Technical Report Al

Number 97

Computer Laboratory

A study on abstract interpretation and
“validating microcode algebraically”

Alan Mycroft

October 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1986 Alan Mycroft

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A study on abstract interpretation and
- “Validating Microcode algebraically”

Alan Mycroft
Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG
England

This report is a pre-print of a chapter of “Abstract in-
terpretation — theory and practice”, Abramsky, S. and
Hankin, C. (eds.), Ellis-Horwood, 1987. Any references
should refer to the book rather than this report.

Introduction

This chapter attempts to perform two rdles: the first part aims at giving a state-
of-the-art introduction to abstract interpretation with as little mathematics as
possible — the intention being to bring together ideas from various sources. We
leave open the question of what is the ‘best’ denotational meta-language for ab-.
stract interpretation per se. The second part gives a fairly tutorial introduction
to an application of abstract interpretation based on the relational style of [16] by
considering an embedding of Foster’s work on ‘validating microcode algebraically’
into the the framework of abstract interpretation. It is intended that the parts
may be read independently. No claim of novel techniques is made, but rather this
work attempts to make the literature more understandable to a wider audience.
I will draw mainly on the works of Nielson and myself but the dependence on
Foster’s [6] and the Cousots’ [4] contributions should also be clear.

This work is seen as complementary to Foster’s and provides an alternative
(and semantically based) way of understanding its theory. In particular we will
not attempt to achieve the pragmatic success of Foster’s work. One might com-
pare his work with discovering regular expressions corresponding to the regular
languages we work with. Another parallel is that between Milner’s algorithm for
type checking using type expressions containing variables and unification with the
development in [16] using sets of monotypes and abstract interpretation.

1 Abstract interpretation

Let me start this first part by making several statements on abstract interpretation
in the form of ‘slogans’. These will then be developed in more detail.

e The process of abstract interpretation is merely that of proving the equiv-
alence of two denotational semantic definitions of a given language with

1

respect to a correctness relation.

e Reynolds [23] developed a technique (using directed complete relations) to
show a special case of this in 1974. Similar techniques are used by Plotkin [22]
(logical relations) and also discussed in Stoy [26] (inclusive predicates).

e Mosses [13,14] introduces the notion of “abstract semantic algebra” which
can be used to describe the semantics of programming languages via interpre-
tations in the algebraic manner. The interpretations give meaning to symbols
in the conventional denotational meta-language of the typed A-calculus.

o (F.) Nielson [18] and in an application with (H. R.) Nielson {21] demonstrates
that a rather more complicated two-level meta-language can be pragmati-
cally useful in separating ‘compile-time’ and ‘run-time’ notions.

o In a sense, one can see the following sequence of works (in chronological or-
der) providing the principal theory on which this exposition is based: Cousot
and Cousot [4], Donzeau-Gouge (5], Mycroft [15], Nielson {18], Burn, Hankin
and Abramsky [3] and Mycroft and Jones [16].

The above choice of works are intended to reflect my view on principal contribu-
tions to the theory of abstract interpretion. There are also many other excellent
works on its applications which I do not touch on here.

The view we shall take in this paper — the details follow — is that the process
of abstract interpretation is the setting up of standard and non-standard semantics
of a given language. The framework we consider here is when they are both given
denotationally. This means that they may both be given as interpretations in
the algebraic sense (of domains and values for uninterpreted symbols) for a single
denotational definition of the language into an uninterpreted meta-language. The
differing domain(s) are related by abstraction relation(s). Moreover, these abstrac-
tion relations are required to be preserved by operations used in the meta-language
and so we may deduce that the relevant abstraction relation holds between stan-
dard and non-standard meanings of any given program !,

One can see abstract interpretation as thus including certain forms of equiva-
lence proof between denotational semantics. On the other hand, there is a conven-
tional view that the abstracting interpretation ‘ought’ to be computable. Abstract
interpretation is not concerned at first sight with studies such as that in chapter 13
of Stoy [26] in which denotational and operational definitions for a given language
were shown to be equivalent.

In section 3 we will set up a denotational semantics for microcode programs. In
the meanwhile we will, for simplicity and concreteness, discuss ideas in a framework

17This restriction would seem to be the way in which proving the equivalence of two denotational
semantics is in general richer (harder) than abstract interpretation as it is generally understood.
For example, in proving semantic equivalence, we may merely desire the weaker condition that a
given equivalence only holds in certain contexts — see later for more detail.

of a simple language of commands and expressions given by
Cmd:c u= z:=¢ | ¢;¢' | ifethencelsec' | whileedoc

where = is assumed to range over a set Var of variables and e over a set Ezp of
expressions.

We will now consider various possible semantics for such a language. The only
requirement is the “denotational assumption” [26] — that there be a domain M¢ymg
of meanings for commands and that there be a function C : Cmd — Mgy which
gives the meaning of commands and which is defined in terms of the meanings
of their constituent parts. Since Cmd is generally infinite, we view C as giving a
‘translation’ of Cmd into meta-language® terms whose type requires them to yield
values in M¢mg. This is often described by saying that C is ‘homomorphic’®. It
is more precise to state that C is to be defined over Cmd by structural induc-
tion. Similar requirements would be placed on expressions if they were recursively
defined.

Accordingly the only possible form of C[e;c] is C[e;c'] = E[C[c], C[c']] where
E[m,m'] represents a (meta-language) expression which (possibly) contains m and
m'.

Of course, since the meta-language is the A-calculus this merely rewrites to a
requirement that there be a function seq : Mgng X Moma — Momd. Each clause can
thus be written in the form (e.g.) Cle;c'] = seq(Ce¢], Cc'])

Due to our interest in giving several alternative semantics for a given pro-
gram we will give a schematic semantics in which several domains and functions
are left uninterpreted. Formalisation of this idea can be traced to Nielson’s the-
sis [18] although the identification of interpreted and uninterpreted symbols with
“compile-time” and “run-time” notions only appears as a statement in his later
work [19] on two-level meta-languages.

The above arguments essentially re-create Mosses’ earlier and more theoretic
work on “abstract semantic algebras” ([14] is the definitive reference but [13] sets
out the points in a somewhat simpler manner). The difference is however that
Mosses uses this structure to then modularise semantic definitions (see the dis-
cussion in the “Aside” below) in order to investigate which interpretations of the
combinators such as seq occur naturally. We are interested in varying the inter-
pretations of combinators and investigating their relationships.

?Here, as usual, the typed A-calculus.

3This is a terribly weak form of the word since syntactic structures are generally assumed to be
a free algebra (i.e. programs are syntactically equal if and only if they have the same parse trees).

To put this on a little more formal basis we state that thus any denotational
semantics for Cmd can be written:

Mema

Mg,, } uninterpreted spaces of denotations

M Var

ass : My, X ME,,, — Momd

seq : Meoma X Meoma — Momd uninterpreted function

cond : Mgy X Mcma X Mcma — Mcoma | symbols (combinators)
rpt : MEgp X Mcma — Mcma

C:Cmd— Mcma

€ : Ezp — Mp,, | semantic scheme functionalities °

YV : Var —» My,

Clz := €] = ass(V[z], £[e])

Cle; '] = seq(Clc], Cle'])

C[if e then celse c']| = cond(&[e], C[e], Cc'])
C[while e do c] = rpt(&[e], Cc])

semantic equation schemes

Note that such semantics are really very weak — for more discussion see 7] where
the options of presenting detail in the algebra or in the semantics are explored.
However, for our purposes of re-interpreting meta-language symbols the choice is
ideal.

Now, we define an interpretation, I say, to be a tuple of spaces* interpret-
ing Mcmdy Mezp, Mver and a tuple of functions ass, seq, cond, rpt with the above
functionalities (together with possibly other functions determining the meaning of
expressions and variables).

Such an interpretation induces a meaning to the semantic functions (and thence
a semantics) in the traditional algebraic manner. We refer to the semantic func-
tions induced from the semantic functions schemes C, €,V and interpretation I as
Cr, &, Vr.

As an example, letting Val be a set of values including a value O interpreted as
‘false’ and Env = Var — Val be the set of states, the standard (direct) semantics
can be given by an interpretation

4

Env— Env_L, \ (MCmdy \
Eny — Val, Mg,
Var; Mvar;
Std — A(v,m.).Ap.p[m, /], - ass,
)\(mc, mc’)-mc’ 0 M, seq,
A(mey Mo, me).(Ap.me(p) # 0 — m.(p), ma(p)), cond,
A(me, me).fizA®.(Ap.m.(p) # 0 — &(m.(p)), p), rpt,

J

4*Here domains, although we use the unbiased word ‘space’ to allow for interpretation over other
mathematical structures.

Note that to avoid complicating the equations certain coercions have been omitted
such as that from Env — Env, to Env; — Env) in the interpretation of seq.
For the relation with Nielson’s two-level meta-language see section 2.1.

Note on “homomorphic”

Earlier, the use of the word “homomorphic” to describe semantic equations was
criticised on the grounds that it merely meant “inductive”. On the other hand, we
may wish to assert (following ideas such as transformational semantics [2]) that in
all contexts the programs

[whileedoc] and [ifethen (c;while e do c) else skip]

are equivalent. Then this would translate to a real homomorphic constraint on
interpretations that

rpt(m., m,) = cond(m,, seq(m., rpt(m.,m.)), skip)

provided skip gave the interpretation of skip which could itself be further restricted
to be the identity. Such restrictions naturally encode ‘traditional’ program con-
struct equivalences.

Aside

The reader familiar with denotational semantics [8,26] will recognise the concepts
of ‘direct’ and ‘continuation’ styles of semantics as special cases of the above.

e Direct semantics has state transformers (s.e. functions from Env — Env) as
the meanings of commands.

¢ Continuation semantics has continuation transformers (i.e. functions from
(Env — Ans) — (Env — Ans) for some space Ans of answers, probably Env
here) as the meanings of commands.

For Cmd these could lead to semantics equations (for a store semantics) of the
respective forms:

Cle;c']p = Clc'I(Cle]p) (direct)
Cle; ']rp = Clc](C[c']x)n (continuation).

See Gordon (8| or Stoy [26] for more detail.

Mosses rightly decries the convention that all semantic domains are ‘concretely’
given in terms of domain constructors +, X, — from given ‘base’ domains. This
leads to the proliferation of arguments to semantic equations as we see in the
above which make them hard to understand for more complicated examples. In
Mosses’ works referenced above the argument is that abstract data types, instead
of these concrete data types, greatly facilitate modularisation of large semantic

5

descriptions — this directly parallels the corresponding argument for the use of
abstract data types for programming large systems. Note that we are considering
the abstract data types to be ultimately given in terms of certain concrete data
types whose exact description is irrelevant to us (see Reynold’s parable [24]) rather
than an axiomatic specification. This ensures that logical relation ideas can be
used straight-forwardly.

Mosses’ theory also corresponds to a view that there is a pyramid-shaped spec-
trum of possible denotational definitions of a language — at its apex are possible
interpretations of our semantic scheme given above and lower points correspond
to those semantic forms where certain choices of domains have already been made.
One example would be the instantiation that meanings of commands are functions
accepting function arguments and yielding function results.

2 Abstraction of interpretations

Now let us turn to the rasson d’étre of factoring our semantics into schematic
semantics and interpretations — the fact that we wish to relate two different
semantics for the same language.

Suppose we have two different denotational semantics for our programming
language Cmd — one ‘real’ and one ‘abstract’ whose results specify properties
about the ‘real’ computation. We can see both of these as being given by inter-
pretations (in the sense above) of the semantic archetype above. Let us suppose
that these are called Cg[-] and C4[-].

Now what we wish to show is that some form of correctness property holds i.e.
(Ve)Cr[e] & Ca[c] for some correctness relation >. One way of proving that such
a relation holds is to construct relations at appropriate meta-language types and
show (by structural induction on meta-language terms and thereby for any given
form of ¢) that this holds.

This idea can be traced to Plotkin, Reynolds and Milne and Strachey and
leads to the notion of a logical relation. (The term fnclusive predicate is often
used for a very similar idea in spite of the fact that this is at some variance with
the definition in Milne and Strachey [11].) To be more precise, suppose we label
the relation above as P g to indicate that it relates the ‘R’ interpretation of
Mcomg to its ‘A’ interpretation. We will write these domains as R¢pg and Agmd
respectively, thus Pcms € R(Rcmdy Acmd) — the space of relations. Now let o,7
be meta-language types formed from Mgpg, X,— and let R,, A, be the spaces
obtained as the interpretation of the type o when Mg,,4 is interpreted as Reomg, Acomd
respectively and X, — are conventionally interpreted as product and function space
respectively.

Suppose now that we have a type-indexed family >, € R(R,, A,) of relations.

We define (>,) to be a logical relation [22] if and only if for all types o, r we have

(Vr € R,,r' € R,)(Va € A,,d' € 4,)
(r beanr bra) & (rr') Poxr (a,a)
(Vr € R,y ¢ € Roer)(Va € Ag,) € Apsy)
(rboa=ér brpa) & ¢ boor

This definition generalises trivially to allow more than one base type (Cmd above).
Although the above is a definition of when an indexed relation is logical it is
clear that is can also be used to give an inductive definition of a logical relation
from a specification of its effect at base types. In the above this means that, for
all o, b, is determined from a given b cgpnq.
We now return to the problem of proving (Ve)Cr[c] b cms Cafc]. Let R,, and
A, give the interpretations of seq in R and A respectively. Now, showing that

(Vr,r' € Rema)(Va,d' € Acma) (1)
(r Doma@ At Bomia’) = Rug(r,r') 1 oma Awg(a, a')

would establish one case of a proof by structural induction (over meta-language
terms).
Now, if 1>, is a logical relation we could simply require that

Ri,eq B cmax Cmd— Cmd Aseg
which is is equivalent to

(Vr,r’ € RC’md) (Va, a e ACmd)
(1’ Domda A r! B> omd a') =3 R,,q(r, r’) P> comd A.,q(a, 0.')

which is indeed a stronger form of equation 1 above. .

The above explains how to relate corresponding constants of the two differing
interpretations B and A. We now say that the interpretation A abstracts R, written
R b A or more formally B P cmd Ezp,.. A, if we have a relation 1>, € R(R., A,) for
each base type ¢ € {Cmd, Ezp, ...} of the uninterpreted type symbols and R F Ay
for each uninterpreted constant f (presumed to be of type).

Mycroft afid Jones [16] discuss these ideas in greater depth (including the
possible definitions for +) and also showed how this form of argument could be
used to verify a form of the Hindley /Milner polmorphic type system. However,
the idea of relating two interpretations goes back to the Cousot’ original work [4]
although they used adjoined functions instead of relations. Similar ideas were
introduced by Nielson [18] in his thesis (the simy relation) which also discusses
their definition on certain forms of recursive types; however, this source is rather
inaccessible due to that fact that sim, is rather tied up with the definition of the
collecting semantics.

In my opinion this style of proof seems to characterise much of abstract in-
terpretation. On the other hand it seems equally clear that not all proofs of

7

equivalence of denotational definitions can be performed by such techniques (con-
sider proofs involving ‘context’). However, I would shy away from attempting to
characterise abstract interpretation in this manner — even though it seems nat-
ural and would distinguish it from general denotational equivalence proof theory.
Another aspect is that Nielson’s treatment of abstract interpretation with TML
essentially provides the ability to insist that various constant symbols may only
take on restricted meanings as interpretations vary — see the next section.

I would like at this point to put the, possibly controversial, view that abstract
interpretation is essentially a special case of denotational equivalence proof the-
ory. In particular we assert that “abstract interpretion” is nothing more than
proving the equivalence (relative to some relation) of two different denotational
semantics of a given programming language and that Reynolds [23] as long ago as
1974 described a special case. On the other hand many applications of abstract
interpretation do not feel very much like classical denotational equivalence the-
ory. I believe that this effect is due to the fact that previous work on semantic
equivalence proof has always been based on an “equality-like” relation setting up
a mutual simulation of the two denotational definitions. Abstract interpretation
applications have by and large been concerned with a “partial order-like” rela-
tion due to the fact that we are interested mainly in proving ‘safe’ properties of
programs using a decidable interpretation.

This is, at first sight, a rather depressing thought to add to a book devoted to
abstract interpretion. Solace may be gained from the view that abstract interpre-
tation devotees now understand proof of equivalence of denotational definitions!

2.1 Comparison with Nielson’s two-level meta-language

In this section we compare the special case development above with Nielson’s
TML. Nielson introduced in his thesis [18] the idea of a two-level meta-language
(TML) for denotational definitions. One of the most readable introductions I have
seen is given in [21] but note that Nielson has a contribution in this volume. To
enable direct comparison and also for the sake of completeness we accordingly give
a short introduction to what I feel are the essential elements of TML.

The idea is that we give meanings to some of the (meta-language) symbols
occurring in the denotational translation of a program once and for all, but leave
others uninterpreted to be specified by interpretations.

The above works introduce a meta-language TML which is a form of the typed
A-calculus with a two-level structure of types. These are called ¢t and rt and can
be seen as representing notions of “compile-time” and “run-time” in that they
formalise the somewhat intuitive notions of Tennent[27]. The above references
make this more precise. Letting A and B be sets of type symbols and X and Y.
be sets of type variables then the type structure of TML can be written

ctu=A | X | ety+ +cty | ety X Xty | oty — ety | recX.ct | rt
rtu=B | Y | rtyd-codrtn | rtyX e Xrt, | riiorty | rec.rt

8

where underscoring is used to distinguish type symbols in r¢. The idea is that the
elements, A; of A are interpreted by domains corresponding to conventional base
types (e.g. the integers) and +, x, — and rec X.ct represent the standard domain
constructions of sum, product, function space and recursive domain definition.
These are fixed over all interpretations. On the other hand, the B; are interpreted
individually for each interpretation as are the “run-time” constructors +, x,—
and rec Y .ct. The link between the two levels is made by ct ::= rt.

Together with these types come (two levels of) appropriate operations on them
(essentially introduction and elimination rules for each type) together with con-
stants of given types. The meanings of constants are allowed to vary between
interpretations (but see the discussion of the term structure of TML, below).

Due to technical problems with power domains required for the notion of col-
lecting interpretation Nielson’s thesis actually considers a sub-language TML, with
the clause rt ::= rt;—rt; omitted and with some restrictions on the types of con-
stants. '

This is quite a rich language (perhaps this accounts for the fact that such a

'powerful framework has not been more taken to heart by the abstract interpreta-
tion community®) and somewhat redundant. One aspect of its redundancy is that
the requirement for interpretations to specify the lower level domain constructors
may be simply removed by adding suitable extra elements of B;. For example, the
type (By X B;) — (B1xB,) may be replaced by the type (B; x B;) — By and
the interpretation now specifies B,, B;, By instead of B,, B,,x. This is a simple
expansion of a higher-order (in the sense that type constructors as well as types
are allowed to vary) type system into a first-order one which can simplify the ex-
position of TML®. By way of mitigating this criticism of Nielson let us recall that
his aims were to develop abstract interpretation for other than ‘toy’ languages and
such higher-order notions enhance the ease of expressions. This is presumably of
great use in Nielson and Nielson’s PSI project [21] which involves the development
of a powerful program analysis and translation system based on TML.

Nielson himself (20| considers a different sub-language of TML in a paper aimed
at showing how Mycroft and Jones’ [16] work on abstraction relations and Abram-
sky’s development therefrom [1] could be subsumed in a relatively small develop-
ment from TML. This sub-language is called TML, and essentially contracts the
rt type structure to a single point. Its type structure is given by

ctu=A | eti+cty | ctyXety | ¢ty —ct; | B

In some sense this indicates some problem in our understanding of the real essence

5This is also possibly due (mea culpa) to the fact that at the time- of its introduction the
mixed strands of category theory, logical relations, collecting interpretation via power domains
and two-level meta-language were rather intertwined and not easily seen apart.

®In particular, I think that the higher order type system of Nielson’s meta-language (one pa-
rameterised on operations on spaces (e.g. the cartesian product) as well as on spaces themselves)
is an elegant extension to the base theory which unfortunately seems to clutter the theoretical
development.

of “compile-time” and “run-time” notions in that it is not intuitively clear that it
should be rt to collapse. Investigation as to why this is so seems to be required. In
order to clarify the following comparision it is convenient to give Nielson’s TML,
meta-language terms here: '

(fi constants of type ct
z; variables of type et
inje | 1s;e | out;e + introduction/elimination
en=1 (e,€e') | el X introduction/elimination
Az cte | e(e') —+ introduction/elimination
fizge | , fixpoint
e—e,e conditional

Note that only the constants f; are allowed to vary between interpretations —
in particular the fixpoint and conditional terms are ‘always conventionally inter-
preted (which indeed requires that the spaces B; are always interpreted as cpo’s).
However, looking at this term structure a little closer we can reduce its complexity
further by considering syntactic elements (except for) as being meta-language
constants (for example we can eliminate (:,-) by introducing a constant symbol
pair and then replacing (e.e') with pasir(e)(e') everywhere). This then brings TML
much closer to the framework we consider here. So perhaps an appropriate slogan
is that Nielson’s two-level meta-language is really a two-level interpretation of the
uninterpreted typed A-calculus! See the end of this section for a more detailed
proposal.
The development given in section 1 above has a system of types given by

lu=ti X Xty =1 i B
and terms of the form
ex=fi | i | Mzry...rzn).€ | eolery...,en)

Moreover the A-term is only required in restricted ways to express notions of
binding and is employed in such places as the treatment of input in section 4.
Mosses [13] discusses this in more detail.

Now it is clear that this system is a greatly simplified version of Nielson’s and
corresponds to a further honing towards minimality and rational reconstruction
following the movement in this direction in Mycroft and Jones [16]. Moreover, we
are left to interpret the spaces and functions over any’ category. Our approach
is essentially to treat an interpretation as specifying the meaning of all the sorts
and operations from the signature of the denotational semantics schema (as in the
initial algebra approach to data types [7]). Of course, several symbols would prob-
ably have the same interpretation relative to other symbols in all interpretations
of interest.

"If we wish to explain binding constructs by A-abstractions (see [13]) then this must be cartesian
closed.

10

Moreover, it is not at all clear that this technique loses any expressive power
over the full TML, for example we can achieve the effect of fiz,.e by fie where we
will chose to interpret f; as the fixpoint-taking constant of type (¢t — ct) — ct.
It is clear that similar replacements can be done for all the other terms (except
A-abstraction and application) in TML;. As a slogan this would be “replace pre-
interpreted combinators with application of appropriate constants”. This example
tends to reinforce the view that the latter has some duplication of concepts in
the two levels. (This is intuitively clear as (e.g.) a constant expression in a pro-
gramming language can often be interchangeably evaluated at compile-time or
run-time.)’ '

On the other hand, we ought to lose some facility. This would seem to be
(considering the fixpoint example above) the externalisation of the restriction of
f; to mean ﬁ:c. This movement may have the disadvantage of making the proof
that a particular interpretation satisfies a certain correctness (abstraction) relation
harder, in that less has been done schematically. However, it would seem that
this question has not yet been properly investigated (nor, as far as I know, even
discussed) and this should be done with some urgency.

At this point I would like to propose an alternative proposal of a formulation
for TML as hinted at above. Let us take the liberty of calling this TML;,. TML;
is a meta-language with a type structure of the following form:

te=A | h—t, | B

t.e. the typed A-calculus with two levels of type symbols. Its term structure is
given by
eu=g; | fi | zi | Az.e | e(€)

The intention is that this this specifies the typed A-calculus with two levels of inter-
pretation. The first, fixed, level is that for (A4, g;) of type symbols and constants of
type ¢t together with variables z; of type ¢t for A-abstraction. The second, variable
level, varies over interpretations and specifies (B, f;) as in Nielson’s framework. I
must emphasis that this is only a tentative proposal, but it seems to come closer
to our intuitive views on abstract interpretation. Certainly this notion of two-level
interpretation allows us the freedom to work over any algebra — its structure is
specified by the first level interpretation and its constants (which vary over in-
terpretations) by the second. Moreover, TML; allows any types and values for
interpretations and thus would appear to sidestep Nielson’s restriction requiring
constants to possess “contravariently-pure” types [20]. This is connected with the
fact that this development works purely with relations and not, as Nielson does,
also with (abstraction) functions. A theory of abstract interpetation based on
TML; may also be easier to work with due to the smaller number of expression
and type forms. Again research is needed.

11

2.2 The collecting interpretation and adjoined functions

Nielson’s thesis framework required the notion of a collecting semantics which was
formally given by the power-interpretation of the standard interpretation. The
collecting interpretation was then related to abstract interpretations by means of
adjoined abstraction and concretisation functions. This followed previous work on
the collecting semantics by Mycroft and Nielson [15,17|. Basically, Nielson’s col-
lecting interpretation (which induced the so-called collecting semantics) had the
domains which interpreted the rt level of meta-language types replaced by their
power domains and functions lifted from elements to sets of elements®. The prob-
lem which arises is that power domains (with all the natural requirements) do
not seem to exist at function types, thus Nielson was forced to restrict TML by
restricting the valid meta-language types to forbid these situations from occur-
ring. Mycroft and Jones [16] gave an alternative development in which the use of
adjoined linctions with a collecting interpretation were replaced by relations with
the standard interpretation.

It may be helpful for me to recant on one point now: I now believe that my
development [15] of the collecting interpretation to have been a mistake. It seemed
at the time to generalise the Cousots’ work [4] on flowcharts in a natural way to
functional languages. Certainly it enabled proof about the f| function in strictness
analysis. However, it seems to present a blind alley and attempts to solve this
merely led to unreadably complicated papers. My view now is that the minimal
function graph semantics of Jones and Mycroft [10] is much closer to the Cousots’
collecting semantics. ,

The view from [16] is that moving away from the viewpoint of abstraction and
concretisation functions in general (although particular uses of abstract interpre-
tation will no doubt continue to find them a useful special case) will obviate the
need for the collecting interpretation and the problems of suitable power domains
with it. Nielson’s latest work [20] also follows this train of thought.

3 Microcode

In this second part we consider applying some of the above ideas to provide an
alternative exposition of aspects of Foster’s [6] work on “verifying microcode al-
gbraically”. The model of microcode used below is loosely based on Foster’s. We
suppose our (micro-)machine has a set Reg of microcode registers which each may
contain values from a set Val of values which we assume to contain a distinguished
value O representing a false condition. Instructions Inst may be an (atomic) action
(from Act) which updates an environment - see later, a conditional branch (based
on some expression Ezp) or a read from or write to a port. Instructions carry
a (possibly implicit) indication of which instruction is to be executed next. The
letters r, v, 1, ¢, e will be used to range over these sets.

8 This is one conventional category theoretic answer to describing a relation by a function.

12

Traditionally, we would say that such a program is given by a graph? together
with a consistent labelling of its nodes and arcs with instructions. This can be a
little messy formally and so here we define:

Microcode programs:

A microcode program is a triple (IV,no,code) where N is a set of nodes (labels)
ranged over by n,l. ng is a distinguished (start) node and code is a function from
N to

Inst = Actx N + Ezpx (Actx N)® + Ezpx N + Regx N

in which the summands represent command, conditional (possibly with commands
executed ‘on the fly’), output and input respectively. We will write elements of
these summands using the suggestive notation:

[c; goto (]

[if e then ¢; goto [; else ¢'; goto I']
[write e; goto !]

[read r; goto (]

Note the slightly unusual binding of [if ¢ then c; goto /; else ¢'; goto I']. We have
adopted a single (assumed multiplexed) input and output channel for simplicity
and it should be clear how to extend the semantics to handle more than this.
Otherwise we have provided most of the features of a typical microcode controller
expect for micro-procedures and instruction despatch (the latter may be modeled
as iterated conditional branch). Note that we do not include a ‘halt’ instruction —
it makes very little sense at the microcode level and its absence simplifies things
by ensuring that all execution sequences are infinite.

In our simple model we will treat the computer’s main memory as an I/0 device
as far as microcode is concerned. Now one might argue that this is unreasonable
given that we fully expect that writing to a storage location and then reading
it twice should yield the same answer and this should be built into our seman-
tics. We will counter by arguing that microcode should be reliable against failures
in system components and that no such assumptions should therefore be made.
Moreover, such assumptions would be wrong with (e.g.) dual-ported memory. We
take the view that such arguments concerning the behaviour of systems should be
made separately in a language designed for this (such as Milner’s CCS [12]). Mi-
crocode programs should be verified under the assumption that their environment
is malicious.:

®Compare the definition of a graph as a pair (N, f: N — P(N)) where N is a set of nodes and
f gives the set of successor nodes (and hence arcs) from a node.

13

4 Microcode Semantics

From now one we will assume that we have a fixed program u given as the triple
(N, ng, code). :

As is usual in abstract interpretation, we will wish to give several meanings
in different universes of discourse to our microcode program whose syntax was
introduced above.

To allow us to readily change the set of values manipulated we will suppose
the set V' (archetype Val) gives the values manipulated in a given interpretation.
An environment is a (the current) association between register and values, t.e. a
function (ranged over by p) from the set Envy = Reg — V. We will often drop the
subscript on Env when it is clear from context or when the discussion is generic.

We assume that the meaning of atomic commands and expressions are given
by two functions ’

A Act — Envy — Envy, £ :Ezp— Enwy =V

Formally, both A and £ should be specified by interpretations or at least should be
subscripted by V' and the way in which new environments or values are calculated.
However, as in the first part the internal details are not of interest. Here we will
only use this standard interpretation specified by the hardware (which we write
Avat, €va when we wish to stress this) and a one-point interpretation As}, Egay with
V = {*} which can only have the one definition vz

Agple](Arx) = (Ar.x), Erle](Ara) = »

and so this abuse of notation will not be harmful. The above is a restriction on the
possible interpretations we may consider, for example it disallows the “relational
method” of [9]. However, this is not important here.

Due to our interest in giving several alternative semantics for a given microcode
program (as we discussed in the introduction) we will give a schematic semantics
in which several domains and functions are left uninterpreted.

An interpretation will be required to specify three domains and five functions:

|4 as discussed above — specifies A, £ too.

D a domain of denotations — see interpretations
Ans a domain of answers

atom : Inst X D — D atomic actions

cond:Inst XV x Dx D— D conditional actions

output : InstxV x DV output actions

input : Inst X (V — D) - D input actions

intt : (Node X Envy — D) — Ans gives starting conditions and answer extraction

14

As in the first part, this induces a semantics by:

U : Program — Ans
U[u] = tnit(¢) whererec
#(n,p) = case code(n) of
[¢; goto l].atom(code(n), #(I, Alc]p))
[if e then c; goto {; else ¢’; goto I'].cond(code(n), & [e]p, #(1, Alc]p), d(I', A[']p))
' [write e; goto I].output(code(n), £ [e]o, 6(1,p))
[read r; goto!].input(code(n), Av.¢(l, p[v/r]))

Of course, the use of whererec implies the use of a fiz constant which must also be
specified in our interpretations, but we will always interpret this as least fixpoint
and accordingly omit it.

In some sense this definition does not ‘feel’ denotational, especially after consid-
ering the simple while-language Cmd in the first part. The cause of this ill-feeling
is that Cmd had simple rules for constructing bigger programs from their con-
stituent parts which involved at most three components. For flowcharts, we have
one construction rule for every graph — and it can only be applied once. This
is also the source of the criticism that flowcharts are much less ‘structured’ than
corresponding while-programs.

Having supplied such a semantic scheme, we must give it a standard interpreta-
tion which specifies its standard semantics!®. The attitude taken is that the space
of answers is an interactive input/output stream. This is modelled denotationally
by the domain equation for Ans in the type part of the interpretation:

Ans = (Val x Ans) + (Val — Ans)
V = Val '
D = Ans

where X is the cartesian product and + is the separated sum. Intuitively this
means that the program computes for a while until it possibly either offers output
and computes further (the left summand) or waits for input by providing a function
which when applied to a value yields the answer corresponding to rest of the
computation (the right summand). Note that interactive I/O is of the essence,
since microcode typically sends an address to an output port and then reads an
input port to read the associated data. The expression part of the interpretation
is given by:

atom(i,d) = d

cond(t,v,d,d) =v#0—d,d

output(i,v,d) = iny(v, d)

input(t, f) = iny(f)

init(¢) = ¢(no, Ar.0)

where tn; and in, are the injection functions associated with the sum type for Ans
above,

19But see section 4.1 for complications timing constraints may place on such a semantics.

15

Following the discussion in the introduction about continuation and direct se-
mantics the above semantics we have given is in some senses direct (in that its first
clause applies meaning of the ‘rest of the program’ to the state resulting from its
first action). However, it has the continuation-style ability to yield output before
termination. This shows the rather artificial nature of the pedagogic distinction
between the two extremes.

Instruction trace interpretations

In many ways the semantics we have just constructed is ‘too abstract’. For exam-
ple the meaning of a program is just its input/output relationship with no details
preserved as to (e.g.) timing — one of the points we particularly wish to discuss.
Accordingly we need to add operational detasl to distinguish microcode programs
with a given input/output behaviour and which respect timing constraints from
others with the same behaviour but which fail to meet timing constraints. Ac-
cordingly we consider the semantics given by the interpretation:

4

Ans= Inst X ((Val x Ans) + (Val — Ans) + Ans)
V = Val

D = Ans

atom(i, d) = (i,1ins(d))

cond(¢,v,a,a') = (1,ins(v # 0 — a,a'))
output(i,v, a) = (i,in4(v, a))

input(f) = (¢, tna(f))

| init(¢) = ¢(no, Ar.0)

This interpretation gives a semantics in which a trace of all instructions executed
is recorded as part of the meaning of the program. We do not keep a trace of
the values of the registers during execution even though it would be quite easy to
do so. This corresponds to the fact that we wish to model Foster’s framework in
which values of registers are not considered in calculating the regular expression
path algebra.

Note: there were many ways in which this augmentation could have been
done, and not all would be correct. It is not part of the framework of abstract
interpretation to show that the augmentation is correct. Certainly we can define
an appropriate abstraction relation (here function) from the augmented semantics
to the standard semantics and thereby show that the standard semantics is some
form of projection:

IT1=‘

g: Ansn-l — Ansm,d

0(s, ina(d)) = 0(d)

0(7,4ny(v,d)) = iny(v, 0(d))

(i, iny(f)) = tna(Mv.0(fv))
However this is far from showing that the augmented semantics is correct! I feel
that insufficient attention has been given to this problem in the literature.

18

Following the discussion in the introduction we now start to consider instruc-
tion sequences which may be executed subject the the assumption of a malicious
world in which any read statement may read any datum. This can be specified
by an interpretation with:

(

Ans = P(Inst*)

V = Val

D = Ans

atom(1,d) = add(7, d)

cond(t,v,d,d') = add(i,v # 0 — d,d)
output(i,v,d) = add(t, d)

input(t, f) = add(i,Uyey f(v))

| tnit(@) = ¢(no, Ar.0)

where add(i,d) = {1 :: z | z € d}

[TZ = {

where Inst™ = (Inst x Inst*), is the set of (possibly infinite) sequences of in-
structions with constructor function ::. This interpretation collects a trace of all
instruction sequences assuming that each read operation may read any possible
datum, but still assuming calculation within the interpretation is precise.

Of course, this is still in general difficult to compute (it would generally be
undecidable if Val were infinite) and one much closer to Foster’s is given by:

/

Ans = P(Instt)

V= {x}

D = Ans

atom(s, d) = add(t, d)
cond(t,v,d,d') = add(i,d U d')
output(t,v,d) = add(s, d)
input(t, f) = add(z, f(*))

| tnit(@) = ¢(no, Ar.%)

and where add is as in IT;. Now we have identified all data items (some form
of terminal interpretation — at least with respect to the definition of Ans) and
the consequence is that the program graph determines its semantics and that
conditional branches are all assumed to ‘go both ways’. As a remark we note that
this naturally identifies programs such as

I'T3.=4

ng: ifr then ¢o; goto n,;else ¢;; goto n, and ™ if r then ¢;; goto n;; else ¢g; goto n,
ny: ng:

and that therefore not all program analyses (nor exact execution) can be modelled
in this scheme.

Now what we have developed is an interpretation which defines a semantics for
microcode programs in which meanings are sets of strings of instructions which
include all those which may actually be executed in the standard interpretation.
What we have is essentially a theoretical understanding of the formal language of

17

execution sequences and Foster’s implementation associates them with one regular
expression describing that language.

In the denotational semantics sense our interpretation is more abstract whereas
Foster’s is far more implementable.

Foster uses regular expressions to represent the execution paths through mi-
crocode programs and then uses homomorphisms on these to determine program
properties. Because he uses regular expressions, microcode programs (despatch
loops) interpreting higher level instruction sets are commonly represented by

program = tnit.(inso + insy + -+« + ins,,)*

Therefore, because the code [l : ¢; goto!] is not representable as a regular ex-
pression Foster’s algorithm for constructing the regular expression from a program
detects such loops before applying homomorphisms. (Note that simply ignoring
such a construct would lead to errors if one wanted to know (e.g.) the maximal
time between two interrupt polling instructions.) One may be tempted to suggest
that a more natural form for a microcode ‘regular’ expression, bearing in mind
that microcode programs do not reasonably “halt”, is in fact

program = init.(insg + insy + -+« + ins,)"

where tnit and the tns; are regular expressions. This would accord closer with our
framework where we have to consider infinite computation sequences. However
it is not clear how to fit such an idea into Foster’s framework and moreover it
is not clear that it bestows any benefit in that his homomorphisms would detect
(for example) any ins; which had a net change on the microcode stack register
with (-)* equally well as with (-)“. Certainly we could model this by changing our
interpretation so that such a despatch loop could produce finite as well and infinite
execution sequences. However, we will not do so as in our case the natural choice
seems to be only to consider infinite computation sequences and their abstractions
— an interesting difference between theory and practice!

4.1 Discussion on semantic correctness

We noted that the standard interpretation and semantics are so abstract that they
take no account of the states through which the microcode interpreting mechanism
passes. This is generally a good thing in that we do not-wish to clutter up the
semantics of a high level language with details of its possible inplementation tech-
niques. We then added details of instruction traces in successive interpretations.
However, in microcode it is quite conceivable for (e.g.) the effect of a subroutine to
depend on its (dynamic) nesting — certainly microcode sequencers often include
some limit on subroutine nesting. Moreover, because of the relationship between
microcode instruction counts and hardware timing for interrupts and the like, we
will in general require a much less abstract semantics — another example would be
the real possibility that a read operation may not follow a write operation for at

18

least n cycles. One formal way of doing this is to define a ‘fully checking’ interpre-
tation in which the state contains a component specifying machine details (such
as clock ticks since startup, subroutine nesting and the like). However, these tend
to be extremely complicated reflecting the complexity of the underlying hardware.
Another, which is very much in the spirit of Foster’s work is to assume a ‘perfect’
semantics but also to consider the exact execution instruction trace semantic in-
terpretation IT;. If the trace component of Ans;, contains an invalid instruction
sequence or violation of timing constraint then we treat the answer as if a fully
checking semantics had produced an error value. Now we can characterise several
of Foster’s homomorphisms as exhibiting images of Ans;y, in which absence of
such errors there implies that the standard semantics is valid.

5 Abstraction relations corresponding to Foster’s
homomorphisms

Above we derived an interpretation ITs for microcode programs which produced
traces of all possible executions by assuming that read actions produced arbitrary
values and by identifying all data values.

Let us now consider one of Foster’s microcode validation homomorphisms which
determines the maximum number of instructions executed between two “interrupt
poll” instructions. Given an instruction trace set S € P(Inst™) and a set Poll C
Inst we can derive this quantity by a definition of the form (provided we use the
order C=< on IV - this will be written IV<):

6: P(Inst*) - NS

6(5) = Lz € § | 8'(2)}

' : Instt — IN<

8'(z) = U{n € IV | (3i € IN)z; € Poll A zi1n € Poll A OK(z,i,i +n)}
OK(z,t,5) © (VK)(§ < k < j =) & Poll)

where §'(z) gives the maximum distance apart of any two members of Poll in the
sequence z, '

It is not immediately clear that the above definition of § is continuous with
respect to these orderings. In fact, writing a fixpoint definition for 6' leads to
considering pairs of the form (n,m) where n is the time from the last interrupt
poll and m is the maximum separation so far (of course n < m). Accordingly &'
may be defined in terms of

(0,m) if i € Poll
try(i,(n,m)) = (n+1,m+1) ifi¢ PollAn=m
(n +1,m) ifi & PollAn<m

The problem is that this characterisation is somewhat ad hoe and indirect.
We would rather define an interpretation POLL to express the value directly as

19

Uporr[u] instead of 6(Urr,[u]). This can be done by:

(Ans = INS

D= NS x NS

V={x}

atom(i,d) = try(t,d)

cond(i,v,d,d') = try(s,d) Utry(s, d')
output(i,v,d) = try(t,d)

input(t, f) = try(t, f(*)

| init(4) = ma(f(no, Ar.%))

where 7, is the projection ¢ X 7 — 7 and ¢ry as above.

One final thing remains, to set up a relation between POLL and IT3 and to
compare it to Foster’s homomorphism. It turns out that all the base type cases of
the abstraction relations can be defined by functions:

absy : {x} — {x}

absD . DIT, - Dpou,

absan, : Ansyr, — Ansporr,

absy (¥) = %

absp(S) = (Uzes N{f | z: € Poll},§(S))
absn,(S) = 6(S)

So writing, for space a € {V, D, Ans},

POLL = |

T Doy € y=abs,(z)

we have that ITs Dy,p an POLL and thus Foster’s homomorphism has become an
abstraction relation.

As a final comment it seems necessary to remark that in a sense this homomor-
phism did not convert to an abstraction relation in anything like such a natural
manner as I had anticipated when I started this work. This may simply repre-
sent my missing some obvious short-cut. However, the above use of the domain
INS x INS seems essential for (continuously) capturing the notion of maximum
polling interval. On the other hand it is clear that one only wants one component
of this as an answer in order to satisfy the correctness relation

§(Uimy[u]) < Upore]u]

The most likely explanation is that Foster has found a framework which sidesteps
the domain theory used here by his use of regular languages.

Acknowledgments

Thanks to Mike Gordon, Mogens Nielsen and Glynn Winskel here at Cambridge
for discussions which aided my understanding. Also thanks to the editors for
perceptive and useful comments and for tolerating my inspiration’s inability to
meet their deadlines.

20

References

[1]

[2]

(3]

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

12)

[13]

Abramsky, S. Abstract interpretation, logical relations and Kan extensions.
Unpublished manuscript, 1985. (An earlier version was entitled “Strictness
analysis based on logical relations”.)

Bauer, F.L., Berghammer, R., Broy, M., Dosch, W., Gnatz, R, Hangel, E.,
Méller, B., Partsch, H., Pepper, P., Samelson, K. and Wassner, H. “The
Munich project CIP - volume 1: the wide spectrum language CIP-L”, vol.
183, Springer-Verlag, 1985.

Burn, G., Hankin, C. and Abramsky, S. The theory and practice of strictness
analysis for higher order functions. Imperial college report DoC 85/6, 1985.
To appear in Sctence of Computer Programming.

Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for
static analysis of programs by construction and approximation of fixpoints.
Proc. ACM symp. on Principles of Programming Languages, 1977.

Donzeau-Gouge, V. Utilisation de la sémantique dénotationelle pour I’étude
d’interprétations non-standard. INRIA rapport 273, 1978.

Foster, J.M. Validating microcode algebraically. Research report, Royal Sig-
nals and Radar Establishment, Malvern, Worcs., UK, 1985. To appear in
Computer Journal??

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. “Initial alge-
bra semantics and continuous algebras”, JACM vol. 24, no. 1, 1977.

Gordon, M.J.C. The denotational description of programming languages.
Springer-Verlag 1979.

Jones, N.D. and Muchnick, S.S. Complexity of flow analysis, inductive asser-
tion synthesis, and a language due to Dijkstra. Proc. 20th Conf. on Founda-
tions of Computer Science, 1979. '

Jones, N.D. and Mycroft, A. Dataflow of applicative programs using minimal
function graphs. Proc. ACM symp. on Principles of Programming Languages,
1986.

Milne, R.E. and Strachey, C. A theory of programming language semantics.
Chapman and Hall, 1976.

Milner, R. A calculus for communicating systems. Lecture notes in computer
science, vol. 92, Springer-Verlag 1980.

Mosses, P.D. A semantic algebra for binding constructs. DIAMI report PB-
132, Computer science dept., Aarhus University, 1981,

21

[14] Mosses, P.D. Abstract semantic algebras. Proc. IFIP TC2 Working conf. on
formal description of programming concepts II, Garmisch, North-Holland,
1982. Also available as DIAMI report PB-145, Computer science dept.,
Aarhus University.

[15] Mycroft, A. Abstract Interpretation and Optimising Transformations of Ap-
plicative Programs. Ph.D. thesis, Edinburgh University, 1981. Available as
computer science report CST-15-81.

[16] Mycroft, A. and Jones, N.D. A relational framework for abstract interpre-
tation. Lecture Notes in Computer Science: Proc. Copenhagen workshop on
programs as data objects, vol. 215, Springer-Verlag,.1985.

[17] Mycroft, A. and Nielson, F. Strong abstract interpretation using power do-
mains. Lecture Notes in Computer Science: Proc. 10th ICALP, vol. 154,
Springer-Verlag, 1983. .

[18] Nielson, F. Abstract interpretation using domain theory. Ph.D. thesis, Edin-
burgh University, 1984. Available as computer science report CST-31-84.

[19] Nielson F. Abstract interpretation of denotational definitions. Research re-
port R-85-5, Institut for electroniske systemer, Aalborg Universitetscenter,
Aalborg, Denmark, 1985.

[20] Nielson F. Strictness analysis and abstract interpretation of denotational
definitions. Unpublished manuscript, 1986.

[21] Nielson, H.R. and Nielson F. Pragmatic aspects of two-level denotational
meta-languages. Research report R-85-13, Institut for electroniske systemer,
Aalborg Universitetscenter, Aalborg, Denmark, 1985.

[22] Plotkin, G. Lambda definability in the full type hierarchy. In [25].

(23] Reynolds, J.C. On the relation of direct and continuation semantics. Lecture
Notes in Computer Science: Proc. 2nd ICALP, vol. 14, Springer-Verlag, 1974.

[24] Reynolds, J.C. Types, abstraction and parametric polymorphism. IFIP 83,
(ed) R.E.A. Mason, North-Holland, 1983.

(25] Seldin, J.P., and Hindley, J.R. To H.B. Curry: Essays on combinatory logic,
lambda calculus and formalism. Academic Press, 1980.

[26] Stoy, J. Denotational semantics: the Scott-Strachey approach to program-
ming language theory. MIT press, 1977.

[27] Tennent, R.D. Principles of programming languages. Prentice-Hall, 1081.

22

