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Abstract

The advent of large-scale datasets has offered unprecedented amounts of information

for building statistically powerful machines, but, at the same time, also introduced a

remarkable computational challenge: how can we efficiently process massive data? This

thesis presents a suite of data reduction methods that make learning algorithms scale on

large datasets, via extracting a succinct model-speciĄc representation that summarizes the

full data collectionŮa coreset. Our frameworks support by design datasets of arbitrary

dimensionality, and can be used for general purpose Bayesian inference under real-world

constraints, including privacy preservation and robustness to outliers, encompassing

diverse uncertainty-aware data analysis tasks, such as density estimation, classiĄcation

and regression.

We motivate the necessity for novel data reduction techniques in the Ąrst place by

developing a reidentiĄcation attack on coarsened representations of private behavioural data.

Analysing longitudinal records of human mobility, we detect privacy-revealing structural

patterns, that remain preserved in reduced graph representations of individualsŠ information

with manageable size. These unique patterns enable mounting linkage attacks via structural

similarity computations on longitudinal mobility traces, revealing an overlooked, yet

existing, privacy threat.

We then propose a scalable variational inference scheme for approximating posteriors on

large datasets via learnable weighted pseudodata, termed pseudocoresets. We show that the

use of pseudodata enables overcoming the constraints on minimum summary size for given

approximation quality, that are imposed on all existing Bayesian coreset constructions due

to data dimensionality. Moreover, it allows us to develop a scheme for pseudocoresets-based

summarization that satisĄes the standard framework of differential privacy by construction;

in this way, we can release reduced size privacy-preserving representations for sensitive

datasets that are amenable to arbitrary post-processing.

Subsequently, we consider summarizations for large-scale Bayesian inference in scenarios

when observed datapoints depart from the statistical assumptions of our model. Using

robust divergences, we develop a method for constructing coresets resilient to model

misspeciĄcation. Crucially, this method is able to automatically discard outliers from

the generated data summaries. Thus we deliver robustiĄed scalable representations for

inference, that are suitable for applications involving contaminated and unreliable data

sources.

We demonstrate the performance of proposed summarization techniques on multi-

ple parametric statistical models, and diverse simulated and real-world datasets, from



4

music genre features to hospital readmission records, considering a wide range of data

dimensionalities.
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Chapter 1

Introduction

Machine learning pervades most modeling and decision-making tools of modern society:

scientists rely on the wealth of stored medical records to decipher the underlying causes of

diseases, web-scale recommender systems learn from usersŠ experience to suggest music,

movies, and products tailored to our habits, and driving-intelligence systems are capable

to navigate self-driving cars in complex, never-seen-before environments.

From the statistical point of view, Bayesian modeling offers a powerful unifying

framework where experts and practitioners alike can leverage domain-speciĄc knowledge,

learn from new observations, share statistical strength across components of hierarchical

models, and take advantage of predictions which can account for model uncertainty. Having

access to larger datasets is invaluable for statistical models, as it allows more insights into

the process that gives rise to the data.

At the same time, handling massive-scale datasets in machine learning instigates a

number of computational, societal, and statistical reliability challenges. First, beyond

basic statistical settings, performing inferenceŮi.e. computing expectations of interest

under posterior distributions updated in the light of new observationsŮdoes not scale

to large datasets; hence, learning in most interesting models requires additional effort

from the data analyst to explore the statistical-computational trade-off of the problem,

and turn to a suitable approximate inference method instead. Apart from addressing

scalability, modern approximate inference methods should be also able to offer guarantees

of convergence to the exact posterior distribution given sufficient computational resources,

admit efficient quality measuring, and work seamlessly in high dimensions, where many of

modern large-scale data live (e.g. genes, or social networks).

Secondly, a large fraction of modern massive-scale machine learning applications involves

observations stemming from privacy-sensitive data domains, for example health records or

behavioural studies. The sensitive information content of such sources makes crucial for

data contributors that inference methods satisfy formal guarantees of statistical privacy. To

this end, the gold standard is relying on the established framework of differential privacy:

the existing toolset of privatising mechanisms and tight privacy loss estimation techniques,

reinforced by the massive population sizes of modern datasets, allow statistically protecting

individual information, yet extracting accurate insights about the population under study.
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Thirdly, real-world big data are often highly heterogeneous, contain outliers and noise,

or might be subject to data poisoning. The afore-mentioned phenomena are typically

expressed as patterns which cannot be fully captured within the parametric assumptions

of the statistical model. As a result, standard Bayesian inference techniques, which do not

take extra care to downweight the contributions of outlying datapoints, lack robustness

and, attempting to describe the full set of observations, might eventually yield unreliable

posteriors.

How should we develop methods for large-scale data analysis that sufficiently address

the problem of scalability, while formally preserving privacy and enhancing inferential

results with robustness against mismatching observations? When faced with a dataset too

large to be processed all at once, an obvious approach is to retain only a representative

part of it. In this thesis, we build on the data summarization idea, which is validated by a

critical insight in our massive-scale learning setup: when Ątting a parametric probabilistic

model on a large dataset, much of the data is redundant. Therefore, compressing the

dataset under the strategic criterion of maximally reducing redundancy with respect to a

given statistical model, opens an avenue for scalable data analysis without substantially

sacriĄcing the accuracy of methods. The data summarization method of choice in this

work is constructing coresets: small, weighted collections of points in the data space that

can succintly and parsimoniously represent the complete dataset in a problem-dependent

way.

Data Summarization and Differential Privacy. The aim of summarization is osten-

sibly in accord with the requirements of privacy, making it a good candidate to build

privacy-preserving methods: informally, in both cases the target is to ensure encoding the

prevailing patterns of the dataset, without revealing information about any individual

datapoint in particular. However, an intricacy lies in that releasing part of the data,

though perfectly acceptable for the purposes of coresets, directly breaches privacy, as it

obviously exposes the full private information of the summarizing datapoints. Private

coresets construction forms a challenging problem of releasing data in the non-interactive,

or offline settingŮnamely in scenarios where a data owner aims to publicly release ran-

domised privacy-preserving reductions of their data to third-parties, without knowing what

statistics might be computed next. Differentially private schemes for coresets applicable

in computational geometry already exist in the literature (Feldman et al., 2009; 2017).

In the area of machine learning, the idea of releasing private dataset compressions via

synthetic datapoints has been pursued in kernel mean embeddings (Balog et al., 2018)

and compressive learning (Schellekens et al., 2019), with the utility of the private method

scaling adversely with data dimension. Work limited to sparse regression (Zhou et al., 2007)

has considered the high-dimensional data setting and proposed a method that compresses

data via random linear or affine transformations. Nevertheless, none of these approaches

is directly applicable to summarising for general-purpose Bayesian inference.

Data Summarization and Outliers Detection. Several approximate inference meth-

ods have proved brittle to observations that "deviate markedly from other members of

the sample" (Grubbs, 1969). Outliers are a common complication emerging in real-world
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problems, attributed to limited precision, noise, uncertainty and adversarial behaviour

often arising over data collection procedures. Since the pioneering work of Tukey (1960)

and de Finetti (1961), discerning outliers has concerned the research community for over

60 years, shaping the area of robust statistics (Huber and Ronchetti, 2009). To this end,

non-parametric distance-based techniques are a predominant approach that decouples

outliersŠ detection from statistical assumptions regarding the data generating distribution,

hence this paradigm has found broad applicability in machine learning and data mining.

On the other hand, scaling distance computation to massive datasets is particularly re-

source intensive, while, further to computational intractability, distance-based analysis in

high dimensions faces complications due to the curse of dimensionality (Donoho, 2000;

Vershynin, 2018; Wainwright, 2019). Summarization has been leveraged for the purposes of

outlier detection in non-probabilistic clustering in prior work by Lucic et al. (2016a). In the

case of Bayesian learning, addressing inference on contaminated data via summarization

critically relies on using as criterion of the coreset quality a robustiĄed posterior, that

is by deĄnition insensitive to small deviations in the data space. Then the intuition

used is that adding an outlier on a summary comprised of a majority of inliers will have

an insigniĄcant impact on the quality of the robust posterior deĄned on the summary

points; hence, greedy incremental schemes of summarization can handily reject outlying

observations while efficiently compressing the dataset.

1.1 Thesis statement and main contributions

The focus of this thesis is the development of scalable tools for data analysis on privacy-

sensitive and vulnerable to contamination big data. We claim the following statement:

Automated methods for general-purpose probabilistic inference are typically compu-

tationally prohibitive in settings involving massive-scale and high-dimensional data. In

contrast, designing principled dataset summarization algorithms enables scaling up learning

methods in this data realm, achieving realiable inference results, and addressing concerns

of privacy and robustness. Notably, the latter can be achieved without having a substantial

bearing on the automation and complexity of the summarization methods.

Relying on coreset-based dataset summarizations as our fundamental framework for

scalability, we adopt a two-pronged approach to tackle each of the aforementioned chal-

lenges, and design efficient algorithms that outperform state-of-the-art solutions for the

posed problems.

In particular, the goals of this dissertation are to:

1. Identify threats in commonly adopted practices for releasing privacy-sensitive datasets

via anonymized coarsened representations of the data.

2. Propose novel principled methods that can directly address real-word considerations

of privacy and robustness when performing inference via summarization, without

increasing the corresponding computational and memory footprint compared to the

existing state-of-the-art methods.
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The central contributions of the thesis are the following:

• We analyse the anonymity of individual data in a large-scale behavioural study, and

develop a reidentification attack that exploits structural patterns’ similarity to link

usersŠ records in the absence of identiĄers in their state space.

• We introduce a novel variational formulation for Bayesian coresets construction that

utilises approximations within a family of efficient variational distributions with

learnable weights and locations of pseudodata as variational parameters. Leveraging

the use of learnable pseudodata, we show that our variational formulation enables

substantially more rapid improvement in summarization quality for high-dimensional

data in the small coresetsŠ regime, compared to existing coreset schemes that are

constrained to use points from the original dataset. We provide an efficient black-box

batch optimization scheme that can attain a good approximate posterior within the

above mentioned variational family, and use standard randomization tools to yield

differentially private versions of this variational posterior for privacy-preserving data

analysis.

• We review Bayesian coresetsŠ behaviour in corrupted datasets and show deĄciencies

of standard constructions when dealing with outliers and poisoning. Using tools from

robust divergences, we propose approximate inference within a robustified family

of sparse variational approximations for reliable summarization in the presence

of data contamination. We develop a black-box incremental optimization scheme

for constructing an approximation within this variational family, and evaluate its

applicability in scenarios of summarization both over datapoints and over data

minibatches.

A recurring theme in our approach is to exploit inherent data redundancy, in order

to simultaneously achieve efficient data analysis and satisfy the objectives of privacy and

robustness. Importantly, the computation of redundancy is adapted to the statistical model

used to describe the data via the likelihood function, offering increased efficiency for the

purposes of learningŮas our methods, guided by the data likelihood function, manage to

preserve reliable approximate sufficient statistics of the full data collection, despite retaining

only a tiny fraction of it. Directly randomizing the sufficient statistics computation via a

differentially private mechanism addresses formally the protection of privacy, and allows us

to avoid adding more noise than necessary, as we only have to hide the part of individual

datapointsŠ information which is passed to the sufficient statistics instead of their full

information. On the robustness front, our framework identiĄes datapoints that deviate

from our statistical assumptions and downweights their contribution over inference on the

dataset, distilling them in this way from the extracted summary. Overall, our methods

indicate that privacy and robustness on both counts are in accordance to the fundamental

problem that data summarization aims to resolve: encapsulating aggregate information

for a statistical model of interest, while limiting the impact of each individual datapointŠs

particulars.
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1.2 Organization of the dissertation

The remainder of the dissertation is organized as follows.

Chapter 2 introduces relevant background and concepts used throughout the thesis.

Chapter 3 sheds light into the anonymity properties of a large-scale longitudinal

mobility dataset, revealing a realistic privacy threat that survives in a release of sensitive

structured data, despite anonymizing and coarsening individual behavioural records.

Chapter 4 presents a general-purpose variational inference algorithm that allows scaling

up Bayesian inference in big and high-dimensional datasets via a coreset representation that

relies on learnable synthetic datapoints (PSVI). Additionally, it develops a differentially

private construction for this coreset (DP-PSVI).

Chapter 5 proposes a sparse variational approximation for robust generalized Bayesian

posteriors using β-divergence, that can yield reliable summarizations for large-scale datasets

in the presence of extensive contamination (β-Cores).

Finally, Chapter 6 concludes the thesis by summarizing our results and discussing

future research directions.

This thesis covers material from the following publications:

D. Manousakas, C. Mascolo, A. R. Beresford, D. Chan and N. Sharma (2018).

ŞQuantifying privacy loss of human mobility graph topologyŤ. Proceedings on

Privacy Enhancing Technologies 2018.3, pp. 5Ű21 (Chapter 3)

D. Manousakas, Z. Xu, C. Mascolo and T. Campbell (2020). ŞBayesian Pseu-

docoresetsŤ. Advances in Neural Information Processing Systems (Chapter 4)

D. Manousakas and C. Mascolo (2021). Şβ-Cores: Robust Large-Scale Bayesian

Data Summarization in the Presence of OutliersŤ. Proceedings of the 14th

ACM International Conference on Web Search and Data Mining (Chapter 5)

In addition, the following paper was written during my PhD but is not discussed in

this thesis:

S. Bhattacharya, D. Manousakas, A. G. C. Ramos, S. I. Venieris, N. D.

Lane and C. Mascolo (2020). ŞCountering Acoustic Adversarial Attacks in

Microphone-equipped Smart Home DevicesŤ. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 4.2, pp. 1Ű24





Chapter 2

Background Material

This chapter aims to set the context for the remainder of this thesis. Various concepts

pertaining to this thesis, including Bayesian inference, exponential family distributions

and differential privacy, are brieĆy introduced in the following.

2.1 Comparing probability distributions

Throughout the thesis we focus primarily on probability spaces equipped with measures

that are absolutely continuous w.r.t. some base measure, corresponding to the Lebesgue

and counting measure respectively when considering continuous and discrete mappings

from the sample space. This allows us to simplify notation and adapt the deĄnitions

presented in this section to normalised probability densities.

A critical component in constructing and evaluating inference algorithms is using a

divergence measure, that captures informatively how similar two probability distributions

are. Statistical divergences are relaxations of distance functions, that (i) are always

non-negative, and (ii) equal zero iff their arguments are identicalŮalbeit they do not

necessarily satisfy symmetry in their arguments, or the triangle inequality, hence not

having to be a metric by virtue of deĄnition.

The most commonly used divergence measure in approximate inferenceŮwhich will

directly serve to deĄne the objective quantifying the inferential quality of our sparse

approximations in Chapters 4 and 5Ůis the Kullback-Leibler (KL) divergence, also named

relative entropy (Kullback and Leibler, 1951; Kullback, 1959). For a continuous random

variable θ and probability density functions π1 and π2, the KL divergence is deĄned as

DKL (π1♣♣π2) :=
∫
π1(θ) log

π1(θ)

π2(θ)
dθ. (2.1)

In particular, for two d-dimensional Gaussian distributions N1(µ1,Σ1) and N2(µ2,Σ2), the

KL divergence is computable in closed form as follows

DKL (π1♣♣π2) =
1

2


log
♣Σ2♣
♣Σ1♣
− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)
T Σ−1

2 (µ2 − µ1)

]
. (2.2)
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Divergence ϕ(ξ)
Kullback-Leibler ξ log ξ
β-divergence 1

β(β+1)
ξβ+1 − 1

β
ξ + 1

β+1
, β > 0

Table 2.1: Convex functions used for reductions of relative entropy and density power to
Bregman divergences on the domain of probability density functions.

In data setups that are likely to be contaminated by outliers, we get substantial inferen-

tial performance improvements when enhancing our algorithms with statistical robustness.

Relying on the KL divergence cannot sufficiently address this concern, as this divergence

attaches great importance to correctly capturing the tail behaviour of the observations.

A robustiĄed divergence, termed β-divergence or density power divergence, was instead

proposed in (Basu et al., 1998; Eguchi and Kano, 2001), that is able to downweight

outlying datapoints. Considering again the densities π1, π2, the β-divergence is deĄned as

Dβ (π1♣♣π2) :=
1

β(β + 1)

∫ (
π1(θ)

1+β − (β + 1)π1(θ)π2(θ)
β + βπ2(θ)

1+β
)
dθ, (2.3)

for β ∈ R \ ¶−1, 0♢.
One can easily show that the β-divergence converges to the KL divergence when β → 0.

Both divergences are asymmetric and do not satisfy the triangle inequality. Moreover,

both divergences are instances of the family of Bregman divergences (Banerjee et al.,

2005; Cichocki and Amari, 2010; Amari, 2016), i.e. a class of dissimilarity measures

that can be expressed as dϕ(p, q) = ϕ(p)− ϕ(q)− ⟨∇ϕ(q), p− q⟩ using a strictly convex,

differentiable function ϕ : K → R, for all p, q in a convex set K ⊆ R
d. In the case

of two probability density functions π1, π2 the Bregman divergence admits the form

Dϕ(π1, π2) =
∫

[ϕ(π1(θ))− ϕ(π2(θ))− ϕ′(π2(θ))(π1(θ)− π2(θ))] dθ. The convex functions

deĄning the corresponding divergences are presented in Table 2.1.

2.2 Exponential families

The exponential family (Wainwright and Jordan, 2008) is a broad class of probability

distributions, sharing a set of important properties that facilitate tractable inference.

Exponential family members include numerous well-known distributions, such as the

Poisson distribution, the Gamma distribution, and the Gaussian or normal distribution.

Definition 1 (Exponential family). A collection of densities π, with respect to a base

measure ν indexed by a vector of parameters θ, is an exponential family of densities if it

can be written as

πθ(x) = h(x) exp (⟨θ, t(x)⟩ − Z(θ)) . (2.4)
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We call t(x) : X → R
d the sufficient statistics of the data, h(x) the base density and

Z(θ) := log
∫
e⟨θ,t(x)⟩h(x)ν(dx) (2.5)

the log-partition function.

The parameter space of interest, referred to as the natural parameter space, is the space

Ω ⊆ R
d that contains all θ such that Z(θ) is Ąnite. We say that a family is regular if Ω is

open.

An important property of exponential family densities is that the derivatives of the

log-partition function Z are related to the moments of the sufficient statistics as follows.

Proposition 2 (Derivatives of the log-partition function via expected statistics). For a

regular exponential family of densities in the form of Eq. (2.4), the log-partition function

has derivatives of all orders on its domain Ω, while for the first two derivatives hold the

following

∇Z(θ) = Eθ[t(x)] (2.6)

and

∇2Z(θ) = Covθ[t(x)] := Eθ[t(x)t(x)T ]− Eθ[t(x)]Eθ[t(x)]T . (2.7)

Proposition 2 allows efficient approximations for the gradient and Hessian of Z using

empirical estimates of the Ąrst two moments of the sufficient statistic; we take advantage

of this property in the variational inference schemes to be introduced in Chapters 4 and 5.

2.3 Probabilistic learning at a glance

Bayesian probabilistic modeling provides a principled framework for learning from observed

data, incorporating expert knowledge, handling model uncertainty and drawing coherent

inferences in a uniĄed way, following the languange of probability theory.

In (parametric) Bayesian learning settings we are generally given a set of observations

x = ¶x1, ..., xN♢ ⊆ X , and aim to Ąnd a vector of random variables θ parameterising an

assumed probabilistic model that is likely to explain them. In the Bayesian paradigm, we

Ąrst assume a prior distribution over the parameters π0(θ), that encodes our beliefs about

the uncertainty in θ before observing any data. Once the data are taken into account, our

beliefs shoud be updated accordingly, in order to better describe the observed distribution.

For this purpose a likelihood function π(x♣θ) needs to be deĄned; the likelihood quantiĄes

the probability of the observations under the assumed statistical model for parameters set

to θ. Combining the above distributions we are ready to formulate Bayes’ theorem, the

fundamental rule which gives the posterior beliefs for our parameters updated in light of
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the observed data

π(θ♣x) =
π(x♣θ)π0(θ)

π(x)
. (2.8)

Henceforth any quantity of interest g(·) involving the assumed probabilistic model is

calculated using expectations under the posteriorŮwhich is considered to be the complete

information about θ given the data xŮas follows

Eθ∼π(θ♣x) [g(θ)] :=
∫
g(θ)π(θ♣x)dθ. (2.9)

Computing Eq. (2.9) is known as doing inference on our statistical model.

A key challenge in computing the posterior according to Eq. (2.8) is evaluating the

normalizer, called marginal likelihood (or model evidence), which in a continuous parametric

space takes the form

π(x) =
∫
π(x♣θ)π0(θ)dθ. (2.10)

Marginalising, i.e. computing the integral of Eq. (2.10), can be done using analytical tools

for a number of simple Bayesian modelsŮsome of which will be discussed in the remainder,

including Gaussian mean inference, Bayesian and neural linear regressionŮwhere the

likelihood is conjugate to the prior. However, for the vast majority of interesting statistical

models marginalization cannot be done in closed form and should be approximated instead.

Aiming to address such cases, approximate Bayesian inference has emerged as an active

research area for many decades. In the remainder of the section we present an overview of

existing approaches addressing approximate inference that are relevant to our algorithms.

For a more detailed exposure, including methods beyond the scope of this thesis (e.g.

expectation propagation), cf. (Bishop, 2006; Murphy, 2012; Angelino et al., 2016).

2.3.1 Laplace’s method

Point estimates of θ, obtained for example via maximum a posteriori or maximum likelihood

estimation, are cheap to compute, as they correspond to solutions of optimization problems

involving only the unnormalised RHS of Eq. (2.8)Ůon the other hand, they cannot

capture the uncertainty of our posterior beliefs. LaplaceŠs method (MacKay, 2003) is

an approximate inference scheme that makes a Ąrst step towards uncertainty awareness,

offering a non-degenerate, yet inexpensive to compute, approximate posterior for θ.

Let us write the posterior of Eq. (2.8) in the following equivalent form

π(θ♣x) =
1

Z
e−E(θ), (2.11)

where E(θ) := − log π(θ, x) is called the energy function, and Z is the unknown normal-

ization constant. Taking the Taylor series expansion of θ (up to order 2) around the mode

θ̂ := arg min
θ
E(θ), we obtain the approximation π̂(θ, x) := e−E(θ̂) exp

(
(θ − θ̂)T Λ(θ − θ̂)

)
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where Λ := −∇2E(θ)
∣∣∣∣
θ=θ̂

. Hence we have

π(θ♣X) ≈ 1

Z
π̂(θ, x) ∝ N (θ̂,Λ−1), (2.12)

i.e. the posterior can be approximated by a (unimodal) Gaussian, where the mean corre-

sponds to the minimum of the energy function and the covariance is the negative Hessian of

the energy function evaluated on the mean. Clearly, using standard numerical optimization

routines, e.g. quasi-Newton methods, we can achieve fast convergence to θ̂.

Laplace approximations will be used as coarse posterior approximations over our coreset

summary constructions.

2.3.2 Sampling methods

In the absence of analytical formulae, integrals in the form of Eq. (2.9) can be approximated

via empirical averaging, using samples from the target posterior distribution

∫
g(θ)π(θ♣x)dθ ≈ 1

S

S∑

s=1

g(θs), (θs)
S
s=1

i.i.d.∼ π(θ♣x). (2.13)

Markov Chain Monte Carlo (MCMC), the workhorse of approximate Bayesian inference,

is a framework of established tools that pursue the above idea efficiently (Geyer, 1992;

Gilks, 2005; Robert and Casella, 2005).

MCMC offers approximations to expectations w.r.t. intractable probability distributions

via simulating an ergodic random walk in the state space of the model, which admits the

true posterior as its stationary distribution. As implied by the strong law of large numbers,

the MC estimateŮformed using (effectively independent) samples from the stationary

distributionŮconverges to the true expectation almost surely as s → ∞; this property

makes MCMC methods theoretically appealing, as it endows the estimators with strong

asymptotic exactness guarantees. Moreover, if g is a real function, using the central limit

theorem, it can be shown that the standard error of a MC estimator scales asymptotically

as O( 1√
S

), independently of the dimension of θ. Differing in the way that the Monte Carlo

chain is constructed, as well as the offered level of automation, several methods of MCMC

inference have emerged, including the Metropolis-Hastings (Andrieu et al., 2003), the

Hamiltonian Monte Carlo (Neal, 2011), and the No-U-Turn-Sampler (NUTS) (Hoffman

and Gelman, 2014). NUTS will be used as a reference method to evaluate summarization

performance in part of our experiments over Chapters 4 and 5.

The computation of bounds on the number of MCMC iterations required until we

obtain a satisfactory posterior approximation can hardly be automated, as they are highly

problem-speciĄc, and in practice heuristics are used to decide when sampling should stop.

Typically each sample requires at least one evaluation of a function proportional to π,

scaling at cost Θ(N) which becomes a burden in big data applicationsŮon this account,

methods operating on data subsets have been proposed, including (Welling and Teh, 2011;

Bardenet et al., 2014; Korattikara et al., 2014). Despite these shortcomings, in settings
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where data are high-dimensional, and likelihood surface lacks structure that could be

exploited over inference, MCMC remains the gold standard for practitioners.

2.3.3 Variational inference

Variational inference (VI) (Jordan et al., 1999; Blei et al., 2017) takes a fundamentally

different approach to addressing approximate inference. The problem formulation under-

pinning all VI methods is to Ąnd a member q∗ within a family of tractable probability

densities Q that most closely matches our true posterior π (typically in the KL-sense)

q∗(θ;x) := arg min
q∈Q

DKL (q(θ)♣♣π(θ♣x)) . (2.14)

In this way, Bayesian posterior inference gets reduced into an optimization problem; hence,

techniques allowing scaling up optimization (e.g. random subsampling) can in principle be

applied in VI methods, enabling scalable inference of approximate posteriors (Hoffman

et al., 2013).

We note in passing that, in classical Variational Bayes schemes, expanding the KL

divergence according to Eq. (2.1) makes the log-evidence appear in the objective

DKL (q(θ)♣♣π(θ♣x)) = Eθ∼q [log q(θ)]− Eθ∼q [log π(x, θ)] + log π(x). (2.15)

Since this term is not a function of q, it can be subtracted and the problem is reformulated

as minimizing the remaining two terms, the negation of which is known as the evidence

lower bound (ELBO)

q∗(θ;x) := arg min
q∈Q

(−ELBO(q, x)) , ELBO(q, x) := Eq [log π(x, θ)]− Eq [log q(θ)] .

(2.16)

Via JensenŠs inequality, the ELBO can be shown to be a lower bound of the marginal

log-likelihood of x as expectation w.r.t. q. As opposed to MCMC methods, theoretical

guarantees for inferential results of the solution to Eq. (2.14) can only be obtained for

a few simple statistical models for the following main reasons: optimization methods in

typically non-convex landscapes can often converge to bad local optima; also, depending

on the statistical divergence and variational family used, VI might return miscalibrated

posterior variance estimates (Bishop, 2006, Chapter 10).

The simplest family Q that can be used for VI is the mean-field variational family

which relies on the simplifying assumption of independence among the coordinates of θ,

i.e. q(θ) := ΠD
d=1qd(θd). Our VI schemes in Chapters 4 and 5 propose approximations

within the exponential family instead, which generally allow less restricted posteriors.

Additionally, they can circumvent the use of ELBO, and instead be directly applied on

the original KL minimizing variational formulation of Eq. (2.14), since MC estimates of

the gradient of the intractable log-evidence term can be extracted as per Proposition 2.
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2.3.4 Bayesian coresets

Owing to their requirement for multiple evaluations of the data (log-)likelihoodŮa compu-

tation scaling at Θ(N)ŮMCMC and VI methods quickly become prohibitively expensive

in the large-data regime. Various stochastic schemes have been proposed to circumvent

this computation, evaluating the likelihood on random data minibatches: despite achieving

computational savings and often being straightforward to implement, such schemes rarely

offer guarantees on posterior approximation quality, and lack a rigorous principle over the

minibatch selection step, hence retaining part of the redundancy of the full data collection

in the extracted samples.

Bayesian coresets (Huggins et al., 2016; Campbell and Broderick, 2018; Campbell and

Beronov, 2019; Campbell and Broderick, 2019; Zhang et al., 2021a) make the assumption

that the full dataset has some degree of inherent redundancy, and put forth the idea of

scaling up inference via the application of a preprocessing step where part of the data gets

retained under the criterion of likelihood approximation. In the spirit of the Ąrst coresets

proposed in the Ąeld of computational geometry (Feldman and Langberg, 2011), initial

construction schemes for coreset-based inference (Huggins et al., 2016; Lucic et al., 2017)

utilize importance sampling according to the datapointsŠ sensitivity, i.e. a non-negative

quantity measuring the redundancy of each of the datapoints w.r.t. the statistical model of

interest. Although providing theoretical guarantees for the approximation quality achieved

by the coreset, importance sampling based constructions have typically two shortcomings:

(i) they rely on efficiently computable upper bounds of the sensitivity, and (ii) they do

not have a sense of a residual posterior error, hence are limited by common MC rates in

approximating the full data likelihood, offering error ϵ = O( 1√
M

) for coreset size M .

Reformulating coreset construction as sparse function approximation in a Hilbert

space (Hilbert coresets), Campbell and Broderick (2018, 2019) introduced alternative

optimization formulations for the problem. They showed that using inner-product inducing

norms can lead to faster incremental construction schemes that, critically, can guide

next datapoint selection by the direction of greatest impovement. Moreover, they made

use of a coarse posterior approximation and random projections to efficiently compute

Hilbert norms that capture the divergence between the coreset and the true posterior, and

proposed faster sparse constructions under polytope and hypersphere constraints.

In more recent work, Campbell and Beronov (2019) casted Bayesian coresets to a

problem of sparse variational inference within an exponential family, named Riemannian

coresets. Riemannian coresets removed the requirement for Ąxing a coarse posterior that

appears when computing the norm in practical Hilbert coreset constructions, achieving

full automation and improvement of approximation quality (measured through the KL

divergence) over a larger range of summary sizes.
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2.4 Robust inference

In this section, adopting an optimization perspective of Bayesian inference, we present

robustness limitations of the standard Bayesian posterior on big data, and outline existing

generalizations of the posterior that aim to robustify inference w.r.t. mismatches between

observed data and modelling assumptions. Setting these robustiĄed posteriors as the

target of our coreset approximations, in Chapter 5 we will successfully address scenarios

of large-scale inference under model misspeciĄcation.

2.4.1 Standard Bayesian inference and lack of robustness in the

large-data regime

In the context of Bayesian inference, we are interested in updating our beliefs about a vector

of random variables θ ∈ Θ, initially expressed through a prior distribution π0(θ), after

observing a set of datapoints x := (xn)N
n=1 ∈ XN . Here we equivalently rewrite Eq. (2.8)

as

π(θ♣x) =
1

Z ′
π(x♣θ)π0(θ), (2.17)

where Z ′ is a normalization constant corresponding to the (typically intractable) marginal

likelihood term π(x). When the datapoints x are conditionally independent given θ, the

likelihood function gets factorized as π(x♣θ) = ΠN
n=1π(xn♣θ). An equivalent formulation of

the Bayesian posterior as a solution to a convex optimization problem over the density space

was introduced by Williams (1980) and Zellner (1988), and used in various subsequent works

including (Zhu et al., 2014; Dai et al., 2016; Futami et al., 2018). Concretely, Eq. (2.17)

can be recovered by solving the problem

arg min
q(θ)∈P

(
DKL (q(θ)♣♣π0(θ))−

N∑

n=1

[∫
q(θ) log π(xn♣θ)dθ

]
, (2.18)

where P is the valid density space, while the Bayesian posterior can be expressed as

π(θ♣x) =
1

Z ′
exp (−dKL (π̂(x)♣♣π(x♣θ)))π0(θ). (2.19)

In the last expression, π̂(x) := 1
N

∑N
n=1 δ(x − xn) is the empirical distribution of the

observed datapoints and δ is the Dirac delta function. The exponent dKL (π̂(x)♣♣π(x♣θ)) :=

−∑N
n=1 log π(xn♣θ) corresponds (up to a constant) to the cross-entropy, which is equal

to the empirical average of negative log-likelihoods of the datapoints, and quantiĄes the

expected loss incurred by our estimates for the model parameters θ over the available

observations, under the Kullback-Leibler divergence.

When N is large, the Bayesian posterior is strongly affected by perturbations in the

observed data space. To develop an intuition on this, assuming that the true and observed

data distributions admit densities πθ and πobs respectively, we can rewrite an approximation
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of Eq. (2.19) via the KL divergence as in (Miller and Dunson, 2019)

π(θ♣x) ∝ exp

(
N∑

n=1

log π(xn♣θ)

π0(θ)

.
= exp

(
N
∫
πobs log πθ

)
π0(θ)

:= exp (−NDKL (πobs♣♣πθ))π0(θ), (2.20)

where
.
= denotes agreement to Ąrst order in exponent.1 Hence, due to the large N in the

exponent, small changes in πobs will have a large impact on the posterior.

2.4.2 Robustified generalized Bayesian posteriors

Robust inference methods aim to adapt Eqs. (2.17) to (2.19) to formulations that can

address the case of observations departing from model assumptions, as often happening in

practice, e.g. due to misspeciĄed shapes of data distributions and number of components,

or due to the presence of outliers. In such formulations (Eguchi and Kano, 2001; Fujisawa

and Eguchi, 2008; Dawid et al., 2016; Jewson et al., 2018), Bayesian updates rely on

utilising robust divergences instead of the KL divergence, to express the losses over the

observed data.

From the deĄnition of KL divergence Eq. (2.1), we can equivalently rewrite Eq. (2.18)

as

arg min
q(θ)∈P

(
DKL (q(θ)♣♣π0(θ)) +NEq(θ) [DKL (π̂(x)♣♣π(x♣θ))]

)
, (2.21)

namely inference corresponds to maximizing the expected likelihood of the observations,

under a regularizer that aims to keep the posterior q close to the prior π0. As mentioned

in Section 2.1, a popular choice for enhancing inferential robustness is to replace the KL

divergenceŮcomputed via the expected likelihood arising in the second term of Eq. (2.21)Ů

with the β-divergence (Futami et al., 2018; Knoblauch et al., 2018). This yields the

following posterior for θ (Ghosh and Basu, 2016; Knoblauch et al., 2018)

πβ(θ♣x) ∝ exp
(
−dβ (π̂(x)♣♣π(x♣θ))

)
π0(θ), (2.22)

where

dβ (π̂(x)♣♣π(x♣θ)) :=
N∑

n=1

(
−β + 1

β
π(xn♣θ)β +

∫

X
π(χ♣θ)1+βdχ



︸ ︷︷ ︸
:=fn(θ)

, (2.23)

with β > 0. In the remainder of the thesis we refer to quantities deĄned in Eqs. (2.22)

and (2.23) as the β-posterior and β-likelihood respectively. Noticeably, the individual

terms fn(θ) of the β-likelihood allow attributing different strength of influence to each of

the datapoints, depending on their accordance with the model assumptions. As densities

get raised to a suitable power β, outlying observations are exponentially downweighted.

1i.e. an

.
= bn iff (1/n) log(an/bn)→ 0
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(a) (b)

Figure 2.1: Effects of altering the statistical divergence when conducting inference on
datasets containing outliers. (a) InĆuence of individual datapoints under the Kullback-
Leibler and the β-divergence: the concavity of inĆuence under the β-divergence illustrates
the robustness of the inferred posterior to outliers. (b) Posterior estimates of Gaussian den-
sity on observations containing a small fraction for outliers under classical and robustiĄed
inference.

When β → 0, the BayesŠ posterior of Eqs. (2.17) and (2.19) is recovered, and all datapoints

are treated equally.

In the presentation above we focused on modeling observations (xn)N
n=1 (unsupervised

learning). In the case of supervised learning on data pairs (xn, yn)N
n=1 ∈ (X × Y)N , the

respective expression for individual terms of the β-likelihood2 is (Basu et al., 1998)

fn(θ) := −β + 1

β
π(yn♣xn, θ)

β +
∫

Y
π(ψ♣xn, θ)

1+βdψ. (2.24)

Illustrations In the remainder of this section we illustrate the effects of adapting

the used statistical divergence when doing inference on a dataset that contains outliers.

In a similar vein to (Jewson et al., 2018), we juxtapose the inference results of classical

and robust posterior on simple statistical models aiming to Ąt a Gaussian probability

distribution of unknown mean and variance N (µ, σ) to one-dimensional observations.

Fig. 2.1a demonstrates the influence of individual observations with varying magnitude

on the inferred posterior. The inĆuence is measured using the FisherŰRao metric introduced

in (Kurtek and Bharath, 2015). For this experiment, 10K observations were sampled from

a Student t(3) distribution, while observations with negative coordinates were omitted

from the presented plot due to symmetry. We can notice that the KL divergence allows

unbounded inĆuence, indicating the brittleness of inference on the tails of the observed

distribution. In contrast, moving away from the mean, individual datapointsŠ inĆuence

2In this context for simplicity we use notation fn(·) to denote f(yn♣xn, ·).
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under the β-divergences is initially characterised by a regime of increase until reaching

a maximum (which depends on the selected robustness hyperparameter), succeeded by

attenuation down to zero at the tails of the data distribution. At the same time, this

experiment makes clear that for decision problems critically relying on the tail information

of the observations, KL might be the divergence of choice, as the density power divergence

would downweight the importance of datapoints lying far from the mean.

Fig. 2.1b shows the posterior density estimation for classical and robustiĄed Bayesian

inference on 1K datapoints sampled from a contaminated distribution 0.99×N (0, 1) +

0.01 × N (5, 25). The posterior under the KL divergence tries to explain the long tails

of the observationsŮwhich are the effects of the contaminating componentŮeventually

overestimating the variance of the data distribution. On the other hand, using the density

power divergence with β = 0.5 over inference allows us to declare the long tails as outliers,

and provides more accurate modeling of the inliersŠ component.

2.5 Representing data

Extracting a relevant feature representation is an important step in the context of statistical

pattern recognition. For this purpose a feature map

ϕ : X → H, (2.25)

is sought which transforms the datapoints from the original data space ¶xn♢N
n=1, xn ∈ X ,

into feature representations in a Hilbert space ¶ϕ(xn)♢N
n=1, ϕ(xn) ∈ H. Then the patterns of

interest can be revealed via applications of inner products in the Hilbert space ⟨A, ϕ(x)⟩H.

There is an extensive literature on constructing data representations; for the purposes of

this thesis, in the remainder of the section we focus on two of them: kernel methods and

random projections.

2.5.1 Kernels

The main tool in kernel methods (Schölkopf et al., 2002) is the kernel function deĄned

below.

Definition 3 (Kernel function). A symmetric function k : X × X → R is a positive

semideĄnite kernel function, or kernel, if for all N > 1, x1, . . . , xN ∈ R, and c1, . . . , cN ∈ R

N∑

i,j=1

cicjk(xi, xj) ≥ 0. (2.26)

Every kernel is associated with a feature map ϕ as follows.

Definition 4 (Kernel representation). A function k : X × X → R is a kernel iff there

exists a Hilbert space H and a feature map ϕ : X → H such that for all x, x′ ∈ X

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. (2.27)
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Feature map ϕ endows each datapoint x ∈ X with a kernel representation ϕ(x).

A kernel representation might be lacking an explicit closed form, but can always be

accessed via the inner product of Eq. (2.27), which is the central object of interest in

learning with kernels.

Examples of widely-used kernel functions include:

• The (inhomogeneous) polynomial kernel k(x, x′) = (⟨x, x′⟩+ c)d, where c ≥ 0, d ∈ N.

• The Gaussian kernel k(x, x′) = exp(−γ♣♣x− x′♣♣22).

• Radial Basis Function (RBF) kernels k(x, x′) = f(d(x, x′)), where d is a metric on

X and f is a function on R
+.

Kernel methods induce non-parametric representations on the data, i.e. when given

a set with N datapoints of dimension d, kernels effectively map each datapoint to an

N -dimensional representation.

2.5.2 Finite-dimensional random projections

Kernel methods appeal to large-scale learning due to their non-parametric nature: their

representation power scales with the number of datapoints, hence they can learn complex,

highly non-linear structure from the data; however, their time and memory cost scales

adversely with the dataset size. Random features (Rahimi and Recht, 2008) remedy poor

complexity scaling issues via utilising parametric finite-dimensional data representations.

We motivate this concept via an application arising in Hilbert coreset constructions (Camp-

bell and Broderick, 2019).

Denote by fn(θ) :=
∑N

n=1 log π(xn♣θ) the log-likelihood function of a dataset x :=

(xn)N
n=1, and by f(θ, w) :=

∑N
n=1 wn log π(xn♣θ) the corresponding log-likelihood of a

Hilbert coreset (wn, xn)N
n=1 constructed on the data, where (wn)N

n=1 is a vector of sparse,

non-negative weightsŮusing the simpliĄed notation f(θ) for the full data log-likelihood.

The quality of posterior approximation that this coreset offers can be quantiĄed using an

L2 norm on the log-likelihoods under a weighting distribution π̂ that has the same support

with the true posterior π

♣♣f(θ, w)− f(θ)♣♣π̂,2 := Eπ̂

[
(f(θ)− f(θ, w))2

]
, (2.28)

and induced inner product

⟨fn(θ), fm(θ)⟩π̂,2 := Eπ̂ [fn(θ), fm(θ)] . (2.29)

The weighting distribution π̂ can be selected from a set of cheap posterior approximations,

for example using LaplaceŠs method, or running a few rounds of an MCMC algorithm. In

the general case, the norm of Eq. (2.29) is not available in closed form, hence a random

projection can be used instead to approximate it according to the following steps:
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1. Sample J values for θ from the weighting distribution (θ̂j)
J
j=1

i.i.d.∼ π̂.

2. For n = 1 . . . N compute a J-dimensional projection f̂n(θ) :=
√

1
J

[fn(θ̂1) . . . fn(θ̂J)].

In this way we get an unbiased Ąnite-dimensional estimator of the inner products

⟨fn(θ), fm(θ)⟩π̂,2 ≈ f̂n(θ)T f̂m(θ). (2.30)

2.6 Differential privacy

Differential privacy (DP) (Dwork et al., 2006c; Dwork and Roth, 2014) is a formal

framework quantifying the privacy threat that exists in observing the output of a data

analysis task carried out on a sensitive database, due to changing an individual entry of its

input. The central model of DP considers a setting where the database is held by a trusted

curator; and an untrusted analyst sends statistical queries to the curator and receives public

responses via randomized algorithms, or mechanisms: DP enforces a stability property on

the output distribution of these mechanisms that limits the disclosure of information about

any individual record within the database, offering strong indistinguishability guarantees

regardless of the side information that the analyst might possess (even when the analyst

knows all other records of the database).

DP deĄnition requires a notion of neighboring databases. To deĄne distance between

two databases x, x′ ∈ X of size N we use the Hamming distance

DH(x, x′) := #¶n = 1, . . . , N : xn ̸= x′n♢. (2.31)

We call the databases adjacent, denoted x ≈ x′, iff DH(x, x′) = 1.

Definition 5 (Differential Privacy). Fix ε ≥, δ ≥ 0. A mechanism M : X → Y is

(ε, δ)-differentially private if for all adjacent datasets x ≈ x′ and each event A ⊆ Y,

P[M(x) ∈ A] ≤ eε
P[M(x′) ∈ A] + δ.

DeĄnition 5 with δ = 0, known as pure DP, requires that if we perturb a database by a

single datapoint, the output of the algorithm should not differ much, with the privacy risk

being controlled by the parameter ε. A weaker deĄnition of DP allows that the guarantee

of DeĄnition 5 gets broken with probability δ > 0. This corresponds to the notion of

(ε, δ)-approximate differential privacy. The latter generally allows more tools for tighter

privacy analysis over repeated access to the data, and will be the deĄnition applied on

our privacy-preserving summarization scheme in Chapter 4. In practice, ε ≤ 0.1 and

δ ≈ 1/Nω(1) are typically considered good values for the privacy parameters.

The most common mechanisms that enable releasing numerical queries f under DP

rely on randomization via injecting additive noise. The amount of noise is calibrated to

the global sensitivity of the query, which is deĄned as

∆p(f) := max
x≈x′
♣♣f(x)− f(x′)♣♣p. (2.32)
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To achieve (ε, δ)-DP one can use the Gaussian Mechanism, which returns

f(x) + Z, Z ∼ N (0, σ2I), where σ ≥
√

2 log(1.25/δ) ∆2(f)

ε
. (2.33)

DP is equipped with a suite of properties that facilitate reasoning about privacy

guarantees over complicated analysis tasks on a sensitive data collection in a modular

fashion. In the remainder we review a fraction of them which are frequently encountered

in machine learning settings.

A useful fact about DP algorithms is that a data analyst cannot weaken their privacy

guarantees by doing any computation on their output that does not depend on the private

input itself.

Proposition 6 (Robustness to Post-Processing (Dwork and Roth, 2014)). LetM : X → Y
be (ε, δ)-DP and ψ : Y → Y ′ be any function. Then ψ ◦M : X → Y ′ is (ε, δ)-DP.

Moreover, running a mechanism on a random subset of the datapoints implies stronger

privacy compared to running the mechanism on the full database.

Proposition 7 (Privacy AmplĄcation via Random Sampling (Kasiviswanathan et al.,

2011; Beimel et al., 2013)). Let M : X → Y be (ε, δ)-DP with ε ≤ 1 and υ : X → X , a

random sampler returning a random ratio q of the datapoints. Then M◦ υ : X → Y is

(O(qε), qδ)-DP.

DP composition theorems accumulate the total privacy cost over the application of a

sequence of mechanisms. The moments accountant is a recently proposed technique, that

allows computing tight bounds for ε and δ, offering the following guarantees:

Proposition 8 (Moments Accountant (Abadi et al., 2016)). Given 0 < ε < 1 and

0 < δ < 1, to ensure (ε, T δ′ + δ)-DP over the composition of T mechanisms M1, . . . ,MT ,

it suffices that each Mi is (ε′, δ′)-DP, where ε′ = ε

2
√

2T log(2/δ)
and δ′ = δ

T
.

The above tools are required for carrying out the privacy analysis of the subsampled

Gaussian mechanism (Abadi et al., 2016), which will be used for privatising the variational

inference scheme introduced in Chapter 4.



Chapter 3

Quantifying Privacy Loss of Human

Mobility Graph Topology

In this chapter, we present a case study on population scale empirical data, which demon-

strates that releases of deidentiĄed and reduced representations of structured individual

records might still breach the privacy of information-contributing participants. This

analysis motivates the necessity of developing new formal privacy-preserving frameworks

for scalable learning via data summarization, which is further studied in Chapter 4.

Human mobility is often represented as a mobility network, or graph, with nodes

representing places of signiĄcance which an individual visits, such as their home, work,

places of social amenity, etc., and edge weights corresponding to probability estimates

of movements between these places. Previous research has shown that individuals can

be identiĄed by a small number of geolocated nodes in their mobility network, rendering

mobility trace anonymization a hard task. In this chapter we build on prior work, and

demonstrate that, even when all location and timestamp information is removed from nodes,

the graph topology of an individual mobility network itself is often uniquely identifying.

Further, we observe that a mobility network is often unique, even when only a small

number of the most popular nodes and edges are considered. We evaluate our approach

using a large dataset of cell-tower location traces from 1, 500 smartphone handsets with

a mean duration of 430 days. We process the data to derive the top−N places visited

by the device in the trace, and Ąnd that 93% of traces have a unique top−10 mobility

network, and all traces are unique when considering top−15 mobility networks. Since

mobility patterns, and therefore mobility networks for an individual, vary over time, we

use graph kernel distance functions, to determine whether two mobility networks, taken at

different points in time, represent the same individual. We then show that our distance

metrics, while imperfect predictors, perform signiĄcantly better than a random strategy,

and therefore our approach represents a signiĄcant loss in privacy.
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3.1 Motivation & contributions

Our mobile devices collect a signiĄcant amount of data about us and location data of

individuals are particularly privacy sensitive. Furthermore, previous work has shown that

removing direct identiĄers from mobility traces does not provide anonymity: users can

easily be reidentiĄed by a small number of unique locations that they visit frequently (Zang

and Bolot, 2011; de Montjoye et al., 2013).

Consequently, some approaches have been proposed that protect location privacy by

replacing location coordinates with encrypted identiĄers, using different encryption keys

for each location trace in the population. This preprocessing results in locations that

are strictly user-speciĄc and cannot be cross-referenced between users. Examples include

the dataset released for the research track of the Nokia Mobile Data Challenge,1 where

visited places were represented by random integers (Laurila et al., 2012); and identiĄable

location information collected by the Device Analyzer dataset,2 including WiFi access

point MAC addresses and cell tower identiĄers, are mapped to a set of pseudonyms deĄned

separately for each handset (Wagner et al., 2014). Moreover, temporal resolution may also

be deliberately decreased to improve anonymization (Gruteser and Grunwald, 2003), since

previous work has demonstrated that sparsity in the temporal evolution of mobility can

cause privacy breaches (de Montjoye et al., 2013).

In this chapter, we examine the degree to which reduced representations of mobility

traces, without either semantically-meaningful location labels, or fine-grained temporal

information, are identifying. To do so, we represent location data for an individual as

a mobility network, where nodes correspond to abstract locations and edges to their

connectivity, i.e. the respective transitions made by an individual between locations. We

then examine to what extent these graphs reĆect user-speciĄc behavioural attributes that

could act as a Ąngerprint, perhaps allowing the reidentiĄcation of the individual they

represent. In particular, we show how graph kernel distance functions (Vishwanathan

et al., 2010) can be used to assist reidentiĄcation of anonymous mobility networks. This

opens up new opportunities for both attack and defense. For example, patterns found

in mobility networks could be used to support automated user veriĄcation, where the

mobility network effectively acts as a behavioural signature of the legitimate user of the

device. However, the technique could also be used to link together different user proĄles

which represent the same individual.

Our approach differs from previous studies in location data deanonymization (De

Mulder et al., 2008; Golle and Partridge, 2009; Gambs et al., 2014; Naini et al., 2016), in

that we aim to quantify the breach risk in preprocessed location data that do not disclose

explicit geographic information, and where instead locations are replaced with a set of

user-speciĄc pseudonyms. Moreover, we also do not assume speciĄc timing information for

the visits to abstract locations, merely ordering and coarse duration of stays.

1http://www.idiap.ch/project/mdc
2https://deviceanalyzer.cl.cam.ac.uk

http://www.idiap.ch/project/mdc
https://deviceanalyzer.cl.cam.ac.uk
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We evaluate the power of our approach over a large dataset of traces from 1, 500

smartphones, where cell tower identiĄers (cids) are used for localization. Our results show

that the examined data reductions contain structural information which may uniquely

identify users. This fact then supports the development of techniques to efficiently reidentify

individual mobility proĄles. Conversely, our analysis may also support the development of

techniques to indistinguishably cluster users into larger groups with similar mobility; such

an approach may then be able to offer better anonymity guarantees.

A summary of the contributions of this chapter is as follows:

• We show that network representations of individual longitudinal mobility display

distinct topology, even for a small number of nodes corresponding to the most

frequently visited locations.

• We evaluate the sizes of identiĄability sets formed in a large population of mobile

users for increasing network size. Our empirical results demonstrate that all networks

become quickly uniquely identiĄable in state spaces with less than 20 locations.

• We propose kernel-based distance metrics to quantify mobility network similarity

in the absence of semantically meaningful spatial labels or Ąne-grained temporal

information.

• Based on these distance metrics, we devise a probabilistic retrieval mechanism to

reidentify pseudonymized mobility traces.

• We evaluate our methods over a large dataset of smartphone mobility traces. We

consider an attack scenario where an adversary has access to historical mobility

networks of the population she tries to deanonymize. We show that, by informing

her retrieval mechanism with structural similarity information computed via a deep

shortest-path graph kernel, the adversary can achieve a median deanonymization

probability 3.52 times higher than a randomised mechanism using no structural

information contained in the mobility networks.

3.2 Related work

3.2.1 Mobility deanonymization

Protecting the anonymity of personal mobility is notoriously difficult due to sparsity (Ag-

garwal and Yu, 2008), and hence mobility data are often vulnerable to deanonymization

attacks (Narayanan and Shmatikov, 2008). Numerous studies into location privacy have

shown that, even when an individualŠs data are anonymized, they continue to possess

unique patterns that can be exploited by a malicious adversary with access to auxil-

iary information. Zang and Bolot (2011) analysed nationwide call-data records (CDRs)

and showed that releasing the N most frequently visited placesŮso called top−N dataŮ

correlated with publicly released side information, resulted in privacy risks, even for small
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values of Ns. This Ąnding underlines the need for reductions in spatial or temporal data

Ądelity before publication. Further, de Montjoye et al. (2013) quantiĄed the unicity of

human mobility on a mobile phone dataset of approximately 1.5M users with intrinsic

temporal resolution of one hour and a 15-month measurement period. They found that

four random spatio-temporal points suffice to uniquely identify 95% of the traces. They

also observed that the uniqueness of traces decreases as a power law of spatio-temporal

granularity, stressing the hardness of achieving privacy via obfuscation of time and space

information.

Several inference attacks on longitudinal mobility are based on probabilistic models

trained on individual traces, and rely on the regularity of human mobility. De Mulder

et al. (2008) developed a reidentiĄcation technique by building a Markov model for each

individual in the training set, and then using this to reidentify individuals in the test set

by likelihood maximisation. Similarly, Gambs et al. (2014) used Markov chains to model

mobility traces in support of reidentiĄcation.

Naini et al. (2016) explored the privacy impact of releasing statistics of individualsŠ

mobility traces in the form of histograms, instead of their actual location information.

They demonstrated that even this statistical information suffices to successfully recover

the identity of individuals in datasets of few hundred people, via matching labeled and

unlabeled histograms of a population. Other researchers have investigated the privacy

threats stemming from information sharing on location-based social networks, including

the impact of location semantics on the difficulty of reidentiĄcation (Rossi et al., 2015)

and location inference (Ağır et al., 2016).

All the above-mentioned previous work assumes that locations are expressed using a

universal set of symbols or global identiĄers, either corresponding to (potentially obfuscated)

geographic coordinates, or pseudonymous stay points. Hence, cross-referencing between

individuals in the population is possible. This is inapplicable when location information is

anonymized separately for each individual. Lin et al. (2015) presented a user veriĄcation

method in this setting. It is based on statistical proĄles of individual indoor and outdoor

mobility, including cell tower ID and WiFi access point information. In contrast, here we

employ network representations based solely on cell tower ID sequences without explicit

time information.

Often, studies in human mobility aim to model properties of a population, thus location

data are published as aggregate statistics computed over the locations of individuals. This

has traditionally been considered a secure way to obfuscate the sensitive information

contained in individual location data, especially when released aggregates conform to

k−anonymity principles (Sweeney, 2002). However, recent results have questioned this

assumption. Xu et al. (2017) recovered movement trajectories of individuals with accuracy

levels of between 73% and 91% from aggregate location information computed from cellular

location information involving 100, 000 users. Similarly, Pyrgelis et al. (2017) performed a

set of inference attacks on aggregate location time-series data and detected serious privacy

loss, even when individual data are perturbed by differentially private mechanisms before

aggregation.
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3.2.2 Anonymity of graph data

Most of the aforementioned data can be represented as microdata with rows of Ąxed

dimensionality in a table. Microdata can thus be embedded into a vector space. In

other applications, datapoints are relational and can be naturally represented as graphs.

Measuring the similarity of such data is signiĄcantly more challenging, since there is no

deĄnitive method. Deanonymization attacks on graphs have mostly been studied in the

context of social networks and aimed to either align nodes between an auxiliary and an

unknown targeted graph (Narayanan and Shmatikov, 2009; Sharad and Danezis, 2014), or

quantify the leakage of private information of a graph node via its neighbors (Zheleva and

Getoor, 2009).

In the problem studied here, each individual’s information is an entire graph, rather

than a node in a graph or a node attribute, and thus deanonymization is reduced to a

graph set matching or classification problem. To the best of our knowledge, this is the

Ąrst attempt to deanonymize an individualŠs structured data by applying graph similarity

metrics. Since we are looking at relational data, not microdata, standard theoretical

results on microdata anonymization, such as differential privacy (Dwork et al., 2006c),

are not directly applicable. However, metrics related to structural similiarity, including

k−anonymity, can be seamlessly generalized in this framework.

3.2.3 Approximate graph matching

The problem of matching graphs (or networks) according to their structural similarity

has emerged in research under disparate contexts and treatments. To clearly position

our formulation in the related literature, we Ąrst draw a distinction between two primary

instantiations of the problem: (i) Graph matching (or graph alignment) is the problem

of Ąnding a bijection of node sets across graphs, that typically correspond to distorted

versions of the same underlying graph. (ii) Graph set matching (or graph comparison) is the

problem of uncovering members corresponding to the same entity across two graph datasets

that are assumed to form two distorted subsets of the same population of underlying

graphs. The data linkability question considered in the context of our work is an instance

of the latter problem.

Exact graph matching is equivalent to the problem of graph isomorphism, which admits

no known polynomial algorithm (although is broadly conjectured not to belong to the

family of NP-Hard problems (Schöning, 1988)). Approximate network alignment admits

different solutions, depending on the given information about the graph (e.g. whether the

graph nodes are labeled, or whether alignment for a subset of nodes is known). Kazemi

et al. (2015) proposed a percolation-based algorithm that, leveraging a partially correct

seed of node matches, can rapidly expand it to larger matching sets. Pedarsani et al.

(2013) used a seedless Bayesian approach assuming a distortion model which describes how

observations were obtained from the original graph. Via introducing additional heuristic

functions on the results of alignment, graph alignment methods can produce distances

applicable to graph comparisonŮfor instance, Mishinev (2020) proposed a normalized
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edge overlap metric that allowed transforming the previous two methods into a network

distance function.

Graph set matching can be approached via computations of a domain speciĄc similarity

metric applicable on graphs, that attributes large values to similarly looking graphs and

small values to graphs that look dissimilar. For the purposes of supervised learning or

data linkage, this metric can be relaxed to not strictly satisfy the mathematical deĄnition

of a distance metric, e.g. not obey the triangle inequality, as long as it reasonably captures

a quantiĄcation of structural similarity. In a recent work, Chowdhury and Mémoli (2019)

expanded the machinery of optimal transport to the problem of graph set matching:

endowing graphs with probability measures, allowed them to deĄne a pseudometric on the

space of directed, weighted networks using an efficiently computable approximation of the

optimal transportation function between graphs. Alternative long-standing approaches to

graph comparison are based on network motifs and frequent subgraph mining methods (Milo

et al., 2002; Yan and Han, 2002), which unfortunately have worst-case complexity scaling

exponentially with graph size. Graph kernels (Vishwanathan et al., 2010), which will be

the toolbox used in our graph comparison problem, achieve an efficient compromise, as

they are restricted to measure similarity using graph substructures which are computable

in polynomial time. Especially in the bioinformatics literature, graphlets (Pržulj, 2007;

Shervashidze et al., 2009), i.e. small connected non-isomorphic graphs, are commonly

selected as the substructures of choice, as they enable reasonable representation of the local

structure in unlabeled networks. As graphlet kernels do not support labeled nodes and scale

polynomially with the degree of the nodes, in Section 3.5 we focus our experimentation on

kernels capturing shortest-path and subgraph isomorphism information.

3.3 Proposed methodology

In this section, we Ąrst adapt the privacy framework of k−anonymity to the case of graph

data (Section 3.3.1). Next we introduce our methodology: We assume that all mobility

data are initially represented as a sequence of pseudonymous locations. We also assume

that the pseudonymisation process is distinct per user, and therefore locations cannot be

compared between individuals. In other words, it is not possible to determine whether

pseudonymous location lu for user u is the same as (or different from) location lv for user

v. We convert a location sequence for each user into a mobility network (Section 3.3.2).

We then extract feature representations of these networks and embed them into a vector

space. Finally, in the vector space, we can deĄne pairwise distances between the network

embeddings (Section 3.3.3) and use them in a deanonymization scenario (Section 3.3.4).

Our methodology is, in principle, applicable to many other categories of recurrent

behavioural trajectories that can be abstracted as graphs, such web browsing sessions (Yen

et al., 2012; Olejnik et al., 2014) or smartphone application usage sequences (Welke et al.,

2016).
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3.3.1 k−anonymity on graphs

Anonymity among networks refers to topological (or structural) equivalence. In our analysis

we adopt the privacy framework of k−anonymity (Sweeney, 2002), which we summarize

as follows:

Definition 9 (k−anonymity). A microdata release of statistics, containing separate

entries for a number of individuals in the population, satisĄes the k−anonymity property,

iff the information for each individual contained in the release is indistinguishable from at

least k − 1 other individuals whose information also appears in the release.

Therefore we interpret k−anonymity in this chapter to mean that the mobility network

of an individual in a population should be identical to the mobility network of at least

k − 1 other individuals. Recent work casts doubt on the protection guarantees offered

by k−anonymity in location privacy (Shokri et al., 2010), motivating the deĄnition of

l−diversity (Machanavajjhala et al., 2007) and t−closeness (Li et al., 2007). Although

k−anonymity may be insufficient to ensure privacy in the presence of adversarial knowledge,

k−anonymity is a good metric to use to measure the uniqueness of an individual in the

data. Moreover, this framework is straightforwardly generalizable to the case of graph

data.

Structural equivalence in the space of graphs corresponds to isomorphism and, based

on this, we can deĄne k−anonymity on unweighted graphs as follows:

Definition 10 (Graph Isomorphism). Two graphs G = (V,E) and G′ = (V ′, E ′) are

isomorphic (or belong to the same isomorphism class) if there exists a bijective mapping

g : V → V ′ such that (vi, vj) ∈ E iff (g(vi), g(vj)) ∈ E ′.

Definition 11 (Graph k−anonymity). Graph k−anonymity is the minimum cardinality

of isomorphism classes within a population of graphs.

After clustering our population of graphs into isomorphism classes, we can also deĄne

the identifiability set and anonymity size (PĄtzmann and Hansen, 2010) as follows:

Definition 12 (Identifiability Set). Identifiability set is the percentage of the population

which is uniquely identiĄed given their top−N network.

Definition 13 (Anonymity Size). The anonymity size of a network within a population

is the cardinality of the isomorphism class to which the network belongs.

3.3.2 Mobility information networks

To study the topological patterns of mobility, we represent user movements by a mobility

network. A preliminary step is to check whether a Ąrst-order network is a reasonable

representation of movement data, or whether a higher-order network is required.

First-order network representations of mobility traces are built on the assumption of

a first-order temporal correlation among their states. In the case of mobility data, this
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means that the transition by an individual to the next location in the mobility network

can be accurately modelled by considering only their current location. For example, the

probability that an individual visits the shops or work next depends only on where they

are located now, and a more detailed past history of places recently visited does not offer

signiĄcant improvements to the model. The alternative is that a sequence of the states is

better modelled by higher-order Markov chains, namely that transitions depend on the

current state and one or more previously visited states. For example, the probability that

an individual visits the shops or work next depends not only on where they are now, but

where they were earlier in the day or week. If higher-order Markov chains are required,

we should assume a larger state-space and use these states as the nodes of our individual

mobility networks. Recently proposed methods on optimal order selection of sequential

data (Xu et al., 2016; Scholtes, 2017) can be directly applied at this step.

Let us assume a mobility dataset from a population of users u ∈ U . We introduce two

network representations of userŠs mobility.

Definition 14 (State Connectivity Network). A state connectivity network for

u is an unweighted directed graph Cu = (V u, Eu). Nodes vi ∈ V u correspond to states

visited by the user throughout the observation period. An edge eij =
(
vu

i , v
u
j

)
∈ Eu

represents the information that u had at least one recorded transition from vu
i to vu

j .

Definition 15 (Mobility Network). A mobility network for u is a weighted and

directed graph Gu = (V u, Eu,W u) ∈ G, with the same topology as the state connectivity

network and additionally an edge weight function W u : Eu → R
+. The weight function

assigns a frequency wu
ij to each edge eu

ij, which corresponds to the number of transitions

from vu
i to vu

j recorded throughout the observation period.

To facilitate comparisons of frequencies across networks of different sizes in our experi-

ments, we normalize edge weights on each mobility network to sum to 1.

In Ąrst-order networks, nodes correspond to distinct places that the user visits. Given

a high-frequency, timestamped sequence of location events for a user, distinct places can

be extracted as small geographic regions where a user stays longer than a deĄned time

interval, using existing clustering algorithms (Kang et al., 2005). Nodes in the mobility

network have no geographic or timing information associated with them. Nodes may have

attributes attached to them reĆecting additional side information. For example, in this

study we consider whether attaching the frequency of visits a user makes to a speciĄc

node aids an attacker attempting to deanonymize the user.

In some of our experiments, we prune the mobility networks of users by reducing the

size of the mobility network to the N most frequent places and rearranging the edges in

the network accordingly. We refer to these networks as top−N mobility networks.

3.3.3 Graph similarity metrics

It is not practical to apply a graph isomorphism test to two mobility networks to determine

if they represent the same underlying user, because a userŠs mobility network is likely
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to vary over time. Therefore we need distance functions that can measure the degree

of similarity between two graphs. Distance functions decompose the graph into feature

vectors (smaller substructures and pattern counts), or histograms of graph statistics, and

express similarity as the distance between those feature representations. In the following,

we introduce the notion of graph kernels and describe the graph similarity metrics used

later in our experiments.

We wish to compute the similarity between two graphs G,G′ ∈ G. To this end,

according to the deĄnitions of Section 2.5.1, we will use graph kernel functions K(G,G′) :

G × G → R+ (Vishwanathan et al., 2010), and their corresponding feature maps ϕ(G).

In order to ensure the result from the kernel lies in the interval [−1, 1], we apply cosine

normalization as follows:

K(G,G′) =

〈
ϕ(G)

♣♣ϕ(G)♣♣ ,
ϕ(G′)

♣♣ϕ(G′)♣♣

〉
. (3.1)

One interpretation of this function is as the cosine similarity of the graphs in the feature

space deĄned by the map of the kernel.

In our experiments we apply a number of kernel functions on our mobility datasets

and assess their suitability for deanonymization applications on mobility networks. We

note in advance that, as the degree distribution and all substructure counts of a graph

remain unchanged under structure-preserving bijection of the vertex set, all examined

graph kernels are invariant under isomorphism. We brieĆy introduce these kernels in the

remainder of the section.

3.3.3.1 Kernels on degree distribution

The degree distribution of nodes in the graph can be used to quantify the similarity

between two graphs. For example, we can use a histogram of weighted or unweighted node

degree as a feature vector. We can then compute the pairwise distance of two graphs by

taking either the inner product of the feature vectors, or passing them through a Gaussian

Radial Basis Function kernel:

K(G,G′) = exp

(
−♣♣ϕ(G)− ϕ(G′)♣♣2

2σ2


. (3.2)

Here, the hyperparameters of the kernel are the variance σ (in case RBF is used), and the

number of bins in the histogram.

3.3.3.2 Kernels on graph atomic substructures

Kernels can use counts on substructures, such as subtree patterns, shortest paths, walks, or

limited-size subgraphs. This family of kernels are called R−convolution graph kernels (Haus-

sler, 1999). In this way, graphs are represented as vectors with elements corresponding to

the frequency of each such substructure over the graph. Hence, if s1, s2, ... ∈ S are the

substructures of interest and # (si ∈ G) the counts of si in graph G, we get as feature
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Figure 3.1: Computation of the Weisfeiler-Lehman subtree kernel of height h = 1 for two
attributed graphs.

map vectors

ϕ(G) = [# (s1 ∈ G) ,# (s2 ∈ G) , . . . ]T (3.3)

with dimension ♣S♣ and kernel

K(G,G′) =
∑

s∈S
# (s ∈ G) # (s ∈ G′) . (3.4)

In the following, we brieĆy present some kernels in this category and explain how they

are adapted in our experiments.

Shortest-Path Kernel

The Shortest-Path (SP) graph kernel (Borgwardt and Kriegel, 2005) expresses the

similarity between two graphs by counting the co-occurring shortest paths in the graphs. It

can be written in the form of Eq. (3.3), where each element si ∈ S is a triplet
(
ai

start, a
i
end, n

)
,

where n is the length of the path and ai
start, a

i
end the attributes of the starting and ending

nodes. The shortest path set is computable in polynomial time using, for example, the

Floyd-Warshall algorithm, with complexity O(♣V ♣4), where ♣V ♣ is number of nodes in the

network.

Weisfeiler-Lehman Subtree Kernel

Shervashidze et al. (2011) proposed an efficient method to construct a graph kernel

utilizing the Weisfeiler-Lehman (WL) test of isomorphism (Weisfeiler and Lehman, 1968).

The idea of the WL kernel is to measure co-occurrences of subtree patterns across node

attributed graphs.

Computation progresses over iterations as follows:

1. each node attribute is augmented with a multiset of attributes from adjacent nodes;
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2. each node attribute is then compressed into a single attribute label for the next

iteration; and

3. the above steps are repeated until a speciĄed threshold h is reached.

An example is shown in Fig. 3.1.

If G and G′ are the two graphs, the WL subtree kernel is deĄned as follows:

Kh
W L(G,G′) =

〈
ϕh(G), ϕh(G′)

〉
, (3.5)

where ϕh(G) and ϕh(G′) are the vectors of labels extracted after running h steps of the

computation (Fig. 3.1h). They consist of h blocks, where the i-th component of the j-th

block corresponds to the frequency of label i at the j-th iteration of the computation. The

computational complexity of the kernel scales linearly with the number of edges ♣E♣ and

the length h of the WL graph sequence.

Deep Graph Kernels

Deep graph kernels (DK s) are a uniĄed framework that takes into account similarity

relations at the level of atomic substructures in the kernel computation (Yanardag and

Vishwanathan, 2015). Hence, these kernels can quantify similar substructure co-occurrence,

offering more robust feature representations. DKs are based on computing the following

inner product:

K(G,G′) = ϕ (G)T Mϕ (G′) , (3.6)

where ϕ is the feature mapping of a classical R-convolution graph kernel.

In the above, M : ♣V♣×♣V♣ is a positive semideĄnitive matrix encoding the relationships

between the atomic substructures and V is the vocabulary of the observed substructures

in the dataset. Here, M can be deĄned using the edit distance of the substructures, i.e.

the number of elementary operations to transform one substructure to another; or M can

be learnt from the data, applying relevant neural language modeling methods (Mikolov

et al., 2013).

3.3.4 Deanonymization of user mobility networks and privacy

leakage evaluation

3.3.4.1 Hypothesis

The basic premise of our deanonymization approach can be postulated as follows:

The mobility of a person across different time periods is stochastic, but largely recur-

rent and stationary, and its expression at the level of the individual mobility network is

discriminative enough to reduce a person’s privacy within a population.

For example, the daily commute to work corresponds to a relatively stable sequence

of cell towers. This can be expressed in the mobility network of the user as a persis-

tent subgraph, and forms a characteristic behavioural pattern that can be exploited for
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(a) user 1: 1st half of the observation period (b) user 1: 2nd half of the observation period

(c) user 2: 1st half of the observation period (d) user 2: 2nd half of the observation period

Figure 3.2: Top−20 networks for two random users from the Device Analyzer dataset.
Depicted edges correspond to the highest 10th percentile of frequent transitions in the
respective observation window. The networks show a high degree of similarity between
the mobility proĄles of the same user over the two observation periods. Moreover, the
presence of single directed edges in the proĄle of user 2 forms a discriminative pattern
that allows us to distinguish user 2 from user 1.

deanonymization of mobility traces. Empirical evidence for our hypothesis is shown

in Fig. 3.2. For ease of presentation, in the Ągure, nodes between the disparate observation

periods of the users can be cross-referenced. We assume that cross-referencing is not

possible in our attack scenario, as locations are independently pseudonymized.

3.3.4.2 Threat model

We assume that an adversary has access to a set of mobility networks G ∈ Gtraining with

disclosed identities (or labels) lG ∈ L and a set of mobility networks G′ ∈ Gtest with

undisclosed identities lG′ ∈ L.

Generally we can think of lG′ ∈ J ⊃ L and assign some Ąxed probability mass to the

labels lG′ ∈ J \ L. However, here we make the closed world assumption that the training

and test networks come from the same population. We make this assumption for two

reasons: Ąrst, it is a common assumption in works on deanonymization and, second, we

cannot directly update our beliefs on lG′ ∈ J \ L by observing samples from L.

We deĄne a normalised similarity metric among the networks K : Gtraining×Gtest → R+.

We hypothesize that a training and test mobility network belonging to the same person

have common or similar connectivity patterns, thus a high degree of similarity.

The intention of an adversary is to deanonymize a given test network G′ ∈ Gtest, by

appropriately deĄning a vector of probabilities over the possible identities in L.
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An uninformed adversary has no information about the networks of the population

and, in the absence of any other side knowledge, the prior belief of the adversary about

the identity of G′ is a uniform distribution over all possible identities:

P (lG′ = lGi
) := 1/♣L♣, for every Gi ∈ Gtraining. (3.7)

An informed adversary has access to the population of training networks and can

compute the pairwise similarities of G′ with each Gi ∈ Gtraining using a kernel function K.

Hence the adversary can update her belief for the possible identities in L according to

the values of K. Therefore, when the adversary attempts to deanonymize identities in

the data, she assigns probabilities that follow a non-decreasing function of the computed

pairwise similarity of each label. Denoting this function by f , we can write the updated

adversarial probability estimate for each identity as follows:

PK (lG′ = lGi
♣Gtraining) :=

f (K(Gi, G
′))∑

j∈L
f (K(Gj, G

′))
, for every Gi ∈ Gtraining. (3.8)

3.3.4.3 Privacy loss

In the case of the uninformed adversary, the true label for any user is expected to have

rank ♣L♣/2. Under this policy, the amount of privacy for each user is proportional to the

size of the population.

In the case of the informed adversary, knowledge of Gtraining and the use of K will

induce some non-negative privacy loss which will result in the expected rank of user to be

smaller than ♣L♣/2. The privacy loss (PL) can be quantiĄed as follows:

PL (G′;Gtraining, K) :=
PK

(
lG′ = lG′

true
♣Gtraining

)

P
(
lG′ = lG′

true

) − 1 (3.9)

A privacy loss equal to zero reĆects no information gain compared to an uninformed

adversary with no access to graphs with disclosed identities.

Let us assume that the users of our population generate distinct mobility networks.

As will be supported with empirical evidence in the next section, this is often the case in

real-world cid datasets of few thousand users even for small network sizes (e.g. for top−20

networks in our dataset). Under the above premise, the maximal privacy loss occurs when

the presented test network is an identical copy of a training network of the same user

which exists in the data of the adversary, i.e. G′ ∈ Gtraining. This corresponds to a user

deterministically repeating her mobility patterns over the observation period recorded in

the test network. In such a scenario, we could think that isomorphism tests are the most

natural way to compute similarity; however, isomorphism tests will be useless in real-world

scenarios, since, on top of their high computational cost, the stochastic nature and noise

inherent in the mobility networks of a user would make them non-isomorphic. Maximal

privacy loss reĆects the discriminative ability of the kernel and cannot be exceeded in



44 Quantifying Privacy Loss of Human Mobility Graph Topology

real-world datasets, where the test networks are expected to be noisy copies of the training

networks existing in our system. The step of comparing with the set of training networks

adds computational complexity of O(♣Gtraining♣) to the similarity metric cost.

Moreover, our framework can naturally facilitate incorporating new data to our beliefs

when multiple examples per individual exist in the training dataset. For example, when

multiple instances of mobility networks per user are available, we can use k−nearest

neighbors techniques in the comparison of distances with the test graph.

3.4 Data for analysis

In this section we present an exploratory analysis of the dataset used in our experiments,

highlighting statistical properties of the data and empirical results regarding the structural

anonymity of the generated state connectivity networks.

3.4.1 Data description

We evaluate our methodology on the Device Analyzer dataset (Wagner et al., 2014).

Device Analyzer contains records of smartphone usage collected from over 30, 000 study

participants around the globe. Collected data include information about system status

and parameters, running background processes, cellular and wireless connectivity. For

privacy purposes, released cid information is given a unique pseudonym separately for

each user, and contains no geographic, or semantic, information concerning the location

of users. Thus we cannot determine geographic proximity between the nodes, and the

location data of two users cannot be directly aligned.

For our experiments, we analysed cid information collected from 1, 500 handsets with

the largest number of recorded location datapoints in the dataset. Fig. 3.3a shows the

observation period for these handsets; note that the mean is greater than one year but

there is lot of variance across the population. We selected these 1, 500 handsets in order

to examine the reidentiĄability of devices with rich longitudinal mobility proĄles. This

allowed us to study the various attributes of individual mobility affecting privacy in detail.

As mentioned in the previous section, the cost of computing the adversarial posterior

probability for the deanonymization of a given unlabeled network scales linearly with the

population size.

3.4.2 Mobility networks construction

We began by selecting the optimal order of the network representations derived from the

mobility trajectories of the 1, 500 handsets selected from the Device Analyzer dataset. We

Ąrst parsed the cid sequences from the mobility trajectories into mobility networks. In

order to remove cids associated with movement, we only deĄned nodes for cids which were

visited by the handset for at least 15 minutes. Movements from one cid to another were

then recorded as edges in the mobility network.
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(a) (b)

(c) (d)

Figure 3.3: Empirical statistical Ąndings of the Device Analyzer dataset. (a) Distribution
of the observation period duration. (b) Normalized histogram and empirical probability
density estimate of network size for the full mobility networks over the population. (c) Com-
plementary cumulative distribution function (CCDF) for the node degree in the mobility
network of a typical user from the population, displayed on log-log scale. (d) Normalized
histogram and probabilty density of average edge weight over the networks.

As outlined in Section 3.3.1, we analysed the pathways of the Device Analyzer dataset

during the entire observation period, applying the model selection method of Scholtes

(2017).3 This method tests graphical models of varying orders and selects the optimal

order by balancing the model complexity and the explanatory power of observations.

We tested higher-order models up to order three. In the case of top−20 mobility

networks, we found routine patterns in the mobility trajectories were best explained with

models of order two for more than 20% of the users. However, when considering top−100,

top−200, top−500 and full mobility networks, we found that the optimal model for our

dataset has order one for more than 99% of the users; see Fig. 3.4. In other words,

when considering mobility trajectories which visit less frequent locations in the graph, the

overall increase in likelihood of the data for higher-order models cannot compensate for

the complexity penalty induced by the larger state space. Hence, while there might still

be regions in the graph which are best represented by a higher-order model, the optimal

3https://github.com/IngoScholtes/pathpy

https://github.com/IngoScholtes/pathpy
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Figure 3.4: Optimal order for increasing number of locations.

Networks # of
networks

Num. of
nodes, avg.

Edges,
avg.

Density,
avg.

Avg.
clust. coef.

Diameter,
avg.

Avg.
short. path

Recurrence
rate (%)

top−50 locations 1, 500 49.9± 1.3 236.6± 78.1 0.19± 0.06 0.70± 0.07 3.42± 0.86 1.93± 0.20 84.7± 5.6
top−100 locations 1, 500 98.3± 7.9 387.1± 144.7 0.08± 0.03 0.60± 0.10 4.67± 1.48 2.33± 0.40 78.3± 7.8
top−200 locations 1, 500 179.2± 37.8 548.2± 246.1 0.04± 0.02 0.47± 0.12 7.52± 4.21 3.07± 1.18 73.0± 9.9

full 1, 500 334.6± 235.8 741.6± 527.3 0.02± 0.02 0.33± 0.09 15.98± 10.18 4.84± 2.93 68.8± 12.3

Table 3.1: Summary statistics of mobility networks in the Device Analyzer dataset.

order describing the entire graph is one. Therefore we use a model of order one in the rest

of this chapter.

3.4.3 Data properties and statistics

In Table 3.1 we provide a statistical summary of the original and the pruned versions of

the mobility networks. We observe that allowing more locations in the network implies an

increase in the variance of their statistics, and leads to smaller density, larger diameter

and larger average shortest-path values.

A recurrent edge traversal in a mobility network occurs when a previously traversed

edge is traversed for a second or subsequent time. We then deĄne recurrence rate as

the percentage of edge traversals which are recurrent. We Ąnd that mobility networks

display a high recurrence rate, varying from 68.8% on average for full networks to 84.7%

for the top−50 networks, indicating that the mobility of the users is mostly comprised of

repetitive transitions between a small set of nodes in a mobility network.

Fig. 3.3b displays the normalized histogram and probability density estimate of network

size for full mobility networks. We observe that sizes of few hundred nodes are most likely

in our dataset, however mobility networks of more than 1, 000 nodes also exist. Reducing

the variance in network size will be proved helpful in cross-network similarity metrics,

hence we also consider truncated versions of the networks.
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N 4 5 6 7 8 9
# undirected 11 34 156 1,044 12,346 274,668

N 4 5 6 7
# directed 2,128 9,608 1,540,944 882,033,440

Table 3.2: Sequences of non-isomorphic graphs for undirected and directed graphs of
increasing size.

As shown in Fig. 3.3c, the parsed mobility network of a typical user is characterized by

a heavy-tailed degree distribution. We observe that a small number of locations have high

degree and correspond to dominant states for a personŠs mobility routine, while a large

number of locations are only visited a few times throughout the entire observation period

and have a small degree.

Fig. 3.3d shows the estimated probability distribution of average edge weight. This

peaks in the range from two to four, indicating that many transitions captured in the full

mobility network are rarely repeated. However, most of the total weight of the network is

attributed to the tail of this distribution, which corresponds to the edges that the user

frequently repeats.

3.4.4 Anonymity clusters on top−N networks

We examine to what extent the heterogeneity of usersŠ mobility behaviour can be expressed

in the topology of the state connectivity networks. For this purpose, we generate the

isomorphism classes of the top−N networks of our dataset for increasing network size

N . We then compute the graph k−anonymity of the population and the corresponding

identiĄability set. This analysis demonstrates empirically the privacy implications of

releasing anonymized users pathway information at increasing levels of granularity.

Before presenting our Ąndings on the Device Analyzer dataset, we will perform a

theoretical upper bound analysis on the identiĄability of a population, by Ąnding the

maximum number of people that can be distinguished by networks of size N . This

corresponds to the number of non-isomorphic graphs with N nodes.

Currently the most efficient way of enumerating non-isomorphic graphs is by using the

algorithm of McKay and Piperno (2014), implemented in the package nauty.4 Table 3.2

presents the enumeration for undirected and directed non-isomorphic graphs of increasing

size. We observe that there exist 12, 346 undirected graphs with 8 nodes and 9, 608 directed

graphs with 5 nodes. In other words, Ąnding the top−8 places for each person is the

smallest number which could produce unique graphs for each person in our sample of

1, 500 individuals; this reduces to 5 when directionality is taken into account. Moreover,

we Ąnd that top−12 undirected and top−8 directed networks are sufficient to enable each

human on the planet to be represented by a different graph, assuming world population of

7.6B.

Next we present the results of our analysis on the Device Analyzer data. As observed

in Fig. 3.5, sparsity arises in a mobility network even for very small N . In particular, in

4http://pallini.di.uniroma1.it/

http://pallini.di.uniroma1.it/
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(a) Undirected top−N networks. (b) Directed top−N networks.

Figure 3.5: IdentiĄability set and k−anonymity for undirected and directed top−N
mobility networks for increasing number of nodes. Displayed is also the theoretical upper
bound of identiĄability for networks with N nodes.

(a) Median anonymity size. (b) Cumulative distribution of the anonymity
size.

Figure 3.6: Anonymity size statistics over the population of top−N mobility networks for
increasing network size.

the space of undirected top−4 location networks, there is already a cluster with only 3

members, while for all N > 4 there always exist isolated isomorphic clusters. k−anonymity

decreases to 1 even for N = 3 when considering directionality. Moreover, the identifiability

set dramatically increases with the size of network: approximately 60% of the users are

uniquely identiĄable from their top−10 location network. This percentage increases to

93% in directed networks. For the entire population of the 1, 500 users, we Ąnd that 15

and 19 locations suffice to form uniquely identiĄable directed and undirected networks

respectively.

The difference between our empirical Ąndings and our theoretical analysis suggests that

large parts of the top−N networks are common to many people. This can be attributed to

patterns that are widely shared (e.g. the trip from work to home, and from home to work).

Fig. 3.6 shows some additional statistics of the anonymous isomorphic clusters formed

for varying network sizes. Median anonymity becomes one for network sizes of Ąve and

eight in directed and undirected networks respectively; see Fig. 3.6a. In Fig. 3.6b we
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observe that the population arranges into clusters with small anonymity even for very

small network sizes: around 5% of the users have at most 10-anonymity when considering

only Ąve locations in their network, while this percentage increases to 80% and 100% for

networks with 10 and 15 locations. This result conĄrms that anonymity is even harder

when the directionality of edges is provided, since the space of directed networks is much

larger than the space of the undirected networks with the same number of nodes.

The above empirical results indicate that the diversity of individualsŠ mobility is

reĆected in the network representations we use, thus we can meaningfully proceed to

discriminative tasks on the population of mobility networks.

3.5 Evaluation of privacy loss in longitudinal mobil-

ity traces

In this section we empirically quantify the privacy leakage implied by the information of

longitudinal mobility networks for the population of users in the Device Analyzer dataset.

For this purpose we undertake experiments in graph set matching using different kernel

functions, and assume an adversary has access to a variety of mobility network information.

3.5.1 Experimental setup

For our experiments we split the cid sequences of each user into two sets: the training

sequences where usersŠ identities are disclosed to the adversary, and the test sequences

where user identities are undisclosed to the adversary, and are used to quantify the success

of the adversarial attack. Therefore each user has two mobility networks: one derived

from the training sequences, and one derived from the test sequences. The objective of the

adversary is to successfully match every test mobility network with the training mobility

network representing the same underlying user. To do so, the adversary computes the

pairwise distances between training mobility networks and test mobility networks. We

partitioned cid sequences of each user by time, placing all cids before the partition point

in the training set, and all subsequent cids into the test set. We choose the partition point

separately for each user as a random number from the uniform distribution with range 0.3

to 0.7.

3.5.2 Mobility networks & kernels

We computed the pairwise distances between training and test mobility networks using

kernels from the categories described in Section 3.3. Node attributes are supported

in the computation of Weisfeiler-Lehman and Shortest-Path kernel. Thus, in this part

of the study, we augmented the individual mobility networks with categorical features,

to add some information about the different roles of nodes in usersŠ mobility routine.

Such attributes are computed independently for each user on the basis of the topological

information of each network. After experimenting with several schemes, we obtained the

best performance on the kernels when dividing locations into three categories with respect
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to the frequency in which each node is visited by the user. Concretely, we computed the

distribution of usersŠ visits to locations and added the following values to the nodes:

ac=3 (vu
i ) :=





3, if vu
i ∈ top−20% locations of u

2, if vu
i /∈ top−20% locations of u and vu

i ∈ top−80% locations

1, otherwise.

This scheme allowed a coarse, yet informative, characterisation of locations in usersŠ

networks, which was robust to the variance in the frequency of visits between the two

observation periods. In addition, we removed 40% of edges with the smallest edge weights

and retained only the largest connected component for each user.

Due to its linear complexity, the computation of the Weisfeiler-Lehman kernel could

scale over entire mobility networks. However, we had to reduce the network size in order

to apply the Shortest-Path kernel. This was done using top−N networks for varying size

N .

3.5.3 Evaluation

We evaluated graph kernels functions from the following categories:

• DSPN : Deep Shortest-Path kernel on top−N network

• DWLN : Deep Weisfeiler-Lehman kernel on top−N network

• DD: Degree Distribution kernel through Gaussian RBF

• WD: Weighted Degree distribution through Gaussian RBF

The Cumulative Density Functions (CDFs) of the true label rank for the best performing

kernel of each category are presented in Fig. 3.7.

If mobility networks are unique, an ideal retrieval mechanism would correspond to a

curve that reaches 1 at rank one, indicating a system able to correctly deanonymize all

traces by matching the closest training graph. This would be the case when usersŠ training

and test networks are identical, thus the knowledge of the latter implies maximum privacy

loss.

Our baseline, random, is a strategy which reĆects the policy of an adversary with

zero knowledge about the mobility networks of the users, who simply returns uniformly

random orderings of the labels. The CDF of true labelsŠ rank for random lies on the

diagonal line. We observe that atomic substructure based kernels signiĄcantly outperform

the random baseline performance by deĄning a meaningful similarity ranking across the

mobility networks.

The best overall performance is achieved by the DSP kernel on graphs pruned to 200

nodes. In particular, this kernel places the true identity among the closest 10 networks for

10% of the individuals, and among the closest 200 networks for 80% of the population.
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Figure 3.7: CDF of true rank over the population according to different kernels.

The Shortest-Path kernel has an intuitive interpretation in the case of mobility networks,

since its atomic substructures take into account the hop distances among the locations in a

userŠs mobility network and the popularity categories of the departing and arrival locations.

The deep variant can also account for variation at the level of such substructures, which

are more realistic when considering the stochasticity in the mobility patterns inherent to

our dataset.

The best performance of the Weisfeiler-Lehman kernel is achieved by its deep variant

for h = 2 iterations of the WL test for a mobility network pruned to 200 nodes. This

phenomenon is explainable via the statistical properties of the mobility networks. As

we saw in Section 3.4.3, the networks display power law degree distribution and small

diameters. Taking into account the steps of the WL test, it is clear that these topological

properties will lead the node relabeling scheme to cover the entire network after a very

small number of iterations. Thus local structural patterns will be described by few features

produced in the Ąrst iterations of the test. Furthermore, the feature space of the kernel

increases very quickly as a function of h, which leads to sparsity and low levels of similarity

over the population of networks.

Histograms of length 103 were also computed for the unweighted and weighted degree

distributions and passed through a Gaussian RBF kernel. We can see that the unweighted

degree distribution DD gives almost a random ranking, as this kernel produces a very high-

dimensional mapping, which is heavily dependent on the network size. When including

the normalized edge weights, the WD kernel only barely outperforms a random ranking.

Repetitions on pruned versions, which partly mitigate dimensionality effects, did not

signiĄcantly improve the performance and are not presented for brevity.
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Figure 3.8: Boxplot of rank for the true
labels of the population according to a
Deep Shortest-Path kernel and to a ran-
dom ordering.

Figure 3.9: Privacy loss over the test
data of our population for an adversary
adopting the informed policy of (3.10).
Median privacy loss is 2.52.

Based on the insights obtained from our experiment, we can make the following

observations with respect to attributes of individual mobility and their impact on the

identiĄability of networks:

• Transition pruning: Including very rare transitions in longitudinal mobility does

not add discriminative information. We consistently obtained better results when

truncating the long tail of edge weight distribution, which led us to analyze versions

of the networks where 40% of the weakest edges were removed.

• Frequency information of locations: The frequency of visits to nodes in the

mobility network allows better ranking by kernels which support node attributes,

e.g. the Weisfeiler-Lehman and the Shortest-Path kernel. This information should

follow a coarse scheme, in order to compensate for the temporal variation of location

popularity in mobility networks.

• Directionality of transitions: Directionality generally enhances the identiĄability

of networks and guides the similarity computation when using Shortest-Path kernels.

3.5.4 Quantification of privay loss

The Deep Shortest-Path kernel on top−200 networks offers the best ranking of identities for

the test networks. As observed in Fig. 3.8, the mean of the true rank has been shifted from

750 to 140 for our population. In addition, the variance is much smaller: approximately

218, instead of 423 for the random ordering.

The obtained ordering implies a signiĄcant decrease in user privacy, since the ranking

can be leveraged by an adversary to determine the most likely matches between a training

mobility network and a test mobility network. The adversary can estimate the true

identity of a given test network G′, as suggested in Section 3.3.4.2, applying some simple
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probabilistic policy that uses pairwise similarity information. For example, let us examine

the privacy loss implied by the update rule in (3.8) for function f :

f (KDSP(Gi, G
′)) :=

1

rank (KDSP (Gi, G′))
. (3.10)

This means that the adversary updates her probability estimate for the identity

corresponding to a test network, by assigning to each possible identity a probability that

is inversely proportional to the rank of the similarity between the test network and the

training network corresponding to the identity.

From equation (3.9), we can compute the induced privacy loss for each test network,

and the statistics of privacy loss over the networks of the Device Analyzer population.

Fig. 3.9 demonstrates considerable privacy loss with a median of 2.52. This means that the

informed adversary can achieve a median deanonymization probability 3.52 times higher

than an uninformed adversary. Moreover, the positive mean of privacy loss (≈ 27) means

that the probabilities of the true identities of the test networks have, on average, much

higher values in the adversarial estimate compared to the uninformed random strategy.

Hence, revealing the kernel values makes an adversarial attack easier.

3.5.5 Defense mechanisms

The demonstrated privacy leakage motivates the quest for defense mechanisms against

this category of attacks. There are a variety of techniques which we could apply in order

to reduce the recurring patterns of an individual’s mobility network over time and decrease

the diversity of mobility networks across a population, therefore enhancing the privacy

inherent in these graphs. Examples include noise injection on network structure via several

strategies: randomization of node attributes, perturbations of network edges, or node

removal. It is currently unclear how effective such techniques will be, and what trade-off

can be achieved between utility in mobility networks and the privacy guarantees offered to

individuals whose data the graphs represent. Moreover, it seems appropriate to devise

kernel-agnostic techniques, suitable for generic defense mechanisms. For example, it is of

interest to assess the resistance of our best similarity metric to noise, as the main purpose

of deep graph kernels is to be robust to small dissimilarities at the substructure level.

We think this study is important for one further reason: kernel-based methods allow

us to apply a rich toolbox of learning algorithms without accessing the original datapoints,

or their feature vectors, but instead by querying their kernel matrix. Thus studying the

anonymity associated with kernels is valuable for ensuring that such learning systems do

not leak the privacy of the original data.
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3.6 Summary & discussion

In this chapter we have shown that the mobility networks of individuals exhibit signiĄcant

diversity, and the topology of the mobility network itself, without explicit privacy-revealing

labels, may be unique and therefore uniquely identifying.

An individualŠs mobility network is dynamic over time. Therefore, an adversary

with access to mobility data of a person from one time period cannot simply test for

graph isomorphism to retrieve the same user from a dataset recorded at a different

point in time. Hence we proposed graph kernel methods to detect structural similarities

between two mobility networks, and thus provide the adversary with information on

the likelihood that two mobility networks represent the same individual. While graph

kernel methods are imperfect predictors, they perform signiĄcantly better than a random

strategy and therefore our approach induces signiĄcant privacy loss. Our approach does

not make use of geographic information or Ąne-grained temporal information. Therefore,

our method is immune to commonly adopted privacy intending practices of geographic

information masking or removal, and temporal cloaking, and thus it may lead to new

mobility deanonymization attacks.

Moreover, we Ąnd that reducing the number of edges (transitions between locations)

in a mobility network does not necessarily make the network more privacy-preserving,

while user anonymity is violated even when reducing the number of nodes (locations).

Conversely, releasing the frequency of node visits and the direction of transitions in a

mobility network does aid the identiĄablility of a mobility network for adversaries applying

graph kernel similarity metrics on identiĄed historical data. We provide empirical evidence

that neighborhood relations in the high-dimensional spaces generated by the tested deep

graph kernels remain meaningful for our dataset of networks (Beyer et al., 1999). Further

work is needed to shed more light on the geometry of those spaces in order to derive the

optimal substructures and dimensionality required to support best graph set matching.

More work is also required to understand the sensitivity of our approach to the time period

over which mobility networks are constructed. There is also an opportunity to explore

better ways of exploiting pairwise distance information.

Beyond emphasizing the vulnerability of popular anonymization techniques based on

user-speciĄc location pseudonymization, our work provides insights into network features

that can facilitate the identiĄability of location traces. Our framework also opens the

door to new anonymization techniques that can apply structural similarity methods to

individual traces in order to cluster people with similar mobility behaviour. This approach

may then support statistically faithful population mobility studies on mobility networks

securing k−anonymity guarantees for participants.

Apart from graph kernel similarity metrics, tools for network deanonymization can

also be sought in the direction of graph mining: applying heavy subgraph mining tech-

niques (Bogdanov et al., 2011), or searching for persistent cascades (Morse et al., 2016).

Frequent substructure pattern mining (e.g. gSpan, Yan and Han (2002)) and discriminative
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frequent subgraph mining (e.g. CORK, Thoma et al. (2010)) techniques can also be

considered.

Our methodology is, in principle, applicable to all types of data where individuals

transition amongst a set of discrete states. Therefore, the performance of such retrieval

strategies can also be evaluated on different categories of datasets, such as web browsing

histories, or smartphone application usage sequences.

A drawback of our current approach is that it cannot be directly used to mimic

individual or group mobility by synthesizing traces. Fitting a generative model on mobility

traces and then deĄning a kernel on this model (Song et al., 2011) may provide better

anonymity, and therefore privacy, and it would also support the generation of artiĄcial

traces which mimic the mobility of users.





Chapter 4

Bayesian Pseudocoresets

In Chapter 2, we exposed the prohibitive computational limitations of Bayesian inference

in the regime of modern large-scale data, and discussed coreset-based summarization as a

viable solution for scalable approximate inference under statistical guarantees. In Chapter 3,

we considered a case study on a massive high-dimensional dataset capturing longitudinal

mobility information of a population, and quantiĄed the privacy loss incurred via coarse

representations of the datapoints that can be used for fast data analysis. Motivated by

the quest for scalable learning methods on sensitive data, in this chapter we propose

pseudocoreset variational inference, a general-purpose approximate inference method

designed to enable scalable inference on high-dimensional datasets, under the guarantees

of approximate differential privacy.

We begin by investigating the shortcomings of existing Bayesian coreset constructions in

the increasingly common setting of sensitive, high-dimensional data. In particular, we prove

that there are situations in which the Kullback-Leibler divergence between the optimal

coreset and the true posterior grows with data dimension; and as coresets include a subset of

the original data, they cannot be constructed in a manner that preserves individual privacy.

We address both of these issues with a single uniĄed solution, Bayesian pseudocoresetsŮa

small weighted collection of synthetic ŞpseudodataŤŮalong with a variational optimization

method to select both pseudodata and weights. The use of pseudodata (as opposed to

the original datapoints) enables both the summarization of high-dimensional data and

the differentially private summarization of sensitive data. Real and synthetic experiments

on high-dimensional data demonstrate that Bayesian pseudocoresets achieve signiĄcant

improvements in posterior approximation error reduction compared to traditional coresets,

and that pseudocoresets provide privacy without a signiĄcant loss in approximation quality.

4.1 Related work & contributions

Large-scale dataŮwhich has become the norm in many scientiĄc and commercial applica-

tions of statistical machine learningŮcreates an inherently difficult setting for the modern

data analyst. Exploring such data is difficult because it cannot all be obtained and directly

visualized at once; one is typically limited to accessing potentially nonrepresentative
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random subsets of data. Exploring models is similarly hard, as training even a single

model can be a computationally expensive, slow, and unreliable process. And as many

sources of large-scale data contain sensitive information about individuals (e.g., electronic

health records and social network data), these challenges are coupled with growing privacy

concerns that preclude direct access to individual datapoints completely.

Large-scale data does offer one reprieve to the analyst: it often exhibits a signiĄcant

degree of redundancy. Most datapoints are not unique or particularly informative for

modeling and exploration. Based on this notion, data summarization methods have

been developed that provide the practitioner with a compressedŮbut still statistically

representativeŮversion of the large dataset for analysis. Summarizations have been

developed for a variety of purposes, e.g., reducing the cost of computing with kernel matri-

ces via Nyström-type approximations (Drineas and Mahoney, 2005; Musco and Musco,

2017; Agrawal et al., 2019) or sparse pseudo-input parameterizations for Gaussian pro-

cesses (Williams and Seeger, 2001; Csató and Opper, 2002; Snelson and Ghahramani, 2005;

Titsias, 2009), Bayesian inference (Huggins et al., 2016; Huggins et al., 2017; Campbell

and Broderick, 2018; 2019), maximum likelihood parameter estimation (DuMouchel et al.,

1999; Madigan et al., 2002), linear regression (Zhou et al., 2007; Guhaniyogi and Dunson,

2015), geometric shape approximation (Agarwal et al., 2005), clustering (Feldman et al.,

2011; Bachem et al., 2015; Braverman et al., 2016; Lucic et al., 2016b), and dimensionality

reduction (Feldman et al., 2016).

A common form of summarization is that of a sparse, weighted subset of the original

datasetŮa coreset (Agarwal et al., 2005). Coresets have two distinct advantages over

other possible summarization modalities: they are easily interpreted, and can often be

used as the input to standard data analysis algorithms without modiĄcation. But as the

dimensionality of a dataset grows, its constituent datapoints tend to become more ŞuniqueŤ

and cannot represent one another well. Indeed, in the context of Bayesian inference we show

that the optimal coreset posterior approximation to the true posterior has KL divergence

that scales with the dimension of the data in a simple problem setting (Proposition 16).

Furthermore, directly releasing a subset of the original data precludes any possibility of

individual privacy under the current standard of differential privacy (Dwork et al., 2006c;

Dwork and Roth, 2014). Past work addresses this issue in the context of clustering and

computational geometry (Feldman et al., 2009; 2017)Ůwith the remarkable property that

the privatized coreset may be queried ad infinitum without loss of privacyŮbut no such

method exists for Bayesian posterior inference.

In this chapter, we develop a novel technique for data summarization in the context

of Bayesian inference, under the constraints that the method is scalable and easy to

use, creates an intuitive summarization, applies to high-dimensional data, and enables

privacy control. Inspired by past work (Madigan et al., 2002; Snelson and Ghahramani,

2005; Zhou et al., 2007; Titsias, 2009), instead of using constituent datapoints, we

use synthetic pseudodata to summarize the large dataset, resulting in a pseudocoreset.

We show that in the high-dimensional problem setting of Proposition 16, the optimal

pseudocoreset with just one pseudodata point recovers the exact posterior, a signiĄcant
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improvement upon the optimal standard coreset of any size. As in past work on Bayesian

coresets (Campbell and Beronov, 2019), we formulate pseudocoreset construction as

variational inference, and provide a stochastic optimization method (Section 4.3). As a

consequence of the use of pseudodataŮas well as privacy-preserving stochastic gradient

descent mechanisms (Abadi et al., 2016; Jälkö et al., 2017; Park et al., 2020)Ůwe show

that our method can easily be modiĄed to output a privatized pseudocoreset. The chapter

concludes with experimental results demonstrating the performance of pseudocoresets on

real and synthetic data (Section 4.4).

4.2 Existing Bayesian coresets

Our goal is to approximate expectations under a density π(θ), θ ∈ Θ expressed as the

product of N potentials (f(xn, θ))
N
n=1 and a base density π0(θ):

π(θ) :=
1

Z
exp

(
N∑

n=1

f(xn, θ)


π0(θ). (4.1)

In the setting of Bayesian inference with conditionally independent data, the potentials are

data log-likelihoods, i.e. f(xn, θ) := log π(xn♣θ), π0 is the prior density, π is the posterior,

and Z is the marginal likelihood of the data. Rather than working directly with π(θ)

for posterior inferenceŮwhich requires a Θ(N) computation per evaluationŮa Bayesian

coreset approximation of the form

πw(θ) :=
1

Z(w)
exp

(
N∑

n=1

wnf(xn, θ)


π0(θ) (4.2)

for w ∈ R
N , w ≥ 0 may be used in most popular posterior inference schemes (Neal, 2011;

Ranganath et al., 2014; Kucukelbir et al., 2017). If the number of nonzero entries ∥w∥0 of

w is small, this results in a signiĄcant reduction in computational burden. Recent work

has formulated the problem of constructing a Bayesian coreset of size M ∈ N as sparse

variational inference (Campbell and Beronov, 2019),

w⋆ = arg min
w∈RN

DKL (πw♣♣π) s.t. w ≥ 0, ∥w∥0 ≤M, (4.3)

and showed that the objective can be minimized using stochastic estimates of∇wDKL (πw♣♣π)

based on samples from the coreset posterior πw.

4.2.1 High-dimensional data

Coresets, as formulated in Eq. (4.3), are limited to using the original datapoints themselves

to summarize the whole dataset. Proposition 16 shows that this is problematic when

summarizing high-dimensional data; in the common setting of posterior inference for a

Gaussian mean, the KL divergence DKL (πw⋆♣♣π) of the optimal coreset of any size scales

with the dimension of the data. The proof may be found in Appendix A.1.
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(a) (b)

Figure 4.1: Gaussian mean inference under pseudocoreset (PSVI) against standard coreset
(SparseVI) summarization for N = 1, 000 datapoints. (a) Progression of PSVI vs. Spar-
seVI construction for coreset sizes M = 0, 1, 5, 12, 30, 100, in 500 dimensions (displayed are
datapoint projections on 2 random dimensions). PSVI and SparseVI coreset predictive
3σ ellipses are displayed in red and blue respectively, while the true posterior 3σ ellipse
is shown in black. PSVI has the ability to immediately move pseudopoints towards the
true posterior mean, while SparseVI has to add a larger number of existing points in
order to obtain a good posterior approximation. See Fig. 4.2b for the quantitative KL
comparison. (b) Optimal coreset KL divergence lower bound from Proposition 16 as a
function of dimension with δ = 0.5, and coreset size M evenly spaced from 0 to 100 in
increments of 5.

Proposition 16. Suppose we use (Xn)N
n=1

i.i.d.∼ N (0, I) in R
d to perform posterior inference

in a Bayesian model with prior µ ∼ N (0, I) and likelihood (Xn)N
n=1

i.i.d.∼ N (µ, I). Then

∀M < d and δ ∈ [0, 1], with probability at least 1−δ the optimal size-M coreset w⋆ satisfies

DKL (πw⋆♣♣π) ≥ 1

2

N −M
1 +N

F−1
d−M


δ
(
N

M

−1

 , (4.4)

where Fk is the CDF of a χ2 random variable with k degrees of freedom.

The bound in Proposition 16 depends on d through the χ2 distribution inverse CDF.

Although difficult to see directly, the bound is reasonably large for typical values of

N,M, d, δ, and increasing linearly in d; Fig. 4.1b visualizes the value of the lower bound as

a function of dimension d for various coreset sizes M . Note that the above bound requires

the data to be high-dimensional such that d > M ; if d ≤ M the proof technique used

in Appendix A.1 results in a vacuous DKL (πw⋆♣♣π) = 0 lower bound.

4.3 Bayesian pseudocoresets

Proposition 16 shows that there is room for improvement in coreset construction in the

high-dimensional data regime. Indeed, consider again the same problem setting; the coreset
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posterior distribution is a Gaussian with mean µw and covariance Σw,

Σw =

(
1 +

N∑

n=1

wn

−1

I µw = Σw

N∑

n=1

wnXn. (4.5)

Examining Eq. (4.5), we can replicate any coreset posterior exactly by using a single syn-

thetic pseudodata point U =
(∑N

n=1 wn

)−1∑N
n=1 wnXn with weight

∑N
n=1 wn. In particular,

the true posterior is equivalent to the posterior conditioned on the single pseudodata point

U = 1
N

∑N
n=1 Xn with weight N (with corresponding KL divergence equal to 0), indicating

the absence of a lower bound for the KL divergence of the optimal coreset deĄned on

pseudodata in the setting of Proposition 16 regardless of data dimensionality.

Corollary 17. Suppose the same setting with Proposition 16. The optimal size-M pseu-

docoreset (u⋆, w⋆) defined on pseudodata u1, . . . , uM ∈ R
d achieves DKL (πu⋆,w⋆♣♣π) = 0, for

any size M ≥ 1 and any data dimension d.

This is not surprising; the mean of the data is precisely a sufficient statistic for the

data in this simple setting. However, it does illustrate that carefully-chosen pseudodata

may be able to represent the overall datasetŮas Şapproximate sufficient statisticsŤŮfar

better than any reasonably small collection of the original data. This intuition has

been used before, e.g., for scalable Gaussian process inference (Snelson and Ghahramani,

2005; Titsias, 2009), privacy-preserving compression in linear regression (Zhou et al.,

2007), herding (Welling, 2009; Chen et al., 2010; Huszár and Duvenaud, 2012), and deep

generative models (Tomczak and Welling, 2018).

In this section, we extend the realm of applicability of pseudopoint compression

methods to the general class of Bayesian posterior inference problems with conditionally

independent data, resulting in Bayesian pseudocoresets. Building on recent work (Campbell

and Beronov, 2019), we formulate pseudocoreset construction as a variational inference

problem where both the weights and pseudopoint locations are parameters of the variational

posterior approximation, and develop a stochastic algorithm to solve the optimization.

4.3.1 Pseudocoreset variational inference

A Bayesian pseudocoreset takes the form

πu,w(θ) =
1

Z(u,w)
exp

(
M∑

m=1

wmf(um, θ)


π0(θ), (4.6)

where u := (um)M
m=1 are M pseudodata points um ∈ R

d, (wm)M
m=1 are nonnegative weights,

f : Rd ×Θ→ R is a potential function parametrized by a pseudodata point, and Z(u,w)

is the corresponding normalization constant rendering πu,w a probability density. In the

setting of Bayesian posterior inference, um will take the same form as the data, while the

potentials are the log-likelihood functions, i.e. f(um, θ) = log π(um♣θ). We construct a
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coreset by minimizing the KL divergence over both the pseudodata locations and weights,

u⋆, w⋆ = arg min
u∈Rd×M ,w∈RM

+

DKL (πu,w♣♣π) . (4.7)

As opposed to previous Bayesian coreset construction optimization problems (Campbell

and Broderick, 2018; Campbell and Beronov, 2019; Campbell and Broderick, 2019), we do

not need an explicit sparsity constraint; the coreset size is limited to M directly through

the selection of the number of pseudodata and weights.

Denote the vectors of original data potentials f(θ) ∈ R
N and synthetic pseudodata

potentials f̃(θ) ∈ R
M as f(θ) := [f1(θ) . . . fN(θ)]T and f̃(θ) := [f(u1, θ) . . . f(uM , θ)]

T

respectively, where we suppress the (θ) for brevity where clear from context. Denote Eu,w

and Covu,w to be the expectation and covariance operator for the pseudocoreset posterior

πu,w. Then we may write the KL divergence in Eq. (4.7) as

DKL (πu,w♣♣π) =Eu,w[log πu,w(θ)]− Eu,w[log π(θ)]

= logZ(1)− logZ(u,w)− 1T
Eu,w[f ] + wT

Eu,w[f̃ ], (4.8)

where 1 ∈ R
N is the vector of all 1 entries, and w ∈ R

M is the vector of pseudocoreset

weights.

As we will employ gradient descent steps as part of our algorithm to minimize the

variational objective over the parameters u,w, we need to evaluate the derivative of the KL

divergence Eq. (4.8). Despite the presence of the intractable normalization constants and

expectations, we show in Appendix A.2 that gradients can be expressed using moments of

the pseudodata and original data potential vectors. In particular, the gradients of the KL

divergence with respect to the weights w and to a single pseudodata location um are

∇wDKL = −Covu,w

[
f̃ , fT 1− f̃Tw

]
, ∇um

DKL = −wm Covu,w

[
h(um), fT 1− f̃Tw

]
,

(4.9)

where h(·, θ) := ∇uf(·, θ), and the θ argument is again suppressed for brevity.

4.3.2 Stochastic optimization

The gradients in Eq. (4.9) involve expectations of (gradient) log-likelihoods from the model.

Although there are a few particular Bayesian models where these can be evaluated in closed-

form (e.g. the synthetic experiment in Section 4.4.1; see also Appendix A.3.1), this is not

usually the case. In order to make the proposed pseudocoreset method broadly applicable,

in this section we develop a black-box stochastic optimization scheme (Algorithm 1) for

Eq. (4.7).
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Algorithm 1 Pseudocoreset Variational Inference

1: procedure PSVI(f(·, ·), π0, x,M,B, S, T, (γt)
∞
t=1)

▷ Initialize the pseudocoreset using a uniformly chosen subset of the full dataset
2: N ← # datapoints in x, B ∼ UnifSubset ([N ],M) , B := ¶b1, . . . , bM♢
3: um ← xbm

, wm ← N/M, m = 1, . . . ,M
4: for t = 1, . . . , T do

▷ Take S samples from current pseudocoreset posterior
5: (θ)S

s=1
i.i.d.∼ πu,w where πu,w(θ) ∝ exp

(∑M
m=1 wmf(um, θ)

)
π0(θ)

6: B ∼ UnifSubset ([N ], B) ▷ Obtain a minibatch of B points from the full data
7: for s = 1, . . . , S do ▷ Compute (gradient) log-likelihood discretizations

8: gs ←
(
f(xb, θs)− 1/S

∑S
s′=1 f(xb, θs′)

)
b∈B
∈ R

B

9: g̃s ←
(
f(um, θs)− 1/S

∑S
s′=1 f(um, θs′)

)M

m=1
∈ R

M

10: for m = 1, . . . ,M do
11: h̃m,s ← ∇uf(um, θs)− 1/S

∑S
s′=1∇uf(um, θs′) ∈ R

d

12: ∇̂w ← −1/S
∑S

s=1 g̃s

(
N/BgT

s 1− g̃T
s w
)
▷ Compute Monte-Carlo gradients for w

13: for m = 1, . . . ,M do and (um)M
m=1

14: ∇̂um
← −wm

1/S
∑S

s=1 h̃m,s

(
N/BgT

s 1− g̃T
s w
)

15: w ← max(w − γt∇̂w, 0) ▷ Take stochastic gradient step in w
16: for m = 1, . . . ,M do and (um)M

m=1

17: um ← um − γt∇̂um

18: return w, (um)M
m=1

To initialize the pseudocoreset, we subsample M datapoints from the large dataset and

reweight them to match the overall weight of the full dataset,

um ← xbm
, wm ← N/M, m = 1, . . . ,M (4.10)

B ∼ UnifSubset ([N ],M) , B := ¶b1, . . . , bM♢ . (4.11)

After initializing the pseudodata locations and weights, we simultaneously optimize

Eq. (4.7) over both. Each optimization iteration t ∈ ¶1, . . . , T♢ consists of a stochastic

gradient descent step with a learning rate γt ∝ t−1,

wm ← max
(
0, wm − γt(∇̂w)m

)
, um ← um − γt∇̂um

, 1 ≤ m ≤M. (4.12)

The stochastic gradient estimates ∇̂w ∈ R
M and ∇̂um

∈ R
d are based on S ∈ N samples

θs
i.i.d.∼ πu,w from the coreset approximation and a minibatch of B ∈ N datapoints from the

full dataset,

∇̂w := − 1

S

S∑

s=1

g̃s

(
N

B
gT

s 1− g̃T
s w
)
, (4.13)

∇̂um
:= −wm

1

S

S∑

s=1

h̃m,s

(
N

B
gT

s 1− g̃T
s w
)
, (4.14)
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where

h̃m,s := ∇uf(um, θs)−
1

S

S∑

s′=1

∇uf(um, θs′), gs :=

(
f(θs)−

1

S

S∑

s′=1

f(θs′)

∣∣∣∣∣
B
,

g̃s := f̃(θs)−
1

S

S∑

s′=1

f̃(θs′), B ∼ UnifSubset ([N ], B) ,

(4.15)

and (·)♣B denotes restriction of a vector to only those indices in B ⊂ [N ]. Crucially, note

that this computation does not scale with N , but rather with the number of coreset points

M , the sample and minibatch sizes S and B, and the dimension d. Obtaining θs
i.i.d.∼ πu,w

efficiently via Markov chain Monte Carlo sampling algorithms (Hoffman and Gelman, 2014;

Jacob et al., 2020) is (roughly) O(M) per sample, because the coreset is always of size

M ; and we need not compute the entire vector gs ∈ R
N per sample s, but rather only

those B ≪ N indices in the minibatch B, resulting in a cost of O(B). Aside from that,

all computations involving g̃s ∈ R
M and h̃m,s ∈ R

d are at most O(Md). Each of these

computations is repeated S times over the coreset posterior samples.

4.3.3 Differentially private scheme

Beyond better summarizations of high-dimensional data, pseudocoresets enable the gener-

ation of a data summarization that ensures the statistical privacy of individual datapoints

under the model of (approximate) differential privacy. In this setting, a trusted cu-

rator holds an aggregate dataset of N datapoints, x ∈ XN , X ⊆ R
d, and builds and

releases a pseudocoreset (u,w), u ∈ XM , w ∈ R
M
+ via a randomized mechanism satisfying

DeĄnition 18 (Dwork et al., 2006a; b).

Definition 18 ((ε, δ)-Differentially Private Coreset). Fix ε ≥ 0, δ ∈ [0, 1]. A pseudocoreset

construction algorithmM : XN → R
M
+ ×XM is (ε, δ)-differentially private if for every pair

of adjacent datasets x ≈ x′ and all events A ⊆ R
M
+ ×XM , P[M(x) ∈ A] ≤ eε

P[M(x′) ∈
A] + δ.

As in Section 2.6, we consider two datasets x, x′ as adjacent (denoted x ≈ x′) if their

Hamming distance equals 1, i.e. x′ can be obtained from x by adding or removing an

element. ε controls the effect that removal or addition of an element can have on the output

distribution of M, while δ captures the failure probability, and is preferably o(1/N).

In this section, we develop a differentially private version of pseudocoreset construction.

Beyond modifying our initialization scheme, private pseudocoreset construction comes as

natural extension of Algorithm 1 via replacing gradient computation involving points of

the true dataset with its differentially private counterpart.

4.3.3.1 Pseudodata points initialization

In the standard (nonprivate) pseudocoreset construction (Algorithm 1), pseudopoints are

initialized from the dataset itself, incurring a privacy penalty. In differentially private

pseudocoreset construction, we simply initialize pseudopoints by generating synthetic data

from the statistical model at no privacy cost.
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4.3.3.2 Optimization

Examining lines 4Ű19 of Algorithm 1, the only steps that involve handling the original data

occur at lines 8, 12, and 14, when we use the minibatch subsample to compute log-likelihoods

and gradients. Due to the post-processing property of differential privacy (Dwork and Roth,

2014), all of the other computations in Algorithm 1 (e.g. sampling from the pseudocoreset

posterior, computing pseudopoint log-likelihoods, etc.) incur no privacy cost. Therefore,

we need only to control the inĆuence of private data entering the gradient computation

through the vector of (gT
s 1)S

s=1 terms.

To accomplish this we do repeated applications of the subsampled Gaussian mechanism,

since this also allows us to use a moments accountant technique to keep tight estimates

of privacy parameters (Abadi et al., 2016; Wang et al., 2019). As in the nonprivate

scheme, in each optimization step we uniformly subsample a minibatch B = ¶x1, . . . , xB♢
of private datapoints. We then replace the gT

s 1 term in lines 12 and 14 with a randomized

privatization:

replace (gT
s 1)S

s=1 with Z +
B∑

i=1

Gi

max
(
1, ♣♣Gi♣♣2

C

) , Z ∼ N (0, σ2C2I), (4.16)

where Gi :=
(
f(xi, θs)− 1

S

∑S
s′=1 f(xi, θs′)

)S

s=1
∈ R

S ∀xi ∈ B, and C, σ > 0 are parameters

controlling the amount of privacy. This modiĄcation to Algorithm 1 has been shown in past

work to obtain the privacy guarantee provided in Corollary 19; crucially, the privacy cost

of our construction is independent of the pseudocoreset size. It also does not introduce any

signiĄcant amount of additional computation. No sensitivity computation for privatisation

noise calibration is required, as boundedness is enforced via clipping in Eq. (4.16). Finally,

a manageable number of privacy speciĄc hyperparameters is introduced: the clipping

bound C and noise level σ.

Corollary 19 (Abadi et al. (2016)). There exist constants c1, c2 such that Algorithm 1

modified per Eq. (4.16) is (ε, δ)-differentially private for any ε < c1q
2T , δ > 0, and

σ ≥ c2q
√
T log(1/δ) /ε, where q := B

N
is the fraction of data in a minibatch and T is the

number of optimization steps.

4.4 Experimental results

In this section, we evaluate the posterior approximation quality achieved by pseudo-

coreset VI (PSVI) compared against uniform random subsampling (Uniform), Hilbert

coresets (GIGA, Campbell and Broderick (2018)) and SparseVI greedy coreset con-

struction (Campbell and Beronov, 2019). For black-box constructions of SparseVI and

PSVI we used S = 100 Monte Carlo samples per gradient estimation. For GIGA we

used a 100-dimensional random projection from a Gaussian approximate posterior π̂ with

two choices for mean and covariance: one set to the exact posterior (Optimal), which

is not tractable to obtain in practice and forms an optimistic estimate of achievable
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(a) Gaussian mean inference,
d = 200

(b) Gaussian mean infer-
ence, d = 500

(c) Bayesian linear regres-
sion, d = 100

Figure 4.2: Comparison of (pseudo)coreset approximate posterior quality for experiments
on synthetic datasets over 10 trials. Solid lines display the median KL divergence, with
shaded areas showing 25th and 75th percentiles of KL divergence. In Fig. 4.2c, KL
divergence is normalized by the prior.

approximation quality; and one with mean and covariance set to a random point on the

interpolant between the prior and the exact posterior point estimates, and subsequently

corrupted with 75% additive relative noise (Realistic). Notably, Hilbert coresets and

SparseVI develop incremental schemes for construction, while PSVI relies on batch

optimization with random initialization (Algorithm 1), and does not use any information

from pseudocoresets of smaller size. An incremental scheme for SparseVI is included

in Appendix A.3.

4.4.1 Gaussian mean inference

We Ąrst evaluate the performance of PSVI on a synthetic dataset of N = 103 datapoints,

where we aim to infer the posterior mean θ ∼ N (µ0,Σ0) of a d-dimensional Gaussian

conditioned on Gaussian observations (Xn)N
n=1

i.i.d.∼ N (θ,Σ). In this example, the exact

pseudocoreset posterior for any set of weights (wm)M
m=1 and pseudopoint locations (um)M

m=1

is available in closed-form:

Σu,w = (Σ−1
0 +

M∑

m=1

wmΣ−1)−1 µu,w = Σu,w(Σ−1
0 µ0 + Σ−1

M∑

m=1

wmum). (4.17)

Using the exact posterior, we derive the exact moments used in the gradient formulae

from Eq. (4.9) in closed form (see Appendix A.3.1),

Covu,w[fn, fm] = vT
n Ψvm + 1/2 tr ΨT Ψ, Covu,w[f̃n, fm] = ṽT

n Ψvm + 1/2 tr ΨT Ψ,

Covu,w[h(ui), fn] = Q−T Ψvn, Covu,w[h(ui), f̃n] = Q−T Ψṽn,
(4.18)

where Q is the lower triangular matrix of the Cholesky decomposition of Σ (i.e. Σ =

QQT ), Ψ := Q−1Σu,wQ
−T , vn := Q−1(xn − µu,w), and ṽm := Q−1(um − µu,w). We vary

the pseudocoreset size from M = 1 to 200, and set the total number of iterations to

T = 500. We use learning rates γt(M) = α(M)t−1, where α(M) = 1 for SparseVI and

α(M) = max(1.1 − 0.005M, 0.2) for PSVI. As veriĄed in Figs. 4.2a and 4.2b, Hilbert

coresets provide poor quality summarizations in the high-dimensional regime, even for
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large coreset sizes. Despite showing faster decrease of approximation error for a larger

range of coreset sizes, SparseVI is also fundamentally limited by the use of the original

datapoints, per Proposition 16. Furthermore, we observe that the quality of all previous

coreset methods when d = 500 is signiĄcantly lower compared to d = 200. On the other

hand, the KL divergence for PSVI decreases signiĄcantly more quickly, giving a near

perfect approximation for the true posterior with a single pseudodata point regardless

of data dimension. As shown earlier in Fig. 4.1a, PSVI has the capacity to move the

pseudodata points in order to capture the true posterior very efficiently.

4.4.2 Bayesian linear regression

In the second experiment, we use a set of N = 2, 000 101-dimensional datapoints (xn, yn)N
n=1

generated as follows: (xn)N
n=1

i.i.d.∼ N (0, I), (yn)N
n=1 ∼ [1, xn]T θ + ϵn, (ϵn)N

n=1
i.i.d.∼ N (0, σ2),

and aim to infer θ ∈ R
101. We assume a prior θ ∼ N (µ0, σ

2
0I), where µ0, σ

2
0 are the dataset

empirical mean and second moment, and set the noise parameter σ to the variance of (yn)N
n=1.

We apply stochastic optimization for PSVI construction (also see Appendix A.3.2.1). We

use learning rates γt = t−1 for SparseVI, and γt = 0.1t−1 for PSVI, B = 200, T = 1000,

while selection step for SparseVI is carried out over the full dataset. Fig. 4.2c shows that

Hilbert coresets cannot improve posterior approximation in this setting with 100 random

projections (see Appendix A.3.2.2), while PSVI achieves the fastest decay rate over sizes

100 ≤M < 250, surpassing SparseVI.

4.4.3 Bayesian logistic regression

Finally, we compare (pseudo)coreset construction methods on Bayesian logistic regres-

sion applied to 3 large (8.4Ű100K datapoints, 50Ű237 dimensions) datasets. For brevity,

equations and gradients for the logistic regression model, additional experiments on

3 smaller-scale datasets, full dataset descriptions, hyperparameter selection, time perfor-

mance evaluation and results on an incremental scheme for pseudocoreset construction are

deferred to Appendix A.3.3. For PSVI and SparseVI we use minibatch size B = 200,

number of gradient updates T = 500, and learning rate schedules γt = αt−1. For Transac-

tions, ChemReact100 and Music, α is respectively set to 0.1, 0.1, 1 for SparseVI, and

1, 10, 10 for PSVI. In the selection step of SparseVI we use a uniform subsample of 1, 000

datapoints. For the differentially private pseudocoreset constructions (DP-PSVI), we use

a subsampling ratio q = 2 × 10−3. At each iteration we adapt the clipping norm value

C to the median norm of (f(um, θs)− 1
S

∑S
s′=1 f(um, θs′))S

s=1 computed over pseudodata

point values um, and use noise level σ = 5. Our hyperparameters choice implies privacy

parameters ε = 0.2 and δ = 1/N for each of the datasets. We initialise each pseudocoreset

of size M via sampling (xm)M
m=1

i.i.d.∼ N (0, I), and sampling θ, (ym)M
m=1 from the statistical

model.

Results presented in Fig. 4.3 demonstrate that PSVI achieves consistently the small-

est posterior approximation error in the small coreset size regime, offering improvement

compared to SparseVI and being competitive with GIGA (Optimal), without the
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(a) Transactions (d = 50) (b) ChemReact100 (d = 100) (c) Music (d = 237)

Figure 4.3: Comparison of (pseudo)coreset approximate posterior quality vs coreset size
for logistic regression over 10 trials on 3 large-scale datasets. Presented differentially
private pseudocoresets correspond to (0.2, 1/N)-DP. Reverse KL divergence is displayed
normalized by the prior.

(a) Transactions (b) ChemReact100 (c) Music

Figure 4.4: Approximate posterior quality over decreasing differential privacy guarantees
for private pseudocoresets of varying size (DP-PSVI) plotted against private variational
inference (DP-VI, Jälkö et al. (2017)). δ is always kept Ąxed at 1/N . Markers on the
right end of each plot display the errorbar of approximation achieved by the corresponding
nonprivate posteriors. Results are displayed over 5 trials for each construction.

requirement for specifying a weighting function. In Fig. 4.3a, for M ≥ d GIGA (Opti-

mal) follows a much steeper decrease in KL divergence, reĆecting the dependence of its

approximation quality on dataset dimension per Proposition 16. In contrast, PSVI typi-

cally reaches its minimum at M < d. The difference in approximation quality becomes

clearer in higher dimensions (e.g. Music, where d = 237). Perhaps surprisingly, the private

pseudocoreset construction has only marginally worse approximation quality compared to

nonprivate PSVI and generally achieves better peformance in comparison to the other

state-of-the-art nonprivate coreset constructions.

In Fig. 4.4 we present the achieved posterior approximation quality via DP-PSVI,

against a competitive state-of-the-art method for general-purpose private inference (DP-

VI, Jälkö et al., 2017). The plots display the behaviour of methods over a wide range of ε

values, achieved using varying levels of privatization noise, and δ always set to 1/N . For

logistic regression, DP-VI infers an approximate posterior from the family of Gaussians

with diagonal covariance via ADVI (Kucukelbir et al., 2017), followed by an additional

Laplace approximation. Note that by design, DP-VI is constrained by the usual Gaussian

variational approximation, while DP-PSVI is more Ćexible and can approach the true

posterior as M increasesŮthis effect is reĆected in nonprivate posteriors as well as data
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dimensionality grows (see for example Fig. 4.4c). Indeed, we verify that in the high-privacy

regime DP-PSVI for sufficient pseudocoreset size (which is typically small for tested

real-world datasets) offers posterior approximation with better KL divergence compared

to DP-VI. Our Ąndings indicate that private PSVI offers efficient releases of big data

via informative pseudopoints, which enable arbitrary post processing (e.g. running any

nonprivate black-box algorithm for Bayesian inference), under strong privacy guarantees

and without reducing the quality of inference.

4.5 Summary & discussion

In this chapter, we introduced a new variational formulation for Bayesian coreset con-

struction, which yields efficient summarizations for big and high-dimensional datasets via

simultaneously learning pseudodata pointsŠ locations and weights. We proved limitations of

existing variational formulations for coresets and demonstrated that they can be resolved

with our new methodology. We proposed an efficient construction scheme via black-

box stochastic optimization and showed how it can be adapted for differentially private

Bayesian summarization. Finally, we demonstrated the applicability of our methodology

on synthetic and real-world datasets, and practical statistical models.

Pseudocoreset variational inference is a general-purpose Bayesian inference algorithm,

hence shares implications mostly encountered in approximate inference methods. For

example, replacing the full dataset with a pseudocoreset has the potential to cause

inferential errors; these can be partially tempered by using a pseudocoreset of larger size.

Note also that the optimization algorithm in this work aims to reduce KL divergence:

however the proposed variational objective might be misleading in many applications

and lead to incorrect conclusions in certain statistical models (e.g. point estimates and

uncertainties might be far off despite KL being almost zero (Huggins et al., 2020)).

Moreover, Bayesian inference in general is prone to model misspeciĄcation. Therefore,

a pseudocoreset summarization based on a wrong statistical model will lead to non-

representative compression for inferential purposes. Constructing the coreset on a statistical

model suited for robust inference instead of the original one (Wang et al., 2017; Miller and

Dunson, 2019), can offer protection against modeling mismatches, and will be the subject

of the following chapter. Naturally, the utility of generated dataset summary becomes

task-dependent, as it has been optimized for a speciĄc learning objective, and cannot be

fully transferable to multiple different inference tasks on the same dataset.

Our learnable pseudodata are also generally not as interpretable as the points of

previous coreset methods, as they are not real data. And the level of interpretability

is model speciĄc. This creates a risk of misinterpretation of pseudocoreset points in

practice. On the other hand, our optimization framework does allow the introduction of

interpretability constraints (e.g. pseudodata sparsity) to explicitly capture interpretability

requirements.

Pseudocoreset-based summarization is susceptible to reproducing potential biases and

unfairness existing in the original dataset. Majority-group datapoints in the full dataset
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which capture information relevant to the statistical task of interest are expected to

remain over-represented in the learned summary; while minority-group datapoints might

be eliminated, if their distinguishing features are not related to inference. Amending

the initialization step to contain such datapoints, or using a prior that strongly favors a

debiased version of the dataset, could both mitigate these concerns; but more study is

warranted.



Chapter 5

β-Cores: Robust Large-Scale

Bayesian Data Summarization in the

Presence of Outliers

In Chapter 4, we proposed a novel Bayesian coreset construction that addresses scalability

to dataset size and dimensionality, along with privacy preservation requirements, often

arising in large-scale inference. In this chapter, we design one more coreset construction

that aims to resolve another frequently occurring challenge in probabilistic inference over

real-world datasets, namely robustness to model misspeciĄcation.

Modern machine learning applications should be able to address the intrinsic challenges

arising over inference on massive real-world datasets, including scalability and robustness

to outliers. Despite the multiple beneĄts of Bayesian methods (such as uncertainty-aware

predictions, incorporation of experts knowledge, and hierarchical modeling), the quality

of classical Bayesian inference depends critically on whether observations conform with

the assumed data generating model, which is impossible to guarantee in practice. In

this chapter, we propose a variational inference method that, in a principled way, can

simultaneously scale to large datasets, and robustify the inferred posterior with respect

to the existence of outliers in the observed data. Reformulating BayesŠ theorem via the

β-divergence, we posit a robustiĄed generalized Bayesian posterior as the target of inference.

Moreover, relying on the recent formulations of Riemannian coresets for scalable Bayesian

inference, we propose a sparse variational approximation of the robustiĄed posterior and an

efficient stochastic black-box algorithm to construct it. Overall our method allows releasing

cleansed data summaries that can be applied broadly in scenarios including structured

and unstructured data contamination. We illustrate the applicability of our approach in

diverse simulated and real datasets, and various statistical models, including Gaussian

mean inference, logistic and neural linear regression, demonstrating its superiority to

existing Bayesian summarization methods in the presence of outliers.
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5.1 Related work & contributions

Machine learning systems perpetually collect growing datasets, such as product reviews,

posting activity on social media, usersŠ feedback on services, or insurance claims. The rich

information content of such datasets has opened up an exciting potential to remedy various

practical problems. Hence, recent years have witnessed a surge of interest in scaling up

inference in the large-data regime via stochastic methods, relying on random minibatch

access to the dataset (Welling and Teh, 2011; Hoffman et al., 2013; Angelino et al., 2016).

Most of related approaches have treated datapoints indiscriminantly; nevertheless, it is

well known that not all datapoints contribute equally valuable information for a given

target task (Ghorbani and Zou, 2019).

Datasets collected in modern applications contain redundant input samples that re-

Ćect very similar statistical patterns, or multiple copies of identical observations. Often

input aggregates subpopulations emanating from different distributions (Zheng et al.,

2008; Zhuang et al., 2015). Moreover, the presence of outliers is a ubiquitous challenge,

attributed to multiple causes. In the Ąrst place, noise is inherent in most real-world

data collection procedures, creating systematic outliers: crowdsourcing is prone to mis-

labeling (Frénay and Verleysen, 2013), and necessitates laborious data cleansing (Lewis

et al., 2004; Paschou et al., 2010), while measurements commonly capture sensing errors

and system failures. Secondly, outliers can be generated intentionally from information

contributing parties, who aim to compromise the functionality of the application through

data poisoning attacks (Barreno et al., 2010; Biggio et al., 2012; Li et al., 2016; Koh

and Liang, 2017; Steinhardt et al., 2017; Ghorbani and Zou, 2019), realised for example

via data generation from fake accounts. Outliers detection is challenging, particularly

in high dimensions (Lucic et al., 2016a; Diakonikolas et al., 2019; Dickens et al., 2020).

Proposed solutions often are model-speciĄc, and include dedicated learning components

which increase the time complexity of the application, involve extensive hyperparameter

tuning, introduce data redundancies, or require model retraining (Sheng et al., 2008;

Whitehill et al., 2009; Raykar et al., 2010; Karger et al., 2011; Liu et al., 2012; Zhang

et al., 2016). On the other hand, operating on a corrupted dataset is brittle, and can

decisively degrade the predictive performance of downstream statistical tasks, deceptively

underestimate model uncertainty and lead to incorrect decisions.

In this chapter, we design an integrated approach for inference on massive scale

observations that can jointly address scalability and data cleansing for complex Bayesian

models, via robust data summarization. Our method inherits the full set of beneĄts

of Bayesian inference and works for any model with tractable likelihood function. At

the same time, it maintains a high degree of automation with no need for manual data

inspection, no additional computational overhead due to robustiĄcation, and can tolerate

a non-constant number of corruptions. Moreover, our work points to a more efficient

practice in large-scale data acquisition, Ąltering away less valuable samples, and indicating

the regions of the data space that are most beneĄcial for our inference task.
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Our solution can be regarded as an extension of Bayesian coreset methods that can

encompass robustiĄed inference. Bayesian coresets (Huggins et al., 2016; Campbell and

Beronov, 2019; Campbell and Broderick, 2019) have been recently proposed as a method

that enables Bayesian learning at scale via substituting the complete dataset over inference

with an informative sparse subset thereof. RobustiĄed Bayesian inference methods (Berger

et al., 1994) have sought solutions to mismatches between available observations and the

assumed data generating model, via proposing heavy-tailed data likelihood functions (Huber

and Ronchetti, 2009; Ríos Insúa and Ruggeri, 2012) and localization (de Finetti, 1961;

Wang and Blei, 2018), using robust statistical divergences (Futami et al., 2018; Knoblauch

et al., 2018; Miller and Dunson, 2019), employing robust gradient estimates over Langevin

Monte Carlo methods (Bhatia et al., 2019), or inferring datapointsŠ speciĄc importance

weights (Wang et al., 2017). Here, we cast coreset construction in the framework of

robustiĄed inference, introducing β-Cores, a method that learns sparse variational

approximations of the full data posterior under the β-divergence. In this way, we are able

to yield summaries of large data that are distilled from outliers, or data subpopulations

departing from our statistical model assumptions. Importantly, β-Cores can act as a

preprocessing step, and the learned data summaries can subsequently be given as input to

any ordinary or robustiĄed black-box inference algorithm.

The remainder of the chapter is organized as follows. In Section 5.2 we introduce

our proposed method for scalable robust inference, providing an incremental black-box

construction for sparse approximations of the β-posterior. In Section 5.3 we expose

experimental results on simulated and real-world benchmark datasets: we consider diverse

statistical models and scenarios of extensive data contamination, and demonstrate that, in

contrast to existing summarization algorithms, our method is able to maintain reliable

predictive performance in the presence of structured and unstructured outliers. Finally, in

Section 5.4 we provide conclusions and discuss extensions of our method.

5.2 Method

In this section we present β-Cores, our uniĄed solution to the robustness and scalability

challenges of large-scale Bayesian inference. Section 5.2.1 introduces the main quantity

of interest in our inference method, and shows how it addresses the exposed issues.

Section 5.2.2 presents an iterative algorithm that allows efficient approximate computations

of our posterior.

5.2.1 Sparse β-posterior

Scaling up the computation of the robust β-posterior deĄned in Eq. (2.22) in the regime

of massive datasets for non-conjugate models is challenging: similarly to the standard

Bayesian posterior Eq. (2.17), applying Markov chain Monte Carlo methods to sample

from the β-posterior, implies a computational cost scaling at order Θ(N).

Bayesian coresets (Huggins et al., 2016; Campbell and Broderick, 2019) have been

recently proposed as a method to circumvent the computational cost for the purposes
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of approximate inference via summarizing the original dataset (xn)N
n=1 with a small

learnable subset of weighted datapoints (xm, wm)M
m=1, where (wm)M

m=1 ∈ R
M
+ , M ≪ N .

Substituting Eq. (2.23) in Eq. (2.22), allows us to explicitly introduce a weights vector

w ∈ R
N
≥0 in the posterior, and rewrite the latter in the general form

πβ,w(θ♣x) =
1

Z(β, w)
exp

(
N∑

n=1

wnfn(θ)


π0(θ), (5.1)

where (fn(θ))N
n=1 correspond to the β-likelihood terms, π0 is the prior, and Z(β, w) is the

marginal likelihood (which in the general case corresponds to an intractable constant). In

the case of the β-posterior on the full dataset Eq. (2.22), we have w = 1 ∈ R
N ; for coreset

posteriors this vector acts as a learnable parameter and attains a non-trivial sparse value,

with non-zero entries corresponding to the elements of the full dataset that are selected

over the summarization.

Although Bayesian coresets can dramatically reduce inference time, they inherit the

susceptibility of Bayesian posterior to model-data mismatch in the large data regime: even

though the number of points used in inference gets reduced, these points are now weighted,

hence the remark of Eq. (2.20) can carry over in coresets posterior.

The recent formulation of Riemannian coresets (Campbell and Beronov, 2019) has

framed the problem of coreset construction as variational inference in a sparse exponential

family. Our method provides a natural extension of this framework to robust divergences.

Here we aim to approximate data posterior via a sparse β-posterior, which can be expressed

as follows

w⋆ = arg min
w∈RN

DKL (πβ,w♣♣πβ) s.t. w ≥ 0, ♣♣w♣♣0 ≤M. (5.2)

In the following we denote expectations and covariances under θ ∼ πβ,w(θ♣x) as Eβ,w and

Covβ,w respectively. Then the KL divergence is written as

DKL (πβ,w♣♣πβ) := Eβ,w


log

πβ,w

πβ

]
. (5.3)

In our formulation it is easy to observe that posteriors of Eq. (5.1) form a set of exponential

family distributions (Wainwright and Jordan, 2008), with natural parameters w ∈ R
N
≥0,

sufficient statistics (fn(θ))N
n=1, and log-partition function logZ(β, w). Following Campbell

and Beronov (2019), the objective can be expanded as

DKL (πβ,w♣♣πβ) = logZ(β)− logZ(β, w)−
N∑

n=1

Eβ,w [fn(θ)− wnfn(θ)] , (5.4)

and minimized via gradient descent on w. The gradient of the objective of Eq. (5.4) can

be derived in closed form, as

∇wDKL (πβ,w♣♣πβ) = −Covβ,w

[
f, (1− w)Tf

]
, (5.5)
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Algorithm 2 Incremental construction of sparse β-posterior

1: procedure β-Cores(f, π0, x,M,B, S, T, (γt)
∞
t=1, β)

2: w ← 0 ∈ R
M , g ← 0 ∈ R

S×M , g′ ← 0 ∈ R
S×B, I ← ∅

3: for m = 1, . . . ,M do
▷ Take S samples from current coreset posterior

4: (θ)S
s=1

i.i.d.∼ πβ,w ∝ exp
(
wTf

)
π0(θ)

▷ Obtain a minibatch of B datapoints from the full dataset
5: B ∼ UnifSubset ([N ], B)

▷ Compute the β-likelihood vectors over the coreset and minibatch datapoints
for each sample

6: gs ←
(
f(xm, θs, β)− 1

S

∑S
r=1 f(xm, θr, β)

)
m∈I
∈ R

M

7: g′s ←
(
f(xb, θs, β)− 1

S

∑S
r=1 f(xb, θr, β)

)
b∈B
∈ R

B

▷ Get empirical estimates of correlation over the coreset and minibatch data-
points

8: Ĉorr← diag
[

1
S

∑S
s=1 gsgs

T
]− 1

2
(

1
S

∑S
s=1 gs

(
N
B

1Tg′s − wTgs

))
∈ R

M

9: Ĉorr
′ ← diag

[
1
S

∑S
s=1 g

′
sg
′
s
T
]− 1

2
(

1
S

∑S
s=1 g

′
s

(
N
B

1Tg′s − wTgs

))
∈ R

B

▷ Add next datapoint via correlation maximization

10: n⋆ ← arg max
n∈[m]∪[B]

(∣∣∣Ĉorr
∣∣∣ · ✶[n ∈ I] + Ĉorr

′ · ✶[n /∈ I]
)
, I ← I ∪ ¶n⋆♢

11: for t = 1, . . . , T do ▷ Optimize weights vector via projected gradient descent
12: (θ)S

s=1
i.i.d.∼ πβ,w(θ) ∝ exp

(
wTf

)
π0(θ)

13: B ∼ UnifSubset ([N ], B)
▷ Compute gradient terms discretizations over the coreset and minibatch

datapoints for each sample
14: for s = 1, . . . , S do
15: gs ←

(
f(xm, θs, β)− 1

S

∑S
r=1 f(xm, θr, β)

)
m∈I
∈ R

M

16: g′s ←
(
f(xb, θs, β)− 1

S

∑S
r=1 f(xb, θr, β)

)
b∈B
∈ R

B

▷ Compute MC gradients for variational parameters
17: ∇̂w ← − 1

S

∑S
s=1 gs

(
N
B

1Tg′s − wTgs

)

▷ Take a projected stochastic gradient step
18: w ← max(w − γt∇̂w, 0)

19: return w

where f := [f1(θ) . . . fN(θ)]T .

5.2.2 Black-box stochastic scheme for incremental coreset con-

struction

To scale up coreset construction on massive datasets we use stochastic gradient descent on

minibatches B ∼ UnifSubset([N ], B), with B ≪ N . The covariance of Eq. (5.5) required

for exact gradient computation of the variational objective is generally not available

in analytical form. Hence, for our black-box coreset construction we approximate this

quantity via Monte Carlo estimates, using samples of the unknown parameters from the

coreset posterior iterates. These samples can be efficiently obtained with complexity

O(M) (not scaling with dataset size N) due to the sparsity of the coreset posterior over

the incremental construction procedure. The proposed black-box construction makes no
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assumptions on the statistical model other than having tractable β-likelihoods. We employ

a two-step incremental scheme, with complexity of order O (M(M +B)ST ), where S is

the number of samples from the coreset posterior, and T is the total number of iterations

over coreset points weights optimization. The full incremental construction is outlined in

Algorithm 2.

The optimization problem of Eq. (5.2) is intractable due to the cardinality constraint;

hence, our incremental scheme takes the approach of approximating the solution to

the original problem via solving a sequence of interleaved combinatorial and continuous

optimization problems as follows:

For i ∈ ¶1, . . . ,M♢ :

Next datapoint selection (Combinatorial optimization)

m⋆ = arg min
m∈[N ]

DKL

(
πβ,w←w∪¶xm♢♣♣πβ

)
(5.6)

Coreset points reweighting (Continuous optimization)

w⋆ = arg min
w∈RN

≥0

DKL (πβ,w♣♣πβ) (5.7)

In Eq. (5.6) we have introduced the notation πβ,w←w∪¶xm♢ to consider the coreset

expansion that assigns potentially non-zero weight to a datapoint xm.

5.2.2.1 Next datapoint selection

We Ąrst select the next datapoint to include in our coreset summary Eq. (5.6), via a greedy

selection criterion. Although maximizing the decrease in KL locally via Eq. (5.5), seems

to be the natural greedy choice here, this would incur the impractical cost of resampling

from the coreset posterior for all potential expansions of the coreset with a new datapoint.

Moreover, even if we can tolerate this cost, adding a single unweighted datapoint is likely

to induce a negligible effect on the coreset posterior, especially in massive dataset settings.

Submodularity of the objective would be a clearly attractive property, as it could possibly

point to a cheap greedy strategy with provable suboptimality guaranteesŮhowever, our

analysis in Appendix B.2 demonstrates that this property is generally not satisĄed for our

problem.

Hence, considering that the weight of the active support for the updated coreset will

be optimized in the subsequent step Eq. (5.7) of the algorithm, an efficient method for

informative datapoint selection can be based on adding a datapoint that correlates well

with the direction of residual error. Thus we Ąnally rely instead on the following correlation

maximization criterion:

xm = arg max
xn∈I∪B





∣∣∣Corrβ,w

[
fn,

N
B

1Tf − wTf
]∣∣∣ wn > 0

Corrβ,w

[
fn,

N
B

1Tf − wTf
]

wn = 0,
(5.8)
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where we denoted by I the set of coreset points. Eq. (5.8) additionally allows us to expand

the information-geometric interpretation of Riemannian coresets presented in Campbell

and Beronov (2019) in our construction. This criterion is invariant to scaling each potential

fn by any positive constant, and selects the potential that has the largest correlation

with the current residual error N
B

1Tf − wTf . The correlations for coreset and minibatch

datapoints are empirically approximated as in lines 8 and 9 of Algorithm 2 respectively.

5.2.2.2 Coreset points reweighting

After adding a new datapoint to the summary, we optimize Eq. (5.7), updating the coreset

weight vector w ∈ R≥0 via T steps of projected stochastic gradient descent, for which we

use the Monte Carlo estimate of Eq. (5.5) per line 17 of Algorithm 2.

Summarization of observations groups and batches. Apart from working at the

individual datapointsŠ level, our scheme also enables summarizing batches and groups of

observations. Acquiring efficiently informative batches of datapoints can replace random

minibatch selection commonly used in stochastic optimization for large-scale model training.

This extension can also be quite useful in situations where datapoints are partitioned

in clusters, e.g. according to demographic information. For example, when gender and

age features are available in datasets capturing usersŠ movies habits, collected datapoints

can be binned accordingly, and our group summarization technique will allow extracting

informative combinations of demographic groups that can jointly summarize the entire

populationŠs information. The robustness properties of β-Cores in such applications can

aid removing group bias, and rejecting groups with large fractions of outliers. Algorithm 2

is again directly applicable, where gs vectors are now summed over the corresponding

datapoints of each batch or group.

Choice of the robustness hyperparameter value. Selecting a proper value for

β when doing inference using power divergences can be treated as an instance of hyper-

parameter optimization. Prior knowledge on the expected subspace for the inliers of a

data analysis task at hand can be leveraged in order to specify a reasonable value for

the hyperparameter β a priori (recall from Fig. 2.1a that β controls the distance from

populationŠs sufficient statistic where the maximum of the concave data inĆuence function

is located). Earlier work in robust Bayesian inference has considered automating the selec-

tion of this value in the light of observations, using cross-validation (Futami et al., 2018), or

via performing on-line gradient descent on the expected predictive loss (Knoblauch et al.,

2018). In a similar vein, for the purposes of variational inference using other parameterised

families of divergence functions, such as the α- and f -divergence, recent approaches for

adaptive learning of optimal hyperparameters have relied on controlling the variance of

Monte Carlo estimates used in variational inference (Wang et al., 2018), and on gradient

descent based meta-learning techniques (Zhang et al., 2021b).
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5.3 Experiments & applications

We examine the inferential results achieved by our method under 3 statistical models,

in scenarios capturing different types of mismatch between modeling assumptions and

reality. The data contamination models used in the following experiments are reminiscent

of Huber’s ϵ-contamination model (Huber, 1992), which postulates that observed data are

generated from a mixture of distributions of the form (1− ϵ) ·G+ ϵ ·Q, where ϵ ∈ (0, 1),

G is a distribution of inliers captured by the assumed statistical model, and Q is an

arbitrary distribution of outliers. This model has found use in several recent studies

on robust statistical estimators suitable for underlying data distributions with minimal

assumptions (Wei and Minsker, 2017; Chen et al., 2018).

β-Cores is compared against a uniform random sampling baseline, and stochastic

batch implementations of two existing Riemannian coreset methods:

(i) SparseVI (Campbell and Beronov, 2019), which builds up a coreset according to

an incremental scheme similar to ours, considering the standard likelihood function

terms evaluated on the dataset points, and

(ii) PSVI (Manousakas et al., 2020), the method introduced in Chapter 4, which runs a

batch optimization on a set of pseudopoints, and uses standard likelihood evaluations

to jointly learn the pseudopointsŠ weights and locations, so that the extracted

summary resembles the statistics of the full dataset.

We default the number of iterations in the optimization loop over gradient-based coreset

constructions to T = 500, using a learning rate γt ∝ t−1 and S = 100 random projections

per gradient computation. From Section 5.3.1 to Section 5.3.4, the values for β are selected

via cross-validation on a held-out dataset. For consistency with the compared baselines,

we evaluate inference results obtained by β-Cores using the classical Bayesian posterior

from Eq. (2.17) conditioned on the corresponding robustiĄed data summary. Additional

details on used benchmark datasets are presented in Appendix B.3.

5.3.1 Simulated Gaussian mean inference under stuctured data

contamination

In the Ąrst experiment we study how β-Cores behaves in the setting of mean inference

on synthetic d-dimensional data, sampled i.i.d. from a normal distribution with known

covariance,

θ ∼ N (µ0,Σ0) , xn
i.i.d.∼ N (θ,Σ), n = 1, . . . , N. (5.9)

In the presented results, we use priors µ0 = 0 and Σ0 = I, dimensionality d = 20 and

dataset size N = 5, 000.

We consider the case of structured data contamination existing in the observations,

simulated as follows: Observed datapoints are typically sampled from a Gaussian N (1, I).
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At a percentage F%, data collection fails; in this case, datapoints are collected from a

shifted Gaussian N (10, I). Consequently, the observed dataset forms a Gaussian mixture

with two components; however, our statistical model assumes only a single Gaussian.

(a)

(b)

Figure 5.1: (a) Scatterplot of the observed datapoints projected on two random axes,
overlaid by the corresponding coreset points and predictive posterior 3σ ellipses for
increasing coreset size (from left to right). Exact posterior (illustrated in black) is
computed on the dataset after removing the group of outliers. From top to bottom, the
level of structured contamination increases. Classic Riemannian coresets are prone to
model misspeciĄcation, adding points from the outlying component, while β-Cores adds
points only from the uncontaminated subpopulation yielding better posterior estimation.
(b) Reverse KL divergence between coreset and true posterior (the latter computed on
clean data), averaged over 5 trials. Solid lines display the median KL divergence, with
shaded areas showing 25th and 75th percentiles of KL divergence.
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All computations involved in the coreset construction and posterior evaluation in this

experiment can be performed in closed form. We apply the minibatch scheme of Algorithm 2,

sampling from the exact coreset posterior over gradient estimation. The used (β-)likelihood

equations are outlined in Appendix B.1.1. For all coreset methods, constructions are

repeated for up to M = 200 iterations, with learning rate γt = t−1. Notice that our setting

does not imply that maximum summary size contains 200 datapoints: often over the

iterations an already existing summary point may be selected again, resulting in smaller

coresets. Moreover, as opposed to the Gaussian experiment of the previous chapter, here

we select a simpler hyperparameter selection scheme with constant initial learning rate over

the entire range of coreset sizes, which in our settings allows SparseVI and β-Cores to

reach their maximum posterior approximation quality at approximately 60 coreset points,

and causes a slight increase in KL beyond this size.

Fig. 5.1a presents the results obtained by the different coreset methods. We stress-test

their performance under varying amounts of data corruption (from top to bottom, 0%, 15%,

and 30% of the datapoints get replaced by outliers). We can verify that β-Cores with β =

0.01 is on par with existing Riemannian coresets in an uncontaminated dataset. Noticeably,

β-Cores remains robust to high levels of structured corruption (even up to 30% of the

dataset), giving reliable posterior estimates; KL divergence plots in Fig. 5.1b reconĄrm

the superiority of inference via β-Cores. On the other hand, in the presence of outliers,

previous Riemannian coresetsŠ performance degrades quickly, offering similar posterior

inference quality with random sampling. The KL divergence from the cleansed data

posterior for existing summarizations and uniform sampling increases with observationsŠ

failure probability, as it asymptotically converges to the Bayesian posterior computed on

the corrupted dataset.

Moreover, in the case of contaminated datasets, baseline coresets are quite conĄdent in

their wrong predictive posteriors: they keep assigning the same weight to all observations

and hence do not adjust their posterior uncertainty estimates, in spite of having to

describe contradicting data. In contrast, β-Cores discards samples from the outlying

group and can conĄdently explain the inliers, despite the smaller effective sample size:

indeed, Fig. 5.1b shows that the achieved KL divergence from the exact posterior is at

same order of magnitude regardless of failure probability.

We can however notice that, for coreset sizes growing beyond 60 pointsŮdespite

remaining consistently better compared to the baselinesŮβ-Cores starts to present some

instability over trials in contaminated dataset instances. This effect is attributed to the

small value of the β hyperparameter selected for the demonstration (so that this value can

successfully model the case of clean data). As a result, eventually some outliers might be

allowed to enter the summary for large coreset sizes. The instability can be resolved by

increasing β according to the observationsŠ failure probability, and will be further discussed

in Section 5.3.5.
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5.3.2 Bayesian logistic regression under mislabeling and feature

noise

In this section, we study the robustness achieved by β-Cores on the problem of binary

classiĄcation under unreliable measurements and labeling. We test our methods on 3

benchmark datasets with varying dimensionality (10-127 dimensions, more details on the

data are provided in Appendix B.3). We observe data pairs (xn, yn)N
n=1, where x ∈ R

d,

yn ∈ ¶−1, 1♢, and use the Bayesian logistic regression model to describe them,

yn♣xn, θ ∼ Bern

(
1

1 + e−zT
n θ

)
, zn :=


xn

1


 . (5.10)

The closed form of β-likelihood terms required in our construction is computed in Ap-

pendix B.1.2.

Data corruption is simulated by generating unstructured outliers in the input and

output space similarly to (Futami et al., 2018): For corruption rate F , we sample two

random subsets of size F · N from the training data. For the datapoints in the Ąrst

subset, we replace the value of half of the features with Gaussian noise sampled i.i.d.

from N (0, 5); for the datapoints in the other subset, we Ćip the binary label. Over

construction we use the Laplace approximation to efficiently draw samples from the (non-

conjugate) coreset posterior, while over evaluation coreset posterior samples are obtained

via NUTS (Hoffman and Gelman, 2014). We evaluate the accuracy over the test set,

predicting labels according to the maximum log-likelihood rule for θs sampled from the

coreset posterior distribution. The learning rate schedule was set to γt = c0t
−1, with c0

set to 1 for SparseVI and β-Cores, and 0.1 for PSVI. The values for and learning rates

γt were chosen via cross-validation.

Fig. 5.2 illustrates that β-Cores shows competitive performance with the classical

Riemannian coresets in the absence of data contamination (bottom row), while it con-

sistently achieves the best predictive accuracy in corrupted datasets (top row). On the

other hand, ordinary summarization techniques, although overall outperforming random

sampling for small coreset sizes, soon attain degraded predictive performance on poisoned

data: by construction, via increasing coreset size, Riemannian coresets are expected to

converge to the Bayesian posterior computed on the corrupted dataset. All baselines

present noticeable degradation in their predictive accuracy when corruption is introduced

(typically more than 5%), which is not the case for our method: β-Cores is designed

to support corrupted input and, for a well-tuned hyperparameter β, maintains similar

performance in the presence of outliers, while practically it can even achieve improvement

(as occurring for the WebSpam data).

5.3.3 Neural linear regression on noisy data batches

Here we use the coresets extension for batch summarization to efficiently train a neural

linear model on selected data minibatches. Neural linear models perform Bayesian linear
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Figure 5.2: Predictive accuracy vs coreset size for logistic regression experiments over
10 trials on 3 large-scale datasets. Solid lines display the median accuracy, with shaded
areas showing 25th and 75th percentiles. Dataset corruption rate F , and β value used in
β-Cores for each experiment are shown on the Ągures. The bottom row plots illustrate
the achieved predictive performance under no contamination.

regression on the representation of the last layer of a deterministic neural network feature

extractor (Snoek et al., 2015; Riquelme et al., 2018; Pinsler et al., 2019). The corresponding

statistical model is as follows

(yn)N
n=1 = θT z(xn) + ϵn, (ϵn)N

n=1 ∼ N (0, σ2). (5.11)

The neural network is trained to learn an adaptive basis z(·) from N datapoint pairs

(xn, yn) ∈ R
d×R, which we then use to regress (yn)N

n=1 on (z(xn))N
n=1, and yield uncertainty

aware estimates of θ. More details on the model-speciĄc formulae entering coresets

construction are provided in Appendix B.1.3. Input and output related outliers are

simulated as in Section 5.3.2, while here, for the output related outliers, yn gets replaced

by Gaussian noise. Corruption occurs over a percentage F% of the total number of

minibatches of the dataset, while the remaining minibatches are left uncontaminated.

Each poisoned minibatch gets 70% of its points substituted by outliers.

We evaluate β-Cores, SparseVI and random sampling on two benchmark regression

datasets (detailed in Appendix B.3). All coresets are initialized to a small batch of

datapoints sampled uniformly at random from the dataset inliers. Over incremental

construction, we interleave each minibatch selection and weights optimization step of the

coreset with a training round for the neural network, constrained on the current coreset

datapoints. Each such training round consists of 103 minibatch gradient descent steps using

the AdaGrad optimizer (Duchi et al., 2010; McMahan and Streeter, 2010; Duchi et al.,

2011). Our neural architecture is comprised of two fully connected hidden layers, batch

normalization and ReLU activation functions. The values of coreset size at initialization,

batch size added per coreset iteration, and units at each neural network hidden layer are
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Figure 5.3: Test RMSE vs coreset size for neural linear regression experiments averaged
over 30 trials. Solid lines display the median RMSE, with shaded areas showing 25th

and 75th percentiles. Dataset corruption rate F , and β value used in β-Cores for each
experiment are shown on the Ągures. The bottom row plots illustrate the achieved
predictive performance under no contamination.

set respectively to 20, 10 and 30 for the Housing, and 200, 100 and 100 for the Songs

dataset.

Fig. 5.3 (bottom row) shows that β-Cores are competitive with the baselines in the

absence of data corruption, achieving similar predictive performance over the entire range

of tested coreset sizes. Under data poisoning (top row), β-Cores is the only method that

offers monotonic decrease of test RMSE for increasing summary size from the beginning of

the experiment. On the other hand, baselines present unreliable predictive performance for

small coreset sizes: random sampling and SparseVI are both prone to including corrupted

data batches, whose misguiding information gets expressed on the Ćexible representations

learnt by the neural network, requiring a larger summary size to reach the RMSE of

β-Cores.

5.3.4 Efficient data acquisition from subpopulations for bud-

geted inference

We consider the scenario where a machine learning service provider aims to Ąt a binary

classiĄcation model to observations coming from multiple subpopulations of data contribu-

tors. The provider aims to maximize the predictive accuracy of the model, while adhering

to a budget on the total number of subpopulations from which data can be accessed over
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inference. Budgeted inference can be motivated by several practical considerations: First,

restricting the total number of datapoints used over learning to a smaller informative

subset aids scalabilityŮwhich is the primary motivation for coresets. Moreover, taking

decisions at the subpopulationsŠ level regarding which groups of datapoints are useful for

the task, without the need to inspect datapoints individually, reduces the privacy loss

incurred over the data selection stage, and can be integrated in machine learning pipelines

that follow formal hierarchical privacy schemes (Balle et al., 2019). Finally, subpopulationsŠ

valuation can guide costly experimental procedures, via inducing knowledge regarding

which group combinations are most beneĄcial in summarizing the entire population of

interest (Pinsler et al., 2019; Vahidian et al., 2020), and hence should be prioritised over

data collection.

In this study we use a subset of more than 60K datapoints from the HospitalRead-

missions dataset (for further details see Appendix B.3). Using combinations of age, race

and gender information of data contributors, we form a total of 165 subpopulations within

the training dataset. Data contamination is simulated identically to the experiment of

Section 5.3.2, while now we also consider the case of varying levels of contamination across

the subpopulations. In particular, we form groups of roughly equal size where 0%, 10%

and 20% of the datapoints get replaced by outliersŮthis results in getting a dataset with

approximately 10% of its full set of datapoints corresponding to outliers.

We evaluate the predictive accuracy achieved by doing inference on the data subset

obtained after running 10 iterations of the β-Cores extension for groups (which gives

a maximum of 10 selected groups). We compare against (i) a random sampler, and

(ii) a baseline which ranks all groups according to their Shapley value and selects the

groups with the highest ranks. Shapley value is a concept originating in cooperative

game theory (Shapley, 1953), which has recently found applications in data valuation

and outliers detection (Ghorbani and Zou, 2019). In the context of our experiment, it

quantiĄes what is the marginal contribution of each group to the predictive accuracy of the

model at all possible group coalitions that can be formed. As this quantity is notoriously

expensive to be computed in large datasets, we use a Monte Carlo estimator which samples

5K possible permutations of groups, and for each permutation it computes marginals for

coalitions formed by the Ąrst 20 groups.1

As illustrated in Fig. 5.4, β-Cores with β = 0.6 offers the best solution to our problem,

and is able to reach predictive accuracy exceeding 75% by Ątting a coreset on no more

than 2 groups. Fig. 5.5 displays the demographic information of selected groups. We

can notice that subpopulations of female and older patients are more informative for the

classiĄcation task, while Caucasian and African-American groups are preferred to smaller

racial minorities. Importantly, β-Cores is able to distill clean from contaminated groups.

For the used β value, we can see than over the set of trials only one group with outliers

level of 10% is allowed to enter a summary, which already contains 3 uncontaminated

groups.

1The latter truncation is supported by the observation that marginal contributions to the predictive
accuracy are diminishing as the dataset size increases.
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Figure 5.4: Predictive accuracy against number of groups (left) and number of data-
points (right) selected for inference. Compared group selection shemes are β-Cores,
selection according to Shapley values based ranking, and random selection. The experiment
is repeated over 5 trials, on a contaminated dataset containing a 10% of crafted outliers
distributed non-uniformly across groups (top row), and a clean dataset (bottom row).

Figure 5.5: Attributes of selected groups after running 10 iterations of β-Cores with
β = 0.6 on the contaminated HospitalReadmissions dataset (repeated over 5 random
trials).

Shapley values based ranking treats outliers better than random sampling: As outliers

are expected to have negative marginal contribution to predictive accuracy, their Shapley

rank is generally lower compared to clean data groups, hence the later are favoured. On
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the other hand, Shapley computation is much slower than random sampling and β-Cores,

speciĄc to the evaluation metric of interest, while Shapley values are not designed to Ąnd

data-efficient combinations of groups, hence this baseline can still retain redundancy in

the selected data subset.

5.3.5 Effects of varying the robustness hyperparameter

In this section we perform an empirical analysis of the effects on robustness of inference that

can be caused by varying the value of the divergence hyperparameter β ∈ (0, 1). As observed

in Fig. 5.6a, in the case of Gaussian mean inference under structured contamination, setting

β to large values (β ≥ 0.3) implies more conservative summarization schemes and more

rigid coreset posteriors, that do not allow achieving optimal approximation quality; however

these scheme also enable maintaining similar performance and small variance across trials

for increasing size of the contaminated component. For smaller βs, the KL divergence

between the approximate and the true posterior can reach lower minima; nonetheless,

eventually the coreset quality might present larger variance, as the summarization becomes

prone to adding outliers. At the remaining experiments, Figs. 5.6b and 5.6c, where

inference takes place in the presence of unstructured outliers, the effects of varying the

robustness hyperparameter are less pronounced. More noticeably, the remark of increased

variance for small β remains valid with observable effects both in the logistic and the

neural linear regression experiments.

5.4 Summary & discussion

In this chapter, we proposed a general purpose framework for yielding contamination-

robust summarizations of massive scale datasets for inference. Relying on recent advances

in Bayesian coresets and robustiĄed approximate inference under the β-divergence, we

developed a greedy black-box construction that efficiently shrinks big data via keeping

informative datapoints, while simultaneously rejecting outliers. Finally, we presented

experiments involving various statistical models, and simulated and real-world datasets,

demonstrating that our methodology outperforms existing techniques in scenarios of

structured and unstructured data corruption.

Further directions include developing more methods for adaptive tuning of the robust-

ness hyperparameter β, as well as applying our techniques to more complicated statistical

models, including ones with structured likelihood functions (e.g. time-series and temporal

point processes). Moreover, future experimentation may consider stronger adversarial

settings where summaries are initialized to data subsets that already contain outliers.
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(a) Gaussian mean inference

(b) Logistic regression

(c) Neural linear regression

Figure 5.6: Predictive performance of β-Cores for varying values of the robustness
hyperparameter β. At each experiment, results are averaged over 5 trials. Solid lines
display the median of the predictive metric, with shaded areas showing the corresponding
25th and 75th percentiles.





Chapter 6

Conclusions

In this thesis, we have presented three original pieces of work drawing on one of the

fundamental research problems in large-scale machine learning: finding scalable dataset

reductions under constraints commonly arising in real-world data analysis applications.

Our premise has been that principled dataset summarization methods can be harsenessed

to enable efficient approximations for the purposes of large-scale data analysis without

compromising requirements of privacy and robustness. In this section, we brieĆy recap

our key contributions and suggest directions for future research.

6.1 Summary

6.1.1 Privacy loss of coarsened structured data

Reducing the information content and removing explicit identiĄers from sensitive datasets

prior to public release offers an illusion of privacy. In Chapter 3, we examined a large

collection of longitudinal mobility traces recorded by smartphone devices. We converted

each pseudonymised user trace record to a truncated graph, which retained the transition

patterns among userŠs most frequent locations, and generated such representations over

two different time windows spanning the entire period of tracking. Computing structural

similarities via graph kernels allowed us to delevop a linkage attack, that was able to

reidentify the anonymized mobility graphs at a 3.5× higher median success rate compared

to random guessing. Our Ąnding stressed that pseudonymisation and coarsening of

data cannot protect data subjects against adversaries with access to the infomation of

(nearly uniquely) identifying substructuresŮhence, further elaborating on data reduction

techniques that adhere to formal privacy guarantees is required.

6.1.2 Privacy-preserving Bayesian coresets in high dimensions

In Chapter 4, we developed a novel construction for Bayesian coresets. We extended

the existing sparse variational inference framework by introducing a richer family of

scalable posterior approximations which, instead of points of the original dataset, makes

use of learnable pseudodata that act as variational parameters optimized to summarize
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the full data likelihood. Our variational approximation enabled effective summarization

that is not limited by data dimensionality, unlike previous constructions. Moreover, our

coreset construction is amenable both to an incremental, as well as a batch black-box

optimization scheme, offering computational time savings compared to state-of-the-art

sparse VI methods. Finally, the use of synthetic data, combined with the subsampled

Gaussian mechanism, allowed us to yield differentially private dataset summarization. We

demonstrated applications of inference over a diverse set of Bayesian models, including

Gaussian mean estimation, linear and logistic regression, showing the advantages in data

posterior approximation offered by our approach.

6.1.3 Robust Bayesian coresets under misspecification

In Chapter 5, we designed a Bayesian coreset construction suitable for summarizing

datasets that potentially depart from our statistical model assumptionsŮas often can be

the case in practice, due to observations containing outliers, and/or being subjected to

contamination. We proposed an incremental scheme that attains a sparse approximation of

a robust generalized Bayesian posterior deĄned via the β-divergence, while discerning and

retaining a representative small part of the data inliers instead of the full dataset. Further

to offering scalability and reducing data redundancy, our scheme provided a uniĄed and

highly-automated solution to the important question of detecting and removing harmful

datapoints prior to inference. We evaluated our technique on clean and contaminated data

over a range of applications, including Gaussian mean inference, Bayesian linear regression,

neural linear regression, and selection of informative data subpopulationsŠ combinations,

demonstrating reliable posteriors and predictive performance in all examined test cases.

6.2 Future research directions

The summarization frameworks presented in this dissertation allow numerous probabilistic

models to be tractably and reliably deployed in practice. Yet they allude to a realm of

so far unexplored research questions, some of which we overiew in the remainder of this

section, thus concluding the thesis.

6.2.1 Coresets for models with structured likelihoods

Our variational formulations for coreset construction Eqs. (4.7) and (5.2) use the assumption

that the data likelihood function gets factorised as a product of individual datapoint

potentials. To the best of our knowledge, the idea of constructing coresets has not yet been

used for inference in models with structured likelihood functions, including time-series and

point processes. Recent results on parameter estimation for Hawkes processes using uniform

downsampling (Li and Ke, 2019) indicate important improvements in efficiency when

learning in massive temporal event sequences via reducing data, even without explicitly

optimizing for redundancy in the extracted data subsets.
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6.2.2 Implicit differential privacy amplification of data-dependent

compressions

In Chapter 4 we presented an optimization scheme that yields Bayesian coreset construc-

tions under explicit differential privacy quarantees. As discussed in Section 2.6, a known

result in DP literature is that incorporating random sampling in data analysis has implicit

privacy ampliĄcation effects, i.e. that an algorithm has higher privacy guarantees when

run on a random subset of the datapoints instead of the full dataset (Li et al., 2012;

Beimel et al., 2013; Bassily et al., 2014; Abadi et al., 2016). More recently, Balle et al.

(2018) presented a unifying methodology that utilises couplings and divergences to reason

about DP ampliĄcation effects of several random sampling methods (including Poisson

subsampling and sampling with/without replacement), under different data neighbouring

relations.

Existing research makes a common assumption that simpliĄes privacy analysis, but

is violated in the case of coresets: the sampling distribution is data-independent. It

remains an open question whether generalizations of existing approaches can be used to

argue about implicit DP ampliĄcation when replacing a privacy-sensitive dataset with a

coresetŮin primitive schemes, coreset construction simply takes the form of importance

sampling (Bachem et al., 2017). Investigating DP ampliĄcation under data-dependent

sampling is a direction with far-reaching implications, that can contribute to tighter

privacy analysis, not only in the case of coresets, but more broadly in all machine learning

applications involving importance sampling, which is already a cornerstone of many

state-of-the-art stochastic learning methods.

6.2.3 Human-centric summaries for scalable inference

In Chapter 4 we presented a method utilising learnable batches of pseudodata to summarize

a much larger dataset. Naturally this coreset construction bears the potential of reducing

the interpretability of learned pseudodata, since coreset points are now not a subset of

the original dataset, but rather the result of a likelihood-speciĄc optimization routine. To

remedy related concerns, further interpretability constraints can be explicitly incorporated

in the optimization formulation of pseudocoreset variational inference of Eq. (4.7).

Beyond the quest of interpretability, additional research is required in examining other

desiderata in human-centric inference. To name a few, deletion-robustness is often sought or

imposed on methods for large-scale data analysis (Mirzasoleiman et al., 2017; Ginart et al.,

2019): userŠs right-to-be-forgotten is related to imposing bounds on the effects of removing

an individual datapoint from an existing dataset, and can be approximately satisĄed

under differential privacy. Moreover, group fairness is one more topic that necessitates

further investigation: without special treatment, reducing datasets will potentially transfer

existing inequalities across groups in the derived summary, hence a different construction

may be sought when aiming to ameliorate unfairness in scalable inference.
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6.2.4 Compressing datasets for meta-learning

A distinguishing feature of human intelligence is the ability to adaptively learn new tasks

on the basis of prior acquired experience, rather than learning each new task from scratch.

Although Bayesian coresets have been originally proposed as an approach for efficient

model-speciĄc inference, it seems reasonable to inquire whether sparse dataset summaries

can be also useful in meta-learning, i.e. settings where we aim to learn over a variety of

tasks using few training examples per task. Recent work has shown that model-agnostic

meta-learning (Finn et al., 2017) admits reformulations as a hierarchical Bayesian model,

and gets performance improvements via expressing uncertainty (Finn et al., 2018; Grant

et al., 2018). Apart from offering another avenue for scalability in meta-learning, extracting

versatile summaries from a universe of data domains simulates more closely the situations

that a human faces when organizing experience and knowledge for learning in the real

world; hence, designing coresets in this context could contribute novel insights into the

nature of general intelligence.
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Supplement for Bayesian

Pseudocoresets

A.1 Proof of Proposition 16

In the setting of Proposition 16, both the exact posterior and the coreset posterior are

multivariate Gaussian distributions, denoted as N (µ1,Σ1) and N (µw,Σw) respectively.

The mean and covariance are

Σ1 =
1

1 +N
Id, µ1 = Σ1

(
N∑

n=1

Xn


, (A.1)

and

Σw =
Id

1 +
(∑N

n=1 wn

) , µw =Σw

(
N∑

n=1

wnXn


. (A.2)

Proof of Proposition 16. By Eqs. (A.1) and (A.2),

DKL (πw♣♣π) =
1

2


log
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♣Σw♣

− d+ tr
(
Σ−1

1 Σw

)
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]
.

(A.3)

Note that ∀x > 0, x− 1 ≥ log x, implying that

−d log

(
1 +N

1 +
∑N

n=1 wn


− d+ d

(
1 +N

1 +
∑N

n=1 wn


≥ 0.

Thus,

DKL (πw♣♣π) ≥ 1

2
(µ1 − µw)T Σ−1

1 (µ1 − µw). (A.4)
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Suppose we pick a set I ⊆ [N ], ♣I♣ = M of active indices n where the optimal wn ≥ 0,

and enforce that all others n /∈ I satisfy wn = 0. Then denoting

Y = [Xn : n /∈ I] ∈ R
d×(N−M), X = [Xn : n ∈ I] ∈ R

d×M , (A.5)

we have that, for any w ∈ R
M
+ , for those indices I,

DKL (πw♣♣π) ≥ 1

2(N + 1)
1TY TY 1 + 1TY TX

(
1

N + 1
− w

1 + 1Tw

)

+
N + 1

2

(
1

N + 1
− w

1 + 1Tw

)T

XTX
(

1

N + 1
− w

1 + 1Tw

)
. (A.6)

Relaxing the nonnegativity constraint, replacing w/(1 + 1Tw) with a generic x ∈ R
M , and

noting that XTX is invertible almost surely when M < d, we can optimize this expression

yielding a lower bound on the optimal KL divergence using active index set I,

DKL

(
πw⋆

I
♣♣π
)
≥

1TY T
(
I −X(XTX)−1XT

)
Y 1

2(N + 1)
. (A.7)

The numerator is the squared norm of Y 1 minus its projection onto the subspace spanned

by the M columns of X. Since Y 1 ∼ N (0, (N −M)I), Y 1 ∈ R
d is an isotropic Gaussian,

then its projection into the orthogonal complement of any Ąxed subspace of dimension M is

also an isotropic Gaussian of dimension d−M with the same variance. Since the columns

of X are also independent and isotropic, its column subspace is uniformly distributed. So

therefore, for each possible choice of I

DKL

(
πw⋆

I
♣♣π
)
≥ N −M

2(N + 1)
ZI , ZI ∼ χ2(d−M). (A.8)

Note that the ZI will have dependence across the
(

N
M

)
different choices of index subset I.

Thus, the probability that all ZI are large is

P

(
min

I⊆[N ],♣I♣=M
ZI > ϵ


≥1−

(
N

M


P (ZI ≤ ϵ)

=1−
(
N

M


Fd−M(ϵ), (A.9)

where Fk is the CDF for the χ2 distribution with k degrees of freedom. The result

follows.

A.2 Gradient derivations

Throughout, expectations and covariances over the random parameter θ with no explicit

subscripts are taken under pseudocoreset posterior πu,w. We also interchange differentiation

and integration without explicitly verifying that sufficient conditions to do so hold.
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A.2.1 Weights gradient

First, we compute the gradient with respect to weights vector w ∈ R
M
+ , which is written as

∇wDKL = −∇w logZ(u,w)−∇wE[f(θ)T 1] +∇wE[f̃(θ)Tw]. (A.10)

For any function a : Θ→ R, we have that

∇wE [a(θ)] =
∫
∇w

(
exp

(
wT f̃(θ)− logZ(u,w)

))
a(θ)π0(θ)dθ

=E

[(
f̃(θ)−∇w logZ(u,w)

)
a(θ)

]
. (A.11)

Next, we compute the gradient of the log normalization constant via

∇w logZ(u,w) =
∫ 1

Z(u,w)
∇w

(
exp

(
wT f̃(θ)

))
π0(θ)dθ

=E

[
f̃(θ)

]
. (A.12)

Combining, we have

∇wE [a(θ)] =E

[(
f̃(θ)− E

[
f̃(θ)

])
a(θ)

]
. (A.13)

Subtracting 0 = E [a(θ)]E
[
f̃(θ)− E

[
f̃(θ)

]]
yields

∇wE [a(θ)] = Cov
[
f̃(θ), a(θ)

]
. (A.14)

The gradient with respect to w in Eq. (4.9) follows by substituting 1Tf(θ) and wT f̃(θ) for

a(θ) and using the product rule.

A.2.2 Location gradients

Here we take the gradient with respect to a single pseudopoint ui ∈ R
d. First note that

∇ui
DKL = −∇ui

logZ(u,w)−∇ui
E[f(θ)T 1] +∇ui

E[f̃(θ)Tw]. (A.15)

For any function a(u, θ) : Rd×M ×Θ→ R, we have

∇ui
E [a(u, θ)] =

∫
∇ui

(
exp

(
wT f̃(θ)− logZ(u,w)

)
a(u, θ)

)
π0(θ)dθ. (A.16)

Using the product rule and recalling from the main text that h(·, θ) := ∇uf(·, θ),

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + E [a(u, θ) (wih(ui, θ)−∇ui
logZ(u,w))] . (A.17)

Taking the gradient of the log normalization constant using similar techniques,

∇ui
logZ(u,w) = wiE [h(ui, θ)] . (A.18)

Combining,

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wiE [a(u, θ) (h(ui, θ)− E [h(ui, θ)])] . (A.19)
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Subtracting 0 = E [a(u, θ)]E [(h(ui, θ)− E [h(ui, θ)])] yields

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wi Cov [a(u, θ), h(ui, θ)] . (A.20)

The gradient with respect to ui in Eq. (4.9) follows by substituting f(θ)T 1 and f̃(θ)Tw for

a(u, θ).

A.3 Details on experiments

A.3.1 Gaussian mean inference

Let the coreset posterior have mean µu,w and covariance matrix Σu,w. Throughout, ex-

pectations and covariances over the random parameter θ with no explicit subscripts are

taken under pseudocoreset posterior πu,w. DeĄne Ψ := Q−1Σu,wQ
−T , vn := Q−1(xn−µu,w),

ṽn := Q−1(un− µu,w), and Q to be the lower triangular matrix of the Cholesky decomposi-

tion of Σ, i.e. Σ := QQT . In order to compute the gradients in Eq. (4.9), we need expressions

for Cov[fn, fm], Cov[f̃n, fm], Cov[h(ui), fn], and Cov[h(ui), f̃n]. Following Campbell and

Beronov (2019), we have that

Cov[fn, fm] = vT
n Ψvm +

1

2
tr ΨT Ψ (A.21)

Cov[f̃n, fm] = ṽT
n Ψvm +

1

2
tr ΨT Ψ. (A.22)

We now evaluate the remaining covariance Cov[h(ui), fm]; the derivation of Cov[h(ui), f̃m]

follows similarly. We begin by explicitly evaluating the log-likelihood gradient and its

expectation,

h(ui) = −Σ−1(ui − θ) (A.23)

E [h(ui)] = −Σ−1(ui − µu,w), (A.24)

We have (up to a constant) that

fn = −1

2
(xn − θ)T Σ−1(xn − θ) (A.25)

E [fn] = −1

2
tr Ψ− 1

2
∥vn∥2. (A.26)

Thus using the above deĄnitions,

E [h(ui)]E [fn] =
(tr Ψ + ∥vn∥2)

2
Q−T ṽi. (A.27)

Next,

E [h(ui)fn] =
1

2
Σ−1

E

[
(ui − θ)(xn − θ)T Σ−1(xn − θ)

]
. (A.28)

DeĄning z ∼ N (0,Ψ), and using the above deĄnitions,

E [h(ui)fn] =
1

2
Q−T

E

[
(ṽi − z)(vn − z)T (vn − z)

]
. (A.29)
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Evaluating the expectation, noting that odd order moments of z are equal to 0,

E [h(ui)fn] =
∥vn∥2 + tr Ψ

2
Q−T ṽi +Q−T Ψvn. (A.30)

Therefore,

Cov[h(ui), fn] = Q−T Ψvn, (A.31)

and likewise,

Cov[h(ui), f̃n] = Q−T Ψṽn. (A.32)

A.3.2 Bayesian linear regression

A.3.2.1 Model and gradients details

Here we present the terms involving pseudodata pointsŮthe corresponding expressions for

original datapoints are the same, after replacing um with xm.

For individual points, dropping normalization constants, we get log-likelihood terms of

the form

fm(θ) = − 1

2σ2

(
ym − θTum

)2
. (A.33)

Hence, we obtain for the pseudocoreset posterior

πu,w = N (µu,w,Σu,w), where (A.34)

Σu,w =

(
σ−2

0 I + σ−2
M∑

m=1

wmumu
T
m

−1

, µu,w = Σu,w

(
σ−2

0 Iµ0 + σ−2
M∑

m=1

wmymum


.

(A.35)

To scale up computation on large datasets, in our experiment we made use of stochastic

gradients for black-box construction of PSVI and SparseVI. Beyond the expressions for

individual log-likelihood and (pseudo)coreset posteriors presented above, for pseudocoreset

construction we also need the expression for log-likelihood gradient with respect to the

pseudodata points, for which we can immediately see that ∇um
f(um, θ) = 1

σ2 (ym− θTum)θ.

Over our experiment, we optimized initial learning rates for SparseVI and PSVI via a

grid search over ¶0.1, 1, 10♢.

A.3.2.2 Additional plots

Here we present some more plots demonstating the dependence of Hilbert coresetsŠ approx-

imation quality on the dimension of random projections in the Bayesian linear regression

setting presented in Fig. 4.2c. We remind that the dimension used at this experiment

and throughout the entire experiments section was set to 100. Increasing this number

is typically expensive to obtain in practice. As demonstrated in Fig. A.1, getting higher

projection dimension enables better posterior approximation in the problem for both

GIGA (Optimal) and GIGA (Realistic). However, PSVI remains competitive in the
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project. dim. = 200 project. dim. = 2, 000 project. dim. = 10, 000

Figure A.1: Comparison of Hilbert coresets performance on Bayesian linear regression
experiment for increasing projection dimension (over 10 trials).

small coreset regime, even for Hilbert coresets with extremely large projection dimensional-

ity, demonstrating the information-geometric limitations that Hilbert coreset constructions

are known to face (Campbell and Beronov, 2019).

A.3.3 Bayesian logistic regression

A.3.3.1 Model

In logistic regression we have a set of datapoints (xn, yn)N
n=1 each corresponding to a

feature vector xn ∈ R
d and a label yn ∈ ¶−1, 1♢. Datapoints are assumed to be generated

according to following statistical model

yn♣xn, θ ∼ Bern

(
1

1 + e−zT
n θ

)
zn :=


xn

1


 . (A.36)

The aim of inference is to compute the posterior over the latent parameter θ = [θ0 . . . θd]T ∈
R

d+1. Log-likelihood of each datapoint can be expressed as

fn := f(xn, yn♣θ) =1[yn = −1] log
(

1− 1

1 + e−zT
n θ

)
− 1[yn = 1] log

(
1 + e−zT

n θ
)

=− log
(
1 + exp(−ynz

T
n θ)

)
.

(A.37)

Hence in pseudocoreset construction we can optimize pseudodata point locations with

respect to continuous variable xn, using the gradient

∇xn
fn =

e−ynzT
n θ

1 + e−ynzT
n θ
yn




θ1

...

θd


 . (A.38)

A.3.3.2 Datasets description

For logistic regression experiments, we used subsampled and full versions of datasets

presented in Table A.1: a synthetic dataset with x ∈ R
2 sampled i.i.d. from a N (0, I) and

y ∈ ¶−1, 1♢ sampled from respective logistic likelihood with θ = [3, 3, 0]T (Synthetic);

a phishing websites dataset reduced to D = 10 via PCA (Phishing); a chemical reac-

tivity dataset with real-valued features corresponding to its Ąrst 10 and 100 principal
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Dataset name N D
Synthetic 500 2
Phishing 500 10
ChemReact 500 10
Transactions 100,000 50
ChemReact100 26,733 100
Music 8,419 237

Table A.1: Details for datasets used in logistic regression experiments.

Synthetic Phishing ChemReact

Figure A.2: Comparison of (pseudo)coreset approximate posterior quality vs coreset size
for logistic regression over 10 trials.

components (ChemReact and ChemReact100 respectively); a dataset with 50 real-

valued features associated with whether each of 100K customers of a bank will make a

speciĄc transaction (Transactions); and a dataset for music analysis, where we consider

"classical vs all" genre classiĄcation task (Music). Original versions of the four latter

datasets are available online respectively at https://www.csie.ntu.edu.tw/˜cjlin/libsvm

tools/datasets/binary.html, http://komarix.org/ac/ds, https://www.kaggle.com/c/santan

der-customer-transaction-prediction/data, and https://github.com/mdeff/fma.

A.3.3.3 Small-scale experiments

In the small-scale experiment, the number of overall gradient updates was set to T = 1, 500,

while minibatch size was set to B = 400. Learning rate schedule for SparseVI and

PSVI was γt = 0.1t−1. Results presented in Fig. A.2 indicate that PSVI achieves superior

quality to SparseVI for small coreset sizes, and is competitive to GIGA (Optimal),

while the latter unrealistically uses true posterior samples to tune a weighting function

required over construction.

A.3.3.4 Reproducibility of Bayesian logistic regression experiment

In this subsection we provide additional details for reproducibility of the experimental

setup for the Bayesian Logistic Regression experiment presented in Section 4.4.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds/
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://github.com/mdeff/fma
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A.3.3.4.1 Posterior approximation metrics, coreset gradients and learning

rates

Posterior approximation quality was estimated via computing KL divergence between

Gaussian distributions Ątted on coreset and full data posteriors via Laplace approximation.

For both SparseVI and PSVI, gradients were estimated using samples drawn from a

Laplace approximation Ątted on current coreset weights and points. To optimize initial

learning rates for SparseVI and PSVI, we did a grid search over ¶0.1, 1, 10♢.

A.3.3.4.2 Differential privacy loss accounting and hyperparameter selection

In the differential privacy experiment, we were not concerned with the extra privacy

cost of hyperparameter optimization task. Estimation of differential privacy cost at all

experiments was based on TensorFlow privacy implementation of moments accountant for

the subsampled Gaussian mechanism.1 For DP-PSVI we used the best learning hyperpa-

rameters found for PSVI on the corresponding dataset. The demonstrated range of privacy

budgets was generated by decreasing the variance σ of additive Gaussian noise and keeping

the rest of hyperparameters involved in privacy accounting Ąxed. Regarding DP-VI, over

our experiments we also kept the subsampling ratio Ąxed. We based our implementation of

DP-VI on authorsŠ code,2 adapting noise calibration according to the adjacency relation

used in Section 4.3.3, and the standard differential privacy deĄnition (Dwork and Roth,

2014). In our experiment, we used the AdaGrad optimizer, with learning rate 0.01, number

of iterations 2, 000, and minibatch size 200. Gradient clipping values for DP-VI results

presented in Fig. 4.4, for Transactions, ChemReact100, and Music datasets were

tuned via grid search over ¶1, 5, 10, 50♢. The values of gradient clipping constant giving

best privacy proĄles for each dataset, used in Fig. 4.4, were 10, 5, and 5 respectively.

1https://github.com/tensorflow/privacy
2https://github.com/DPBayes/DPVI-code

A.3.3.5 Additional plots

A.3.3.5.1 Evaluation of CPU time requirements

Experiments were performed on a CPU cluster node with a 2x Intel Xeon Gold 6142 and

12GB RAM. In the case of PSVI the computation of coreset sizes from 1 to 100 was

parallelized per single size over 32 cores in total. Fig. A.3 shows posterior approximation

error vs required CPU time for all coreset construction algorithms over logistic regression

on the small-scale and large-scale datasets. As opposed to existing incremental coreset

construction schemes, batch construction of PSVI reduces the dependence between coreset

size and processing cost: for SparseVI Θ(M2) gradient computations are required, as this

method builds up a coreset one point at a time; in contrast, PSVI requires Θ(M) gradients

since it learns all pseudodata points jointly. Although each gradient step of PSVI is more

expensive, practically this implies a steeper decrease in approximation error over processing

time compared to SparseVI. In the case of differentially private PSVI, some extra CPU

requirements are added due to the subsampled Gaussian mechanism computations.

https://github.com/tensorflow/privacy
https://github.com/DPBayes/DPVI-code
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Synthetic Phishing ChemReact

Transactions ChemReact100 Music

Figure A.3: Comparison of PSVI and SparseVI approximate posterior quality vs CPU
time requirements for logistic regression experiment of Section 4.4.

A.3.3.5.2 Incremental scheme for pseudocoreset construction

We also experimented with an incremental scheme for pseudocoreset construction. Ac-

cording to this scheme, pseudodata points are added sequentially to the pseudocoreset.

Similarly to SparseVI, in the beginning of each coreset iteration, we initialize a new

pseudodata point at the true datapoint which maximizes correlation with current residual

approximation error. Next, we jointly optimize the most recently added pseudodata point

location, along with the pseudocoreset weights vector, over a gradient descent loop. As

opposed to batch construction, for large coreset sizes the incremental scheme for PSVI does

not achieve savings in CPU time compared to SparseVI.

We evaluated coreset construction methods on Bayesian logistic regression. We used

M = 100 iterations for construction, S = 100 Monte Carlo samples per gradient estimation,

T = 100 iterations for optimization, and learning rate γt ∝ 0.5t−1. Coreset posterior

samples over the course of construction for SparseVI and incremental PSVI were

drawn from a Laplace approximation using current coreset weights and points. We

implemented SparseVI and incremental PSVI via computing gradients on the full

dataset, as well as using stochastic gradients on subsets of size B = 256 for lowering

computational cost.

Results presented in Fig. A.4 demonstrate that incremental PSVI achieves consistently

the smallest posterior approximation error, offering improvement compared to Spar-

seVI and even achieving better performance than GIGA (Optimal). We observe that

stochastic gradientsŠ implementation (dashed lines) reaches a plateau at higher values of

KL compared to full gradients (solid lines), but still achieves performance comparable

with GIGA (Optimal).



102 Supplement for Bayesian Pseudocoresets

Synthetic

Phishing

ChemReact

Figure A.4: Comparison of incremental PSVI and SparseVI approximate posterior
quality vs iterations of incremental construction (left) and coreset size (right) for logistic
regression on small-scale experiment. With dashed lines is displayed the posterior quality
achieved by incremental PSVI and SparseVI constructions using gradients computed on
random data subsets of size 256.
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Supplement for β-Cores

B.1 Models

In this section we present the derivations of β-likelihood terms Eqs. (2.23) and (2.24)

required over the β-Cores constructions for the statistical models of our experiments.

B.1.1 Gaussian likelihoods

For the β-likelihood terms of a multivariate normal distribution, we have

π(x♣µ,Σ)β =
(
(2π)−

d

2 ♣Σ♣− 1

2

)β
exp

(
−β

2
(x− µ)T Σ−1(x− µ)


, (B.1)

and, by simple calculus (see also Samek et al. (2013)),
∫

X
π(χ♣µ,Σ)1+βdχ =

(
(2π)−

d

2 ♣Σ♣− 1

2

)β
(1 + β)−

d

2 . (B.2)

Hence, omitting the constant term due to the shift-invariance of potentials entering Algo-

rithm 2, we get up to proportionality

fn(µ) ∝ 1

β
exp

(
−β

2
(x− µ)T Σ−1(x− µ)


. (B.3)

B.1.2 Logistic regression likelihoods

Log-likelihood terms of individual datapoints are given as follows

log π(yn♣xn, θ) = − log
(
1 + e−ynzT

n θ
)
. (B.4)

Substituting to Eq. (2.24), for the β-likelihood terms we get

fn(θ) ∝ − 1

β

(
1 + e−ynzT

n θ
)−β

+
1

β + 1

((
1 + e−zT

n θ
)−(β+1)

+
(
1 + ezT

n θ
)−(β+1)

)
. (B.5)
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B.1.3 Neural linear regression likelihoods and predictive poste-

rior

Recall that in the neural linear regression model,
(
yn − θT z(xn)

)
∼ N (0, σ2), n = 1, . . . , N .

Then the Gaussian log-likelihoods corresponding to individual observations (after dropping

normalization constants), are written as

fn(θ) = − 1

2σ2

(
yn − θT z(xn)

)2
. (B.6)

Assuming a prior θ ∼ N (µ0, σ
2
0I), the coreset posterior is a Gaussian πw(θ) = N (µw,Σw),

with mean and covariance computable in closed form as follows

Σw :=

(
σ−2

0 I + σ−2
M∑

m=1

wmz(xm)z(xm)T

−1

, (B.7)

µw := Σw

(
σ−2

0 Iµ0 + σ−2
M∑

m=1

wmymz(xm)


. (B.8)

By substitution to Eq. (2.24) and omitting constants, the β-likelihood terms for our

adaptive basis linear regression are written as

fn(θ) ∝ e−β(yn−θT z(xn))
2
/(2σ2). (B.9)

Let C be the output of the coreset applied on a dataset D. Hence, in regression problems,

the predictive posterior on a test data pair (xt, yt) via a coreset is approximated as follows

π(yt♣xt,D) ≈ π(yt♣xt, C)

=
∫
π(yt♣xt, θ)π(θ♣C)dθ. (B.10)

In the neural linear experiment, the predictive posterior is a Gaussian given by the following

formula

π(yt♣xt, C) = N
(
yt;µ

T
wz(xt), σ

2 + z(xt)
T Σwz(xt)

)
. (B.11)

B.2 Characterization of Riemannian coresets’ combi-

natorial optimization objective

When optimizing a set function, the property of submodularity is often deemed appealing

as it can allow using fast greedy selection policies with provable suboptimality guaran-

tees (Nemhauser et al., 1978; Bach, 2013). The optimization problem corresponding to

our next datapoint selection step of Eq. (5.6) can be equivalently rewritten as follows

m⋆ = arg max
m∈[N ]

−DKL

(
πβ,w←w∪¶xm♢♣♣πβ

)
. (B.12)
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Table B.1: Logistic regression datasets

Dataset d N train N test #Pos. test data
Adult (Kohavi, 1996) 10 30,162 7,413 3,700
Phishing (Dua and Graff, 2017) 10 8,844 2,210 1,230
WebSpam (Wang et al., 2012) 127 126,185 13,789 6,907
HospitalReadmissions (Strack et al., 2014) 10 55,163 6,079 3,044

HenceŮignoring the coreset datapointsŠ reweighting step which is treated separatelyŮit

is of interest to characterize the properties of the objective function d : 2♣X ♣ → R≤0

d(S) := −DKL

(
πβ, N

M
IS
♣♣πβ

)
, (B.13)

where S is set of M datapoints appearing with non-zero weight in the coreset.

Below we give a tight condition for submodularity via second-order differences, which

captures its characteristic property of diminishing returns for increasing set size.

Definition 20 (Submodularity). The set function d is submodular if and only if for all

S ⊆ X and xj, xk ∈ X \ S, we have d(S ∪ ¶xj♢)− d(S) ≥ d(S ∪ ¶xj, xk♢)− d(S ∪ ¶xk♢).
In the next proposition, we demonstrate a problem instance where the necessary and

sufficient condition of DeĄnition 20 is violated for d considered in Eq. (B.13), hence proving

that our objective is non-submodular under no further assumptions.

Proposition 21. The set function d of Eq. (B.13) is non-submodular.

Proof. For convenience letŠs focus on the case of Gaussian mean inference for the classical

Bayesian posterior (β → 0), where the objective can be handily written in closed form.

Similar arguments will in principle carry over for arbitrary βs and statistical models. We

recall from Eq. (A.3) that

d(S) = −1

2


−d log

(
1 +N

1 + N
M
♣♣IS♣♣1


− d+ d

(
1 +N

1 + N
M
♣♣IS♣♣1


+ (1 +N)(µ1 − µw)T (µ1 − µw)

]

= −1

2
(1 +N)♣♣µ1 − µw♣♣22, (B.14)

where

µ1 =
1

1 +N

N∑

n=1

xn, µw =
1

1 +N

N

M

∑

xi∈S

xi. (B.15)

LetŠs consider a set of observations containing two mirrored datapoints x0,−x0, such that

x0 ̸= µ1. Then clearly

d(S ∪ ¶x0♢)− d(S)− d(S ∪ ¶x0,−x0♢) + d(S ∪ ¶−x0♢)
=d(S ∪ ¶x0♢) + d(S ∪ ¶−x0♢)− 2d(X ) = d(S ∪ ¶x0♢) + d(S ∪ ¶−x0♢) < 0, (B.16)

where we have used the fact that d(S) = d(X ) = 0.

http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
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Table B.2: Neural linear regression datasets

Dataset d N train N test

Housing (Dua and Graff, 2017) 13 446 50
Songs (Dua and Graff, 2017) 90 463,711 51,534

B.3 Datasets details

The benchmark datasets used in logistic regression (including subpopulationsŠ selection)

and neural linear regression experiments are detailed in Tables B.1 and B.2 respectively,

and include:

• a dataset used to predict whether a citizenŠs income exceeds 50K$ per year extracted

from USA 1994 census data (Adult),

• a dataset containing webpages features and a label categorizing them as phishing or

not (Phishing),

• a corpus of webpages crawled from links found in spam emails (WebSpam),

• a set of hospitalization records for binary prediction of readmission pertaining to

diabetes patients (HospitalReadmissions),

• a set of various features from homes in the suburbs of Boston, Massachussets used

to model housing price (Housing), and

• a dataset used to predict the release year of songs from associated audio features

(Songs).

For Adult, Phishing and HospitalReadmissions we Ąt our statistical models on

the Ąrst 10 principal components of the datasets, while all logistic regression benchmark

datasets are evaluated on balanced subsets of the test data between the two classes (see Ta-

ble B.1).

Original versions of the six benchmark datasets were respectively downloaded from the

following URLs: http://archive.ics.uci.edu/ml/datasets/Adult, https://archive.ics.uci.edu/

ml/datasets/Phishing+Websites, https://www.cc.gatech.edu/projects/doi/WebbSpam Cor-

pus.html, https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+ years+1999-

2008, https://archive.ics.uci.edu/ml/machine-learning-databases/housing, and https://archive.ics.uci.edu/ml/datasets/Y

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/machine-learning-databases/housing
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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[N ] [1, . . . , N ]

# Number of
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DKL Kullback-Leibler divergence
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