Technical Report A

Number 98

Computer Laboratory

Power-domains,
modalities and the Vietoris monad

E. Robinson

October 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/



© 1986 E. Robinson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Power-domains, Modalities and the Vietoris Monad

E. ROBINSON

Computer Laboratory,
Corn Ezchange Street,
Cambridge, CB2 $QG

Introduction

It is perhaps possible to divide, rather crudely, the syntax-directed approaches to program-
ming language semantics into two classes, the “denotational” and the “proof-theoretic”.
A denotational semantics corresponds (more or less) to model theory; at least in the sense
that it proceeds by studying objects that represent the interpretations of (denote) syntac-
tic constructs in the programming language. It follows that there are approaches which
do not result in a partial-order semantics, but which nevertheless still carry much of the
denotational flavour. Work I believe can be placed in this category includes that on se-
mantics done by Martin-Lof (¢f. Martin-Lof [1982]), and the method of giving a functional
programming language a semantics in the (typed) A-calculus.

In the second, proof-theoretical, approach the idea is rather to make assertions about
(fragments of) the program in a suitable assertion language, and then to use a set of
proof rules to combine these into some global assertion about program behaviour. I would
include in this category such techniques as the use of Floyd-Hoare logics, and the various
modal languages which are chiefly used for describing non-determinism and concurrency.
Indeed, it is with one of these modal languages that this paper is chiefly concerned.

There are, of course approaches that do not lie snugly in either of these glib categories.
Operational semantics & la Plotkin [1981a] uses proof rules to build up a denotation of a
process as a transition system, and so seems to combine elements of both philosophies,
while Martin-Lof type theory, with its strong proof-theoretic emphasis, does not really lie
securely in the first category.

This paper is based on a different viewpoint which also has the effect of linking the
two approaches. The results discussed here stem from the work done in recent years by
Beeson, Fourman, Grayson, Hyland, Johnstone, Scott, Wraith, and others (¢f. Fourman
& Grayson (1982}, Fourman & Scott (1979], Johnstone [1982]) on locales as formal spaces.
We show that this approach provides a way in which we can hope to use a proof-theoretical
‘semantics to give us a denotational one. In the first part of this paper we review those
aspects of the general theory which are needed for the sequel. This material can all be
found in Peter Johnstone’s book on “Stone Spaces” (Johnstone [1982]), which I strongly
recommend to the reader who is interested in finding out more about locales than I have
space to include here.

The second part of the paper introduces an essentially modal construction on locales,
which can be used to obtain a description of the various power-domains of algebraic



cpo’s. In fact I shall content myself with only giving explicitly the construction of the
Plotkin power-domain, the constructions of the Smyth and Hoare power-domains being
left as (relatively easy) exercises for the active reader. The point of the construction
given here is not that it is in essence new - in fact it is easy to view it either as a
reformulation of the power-space construction of Smyth [1983], or as a variant of the
modal construction found in Winskel [1985] — but that by giving a presentation of the
powerdomain by means of an algebraic description of its lattice of open sets we are able
to transform the recursive domain equations and descriptions for semantic maps of a
conventional denotational semantics using power-domains directly into proof rules. In this
paper this is not, however discussed in any detail, and the reader is referred to Robinson
(1986] for a more complete discussion.

In the third section we discuss in greater depth and with a greater degree of technicality
the view of power-domains as free non-deterministic algebras. We use results of Johnstone
[1985] to show that any algebra for the vietoris monad carries a semi-lattice structure, and
results of Plotkin and Hennessy to show that over algebraic domains the continuous semi-
lattices and the algebras for the vietoris monad coincide, an extension of Johnstone’s
results, and obtained by simpler means. The result does not hold for general locales. We
then use this fact to indicate how to deduce a complete set of proof rules, which hold when
modelling non-determinism in algebraic domains, but which certainly fail for a semantics
which allows general localic semi-lattices.

Finally, we include a brief discussion of the relation between our present work and that
of Winskel as section four.

I would like to take this opportunity to thank Martin Hyland, Peter Johnstone and
Glynn Winskel for many stimulating discussions, and for the interest they have all shown
during the preparation of this paper.

1 An introduction to locales

Locales, the primary objects of our study in this section, can be thought of as the Linden-
baum algebras for constructive propositional theories, or more precisely for intuitionistic
. propogitional theories as formalised by Heyting, but with disjunction over arbitrary sets
of formulae and without — as a basic propositional operator. Formally, a locale is defined
as follows:

DEFINITION A locale, or complete Heyting algebra, is a partially-ordered set (A,<) with
finite meets and arbitrary suprema, in which finite conjunction distributes over arbitrary

disjunction:
an\/s=\/{ars|seS).

I am following the usual convention in which finite includes empty. An immediate
consequence of this (which otherwise it would be necessary to state explicitly) is that
every locale has a top element (T = M ¢) as well as a bottom (L = V ¢). Note that
a locale is a complete lattice (though not necessarily a completely distributive one), and
that the distributivity of A over colimits means (by the adjoint functor theorem) that
a A () has a right adjoint, which we can interpret as implication (since the adjunction
aA() < a—()holdsiffforallbandc — (aAb< ciffb<a—c).
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The operations A and V can be regarded as (infinitary) algebraic (though V splits
into an infinite family of operators, one for each arity), and the distributivity is just an
algebraic axiom (or rather, an axiom schema). It follows that we can construct the free
complete Heyting algebra on a set of basic propositions, subject, if we wish, to inequalities
between terms. For example, if we have a program logic given by proof rules, we can
regard the rules as giving inequalities in the complete Heyting algebra of propositions of
the logic.

A map of locales is given by a A afid V/ (hence T and 1) preserving map p*:B — A.
We follow Johnstone in making the convention that maps in the category of locales go
in the geometric direction, and so p* gives us a map A — B in the category Loc. It is
easy to check using this definition that Loc has a terminal object, the two-point locale
2=(T=1, L=0}.

Models of the theory represented by a locale A are given by the A \/-preserving maps
A — 2; or in more categorical terms, models are given by the representable functor
pt = Loc(2, ). It is easy to check that if for a € A we define

Us={p € pt(A) | p'(a) =1},

then U_ is a locale map from the powerset of pt(A) to A. Translated into more conventional
terms, this tells us that { U; |a € A } forms a topology on pt(A), and so, after the easy
verification that locale maps give rise to continuous functions we can treat pt(_) as a
functor from Loc to Top, the category of topological spaces.

Conversely, given any topological space, X, its lattice of open sets forms a locale
1X, and continuous maps of spaces give rise to locale maps between the corresponding
topologies. This does not give an equivalence; however the two functors pt and 2 are
adjoint.

1.1 LEMMA 2 — pt: Loc — Top.

Proof. Given a continuous map f:X — ptY we must define an A\/-preserving map
[*:Y = QX, in order to give a locale map 1X —Y. So, given y € Y, we take f*(y) to be
/™1 U,, where U, is defined as above.

Coversely, given f*:Y — 1X we define a continuous map f on z € X by

@) y)=T it ze fy).

We leave verification of the necessary equivalences to the reader (alternatively, see John-
stone [1982] IL.1). a

DEFINITION If the unit of this adjunction nx : X — pt(2X) is an isomorphism, then we
say that the space X is sober. :

1.2 LEMMA A topological space X is sober if and only if each irreducible closed subset
of X is the closure of a unique point. In particular, any sober space is Ty.

Proof. The irreducible closed subsets of X are the closed subets of X which cannot be
expressed as the union of any finite number of proper closed subsets. Their complements
therefore generate the prime principal ideals in £2(X); but the prime principal ideals cor-
respond naturally to the elements of pt{02X). (]

Furthermore



1.3 LEMMA  If A is a locale, then pt(A) is sober.

Proof. 1t is an immediate consequence of the triangle identities for adjunction that Npt i
monic. Hence it suffices to show that it is also surjective.

Let p be a point of 11(ptA). Then p* : (ptA) — 2, and so corresponds to a prime
filter 7 in the locale ((ptA) that is inaccessible to directed joins. The natural (counit)
map p* : A — ()(ptA) is surjective, so we look at (*)~17.

(¢*)~17 is a prime filter on A, and it is also inaccessible to directed joins; it thus gives
rise to a point g of A. We claim that ng = p.

By definition of 5, (ng)*(U) = T (U € Q(ptA)) if and only if g € U. But ¢ € U if
and only if there is an a € A with p*(a) = U and g(a) — T, and, since q was given by
(¥°)~}(7), this is equivalent to U being in 7. Hence (nq)* = p* as required. m]

We relate these spaces to the usual categories of cpo’s by means of the specialisation
ordering and Scott topologies.

We can define the specialisation ordering on the points of any space by z < y if and
only if z € cl{y}. If the space is Ty, in particular if it is sober, then this pre—order is a
partial order. In the case of a sober space X = ptA we have z < y iff z° < y* in the usual
functional ordering (since z € cl{y} if and only if every open containing z also contains
the point y).

1.4 LEMMA X = pt A has arbitrary directed sups in the specialisation ordering. The
ordering has a bottom element iff X is irreducible. '

Proof. Let S be a subset of X directed in the specialisation ordering. Then VS is defined
pointwise via (V 8)*(a) = V{ p*a | p € S}. Thisclearly preserves \/’s, and it also preserves
A, since A commutes with directed sups in 2.

The second statement is obvious. a

DEFINITION If X is a partially—ordered set, then the Scott topology £(X) on X has as its
open sets those subsets of X which are upwards closed in the partial order and inaccessible
by directed joins.

When the order relation on a set X is given by the specialisation ordering for some
topology, the Scott topology is not, of course, completely unrelated to the original.

1.5 LEMMA If X = ptA is sober, then the subsets of X which are open in its given
topology also form open sets in the Scott topology on X.

Proof. It is easy to see that the open subsets of X are upwards closed in the specialisation
preorder on X. Furthermore, since X is sober, any open of X is of the form U, for some
a € A,80if VS € U, for some directed set S, then \/{p*a | p € S} and the result follows
from the compactness of 2. 0

1.6 COROLLARY If X is sober, then ZX is the finest topology on X compatible with
the specialisation pre-order.



It is, however, important to note that this does not imply that the Scott topology on
~ X is necessarily sober.

Thus, we can obtain a predomain (a domain without L) from a locale. In order to go
the other way, we look at the locale which is the Scott topology on the domain. Here we

have:

1.7 LEMMA If D is an algebraic cpo, then it is sober in its Scott topology (or equiv-
alently, it is the space of points of its Scott topology).

Proof. The Scott topology on D has as open sets the unions of sets of the form z1, where
z is a finite (isolated) element of D (we shall call the collection of these isolated elements
B[D]). The Scott topology on D is therefore given by the same locale as the upwards closed
topology on 3([D)]. Now a point of a locale is given by a completely prime filter (the set of
elements sent to T). Suppose 7 is such a filter on 2 8[D], then {z|30 € 7.21 C O} is
upwards closed and downwards directed in 8(D|, and furthermore completely determines
F. It follows that the elements of pt(ZD) correspond precisely to ideals in 8([D], in other
words to the elements of D. O

More generally, it is easy to show that continuous cpo’s are sober in their Scott topolo-
gies. It is also known that there are other cpo’s which possess this property. However,
the question of finding an order-theoretic characterisation of the complete family remains
open.

To sum up, locales are the natural models for (infinitary) intuitionistic propositional
logic. Given a set of proof rules and some basic propositions we can construct the locale
of provable equivalence classes of propositions. The points of a locale always form a
predomain, and if the predomain is actually an algebraic cpo, then there is a very close
correspondence between the domain and its Scott topology.

There remains one further point, and a warning. Implicit in the above is a definition
of cpo which allows for arbitrary directed sups, and not just colimits of w-chains. I believe
that this can be justified constructively by working in a setting (such as the effective
topos, or Martin-Lof type theory, Hyland [1982], Martin-L5f [1982]) which ensures that
you can only ever do indexing over those sets whose suprema you might legitimately wish
to take. By contrast, restricting oneself to countable but otherwise arbitrary directed
sups seems rather hard to justify if it is intended as a measure to introduce some degree
of constructibility.

However, it must be admitted that if one does wish to work in the category of cpo's
which only have joins of w-chains, then the approach given above does not function well.
The “obvious” fix, of allowing only w-indexed (or, more generally, a-indexed) sups in the
definition of an w-locale (a-locale) does not work. One can go on to define w-spaces and
w-sobriety as before. However, the points of these spaces still have arbitrary directed sups
in the specialisation ordering. What this comes down to saying is that you cannot restrict
the colimit properties of your category of models simply by limiting your syntax in this
way.



2  Vietoris locales and power-domains

Peter Johnstone has shown in Johnstone [1985] how to define an endofunctor on Loc
which generalises the Vietoris power-space construction. Given a locale A we construct
V(A), the Vietoris locale of A as the free locale on a basis of tokens [Ja, © a (where a
runs over the elements of A) subject to the following axioms:

1. if a < bthen Ja <0Ob, and Ca < Ob
2. if S is directed in A then VS =V {Os| s € A}

. {(a) O(aAbd)=D0aAdb
(b) T =T
4. If S is any subset of A (including ¢), then

OVS=V{Cs|seA)
(and hence O L = 1.)

[

(2]

.O(avd)<OavOd
. Oand)2Canmb.

[>2]

I would like to stress that, despite the fact that I have used the suggestive modal
notation, for the purposes of this construction, [Ja should not be regarded as the result of
applying the modal operator [ to the (abstract) proposition a, but as a single indivisible
token. CI(a A 8) is thus a single token formed from two components whch are [J and the
element (a A b) of the locale.

We refer the reader to Johnstone (1985] for an account of the way in which V extends
to a functor on Loc, and of the monad it generates. We shall not need this information
in this section.

We shall however be interested in V*+(A), the strict Vietoris locale of A, obtained from
V(A) by forcing 0.1 = L (or equivalently O T = T). Indeed, the principal result of this
section is

2.1 THEOREM If D is an algebraic cpo, then V*(ED) is the Scott topology on the
Plotkin powerdomain of D.

We recall that if D is an algebraic cpo, with isolated elements B[D), then the Egli-
Milner ordering X on M[D|, the set of finite subsets of B[D] is defined as follows:

A=ZoB if YWweBJacAa<bd
Az B if VaeA3IbeBa<b
AXB iff A<9Band A< B.

Note that ¢ is an isolated point of M[D| under the Egli-Milner ordering. We shall write
M°[D] for M[D] \ {4}.

The Plotkin power-domain of D ( PI(D) ) is the completion by ideals of M*[D] with
respect to the Egli-Milner ordering. It is thus an algebraic cpo whose isolated points
are isomorphic to (M*[D],x), and its Scott topology is the upwards closed topology on
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M*[D|. The Smyth and Hoare power-domains are obtained by similar constructions, also
on M*[D), but using the orderings <o and <, respectively.

We shall deduce the theorem above from

2.2 THEOREM  If D is an algebraic cpo, then V(ZD) = Z(PI*(D)) where PI*(D) is
the completion by ideals of M[D].

The proof goes via the obvious sequence of lemmas:
2.3 LEMMA  There is a locale map %: V(ED) — ZP1*(D), given by

¥ {an,...,on}Tgy = Ola1tV...Vas1) A Olart)A...AO(an1).

(As usual we identify the Scott topology on an algebraic domain with the upwards closed
topology on its set of isolated elements.)

Proof. In this case there are no meets and joins between basic elements whose preservation
we have to ensure. We just have to check that

{61, . ,bk} =< {01,- .. aaﬂ}
implies that

O(atVv...Vaa ) AO (@) A...AO (ant)
SD(blTV...kaT)/\O(blT)/\.../\O(ka).

But we have
{br,..., b} =0 {a1,...,8n}
if and only if
a1fVv...va,T < bitv...vbt,
and this in turn implies that
Of(a1TVv...Vanl) < O@G11V...Vh)

by the monotonicity of 1 .

Similarly, the implication
{b1,...,bk}ﬁ1 {al,...,a,,} = O(GIT)/\.../\O(G"T)SO(blT)/\.../\O(ka)

follows from the monotonicity of <. O

I claim that ¢ has an inverse. In order to define it we have first to know that the
elements

O(a1tv...Vvapr )ACO BN A...AD (bx1)



where the a; and the b; are isolated elements of D, form a basis of V(ZA) (in the strong
sense that any element is a directed join of elements of this form).

To see this note that for any Scott open O:
00 = OV{afl|ae€ 0,aisolated}

OV{(a1TV...Vanl) | a; € 0, q;isolated}
VCI{(alTV...Va,.T | a; € 0, a; isolated}

since this is now a directed join, and also that

Q0 = OV{bt|be 0, bisolated}
= \/O{bt|be 0, bisolated}.

2.4 LEMMA  There is a locale map ¢: Z(PI*(D)) — V(D) defined by:
o' O(ar1fVv...Vaa) =U{X1,, | XC{a1,...,an}}
and p*O bt = {1,b}1 ,,.

Note that in defining ¢* on elements of the form O b1, we make use of the fact that D
has L. I believe this to be essential to the proof.

Proof. We must check that * preserves the defining relations for the Vietoris functor.
First we show that if @ < 8, then ¢*'Oa < *0Op4.

Without loss of generality we can assume that a =a; V...V a,1 and that
B=01V...Vhi.

From this we know that {by,...,bh} <o {a1,...,an}. Now, given X C {ay,...,an}, we
have {a;,...,an} <o X and hence {by,...,5} <o X.

Refining {b;,...,b;} we obtain Y C {by,...,b;} such that Y < X, and so have indeed
that

P‘D(GITV...VG,‘”
= U{XTEM | X € {ay,...,an}}

< ULY 1 1Y S {b,.... 01}
=§0.D(bITV...kaT)

When we come to < we can assume that « is of the even simpler form a{ and that 3
is similarly b1. Now at < bt if and only if # < @, and X € p*(af) = {L,a}1,,, if and
only if there is an z in X such that a < z. Hence {1,a}{,,, < {1,b}1,,,, as required.

©* preserves [J of directed joins by definition of the extension of ¢* to V(ED), and
from the fact that our basic elements are [ of quasi-compact opens in D.

We must show that o*'O(a A f) 2> ¢*'Oa A 'O
So suppose that v = {c1,...,cm} g, = Clp, C X1, for some X C {ay,...,a,}
and that Ct,,, C Y1, forsomeY C {b,...,b}; then X < C, and Y < C, and hence
A=%X=%C,B=x30Y=%C.
Therefore, by monotonicity, Jv > QO(aA §), and hence Ct gn 18 a finite subset of the
image of O(a A ).

To show that * preserves the inequality O(aV 8) < Oa Vv O f, we note first that
C1 gy is in the image of OO(a Vv ) iff for some XU Y(X C {ay,...,8,},Y C {b1,...,b:})
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we have XUY < C. Now, if Y = ¢ then C{,, is in the image of Oa. If, on the other
_hand Y # ¢, then for some y € Y we must have {L,y} < C, which implies that Clep is
contained in the image of © 3.

Finally, we must show that p* preserves the inequality JaAO 8 < O (a A f). I CT,,,
is contained in the image of JaA < g then there is both an X < Cand a ; € {b1,...,b¢}
such that {L,5;} < C. This implies that there is a ¢ in C such that b < ¢. It follows that
aA B 2> ctin A. However, for any ¢ € C we have {,c} < C, and putting these together
we see that Ct,,, < 'O(anfp). =~ 0O

To conclude the proof of theorem 2.2 we have to show that the maps ¥ and ¢ of
lemmas 2.3 and 2.4 are mutual inverses.

In one direction we have
2.5 LEMMA ¢y is the identity on Z(Pl* D).

Proof. We look at its effect on basic opens:
‘p"l’.({alv-':au}rau)
= @' [O(@tv...Vaat)] A Ofa11)A...AO(an 1)
= [J{Xte | XS {ar,...,a0}} 0 m{L,ai} 1y,

Now, suppose {ay,...,a,} < Y, then we have {1,a;} < Y for all i.

Conversely, if X < Y, for some X C {a,...,a,}, then for all y in Y there is an ¢ such
that a; < y and so {ay,...,a,} %o Y.
On the other hand, {1,a;} <; Y for all i implies that {a;,...,a,} <; Y.
Hence {ay,...,an} X Y. O

The converse is only slightly more difficult.
2.6 LEMMA ®¥ is the identity on V(ED).
Proof. We have
'’ (Cal) = ¢ {L,a}1,
O(Ltva) AO (L) A (al)
O (at)
since L f = T and by the monotonicity of .
We also have ¢*p*(Qat) = ¢* [¢15, U {a} 1., ]=0é v (@A(at) A (al)).
But Ofaf) 2 O¢ and O(at)AO (at) = O (at)AO (L1), and so this comes out to [1(at).
Now, whereas © respects finite unions, [J does not. We must prove the general case
for O by induction.
| v'e'(Ofa1tv...vant])
= ¢‘[ U{XT I XQ {01,...,0n}} ]
= w([O(a;,1V...Va, DAC(ai, DA ...A (a;, 1) ]
= [A(atV...vaa1) A Qa1 A...AO(anl)]
Vv w O(ai, TVv...va;,1)

{igseesir }C{1s0nin)
= [ O(a1tVv...Vant) v W O(ai,TV...Va; 1) |

Al O(@at)vwO(a,tv...va;, 1) ]| A...

9



Now for each < (a;1), one of the components of this join is
O(e11V...V&GTV...Vanl),
and we have
O(at)vO(artV...vaGiVv...vasl) > OfarlV...Vanl).

Hence the whole expression is at least (21 TV ... Vap1).

On the other hand, since it is clearly contained in O0(211 V...V a,1), we must have
equality. a

This concludes the proof of theorem 2.2.

We obtain theorem 2.1 by corresponding forcing operations in the two locales. The
Plotkin powerdomain is obtained from P1* (D) by forcing ¢ to be identified with the bottom
element. Now, p*(¢1.,,) =0O., and so a locale isomorphic to the Scott topology on the
Plotkin powerdomain is obtained from the Vietoris locale by forcing 0L to be L, or in
other words, by taking the strict Vietoris locale.

Rather simpler, though essentially similar methods, enable us to give analogous de-
scriptions of the other two powerdomains:

2.7 PROPOSITION

(i) Let Vo(A) be the locale generated by tokens [Ja subject to the axioms:

(a) if S is directed in A thenO Y S =V {Os|se S}
(b) i.0O(aAd)=D0aAOb

ih.gT="T
(e)OL=1L1.

Then Vo(Z D) = I Po(D), the Scott topology on the Smyth powerdomain of D.
(ii) Let V;(A) be the locale generated by the © a subject to the axioms:

(a) If S is any subset of A (including ¢), then O VS =V {Os | s € S}
(b) OT=T.

Then V(X D) = I Py(D), the Scott topology on the Hoare powerdomain of D.

3 Non-deterministic algebras

In this section we study the recent work of Peter Johnstone on the Vietoris monad and
examine it in the context of some results of Plotkin. The results are not in essence new,
though the fact that any algebraic semi-lattice carries a Vietoris structure is an extension
of results in Johnstone [1985]. The importance of the material is indicated briefly at the
end of the section, where the presentation of the join map on the Vietoris locale is used
to give proof rules for the extension of a simple imperative language to one including an
or-operator.
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Since 0L and O T are complementary, V(A) decomposes as the disjoint coproduct of
V*(A) and a locale called V5(A) by Johnstone, and obtained by forcing OL = T. We
apologise for the slight clash of notation.

3.1 LEMMA Vo(A) is 02, the locale of opens of the one point space (which in our case
is singleton ¢).

Proof. The claim is that Vo(A) is the free locale on no generators. Johnstone observes that
OL =T forces Ja=T and Qa =L for all a. But given these, the remaining equations
and inequations in the definition of V(A) are satisfied automatically. This means that all
the generators are, in fact, redundant. a

We recall that the product of locales corresponds to the cartesian product of topological
spaces, and the sum to disjoint union. We use the notation “a x 8” to denote the element
of the product locale to be thought of as the elementary open rectangle of sides « and B,
and similarly (e, 8) to represent disjoint union.

Now V(A) carries a semi-lattice structure given by
0: 0 — V()

the injection of Vg, and

Vo VA xV(A) 5 v(a+A) Y9 va)

where q is defined by

q'(D(a,b)) = “Daxub”
q'(C(a,b) = “Cax1’viaaxOp

and V is the co—diagonal
V*(a) = (a,a).
Since q restricts to a map
VHA)x VHA) —  VH(A+A)

V¥(A) has the structure of a non—deterministic algebra in the sense of Hennessy & Plotkin
[1979] (in other words, it is a locale which is equipped with an associative, commutative
and idempotent binary operation).

V(A) is the free algebra over A for the Vietoris monad on the category of locales,
“however, if A is any algebra for this monad (with algebra structure givenby V(A) . = A)
then A also carries a natural semi-lattice structure given by

po : 0 — V(A) =, A
and

U: AxA 0 vA)x v(A) % Vv(A) -2 A

11



where n is the unit of the monad, the singleton map. We still have to show that these
maps satisfy the algebraic axioms of a semi-lattice. Having done this we can of course
use this process to induce another “semi-lattice” structure on V(A), however, when this
is done, the new structure is fortunately found to be the same as the first. Thus these
operations certainly induce a genuine semi-lattice structure on free algebras. In the case
of a general algebra, we use the fact that V(A) — A is split epi, and the naturality of the
definition of the operations given above in order to transfer the semi-lattice axioms from
V(A) to A. Exactly the same proof shows that if A is an algebra for the monad induced
by V*(A), then A carries a natural non-deterministic algebra structure.

I shall, rather loosely, call the algebras induced by this monad Lawson.

One of the major results of Johnstone's paper is that if a semi-lattice structure (resp.
non-deterministic algebra structure) is induced by a V-algebra structure (resp. V+-algebra
structure) on A, then that V-algebra structure (resp. V*-algebra structure) is unique. In
other words, the category of V-algebras (resp. V*-algebras) forms a sub—category of the
category of localic semi-lattices (resp. non—deterministic algebras).

It is, however, known that this is a strict sub—category (there is a compact Hausdorff
topological semi-lattice which is not Lawson).

On the other hand, we have the result of Hennessy and Plotkin (Hennessy & Plotkin
(1979], but better presented in Plotkin {1981]) that the power—domain of an algebraic cpo
is the initial non—deterministic algebra. The corresponding property for locales follows
immediately from this spatial resuls:
given a map A — P where A is the Scott topology on an algebraic cpo and P is a non-
deterministic algebra, there is a unique factorisation through the spatial co-reflection of
P (since A is itself spatial). The Plotkin—~Hennessy result now gives a lifting of this to
a homomorphism from the power-domain into this spatial co-reflection, and composing
with the co-unit of the adjunction gives the required map into P.

There is also a direct proof of this, which makes use of the rather simple localic
structure of A.

Put another way, the (localic) Plotkin-Hennessy theorem says that if we restrict to the
category of locales which are Scott topologies of algebraic cpo’s, then the free localic semi-
lattices are precisely the free Lawson semi-lattices. This has the immediate consequence
that the two associated monads are the same, and hence that any algebraic (localic) semi-
lattice has a unique algebra structure for the Vietoris monad.

To give an example of the use of this we consider the addition of an or combinator
to a simple imperative language. We suppose that we are given an algebra Comm of
commands, and we freely extend this to an algebra Comm’ over a signature enlarged by
the addition of or as an extra binary operator. We suppose the original language has
been given a semantics by imposing some algebra structure on State — S tate, and giving
a homomorphism ®:Comm — (State — State). We shall consider what are essentially
Hoare-style proof rules for the semantics, which we shall write

ap kg

Here ¢ is a command, p is an assertion about the state (equals Scott open subset of states)
at the beginning of the execution of the command, and g is an assertion which is intended
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to hold on completion of execution. Proof rules can be divided into two classes, those
concerned with describing the semantic domain (State — State), and those concerned
with giving a presentation of the map ®.

When we adjoin or we extend ® to a map
@' :Comm' — Hom(PI(States), Pl(States)),

where Hom is the semi-lattice homomerphisms. Hom(PI(States), PI(States)) is of course
equivalent to (States — Pl(States)). Since, given f:X — Y, PL(f) is a semi-lattice
homomorphism PI(X) — PI(Y), it is easy to extend the proof rules dealing with the
operators of Comm to the new semantics. We only have to cope with or, which is of
interpreted via the join operation in the semi-lattice. Using [corc’] = Vo ([e]x[c]) o A,
and the expression given above for V, we see immediately that the rules we need are:

c,a =08 c,a 0B c,a =08,
corc’,a = 08 corca = OF

and the similar symmetric rule for ©.

4 The modal approach of Winskel

The approach of Winskel {1985] is founded on the notion of a non-deterministic D-
computation, where D is an algebraic domain. These are finitely-branching trees whose
nodes are labelled by elements of 8[D] in such a way that if a node ¢' is a successor of the
node ¢, then valt' C valt.

Winskel also introduces a small modal language which has as basic propositions the
elements a of 3[D], together with the modal operators 00 and ©, and V as the sole con-
nective. This is interpreted via Kripke forcing; the relation t | p is defined inductively as
follows:

tlha if aC valt
th-pvg iff tlhportl|gq
tl-Op iff t|-p or for some ¢', successor of tt' - O p
t-Op iff t|-p or for all ¢', successor of tt' |- Clp
We shall write T I p for rootr | p.

The essential definition is now
V(T)={0Qs|TIOs},

and we note that if T is infinite, then V' (T) = UV(T,), where T, is the restriction of T
to the first n levels.

Write now p «— p' if for all T, T |- p iff T |F p'. Winskel produces axioms to show
that any [1s is equivalent to an expression of the form

O(ao,...,2a) VO V...VOb,.
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Using the fact that T |- pvp' if T | p or T | p', we restrict our attention to the expressions
O(ao, . -.,an) and O b.

Now for finite T, T |- O(aq,-..,6s) iff {a0,...,an} =0 leaves(T), and T |- b
iff {8} <) leaves(T), which implies that for finite trees Ty and T2, V(Ty) C V(T3) iff
leaves(T}) < leaves(T3) in the Egli-Milner ordering.

We now use this to induce a pre-order < on the finite non-deterministic D-computations
and observe that if Ty is the full subtree of T; up to a given level, then T; < T,. Further-
more, if T} X T3, then we can find a tree containing T as a full subtree and congruent
to T3 in the pre-order. This tells us that if T is the collection of all non-deterministic
D-computations, then we can extend < to T in such a way that T becomes the algebraic
completion of the poset of finite computations.

Winskel’s description of the power-domain now follows immediately:

4.1 THEOREM  Let D be an algebraic domain. Then the Plotkin power-domain P1(D)
is isomorphic as partially-ordered set to the set ({V(T)|T € T}, C ), and as pre-ordered
set to T with the continuous extension of <.

This relates to the approach given above via the sets V(T'). For a given proposition
Os, {V(T)|Os € V(T) } is a Scott open in the powerdomain, and is of course the one
corresponding to the element [Js of V*(ZD). Recalling that if 7 is any filter then a A b
is in ¥ iff both a and b are, we see that each V(T') gives a presentation of a prime filter
on V*(ID) (in fact completely prime, due to compactness), and we can read off various
implications between Winskel’s modal expressions from this.

This technique of course works only when we already know an equivalent of the modal
expression about which we are concerned in which the modal operators are nested one deep
(and there is perhaps no real need to consider formulae of greater complexity when one is
interested only in simple powerdomains). Winskel, however, does provide for iteration of
his modal operators, an essential difference between his approach and ours, and so has to
‘introduce further rules

O (Ca) 4+ O (Qa) 4 O(Ca) 4 O
0(0ae) -+ Og;
O(av (O8)) -+ O(a Vv b);
Ofav (Ob) - (Qa) v (Ob).

He then states a normal form theorem which reduces him to the case where modalities are
nested at most one deep. Since the Vietoris construction uses a language which includes
conjunction, we must at least add the absorption law for O:

O (an(Ob) 4 Oanb).

In our set-up, we note that the left-hand sides of all these axioms live naturally in
V(A x V(A)) (or V*(A x V*(A))). It would be interesting to show that the rules present
V*(A) as a closed sublocale (in fact a retract) of V+(A x V+(A))). This calculation,
however, at the moment defeats me. It would also be interesting to extend this to find
out the connection with the full locale of all modal propositions.
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As a closing remark, however, let me note that the use of iterated operators in such
contexts as Hennessy-Milner logic (where it is essential) seems to arise from the quite
different consideration of taking solutions of recursive domain equations, such as

D «—— State + PI( D'*e*),
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