (E) generated by
covering families {[e] < = | e € x} for each z. The thesis does not make use of it.)

We give a characterisation of those measurable presheaves arising from measurable
fibrations. The result is a straightforward adaptation of the representation theorem in
[Win99]. By a nonempty presheaf we mean one for which there exists x € €' (E)°P
with M(z) # &J. Observe that a nonempty, separated presheaf is necessarily rooted,
in the sense that M({J) is a singleton space. (All representable presheaves must be

rooted, since for any f: E — F', f~H &} = {T}.)

Lemma 6.7 (Adapted from [Win99)). A presheaf M : € (E)°® — Meas is nonempty
and separated if and only if there is a measurable fibration f : E' — E such that
M = ./\/lf.

Although representable presheaves have a more intuitive operational behaviour
in terms of event structures, it is interesting to keep the extra generality, since the
model supports it. Thus we define:

Definition 6.8. A measurable event structure consists of an event structure
E and a presheaf M : €(F)® — Meas. Say (E, M) is representable if M is
nonempty and separated in the sense of Definition 6.6.

Before introducing maps of measurable event structures, we introduce symmetry.

6.1.3 Symmetry in measurable event structures

Fix £ = (E,~g) an event structure with symmetry. To make €& measurable we take
care to ensure that symmetric configurations of £ have isomorphic fibres. A natural
solution is to make M functorial with respect to the bijections in the isomorphism
family ~z. We begin by adding them to the category €' (FE):

Definition 6.9. The category of configurations % (£) of an ess £ is the sub-
category of Set with objects the elements of ¢’ (F), and morphisms generated by
inclusions maps x < y and symmetries 6 : x ~g y.

It is worth remarking that any morphism = — y in € (€) can be factored uniquely
as r ~p o’ < y, by the axioms of symmetry.

Definition 6.10. A measurable event structure with symmetry is (£, M)
where £ is an ess and M : € (£)°® — Meas is a functor. Say (£, M) is rep-
resentable when (E, M o) is, writing ¢ : €(F)® — € (£)°? for the canonical
inclusion functor.
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In the presence of symmetry, the issue of representability deserves further discus-
sion. Indeed the correspondence between separated presheaves and rigid maps of
event structures does not extend to this setting, i.e. there are rigid maps & — & for
which the induced functor € (£’) — €(€) is not a discrete fibration (and so does not
give a presheaf).

Nonetheless, if M : €(£)°® — Meas is nonempty and separated, and f : £/ — E
is the measurable fibration obtained (via Lemma 6.7) from the underlying measurable
event structure, then E’ can be equipped with an isomorphism family, so that
f & — & gives a discrete fibration €' (') — € (€) with corresponding presheaf
isomorphic to M. The isomorphism family ~p is set to contain bijections 6 : x ~ y
meeting the following conditions:

e fO e ~p and 0 is the bijection x = fx f;e fy=wy;
e The map M(f0) : M(fy) — M(fx) satisfies M(f0)(y) = =.

This construction is significant, because the world of measurable fibrations (with
symmetry) is generally more intuitive. (There are other ways to relate event struc-
tures with symmetry and presheaf models, see [SW10].)

We proceed to define a category Mess of measurable event structures with
symmetry. We begin by observing that because maps of event structures with
symmetry preserve both inclusion and symmetries, a map f : € — &’ induces a
functor €(£) — € (E’). We also use f to denote this functor, and f°P for the
corresponding functor €' () — € (E')°P. Then we define:

Definition 6.11. Let (£, M) and (£, M’) be measurable event structures with
symmetry. A map (£, M) — (&', M’) is amap [ : E — & of ess, together with a
natural transformation nt/ : M > M’ o f°P between functors ¢ (€)°P — Meas.

We can compose maps: for

fontf ntd
(&1, My) s (€, Ma) 55 (5, M)
L. (g,ntg)o(f,ntf) .
the composition (&, M) ——— (&3, M3) consists of the map g o f and the

natural transformation nt?°/ defined as (id e * nt?) o nt/, as in the following pasting
diagram:

C (&) nt/ | Meas

There is an obvious notion of identity (£, M) — (£, M), and associativity and unit
laws pose no problem:
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Lemma 6.12. Measurable event structures with symmetry and maps between them
form a category, called Mess.

We note the following basic fact about isomorphisms in Mess:

Lemma 6.13. If (£, M) and (£', M) are objects of Mess, f : & — &' is an
isomorphism of event structures with symmetry, and ntf : M > Mo f°P is invertible,
then (f,nt!) : (€, M) — (&', M) is an isomorphism.

Proof. Tts inverse is given by (f~!, nt/™") where

_ n fy=1g( fop)—1
nt!™ M= (Mo f) o () B Mo ()
The verification is straightforward. ]

Objects of Mess support a notion of parallel composition which extends® that of
Ess using the cartesian product in Meas, and the fact that €' (€ || £') = € (E)xE(E').

When (X, Xx) and (Y,Xy) are measurable spaces the product space (X x
Y, ¥ xxy) is the product of X and Y as sets, with o-algebra the smallest one
containing {U x V | U € ¥x,V € ¥y }. This is a categorical product in Meas (in
particular there are measurable projections X x Y — X and X xY — Y). We make
use of the canonical functor x : Meas x Meas — Meas in the next definition.

Definition 6.14. The parallel composition of (£, M) and (&', M) is € || &
equipped with the functor M || M’ defined to be the composite

CE | ENP =C(E)P x E(E)P MM, Meas x Meas = Meas.

Given (&, M), (E2, M), (&), M), (E5, Mb) and maps (f;, nt/i) : (&, M;) — (€], M)
for i = 1,2, define (fy,nt/t) || (fo,nt) = (f1 || fo, nt11/2) where the map ntill““i :
Mi(z1) x Ma(z2) = Mi(fizr) x Mb(fox) is given by ntf! x nt/2.

The empty ess J is assigned the terminal presheaf My : € (F)°® — Meas
mapping the empty configuration ¢ to the singleton space {}. (Note that this is the

only nonempty, separated presheaf on €' (¢¥).) It is easy then to check that Mess is
symmetric monoidal:

Lemma 6.15. (Mess, ||, &) is a symmetric monoidal category, where for objects
(A, My), (B,Mp), (C,Mc), the structural isomorphisms a,pc, 74,14 and byp
associated with the smc Ess (see Lemma 2.40) are equipped with natural transforma-
tions

nteane s (My || Ms) | Me > (Ma | (Ms | Me) 0 a%Fse
Nt s My || Mg > My ol
ntiA : My || Mg 5> Maory
nttas . My || Mg > Mg || M4 °bs

!This extension is canonical, and it might be informative to deduce this from some general
theory, recognising that Mess is a lax comma object of the form (%' (—)°P | Meas) in the 2-category
Cat. Then, because ¢ (—)°" : Ess — Cat is a symmetric monoidal functor and Meas is a
(cartesian) monoid in Cat, Mess inherits a canonical symmetric monoidal structure from Ess. The
presentation we give is more concrete.
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all of which are made up of canonical morphisms using the cartesian structure of
Meas.

The category Mess will form the basis of the model of measurable games and
strategies developed in the next section. Before proceeding with the development,
we briefly remark that Ess occurs as a subcategory of Mess; later we will use this
to show that the games model in the first part of this thesis is a special case of the
forthcoming “measurable games” model.

6.1.4 Embedding Ess into Mess

Every ess £ can be turned into a measurable ess with trivial structure: consider
the presheaf 1¢ : € (£) — Meas, defined by 1¢(x) = {} for every x. Then the pair
(€,1¢) is representable, and has corresponding fibration the identity function &€ — £.
A measurable event structure of this form is called discrete, because the induced
o-algebra on €(FE) is discrete [Bil08], i.e. every subset is measurable.

Accordingly, we write disc(€) = (€, 1¢), and it is easy to check (using that 1 is
terminal in the presheaf category) that this defines an embedding disc : Ess — Mess.

6.2 Measurable games and strategies

We finally get to the development of a model of games and strategies based on
measurable event structures with symmetry. The story relies on the development in
Chapter 2, and unfolds in essentially the same order. The first step is the addition of
polarity, which is straightforward: a measurable essp is a measurable ess (A, M 4)
where A is also an essp.

We call measurable game with symmetry a tuple A = (A, M4, >4, =7, =)
such that (A, =4, ~,,>"%) is a game with symmetry (¢f. Definition 2.12) and
((A,=4), M,) is a measurable essp. Say A is a measurable arena if the un-
derlying game with symmetry is an arena.

With the notion of game in place, we define strategies.

Definition 6.16. A measurable strategy on a measurable game A consists of a
measurable essp (S, M), and a map (o,nt?) : (S, Ms) — (A, M), such that:

e the underlying map o : S — A is a strategy;
e (0,nt?) is measurably receptive: if z €~ y in €(5), then

Ms(zSy

Ms(y) L Ms(x)
ntgl lntg
MA(O'y) M—>A(ngay) MA<O'Q})

is a pullback in Meas.
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Receptivity is there to prevent Player from constraining Opponent’s behaviour
further than is allowed by the game. In the measurable setting, any negative extension
of a measurable fibre must agree with the corresponding extension in the game. This
condition serves to ensure a well-behaved interaction with measurable copycat, the
identity on a measurable game, which we introduce below. We will shortly give a
characterisation of pullbacks in Meas.

Measurable strategies compose much like strategies, via a pullback construction
followed by a hiding step. We first investigate pullbacks in Mess.

6.2.1 Pullbacks in Mess

We begin with a characterisation of pullbacks in Meas. Suppose X, Y, Z are mea-
surable spaces and g : X — Y and h : Z — Y are measurable functions. The
pullback

Pz
H1l h
X 25 vy
exists and has underlying set the pullback in Set: P = {(z,2) e X xZ | g(z) = h(z)},
with IT; and II, the usual projections. The associated Y. p is the subspace o-algebra

induced by Y x«z, using that P € X x Z.
We then deduce the following;:

Lemma 6.17. For £ € Ess, the category [€(€)°P, Meas] of presheaves on €(E)
(and natural transformations between them) has all pullbacks.

Proof. Tt is standard that limits exist in a functor category whenever they exist in
the codomain category. Note that they are computed pointwise. O]

We use this to construct pullbacks in Mess. Like Ess, Mess does not have all
pullbacks. However when

SAT
PN
S \ T
A
is a pullback square in Ess, and (o,nt?) : (S,Ms) — (A, My) and (7,nt7) :

(T, Mz) = (A, My), the ess S A T can be equipped with the functor Mg, :
% (S A T)® — Meas obtained as the pullback

MS/\'T
MS © H(l)p MT o ng
nt?oIl7P Agp
Myo (o AT)P
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in [€(S A T)°®,Meas], which always exists by the previous lemma. Call the
projections nt'!* and nt!2, respectively.

Lemma 6.18. The measurable ess (S A T, Mgsn7) is the pullback of (o,nt”) and
(1,nt™) in Mess, with projections (I1, nt™) and (II,, nt'2).

Proof. Suppose that

(Q, Mg)
(pl,ntm)/ wtw)
(S, Ms) (T, M)
(o,nt?) (7,nt7)
(-A: MA)

commutes in Mess. Because S A T is a pullback of event structures with symmetry,
there is a unique map w: @ — S A T making

Q
P1 ? p2
SAT
CEN
S T

commute. For abstract reasons [ML13], pre-composition with the functor w :
% (Q)°® — € (S AT) preserves limits (and a fortiori pullbacks), so that the pullback
cone for Mg, 7 in [€(S A T)°P, Meas] can be turned into one in [€(Q)°P, Meas]|:

MS/\T owP

— T

M o TI{P o wP M4 0 II5P o weP

Myo (o AT)PowP
Finally, because the following commutes (using that p; = II; ow and py = Il o w)
M o TI{P o wP Mg o TP o weP

nt? om moof’p

Mo (T®0)%P ow?P

there is a a unique natural transformation Mg —> Mg 70w satisfying the necessary
properties. ]
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6.2.2 Composition of measurable strategies

A measurable strategy from (A, M4) to (B, Mp) is a measurable strategy on
(A, M)t || (B, Mp), where the dual measurable game (A, M)t is (AL, My).
(This is well-defined: €' (A) = €(A).)

Interaction of measurable strategies. At this point it helps to introduce some
lighter notation. From now on, we will use A4,B,S,7,... to denote measurable
essps, where the underlying data A, B, M 4, Mg, ... is kept implicit. Similarly we
write o, 7, ... for maps, omitting the components o, 7, nt?, nt”, etc.

So to compose 0 : S — A’ || Band 7: T — B* || C, start with the pullback

T®S

S

o
s|c
Al

B
in Mess. The measurable essp 7 ® S is the interaction of o and 7.
We note an important property of the interaction:

Lemma 6.19. Suppose z—c°y € € (T ® S), and assume e is a o-action (i.e. e is
a positive event of S). Then,

Mres(y) TETY s Mogs()

I
nty ll lntgl

Msje(ys || yo) ———— Msje(zs || zc)

18 a pullback in Meas.

Proof. Consider the interaction cube:

Mres(y) » Mrgs()
J/ntHQ lntrb
Mur(Wa |l yr) Myr(za || 27)

ntl1

Msje(ys || ye) Msjc(zs || vc)

lntac lnt0||c

Musiea lys | yo) —— Musje(za | v5 || zc)
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The left and right faces are pullbacks by definition. By measurable receptivity of 7
(combined with the obvious fact that

Mua(ya) —— Mu(za)

| |

Ma(ya) —— Mu(za)

is a pullback), the bottom face of the cube is also a pullback. Then, standard
categorical reasoning shows that the top face is a pullback, which is the desired
result. O]

Of course, the dual result holds: if z—c°y for a 7-action e, then

Mrgs(z—y)

Mres(y) » Mres(x)

I
nty Ql lntEQ

MuarWa || yr) —— Myr(za || 27)

is a pullback.

Hiding. The ess 7 ® S is defined as usual, by restricting to the wvisible events of
T ® S. There is a functor

[—]:€(TOS)—>C(T®S)

which assigns to each configuration its unique witness in the interaction. Then, the
functor Mrgs : € (T © S)°® — Meas is simply defined as M7gs o [—]°P. In other
words, for every © € €(T © S), Mras(x) := Mrgs([z]).

We define the associated natural transformation nt™” : Myos = Myrco (TO
o) as

nt7®7 T
Mires(t) = Mrgs([z]) = Musie((r ® o)[z]) =5 Myje((r @ o)z).
Lemma 6.20. The composition T Qo : T OS — A* | C is a measurable strategy.

Proof. Because strategies are closed under composition, all that must be checked is
the measurable receptivity axiom.

We first discuss negative extensions in the interaction 7 ® S. Suppose xt—cy €
% (T ® S) for e a negative (so visible) event; wlog assume e is an A-move, so
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rg—Meyg and x4—<"®)ey - We reason once again using the interaction cube:

Mres(y) y Mres(v)
Majr(ya |l yr) Majr(za || 27)
Msjc(ys || yeo) Msjc(zs || zc)

| |

Musica | ys |l yo) —— Muysje(za || v5 || z¢)

Since yr = xr, it is straightforward to check the bottom face is a pullback. The left
and right faces are pullbacks, so the top face is a pullback. By measurable receptivity
of g, the front face is a pullback. We paste the front and top pullback squares to get
that

Mres(y) » Mres(z)

lnt;(@ff lnt;(@a

Musica | ys || ye) —— Muysjc(za || z5 || zc)

is a pullback. We easily deduce that the following is also a pullback:

Mres(y) ———— Mras(e)
lTl’A”COl‘lt;®U lﬂ'A“COHt;®G
Maje(a || yo) —— Mujc(za || zc)
Going back to the composition 7O g — let z,w € €(T ® S) with z—<"w.
By courtesy, no negative event can immediately depend on a non-visible one, so

[z]—<¢[w] in €(T®S) for some negative event e, and we are in the situation discussed
above. The fact that

Mrgs([w]) ———— Mrgs([z])
lﬂAHcont;@o lﬂ'AHCont;@U

Mujc(wa [| we) —— Muje(za || zc)

is a pullback corresponds precisely to the measurable receptivity of 7 ® o. O

6.3 The pseudo-double category .#ZY¢

Measurable games and strategies can be organised into a bicategory, which we will
call MG. This is a generalisation of the bicategory G defined in Chapter 2, and we
will see that it retains the necessary structural properties.

In the same way as for G, we start by showing that there is a pseudo-double
category .#%¢ which is isofibrant and symmetric monoidal. We will then focus
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on its horizontal bicategory (in the sense of Definition 2.29) and show it admits a
sub-bicategory which is symmetric monoidal closed, has finite products and supports
a linear exponential pseudo-comonad.

The purpose of this section is to give the details of its construction.

6.3.1 Measurable copycat

For a measurable game A, the construction of €4 : U4 — At | A goes in the
following way.

Recall that configurations of (C,4 are of the form x || y for some z,y € € (A) such
that y £ z (that is, y 2~ x ny <% x). Moreover, morphisms z || y — 2 || w in
the category €' ((C4) are all of the form f || g for some f:2 — zand g:y — w
in ¢ (A) which agree on x N y; so in particular from such a pair f, g we can define
fng:zny—znw.

We define the presheaf M, : €((C4)°® — Meas as follows. For an object
z ||y, Ma, (x| y) is defined as the pullback

Mo, (|| y) —2— Mualy)
lHl lMA(CEﬁyH’y)
MA(QS) MA(iv M y)

Mp(zny—z)

Then, to define the action of M, on morphisms, observe that for any f || ¢ :
z || y — z || w the following diagram commutes:

M, (2 || w) ————— Mau(w)

Mu(g)

M_A(fﬁg M_A(y)

|

> Ma(z ny)

where the dashed arrow is the mediating map for the pullback M, (x || y); this is
what we take as M, (f || 9)-

It remains to define nt®4 : M, — Myijg0«. For z || y € €(C.), ntyi is
the pairing (II;, Ily) of the pullback projections, using that M ija(ca(z || y)) =
Ma(z) x M4(y), as shown below:

M, ([l y) L

~ nt

Mu(x) x Maly) —— Ma(y)
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It is possible to recover M, by considering the appropriate pullback in the functor
category [€((C 4)°P?, Meas]. Then, nt®4 arises as a mediating morphism in a partic-
ular diagram. This implies the required functoriality and naturality properties. We
omit the details.

Lemma 6.21. The map cq: €y — At || A defines a measurable strategy, called
the measurable copycat strategy on A.

Proof. We check it is measurably receptive. Suppose z || y,z || w € €((C4) with
z ||y <™ 2| w. We must check that

Mourjalz || w) —— Myra(z || v)

is a pullback. Observe first that because x =7 z and y S w, it must be the case
that xt ny = 2z nw.

In any category it can be established that the dashed square below is a pullback,
provided the other squares in the diagram commute,

A X B’

I

]

]
+
"%

and our diagram above is an instance of this construction. This can be done by
checking the universal property directly; we omit the details. O]

Unsurprisingly, measurable copycat is not a strict identity. We proceed to
generalise the 2-cells of ¢ to the measurable setting. This will allow us to define the
associators and unitors of .Z% in 6.3.3.

6.3.2 2-Cells

The 2-cells in .#Z% are a natural generalisation of those of ¢, which were of the form

S ! y S
ol ~T lo‘l
At || B - y AL || B
g-|lh
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To generalise this we first define the symmetry relation between maps of measurable
essps.

Lemma 6.22. Let f,g: &€ = &' If [ ~ g, the family ¢ = {@.}. (where p, =
{(f(e),g(e)) | e € x}) is a natural isomorphism between f and g seen as functors

() — C(E).

Proof. For x € €(£), , is a morphism fr — gz in €(£’). Naturality is verified
directly. [

We can now define:

Definition 6.23. Maps of measurable essps (f,nt/), (g,nt?) : (€, Mg) — (&', M¢/)
are symmetric (written (f,nt/) ~ (g,nt%)) if f ~ g and the following diagram
commutes in [¢(£)°P, Meas] :

f
Mg —"— Mgio foP

lntg /
./V[g/ op

Mg/ @) gOP

(Note that ¢ : f = g is also a natural transformation g°® —> f°P.) They are
positively symmetric if in addition, f ~T g.

Then, maps between measurable strategies are given by:

Definition 6.24. For measurable strategies 0 : S — A" || Band o' : S — A" | B,
a map from ¢ to ¢ is (f,g,h) where f is a map of measurable essps and g, h are
maps of measurable games (_i.e. maps of measurable essps whose underlying map is
a map of games), such that

§ f N §/
gl ~t lg’
Al H E gJ‘”h ’ AIL H El

Vertical composition of maps of measurable strategies is done as in ¢. We must
verify the additional axiom in the definition of positive symmetry; this is not difficult
and we omit the details.

Horizontal composition is more involved. Suppose we have maps
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To obtain the necessary map gO f: TOS — T © &', we must equip g © f with a
natural transformation

nt?> s Mras > Myas o (gO f)%.
Explicitly, this is a family of maps
ntf2h, o : Mras(er ©zs) = Mres((9O f)(ar © zg))
and to give this is to give a map Mrygs(zr ® rs) > Mrgs((g® f)(zr ® x5)) for

cach 7 © xg. Recall that (¢ ® f)(zr ® xg) is a configuration yp» ® yg € €(T" ® ')
with the property that there exist bijections

¢ frs || hsve Zgycr ys || yer Yz || grr =aqr yar || yr

such that the following diagram commutes:

h1$,4 || hQZL‘B || h3$0

GDS”’I/ maaleor

o'(fxs) || hsze hiza || 7' (g2r)
<m Ay
yar || ys || yer

(where as usual the maps ¢, and ¢,, are canonical bijections, obtained by the
positive symmetry requirement in the definition of maps of strategies).
Consider the following diagram, where we write h = hy || ha || hs:

Mres(zr ® xg)
Msje(zs || z¢) Muyr(za || 27)

ntV wjum nthoy wug

Msrjer(frs || hsze) Mo (h(wa |l 25 || 2¢)) My (hiwa || gor)
- ~

\ M yrprer(@agllC) M yrprer (Allear) / ,

nte lIC K ~ ntA I
Msijer@) | Musrer (0 (fas) || hszc) My (hza |l 7'(g2r))  [Maryr @)

MS/HC/(yS/ H yc/) MAIBch((U'/HC,)¢ MA/BIC/((A/HT/)’JJ) MA/HT/(yA/ ” yT’)

‘/%

)
Muaysie(ar | ys || ver)

nto’lic’

This commutes because every sub-diagram does: the top square commutes by
definition, the bottom-left and bottom-right squares are instances of the naturality
axiom for nt”I€ and nt*'l”, the internal square commutes by the discussion of
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the previous paragraph, and the remaining two commute because of the symmetry
requirement in the definition of maps of strategies.

By definition, Mygs (yr ® ycr) is obtained as the pullback of the bottom-most
two maps in the diagram, so the universal property gives a map Mrgs(xr ® z¢) —
Mres (yr ® yer) which we take as nt?&f

zrQTs”

Lemma 6.25. The family of maps nt?®/ is a natural transformation, and go f =
(g ® f,nt997) is a map of measurable strategies.

Proof. For the sake of readability, we have given the componentwise definition of
nt9®/ above, but observing that every element of the diagram only involves natural
transformations, the family nt?®f can be directly obtained as a mediating map in
the functor category [€(7T © 8)°P, Meas]. This makes it a natural transformation;
we omit the details.

It remains to check that g ® f is a map of measurable strategies. By definition of
nt9®/ | for any x7 © g we have that the following commutes:

nt!]@f

Mres(zr ® xg) > Mres(yr ® ys)

lntho(r(@a) lnt"'/@[’/

MA’HB’HC/(hle | howp || hsvo) —— MA’||B’||C’(yA’ | vz |l yer)

where the bottom arrow coincides, after hiding, with the image under of M 45/ ¢/ of
the canonical bijection ¢ obtained from the symmetry (hi || hs) o (T© o) ~T (7' ®

a')o (90O f). O

6.3.3 Structural isomorphisms

We will get a pseudo-double category after specifying some structural 2-cells: an
associator a,,, , - (pOT)Oa = pO(rOg) forevery o : S - A* | B,z: T — B" || C

—B,LQ

andB:E—>QL | D, and unitors Agzccﬁ®gz>gand£0:g®a:A:>g.

Associator. We start with the associator, which has underlying map of essps the
associator in ¢, a globular map a,,,: (6 OT)Op= 0O (7 ©p). We adjoin to it a
natural transformation

nt&eme M(R@T)@S > MR@(T@S) o Ozgg_’p,
whose components must be measurable functions of the form
Mrenes((Tr®27) ® 25) = MreTes)(Tr® (17 ® 5)).

This is obtained canonically since both the domain and co-domain can be seen to
rise as (ternary) pullbacks of the same diagram.
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Unitors. Recall that the unitors in G are strong isomorphisms

Po : SOWU 4= S
)\UI@B@S=>S

defined for every o : S — A’ || B, whose action on configurations is given in
Lemma 2.22. Let 0 : S — A™* || B be a measurable strategy. In the proof of the next
lemma, we extend A, to an isomorphism of measurable strategies:

Lemma 6.26. For any o : S — AL || B, the functors Meues and Ms o X% are
naturally isomorphic, and the induced family of maps cg O o = o is natural in o.

Proof. We give an isomorphism M,es © A;t — Ms. Lemma 2.22 characterises

the action of A\, on configurations; its inverse A\, ! sends zg € €(S) to (z% || z5) Oz

where % is the maximal sub-configuration of g whose maximal B-moves are all

positive, and oz = x4 || #3;. Note in particular that 273 €~ zp and z% <~ zg.
First, by definition of M, and using that zj; n x5 = 773,

Mg (@ || 25) —— Mp(%)

In. Jo

Mp(rp) =28 My (%)

is a pullback, so in particular I, is an isomorphism. Observe also that

th

M@B@:B | 25) —228 Mg(ah) x Ma(zp)

H2 \ lﬂ'l
HJ;B

Z‘
MB iEB MB xB

commutes, since nt®s is defined as the canonical injection of the pullback into the
product.

By definition, we also have M, 0s((275 || 28) © %) = Magzes((2h || z5) ® %)
and this is the pullback

MCCB@S((Q:B | x5) @xs

— T

Mss(zs || v5) My (za || 25 || 2B)

m ntAles

Musis(za || 2% || 2B)

By composing on the left with projections Mgs(zk || z5) => Ms(z%) and
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Masys(ea || 2 || 25) 22T A4 || 2%), we derive that

Megos((@h || 28) © 7%)

Ms(z Myjcs(xa || 25 || 2B)

\ MX(ﬂlonth)

Mys(ra || 23)

is a pullback. Combining this with the remarks in the previous paragraph, we get
that

Mages((2h || v8) ©

%)

Ms(x Mujes(@a || 2 || 25) —— Mus(za || 25)
/
\ Mg (za)x(m10ntCB)
K
Mus(wa || 23) Muys(@allzt—ealles)

commutes, and hence (rearranging) that

Mwsos((@p || 28) © 7§) » Ms ()

| |

Mus(za || zB) » Mas(ra || o%)

Mysallzlh—zales)
is a pullback. But by measurable receptivity of o,

Ms(zicas)

Ms(zg) > Ms(xk)

nt”l lnt”

Mus(ra || ) > Mys(za || 2%)

MA“B(iEAllIB‘—’xAllIB)

is a pullback, and pullbacks are unique up to isomorphism: we get a mediating
isomorphism Mes((z% || z5) © 2%) = Ms(xs).

The proof that this is a natural transformation is a straightforward diagram chase
using naturality of nt”. The proof that the induced A, is natural in ¢ is very similar,
and makes use of the naturality of A, and the additional axiom in the definition of
symmetry for maps of measurable essps. The details are easily recovered. O]

Theorem 6.27. There is a pseudo-double cateqory .#YG having
e objects: negative, measurable games;

e vertical morphisms: maps of measurable games;
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e horizontal morphisms: measurable strategies; and
o 2-cells: maps of measurable strategies.
The category of objects is written MGy and the category of morphisms MGy .

Proof. We have given all the data. It remains to verify the two coherence axioms —
this is done by instantiating the universal property of the appropriate pullback. [

We proceed to study the categorical structure of measurable games. In passing,
we note that the functor disc : Ess — Mess defined in 6.1.4 induces a pseudo-
double functor (the standard notion of morphism between pseudo-double categories)

disc: 9 — #9Y.

6.4 Categorical properties

In Chapter 2, we studied in detail the structure of the bicategory G, and found that,
given the appropriate data, it is a symmetric monoidal closed bicategory with finite
products and a linear exponential pseudo-comonad. Proceeding in very similar steps,
we show that MG enjoys the same properties.

6.4.1 Symmetric monoidal closed structure

We use Shulman’s theorem (Theorem 2.39). A map f : A — B which is courteous,
receptive, ~-receptive and measurable receptive can be lifted to a strategy f : A - B,

and if f* satisfies these properties then we get a colifted strategy Jv” B+ A. So
MY is isofibrant. B

We have seen (Lemma 6.15) that Mess is a symmetric monoidal category, and
for the same reasons, so is Messp, the category of measurable essps. This induces a
symmetric monoidal structure on both MGy and MG, with all definitions the same
as for ¢4. (There is one minor subtlety: to ensure that the functor « : MGy — MG,
sends the monoidal unit of MGy to that of MG, we must choose the latter to be
(© 4, rather than . The two are equal as essps but only isomorphic as measurable
essps.)

Lemma 6.28. The pseudo-double category MY is symmetric monoidal.

By Theorem 2.39, its horizontal bicategory H(.#%) is symmetric monoidal. We
will focus on a sub-bicategory with finer structure. We apply the same restrictions
as for G and an additional one:

Definition 6.29. A measurable essp £ is rooted if Mg () is a singleton.

Say a measurable game/strategy is rooted when the underlying measurable essp
is. Rooted strategies are closed under composition and tensor, and moreover the
copycat strategy on a rooted game is itself rooted. So we consider the bicategory
MG having:

e objects: negative, rooted measurable arenas;
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e morphisms: negative, well-threaded, rooted measurable strategies;
e 2-cells: maps of measurable strategies.

(A measurable strategy is well-threaded and negative just when the underlying
strategy is.)

The symmetric monoidal structure in MG, inherited from H(.#%), is closed. For
(negative) measurable arenas B,C we have B — C = (B — C, Mp_.¢), where B — C
is defined as in Chapter 2 and Mp_.c(z) = Mpijc(xz), where x : B— C — B+ || C
is the canonical map. For any A, B, C, there is an isomorphism of categories

®:MG[A B —-C] - MG[A®B,(],

and to show that MG is closed it remains to give for 0 € MG [A,B — C| an
isomorphism evge © (0 ® «p) = $(0) so that this is natural in 0. We omit the
details: the isomorphism of essps is the same as for G and for the measurable
structure the proof is analogous to that for composition with copycat.

6.4.2 Products

Additionally MG has finite products. The terminal object is the same as the
monoidal unit, 7.e. the empty measurable essp.

For binary products, we construct from measurable arenas A and B a measurable
arena A& B = (A & B, M agp) with Mags(d) = {+}, and M ep(x) defined as
M(x) or Mp(z) according to whether # € A or x < B. The projections are
obtained by co-lifting as for G, and this makes A & B into a product.

6.4.3 A pseudo-comonad

The pseudo-comonad ! on G is extended to one on MG. We first describe the !
construction on an arbitrary measurable essp. For E € Messp, let |1€ = (1€, M)
where for o = ||;ew z; € €(1E),

Mig(z) = H Me(;).

€W

The action of M¢ on morphisms of €(!€) is well-defined: for inclusions this is
clear, and for symmetries, recall that if y = ||;e, v; € €(I€) a bijection 0 : z =gy
is determined by a bijection 7 : w — w and symmetries 0; : z; =g yr;). We define

M;g(e) as
[TMew) =TT Me(we) =22 [ Me(o).

€W 1Ew €W
The maps d¢ : 1! — 1€ and g : £ — € are turned into maps of measurable essps,
with transformations nt? and nte obtained via standard product manipulations which
we omit. Restricting to positive arenas, we have:

Lemma 6.30. The triple (!,04,c4) satisfies, up to ~*, the laws for a monad on the
subcategory of Messp having positive arenas as objects.
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Proof. Direct verification. n

We can then lift ! to a pseudo-comonad on M G. The proof and associated data
can be given via the same steps as for G. Likewise, the “Seely” adjoint equivalence
map is obtained exactly as in G. Because the conditions of Theorem 2.58 are
satisfied, we conclude:

Theorem 6.31. The Kleisli bicategory MG, is cartesian closed.

The cartesian closure of MG is interesting not least because Meas itself lacks
this property, and there is an embedding of Meas inside of M G. The embedding is
obtained as follows.

Any measurable space X can be represented as the negative arena G(X) = {© —
@} with Mgx)({©,8}) = X. Then, it is easy to check that for any measurable
function f: X — Y there is a map of games G(f) : G(X) — G(Y), defined as the

identity map of essps and such that nt{%fe)a} = f. This can be lifted to a strategy

G(f) := Q/(\f) : G(X) - G(Y). From here G is easily turned into a faithful, injective
on objects pseudo-functor.
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Chapter 7

Probability in measurable games

We finally come to the construction of a concurrent games model allowing for non-
discrete probabilistic behaviour. Games and strategies now carry additional structure
and can be enriched with probability measures in a natural way, when given access
to the tools of probability theory. In this chapter, we describe how the compositional
machinery of strategies, and the associated bicategorical structure, can be adapted
to this new setting.

In moving from discrete to continuous probability, we seek to replace valuations
on strategies with the more general notion of measures on a measurable space. It
turns out that the notion of valuation (v : €(S) — [0, 1]) used in Chapters 4 and 5
does not generalise well. The alternative notion of conditional valuation discussed in
Chapter 3 (see Definition 3.1) is a more appropriate choice.

It is the polarised nature of strategies which makes valuations unsuitable, and as
this plays an important part in the technical development, we devote a section (7.2)
to a comparison of the two approaches in the context of event structures without
polarity. Sections 7.3 and 7.4 are concerned with the construction of the games
model. We discuss in particular how this generalises the model of Chapter 3.

7.1 Probability theory

7.1.1 Measures and kernels

A sub-probability measure on a measurable space (X,¥x) is a map p: Xx —
[0, 1] such that p(&¥) = 0 and such that for any countable family {U;}ic; € Xx with
U nU; = & for every @ # j, we have p(l4), U;) = >, u(U;). For x € X, the Dirac
measure 9, is defined as 0,(U) = 1 if z € U, and 0 otherwise. Finally, given a
sub-probability measure ;1 on X and a non-negative measurable function g : X — R,
the integral { _. g(z)u(dz) is a well-defined element of [0, o0).

A sub-probability kernel [Gir82] from (X, Xx) to (Y, Xy) is a map

kiszy—)[O,l]

such that for every x € X the map k(z, —) is a sub-probability measure, and for
every U € Xy the map k(—,U) is measurable with respect to X ], the subspace
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o-algebra of ¥g. Such a map provides a notion of sub-probability measure on the
space Y parametrised by elements of X; we write k : X v~ Y when k is a kernel
from X to Y.

Importantly, kernels can be composed: given k: X v~ Y and h : Y v 7| their
composition is the map hok : X x Xz — [0, 1] defined as

(x,U) — J Yh(y, U)k(z,dy).

This is still a sub-probability kernel, and the Dirac kernel § : X v~ X (defined
so that for every x € X the measure 6(z,—) on X is the Dirac measure at x) is the
identity for composition of kernels.

7.1.2 Products

If X and Y are measurable spaces, recall from the previous chapter that the product
space X x Y has o-algebra generated by the “rectangles” U x V', with U € ¥ x and
VeXy. If X and Y are equipped equipped with sub-probability measures px and
Ly, respectively, the product measure px ® py on X x Y is uniquely determined
by its value on rectangles:

(1x @ v ) (U x V) = i (U) x puy (V).

Using this we can also define the product of kernels: if £ : X v~ Z and
h:Y v W, then the kernel k@ h: X x Y v Z x W is defined by

forany x € X, yeVY.

7.1.3 Standard Borel spaces

To define our model of probabilistic strategies, we must ensure all measurable spaces
are standard Borel.

Definition 7.1 ([Kal06]). A measurable space X is standard Borel if it is countable
and discrete or measurably isomorphic to R™ for some n € N.

The restriction is common in probability theory, and many standard theorems
hold only for this restricted class. But it is sufficient for our purposes, and moreover
the class of standard Borel spaces is closed under all the constructions of the model.
We will need the following result:

Lemma 7.2. Let XY, Z be standard Borel spaces, andlet f : Z — X andr : Y — X
be measurable functions. Consider the pullback

WLZ

oD

y X, X

of v along f. Then:
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o ForeveryyeY, ze Z, and U € Ey, the sections U, = {z € Z | (y,2) € U}
and U, ={yeY | (y,z) e U} are in X and Xy, respectively.

o Ifk:X x Xy — [0,1] is a sub-probability kernel satisfying k(x,Y\r—"{z}) =0
for every wm, then the map k% : Z x Sy — [0,1] defined by k#(2,U) =
k(f(2),U.) is a sub-probability kernel such that k¥ (z, W\(Ily)"*{z}) = 0 for
all z € Z.

Proof. The proof of the first statement is standard. Let &k : X x Xy — [0,1] be a
stochastic kernel, and let z € Z. Then k#(z, —) is a sub-probability measure, because
k(z,—) is countably additive and (—), commutes with countable disjoint union.
Now, for each U € Xy, we must show that k% (— U) : W — [0, 1] is measurable.
For any U of the form Ey x Ey, and for any V € Y], we have k#(—, U)~'V =
{ze Z | k(f(2),U,)eV}={zeE, | k(f(z),Ey nr {f(2)})) e V}u{z e Z2\FE, |
k(f(z), &) € V} but by assumption k(f(z), By nr~{f(2)}) = k(f(z), Ey) for any
z, s0 we get fH(k(—, Ey)™'V n Ez) u fHk(—, &) 'V\Ey), a measurable set. So
the set D of U € Yy such that k#(—,U) is measurable contains all generating
elements. To show D = Xy, by the A-7 theorem [Bil0§] it is enough to show that D
is closed under complements and countable disjoint unions. This is easily checked
using standard measure-theoretic arguments. O

From now on we assume all measurable essps are standard Borel.

7.2 Probability in measurable event structures with
symmetry

Throughout this section consider a fixed (standard Borel) measurable event structure
with symmetry, (£, M), without polarity. The absence of polarity suggests that
a single agent is responsible for all events in the process, and our goal is to make
stochastic the behaviour of this agent. Indeed an alternative approach might be to
make all events positive; this will be reflected by the various notions of valuations
we consider, in which plain extensions < play the role of positive extensions.

7.2.1 Conditional valuations

Let us restate Definition 3.1 in this context:

Definition 7.3. A (discrete) conditional valuation on an event structure with
symmetry £ is a family (v(y | z)).c, of coefficients in [0, 1] satisfying

(1) v(z | z) =1 for all z € €(E);
(2) ifz cy<zthenv(z|x)=v(y|x)v(z|y);

(B)iff:x=gyand <0 : 2’ =gy, thenv(z’ | z) =v(y | y).
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(4) ifz S yi,...,Yn, then

2<_1)|I|+1U(Uie1% |z) <1
i

with the sum ranging over the I < {1,...,n} with J,.; v; € €(F).

For the measurable ess (£, M), we generalise the above by considering a family
of kernels k;, : M(z) v~ M(y) (labelled k¢, when there is a risk of confusion),
indexed by extensions = € y in € (E).

The formal definition is as follows:

Definition 7.4. A conditional valuation on a measurable ess (£, M) consists
of a sub-probability measure pg on M(J), and a family K = (kg y)scyes () of
sub-probability kernels k, , : M(x) > M(y) satisfying the following conditions:

e (Identity) k. (u, —) = ¢, for every u e M(x);

(Composition) if x € y < 2, then k, , = ky, 0 k. ;

(Drop) if x < y1,...,y, and u € M(z), then
S0y MU 9)) < 1,
1 1€l

where [ ranges over nonempty subsets of {1,...,n} such that | J,.; y; is consis-
tent;

(Concentration) for all u e M(z), kyy(u, M(y)\M(z < y) Hu}) = 0;

(Symmetry) if 0 : v =gy and § < 0’ : 2’ =g ¢/, then the kernels k, ,» and k,
are equal modulo the isos M(z) =~ M(y) and M(z') = M(y).

Consider for instance the (representable) measurable ess drawn as a measurable
fibration below (previously used in Chapter 6):

Tle]P) > aq

R - a2

T 2F€

Here the base event structure E has trivial symmetry, and the fibres are defined
as M(@) = {x}, M({a1}) = R, and M({a1,a2}) = R x R, with the restriction
map M({a1} — {a1,az2}) acting as the first projection. Then we could for instance
define kg (4, to be the uniform measure on [0, 1] (extended to the reals by assigning
measure 0 outside of the interval), and K4,} {a; a0} (71, —) to be a uniform distribution
on [ry,m + 1].

Given a conditional valuation on (£, M), we can define a measure y, on M(z)
for each z € €(E) as p1,(U) = (kg (=, U)dpug.

An interesting question is the following: what properties are needed of a family
(,ux)xgg( g) of measures for it to be induced by a conditional valuation in this way?
An answer is given by the disintegration theorem [Kal06] of probability theory, but
it is outside the scope of this thesis.
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7.3 Probability in measurable strategies

7.3.1 Measurable race-freeness

In the discrete model, to make strategies probabilistic we required that the games
be race-free, meaning that there should be no immediate conflict between moves of
opposite polarity.

In measurable games we generalise this condition in a natural way using a pullback
condition:

Definition 7.5. A measurable essp (£, M) is race-free if for every x € €(F), if
x <t yand x € z, then z Uy € €(E) (i.e. £ is race-free in the usual sense), and
moreover the diagram

My o z) 2L M)
M(Z‘—&u%)l lM(r‘—nu)
M(z) —2E20 4 M ()

is a pullback in Meas.

It is the case also in measurable games that a strategy on a race-free game is
necessarily race-free:

Lemma 7.6. If A is race-free and o : S — A is a measurable strategy, then S is
race-free.

Proof. For x € €(S), if t <" y and © <~ z, then z U y € €(S) by Lemma 3.15, and
the cube below commutes (horizontal arrows are restrictions maps, and vertical maps
are instances of nt?):

Ms(y v z) ——— Ms(y)

| |

Muloy v oz) Ma(oy)

Ms(z) Ms(m)

| |

MA(UZ) E— MA(OZ%)
The front and back faces are pullbacks by receptivity of o, and the bottom face is a
pullback by race-freeness of A. So the top face is a pullback, i.e. S is race-free. [

7.3.2 Conditional valuations on measurable essps

Definition 7.7. A conditional valuation on a race-free measurable essp (S, M)
consists of a measure iz on M(F), and a family K = (ks )zc+yew(m) of stochastic
kernels &, , : M(z) v~ M(y) satisfying the following conditions:
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(Identity) ky .(u, —) = 0, for every u € M(x);

(Composition) if x = y = 2, then k, , = ky . 0 k.

(Drop) if x <* yy,...,y, and u € M(x), then

Z(_l)u|+1kvaieI Yi (U, M(U yz)) < ]-7

I el

where I ranges over nonempty subsets of {1,...,n} such that | J,.; y; is consis-
tent;

(Concentration) for all u € M(z), kyy(u, M(y)\M(z < y) {u}) = 0;

o (Symmetry) if 0:x =gy and 6 € 0 : 2’ =gy, then ky v = ky .

(+/—-Independence) if z <t y, ©x <~ z, then k., is the pullback-lifting of
k., (with respect to the race-freeness pullback).

Definition 7.8. A probabilistic strategy on a measurable game A is a measurable
strategy o : & — A, together with a conditional valuation on S.

We proceed to discuss composition of probabilistic measurable strategies. Because
of the “conditional” approach, this is more involved than in the discrete case. Let us
briefly discuss the technical steps.

Let 0: S — A || Band 7 : T — B* || C probabilistic strategies with conditional
valuations K% and K7, respectively. A positive extension z €% y in € (T ® 9) is
always induced from a positive/internal extension [z] €™° [y] in € (T ® S), meaning
that all events in [y]\[x] are either internal or positive. (This is because 7 and o are
courteous.) Such an extension can always be decomposed as a chain of extensions

[2] €7 up ST uy <7 -+ <7 |y

where €7 (resp. <7) means all added moves are o-actions (resp. T-actions). For
cach step in the chain, a kernel can be lifted appropriately from either K¢ or
K. Using kernel composition, we obtain a kernel Mygs([z]) v M7gs([y]), i.e.
Mras(z) > Mras(y).

One difficulty is to show that this does not depend on the particular choice of
chain [z] € --- € [y], and this is the aim of the discussion that follows. We will
then see why the obtained family of kernels satisfies the axioms for a conditional
valuation.

7.3.3 Interaction of probabilistic strategies

Consider the interaction 7 ® S of ¢ and 7 as measurable strategies. We define
an initial measure M%@S‘ , and a family of kernels k:ﬁ?g indexed by positive/internal

extensions z €0y in €(T® 9).
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The initial measure. For this we argue that M7gs(J) can be seen as a subspace
of Ms(&) x My(&) via the canonical map h : Mrgs(Z) — Ms() x M ().
By construction, the maps nt™ : Mygs(J) — Ms(F) x Mc(D) and ntg?
Mres(D) > Ma(F) x M7r() generate the o-algebra on Mrgs(Z), so in other

words the following set provides a basis for it:
{(nt%l)_l(Ug x Ug) N (nt%Q)_l(UA x Ur) | Us € X)), te. }.

And indeed every element of the above set is equal to h~'(Us x Uy).
Accordingly, a measure ,ug(@S on Mrgs(J) is obtained using the standard

: S T.
subspace measure construction on the product measure K @ gy
pg (U) = inf{(pug @ pp)(U') | U € Sps(gyxmrz) andh(U) < U'}.

This is a sub-probability measure because u% and ug are. But note that when ,u%
and p% are strict probability measures, ,u%@)s may not be: the strategies ¢ and 1 are
not guaranteed to agree on the choice of initial state. (This is the case only when h
above is an isomorphism.)

We have defined a measure on Mrgs(F), the “space of initial states”. In what

follows we deal with the subsequent steps.

Lifting kernels from K° and K7. We are only concerned with positive or neutral
extensions, since negative ones do not carry any probabilistic information.

First, consider an extension by c-actions. If z €7 y in € (T ® S), recall from
Lemma 6.19 that the following is a pullback

Mres(y) TEST2Y s Mores(a)

I I
nty ll lntx 1

Msje(ys || ye) ———— Msje(zs || zc)

and because yo = ¢, the diagram below is also a pullback:

Mrgs(z—y
RatiL LA CN

Mres(y) 5 Mygs(z)

I I
wlonty 1l lﬂ'lontml

Mis(ys) —2E578) 4 As(as)

Using Lemma 7.2, the kernel k3 : Ms(xg) v~ Ms(ys) can be lifted through to
a kernel k[®9% : Mygs(z) v Mrgs(y) satisfying the concentration property.
This can be done similarly whenever x <7 y. More generally, for a extension

x =70y, events of y\x are either o-actions or T-actions, so every covering chain from

x to y is of the form z—cMu;—<* .. —c*y,—cPriy with \; € {0, 7} for each i.
With respect to this chain we can define a kernel k:g’ (;Bf...,un,q = kf?f 0--:0 k’ff’?ls It

the extension is trivial (x = y) we assign it the identity (Dirac) kernel.

In fact, we will see that the properties of the valuations XS and K7 ensure that
this kernel does not depend on the choice of covering chain. We first prove two
auxiliary lemmas.
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Lemma 7.9. Let X € {0, 7} and suppose x—*u—"y in €(T ® S). Then k1®% =
k’T®S o kT®S.

u,y T,
Proof. Tt is enough to show that the lifting (—)# of Lemma 7.2 preserves composition.
It is a straightforward verification. O]

Lemma 7.10. If z—<%y and x—"2 in €(T ® S), then z vy € €(T®S) and
k‘T@S o kT®S — k‘T®S o ]{JT®S.
Yy x,z

Y,zVyY Z,2VY

Proof. Using that S and 7 are race-free,

Mrgs(y v z) —— Mrgs(y)

| J

Mres(z) — Mrgs(z)

is a pullback in Meas. Then, for u € Mrgs(x), we check that the sub-probability
measures k, &5 o kI®%(u, —) and k185 o kI®%(u, —) on Mygs(z U y) are the same.
By the concentration property, it is sufficient that they agree on measurable sets
U € Y Mygs(yoz) such that U € M(z — yuz) Hu}, and an inspection of the pullback
above shows that M(x — y U z)"{u}, viewed as a subspace of Mygs(z U y), is
isomorphic to the product Mrgs(z — 2)"Hu} x Mrgs(z — y) H{u}.

Moreover, using that the diagrams

Mrgs(z) —— Mres(z) Mres(y) —— Mrgs(z)
MT(ZT) —_— MT(ZL‘T) ./\/ls(ys) e Mg(wg)

are pullbacks, we see that
Mrgs(z — 2)"H{u} = My(er — 2r0) Hur)

and
Migs(z = y) Hu} = Ms(zs — 25) {us}.

So we let V be of the form E x E’ for measurable sets £ € Mygs(z < y) *{u} and
E' € Ms(xs — zs) '{us}. Then, we have

T®S T®S
ky,zuy © kx,y (u, V>
"

T®S T®S
= k%(?uy(u',V)kIff (u, du’)
weMrgs(y)
-

T
= Ky zopyr (
weMrgs(z—y)~H{u}

-

= kpo o Mrgs(z = y)(w), B)ES, . (us, dw)

xs,Ys
wekE’

[

up, Vy)ky

Ts,Ys (US, du:g)

(-

[

r

= kL (up, EYKS

xT,2T xs,Ys (
JweE'’

=k (ug,E") x kL _ (Zp, E)

xs,Ys .21

ug, dw)

and a symmetric calculation shows that k15 o k7®%(u, V') has the same value. [
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We are now in a position to show that any two parallel chains in 7 ® S yield the
same composite kernel:

Lemma 7.11. Ifx =™ y e €(T ® S) and we have two chains

x—c’\lzl—c’\Q e —c’\"‘lzn_l—c’\"y
p1 ! P2 Pn—1 /1 p
r—CPry <P Pty Py
. : T®S T®S ;
where \;, p; € {o, T} for each i, then k;2° =k, oy Thus we may write

k;ﬂg‘)s for the kernel obtained via any chain.

Proof. By induction on n. If n = 0, the result holds directly since there is only
one possible chain from = to y. If n > 0, consider w = z; U 2{. By the induction
hypothesis, any chain from z; to y yields the same kernel, so in particular

T®S T@S T®S
k21722, wZnyY k kzl w
and similarly we have
k?T@S _ kT@S o ]fT@S.
21,22, ) n)?] 21)w

Next, observe that z—c* 2z —cP1w and x—" zl—c’\lw. If Ay = p1, then it follows
from Lemma 7.9 that k1% o k]®> = ET®9 o kT®S since both are equal to k. 9°. If

T,21 z ,w

instead A\; # p1, then Lemma 7.10 shows that the same equality holds. Thus

kT®S kT®S kT@S

TyZ1 5920 Y Z15-+32n5Y T,21

_ kT@S o kT®S o kT®S

21,W w,z1

_ kT@S o ]fT@S o kT@S

.’DZl

_ kT®S o k‘T®S o kT®S

x,z]
_ k,T@S . o k’T®S
2] ey x,z]
T@S

z Z17 5 n:y

]

Following the above process, we obtain a family K7®5 = (kI®5) .0, of kernels,
indexed by the positive/neutral extensions in €' (T ® S). We proceed to show that
this satisfies a number of properties, ensuring that the hiding step turns X7®S into
a valid conditional valuation.

Symmetry. Conditional valuations must assign the same kernel to symmetric
extensions. It is straightforward to see why this property holds in the interaction.

Lemma 7.12. If 0 : x ~pgsy and 0 € 0 : 2’ =pgs Y/, then ki@s = k:ﬁ%s.

Proof. We first show the result holds for a one-step extension §—=?6’. By definition,
the kernel kfﬁ?,s is lifted from kfsyx% : Ms(zg) v Mg(2), and similarly kT®S is

lifted from kfs " But since the extension projects down to an extension 95—C+0’
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5 _ 1.8 :
s, ky&y’s up to the isos

induced by the symmetries g and 5. Because the two pullback squares

in ~g, and since K¢ is a conditional valuation, we have k

Mrgs(a') —— Mrgs(z) Mres(y) —— Mres(y)
Ms(rg) ——— Ms(zs) Ms(ys) —— Ms(ys)

are isomorphic (also through the isos induced by the various symmetries), the lifted
kernels are also equal, modulo Mrgs(#) and Mrgs(¢').
Now, a general extension 6 € ¢ can be decomposed into a chain

f—crof, M Ay

of one-step extensions, where \; € {o, 7} and 0; : x; ~7gs y; for each i. The kernels
kfi?,s and kg?,s are then obtained by composing the one-step kernels, hence the result
holds. O

7.3.4 The drop condition in the interaction

We turn to the “drop” axiom for conditional valuations, which is more technically
involved. We show that for configurations z <%0 y;,...,y, € €(T® S), if u €

Mrgs(x), then
Z(_l)qukw,Uiel Yi (u7 M(U yl)) < 17
1 i€l

where I ranges over nonempty subsets of {1,...,n} such that | J,_; y; is consistent.

Our proof closely follows the steps of Winskel’s argument for probabilistic strate-
gies in the non-measurable setting [Win]. There are two steps. The first is to notice
that the statement is equivalent to its restriction to one-step extensions of the form
r—<"0, ...y, € €(T ®S). The second step involves partitioning the y; into two
groups, depending on whether x—=%y; or t—c"y;. From this we can conclude, using
that o and 7 satisfy the drop condition.

First, we introduce some notation. The drop is denoted as follows, for x <+
Y-, Yn € €(T®S) and u € Mrgs(z):

drfa;yn, -yl () = 1= Y (=D ey g (u, MO )

1 el

Note that the drop condition requires precisely that all dr[z;yq,. .., y,](u) = 0.
We observe:

Lemma 7.13. For everyx <tV yy,...,y, € €(T®S), the function u — dr[z;y1, ..., yn](u)
is a measurable function Mygs(x) — R.

Proof. Each function u +— kg _, 4, (v, M(|;c; ¥:)) is measurable by definition. Sums
and products of measurable functions are measurable, so we conclude. O]
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For the purposes of the upcoming development it will be convenient to extend the
set € (T®S) to alattice €(T'®S)T, obtained by adding to € (T ®.S) a top element T.
That is, whenever z,y € €(T'®S) andz vy ¢ €(T®S), weset x vy = T. (If x and
y are compatible we have z v y = x U y.) The drop function is also extended: assume
r# Tandz Sy, ..., un € C(T®S)". Suppose y1,...,yr # 1 and Ypi1,. ., Yn = |
(without loss of generality, since the definition of dr[z;yy, ..., y,] is insensitive to a
permutation of the y;). Then we define

dr[x;yla s 7yn] = dr[m;yla ce 7yk]

We show two technical lemmas, before carrying out the first step in the plan
above. (The integrals are well-defined by Lemma 7.13.)

Lemma 7.14. For everyx €% yy,...,4, € €(T®S)T,

dr[z;yr, ., Yl (u) = dre[z3 91, Y] ()

— J Ar[Yn; Y1 V Yny oo oy Yne1 V Un ] (Un) Ka g, (0, duy,).
un€M (yn)

Proof. The integral in the RHS can be rewritten as

J [1 - 2(_1)|I|Hkyn,ynuyz (s MY © Y1) | Ky, (u, dus) (7.1)

UneM (yn) !

where we write y; for | J,.; ¥i, and I ranges over nonempty subsets of {1,...,n — 1}
such that y; U y, is consistent. Since k;y, 0y, = Kynyroyn © Ky, Dy definition of
kernel composition we have

J Ky ymou (tn, M(yn U 1)) Ky, (u,duy) = Kz yroyn (u, M(yn U yr)).
UneM(yn)

So 7.1 above is equal to

Ko (1, M(yn)) = D (=D kg 0y (1, My O 1),

1

Looking back at the main statement, we have

RHS = dr[z;y1, ..., Yn—1](w)
= kg, (u, M(yn)) + Z<_1)|I|+1kx,yzuyn (u, M(yn V yr))
T

and by substituting the first term, and combining the sums, we recover the expression

for dr[x; y1, ..., yn](w). O

From this we derive another technical result:
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Lemma 7.15. For everyx € 0 yy, ...,y € €(T®S)", y, =0y, and ue M(z)
drlz; y1, - Yno1, Y (0) = dr[zsy, .y (u)
+ f dr[yn; YU vVYny-o-yYn—1V YUn, y;,] (un) dk:p,yn (u, un)
U'nEM(yn)

Proof. Applying Lemma 7.14 to both terms and cancelling out, we obtain:
RHS = dr[z;91,. .., yn-1](u)

f f v Yoo v Y (1) Al () g (ot ).

un€M(yn) upeM(yr,)

The double integral can be simplified using the definition of kernel composition. By
another application of Lemma 7.14 we then that this is equal to the LHS. ]

Using the above, we show that for the drop condition to hold in 7 ® S, it suffices
to check that the property holds for one-step extensions:

Proposition 7.16. The following are equivalent:

(1) Forz <™y, ...,y € €(T®S) and u € Mrgs(z), dr[z;y,...,yn](u) = 0.

(2) For x—<="Yy;,... ,y, € €(T®S) and u € Mygs(z), dr[z;y1,. .., yn](u) = 0.

Proof. The (1) = (2) direction is clear. Assume (2) holds. We show the property
holds for every extension z ™0 y;,...,y, € €(T ® S) and v € Mygs(z), by
induction on the weight of the extension, defined as []\_,|y;\x|. If the weight is
0, then = = y; for some . Without loss of generality, assume ¢ = n. Then, the
expression for dr[z;yy, ..., y,](u) given by Lemma 7.14 simplifies to 0 via a routine
manipulation which we omit.

In the general case, either x—cy; for each 4, in which case (2) applies directly,
or there is x < y. < y; for some i and we are in the situation of Lemma 7.15:

dr[z;y1, ..., yn](u) is equal to

dr[z;yr, - Uiy Yl (u) + J Ay vr v s - Yot v s Yl (ug) dbg g (u, ).

uleM(yh)
Observe that all extensions in the above expression have weight strictly lower than
that of x < yy,...,y,. By the induction hypothesis, these are all non-negative, so
that dr[z;y1,...,y.] = 0. O

This completes the first step in our proof that the “drop condition” holds in the
interaction 7 ®S. By Proposition 7.16, it is enough to consider one-step extensions of
the form x—="y,, ..., y,. Recall that positive and neutral events in T® .S are either
“o-actions” or “7-actions”, so the y; can be partitioned into two groups, accordingly.
We will see that the drop dr[z; v, . .., y,] reduces to a product of a drop in ¢ and
one in 7. For u e M(x), we write ug for its image under the map

Mopgs() " Msjelas || zo) = Ms(as),

and we define up € My (zr) analogously.
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Lemma 7.17. Let x—<%y1,...,yp and 2—C"Ygi1,. .., Yn 0 €(T ® S). Then, for
all u e Mrgs(x),

dr[z;yr, ..., yn](u) = dr[xs; (v1)s, - - -, (Ye)s](us) x dr[zr; (Yes1)T, - - - (Yn) 7] (ur).

Proof. Let I < {1,...,n} be such that y; = | J,.; vi is consistent. Write Ig = {i €

I'li<kjand Ip ={iel|i>k}. Then x €% Ui,y and & <7 User, ;. As a

shorthand, y;, and y;,. denote U,er(y;)s € € (S) and Uier, (vi)r € € (1), respectively.
By the same argument as in the proof of Lemma 7.10 we derive that

kLSS (u M(yr)) = ki, (s, Ms(yrs)) % kL, (ur, Mr(yr) - (7.2)
Then, calculating from the RHS, we have

drlzs; (y1)s, -5 (Yk)s](us) > drler; (yera)z - (yn)r] (ur)

= (Z(—l)”ﬂkf&yls (us,/\/lg(yfs))) X (Z(_l)lle;va (uT,MT(yIT))>

Is It

where Ig ranges over (possibly empty) subsets of {1,...,k} such that Uy, is
consistent, and I7 similarly over subsets of {k +1,...,n}, and we take yz = x. Now,
pairs ([g, Ir) correspond to subsets I < {1,...,n} such that | J,.; v is consistent,
since by race-freeness there are no conflicts between o- and 7-actions. Thus, by 7.2,
the expression above is equal to dr[z;yy, ...,y ]

We arrive at our main result:

Corollary 7.18. Let z—<="%,....y, in €(T® S). Then, for all u e Mrgs(z),

dr[“’%?ﬂy s 7yn]<u> = 0.

Proof. Direct consequence of the previous lemma and the drop condition for ¢ and
T. —~

7.3.5 Composition of probabilistic strategies

We have studied in detail the probabilistic interaction of two measurable strategies
0:8 - At ||Band 7: T — B* || C, equipped with conditional valuations X% and
KT, respectively. We have defined a family of kernels K7®% = (k]®%) o, indexed
by positive/neutral extensions in € (7T ® S).

We turn to the composition of ¢ and 7, the measurable strategy 7o : T OS —
At | C, and equip it with a conditional valuation K7©S.

It is key to observe (as we have already in 7.3.2) that whenever z,y € €(T ©® S)
satisfy # =7 y, their interaction witnesses satisfy [z] =™ [y]. We define k19% =

k[jﬁg[y], since by definition Mrps(z) = M7gs([z]) (and the same for y). The results

we have about K7® suffice to show that this defines a conditional valuation.

Theorem 7.19. The family K708 = (E19%),c+, is a conditional valuation, making
T O o a probabilistic strategy.
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Proof. The (Identity) and (Composition) axioms hold immediately. The (Drop)
axiom is a consequence of Corollary 7.18. The (Concentration) axiom holds because
the concentration property is preserved by kernel composition and lifting (Lemma 7.2).
The (Symmetry) axiom holds by Lemma 7.12, and by definition on the symmetry in
TOS. O

7.3.6 Probabilistic copycat

The identity strategy in this setting is a probabilistic version of the “measurable
copycat” introduced in 6.3.1. This was defined for every measurable game A as
cy — @4 — AT || A, and as we will see, the valuation K©4 is obtained in a
canonical way, because (whenever A is race-free) measurable copycat satisfies a kind
of determinism property.

In the probabilistic model of Chapter 3, the race-freeness property for arenas
ensures that copycat is deterministic, meaning that Player never has to make a choice
between two moves in conflict. Consequently all configurations can be assigned
probability 1. The measurable copycat strategy satisfies an additional property:

Lemma 7.20. Let A be a race-free measurable game. Then, if w € w' € € ((Cy),
the map M (w — w') : Me,(w') - M, (w) is an isomorphism.

Proof. Recall that configurations of (C4 are of the form x || y, where z,y € €(A)
and x Eqy, ie. T2, 2 NYSHy.

Consider a one-step positive extension in € ((C,4). (It suffices to show the result
in the one-step case, since isomorphisms compose.) Without loss of generality we
can take this to be of the form z || y—="2' || y, because the case = || y—c*z || ¢ is
symmetric.

By definition, the map M ,(z || y—="2' || y) is the dashed mediating map
below:

M, (2" | y) > Ma(y)

Ma(y)

|

» My n )

The bottom face is a pullback by race-freeness of A, since yux <t y and ynz <~ yna'’
(because x <, 2’). The front and back faces are pullbacks by definition, so the top
face is a pullback.

Since pullbacks of identity maps are isomorphisms, we are done. O

This means that if w €* w’ in €((C4), each u € M, (w) has a unique extension
in M, (w'). We define the kernel

/{?@A . M@A(w) > M@A (w')
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as the identity kernel, modulo the iso.

7.4 The bicategory of probabilistic measurable strate-
gies

We give a proof that measurable games and probabilistic strategies form a cartesian
closed bicategory PMG, and we show that the bicategory PG of Chapter 3 arises
as a sub-bicategory. To do this we follow the same principles as in Chapters 2 and 6,
and first construct a pseudo-double category.

7.4.1 The pseudo-double category & .#Y
We start by defining the 2-cells.

Definition 7.21. A map of probabilistic measurable strategies from o : § —
A | Btor:T —C'| Dis amap (f,9,h) : 0= 1 in A%, such that:

(1) for every z € €(S), the map ntf : Mgs(x) — My (fz) is an isomorphism;

(2) for every x < y € €(S), we have kiy < k};,fy modulo the isos, that is, for
every u € Mg(z) and U € Xp4(y),

kiy(u, U) < kﬁfy(ntf;(u), nth).

Remark. This definition can be given in greater generality, removing the require-
ment (1) and rephrasing (2) as follows: for every u € Ms(x) and V' € Xpi, (1),

k2 (u, () 7V < K, g, (nth (), V).

We conjecture that the forthcoming development would support the extra generality;
however the proofs would likely be more technical. The definition as stated is sufficient
for our purposes: it generalises the 2-cells in the discrete setting of Chapter 3, and
the resulting bicategory is cartesian closed.

Lemma 7.22. Maps of probabilistic strategies are stable under vertical and horizontal
composition.

Proof. Vertical composition of maps poses no problem, as axioms (1) and (2) are
directly seen to be stable under composition.

For horizontal composition, consider maps of strategies f : S — S’ andg: T — T’
and the induced map g® f : T®S — 7' ® S’. Note that (1) holds directly by
Lemma 6.19, since pullbacks of isomorphisms are isomorphisms. If z €7 y € €(T®S),

then the kernel kgffs is lifted from kaij. By assumption we have kaT < kgT;TjgyT,
T’ T'®S'

gorgyr duces k0o, (via lifting and across the

symmetry isomorphism), we conclude that kf?s < k@g}g); @)y’ again modulo the
iso. The same argument goes for o-extensions, and so the map g ® f satisfies axiom
(2).

The conditions are not affected by hiding, so the composition g ©® f is a map of
probabilistic strategies. O]

modulo the iso, and since k&
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Unitors and associators. We now identify the structural 2-cells, starting with
the unitors.

Lemma 7.23. For every probabilistic strateqy o : S — A* | B, there is an isomor-
phism A\, 1 €g © o = g of probabilistic strategies.

Proof. The iso is the same as in MG. All we need to show is the kernel preservation
property. We show the existence of \; 1.

Let 25—°ys with e positive. We know that A\ 'zg = (2% || z5) © 2% and
MNlys = (vh || yg) © vk, where z¥ (resp. y¥) is g (resp. yg) with its maximal
negative B-moves taken out.

Because A\, ! is an isomorphism of essps, we have (% || z5)Ozi—<"(y5 || vs)OUE,
and we investigate the shape of covering chains for the extension (z% || z5) ® 2% <
(v || yg) ®yE. It turns out these are of two kinds: either e is an A move with all
immediate predecessors in A, in which case yg = xp and so we have

(@5 [ 25) @ v5—<="(yp | y) @ y5,

or, e is an B-move or some of its immediate precedessors are, in which case the
necessary moves must be played by copycat in the internal copy of B, and:

(@ || v8) ®25—="(yp | 28) ® 25" (U} | yB) ® Y5

for some zg. In the first case, the kernel we are interested in is directly lifted from S,
whereas in the second case it is lifted from § and composed with an identity kernel,
by definition of copycat, so we are done. m

For associativity, as discussed in Chapter 2, it suffices to consider the associator
at the level of interactions (R®T)®S — R® (T ® S) as discussed. This is an
isomorphism of essps, so it clearly preserves covering chains and associated kernels,
and therefore the kernel preservation property holds after hiding.

The coherence laws hold because they hold in .#Z%, so that:

Theorem 7.24. There is a pseudo-double category LMY where

o PMGy consists of race-free, standard Borel measurable games and maps between
them, and

e PMG; consists of probabilistic standard Borel strategies and maps between
them.

7.4.2 Monoidal structure

To show that probabilistic strategies support a tensor construction, we first investigate
the parallel composition S || T of two measurable essps S and T with conditional
valuations K and K7.
To an extension x = zg || 20 €T y = ys || yr in €(S || T) we assign the
appropriate product kernel:
k;S‘JLT — k5 QKT

T3,Ys T, YT’

We must show that this satisfies the conditions for a valuation. We start with the
drop condition; other conditions will be straightforward.
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Lemma 7.25. Lety <t zy,...,2,€€(S || T), and let ue M,,. Then
drly; z1,...,2,](u) = 0.

Proof. Let y <% xy,...,1, € €(S || T), writing y = y° || y* and x; = 27 | 2T for

each i. The proof that dr|[y; x1,...,z,](u) = 0 uses two facts:
drfys o, wa](w) = delysy® | af 27 [ ",y g, o | y' () (7.3)
and
defy;y® ot 27 | y'ooy® | a2 | y"](w)

= drfy”;a?, .. ap(us)dely"s o, ] (ur). (T.4)

Combining (1) and (2) and applying the drop condition for K5 and K7 gives the
desired result.

Proof of (1). By Lemma 7.15, we have dr[y; 1, ..., z,](u) = dr|y; 21, ..., 21| (u)—
SuneM(In) dr[zp;x1 v T, .o Tpe1 v 2] (U)K (u, duy,). Using this definition, one can
show by a straightforward induction on n that if x; <  for all ¢, then dr[y; z1, ..., 2, ](u) <
dyly; 2}, ..., 2! ]. Fact (1) then holds because d,[y; x1, . .., z,] = do[y; 21, 21, - . ., T,y 2],
and y° | 2T and a7 | y* are subsets of z; for all 4.

Proof of (2). In what follows, I ranges over nonempty subsets of {1,... n} such
that | J,.; 7 € €(9), J over nonempty subsets of {1, ..., n} such that Ujes 2] € €(T).

We write 21, . . ., 29, for y°||at 27 |yT, ..., y7)|2L, 27 yT, and K ranges over nonempty

subsets of {1,...,2n} such that |, ., zx € €(S | T'). To alleviate notation we write
z7 for | J,.; 7, and so on. Then we compute:

drfy”; 2, ... 22 (ug)de[y"; 2T, . 2T (up)
= |1 = 2 D) ks s (us, M(7)) [1 = DD Ry (ur, M)
= 1= (=D ks s (us, M(2)) = Y (=D ke o (ur, M(27)))

T 7

+ ;Z(—l)'”""kys@g(w, M(@?))kyr g (ur, M(27)))
= 1= 2D (M5 47 - 2D o1 . MO | 25)
# DD kg (0. Maf | 1)
= 1= (~)FHE, (u,MJ(zK))

K
= drfy; 21, . .., 220]-

From this we define the tensor product of two strategies.
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Lemma 7.26. For two probabilistic strategies o : S — At | A andt: T — Bt | B,
the family K5I defines a conditional valuation and thus there is a probabilistic strategy

o®T:S|T—(A|B) [ (4] B).
Proof. Routine verification. n

The tensor construction for strategies induces a symmetric monoidal structure on
PMYG. Observe that P A9 is isofibrant, since the lifting and co-lifting construc-
tions are copycat-like and can always be equipped with the canonical deterministic
conditional valuation. Therefore:

Lemma 7.27. The bicategory H(P H#Y) is symmetric monoidal.

7.4.3 The cartesian closed bicategory

We continue on the usual path. We consider the sub-bicategory PMG of H(ZP.#9)
having:

e objects: negative, rooted, race-free, standard Borel measurable arenas;

e morphisms: negative, well-threaded, rooted, standard Borel probabilistic strate-
gies;

e 2-cells: maps of probabilistic strategies.

The constructions performed in MG to obtain cartesian closure extend to valua-
tions, and all steps are unsurprising. Here is a brief account:

e The monoidal structure is closed: since Cur(c) and g have the same inter-
nal event structure S, leaving the valuation X° unchanged makes Cur an
isomorphism also in this context.

e In the binary product § & 7 the two components are completely inconsistent:
KS%T is the obvious construction and all axioms are immediate.

e The pseudo-comonad ! on MG becomes one on PMG: we only ever consider
finite configurations of IS, and so whenever necessary we may restrict to an
appropriate finitary tensor X),.; S, and apply results about the monoidal
structure. This gives a valuation K.

Theorem 7.28. The bicategory PMG, is cartesian closed.

7.4.4 The discrete sub-bicategory

We conclude by observing that for a measurable strategy of the form disc(o), for
o:S — Aastrategy in G, to give a conditional valuation (i.e. a family of kernels) on
disc(o) is to give a conditional valuation (i.e. a family of coefficients) on o. This way
we obtain a faithful (and full and faithful on 2-cells) pseudo-functor PG — PMG,
and since discrete strategies are closed under all constructions, the structure of PMG
(resp. PMG,) is already present in PG (resp. PGy).
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Chapter 8

Conclusion

We have presented several models for concurrent games semantics of programs,
building on existing work by Winskel, Clairambault, Castellan and others. For each
model we give a notion of game, a notion of strategy on a game, and a notion of
maps between strategies, and investigate how these objects interact. Each time we
describe in detail the development of a bicategory with structure.

The thesis contains four models:

e Concurrent games with symmetry, known as thin concurrent games in [CCW19].
This model is not new, but some progress is made in understanding the structure
underlying the theory. This model is the main basis for the next three.

e Probabilistic concurrent games, enriching the latter with probability.

e Measurable concurrent games, in which the games and strategies of the first
model are further equipped with measure-theoretic structure, so as to refine
the modelling of computation with continuous data types.

e Probabilistic measurable concurrent games, in which we use measure-theoretic
probability theory to enrich the latter with quantitative information.

We additionally discuss two applications of the probabilistic concurrent games
model, i.e. the second model in the list above. The two applications are to an
untyped and a typed language, respectively, and we have described connection with
related work.

Throughout the thesis we have paid special attention to the bicategorical struc-
ture of the models above, i.e. the various coherence laws obeyed by the 2-cells.
Furthermore, in the construction of cartesian closed bicategories, efforts have been
made to follow a principled approach, so that, when building new models, much of
the verification work can be avoided. As should be clear from the thesis, we have
taken full advantage of this. But this also applies to potential further work.

Remarkably, in the development of measurable concurrent games (Chapter 6),
no aspect of the development appeals to specific properties of measurable spaces.
Our construction only requires a category with finite products and pullbacks, so
in principle Meas could be replaced with another category of spaces, should one
require structure of a different kind.
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We speculate further. It is well-known that the kernels used in Chapter 7 to
make probabilistic the measurable strategies of Chapter 6 are Kleisli maps X — GY
for G a probability monad on Meas [Gir82]. Then, kernel composition is Kleisli
composition, and the identity kernel is the Kleisli identity. So the question must be
asked whether one could generalise the model of probabilistic measurable games to a
model for a Moggi-style computational A-calculus [Mog91] parametrised by a monad
on an arbitrary category (with finite products and pullbacks). This is less clear, as
some of the results in Chapter 7 (Lemma 7.2, for example) are inherently based on
the nature of kernels. We leave this for further work.

A more concrete direction for future work consists in applying the framework of
measurable games to a versions of PCF and Probabilistic PCF with (say) a type of
real numbers. Such a language is studied for instance in [EPT17]. The questions of
innocence and definability in this framework remain to be answered, although recent
advances in quantum concurrent game semantics may indeed be relevant [CAVW19].

Finally, in yet another direction, we aim to develop intensional semantics for
“statistical” probabilistic programming as discussed briefly in the introduction. This
direction is promising: an initial step was recently made in this direction in joint
work with Simon Castellan [CP19].
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