
Technical Report
Number 957

Computer Laboratory

UCAM-CL-TR-957
ISSN 1476-2986

Rollercoaster:
an efficient group-multicast
scheme for mix networks

Daniel Hugenroth, Martin Kleppmann,
Alastair R. Beresford

Originally published in Proceedings of
the 30th USENIX Security Symposium

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

© Daniel Hugenroth, Martin Kleppmann,
Alastair R. Beresford

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Rollercoaster: An Efficient Group-Multicast

Scheme for Mix Networks

Daniel Hugenroth

University of Cambridge

Martin Kleppmann

University of Cambridge

Alastair R. Beresford

University of Cambridge

Abstract

Mix network designs such as Loopix provide strong metadata

anonymity guarantees that are crucial across many applica-

tions. However, because they limit the rate at which messages

can be sent by each user, they incur high delays when send-

ing many messages to multiple recipients – for instance, in

decentralised collaborative apps.

In this paper we present an efficient multicast scheme

named Rollercoaster that reduces the time for delivering a

message to all members of a group of size m from O(m) to

O(logm). Rollercoaster can be deployed without modifica-

tions to the underlying mix network, allowing it to benefit

from the anonymity set provided by existing users. We fur-

ther develop an extension that achieves the same asymptotic

guarantees in the presence of unreliable group members.

While the scheme is applicable to many mix network de-

signs, we evaluate it for the Loopix network, which is the most

advanced and practical design to date. For this evaluation we

developed a network simulator that allows fast, reproducible,

and inspectable runs while eliminating external influences.

1 Introduction

Information security often focuses on the confidentiality and

integrity of electronic messages. However, metadata privacy

is frequently also important since merely knowing the parties

involved in a communication can reveal sensitive information

and stigmatise groups and individuals. For example, revealing

the names of people contacting a sexual health clinic may

discourage individuals from seeking treatment; and potential

whistle-blowers may be dissuaded from disclosing illegal or

unethical behaviour to a journalist. Strong metadata privacy is

critical across many domains, not just healthcare and journal-

ism, but also in diplomatic services and military operations.

Protecting metadata privacy is not merely a theoretical

requirement: we find ourselves in an era of mass-surveillance

by well-funded state actors as well as pervasive data collection

by private companies and service providers. In this reality

there are many online applications where protecting metadata

privacy is of practical importance.

The Tor [1] network is perhaps the best known example of a

system that provides metadata privacy. Tor brought so-called

anonymous communication networks to a large audience by

providing low-latency communication and anonymous access

to the Internet. However, while the Tor network provides high

throughput and low latency, it does not provide metadata pri-

vacy in the presence of a global adversary who can observe

all communication [2]. Mix network designs and broadcast

schemes provide metadata privacy in the face of global adver-

saries, however they do so at the cost of significantly higher

latency and lower overall throughput. A prominent recent

medium-latency mix network design, which protects metadata

privacy in the presence of a global adversary, is Loopix [3].

Many collaborative apps are in use today, including group

messaging services such as WhatsApp, Signal, and iMessage;

productivity tools such as Google Docs and Office365; and

file sharing applications such as Dropbox and Box. At present,

no mainstream collaborative apps provide metadata privacy.

Hence, in this paper, we present a new architecture that en-

ables strong metadata privacy for such applications.

We consider forms of collaboration in which a file or con-

versation thread is shared by a group of collaborators, and

any update to it needs to be shared with all group members.

Group messaging and collaboration can share the same un-

derlying infrastructure [4]. In collaborative editing applica-

tions individual update messages are usually small and fre-

quent [5]. Such apps therefore require an efficient, reliable,

and timely method of sending messages to all members of a

group. However, the original design of Loopix provides only

one-to-one (unicast) messages, and no built-in mechanism

for group communication (multicast). In this paper we show

that naïvely implementing multicast in an anonymity network

like Loopix results in significant overhead in terms of latency

and throughput, typically exceeding the latency required to

provide good user experience. We therefore extend Loopix to

support low-latency group communication while preserving

metadata privacy.

3

This paper makes the following contributions:

• An anonymous group communication scheme called

Rollercoaster, which achieves a group multicast latency

of O(logm) for groups of size m, while ensuring strong

metadata privacy against an active global adversary (§5).

In our evaluation Rollercoaster achieves a 99th percentile

(p99) latency of 12.3 seconds for groups larger than 100

users, whereas the default implementation of Loopix

incurs a latency of 75.6s (§6.2). Rollercoaster works by

involving many group members, not just the sender of a

message, in the task of disseminating a message.

• An extension to the Rollercoaster scheme that adds fault-

tolerance to gracefully handle the fact that some group

members may be offline, while preserving scalability

(§5.2). Even in the presence of faulty nodes, Roller-

coaster performs better than default Loopix for mean,

p90, and p99 latency. Our solution reduces p99 latency

to 21.9s compared to 103.3s for default Loopix (§6.3)

when evaluated against realistic connectivity patterns.

• The design of the MultiSphinx packet format that allows

limited multicast by designated mix nodes while preserv-

ing strong metadata privacy guarantees (§5.4).

• A deterministic, open-source simulator for Loopix and

Rollercoaster that allows efficient, inspectable, and re-

producible performance evaluations. We use it to empir-

ically compare the latency properties of both systems.

Compared to evaluations using a real network, it reduces

the required CPU hours by a factor of 4500×, allowing

us to explore significantly more scenarios and parameter

choices (§6.1).

2 Threat Model and Goals

Our work guarantees strong anonymity against sophisticated

adversaries while providing an efficient, low-latency, and

fault-tolerant group-multicast anonymity network.

Assumptions We assume three types of participants in a

mix network based on the Loopix model [3]: Users are mem-

bers of one or more groups; group members can broadcast

and receive messages to and from all members of the group.

Provider nodes act as the users’ entry points to the anonymity

network; all communication to or from a specific user flows

through their provider. Mix operators manage a mix node in

the core of the network; mix nodes receive messages from

other mix nodes or providers and send messages to other mix

nodes or providers. Mix nodes do not communicate directly

with users. For further details on the Loopix model and how

these participants communicate, see Section 3.

Security and Anonymity We assume a global active adver-

sary who can observe all traffic, manipulate traffic to remove

messages and insert new ones, as well as corrupt a subset of

mix nodes and providers. As in Loopix, sending a message to

a Rollercoaster user requires that the sender knows both the

addresses and public keys for their provider, the recipient, the

recipient’s provider, and the mix nodes.

Our scheme provides message confidentiality and integrity

as well as the same strong metadata privacy guarantees as

Loopix, including sender-recipient unlinkability (preventing

an adversary from deducing which users are communicating

with each other) and sender/recipient online unobservability

(preventing an adversary from deducing which users are cur-

rently participating in any communication). More details on

these and further definitions of metadata privacy are given

by Pfitzmann and Hansen [6]. In addition we provide mem-

bership unobservability (preventing anyone outside the group

from determining group membership or group size). We as-

sume a group is composed of trusted members and therefore

we do not provide unlinkability or unobservability guarantees

against an attacker who compromises or colludes with group

members. The goal of the attacker is to break the confidential-

ity, integrity, or metadata privacy guarantees.

Our scheme supports efficient communication for group

sizes of two or more and therefore we handle pairwise and

group communication in the same way. An attacker cannot

distinguish between two-party communication and communi-

cation in a larger group.

Application Requirements Low latency is often a require-

ment in group communication. For example, user studies have

highlighted the negative implications of high network delays

in collaborative editing. One previous study [7] asked a group

of participants to transcribe audio lectures using collaborative

text editing software. The researchers investigated the effect

of communication latency by repeating the experiment multi-

ple times and varying artificial delay on all communication

between participants. A delay of 10 seconds or more had a

significant impact in their study, with an increase of error rates

and content redundancy by more than 50%. We therefore set

our target for group multicast latency at 10 seconds for group

sizes of up to 100 people. The group size is motivated by the

active editor limit of Google Docs (100 users) and Microsoft

Sharepoint (99 users). We further require the latency to grow

sub-linearly with the size of the group, allowing effective col-

laboration in large groups. In many multi-user applications,

a large fraction of the data is generated by a small fraction

of the users (a trend that is known as participation inequal-

ity [8]), and our scheme fares well in a system with such a

distribution of activity.

Offline support is required since mobile devices do not

always have connectivity. As in the Loopix design, provider

nodes in Rollercoaster store messages on behalf of the user

until the user is next online and able to download them.

4

User BUser A

User C User D

P1

P2

Layer 2 Layer 3Layer 1

Figure 1: Schematic for a Loopix network with four users

(A, B, C, D), two providers (P1, P2), and a three-layer mix

network. Each node of mix layer L is connected to each node

of layer L+1. The solid blue arrows depict one possible path

for a payload or drop message from user B to user D. The

dashed red line represents loop traffic induced by a mix node.

On mobile devices, the frequency of sending network pack-

ets has a large impact on energy efficiency. Every transmission

promotes the mobile network connection from idle to an ac-

tive sending state after which it remains in a tail state for a few

seconds [9, §5.1]. During the active sending/receiving state

(1680 mW, data for LTE) and the tail state (1060 mW) the

power consumption is higher than during idle (594 mW) [9,

Table 3]. Every promotion from idle to active comes with addi-

tional energy costs. Therefore, sending few but large messages

with long intra-packet pauses is advantageous for battery life

on mobile devices, even if the total volume of data transmitted

is the same. On the other hand, smaller and more frequent

messages lead to lower latency.

We assume that the group membership is fixed and known

to all members; we leave the problems of group formation

and adding or removing group members for future work.

3 Background

Our work builds on Loopix, which we introduce in this section.

Section 3.2 introduces multicast as it is used in this paper.

3.1 Loopix

Loopix is a mix network [10]: messages are sent via several

mix nodes to conceal their sender and destination. The route

is chosen by the sender and encoded in message headers.

Several mix network designs have been proposed: for exam-

ple, in the threshold approach, a mix node waits until a fixed

number of messages have arrived, and then forwards them to

their next hops in a random order. A mix node must wait for

a sufficient number of messages to arrive before forwarding

them to ensure there is significant uncertainty in the mapping

between incoming and outgoing messages. Unfortunately,

this batching process can lead to high latency.

Loopix takes a different approach to mixing: whenever a

message passes through a node, it delays that message by a

duration dµ. For each hop the sender independently chooses

dµ randomly from the exponential distribution with rate pa-

rameter λµ, and includes that value in the message header.

Moreover, Loopix ensures that the timings of messages

sent by any node can be modelled as a Poisson process (i.e.

the interval between messages is exponentially distributed).

Applying exponentially distributed random delay to a Poisson

process yields another Poisson process; moreover, aggregat-

ing the events from several Poisson processes yields another

Poisson process [3]. Message senders can adjust λµ to bal-

ance the trade-off between reducing latency (increase λµ) and

strengthening anonymity (decrease λµ).

An individual mix node may be compromised by the ad-

versary, allowing it to learn the mapping between input and

output messages. However, a mix network provides strong

anonymity guarantees when at least one of the mix nodes on

the message’s path is trustworthy. Cover traffic is added to

hide communication patterns and to prevent an attacker from

inferring message senders and recipients merely by looking

at the set of messages sent and received over time.

Loopix arranges mix nodes in l layers (where l = 3 is a

typical choice), forming a stratified topology. In this arrange-

ment, each node is connected to all nodes of the next layer,

and a message flows through one mix node in each layer. The

system’s message throughput capacity can be increased by

adding more nodes to each layer.

Access to the mix network is mediated by provider nodes

(see Figure 1). Providers receive and store incoming messages

for each user in an inbox, allowing the end-user device to be

offline and download messages from the provider later. These

messages are still end-to-end encrypted and providers cannot

distinguish them from cover traffic (see below). The provider

nodes are a required component if the end-user device (e.g.

smartphone) is not always connected to the Internet. More-

over, the provider nodes support revenue generation since the

provider can charge users to cover operating costs without

knowing who their customers are communicating with.

3.1.1 Messages and Traffic

All Loopix messages are encrypted and padded to a fixed size1

using the Sphinx [11] mix message format. The Sphinx mes-

sage format uses layered encryption and ensures the contents

of messages change at every hop in the mix network. Fixed-

size padding renders messages containing payload traffic in-

distinguishable from cover traffic messages. This approach

means the attacker cannot correlate incoming and outgoing

messages based on payload contents or length. Loopix uses

three types of messages:

Drop messages are the primary form of cover traffic. They

are sent by users as a Poisson process with rate parameter λd

1The implementation accompanying the original Loopix paper uses a

message size of 1024 bytes, including headers and overheads.

5

dp ∼ exp(λp) Delay between successive payload messages

dd ∼ exp(λd) Delay between successive drop messages

dl ∼ exp(λl) Delay between successive loop messages

dµ ∼ exp(λµ) Delay applied on message forwarding

∆pull (constant) Polling interval for checking inboxes

dM ∼ exp(λM) Delay between successive loop messages

sent by mix nodes

Table 1: Delays are either constant or chosen from an ex-

ponential (exp) distribution with the given parameter. Our

notation slightly differs from the original paper.

and addressed to a randomly chosen user’s inbox. They follow

the full transport route from the sender’s provider through all

layers of the mix network to the recipient’s device. Recipients

download the message from their inboxes, decrypt it, and only

then identify it as drop traffic and discard it.

Payload messages contain application data and are sent as

a Poisson process with rate parameter λp. When an user sends

multiple messages in quick succession, they are added to a

send queue at the client and forwarded to the user’s provider

at an average rate of λp. While they are in the payload send

queue, messages experience delay dQ. When there are no

payload messages waiting to be sent, a drop message is sent

instead. Keeping the send rate constant prevents irregular

traffic patterns that may reveal whether a user is currently

actively communicating.

Loop messages defend against active attacks such as

(n−1) attacks [12]. In such an attack an adversary tries to

follow the path of a message by blocking all other incoming

traffic for the mix node or replacing it with its own. Loop

messages are injected by both users (at rate λl) and mix nodes

(at rate λM); these messages travel in a loop though all mix

layers, via a provider node, back to the sender. If the loop

messages sent by a node fail to be delivered back to that node,

it can suspect that an active attack is taking place and employ

countermeasures as described in the Loopix paper [3, §4.2.1].

Choosing suitable rate parameters depends heavily on

the application behaviour, the message size, and the capac-

ity of the underlying network. In the original Loopix paper

the values of the parameters λp, λd , and λl range from one

message per second to one message per minute. With a to-

tal message size of |msg| bytes and the rates given in mes-

sages/s, the required bandwidth of a client can be estimated

as (λp +λd +λl) · |msg| bytes/s.

3.2 Multicast and Group Messaging

A multicast protocol allows a single message to be delivered

to all members of a group. Broadly speaking, there are two

approaches for implementing multicast: by sending each mes-

sage individually to each recipient over unicast, or by relying

on the underlying network to make copies of a message that

are delivered to multiple recipients. IP multicast [13] is an

example of the latter approach, which avoids having to send

the same message multiple times over the same link.

In this paper we are interested in group multicast, a type

of multicast protocol in which there is a pre-defined, non-

hierarchical group of users U . At any time any member of

the group might send a message to all other group members.

We call the initial sender source s and all others the intended

recipients Urecv =U \ s.

4 Naïve Approaches to Multicast

In this section we discuss the reasons why message delays

occur in Loopix. We then explore two simple approaches to

implementing multicast on Loopix, and explain why they are

not suitable, before introducing Rollercoaster in Section 5.

We define the message latency dmsg of a single unicast

message msg from user to A to user B:

dmsg = Trecv,B−Tsend,A (1)

where Tsend,A is the time at which user A’s application sends

msg, and Trecv,B is the time at which user B’s application re-

ceives the message.

In Loopix, message delays are the sum of delays at various

points in the network. First, any outbound message sent by

the user to the provider experiences a queuing delay dQ based

on the number of messages in the send queue. The delay

between two successive messages in the queue being sent,

dp, is exponentially distributed with a rate parameter λp (see

Table 1). Hence, a message’s time spent in the send queue,

dQ, is a random variable with a Gamma distribution Γ(n, 1
λp
),

where the shape parameter n denotes the number of messages

in the queue ahead of our message msg.

Secondly, the payload message is held up at the ingress

provider and each of the l mix nodes by an exponentially-

distributed delay dµ. Finally, the receiving user checks their

inbox in fixed time intervals of ∆pull , leading to a delay dpull

that is uniformly distributed between 0 and ∆pull . Therefore

the message delay in a Loopix network with l layers can be

expressed as a sum of these components:

dmsg = dQ +dp +(l +1) ·dµ +dpull (2)

The above equation ignores processing and network delays.

The Loopix paper demonstrates that these are negligible com-

pared to the delays imposed by sensible rate parameters.

For a Poisson distribution with parameter λ, the expected

mean is 1/λ. The Gamma distribution Γ(n, 1
λp
) has the mean

n
λp

. For the pull interval, the expected mean delay is ∆pull/2.

6

Hence, the mean latency for Equation 2 is:

mean(dmsg) =
n+1

λp

+
l +1

λµ

+
∆pull

2
(3)

When a source s wants to send a payload to a group by multi-

cast, we define the multicast latency D to be the time from the

initial message sending until all of the recipients Urecv have

received the message:

D = max
u∈Urecv

(Trecv,u)−Tsend,s (4)

4.1 Naïve Sequential Unicast

In the simplest implementation of multicast, the source user s

sends an individual unicast message to each of the recipients

u ∈Urecv in turn. While the messages can travel through the

mix network in parallel, their emission rate is bounded by the

payload rate λp of the sender.

For a recipient group of size |Urecv|= m−1, the last mes-

sage in the send queue will be behind n = m−2 other mes-

sages. Further, the last message will incur the same network

delay and pull delay as all other unicast messages. The average

delay for the last message therefore describes the multicast

latency for when performing sequential unicast:

Dunicast =
m−1

λp

+
l +1

λµ

+
∆pull

2
=O(m) (5)

The mean delay Dunicast therefore grows linearly with m.

As we show in Section 6, sequential unicast is too slow for

large groups with realistic choices of parameters (λp is typi-

cally set to less than one message per second).

Another problem with the sequential unicast approach is

that the effective rate at which a user can send messages to the

group is
λp

m−1
, as all copies of the first message need to be sent

before the second multicast message can begin transmission.

One might argue that this problem can be addressed by

increasing the payload bandwidth by increasing the value for

λp. However, this would require similar adjustments to the

rates for drop and loop messages to preserve the network’s

anonymity properties. As these parameters are fixed across

all users, this would lead to a proportional increase in overall

bandwidth used by the network. Moreover, the factor by which

we increase λp would be determined by the largest group

size we want to support. As a result, users participating in

smaller groups would face an unreasonable overhead. This

inefficiency particularly applies to users who mostly receive

and only rarely send messages.

4.2 Naïve Mix-Multicast

An alternative approach shifts the multicast distribution of

a message to mix nodes. In this scheme, the source chooses

one mix node as the multiplication node. This node receives

a single message from the source and creates |Urecv|= m−1

mix messages sent on to the other group members. A provider

node would not be suitable as a multiplication node as it

would learn about the group memberships of its users and

their group sizes.

When the multiplication node receives such a multicast

message, it inserts m−1 messages into its input buffer, one

for each of the recipients, and processes them as usual. This

provides optimal group message latency of D = dmsg as there

is no rate limit on messages sent by a mix node, and hence no

queuing delay. However, this design has significant flaws.

First, a corrupt multiplication mix node can learn the exact

group size |U |= m, in contravention of our threat model. This

is undesirable as it may allow an attacker to make plausible

claims regarding the presence or absence of communication

within certain groups. Even without corrupting a node, an

adversary can observe the imbalance between incoming and

outgoing messages of a multiplication node.

The weakened anonymity properties could perhaps be miti-

gated with additional cover traffic that incorporates the same

behaviour as the payload traffic. In particular, the cover traffic

must model all possible group sizes. Allowing a group size of

200 requires cover traffic to multicast by factor 200 as well.

However, this would significantly increase the network band-

width requirements in the following mix layers, increasing

the cost of operating the network.

Permitting message multiplication also opens up the risk

of denial of service attacks: a malicious user could use the

multicast feature to send large volumes of messages to an

individual provider, mix node, or user, while requiring com-

paratively little bandwidth themselves.

Finally, supporting group multicast in a mix node requires

the input message to contain m−1 payloads and headers, one

for each outgoing message. As all outgoing messages must

travel independently of each others they must be encrypted

with different keys for their respective next hops. Otherwise,

all outgoing messages share the same encrypted payload. This

makes it trivial for an observer to identify the recipients of

this group message. The only solution is to either increase the

size of all messages in the system or enforce a very low limit

on maximum group size.

In summary, naïvely performing message multiplication on

mix nodes is not a viable option. However, a viable variant of

this approach is possible by fixing the multiplication factor of

messages to be a small constant (e.g. p = 2). We discuss this

design in Section 5.4 where we present MultiSphinx.

5 Rollercoaster

We propose Rollercoaster as an efficient scheme for group

multicast in Loopix. Rollercoaster distributes the multicast

traffic over multiple nodes, arranged in a distribution graph.

This not only spreads the message transmission load more

uniformly across the network, but it also improves the balance

7

a

b

f g h i d e

c

A

a

b

f g h i d e

c

B

d acting as "c"

h i

Figure 2: Message distribution graph for a group of size m= 9

and branching factor k = 2. Graph A: Expected delivery from

source s = a. Graph B: The node c is offline and breaks

delivery to h and i. Using the fault-tolerant variant the node d

is assigned the role of c and delivers the payload to h and i.

of payload and cover traffic. Rollercoaster is implemented as

a layer on top of Loopix, and it does not require any modi-

fications to the underlying Loopix protocol (we discuss an

optional protocol modification in Section 5.4).

As we have seen with naïve sequential unicast, messages

slowly trickle from the source into the network as the source’s

message sending is limited by the payload rate λp. However,

users who have already received the message can help dis-

tribute it: after the source has sent the message to the first

recipient, both of them can send it to the third and fourth

recipient concurrently. Subsequently, these four nodes then

can send the message to the next four recipients, and so on,

forming a distribution tree with the initial source at the root.

The distribution tree for a set of users U is structured in

levels such that each parent node has k children at each level,

until all recipients have been included in the tree. An example

with eight recipients is shown in Figure 2. With each level the

total number of users who have the message increases by a

factor of k+1, which implies that the total number of levels

is logarithmic in the group size |U |.

In this section we first detail the construction of Roller-

coaster in Section 5.1. As a second step, Section 5.2 adds

fault tolerance to ensure that the scheme also works when

nodes are offline. Asymptotic delay and traffic properties are

analysed in Section 5.3. Section 5.4 develops the MultiSphinx

message format, which allows restricted multicast through

designated mix nodes. Further optimisations to the scheme

are briefly discussed in Section 5.5.

5.1 Detailed Construction

The Rollercoaster scheme is built upon the concept of a sched-

ule. This schedule is derived deterministically from the source

s, the total set of recipients Urecv, and the maximum branching

factor k following Algorithm 1. First, a list U of all group

members is constructed with the initial source at the 0-th in-

dex. The group size |U | and branching factor k lead to a total

of ⌈logk+1 |U |⌉ levels. In the t-th level the first (k+1)t mem-

bers have already received the message. All of them send the

message to the next w recipients, increasing the next group of

senders to (k+1)t+1. In the 0-th level only U [0] (the initial

sender) sends k messages to U [1] . . .U [k].

Algorithm 1 The basic Rollercoaster schedule algorithm for

a given initial source s, list of recipients Urecv, and branching

factor k. The schedule contains a list for every level with a

tuple (sender,recipient) for each message to be sent.

1: procedure GENSCHEDULE(s, Urecv, k)

2: U ← [s]+Urecv

3: L← ⌈logk+1 |U |⌉ ⊲ number of levels

4: schedule← []
5: for t = 0 until L−1 do

6: p← (k+1)t ⊲ first new recipient

7: w←min(k · p, |U |− p)
8: R← []
9: for i = 0 until w−1 do

10: idxsender← ⌊
i
k
⌋

11: idxrecipient← p+ i

12: R[i]← (U [idxsender],U [idxrecipient])

13: schedule[t]← R

14: return schedule

In order to associate an incoming message with the correct

source node and group of all recipients, all Rollercoaster pay-

loads contain a 16 byte header as illustrated in Figure 3, in

addition to the Sphinx packet header used by Loopix. Each

group is identified by a 32-bit groupid shared by all group

members. The 32-bit nonce identifies previously received

messages, which becomes relevant with fault-tolerance (Sec-

tion 5.2). The fields source, sender, and role refer to individual

group members and have a 10-bit size, allowing groups with

up to 1024 members. The source field indicates the original

sender and is necessary to construct the distribution graph at

the recipient. The fields sender and role are used by the fault

tolerant variant in Section 5.2 for acknowledgement messages

and to route around nodes that are offline. Field lengths can

easily be increased or decreased as they do not have to be

globally the same across all Loopix clients. Finally, the header

contains a signature that is generated by the original source

and covers the payload as well as all static header fields. It

assures recipients that the message indeed originated from

a legitimate group member and that they are not tricked by

an adversary to start distributing a fake message to group

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

groupid

nonce

source sender role

Signature over {groupid,nonce,source, payload}

. . . payload . . .

Figure 3: Payload header for the Rollercoaster scheme con-

taining both the fields for the minimal scheme and the fields

necessary for the fault-tolerance variant and further optimisa-

tions.

members. The sender and role fields are not covered by the

signature, allowing nodes that are not the original source to

modify these fields without invalidating the signature.

5.2 Adding Fault Tolerance

The basic Rollercoaster scheme of Section 5.1 fails when

users are offline and cannot perform their role of forwarding

messages. In this case, one or more recipients in later levels

would not receive the message until their parent node returns

online. The risk of this approach becomes apparent when

looking at the graph in Figure 2B, where a single unavailable

node causes message loss for its entire subtree. In principle,

the responsibility for forwarding messages could be delegated

to the provider nodes, which are assumed to always be online.

However, we consider this approach not to be desirable as

the adversary could learn about the group membership by

compromising a provider.

Rollercoaster with fault-tolerance achieves reliable deliv-

ery through acknowledgement (ACK) replies to the source

and reassignment of roles. When the source sends a message

it sets timeouts by which time it expects an acknowledgement

from the recipient and each of its children. The individual

timeouts account for the number of hops and the expected de-

lays at each hop due to mix node delays and messages waiting

in send queues. ACKs are sent through the mix network like

any other unicast message. When receiving an ACK from a

node, the source marks the sending node as delivered. Choos-

ing the source as the main coordinator is reasonable as it has

the strongest incentive for ensuring delivery of all messages.

Loopix allows a high rate of messages received by users, so it

is not a problem if one user receives a large number of ACKs.

The source responds to a timeout by sending the message

to a different node. For this, each node maintains a list of

most-recently-seen nodes based on received messages and

chooses one from it heuristically. The source itself is part

of that list as the ultimate replacement node. A replacement

node is only necessary when the failing node would have for-

warded the message to others, i.e. when it is not a leaf node

of the distribution tree (see Algorithm 10 in Appendix B). In-

dependently of this and in case that the message did not reach

the intended recipient due to message loss, a retry message is

sent (with exponential back-off) to the failed node again with

its own timeout.

We start the timeouts associated with a message when

the underlying Loopix implementation sends the message

to the provider, so that the timeouts do not need to include the

sender’s queuing delay. Since the sender knows the global rate

parameters λp and λµ, it takes these into account when deter-

mining timeouts. The timeout may further be adjusted based

on the network configuration and application requirements.

The fault-tolerance mechanism makes use of the message

fields source, sender, and role shown in Figure 3. The source

field remains unchanged as the message is forwarded because

it is required for constructing the schedule at each node. It

also indicates the node to which the ACK should be sent.

The sender field is updated when forwarding a message or

sending an ACK and used by the recipient to update their list

of most-recently-seen nodes. The role field indicates the role

that the receiving node should perform, usually their natural

identity. However, when a node is offline, another node might

be assigned its role, i.e. its position in the distribution tree.

In this case, the role field indicates the node as which the

recipient should act. Retry messages to failed nodes have an

empty role field, because the role has already been reassigned.

On receiving any payload message msg, the recipient node

hands over the payload to the application and reconstructs

the schedule using msg.source, msg.groupid, and msg.nonce.

For every child node of msg.role in the schedule, the node

enqueues a message for the respective recipient, making sure

to update msg.role. The ACK reply is enqueued after the

payload messages so that no ACK is sent if a node goes

offline before forwarding a message to all of its children in

the distribution tree.

ACK messages contain the groupid, nonce, source, and role

fields of the original message and an updated sender field,

which allow the recipient of the ACK (i.e., the source) to

identify and cancel the corresponding timeout. The sender

adds a signature covering all header fields to ensure that the

ACK message cannot be forged. When an ACK is not received

on time, the message is sent to a different node as described

above.

If the connection between a user and their provider is inter-

rupted, we rely on the fact that Loopix allows users to retrieve

received messages from their inbox later. The user’s software

notices a loss of connection and pauses timeouts until it has

had a chance to check the inbox on the provider again.

After a long offline period, a node’s inbox may contain a

large backlog of messages that were received by the provider

while the user was offline. When a node comes back online, it

treats this backlog differently from messages received while

9

online: for any messages received while offline, a node only

delivers the payloads to the application, but it does not send

ACK messages or forward messages to other nodes. Here the

node avoids doing unnecessary work for messages where the

timeout is likely to have already expired.

Algorithm 8 in Appendix B describes the behaviour of the

fault-tolerant variant in detail.

5.2.1 Eventual Delivery and Byzantine Fault Tolerance

The fault-tolerant variant of Rollercoaster assumes that the

source node acts honestly and does not disconnect perma-

nently (but can do so intermittently). This is reasonable as the

sending user has high incentive to see through the delivery of

their message. We prove eventual delivery under this assump-

tion in Appendix C . An application might provide the user

with a suitable user interface that shows the delivery process.

Proof sketch: Everyone who does not ACK the payload

will eventually receive it directly from the source, and will

read it from their inbox when they return online. This works

even in the presence of malicious nodes that acknowledge a

message without forwarding it, since the source has individual

timeouts for each group member. Therefore, the source will

detect when a node’s children do not send ACKs.

However, the source node might be disconnected perma-

nently. To nevertheless guarantee eventual delivery, every

group member can periodically pick another group member

at random and send it a hash of the message history it has

seen so far (ordered in a deterministic way so that two users

with the same set of messages obtain the same hash). If the

recipient does not recognise the hash, the users run a reconcil-

iation protocol [14] to exchange any messages that are known

to only one of the users. Such a protocol provably guarantees

that every user eventually receives every message, even if

some of the users are Byzantine-faulty, provided that every

user eventually exchanges hashes with every other user [14].

5.3 Exploring Delay and Traffic

We first analyse the expected multicast latency of Roller-

coaster without fault tolerance by considering the levels of

the distribution tree, as illustrated in Figure 2. The expected

multicast latency Drollercoaster is determined by the longest

message forwarding paths C1,C2, Each such path is de-

fined as C = e0, . . . ,e|C|−1 where ei is a edge from a node on

level i to a node on level i+1. We call these edges one-level

edges. The number of levels of the schedule generated by

Algorithm 1 is L = ⌈logk+1 |U |⌉ as discussed in §5.1. Hence,

no path is longer than L. An example of a longest path is

C = (a,b)(b,g) in Figure 2. The mean message delay when

traversing each edge of the graph is d̄msg = d̄Q + d̄t , where d̄Q

is the mean queuing delay and d̄t = d̄p +(l +1) · d̄µ + d̄pull is

the message’s mean travel time through the network, as in (2).

Since each node sends no more than a total of k messages to

Scheme Latency D Packet size overhead

Naïve Unicast O(m) −

Naïve Multicast O(1) O(m)

Rollercoaster O(logm) O(1)

Table 2: Overhead of the presented multicast schemes in terms

of group multicast delay and packet size overhead.

the directly subsequent level, the expected queuing delay for

the last message is d̄Q = k−1
λp

.

However, there are also edges from a node on level i to

a node on level i+ j where j > 1. One example is (a,d) in

Figure 2. Messages from level i to level i+1 are sent before

any messages that skip levels, and therefore any level-skipping

messages may experience higher queuing delay before they

are sent. Concretely, the edges from level i to level i + j

will incur an additional expected queuing delay of at most

(j−1) · d̄Q compared to one-level edges. At the same time,

these edges save j−1 hops, which would have incurred both

a queuing delay d̄Q and a travel time d̄t each. Hence, the time

saved by the reduced hop count outweighs the extra queuing

delay.

Thus, the expected time for a message to be received by

all nodes is determined by the longest path consisting of only

one-level edges, with a queuing delay of d̄Q = k−1
λp

at each

hop:

Drollercoaster = L · (d̄Q + d̄t) = ⌈logk+1 m⌉ · d̄msg (6)

Hence, the group multicast latency is logarithmically de-

pendent on the group size m and contains a multiplicative

factor that equals the time to send a single message after

being queued behind at most k messages.

When a node is offline, it will only be able to receive mes-

sages when it comes online and queries its inbox. In case

the offline node is a forwarding node, the source will detect

the lack of an ACK after the timeout expired. In this case

the latency penalty for the children of the failed node is the

timeout of the parent node, which is typically proportional to

the expected delivery time.

5.4 p-Restricted Multicast with MultiSphinx

As specified so far, Rollercoaster uses the unmodified Loopix

protocol. However, even though Rollercoaster spreads the

work of sending a multicast message more evenly across the

network than sequential unicast, payload messages and ACKs

are still demanding for nodes’ send queues.

In this section, we consider a modification to the Loopix

protocol that further improves multicast performance: namely,

we allow some mix nodes to multiply one input message into

multiple output messages, which may be sent to different

10

λl

λd

λp

loop

drop

payload

λ

λ′l

λ′d

λ′p

loop

drop

payload

p = 2

λ′

A Standard Loopix B p-Restricted Multicast

Figure 4: Standard Loopix (A) sends out a message if any of

its Poisson processes triggers, so the rate of messages sent is

λ = λp +λd +λl . In p-restricted multicast (B) these Poisson

processes are still independent, but the node has an extra

layer that awaits p messages, which are then wrapped into

a MultiSphinx message. The sender can increase λ′p to pλp

(same for λ′d ,λ
′
l) while keeping λ′ = λ.

recipients. The naïve mix-multicast we considered in Sec-

tion 4.2 allows arbitrary multiplication factors. Here we show

how to make mix-node-supported multicast safe by restrict-

ing the multiplication factor to a fixed constant p. We call

this approach p-restricted multicast where clients can send

p messages inside one MultiSphinx package; with p = 1 this

scheme is identical to the regular Rollercoaster.

In p-restricted multicast, only mix nodes in one designated

layer may multiply messages. In our design, we perform mul-

tiplication in the middle layer (layer 2 of 3) and we refer to

these mix nodes as multiplication nodes. To ensure unlinkabil-

ity of mix nodes’ inputs and outputs, every message processed

by a multiplication node must result in p output messages,

regardless of the message type or destination. Mix nodes in

other layers retain the standard one-in-one-out behaviour of

Loopix. Since layer 3 of the mix network needs to process p

times as many messages as the earlier layers, layer 3 should

contain p times as many mix nodes as layers 2.

This paper uses the parameter p for p-restricted multicast

and k for the schedule algorithm. These can be chosen inde-

pendently of each other. However, for simplicity and practical

interdependence we often set both to the same value k = p.

Effectively, p-restricted multicast allows p messages to

different recipients to be packaged as a single message up to

p times the size. Sending fewer but larger messages allows for

lower power consumption on mobile devices, as discussed in

our application requirements (§2). We show in our evaluation

in §6.5 that p-restricted multicast allows choosing much larger

λ values while maintaining low latency.

5.4.1 The MultiSphinx message format

Loopix encodes all messages using the Sphinx message for-

mat [11], which consists of a header M containing all metadata

and an encrypted payload δ. Using the header, each mix node

ni derives a secret shared key si. Due to the layered encryp-

tion of the header and payload, an adversary cannot correlate

incoming and outgoing packets when observing mix nodes.

Our construction is based on the improved Sphinx packet

format [15] which uses authenticated encryption (AE). In

particular, we use a stream cipher C in an encrypt-then-MAC

regime and require that without the knowledge of the key, the

generated ciphertext is indistinguishable from random noise

(which is believed to be the case for modern ciphers such as

AES-CTR). Every hop verifies integrity of the entire message

to prevent active tagging attacks. The improved Sphinx packet

format satisfies the ideal functionality of Sphinx [16]. The

per-hop integrity checks of the entire message come at the

cost of lacking support for anonymous reply messages, but

these are not used by Loopix.

Sphinx assumes that each input message to a mix node

results in exactly one output message. In order to support

p-restricted multicast we introduce the MultiSphinx message

format, which can wrap p messages. A MultiSphinx mes-

sage is unwrapped at a designated mix node, and split into

p independent messages. For anyone other than the desig-

nated multiplication node, MultiSphinx messages are indis-

tinguishable from regular Sphinx packets. We now describe

the MultiSphinx design for p = 2 by describing the creation

and processing of these messages. The detailed construction

and processing is formalised in Appendix A.2.

For p = 2, the sender waits until its message queues (pay-

load, drop, loop) have released two messages. The sender

then combines their payloads δA,δB and recipients UA,UB

into a single message that is inserted into the mix network, as

shown in Figure 4. As we want to fit both payloads and two

headers into our message to the multiplication node, |δA| and

|δB| must be smaller than the global Sphinx payload size.

The combined message is sent via a mix node n0 in the first

layer to the designated multiplication node n1, where its inner

messages are extracted and added to its input buffer. The inner

message containing δA will be processed by n1 and routed

via n2,A to the recipient nA (and similarly for B). The multi-

plication node derives the secret key s1 from the incoming

message’s header and additional secret keys s1,A,s1,B from

the headers of the inner messages. We omit provider nodes.

The sender first computes all secret keys. Using these secret

keys it encrypts the payloads δA,δB between the recipients

and the multiplication node. However, the resulting encrypted

payloads are smaller than the regular Sphinx payload lengths.

To ensure all messages have the same size, we use a pseudo-

random function (PRF, e.g. HMAC) ρ to add padding to

the encrypted payloads δ1,A and δ1,B. ρ is keyed with the

shared secret s1 and the payload index (A or B) so that the

padding is unique. The resulting payloads have the format

δ′1,A = δ1,A ‖ρ(s1 ‖A) (and similarly for B). Now the sender

computes the headers and MACs along the path from the

multiplication node to the recipients by simulating the decryp-

tion of the payload at each step. This results in two Sphinx

11

headers M1,A and M1,B. Finally, we create the message for

the path from the sender to the multiplication node using the

regular Sphinx construction. We set the payload of that mes-

sage to the concatenation δcombined = M1,A ‖δ1,A ‖M1,B ‖δ1,B.

Appendix A.2 contains pseudocode for this construction.

The processing of incoming messages at the multiplication

node differs from other nodes. First, the payload is decrypted

and split into the message headers and payloads. Then, the

payloads are deterministically padded using the PRF ρ as

described above. To ensure that the messages are hard to cor-

relate, they are added to the node’s input buffer, decrypted

again (now deriving secrets s1,{A,B}), and delayed indepen-

dently as defined by their individual delay parameter.

5.4.2 Anonymity of MultiSphinx

All MultiSphinx messages (before and after the multiplica-

tion node) have the same header length and payload length as

regular Sphinx messages. Sphinx headers do not leak the num-

ber of remaining hops and the ciphertext is indistinguishable

from random noise. Therefore, MultiSphinx messages are

indistinguishable from regular Loopix messages(Lemma 9,

Appendix D). At the same time, the multiplication node main-

tains the unlinkability between the incoming messages and

outgoing messages as these are delayed independently.

An adversary might also corrupt mix nodes. Even in this

case they do not gain advantage over regular Sphinx message

with regards to sender and recipient anonymity and unlink-

ability(Theorem 13, Appendix D). These results also hold

for active adversaries with the capabilities from the original

Loopix paper(Theorem 19, Appendix D).

If an adversary controls a p-restricted multiplication node

and c3 of the n3 mix nodes of the third layer, they can trace

some messages from their multiplication to their delivery at

providers. On the basis that the p recipients of a MultiSphinx

message are likely to be members of the same group, the

adversary then has a chance to guess that any two of the

users from these providers share a group membership. In

Theorem 17 (Appendix D) we show that the probability of

correctly guessing two group members given a group message

is less than (1− (n3−c3
n3

)p−1) · |P |
2

|U|2
if all |U| users are evenly

distributed among |P | providers. This attack is prevented if

the multiplication node or all but one of the chosen nodes in

the third layer are trustworthy. (In contrast, standard Loopix

requires only that any mix node on the message path is trust-

worthy.) MultiSphinx does not leak any information regarding

group sizes(Theorem 15). Appendix Dcontains theorems and

proofs for our claims.

In addition to these properties, it is possible to achieve

sender anonymity by first forwarding the message to a trusted

group member. The sender can prove its membership through

a shared group secret. We leave receiver anonymity and un-

linkable group membership for future work.

5.5 Further Optimisations

The schedule computed by GENSCHEDULE in Algorithm 1

delivers the first messages to the nodes at the beginning of

the provided recipient list Urecv. These nodes will always act

as the forwarding nodes. To better balance these among all

group members, one can shuffle the list based on a nonce

value that is part of the message. This variant is described

in Algorithm 2. As the GENSCHEDULERAND algorithm is

still deterministic and the nonce is part of the Rollercoaster

header, each node reconstructs the same schedule.

Algorithm 2 Creating a pseudorandomized schedule for a

given nonce

1: procedure GENSCHEDULERAND(s, Urecv, k, nonce)

2: R← NEWPRNG(nonce)
3: U ′recv← R.shuffle(Urecv)
4: return GENSCHEDULE(s, U ′recv, k)

Further optimisation is possible if different sub-groups dis-

play different levels of activity and connectivity. For example,

if there is a small, active sub-group communicating while the

rest of the group remains passive, it is more important for mes-

sages to travel faster between active nodes to support swift,

effective collaboration. Active nodes can often be assumed

to be more likely to be online. Agreeing on the full order is

no longer possible through a single nonce value. However,

the source can randomly compute a subset of all schedules,

evaluate the generated schedule against its information about

the group members, and choose one that creates a schedule

with the most desirable properties.

6 Evaluation

For the empirical evaluation we developed a mix network sim-

ulation tool that provides fully reproducible results. First, we

discuss the behaviour and results of the Rollercoaster scheme

in an ideal scenario where all participants are online through-

out. Second, we discuss the impact of offline nodes and how

this is addressed by the fault-tolerant variant of Rollercoaster.

Finally, we discuss the impact of multi-group membership,

sending multiple messages at once, and p-restricted multicast.

6.1 Methodology

Since the real-world performance of Loopix has been prac-

tically demonstrated [3] we run a simulation instead of an

experiment on a real network. This provides clear practical

advantages: First, it allows us to eliminate external influences

such as network congestion due to unrelated traffic or CPU

usage by other processes. Second, the simulated time can run

faster than real-time, allowing us to gather significantly more

results using less computational resources. Third, it makes

monitoring and categorising traffic easier as packets and node

12

state can be inspected. Finally, by initialising the PRNG with

a fixed seed, the results of this paper are fully reproducible.

The simulator runs the entire mix network on a single ma-

chine, with nodes communicating through shared memory

simulating a network. It instantiates objects for each partici-

pating user, provider, and mix node. All objects implement

a tick() method in which they process incoming messages

and mimic the designed node behaviour such as delaying and

forwarding packets. As we are primarily interested in the traf-

fic behaviour, no actual encryption is performed. The original

Loopix paper has shown that the queuing time and per-hop

delays dominate the message delay, and that CPU time for

cryptographic operations is insignificant in comparison. Simi-

larly, the network delay is negligible.

For the final evaluation we ran 276 independent simula-

tions, covering more than 992,160 hours of simulated node

time in less than 209 hours of CPU core time. This is a rel-

ative speed up by factor 4500× compared to a real network

experiment of the same scope. In every simulation step the

application (see below) measures the message latency dmsg of

each delivered message between the original source and each

recipient. We verified that our simulator behaves faithfully to

the Loopix implementation by reproducing a latency distribu-

tion graph from the original paper [3, Figure 11], as shown

in Appendix E . Our simulator is implemented in less than

2,000 lines of Python code including tests and is available as

an open-source project.2

The network simulator assigns 16 users to each provider.

We set the Loopix rates λp = λd = λl = 2/s for the client

nodes and the delay rate λµ = 3/s. Hence, the overall sending

rate of the clients is λ = 6/s. This meets the requirement

λ/λµ ≥ 2 that is suggested by the Loopix paper [3, p. 1209,

λµ = µ]. The mix network consists of 3 layers containing

3 mix nodes each (mix loop injection rate λM = 2/s). All

simulations are run with a granularity of 10ms per tick. The

simulated time span for all configurations is 24h.

The application behaviour is modelled by a Poisson pro-

cess. On average every 30s one of the online nodes sends

a single message to all other group members. We account

for participation inequality [8] by dividing the group using

an 80/20 rule: 20% of users in the group send 80% of all

messages, and vice versa.

6.2 Results with All Users Online

For a group of size 128, the average latency is reduced from

34.9s in sequential unicast to 7.0s (8.3s for group size 256)

in Rollercoaster with k = p = 2 . This fulfils our application

requirements that were derived from the user study concern-

ing delay in collaborative applications [7]. The results are

compatible with our analytical results as discussed in Sec-

tion 5.3. For Rollercoaster not only is the average latency low,

but most of the latency distribution falls within fairly tight

2https://github.com/lambdapioneer/rollercoaster

 m= 32 m= 45 m= 64 m= 91 m= 128 m= 181 m= 256
Group size

0
10
20
30
40
50
60
70
80
90

100
110

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

p 9
9

=
15

1.
5s

Unicast RC (k= p= 1) RC (k= p= 2)

Figure 5: This box plot shows the distributions of message

latency dmsg for increasing group sizes for the strategies naïve

sequential unicast and Rollercoaster (RC). The Rollercoaster

strategies show different k and p parameters. The boxes span

from the first quartile to the third quartile (middle line is the

median) and the whiskers indicate the 1st and 99th percentile.

bounds – that is, very large latencies are rare. Figure 5 shows

the latency achieved by the Rollercoaster scheme with and

without p-restricted multicast for different percentiles and

compares them to unicast. For a group with 128 members

the 99th percentile p99 for Rollercoaster is 12.3s (p90: 9.9s)

whereas in unicast it is 75.6s (p90: 60.8s). We provide de-

tailed histograms in Appendix H .

6.3 Results for Fault-Tolerance Scenarios

The evaluation of the fault tolerance properties requires a

realistic model of connectivity of mobile devices. For this we

processed data from the Device Analyzer project [17] that

contains usage data of volunteers who installed the Android

app. The online/offline state of a device is derived from its

trace information regarding network state, signal strength, and

airplane mode. We limit the dataset (n = 27790) to traces that

contain connectivity information (n = 25618), cover at least

48 hours (n = 20117), and have no interval larger than 12

hours without any data (n = 2772).

Inspecting the traces we identify three archetypes of online

behaviour. The first group is online most of the time and is

only interrupted by shorter offline segments of less than 60

minutes. Members of the second group have at least one large

online segment of > 8 hours and are on average online 50%

or more of the time. Finally, the third group is online less

than 50% of the time with many frequent changes between

online and offline states. As the dataset is more than five years

old we decided to use the characteristics of these groups to

build a model. Using a model allows us to extrapolate offline

behaviour into scenarios with increased connectivity. In the

model following the parameters of the original dataset, the

fraction of all users’ time spent online is 65%. In a second

and third model with increased connectivity, we increase this

percentage to 80% and 88%, respectively, while preserving

the behaviour of the archetype groups. The generated models

are visualised in Appendix F .

13

https://github.com/lambdapioneer/rollercoaster

65% onl. 80% onl. 88% onl.
Group size m= 128

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y
d m

sg
 [s

]

65% onl. 80% onl. 88% onl.
Group size m= 256

1

10

100

1000

10000

Unicast RC (k= p= 2) RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 6: The distribution of message latency dmsg for differ-

ent offline scenarios. From left to right the strategies are Uni-

cast, Rollercoaster without fault-tolerance (RC), and Roller-

coaster with fault-tolerance (RC-FT). Boxes and whiskers as

in Figure 5.

1 2 4 8 16
Total number of groups (100% online)

1

10

100

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

1 2 4 8 16
Total number of groups (80% online)

1

10

100

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 7: Message latency dmsg for an increasing number of

groups for 128 users (every user is member of every group).

Boxes and whiskers as in Figure 5.

For our discussion of offline behaviour we refine our previ-

ous definition of message latency dmsg: we ignore all latencies

where the intended recipient was offline when the message

was placed into their inbox by the provider node. This change

has the practical benefit of excluding outliers. More impor-

tantly, fast delivery to an offline user has no real-world benefit.

Instead, a good multicast algorithm should optimise the de-

livery to all nodes that are active and can actually process an

incoming message. The source might go offline at any time

regardless of outstanding messages.

Without fault tolerance, the presence of offline nodes

greatly increases the 99th percentile (p99) for Rollercoaster

(RC) to more than 10,000s for a group of 128 members. The

fault-tolerant variant (RC-FT) reduces the 99th percentile to

less than 21.9s (p90: 18.0s). In unicast p99 latency is 103.3s

(p90: 61.9s). Figure 6 shows that the fault-tolerant variant

generally outperforms unicast at various percentiles. We pro-

vide detailed histograms in Appendix H .

6.4 Multiple Groups and Message Bursts

Users might be part of multiple groups, which increases their

burden of distributing messages. In this evaluation we assign

128 users to a growing number of groups. Figure 7 shows that

the number of group memberships has little impact on Roller-

coaster’s performance both for online and offline scenarios.

 1 2 4 8 16 32
Message burst b (100% online)

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

 1 2 4 8 16 32
Message burst b (80% online)

1

10

100

1000

10000

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 8: Message latency dmsg for applications that send b

messages at once. The group size is m = 128. Boxes and

whiskers as in Figure 5.

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16
0

50

100

150

200

m
ean d

m
sg

Figure 9: Heatmaps showing the mean message latency for

reduced sending rates (y-axis) and different Rollercoaster

parameters (x-axis). In the left graph only the logical branch

factor k is increased. In the right graph the multicast factor

p is increased at the same time. Group size is m = 128 and

80% online. More simulations in Appendix G.

Similarly, users might be sharing large payloads (e.g. im-

ages) or sending multiple updates at once. Both translate into

many messages being scheduled for distribution at the same

time, which risks overwhelming the payload queue. Figure 8

shows that Rollercoaster can handle many more messages

sent in bursts than unicast. We observed that with unicast

and some Rollercoaster configurations some nodes had indefi-

nitely growing send buffers as the simulation progressed. The

effect of this can be seen by the higher message latencies for

b = 32. This threshold is higher for p-restricted multicast.

6.5 Results for p-Restricted Multicast

In this evaluation we show that p-restricted multicast allows

us to drastically lower the sending rates λ{p,d,l} of the clients

while achieving similar performance. A low sending rate is

desirable as it allows the radio network module to return to

standby and thereby saving significant battery energy on mo-

bile devices (see §2). Figure 9 shows that just increasing k

(left) has negligible or even negative impact, while increasing

k and p together (right) allows for lower sending rate λ while

maintaining good enough performance. We decrease λµ ac-

cordingly to maintain the λ/λµ ≥ 2 balance (see §6.1) which

increases the per-hop delays.

14

7 Related Work

Previous research on efficient anonymity networks achieves

strong security goals, high efficiency, scalability, and offline

support. However, decentralised low-latency group multicast

while guaranteeing the strongest privacy guarantees against a

global adversary has not yet received due attention.

Work based on Dining Cryptographer networks (DC-nets)

[18] is inherently broadcast-based as the round results are

shared with all nodes. These designs generally provide sender

anonymity and impressive functionality. However, the re-

quired synchronisation and communication overhead render

them unsuitable for low latency applications. As the rounds

depend on the calculations of all clients, they can be suscepti-

ble to interference by malicious participants. The Xor-Trees

by Dolev et al. [19] achieve efficient multicast, but only in

the absence of an active attacker. Dissent [20] can provide

protection against such active attacks. However, its design

does not scale as well as Loopix due to its need to broadcast

messages to all clients, and not just the intended group of

recipients.

Circuit-based onion routing networks such as Tor [1] es-

tablish long-living paths through multiple hops. All messages

from and to the client are transmitted via the same path with

every node peeling off the outer-most encryption layer. They

are arguably the most widely deployed and accessible class of

anonymity network designs. While the onion path approach

allows for low latency communication, it is known to be vul-

nerable against global adversaries performing traffic analysis

attacks [2, 21]. Most mainstream designs consider one-to-

one communication, but there is interesting work on building

multicast trees using onion-routing techniques. Examples are

AP3 [22], M2 [23], and MTor [24]. When facing a global

adversary, they share similar vulnerabilities to Tor.

Multicast in friend-to-friend overlays as in VOUTE [25,26]

share a similarity with our work as trusted peers help with

message distribution. However, to our knowledge, there are

no practical implementations with performance similar to

Loopix. Using real-world trust relationships together with

Rollercoaster for inter-group communication is an interesting

direction for future work.

The recent Vuvuzela design [27] cleverly leverages dead

drops and cover traffic to achieve strong metadata privacy

while maintaining a high throughput of messages. Pursuing

the goal of limiting network bandwidth use results in delays

of up to 10 minutes to initiate a call and more than 30 seconds

latency for messages, which we consider too large for many

collaborative applications. Its privacy guarantees can be lim-

ited in the case of an active attacker with a priori suspicion of

a certain group of users communicating.

Work based on private information retrieval (PIR) such

as Pung [28] and Talek [29] allows for low-latency group

communication with strong security guarantees. However,

these systems are not decentralised and rely on the availability

of high-spec servers. Moreover, their latency scales with the

total number of users n rather than the group sizes.

We note that our evaluation differs from the standard meth-

ods in similar papers [3, 20, 27] using real servers and net-

works. Since it is already established that the performance

of Loopix is viable in practise, we can build on top of this

and focus on more inspectable and reproducible evaluations

through deterministic simulation.

The Shadow project [30] can simulate actual anonymity

network implementations in a network topology on a single

machine. With extensive modelling options the network and

user behaviour can be modelled deterministically. However,

since the application binaries remain black-boxes it cannot

guarantee complete deterministic behaviour. White-box simu-

lators such as Mixim [31] calculate the entropy as messages

pass through the system.

Many multicast systems use distribution trees [32–36].

However, to our knowledge, these protocols have not yet been

applied in the context of mix networks, where the limited

send rate and artificial message delays introduce particular

challenges not considered by existing multicast protocols.

8 Conclusion

In this paper we have presented an efficient scheme for multi-

cast in mix networks named Rollercoaster. Compared to the

sender of a message naïvely sending it to all other group mem-

bers by unicast, our scheme significantly lowers the time until

all group members receive the message. For a group of size

m = 128, Rollercoaster is faster by a factor of 5, reducing

the average delay from 34.9s to 7.0s and reducing the 99th

percentile from 75.6s to 12.3s. We do this by involving more

users than just the original sender in the process of dissem-

inating a message to group members. This also reduces the

asymptotic growth of the expected delay to O(logm). A key

ingredient for this is the deterministic GENSCHEDULE algo-

rithm that allows users to share plans for message distribution

using a single nonce.

Faced with the challenge of unreliable and offline nodes,

we have introduced a variant of our algorithm that allows

acknowledgement and retry of message delivery as well as

reassignment of tasks from offline to online users. In the

failure-free case, it adds a constant message overhead that

does not worsen the results measured. When nodes are offline

it significantly improves reliability and delays.

Our simulation tool enabled us to obtain reproducible and

inspectable performance measurements. The low cost of simu-

lation enabled us to efficiently explore the behaviour of many

system configurations with a large number of users.

In future work we plan to implement and run collaborative

applications and group messaging protocols on a network

using Rollercoaster. We also hope to extend Rollercoaster

with facilities to add or remove members of a group.

15

Acknowledgements

We thank Steven J. Murdoch, Killian Davitt, and our anony-

mous reviewers for the helpful discussions and their valu-

able input. Daniel Hugenroth is supported by a Nokia Bell

Labs Scholarship and the Cambridge European Trust. Martin

Kleppmann is supported by a Leverhulme Trust Early Ca-

reer Fellowship, the Isaac Newton Trust, Nokia Bell Labs,

and crowdfunding supporters including Ably, Adrià Arcarons,

Chet Corcos, Macrometa, Mintter, David Pollak, RelationalAI,

SoftwareMill, Talent Formation Network, and Adam Wiggins.

Alastair R. Beresford is partially supported by EPSRC [grant

number EP/M020320/1].

References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:

The second-generation onion router,” tech. rep., Naval

Research Lab Washington DC, 2004.

[2] S. J. Murdoch and G. Danezis, “Low-cost traffic analy-

sis of Tor,” in 2005 IEEE Symposium on Security and

Privacy, pp. 183–195, IEEE, 2005.

[3] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and

G. Danezis, “The Loopix anonymity system,” in 26th

USENIX Security Symposium, pp. 1199–1216, 2017.

[4] M. Kleppmann, S. A. Kollmann, D. A. Vasile, and A. R.

Beresford, “From secure messaging to secure collab-

oration,” in 26th International Workshop on Security

Protocols, pp. 179–185, Springer, 2018.

[5] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and

P. Urso, “Evaluating CRDTs for real-time document

editing,” in 11th ACM Symposium on Document Engi-

neering, pp. 103–112, ACM, Sept. 2011.

[6] A. Pfitzmann and M. Hansen, “A terminology

for talking about privacy by data minimization:

Anonymity, unlinkability, undetectability, unobservabil-

ity, pseudonymity, and identity management,” Aug.

2010. v0.34, http://dud.inf.tu-dresden.de/

literatur/Anon_Terminology_v0.34.pdf.

[7] C.-L. Ignat, G. Oster, O. Fox, V. L. Shalin, and F. Charoy,

“How do user groups cope with delay in real-time collab-

orative note taking,” in 14th European Conference on

Computer Supported Cooperative Work, pp. 223–242,

Springer, Sept. 2015.

[8] J. Nielsen, “The 90-9-1 rule for participation in-

equality in social media and online communi-

ties,” 2006. https://www.nngroup.com/articles/

participation-inequality/.

[9] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck, “A close examination of performance

and power characteristics of 4G LTE networks,” in 10th

International Conference on Mobile Systems, Applica-

tions, and Services, pp. 225–238, 2012.

[10] D. Chaum, “Untraceable electronic mail, return ad-

dresses, and digital pseudonyms,” Communications of

the ACM, vol. 24, no. 2, 1981.

[11] G. Danezis and I. Goldberg, “Sphinx: A compact and

provably secure mix format,” in 30th IEEE Symposium

on Security and Privacy, pp. 269–282, IEEE, 2009.

[12] A. Serjantov, R. Dingledine, and P. Syverson, “From a

trickle to a flood: Active attacks on several mix types,” in

International Workshop on Information Hiding, pp. 36–

52, Springer, 2002.

[13] S. Deering, “Host extensions for IP multicasting,”

STD 5, RFC Editor, August 1989. http://www.

rfc-editor.org/rfc/rfc1112.txt.

[14] M. Kleppmann and H. Howard, “Byzantine eventual

consistency and the fundamental limits of peer-to-peer

databases,” arXiv preprint arXiv:2012.00472, 2020.

[15] F. Beato, K. Halunen, and B. Mennink, “Improving

the Sphinx mix network,” in International Conference

on Cryptology and Network Security, pp. 681–691,

Springer, 2016.

[16] C. Kuhn, M. Beck, and T. Strufe, “Breaking and (par-

tially) fixing provably secure onion routing,” arXiv

preprint arXiv:1910.13772, 2019.

[17] D. T. Wagner, A. Rice, and A. R. Beresford, “Device

analyzer: Understanding smartphone usage,” in Inter-

national Conference on Mobile and Ubiquitous Sys-

tems: Computing, Networking, and Services, pp. 195–

208, Springer, 2013.

[18] D. Chaum, “Security without identification: Transaction

systems to make Big Brother obsolete,” Communica-

tions of the ACM, vol. 28, no. 10, pp. 1030–1044, 1985.

[19] S. Dolev and R. Ostrobsky, “Xor-trees for efficient

anonymous multicast and reception,” ACM Transactions

on Information and System Security, vol. 3, no. 2, pp. 63–

84, 2000.

[20] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-

son, “Dissent in numbers: Making strong anonymity

scale,” in 10th USENIX Symposium on Operating Sys-

tems Design and Implementation, pp. 179–182, 2012.

[21] G. Danezis and A. Serjantov, “Statistical disclosure or

intersection attacks on anonymity systems,” in Interna-

tional Workshop on Information Hiding, pp. 293–308,

Springer, 2004.

16

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://www.nngroup.com/articles/participation-inequality/
https://www.nngroup.com/articles/participation-inequality/
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt

[22] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and

D. S. Wallach, “AP3: Cooperative, decentralized anony-

mous communication,” in 11th ACM SIGOPS European

workshop, p. 30, ACM, 2004.

[23] G. Perng, M. K. Reiter, and C. Wang, “M2: Multicast-

ing mixes for efficient and anonymous communication,”

in 26th IEEE International Conference on Distributed

Computing Systems, pp. 59–59, IEEE, 2006.

[24] D. Lin, M. Sherr, and B. T. Loo, “Scalable and anony-

mous group communication with MTor,” Proceedings

on Privacy Enhancing Technologies, vol. 2016, no. 2,

pp. 22–39, 2016.

[25] S. Roos, M. Beck, and T. Strufe, “Anonymous addresses

for efficient and resilient routing in F2F overlays,” in

35th Annual IEEE International Conference on Com-

puter Communications, pp. 1–9, IEEE, 2016.

[26] S. Roos, M. Beck, and T. Strufe, “Voute-virtual

overlays using tree embeddings,” arXiv preprint

arXiv:1601.06119, 2016.

[27] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zel-

dovich, “Vuvuzela: Scalable private messaging resistant

to traffic analysis,” in 25th Symposium on Operating

Systems Principles, pp. 137–152, 2015.

[28] S. Angel and S. Setty, “Unobservable communication

over fully untrusted infrastructure,” in 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation, pp. 551–569, 2016.

[29] R. Cheng, W. Scott, E. Masserova, I. Zhang, V. Goyal,

T. Anderson, A. Krishnamurthy, and B. Parno, “Talek:

Private group messaging with hidden access patterns,”

arXiv preprint arXiv:2001.08250, 2020.

[30] R. Jansen and N. Hopper, “Shadow: Running Tor in a

box for accurate and efficient experimentation,” in 19th

Symposium on Network and Distributed System Security,

Internet Society, February 2012.

[31] I. B. Guirat, D. Gosain, and C. Diaz, “Mixim: A gen-

eral purpose simulator for mixnet,” Privacy Enhancing

Technologies Symposium – HotPETs Workshop, 2020.

[32] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and

N. D. Georganas, “A survey of application-layer multi-

cast protocols,” IEEE Communications Surveys & Tuto-

rials, vol. 9, no. 3, pp. 58–74, 2007.

[33] A. Popescu, D. Constantinescu, D. Erman, and D. Ilie,

“A survey of reliable multicast communication,” in Con-

ference on Next Generation Internet Networks, NGI,

pp. 111–118, IEEE, 2007.

[34] C. K. Yeo, B.-S. Lee, and M. H. Er, “A survey of appli-

cation level multicast techniques,” Computer Communi-

cations, vol. 27, no. 15, pp. 1547–1568, 2004.

[35] J. Leitão, J. Pereira, and L. Rodrigues, “Epidemic broad-

cast trees,” in 26th IEEE International Symposium on

Reliable Distributed Systems, SRDS 2007, pp. 301–310,

IEEE, Oct. 2007.

[36] J. Leitão, J. Pereira, and L. Rodrigues, “Gossip-based

broadcast,” in Handbook of Peer-to-Peer Networking,

pp. 831–860, Springer, Oct. 2009.

A MultiSphinx Construction

In this Appendix we provide detailed algorithms for con-

structing and processing both the regular Sphinx messages

(A.1) and our MultiSphinx messages (A.2). The regular con-

struction is based on the original Sphinx paper [11] and the

proposed improvement using authenticated encryption [15].

For both schemes we will use three hops n0,n1,n2 for the mix

nodes and a final hop n for the recipient3 that extracts the

payload from the inner-most encryption (see Figure 10).

A Sphinx header M consists of a group element α for deriv-

ing shared secrets, authenticated data β, and an authentication

tag γ. In the original Sphinx paper β is used to store the ad-

dress of the next hop. For the final hop the distinguished

element ∗ is used to signal that the payload reached its in-

tended destination. Loopix adds per-hop delays to this routing

information.

We assume that all nodes ni have access to the public keys

of all other nodes without us passing these explicitly. We

assume the existence of a method PROCESSHEADER that

takes a header of a Sphinx packet and returns all metadata

contained in β (next hop identifier, delay) and the header for

the next hop. We assume the existence of a method COM-

PUTESECRETS that takes a list of hops n0,n1, . . . and outputs

3We omit the provider nodes here to improve readability.

REGULAR SPHINX

s n0 n1 n2 n ∗
(M0,δ0) (M1,δ1) (M2,δ2) (M3,δ3) δ

p-RESTRICTED MULTISPHINX (p = 2)

s n0 n1

(M0,δ0) (M1,δ1)

n2,A nA ∗

(M 2,A
,δ 2,A

)

(M3,A ,δ3,A) δA

n2,B nB ∗

(M
2,B ,δ

2,B)
(M3,B ,δ3,B) δB

(M1,A ,δ1,A)

(M1,B ,δ1,B)

Figure 10: Schematic of messages (header, payload) for

Sphinx and MultiSphinx.

17

a list of shared secrets s0,s1, We assume the existence

of a method CREATEHEADER that takes a shared secret si,

the next hop identifier ni+1, and (optionally) a header Mi+1

to wrap. The details of these operations can be found in the

Sphinx paper [11, §3.2 and §3.6]. In line with Loopix the

sender chooses a random per-hop delay for each hop and in-

cludes it in the authenticated metadata in the header. This

happens transparently in the CREATEHEADER method.

We assume the existence of an authenticated encryption

(AE) scheme as required by the improved Sphinx format [15].

An AE scheme provides an encryption function AEenc that

takes a secret key s, a message msg, and optional metadata

meta and outputs a ciphertext ctext and an authentication

tag auth. It also provides a decryption function AEdec that

takes a secret key s, a ciphertext ctext, an authentication tag

auth, and metadata meta. It returns the decrypted message if

the authentication tag verifies the integrity of ciphertext and

metadata or ⊥ otherwise.

We assume that the AE scheme is based on an encrypt-

then-mac regime using a stream cipher C (e.g. AES-CTR),

a message authentication code MAC (e.g. HMAC), and a

keyed key derivation function KDF (e.g. HKDF). Stream

ciphers have the property that changing a given bit of the

ciphertext/plaintext only changes the bit at the same position

in the plaintext/ciphertext after decryption/encryption. Arbi-

trary changes will lead to an invalid auth tag – but we might

intentionally ignore this during our constructions and recal-

culate the auth tags later. Since Sphinx uses fresh secret keys

for every message and hop, we can leave the nonce for the

stream cipher constant. We show our construction of AEenc

and AEdec in Algorithm 3.

Algorithm 3 The authenticated encryption scheme AE based

on stream cipher C, a MAC, and a keyed KDF.

1: procedure AEenc(s,msg,meta)

2: scipher,smac← KDF(s,cipher),KDF(s,mac)
3: ctext← C(scipher)⊕msg

4: auth←MAC(smac,ctext ‖meta)
5: return (ctext,auth)

6:

7: procedure AEdec(s,ctext,auth,meta)

8: scipher,smac← KDF(s,cipher),KDF(s,mac)
9: if MAC(smac,ctext ‖meta) 6= auth then

10: return ⊥
11: msg← C(scipher)⊕ ctext

12: return msg

A.1 Normal Sphinx (existing solution)

The algorithms in this section summarise the existing liter-

ature [11, 15], but we have adapted the notation to be more

concise. Algorithm 4 shows the creation of the a regular

Sphinx message by the sender. While the original Sphinx pa-

pers can create all headers before encrypting the payload, the

improved variant with AE requires us to do these operations

simultaneously as the encryption affects the authentication

tag γ of this and the following message headers.

Algorithm 4 Creating a packet to be routed through hops

n0,n1,n2 to node n.

1: procedure CREATE(δ,n0,n1,n2,n)

2: assert|δ|= MAXMSGLEN

3: s0,s1,s2,s3← COMPUTESECRETS(n0,n1,n2,n)
4: M3← CREATEHEADER(s3,∗)
5: δ3, M3.γ← AEenc(s3,δ,M3.β)
6: M2← CREATEHEADER(s2,n,M3)
7: δ2, M2.γ← AEenc(s2,δ3,M2.β)
8: M1← CREATEHEADER(s1,n2,M2)
9: δ1, M1.γ← AEenc(s1,δ2,M1.β)

10: M0← CREATEHEADER(s0,n1,M1)
11: δ0, M0.γ← AEenc(s0,δ1,M0.β)
12: return (M0,δ0)

Algorithm 5 shows how a mix node processes a message it

has received. First the message is unpacked into the header

and the payload. Then the tag is derived and compared against

previously seen tags to protect against replay attacks. Af-

terwards, the decryption verifies that the authentication tag

matches the message and header metadata. Finally the header

is unwrapped and a send operation is scheduled according to

the next hop identifier and delay from the metadata.

Algorithm 5 Processing of an incoming packet at mix node

n with secret key xn.

1: procedure PROCESS(packet)

2: (M,δ)← packet

3: s← (M.α)xn

4: if hτ(s) ∈ tags then abort

5: tags← tags∪{hτ(s)}
6: δ′← AEdec(s,δ,M.γ,M.β)
7: if δ′ =⊥ then abort

8: (n′,delay),M′ = PROCESSHEADER(M)
9: QUEUEFORSEND(n′,(M′,δ′),delay)

A.2 MultiSphinx (our solution)

We now describe our MultiSphinx construction and highlight

the changes relative to the normal Sphinx construction in blue.

To allow for a readable description we describe everything

for p = 2 however the general case follows easily.

We use the pseudo-random function (PRF) ρ together with

its key-generating function hρ from the original Sphinx paper

to create a deterministic pseudo-random padding. Since we

need two derive to independent keys from the same secret,

18

we extend hρ with another parameter that can be an arbitrary

string. This extension can be implemented using any suitable

HKDF function.

Algorithm 6 explains the creation of MultiSphinx mes-

sages by the sender. The part concerning the “two legs” of

the message graph is only shown once for A to allow for a

more readable presentation. Line 21 instructs which lines are

meant to be repeated for the other p−1 recipients. In line 4

the secret s1 is computed which is required for the padding

construction in line 11. Lines 6-9 encrypt the actual payload

from the recipient nA to the multiplication node n1,A (going

backwards). The encrypted payloads δ3,A,δ2,A,δ1,A are all

smaller than the normal payload length of messages. This

would allow an attacker to distinguish such messages from

other Loopix messages (e.g. when the middle mix layer sends

loop messages). Therefore, the ciphertext is padded in line 11

with our PRF ρ. To correctly compute the MACs and headers

in lines 15-20, we first simulate (going forwards) how the

payloads will be affected by the decryption (line 12f).

Algorithm 7 explains the processing step at a mix node.

Regular mix nodes operate as before (line 10). However, at

multiplication nodes incoming message payloads are split

into p headers and p payloads (line 12). In lines 13-16 the

pseudo-random paddings are added. This process is also visu-

alised in Figure 11. The newly created packets are processed

recursively and then scheduled for sending based on their

individual delay (line 15f). This “self-delivery” corresponds

to the loop edge of n1 in Figure 10. The extra hop allows for

delaying both messages independently at the multiplication

node (two headers allow for two delays). It also simplifies our

correctness arguments.

M1 δ1

|M| MAXMSGLEN

s1 AEdec

⊥(ABORT)

M1,A δ1,A M1,B δ1,Bδcombined =

M1,A δ1,A ρA = ρ(hρ(A,s1))

M1,B δ1,B ρB = ρ(hρ(B,s)1))

M1,A δ1,A ρA = ρ(hρ(A,s1))

Figure 11: Processing of a MultiSphinx message at the multi-

plication node n1 resulting in two outgoing messages that are

send then re-queued for processing.

Algorithm 6 Creating a MultiSphinx packet to be routed

through hops n0,n1,n2,A,n2,B to nodes nA,nB.

1: procedure CREATE(δA,δB,n0,n1,n2,A,n2,B,nA,nB)

2: assert|δA|= |δB|= (MAXMSGLEN−HDRLEN)/2

3: ⊲ Secrets for hops from sender to multiplier node n1

4: s0,s1,← COMPUTESECRETS(n0,n1)
5: ⊲ Encrypt from recipient nA to multiplier node n1

6: s1,A,s2,A,sA← COMPUTESECRETS(n1,A,n2,A,nA)
7: δ3,A← C(KDF(sA,cipher))⊕δA

8: δ2,A← C(KDF(s2,A,cipher))⊕δ3,A

9: δ1,A← C(KDF(s1,A,cipher))⊕δ2,A

10: ⊲ Add pseudo-random padding and compute padded

payloads δ′... along decryption path

11: δ′1,A← δ1,A ‖ρ(hρ(A,s1))

12: δ′2,A← Cdec(KDF(s1,A,cipher))⊕δ′1,A
13: δ′3,A← Cdec(KDF(s2,A,cipher))⊕δ′2,A
14: ⊲ Compute headers and full MACs

15: M3,A← CREATEHEADER(sA,∗)
16: M3,A.γ←MAC(KDF(sA,mac),δ

′
3,A ‖M3.A).β)

17: M2,A← CREATEHEADER(sA,n3,A,M3,A)
18: M2,A.γ←MAC(KDF(s2,A,mac),δ

′
2,A ‖M2.A).β)

19: M1,A← CREATEHEADER(sA,n2,A,M2,A)
20: M1,A.γ←MAC(KDF(s1,A,mac),δ

′
1,A ‖M1.A).β)

21: Repeat lines 6−20 for B

22: ⊲ From sender to multiplication node

23: δcombined = M1,A ‖δ1,A ‖M1,B ‖δ1,B

24: M1← CREATEHEADER(s1)
25: δ1, M1.γ← AEenc(s1,δcombined ,M1.METADATA))
26: M0← CREATEHEADER(s0,n1,M1)
27: δ0, M0.γ← AEenc(s0,δ,M0.METADATA))
28: return (M0,δ0)

Algorithm 7 Processing of an incoming packet at mix node

n at mix layer l with secret key xn.

1: procedure PROCESS(packet)

2: (M,δ)← packet

3: s← (M.α)xn

4: if hτ(s) ∈ tags then abort

5: tags← tags∪{hτ(s)}
6: δ′← AEdec(s,δ,M.γ,M.β)
7: if δ′ =⊥ then abort

8: n′,delay,M′ = PROCESSHEADER(M)
9: if l 6= 1 then

10: QUEUEFORSEND(n′,(M′,δ′),delay)
11: else

12: M1,A,δ1,A,M1,B,δ1,B← δ′ ⊲ δ′ = δcombined

13: ρA,ρB← ρ(hρ(A,s)),ρ(hρ(B,s)) ⊲ s = s1

14: ⊲ Process separately to allow independent delays

15: PROCESS(M1,A ‖δ1,A ‖ρA)
16: PROCESS(M1,B ‖δ1,B ‖ρB)

19

B Algorithms

Algorithm 8 The fault-tolerant Rollercoaster callback handler

and send methods (signatures are checked implicitly).

1: procedure SENDTOGROUP(groupid, payload)

2: S← GENSCHEDULE(msg.source,msg.groupid)
3: for recipient ∈ {direct children of self in S} do

4: msg← NEWMESSAGE()

5: msg.groupid← groupid

6: msg.nonce← FRESHNONCE()

7: msg.{source,sender,role}← self

8: msg.payload← payload

9: SCHEDULEFORSEND(recipient,msg)

10:

11: procedure ONPAYLOAD(msg)

12: APPLICATIONHANDLE(msg.payload)
13: if msg was received while offline then return

14: if msg was not seen before then

15: S← GENSCHEDULE(msg.source,msg.groupid)
16: for x ∈ {direct children of msg.role in S} do

17: msg′← COPYMESSAGE(msg)
18: msg′.sender← self

19: msg′.role← x

20: SCHEDULEFORSEND(x,msg′)

21: SCHEDULEFORSEND(msg.source,GENACK(msg))

22:

23: procedure ONACK(msg)

24: assert (msg.source = self)
25: CANCELTIMEOUT(msg,msg.role,msg.sender)

26:

27: ⊲ Called when a message leaves the payload queue

28: procedure ONMESSAGEISSENT(msg)

29: S← GENSCHEDULE(msg.source,msg.groupid)
30: for x ∈ {recursive children of msg.role in S} do

31: timeout← ESTIMATETIMEOUT(S,x)
32: ADDTIMEOUT(msg,x, timeout)

33:

34: procedure ONTIMEOUT(msg,recipient f ailed)

35: S← GENSCHEDULE(msg.source,msg.groupid)
36: if not ISFORWARDINGNODE(S, msg.role) then

37: return

38: for x ∈ {recursive children of msg.role in S} do

39: CANCELTIMEOUT(msg,msg.role,msg.sender)
40: ⊲ timeout will be recreated when re-try is sent

41: recipient ′← NEXTRECIPIENT(S,recipient f ailed)
42: SCHEDULEFORSEND(recipient ′,msg)
43: msg.role←∅ ⊲ Re-try to failed node w/o role

44: SCHEDULEWITHEXPBACKOFF(recipient f ailed ,msg)

Algorithm 9 Methods explaining how the timeout informa-

tion is stored and updated.

1: procedure ONINIT

2: self.sessions = [·] ⊲ missing keys default to {}

3:

4: procedure ADDTIMEOUT(msg, role, recipient, timeout)

5: CANCELTIMEOUT(msg, role, recipient)
6: id← (msg.groupid,msg.nonce)
7: entry← (role,recipient, timeout)
8: self.sessions[id]← self.sessions[id]∪{entry}

9:

10: procedure CANCELTIMEOUT(msg, role, recipient)

11: id← (msg.groupid,msg.nonce)
12: session = self.sessions[id]
13: self.sessions[id] ← {x ∈ self.sessions[id] | x.role 6=

role∧ x.recipient 6= recipient}

Algorithm 10 Determines whether node node is a forwarding

node with regards to schedule S.

1: procedure ISFORWARDINGNODE(S, node)

2: source← S[0][0][0]
3: if node = source then

4: return false

5: for t = 1 until |S| do

6: R← S[t]
7: for (sender,_) in R do

8: if node 6= source and node = sender then

9: return true

10: return false

C Rollercoaster Eventual Delivery

We make the following assumptions for the remainder of Ap-

pendix B: All network links are fair-loss and deliver messages

with probability > 0. Every layer of the mix network has at

least one mix node that correctly forwards messages. Any

node can go offline at any time and all nodes except source

can be Byzantine-faulty. We use the following definitions for

the remainder of Appendix B: Let source be a node, which

does not go offline permanently. Let S be a schedule that in-

cludes source as its root and all group members as its internal

and leaf nodes.

Lemma 1. Every message which is sent along a randomly

chosen path of mix nodes has probability > 0 to be delivered.

Proof. Since there is a mix node that correctly forwards mes-

sages in every layer, there is a non-zero probability of choos-

ing mix nodes in all three layers which all correctly forward

messages. Since every network link has a non-zero probability

of delivering a message, the entire route consisting of mul-

tiple network links has a non-zero probability of delivering

the message. Therefore, sending a message along a randomly

20

chosen path has probability > 0 of being delivered.

Lemma 2. Every direct payload sent by a node sender, which

does not go offline permanently, to a node recipient is eventu-

ally delivered.

Proof. We first consider the case (a) that the delivery of the

payload to recipient is successful and the delivery of the ACK

to sender is successful. In this case sender can be certain that

the payload was delivered to recipient, because only recipient

can compute the correct signature in the ACK. Therefore, the

cancellation of the timeout by sender is safe.

We now consider the case (b) that the delivery of the pay-

load to recipient failed or the delivery of the ACK to sender

failed. Any of the two failures causes the timeout at the sender

to expire. As a result sender sends the same payload again us-

ing a new random path and setting a new timeout. Since send-

ing the payload to recipient and sending the ACK to sender

have non-zero probability of success (Lemma 1), there will

eventually be an execution where both succeed.

We now consider the case (c) that recipient is offline. For

sender this situation is indistinguishable from case (b). There-

fore, sender will retry until recipient returns online and sends

an ACK.

We now consider the case (d) that sender is offline. If the

payload has not been sent yet, it will be sent when sender

returns online. In case (a) sender will observe the ACK mes-

sage when it returns online. In cases (b) and (c) the sender will

re-try once it returns online and the timeout expired. Since

sender will not go offline permanently, transition to cases

(a)-(c) will happen eventually.

Lemma 3. Any payload sent by source is eventually delivered

to all direct children of source in S.

Proof. For direct children of source in S, all payloads are sent

as direct messages. From Lemma 2 it follows that these are

delivered eventually.

Lemma 4. Any payload sent by source is eventually delivered

to all indirect children of source in S.

Proof. Let x be an arbitrary indirect child of source in S.

We first consider the case (a) that the payload was delivered

through the forwarding node(s) to x and the ACK message

was delivered to source. It is safe for source to cancel the

respective timeout, as the payload was delivered to x.

We now consider the case (b) that x is a direct child of p

which is a direct child of source. If source receives p’s ack,

but not x’s ack, then x becomes a direct child of source. This

case is considered in Lemma 3. Otherwise, p timed-out before

x, because p’s timeout is strictly smaller than the one of x. This

means that source assigns the role of p to another node p′ and

sets new timeouts for p′ and x. If p′ fails, this is repeated for

multiple rounds. The list of replacement nodes shrinks by≥ 1

every round as previously failed nodes will not be considered

again. Therefore, eventually forwarding succeeds or source

(which is part of the replacement list) becomes p′ making x a

direct recipient. This case is considered in Lemma 3.

We now consider the case (c) that x is a child in a tree path

[source, p1, p2, . . . ,x]. Let p j with j ≥ 1 be the parent closest

to x whose timeout expires. This implies that all pi with i < j

successfully acknowledged to source since their timeouts are

strictly smaller. The role of p j will be assigned to another node

p′j and new timeouts are set. If p′j fails, this is repeated for

multiple rounds. Therefore, eventually forwarding succeeds or

source becomes p′j which reduces the length of the path from

source to x by at least one. Therefore, eventually forwarding

succeeds or the path length is reduced so far that case (b)

applies.

Theorem 5. Let source be a node that does not go offline

permanently, and that is not Byzantine-faulty. All payloads

sent by source are eventually delivered to all group members.

Proof. For any schedule, every group member is either a di-

rect child or an indirect child of source. Therefore, the result

follows directly from Lemma 3 and Lemma 4.

Theorem 6. Let source′ be a node that may be Byzantine-

faulty. Let X be any subset of group members that are not

Byzantine-faulty and that do not go offline permanently. If one

of the nodes in X receives a payload from source′, all other

nodes in X will eventually receive the payload.

Proof. Let x ∈ X be the node that has received a payload

message m from source′, and let x′ be any other member of

X . We then show that x′ eventually receives m.

As described in Section 5.2.1, every node periodically com-

putes a hash of the payloads it has received and sends it to

a randomly selected group member; thus, x eventually com-

putes a hash over a message history including m and sends it

to x′, and by Lemma 1 this message is eventually received by

x′ (possibly after several attempts). If x′ has already received

m, we are done. If x′ has not yet received m, and assuming the

hash function is collision-resistant, then there is no message

history known to x′ that results in the same hash value, and

therefore the hash sent by x is unknown to x′.

x′ responds to the unknown hash by sending a request to x,

asking it to send any messages that x′ is missing. A simple but

inefficient algorithm would be for x to resend all payload mes-

sages it has ever received to x′. A more efficient approach uses

a reconciliation protocol to determine which messages are

known to x but unknown to x′, and to resend only those mes-

sages. Several such reconciliation protocols are known [14].

Whatever protocol is used, it will eventually complete (by

Lemma 1), and therefore x′ will eventually receive m from x,

as required.

21

D MultiSphinx Security Proof

This appendix provides proofs for the MultiSphinx security

and anonymity claims in Section 5.4.2. We discuss the re-

sistance against a global passive adversary (D.1) that might

collude with corrupted mix nodes (D.2). Finally, we show that

our claims also extend to active attacks (D.3) as described in

the Loopix paper.

D.1 Against a Global Passive Adversary

We will show that a global passive adversary (GPA) that can

monitor the entire network traffic does not gain any advan-

tage when MultiSphinx messages (A.2) are used compared to

regular Sphinx messages (A.1).

Indistinguishability of MultiSphinx and Sphinx messages

for GPA

We first show that a global passive adversary (GPA) cannot

tell apart MultiSphinx messages and regular Sphinx messages.

By doing this we reduce our security claims to those of the

original Loopix paper. We treat all encryption and pseudo-

random functions (PRFs) as random oracles as it is done in

the original Sphinx paper.

Lemma 7. MultiSphinx messages from the sender to the mul-

tiplication node are indistinguishable from Sphinx messages

for a GPA.

Proof. The headers of all MultiSphinx messages from the

sender to the multiplication node are constructed using the

same methods as regular Sphinx messages. At the same time

the Sphinx header is “[. . .] hiding the number of hops a mes-

sages has travelled so far, as well as the actual number of

mixes on the path of a message” [11, p.2]. Therefore, the

headers are indistinguishable between the two message types.

To an adversary who does not know the key the encrypted

payload is indistinguishable from random bits for both mes-

sage types as per definition of the random oracle. Therefore,

the encrypted payloads are indistinguishable between the two

message types.

Lemma 8. MultiSphinx messages from the multiplication

node to other nodes are indistinguishable from Sphinx mes-

sages for a GPA.

Proof. The proof for the header bytes follows analogously to

the proof above. The payloads of MultiSphinx messages leav-

ing the multiplication node consist of the encrypted payload

concatenated with the pseudo-random padding (the output ρi

of the PRF). As per the definition of the random oracle, both

bit strings are indistinguishable from random noise. There-

fore, the entire payload is indistinguishable. This is also true

for all following hops, as all messages (before the recipient

unpacks the innermost message) are ciphertexts in the random

oracle model.

Lemma 9. All MultiSphinx messages are indistinguishable

from Sphinx messages for a GPA.

Proof. Since Loopix is using a stratified topology, all message

paths will go through a mix node at the multiplication layer.

This means that each message (and edge) of the path is either

before or after a multiplication node. Lemma 7 and Lemma 8

cover both cases.

Unlinkability of Messages at Multiplication Node

Theorem 1 of in the Loopix paper [3] analyses the proba-

bility that an adversary can link a single message leaving a

mix node to one of the previously arriving messages. Our

argument follows the same structure to show MultiSphinx

maintains the unlinkability property described in the Loopix

paper. The MultiSphinx protocol does not affect mix nodes

in the first and third layers since they retain a one-to-one

relation between incoming and outgoing messages. There-

fore the analysis in the Loopix paper holds unchanged. We

diverge from the original notation by using κ instead of k to

avoid confusion with the k parameter used for our schedule

generation.

Theorem 1 in the Loopix paper defines the observation

scenario on,κ,l for a passive adversary: first, the attacker ob-

serves a set of n messages arriving at a previously empty

mix (multiplying into pn messages internally); then a total of

(pn−κ) messages are emitted by the mix before another set

of l messages arrive at the mix; finally, a single message m

leaves the mix node and the adversary seeks to correlate this

message m with any of the n+ l messages observed arriving

at the mix node.

Lemma 10. Let m1 be any of the initial n messages arriving

at the p-restricted MultiSphinx multiplication mix node in

scenario on,κ,l . Let m2 be any of the l messages that arrive

later. The probability that the outgoing message m was an

inner message of either m1 or m2 is:

Pr(m ∈ m1) =
κ

n(κ+ pl)
, (7)

Pr(m ∈ m2) =
p

κ+ pl
. (8)

Proof. With the arrival of n messages and their multiplication

the mix node holds pn messages. After emitting (pn− κ)
messages the mix holds κ messages. The arrival of the l

messages leads to a total of κ+ pl messages from which m is

chosen.

The probability that m is an inner message of any of the

initial n messages is κ
κ+pl

. The requirement that it was an

inner message of one particular message m1 of that batch

which leads to: 1
n
· κ

κ+pl
= κ

n(κ+pl) .

The probability that m is an inner messages of any of the

later l messages is
pl

κ+pl
. The requirement that it was an inner

22

message of one particular message m2 of that batch which

leads to: 1
l
· pl

κ+pl
= p

κ+pl
.

These results are qualitatively the same as in the Loopix

paper: "[. . .] continuous observation of a Poisson mix leaks

no additional information other than the number of messages

present in the mix" [3, p.1207]. As the original paper’s argu-

ment builds upon the probabilities in its Theorem 1. It also

holds for MultiSphinx.

Theorem 11. A global passive adversary (GPA) that mon-

itors all network traffic does not gain any advantage when

MultiSphinx messages are used instead of Sphinx messages.

Proof. An observer cannot distinguish any MultiSphinx mes-

sage from a regular Sphinx message (Lemma 9). The dif-

ference in processing at the multiplication node also does

not provide any advantage (Lemma 10). Furthermore, the

multiplication factor p is globally fixed and therefore cannot

leak any information about group sizes. All other mix nodes

operate exactly as they do with normal Sphinx messages.

To an observer all clients create indistinguishable packets at

a rate independent of actual communication. Therefore, an

observer does not gain any advantage over regular Sphinx

messages.

D.2 Against Corrupt Nodes

We now consider the ability of an adversary who controls a

subset of mix nodes along the message path. The adversary

can inspect the internal state of the corrupted mix node in-

cluding short-term and long-term secrets. We exclude active

attacks for now, as they are covered in D.3. This is sometimes

called an honest-but-curious mix node model.

Theorem 12. An adversary controlling an honest-but-

curious mix node on the first or third layer processing Mul-

tiSphinx messages does not gain any advantage compared

to regular Sphinx messages for any of the security notions

discussed in the original Loopix paper: sender-recipient third-

party unobservability, sender online unobservability, sender

anonymity, receiver unobservability, and receiver anonymity.

Proof. From Theorem 11 it follows that the adversary does

not gain an advantage from monitoring the in-coming and

out-going messages. Also, Algorithm 7 shows the operation

of these nodes is identical to regular Sphinx nodes.

Theorem 13. An adversary controlling an honest-but-

curious multiplication mix node on the second layer pro-

cessing MultiSphinx messages does not gain any advantage

compared to regular Sphinx messages for any of the secu-

rity notions discussed in the original Loopix paper: sender-

recipient third-party unobservability, sender online unobserv-

ability, sender anonymity, receiver unobservability, and re-

ceiver anonymity.

Proof. A p-restricted MultiSphinx multiplication node on

the second layer does not learn more information about the

sender or recipient than a regular Sphinx node on the second

layer: it knows its preceding node on the first layer and it

knows for each message the succeeding node in the third

layer. The addition of deterministic pseudo-random padding

ρ{A,B,...} does not reveal any information about the sender or

recipient as it is derived from a shared secret that is known in

the regular Sphinx operation as well.

Definition 14. In an anonymity system having group exis-

tence anonymity an adversary cannot decide whether a group

of a given size is communicating.

This property does not hold for naïve multicast: a mul-

tiplication node observing a message splitting into x other

messages can deduce an increased likelihood that a group of

that size exists.

Theorem 15. An adversary controlling an honest-but-

curious mix node processing p-restricted MultiSphinx cannot

decide group existence with probability better than random

chance.

Proof. All MultiSphinx messages are constructed indepen-

dently of the underlying Rollercoaster algorithm (see Fig-

ure 4) and always have the same number of p wrapped mes-

sages. None of the observable properties change if there is an

actively communicating group of certain size or not.

Definition 16. In an anonymity system having group mem-

bership anonymity an adversary cannot determine whether

two users are members of the same group or not.

Theorem 17. Assume a system using 3 mix layers and p-

restricted multicast at the middle layer. Assume an adversary,

who controls an honest-but-curious multiplication node, and

also controls c out of n mix nodes in the third layer. Let U

be the set of all users evenly distributed among all providers

P . Then this adversary cannot decide group membership

anonymity with probability better than (1− (n−c
n
)p−1) · |P |

2

|U|2

for a given group message.

Proof. We assume (to the advantage of the adversary) that

MultiSphinx messages contain either payloads to members

of the same group or cover traffic. In the real system Multi-

Sphinx messages might contain a mixture of both making the

adversary’s job more difficult. We also ignore (to the advan-

tage of the adversary) any Loop messages injected by the mix

nodes.

We first analyse the chance of the adversary controlling

at least 2 of the independently chosen p mix nodes from the

23

third mix layer, as they need both to link the messages.

Pr(X ≥ 2) = 1−Pr(X = 0)−Pr(X = 1)

= 1−

(

n− c

n

)p

− p ·
c

n
·

(

n− c

n

)p−1

= 1−

(

n− c

n
+

p · c

n

)

·

(

n− c

n

)p−1

= 1−
n+(p−1)c

n
·

(

n− c

n

)p−1

≤ 1−

(

n− c

n

)p−1

Because the adversary controls both a multiplication node

and multiple layer-3 nodes, they can trace messages that re-

sulted from the same multiplication up to their delivery to the

recipients’ providers P1 and P2. If the traced messages con-

tained payload of the same group, the adversary now knows

that there exist users U1 and U2 that are likely to be members

of the same group and their respective providers are P1 and P2.

However, without also controlling the providers, the adversary

does not know the identity of U1 and U2.

The likelihood of correctly guessing the actual recipient

for a given provider is Prprovider→user =
|P |
|U| .

Therefore, the likelihood that an attacker, who controls a

multiplication node, correctly deduces two recipients of a

message that belong to the same group is:

Prwin = Pr(X ≥ 2) · (Prprovider→user)
2

≤ (1−

(

n− c

n

)p−1

) ·
|P |2

|U|2

The following example applies Theorem 17 to a specific

scenario: We assume there are |U|= 1000 users evenly dis-

tributed among |P |= 10 providers using p-restricted Multi-

Sphinx with p = 2. We assume that the adversary controls
c3/n3 = 20% of multiplication nodes in the third layer. We

also assume that the adversary controls c2/n2 = 20% of all

multiplication nodes in the second layer (i.e. Theorem 11

applies to only 20% of all messages). These numbers mean

that for each group message sent through the network the

adversary has a chance of 4 ·10−6 to correctly name two users

who are members of that group. For an adversary control-

ling c2
n2

= c3
n3

= 50%, the probability increases to 2.5 · 10−5.

We leave more precise statistical analysis (leading to a lower

upper boundary) for future work.

D.3 Against Global Active Adversary

We now consider a global active adversary (GAA) that can

do everything the observer from the previous sections can do.

In addition the GAA can also inject/drop network messages

and participate as a limited number of users. These abilities

match those provided in the Loopix paper.

Lemma 18. MultiSphinx messages are resistant to tagging

attacks.

Proof. The improved Sphinx construction protects the in-

tegrity of the entire message [15]. This includes the determin-

istic pseudo-random padding ρi in our construction. There-

fore, modifications to the messages are detected by the mix

nodes and such messages will not be processed.

Theorem 19. A global active attacker (GAA) that monitors

all network traffic and can modify messages does not gain

any advantage when MultiSphinx messages are used instead

of Sphinx messages.

Proof. Mix nodes of all levels use the same protections

against active attacks as those in the Loopix paper – namely:

integrity check of messages against adversarial tagging, loop

traffic against n-1 attacks, and message tags against replay

attacks. Lemma 18 shows that all MultiSphinx messages are

resistant against tagging attacks as well. Therefore, Multi-

Sphinx provides no advantage to an GAA compared to normal

Sphinx messages.

24

E Reproduced Latency Distribution

To check the general soundness of our simulation we repro-

duced the latency distribution provided by the Loopix pa-

per [3, Figure 11]. For their experimental setup with λµ = 2

the original authors suggest fitting a Gamma distribution with

mean 1.93 and standard deviation 0.87. This translates into a

shape-scale-parameterised Gamma distribution with parame-

ters Γoriginal(k ≈ 4.95,θ≈ 0.39).
When we compare our data (n ≥ 18000 measurements)

against Γoriginal the fit is not perfect (see Figure 12). The dis-

crepancy can be explained by the fact that the original paper’s

Γoriginal was determined experimentally and is affected by

imprecision caused by their measurement and implementa-

tion. However, we can analytically determine the distribution

of the sum of the four independent exponential distributions

exp(λµ): one for the ingress provider and three for the mix

nodes. This distribution is Γtheory(k = 4,0.5) and the data

from our simulation fits it very well (see Figure 13).

0 1 2 3 4 5 6 7
Message latency [s]

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Figure 12: Distribution of latency measured by our simulator

and the Gamma distribution Γorginial (dotted red line) from

the original paper.

0 1 2 3 4 5 6 7
Message latency [s]

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

Figure 13: Distribution of latency measured by our simulator

and the Gamma distribution Γtheory (dotted red line) deter-

mined analytically.

F Visualisation of Offline Models

The following figure shows a sample of 20 nodes for the

original model with an average online ratio of 65.05%. When

a node is online it is marked with a blue dot. The percentage

provided next to the Y-axis shows the total fraction of the 24h

time span that a node is online.

The following figure shows a sample of 20 nodes for the

extrapolated model with an average online ratio of 80.01%:

The following figure shows a sample of 20 nodes for the

extrapolated model with an average online ratio of 88.45%:

25

G p-Restricted Multicast Simulations

In Figure 14 we present additional online and offline scenarios

for different sending rates and branching factors without (left)

and with (right) p-restricted multicast. See Section 6.5.

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 65% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 65% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 80% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 80% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 88% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 88% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 100% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 100% online, p= k

0

50

100

150

200

m
ean d

m
sg

Figure 14: Heatmaps showing the mean message latency for

reduced sending rates (y-axis) and different Rollercoaster pa-

rameters (x-axis). In the left graph only the logical multiplier

factor k is increased. In the right graph the multicast factor p

is increased at the same time. Group size 128.

H Histograms

Figures 15 and 16 (next page) provide additional illustra-

tions and express the underlying behaviour of the different

strategies. They serve as additional evidence that our sim-

ulator functions as described in the paper. The histograms

also show the results that are provided in the box charts in

Figures 5 and 6.

The distribution of the online naïve sequential unicast strat-

egy in Figure 15 has a very wide body that is an effect of the

queuing time in the payload buffer of the sender. Its height

depends on the payload rate λp. On the other hand, the Roller-

coaster graphs show a much tighter distribution with a much

higher peak (124k compared to 11k for unicast).

For the offline scenarios in Figure 16 the distribution for

the naïve sequential unicast strategy is almost the same as in

Figure 15. The non-fault tolerant Rollercoaster strategy fails

dramatically and is dominated by extreme outliers – with p99

growing to multiple hours! Adding the basic fault tolerance

improves the p90 percentile and the mean values approach

a reasonable order of magnitude. However, nodes coming

back online continue to be overwhelmed since they first work

through old messages in their mailbox. The fix, as described in

the paper is to drop any forwarding messages received while

the node was offline. Doing so means that the fault-tolerant

Rollercoaster strategy provides excellent results with mean,

p90, and p99 being less than a minute and better than unicast

can provide. The individual peaks visible are the result of

timeouts and subsequent re-transmissions.

26

0 20 40 60 80 100
0k

11k

Fr
eq

ue
nc

y
 m

=
32

0 20 40 60 80 100
0k

24k

0 20 40 60 80 100
0k

36k

0 20 40 60 80 100
0k

12k

Fr
eq

ue
nc

y
 m

=
64

0 20 40 60 80 100
0k

44k

0 20 40 60 80 100
0k

64k

0 20 40 60 80 100
0k

12k

Fr
eq

ue
nc

y
 m

=
12

8

0 20 40 60 80 100
0k

84k

0 20 40 60 80 100
0k

125k

0 20 40 60 80 100
Message latency dmsg [s]

Unicast

0k

12k

Fr
eq

ue
nc

y
 m

=
25

6

p90 = 119.9s
p99 = 151.5s

0 20 40 60 80 100
Message latency dmsg [s]

RC (k= p= 1)

0k

160k

0 20 40 60 80 100
Message latency dmsg [s]

RC (k= p= 2)

0k

209k

Figure 15: The distribution of message latency of naïve sequential unicast and Rollercoaster (RC) as perceived by the participating

group members in a simulation where all users are online all the time. The solid line marks the mean latency whereas the dashed

(and dotted) lines mark the p90 (and p99) latency. In this figure the y-axes are not linked in order to provide higher fidelity.

0 20 40 60 80 100
0k

79k

Fr
eq

ue
nc

y
 6

5%
 o

nl
in

e

p99 = 103.3s

0 20 40 60 80 100
0k

79k
mean= 4432.9s
p90 = 15800.4s
p99 = 30888.4s

0 20 40 60 80 100
0k

79k
mean= 1139.2s

p90 = 2006.8s
p99 = 22328.0s

0 20 40 60 80 100
0k

79k

0 20 40 60 80 100
0k

79k

Fr
eq

ue
nc

y
 8

0%
 o

nl
in

e

p99 = 102.3s

0 20 40 60 80 100
0k

79k
mean= 4127.4s
p90 = 14772.6s
p99 = 31343.7s

0 20 40 60 80 100
0k

79k
mean= 1036.0s

p90 = 1272.9s
p99 = 20300.3s

0 20 40 60 80 100
0k

79k

0 20 40 60 80 100
Message latency dmsg [s]

Unicast

0k

79k

Fr
eq

ue
nc

y
 8

8%
 o

nl
in

e

0 20 40 60 80 100
Message latency dmsg [s]

RC (k= p= 2)

0k

79k
mean= 1550.1s

p90 = 6401.1s
p99 = 20464.8s

0 20 40 60 80 100
Message latency dmsg [s]

RC-FT (k= p= 2, w/o drop)

0k

79k

mean= 228.5s
p99 = 8546.3s

0 20 40 60 80 100
Message latency dmsg [s]

RC-FT (k= p= 2)

0k

79k

Figure 16: The distribution of message latency dmsg for sequential unicast and different Rollercoaster configurations. The group

size is 128 and the rows show different offline scenarios. The left graphs show (left-ro-right): (i) Naïve unicast, (ii) Rollercoaster

without fault-tolerance for k = p = 2, (iii) Rollercoaster with fault-tolerance but not ignoring messages that arrived while offline,

(iv) our final Rollercoaster algorithm with fault-tolerance and all optimisations. The solid line marks the mean latency whereas

the dashed (and dotted) lines mark the p90 (and p99) latency. The mean can be larger than the p90 if there are few but large

outliers.

27

	Introduction
	Threat Model and Goals
	Background
	Loopix
	Messages and Traffic

	Multicast and Group Messaging

	Naïve Approaches to Multicast
	Naïve Sequential Unicast
	Naïve Mix-Multicast

	Rollercoaster
	Detailed Construction
	Adding Fault Tolerance
	Eventual Delivery and Byzantine Fault Tolerance

	Exploring Delay and Traffic
	p-Restricted Multicast with MultiSphinx
	The MultiSphinx message format
	Anonymity of MultiSphinx

	Further Optimisations

	Evaluation
	Methodology
	Results with All Users Online
	Results for Fault-Tolerance Scenarios
	Multiple Groups and Message Bursts
	Results for p-Restricted Multicast

	Related Work
	Conclusion
	MultiSphinx Construction
	Normal Sphinx (existing solution)
	MultiSphinx (our solution)

	Algorithms
	Rollercoaster Eventual Delivery
	MultiSphinx Security Proof
	Against a Global Passive Adversary
	Against Corrupt Nodes
	Against Global Active Adversary

	Reproduced Latency Distribution
	Visualisation of Offline Models
	p-Restricted Multicast Simulations
	Histograms

