
Technical Report
Number 984

Computer Laboratory

UCAM-CL-TR-984
ISSN 1476-2986

Efficient spatial and temporal safety
for microcontrollers and

application-class processors

Peter David Rugg

July 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2023 Peter David Rugg

This technical report is based on a dissertation submitted
December 2022 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Efficient spatial and temporal safety for microcontrollers and

application-class processors

Peter David Rugg

Abstract

This thesis discusses the implementation of Capability Hardware Enhanced RISC In-

structions (CHERI) secure capabilities for RISC-V microarchitectures. This includes

implementations for three different scales of core, including microcontrollers and the

first open application of CHERI to a superscalar processor. Tradeoffs in developing the

architecture and performant microarchitecture are investigated. The processors are then

used as a platform to conduct research in reducing the overheads for achieving temporal

safety with CHERI.

CHERI offers a contemporary cross-architecture description of capabilities. The initial

design was previously carried out in a single MIPS processor. Based on its success in this

context, this thesis investigates the microarchitectural implications across a wider range

of processors. To improve adoption, this work is performed on the more contemporary

RISC-V architecture. The thesis also explores the microarchitectural implications of

architectural decisions arising from the adaptation of CHERI to this new context.

The first implementations are to the Piccolo and Flute microcontrollers. They present

new tradeoffs, for example being the first CHERI implementations supporting a merged

register file and capability mode bit. The area and frequency implications are evaluated

on FPGA, and the performance and power overheads are investigated across a range of

benchmarks. To validate correctness, the processors are integrated into a new TestRIG

infrastructure.

This thesis also develops the first open instantiation of CHERI for a superscalar out-of-order

application-class core: RiscyOO. This presents new questions due to the very different

design of the more sophisticated microarchitecture, and highlights more architectural

tradeoffs. Again, the processor is evaluated on FPGA, investigating area, frequency, power,

and performance. This allows the first analysis of how the overheads scale differently

across different sizes of core.

Finally, the augmented processors are used as a platform to refine the use of CHERI for

temporal safety. Significant improvements are made to the architecture-neutral model

used for revocation sweeps. In addition, processor-specific acceleration of revocation is

performed, including new approaches for caching capability tags.

3

Acknowledgements

I would like to thank my supervisor—Prof. Simon W. Moore—for his patient supervision

and invaluable guidance. Thanks also to Prof. Robert N. M. Watson for his advice and for

driving the overall CHERI project to make this work possible.

It has been a privilege to be a part of the CHERI team and its exceptional collaborative

environment. Jonathan Woodruff, Alexandre Joannou, Jessica Clarke, Franz Fuchs, Ivan

Ribeiro, Nathaniel W. Filardo, Hesham Almatary, Marno van der Maas, Lawrence Esswood,

A. Theodore Markettos, and everyone else: thank you for always making time for thought-

provoking discussions, and for your contributions to the CHERI effort that made my work

possible.

To my parents: I do not know what I would have done without your support, particularly

since the pandemic. I hope you know how much this means to me.

Thank you also to my friends for being there for me along the way.

As well as my supervisor, thanks in particular to Sarah, Franz, Alexandre, Lawrence, and

my parents for help with proofreading that significantly improved this thesis.

Thank you also to my examiners—Prof. David Oswald and Prof. Robert Mullins—for their

time and suggestions.

Approved for public release; distribution is unlimited. This work was supported by the

Defense Advanced Research Projects Agency (DARPA) under contract HR0011-18-C-0016

(“ECATS”). The views, opinions, and/or findings contained in this dissertation are those

of the author and should not be interpreted as representing the official views or policies of

the Department of Defense or the U.S. Government.

4

Contents

Glossary 11

1 Introduction 19

1.1 Architectural security . 19

1.2 Hypotheses . 20

1.3 Contributions . 22

1.4 Publications . 23

1.5 Open-source contributions . 24

1.6 Thesis overview . 25

2 Background 27

2.1 Processor design . 27

2.1.1 RISC-V . 28

2.1.2 Bluespec . 30

2.2 Spatial safety . 32

2.2.1 Deployed protections . 32

2.2.2 Related research . 36

2.3 Temporal safety . 40

2.3.1 Related research . 41

2.4 CHERI . 44

2.4.1 Model . 45

2.4.2 Microarchitecture . 46

2.4.3 Software . 48

3 CHERI for microcontrollers 51

3.1 Characteristics of microcontrollers . 51

3.2 Baseline processors . 52

3.3 Architectural changes . 55

3.3.1 Merged register file . 55

3.3.2 Encoding mode . 57

3.3.3 Secure Entry capabilities . 59

3.3.4 CHERI-optimised compressed instructions 59

3.4 Microarchitectural implementation . 60

3.4.1 Capability decoding . 60

5

3.4.2 Bounds check . 62

3.4.3 Additional instructions . 64

3.4.4 Cache modifications . 66

3.4.5 Memory subsystem changes . 66

3.4.6 Other changes . 67

3.5 Flute . 67

3.5.1 Branch prediction . 67

3.5.2 Timing . 68

3.6 TestRIG . 71

3.6.1 QuickCheck Vengine . 73

3.6.2 Implementing RVFI-DII . 74

3.6.3 Testing with TestRIG . 75

3.6.4 Other verification . 76

3.7 Future work . 76

3.8 Summary . 77

4 CHERI microcontroller evaluation 79

4.1 Baseline core information . 79

4.2 Area . 81

4.3 Frequency . 87

4.4 Performance . 88

4.4.1 Legacy performance . 89

4.4.2 Capability performance . 91

4.5 Power . 96

4.6 Security . 98

4.7 Future work . 98

4.8 Summary . 99

5 CHERI for application-class processors 101

5.1 Characteristics of application-class processors 101

5.2 Baseline processor . 102

5.3 CHERI implementation . 106

5.3.1 CHERI instruction pipeline . 106

5.3.2 Memory pipeline . 108

5.3.3 PCC implementation . 108

5.3.4 Special Capability Register implementation 110

5.3.5 Extending structures . 110

5.3.6 Safe speculation . 112

5.4 Avoiding exceptions . 116

5.4.1 Fast bounds check . 118

5.5 Software and verification . 118

6

5.6 Future work . 119

5.7 Summary . 119

6 CHERI application-class processor evaluation 121

6.1 Baseline core information . 121

6.2 Area . 122

6.3 Frequency . 126

6.4 Performance . 126

6.4.1 Legacy performance . 127

6.4.2 Capability performance . 127

6.4.3 Microcontroller benchmarks . 130

6.5 Power . 132

6.6 Security . 133

6.7 Future work . 134

6.8 Summary . 134

7 Accelerating temporal safety 137

7.1 High-level approach . 137

7.1.1 Sweeping revocation . 138

7.2 Optimising sweeping revocation . 139

7.2.1 Virtual memory . 140

7.2.2 As-user memory accesses . 141

7.2.3 Prefetching . 141

7.2.4 Dedicated sweeper . 143

7.3 Finding tags . 143

7.3.1 Toooba memory subsystem . 144

7.3.2 Initial implementation . 145

7.3.3 Avoiding data loads . 145

7.3.4 Avoiding cache pollution . 147

7.3.5 Relaxing consistency . 148

7.4 Evaluation . 149

7.5 Alternative capability semantics . 149

7.5.1 Linear capabilities . 150

7.5.2 Indirect capabilities . 151

7.6 Future work . 152

7.7 Summary . 152

8 Conclusion 155

8.1 Answering hypotheses . 155

8.2 Overall conclusions . 158

8.3 Future work . 159

7

A CHERI RISC-V Instructions 161

A.1 Capability inspection . 161

A.2 Capability modification . 162

A.3 Memory access . 163

A.4 Control flow . 164

A.5 Other instructions . 164

B Benchmarks 165

B.1 CoreMark . 165

B.2 MiBench . 165

B.3 SPEC . 167

C TestRIG 169

Bibliography 177

8

List of Figures

2.1 A simple single-element First In, First Out (FIFO) implementation in

Bluespec. 31

2.2 A summary of the key qualitative features of the C safety mechanisms

discussed. 40

3.1 The Piccolo pipeline. 53

3.2 The Flute pipeline. 54

3.3 Architectural view of integer and capability RISC-V registers with split and

merged register files as seen by pure capability software. 56

3.4 Three stages of decompression of capability bounds as they enter the pipeline

(RV32). 61

3.5 Changes in timing of the Flute core as improvements were made. 69

3.6 The RVFI-DII interface as it connects a Vengine to implementations. . . . 71

4.1 Benchmarking configuration for the Piccolo and Flute processors. 80

4.2 Metrics for the baseline Piccolo and Flute cores in the evaluation System

on Chip (SoC). 80

4.3 Area overhead of CHERI for the Piccolo processor. 82

4.4 Area overhead of CHERI for the Flute processor. 83

4.5 Number of stored bits in Piccolo and Flute structures that are hidden by

BRAMs on FPGA. 84

4.6 Maximum frequency of the Piccolo and Flute processors synthesised for the

VCU-118. 87

4.7 CoreMark run statistics for the Piccolo baseline core, the CHERI core

running the baseline software (no protection), and the CHERI core running

pure capability code, including relevant performance counters. 89

4.8 CoreMark run statistics for the Flute baseline core, the CHERI core running

the baseline software (no protection), and the CHERI core running pure

capability code, including relevant performance counters. 90

4.9 MiBench overhead of CHERI for the Piccolo core. 92

4.10 MiBench overhead of CHERI for the Flute core. 93

4.11 Compiled inner loop body for the rc4 benchmark for baseline and pure

capability code. 95

9

4.12 Power usage of the Piccolo and Flute processors synthesised for the VCU-118,

as reported by Vivado. 96

4.13 MiBench DRAM traffic overhead of CHERI for the Piccolo and Flute cores. 97

5.1 The Toooba processor. 103

5.2 Usage of the Program Counter Capability (PCC) within Toooba. 109

5.3 Summary of the key Toooba structures extended to support capabilities,

and potential optimisations to reduce the area impact. 111

5.4 A CHERI RISC-V program that violates capability guarantees on Toooba

using a speculative side channel. 113

6.1 Benchmarking configuration for the Toooba processor. 122

6.2 Metrics for the baseline Toooba core in the evaluation SoC. 122

6.3 Area overhead of CHERI for a dual-core Toooba processor. 123

6.4 Maximum frequency of the Toooba processor synthesised for the VCU-118. 126

6.5 SPEC overhead of CHERI for the Toooba core. 128

6.6 CoreMark run statistics for the Toooba baseline core, the CHERI core

running the baseline software (no protection), and the CHERI core running

pure capability code, including relevant performance counters. 130

6.7 MiBench overhead of CHERI for the Toooba core. 131

6.8 Power usage of the Toooba processor synthesised for the VCU-118, as

reported by Vivado. 132

6.9 Toooba core L2 cache misses per thousand cycles for SPEC with and without

CHERI. 133

7.1 C-like pseudocode implementation of the core CHERI revocation loop. . . 140

7.2 Performance of Toooba for an artificial benchmark loop with and without

software prefetch. 142

7.3 The MESTI cache coherence protocol for Toooba’s L1 data caches. 146

7.4 Performance overheads of worst-performing SPEC (test) for Cornucopia

sweeping revocation using a generic wrapper across a range of allocators. . 150

7.5 Performance overheads on SPEC (test) for Cornucopia sweeping revocation,

compared to Boehm GC and AddressSanitizer. 150

10

Glossary

Application Binary Interface (ABI)

Interface between interacting code, specifying e.g. calling conventions and register

allocations. 54, 56

Arithmetic Logic Unit (ALU)

Part of the processor responsible for executing the arithmetic operations. 13, 52, 54,

60, 62, 64, 65, 68, 70, 85, 86, 87, 98, 106, 107, 108, 113, 114, 115, 118, 124, 125

Application-Specific Integrated Circuit (ASIC)

Synthesised chip for a specialised hardware design. 13, 27, 28, 79, 81, 84, 85, 96, 102,

119, 121, 126, 134, 159

Address Space Layout Randomisation (ASLR)

Security measure that randomises where programs are loaded to prevent static

addresses being used to access control data [17]. 35, 37, 101

Advanced eXtensible Interface (AXI)

Arm-specified open on-chip interconnect [7]. 25, 53, 66, 68, 88, 89, 90, 96, 106, 127,

147

BESSPIN

Galois SoC and tools for the Piccolo, Flute, and Toooba cores, provided as part of the

System Security Integration Through Hardware and Firmware (SSITH) program [143].

76, 79, 84, 121

Block Random Access Memory (BRAM)

Specialised FPGA block for random access memory, allowing registers to be synthe-

sised in a much smaller area, but with more restrictive access requirements. 9, 28,

53, 56, 68, 81, 84, 85, 87, 88, 96, 124, 126

Branch Target Buffer (BTB)

Prediction structure that caches the target Program Counters (PCs) of jump or

branch instructions so that they can be predicted. 54, 89, 104

11

Complex Instruction Set Computing (CISC)

Architecture design principle favouring compound instructions to execute common

sequences of operations, as an alternative to Reduced Instruction Set Computing

(RISC). 15

Core-Local Interrupt Controller (CLINT)

RISC-V-specified module to manage timer interrupts within a core. This is instanti-

ated once per core. 85

Control and Status Register (CSR)

RISC-V registers for controlling system-level functionality, for example the exception

vector and exception cause register. 15, 29, 33, 58, 67, 70, 79, 86, 105, 106, 109, 110,

141, 151

Common Weakness Enumeration (CWE)

An open categorisation of common software and hardware errors that often lead to

vulnerabilities [30]. 98, 133

Default Data Capability (DDC)

A capability that is implicitly used as the authority for legacy memory accesses. 57,

62, 86, 89, 108, 110

Direct Instruction Injection (DII)

Protocol for injecting instructions directly into a RISC-V processor. 16, 23, 24, 72,

74, 158

Direct Memory Access (DMA)

Peripherals given direct access to main memory to allow them to operate indepen-

dently from the CPU. 13, 16, 28, 53, 66, 84, 124, 143, 144, 156

Dynamic Random Access Memory (DRAM)

Current standard main memory for application-class cores. 10, 12, 28, 33, 48, 51, 53,

54, 79, 84, 88, 96, 98, 99, 113, 121, 130, 132, 134, 144, 145, 146, 155, 156, 159

Design Under Test (DUT)

The design being tested in a testbench. 72

Error Correction Code (ECC)

Additional bits stored by some (typically server-class) DRAM components to allow

detection and recovery from bit-errors. 48

12

Flip-flop (FF)

A basic storage element that provides single-cycle access at the expense of high area.

81, 84, 85, 122, 124, 125, 126

First In, First Out (FIFO)

A hardware structure describing a queue, where data is consumed in the same order

as it was provided. 9, 30, 63, 67, 74

Field-Programmable Gate Array (FPGA)

Device to emulate hardware designs, often used for prototyping as an intermediate

between simulation and ASIC synthesis. 9, 11, 13, 14, 22, 27, 28, 51, 68, 79, 81, 84,

85, 87, 96, 99, 102, 119, 121, 124, 126, 134, 149, 156, 159

Floating-Point Unit (FPU)

Module for handling floating-point arithmetic, analogous to the Arithmetic Logic

Unit (ALU), but with most operations multi-cycle due to their complexity. 86, 99,

124, 134, 157

Global Data Protection Regulation (GDPR)

EU regulation mandating industry robustness against data breaches, laying out

severe penalties for violations [4]. 158

Hardware Thread (Hart)

RISC-V’s unit of execution: typically a single core, or single Simultaneous Multi

Threading (SMT) thread within a core, having its own register file. 119

Hardware Description Language (HDL)

Language used for hardware design, allowing description of circuit behaviour that

can target simulation, FPGA, or ASIC. 27, 30, 31

Input/Output Memory Management Unit (IOMMU)

Device that virtualises and protects memory as seen by Direct Memory Access

(DMA) devices. 29

Internet of Things (IoT)

Networking appliances to enable convenient telemetry and control, e.g. from a

smartphone. 51, 165

Intellectual Property (IP)

Designs of hardware components, typically described at the Verilog level. 52

13

Instructions Per Clock (IPC)

The average number of instructions executed per clock cycle. 52, 70, 91, 121, 127,

130

Instruction Set Architecture (ISA)

The specified interface between hardware and software, consisting of a description of

the instructions and any other guarantees that must be upheld. 16, 19, 27, 28, 29,

30, 34, 36, 44, 45, 47, 48, 51, 55, 57, 58, 59, 63, 64, 77, 89, 101

Just-In-Time compilation (JIT)

Interpreting a program by dynamically compiling blocks to native instructions as

they are run. 33

Load/Store Queue

A structure preserving the outstanding memory accesses in program order. 20, 105,

108, 110, 112, 121, 124, 125, 126, 130, 144, 145

Lookup Table (LUT)

The unit of reconfigurable logic within an FPGA, able to implement any six-input

binary function. Used as the basic unit of consumed logic area. 27, 38, 79, 81, 84,

85, 86, 96, 99, 122, 124, 125, 134, 155

Macro-Op Fusion

Combining of common sequences of instructions together into a single operation in

decode. 28

Memory-Mapped Input/Output (MMIO)

Peripherals or control registers that are mapped into the address space of the

processor, having effects beyond changing the value to be read back later. 104

Memory Management Unit (MMU)

Hardware support for address translation, enabling virtualisation and security as

different processes can observe different virtual address spaces. 14, 32, 33, 40, 51, 54,

101

Memory Protection Unit (MPU)

Hardware support for memory protection, typically lighter weight than a Memory

Management Unit (MMU), so more suitable for microcontrollers, and focused only

on security rather than virtualisation. 33, 40, 51

14

Operating System (OS)

Software responsible for leveraging hardware into a usable application interface. 33,

48, 49, 76, 77, 79, 102, 119, 139, 143

Program Counter (PC)

Address of the instruction currently being executed by a processor. 11, 15, 29, 52,

54, 60, 62, 70, 72, 74, 88, 104, 105, 108, 109, 125, 164

Program Counter Capability (PCC)

Extension of the PC to include the capability metadata for the processor’s current

execution. 10, 58, 60, 63, 67, 68, 70, 86, 89, 108, 109, 110, 125, 161, 162, 164

Platform-Level Interrupt Controller (PLIC)

RISC-V-specified module to convert interrupt wires into interrupt traps within the

cores. Since it is platform-level, it is instantiated once, regardless of the number of

cores. 84, 85, 124

Physical Memory Protection (PMP)

RISC-V specification for a component controlled using Control and Status Registers

(CSRs) to restrict access to memory regions on a coarse-grained basis. 29, 32, 33, 34,

51, 84, 138

Page-Table Entry (PTE)

Section of memory that describes a level of translation that must be followed to

convert a virtual address to a physical address. Includes description of the target

address, as well as permission bits guarding use of the entry. 33, 141

Return Address Stack (RAS)

Prediction structure that detects calls into subroutines, pushing the caller address to

a stack so that it can be predicted when the corresponding return (which is otherwise

a difficult to predict indirect jump) is detected later. 54, 88, 104

Rivest Cipher 4 (RC4)

A stream cipher on which Wired Equivalent Privacy (WEP) was based, forming part

of the MiBench benchmarking suite [62]. 166

Return-Oriented Programming

Attack technique that bypasses many existing stack security measures, overwriting

return addresses to use existing legitimate code as exploit gadgets [108]. 37, 45

15

Reduced Instruction Set Computing (RISC)

Architecture design principle favouring simple single-purpose instructions to make

the common case fast, as an alternative to Complex Instruction Set Computing

(CISC). 11, 28

Real-Time Operating System (RTOS)

Lightweight operating system, typically for microcontrollers, with emphasis on low

or predictable event-handling latency. 51, 77

RISC-V Formal Interface (RVFI)

Tracing protocol for RISC-V processors to specify results of running instructions [134].

16, 72, 73, 74

RISC-V Formal Interface with Direct Instruction Injection (RVFI-DII)

Use of Direct Instruction Injection (DII) and RISC-V Formal Interface (RVFI)

together. 51, 71, 72, 74, 118

Sail

A language produced by the University of Cambridge’s formal group used to produce

executable and verifiable Instruction Set Architecture (ISA) specifications [10]. 71,

73, 75, 76, 116

Special Capability Register (SCR)

CHERI RISC-V control registers that contain a full capability. 22, 67, 70, 109, 110

seL4

A formally verified L4 microkernel [69]. 51

Secure Entry (Sentry)

Capability that can only be unsealed by jumping to it, produced by default on

linking from a jump. 22, 58, 59, 64, 77, 106, 117, 158, 161

Simultaneous Multi Threading (SMT)

Support for multiple execution threads within a core supported in hardware, whereby

a core has registers for multiple threads and instructions from each can be interleaved.

13

System on Chip (SoC)

Chip-level design of a system, often including a processor and supporting peripherals,

some of which may be DMA capable. 9, 10, 11, 53, 79, 84, 85, 102, 121, 156

16

SPEC

Corporation designing benchmarks designed to cover a range of applications [29]. 10,

43, 44, 88, 119, 121, 126, 127, 129, 130, 132, 134, 149, 156, 157, 165, 167

System Security Integration Through Hardware and Firmware (SSITH)

DARPA program aiming to develop hardware security architectures to protect against

classes of vulnerabilities exploited in software [143]. 11, 155, 156

Tightly-Coupled Memory (TCM)

A memory subsystem favoured by microcontrollers, in which the processor has an

on-chip memory providing quick access, as an alternative to caches [12]. 79, 84

Translation Lookaside Buffer (TLB)

Cache of virtual to physical address mappings used to accelerate translation. 28, 54,

79, 104, 105, 108, 121, 140, 141, 143, 151, 152, 156

Wired Equivalent Privacy (WEP)

A defunct protocol for encrypting traffic sent over 802.11 wireless networks, so was

widely implemented by microcontrollers for devices requiring wireless internet access.

15, 166

17

18

Chapter 1

Introduction

1.1 Architectural security

Computer systems have become ubiquitous very quickly, changing the world beyond

recognition. They are integrated into the most important areas of our lives—in control of

safety-critical processes and handling our data—while being accessible from anywhere in

the world via networking. Security has not kept up. Throughout their development, this

has been realised through one crisis after another as attackers exploit the same common

software mistakes to completely take over systems. Cybercrime due to malware (including

the resulting prevention) costs the global economy a significant amount each year [6]. Two

recent examples—Heartbleed [41] and WannaCry [46]—exemplify the problem well. In

both cases, a small error in a complicated piece of software allowed the security properties

of their respective systems to be completely violated. Industry incentives discourage

programmers from producing robust software, as the competitor who ships first receives

the sales, with the security violations following much later [42]. The status quo is begging

for change.

Increasingly, programmers express their ideas at higher levels of abstraction, for example

through high-level managed languages. This allows them to express intended behaviour

in a safe way, with opaque memory management preventing confusion over the objects

the programmer intended to access. However, systems programmers—who must write the

software underlying these languages or other low-level software—are just as susceptible

to the same problems and cannot benefit from managed languages. Capabilities offer

a potential solution: by preserving the programmer’s intended limits on their code’s

execution, opportunity for code to be misused outside of its intended purpose is limited.

Capability systems have long been proposed (as early as 1966 [37]), but past proposals

have seen little success, partly due to high overheads and poor compatibility.

CHERI [128] is a contemporary capability-based architecture extension aimed to improve

security for C and C++ code. It does this by enforcing the principles of least privilege and

intentionality, with hardware enforcing properties inferred from the programmer’s code.

19

20 1.2. HYPOTHESES

Initial promise for CHERI was shown augmenting a MIPS processor [136]. However, MIPS

has seen declining usage, limiting this implementation’s applicability to modern processors.

RISC-V is an open architecture, seeing increasing popularity, especially in research [131].

This offers a unique opportunity to shape the security landscape, investigating how

capabilities can be incorporated into the Instruction Set Architecture (ISA) before legacy

code accumulates and the ISA solidifies. Arm is also investigating CHERI, with the

Morello program producing a research prototype of a CHERI-augmented contemporary

high-performance core [54].

Adapting CHERI to RISC-V gives a good opportunity to investigate its implications in

different microarchitectural contexts. For instance, the original CHERI processor was

in-order [136], leaving many questions unanswered about composition with more advanced

microarchitectural techniques used in contemporary processors. Conversely, there is

also an opportunity to investigate scaling in the opposite direction to area-constrained

microcontrollers. Finally, the new implementations will allow further development of

temporal safety techniques, a vulnerability class less naturally resolved by capabilities.

1.2 Hypotheses

This thesis aims to answer some key hypotheses about CHERI microarchitecture imple-

mentations.

Hypothesis H.1

CHERI can be implemented to provide spatial safety for RISC-V microcontrollers,

with a small area, power, clock frequency, and performance impact.

RISC-V is a new target for CHERI, which was initially applied to cores implementing

the MIPS architecture. Since RISC-V shares a design philosophy and many features

with MIPS, many of the architectural and microarchitectural capability features may be

expected to transfer across. In addition, the particular focus on small-scale microcontrollers

may reveal new challenges, particularly around the amount of additional logic required to

support capabilities. The definition of “small” for the various overheads will depend on

the application and associated acceptable tradeoffs.

Hypothesis H.2

CHERI can be implemented to provide spatial safety for RISC-V out-of-order

superscalar application-class cores, with a small area, power, clock frequency, and

performance impact.

There is no pre-existing (open1) implementation of CHERI for an out-of-order, superscalar,

application-class core. I hypothesise that the model applies well to such processors. This

1Morello [54] is an instantiation of CHERI for Arm that was developed concurrently with this PhD,

CHAPTER 1. INTRODUCTION 21

will require considering interactions with more complex microarchitectures, including

Load/Store Queues, reorder buffers, and multiple pipelines. New challenges, such as deep

speculation, may diminish CHERI’s effectiveness.

Hypothesis H.3

The CHERI area, power and performance impact becomes less significant for larger

cores.

There is little current evidence as to how the CHERI overheads scale with the size of the

host core. Adding CHERI to a core involves adding additional logic and scaling some

structures, such as the register file and datapaths. However, some structures are largely

unmodified, such as floating point, caches, and branch prediction. Therefore, we might

expect larger cores to see a smaller fractional area overhead, as the structures grown for

capabilities represent a smaller fraction of the core. I expect power overheads to mirror

area overheads and see a similar trend. Additionally, the performance overhead comes in

the form of added instructions to manipulate capabilities and increased memory bandwidth

from capability metadata. It may be the case that an out-of-order design allows these

overheads to be hidden. By applying CHERI in an similar way across the Piccolo, Flute,

and Toooba cores, I hope to investigate these effects.

Hypothesis H.4

Temporal safety can be implemented efficiently atop CHERI for RISC-V processors.

Following the direct spatial safety and compartmentalisation applications of CHERI,

attempts have already been made to achieve temporal safety. It is not clear how these

apply to new RISC-V cores, especially application-class. I conjecture that there is further

opportunity to optimise the sweeping approach. Moreover, I aim to show that RISC-V cores

are amenable to supporting temporal safety using these approaches via microarchitectural

and architectural acceleration.

1.3 Contributions

The following are contributions of this thesis:

• The first CHERI RISC-V microarchitectural implementations, both as proofs-of-

concept and platforms for further capability research:

– CHERI extensions of the existing Piccolo and Flute microcontrollers,

but does not have an open microarchitecture. Note that the Morello prototype used microarchitectural
research from the CHERI team, including CHERI-Concentrate [135], the tag controller, and the merged
register file.

22 1.3. CONTRIBUTIONS

– The first open superscalar CHERI implementation, as an extension of the

existing Toooba processor, completed in collaboration with Jonathan Woodruff

and Alexandre Joannou, with my personal contributions including:

∗ Contributions to the overall design approach, such as which pipelines to

modify,

∗ Modifying the pipelines,

∗ Decoding and implementing the capability manipulation instructions,

∗ Adding the capability checks,

∗ Implementing the Special Capability Registers (SCRs) and exception logic,

∗ Implementing the Secure Entry (Sentry) mechanism,

∗ Implementing the changes to support capability-aware compressed instruc-

tions;

• Evaluation of the microarchitectures, including FPGA area overhead, effect on timing,

and impact on performance and power;

• A study of the scaling of CHERI overheads across various scales of microarchitectures;

• Exploration of microarchitectural implications of various architectural improvements

for CHERI RISC-V, including:

– The merged capability register file,

– Tag clearing instead of exceptions on monotonicity violations,

– The Sentry mechanism,

– A dynamically switched capability encoding mode;

• Identification of significant tradeoffs in the implementation of CHERI for application-

class cores;

• Protection against a class of speculative execution attacks, including an audit of the

microarchitectural possibilities for related attacks against the capability model in

Toooba;

• New additions to CHERI-Concentrate [135] for single-cycle bounds checking;

• The shadow bitmap high-level approach for representing revoked capabilities during

a revocation sweep;

• The MESTI cache coherence approach for capability tags;

• An investigation of various cache optimisations for finding tags;

• Contributions to the TestRIG RISC-V testing framework.

CHAPTER 1. INTRODUCTION 23

1.4 Publications

I have co-authored the following publications throughout my PhD:

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for

Temporal Memory Safety (52nd IEEE/ACM symposium on Microarchitecture,

Columbus 2019). Co-authored paper: my contributions include development of the

sweeping algorithm applied, including the idea to keep a shadow-bitmap of freed ca-

pabilities. Paper: https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/

201910micro-cheri-temporal-safety.pdf

Four CHERI RISC-V Microarchitectures (RISC-V spring week, Paris 2022).

Co-authored talk: my contributions include work on three of the microar-

chitectures discussed, assembling the slides, and writing and delivering the

talk. Slides: https://open-src-soc.org/2022-05/media/slides/4th-RISC-

V-Meeting-2022-05-04-16h00-CHERI-Cambridge.pdf#page=42

TestRIG: Using RVFI-DII to eliminate the “Test gap” between specifica-

tion and implementation (RISC-V Workshop, Zurich 2019). Co-authored talk:

my contributions include significant improvements to the verification engine, al-

lowing more complex templates for deeper pipeline testing and smarter counter-

example shrinking. I also performed processor instrumentation to enable Direct

Instruction Injection (DII). Video: https://youtu.be/kB7SHlJtfC4, Slides: https:

//content.riscv.org/wp-content/uploads/2019/06/13.20-TestRIG.pdf

Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set

Architecture (Version 8) (Technical report, Cambridge 2020). Co-authored

technical report: my contributions include discussion of tag clearing on monotonicity

violations, the capability encoding mode switching mechanism, and elaboration

of various other aspects of the CHERI architecture. Technical report: https:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

The following are pending publication:

CompartOS: CHERI Compartmentalization for Embedded Systems Co-authored

paper: my contributions include CHERI adaptations of the underlying hardware,

evaluation of area and frequency, and support with bringing up software. Paper:

https://arxiv.org/abs/2206.02852

Random Testing of RISC-V CPUs Using Direct Instruction Injection Co-

authored paper: my contributions include contributing to the framework, augmenta-

tion of Piccolo and Flute with DII, adding features including smart shrinking and

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://open-src-soc.org/2022-05/media/slides/4th-RISC-V-Meeting-2022-05-04-16h00-CHERI-Cambridge.pdf#page=42
https://open-src-soc.org/2022-05/media/slides/4th-RISC-V-Meeting-2022-05-04-16h00-CHERI-Cambridge.pdf#page=42
https://youtu.be/kB7SHlJtfC4
https://content.riscv.org/wp-content/uploads/2019/06/13.20-TestRIG.pdf
https://content.riscv.org/wp-content/uploads/2019/06/13.20-TestRIG.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://arxiv.org/abs/2206.02852

24 1.5. OPEN-SOURCE CONTRIBUTIONS

recursive templates to the verification engine, and help with evaluation including

test coverage measurement. Paper: See Appendix C.

Architectural Contracts for Safe Speculation in CHERI Processors Co-authored

paper: my contributions include the CHERI augmentation of Toooba that is evalu-

ated, auditing the microarchitecture for potential side-channel vulnerabilities, and

development of a more side-channel resistant implementation.

The following publications are planned, in collaboration with others in the CHERI team:

• A summary of the combined software and hardware effort on CHERI RISC-V,

including the architecture, hardware implementations, compiler, and operating

system, providing an updated CHERI performance analysis beyond that provided

by CHERI MIPS.

• An introduction to superscalar CHERI, as applied to Toooba, discussing how to

optimise the extensions for the microarchitecture and evaluating the impact of the

CHERI extensions to the power, performance, and area of the Toooba core.

• Further work on revocation, following up on our CHERIVoke [138] and Cornu-

copia [132] papers by discussing further optimisation, particularly optimised sweeping

hardware.

1.5 Open-source contributions

The implementation work required to enable the research in the thesis is all open-source,

primarily contributing to the following repositories:

Piccolo A fork of the Bluespec microcontroller, extended with CHERI modifications.

My contributions include adding support for DII and adding support for CHERI.

www.github.com/CTSRD-CHERI/Piccolo

Flute A fork of Bluespec’s larger microcontroller, extended with CHERI modifications.

As with Piccolo, I added DII and CHERI support. www.github.com/CTSRD-CHERI/

Flute

Toooba A fork of Bluespec’s out-of-order processor, extended with CHERI modifications.

The baseline processor is itself a fork of MIT’s RiscyOO processor. I performed much

of the CHERI modification, including the capability checks, treatment of capabilities

in the pipelines, and various changes to support temporal safety. www.github.com/

CTSRD-CHERI/Toooba

www.github.com/CTSRD-CHERI/Piccolo
www.github.com/CTSRD-CHERI/Flute
www.github.com/CTSRD-CHERI/Flute
www.github.com/CTSRD-CHERI/Toooba
www.github.com/CTSRD-CHERI/Toooba

CHAPTER 1. INTRODUCTION 25

CHERI Capability Library A standard interface for capability compressed format

operations and several implementations that operate at various levels of decom-

pression. My contributions include the encapsulation approach and various addi-

tional algorithms for manipulating the compressed format. www.github.com/CTSRD-

CHERI/cheri-cap-lib

Tag Controller AXI component for providing tagged memory using a shadow-space. I

made various improvements, including adaptations required for the RISC-V imple-

mentations and temporal safety. www.github.com/CTSRD-CHERI/TagController

TestRIG Infrastructure for connecting RISC-V implementations with models and verifi-

cation engines. I made various infrastructural improvements, such as the ability to

run multiple instances in parallel. www.github.com/CTSRD-CHERI/TestRIG

QuickCheckVEngine Verification engine that uses Haskell’s QuickCheck library [28]

as a basis for generating tests and comparing implementation traces. I performed

significant design of almost every aspect, particularly smarter shrinking and templates.

www.github.com/CTSRD-CHERI/QuickCheckVengine

Sail CHERI-RISC-V CHERI RISC-V model implementation using the Sail architecture

description language [10]. My contributions include implementation of various

architectural features, most notably tag-clearing as opposed to exception semantics.

www.github.com/CTSRD-CHERI/sail-cheri-riscv

BlueStuff Bluespec libraries providing interconnect utilities, including for AXI. I im-

plemented and improved many of the interconnect components required for the

memory subsystems of the CHERI implementations. www.github.com/CTSRD-

CHERI/BlueStuff

1.6 Thesis overview

The thesis is arranged into a background chapter (Chapter 2), three implementation

chapters (Chapters 3, 5, and 7), two evaluation chapters (Chapters 4 and 6), and a

conclusion (Chapter 8).

• Chapter 2 covers existing research and relevant context for the work.

• Chapter 3 discusses the implementation of CHERI for the Piccolo and Flute micro-

controllers.

• Chapter 4 evaluates this work, investigating the CHERI overheads.

• Chapter 5 discusses the implementation of CHERI for Toooba, the first open imple-

mentation of CHERI in a superscalar, out-of-order core.

www.github.com/CTSRD-CHERI/cheri-cap-lib
www.github.com/CTSRD-CHERI/cheri-cap-lib
www.github.com/CTSRD-CHERI/TagController
www.github.com/CTSRD-CHERI/TestRIG
www.github.com/CTSRD-CHERI/QuickCheckVengine
www.github.com/CTSRD-CHERI/sail-cheri-riscv
www.github.com/CTSRD-CHERI/BlueStuff
www.github.com/CTSRD-CHERI/BlueStuff

26 1.6. THESIS OVERVIEW

• Chapter 6 evaluates the CHERI Toooba implementation in a similar manner to

Chapter 4.

• Chapter 7 describes the investigation into architectural and microarchitectural

optimisation of temporal safety using CHERI, mostly again focused on the Toooba

core.

• Chapter 8 draws overall conclusions from the work done and evaluations performed.

Chapter 2

Background

2.1 Processor design

This section introduces background aspects of processor design, including the RISC-V ISA

and Bluespec Hardware Description Language (HDL) used.

Processors have seen very rapid performance improvements since the first silicon chips

in the 1960s [82]. This has been facilitated by transistor scaling, following Moore’s Law,

and by improvements in microarchitectural techniques. Contemporary application-class

processors maximise extraction of instruction-level parallelism using superscalarity and

out-of-order execution [57]. Superscalarity allows multiple instructions to be issued and

retired per clock cycle. Out-of-order execution prevents a small number of slow instructions

(typically memory loads) from halting progress. These features are in addition to achieving

a high clock frequency by heavily pipelining every part of the execution. The increasing

complexity and transistor count required for application-class performance has led to

separate categories of microarchitectures emerging: in particular, microcontrollers avoid

this complexity for applications that are not performance-critical. Since they present

different tradeoffs, this thesis talks separately about application-class cores (defined as

those offering these advanced features) and microcontrollers (defined as simple, in-order,

scalar cores with short pipelines).

Processor design has benefited from the development of FPGAs for rapid prototyping.

These use Lookup Tables (LUTs) and reconfigurable interconnects to implement arbitrary

logic operations that are dynamically reprogrammable, at the expense of an order-of-

magnitude penalty to clock frequency and area for a similar design. However, since the

gates can still operate in parallel, the performance of running a design on FPGA exceeds

that of simulating it by several orders of magnitude. In addition, implementing a design for

FPGA provides an initial sense of its area and timing characteristics, as well as providing

some level of performance realism in terms of pipelining and cache effects. This allows

investigations and proofs-of-concept to be carried out without enormous financial and time

costs. Since the design is described at the register-transfer level, the FPGA behaviour will

27

28 2.1. PROCESSOR DESIGN

match that on ASIC, avoiding duplicated design and verification work and adding further

evaluation realism when compared to a simulator. We therefore use FPGAs to prototype

and evaluate the CHERI extensions, comparing to the baseline designs synthesised on the

same FPGA.

Note that FPGA timing, area, and performance results have limited applicability to a real

ASIC synthesis. Timing is not simply a scaling of that for ASIC, in part due to differing

FPGA hard blocks (such as to accelerate carry chains) and ASIC standard cell libraries.

The area of structures differs significantly for similar reasons. Most significantly, FPGAs

offer BRAMs, allowing single-cycle access memories with a much smaller relative overhead

than registers. Finally, performance may differ as DRAM frequencies are proportionally

much higher for FPGA systems. However, due to the difficulty of ASIC flows, the scope of

this thesis is restricted to FPGA metrics, leaving optimisation and measurement of the

designs for ASIC flows as future work. As an intermediate step, a cycle-accurate FPGA

simulation framework such as FireSim [67] could be used to provide more accurate DRAM

timings. In terms of the design insights given, FPGA designs are still much closer to ASIC

designs than using an instruction set simulator (even combined with a pipeline model).

For example, critical paths force consideration of the work done per cycle and interactions

between the pipeline and caches are realistic. I attempt to mitigate FPGA evaluation

artefacts and explicitly highlight them where present.

2.1.1 RISC-V

All processors investigated in this thesis use the RISC-V ISA. This section introduces the

relevant features of RISC-V and explains why it is a good target for CHERI.

RISC-V [126] is a relatively new Reduced Instruction Set Computing (RISC) ISA governed

by RISC-V International. The ISA is open for use (but not modification), encouraging open

implementations. It is seeing increasing interest and adoption, both in the microprocessor

market and in prototypes of application-class processors, with the development of the

superscalar RISC-V Boom [27] and Riscy-OO cores [145], among others [39]. It is estimated

that over 10 billion RISC-V processors have shipped to date [131]. However, these are

mostly small microcontrollers; it remains to be seen whether RISC-V will penetrate the

application-class processor space commercially.

The full ISA is described in the user-mode [126] and privileged [127] manuals. Familiarity

with the ISA, including instruction mnemonics, is assumed throughout the thesis.

Considerable effort has been invested to make RISC-V a good target for embedded and

application-class cores alike. To optimise for microcontrollers, the instruction encoding is

kept simple. For example, register indices are always encoded in the same position in the

instruction. Side-effects of instructions are avoided: RISC-V does not feature carry flags

and arithmetic cannot raise exceptions. The ISA endeavours to avoid making assumptions

CHAPTER 2. BACKGROUND 29

about the microarchitecture, such as by avoiding assumptions about caches and Translation

Lookaside Buffers (TLBs). This approach has its drawbacks: for example, instructions for

cache manipulation (invalidates and flushes), which are useful for practical Direct Memory

Access (DMA), have only recently been specified [47]. The ISA also avoids conditional

instructions in the base ISA. For larger processors, it is anticipated that Macro-Op Fusion

can recover some of the performance lost by having a minimal instruction set.

The privileged specification describes the interaction between the different privilege modes:

Machine and (optionally) Supervisor and User. This includes specification of Control

and Status Registers (CSRs) that allow software to manipulate and query system state.

For example, the mtvec CSR controls the address taken in the event of an exception or

interrupt, with the previous Program Counter (PC) installed in mepc to allow recovery

once the trap is handled. Memory translation between virtual addresses seen by Supervisor

and User modes and physical addresses seen by Machine mode is controlled via the satp

CSR, including pointing at the root of the page table. A Physical Memory Protection

(PMP) mechanism may also be provided, allowing software to specify address ranges to

protect in CSRs. This mechanism is discussed further in Section 2.2.1.2.

One of the key attractions of RISC-V is the freedom to implement a processor with

arbitrary implementer-specific instructions to accelerate the task the processor is intended

for. This is something that is forbidden by a standard Arm license. The risk to this

approach is that the RISC-V ecosystem may become fragmented, with all implementations

supporting vastly different instructions, preventing cross-platform software compatibility.

As such, the RISC-V standardisation process is intended to prevent multiple independent

feature interfaces from arising, with mixed success. For example, RISC-V International is

attempting to standardise the interface to the Input/Output Memory Management Unit

(IOMMU) and has been presented with five independent proposals from implementers [94].

The RISC-V architecture is organised as: a relatively minimal base ISA, which must be

implemented; additional optional standard extensions; plus non-standard extensions.

Some key standard extensions include:

Atomic (A) extension Adds atomic memory instructions, including load-reserved and

store-conditional (which are preferred over compare-and-swap), and operations to

perform in memory, returning the old value.

Compressed (C) extension Adds a 16-bit encoding space for common operations to

improve instruction density, reducing instruction cache pressure. 16-bit instructions

can be freely interleaved with full 32-bit instructions, unlike Arm’s Thumb [113],

which requires a mode switch.

Floating-point (F) and double-precision floating-point (D) extensions Add sup-

port for IEEE floating point of the relevant widths, with an additional register file

added, and CSRs to specify global state such as rounding modes.

30 2.1. PROCESSOR DESIGN

Multiply/Divide (M) extension Adds instructions for integer multiply and divide,

again avoiding exceptions in all cases.

Vector (V) extension Recently specified, adds instructions to operate on vectors of

registers, with a wide variety of vector sizes and counts supported (but not mandated)

for implementing processors.

The openness and continuing development of RISC-V make it ideal for the CHERI team’s

capability research. The open ISA encourages open-source implementations, helping with

availability of baseline implementations (most notably RiscyOO) and potentially allowing

others to build on our modified processors. In addition, the ISA is still being actively

extended, with security features currently being discussed and specified. This may allow

a capability extension to be ratified, cementing it within the ISA and allowing other

extensions to be adapted around it. CHERI fits in well with the modular design of the

ISA: initially a non-standard extension, we hope to standardise CHERI RISC-V as an

optional standard extension. A lack of legacy software will also reduce adoption difficulties.

The similarities with MIPS also improve transferability of the existing CHERI research.

2.1.2 Bluespec

Software tools for hardware development fall short in usability compared with those for

software, perhaps due to the large barrier to entry for companies to design and fabricate

their own hardware. The most widely-used HDLs today are VHDL and (System)Verilog.

These lack some of the basic type-safety and expressibility features expected in software

languages, even C, making them more akin to assembly-level languages. However, some

alternative higher-level HDLs are currently gaining traction: for example Berkeley’s Chisel,

built atop Scala [11]. The work in this thesis uses the Bluespec HDL, designed by Bluespec

Inc. [95].

The Bluespec HDL is built atop Haskell, providing clear distinction between evaluation-

time computation and descriptions of hardware logic wrapped in the module monad. It

provides strong type-safety as well as guarded atomic actions (rules): descriptions of

behaviour that must be run together or not at all, based on programmer-specified and

implicit conditions. As shown in Figure 2.1, this allows high-level reasoning about designs,

leaving fiddly and error-prone control signals to be generated by the compiler.

There are several advantages to using Bluespec, including:

Baseline processor availability The requisite range of processors are available in the

source language, including the Piccolo and Flute microcontrollers from Bluespec Inc.

and the superscalar RiscyOO from MIT.

CHAPTER 2. BACKGROUND 31

interface FIFO #(type t);

method Action put (t x);

method ActionValue #(t) get ();

endinterface

module mkFIFO (FIFO#(t)) provisos (Bits#(t,_));

Reg#(Maybe#(t)) state <- mkReg(Invalid);

method Action put (t x) if (! isValid(state));

state <= Valid (x);

endmethod

method ActionValue #(t) get() if (isValid(state));

state <= Invalid;

return state.Valid;

endmethod

endmodule

Figure 2.1: A simple single-element First In, First Out (FIFO) implementation in
Bluespec. The FIFO is parametrised on the type t provided it has a bit representation,
allowing the FIFO to be reused in different contexts in a type-safe way. Users of this
module can freely call put and get, knowing that back-pressure will be automatic if
the FIFO is not ready due to being full or empty, with no risk of data being lost.
This code is only illustrative as FIFOs are provided as standard library components,
including variants with different numbers of stored elements and variants that remove
the cycle of latency between get and put.

Modularity Bluespec is explicitly designed to maximise code reuse and modularity, with

interfaces and type parametrisability being integral to the language [95]. RiscyOO’s

design is a good example of this [145].

Correctness By providing a higher level of abstraction and type-safety, designs avoid

many common bugs, such as around control signals and losing data.

Existing CHERI work The existing CHERI MIPS processor was written in Bluespec,

allowing some of the more intricate and already-optimised capability compression

logic to be factored out and reused.

Tool compatibility By compiling to a small, commonly-supported subset of Verilog, the

same source Bluespec can be used for synthesis with either Vivado or Quartus and

for simulation with common simulation tools, as well as Bluespec’s own.

The use of the language does carry some disadvantages. The language was previously

very expensive to use in industry, severely limiting its adoption. Partly as a result of this

history, the Bluespec community is very small, even compared to other high-level HDLs

like Chisel. However, the language was recently made free-to-use and the compiler was

open-sourced [58], removing this as a limitation. Finally, the higher-level description can

32 2.2. SPATIAL SAFETY

sometimes make it harder to express the desired behaviour for pieces of circuitry critical

for area or timing.

2.2 Spatial safety

Programmers write code that deal with abstract objects: named constructs that have

limited size and lifetime. The compiler must map objects onto actual memory locations.

Spatial safety violations confuse objects at two different locations: code written intending

to access one object instead accesses another. This may allow privileged state to be leaked

or corrupted via accesses intended for a user-accessible structure. A common example

is a buffer overflow, where an index is used that exceeds the length of an array, causing

whatever follows in memory to be accessed instead [77]. As a prominent example, this was

the vulnerability that enabled the Heartbleed attack [41], which allowed arbitrary memory

reads. More concerning, a user may provide more input to a buffer than it is allocated to

contain, causing the overflowing data to be written over whatever happens to follow in

memory. This may allow them to write arbitrary code into memory and overwrite the

function return address to jump to it once the function returns.

Szekeres et al. provide a good summary of the state of memory safety [122]. The paper

examines contemporary memory safety techniques used on top of virtual memory to

mitigate spatial safety attacks, concluding that they do not sufficiently mitigate this threat.

The failure of current protection mechanisms motivates a rethink of approaches to memory

safety, to provide security-by-design through enforcement of robust security principles [109,

112, 93].

2.2.1 Deployed protections

Hardware and software are already adapted to partially mitigate spatial safety issues due to

their prominence and severity. This section discusses these protections. Most significantly,

Memory Management Units (MMUs) and PMPs provide access control, which can confine

spatial safety violations to within a process. Safe languages guarantee safety properties,

but at the expense of performance and low-level expressivity. These mitigations all have

their own costs; capabilities may allow them to be removed or disabled, recovering some

performance.

CHAPTER 2. BACKGROUND 33

2.2.1.1 Memory Management Units

Contemporary application-class processors provide memory translation: each process has

a virtual view of memory that is translated by a hardware MMU into physical addresses

that are actually used to interface with DRAM. This allows processes to act as if they have

exclusive ownership over memory, rather than having to negotiate memory management

with other arbitrary programs. It also enables over-provisioning, where the Operating

System (OS) can offer large amounts of virtual memory that is only mapped on use.

Memory translation has the side-effect of providing isolation between processes, as the

page table root is switched on context switch. Programs therefore have no way of expressing

an access to the address space of another process. In addition, the Page-Table Entrys

(PTEs) that manage the translation are augmented with permission bits, restricting access

types at a coarse granularity. However, beyond this MMUs provide little to no intra-

process protection and limit the granularity of safe sharing to page boundaries. Protection

is provided based on the accessed address and does not take into account the call-site,

providing no intentionality.

Various MMU permission conventions help to make attacks more difficult. Guard pages

can be left unmapped, or mapped with no permissions, to detect egregious buffer overruns,

for example between the stack and the heap [66]. In addition, non-executable stacks

prevent stack buffer overflows from allowing an attacker to write arbitrary code that they

can jump into with a control-flow gadget. This extends in general to the principle of

W ⊕X: avoiding memory being both writable and executable. Sometimes it is impossible

to achieve this: Just-In-Time compilation (JIT) code generation, for example, needs both

write and execute access to the same memory. To maintain W ⊕ X in this case, the

permissions must either be split across two different mappings or switched dynamically.

2.2.1.2 Physical Memory Protection

On embedded microcontrollers lacking MMUs, by default, spatial safety violations could

allow corruption between processes. To enable some isolation between processes and the

kernel, such cores may offer a Memory Protection Unit (MPU) that has smaller area and

power cost by just implementing a subset of the MMU privilege protection mechanisms1,

without offering translation [114]. MPUs may also be composed with MMUs to protect

machine-mode code and guard against memory management mistakes made by the kernel.

Some RISC-V cores offer a standardised MPU, which RISC-V dubs a PMP [127]. Here, the

core offers a fixed number of CSRs to configure memory regions that have restrictions on

their access, principally offering read, write, and execute permissions. These configurations

can only be changed while the core is in machine mode.

Uses of the PMP are very coarse-grained. Bootloaders will often make their memory

1Although, in principle, MPU regions can be more granular than MMU pages.

34 2.2. SPATIAL SAFETY

unwritable, preventing corruption from within the loaded OS. Lindemer, Midéus, and

Raza discuss using the PMP to enforce thread isolation on embedded cores, performing a

reconfiguration on every context switch to allow threads access only to their memory [79].

However, they note that the PMP specification is currently insufficient to support their

goals, needing an additional privilege level.

The security offered by the PMP mechanism is a subset of that offered by capabilities:

regions can have their access restricted, but only on a coarse granularity, since only few

regions are available (16 or 64 depending on implementation). There is no intentionality:

no effort is made to ensure the executing code intended to access a particular region. In

addition, different access rights to the same physical region cannot be delegated to different

compartments without reconfiguration on every context switch, since access control is

performed by global configuration. Reconfiguration can only be performed in machine

mode, preventing user code from protecting itself. Finally, the PMP must perform an

associative lookup to ensure each access is not prohibited by any of the PMP registers.

This implies a relatively large power and area cost of the scheme, growing linearly with the

number of PMP registers supported. Capabilities avoid associative lookups by requiring

the intended capability to be quoted on access. However, capabilities require code to be

at least recompiled to provide their full protections, whereas the PMP can be used to

protect existing binaries. By decentralising the authority in the system, capabilities can

also make it harder to reason about security and perform revocation. For example, access

to a particular region can be forbidden simply by adding a PMP entry, while forbidding

it in a capability system requires ensuring no capability to that region exists, either by

scanning or maintaining an invariant.

2.2.1.3 Safe languages

The CHERI ISA is focused on adding safety to the C and C++ languages, which are

vulnerable by default to spatial safety attacks. An alternative might be to move away from

these languages in favour of languages with safety built-in, such as via compiler-added

bounds checks and more restrictive treatment of pointers. This section discusses possible

alternative languages. However, it is worth noting that, even if the ideal safe language

emerged and became universally adopted, billions of lines of critical C and C++ code are

already written and will continue to be relied upon until replaced [122]. Therefore, there

is still value in adding spatial safety to C and C++ code.

Most current high-level languages ensure spatial safety by performing dynamic bounds-

checks, for example Java, C#, and Python. This is supported by maintaining length

information and performing run-time bounds checks whenever an array is accessed. This

is made possible by use of a virtual machine that tracks object metadata. In essence,

capabilities try to achieve a similar effect, although implementing the bounds checks

in hardware reduces performance overhead. In addition, safe languages make memory

CHAPTER 2. BACKGROUND 35

references opaque and ban pointer arithmetic. This avoids confusion between objects, but

is obstructive to low-level programming.

Rust [83] is a relatively new language, aiming to replace C, that offers C-like performance

but enforces programming that guarantees spatial and temporal memory safety (as well as

data races), using the notion of ownership. However, Rust offers an “unsafe” mode which

forgoes these guarantees. Many low-level Rust programs and the language’s libraries use

this mode when the type system is too restrictive, making these security-critical pieces of

software more vulnerable to attack. Combining Rust with CHERI is active research [119].

For example, CHERI may be usable to accelerate bounds checks inserted when static

checks cannot guarantee the access is in-bounds. CHERI may also be able to improve the

safety of unsafe Rust, making it at least analogous to C compiled with CHERI.

Even for safe languages, CHERI capabilities allow bounds checks to be performed in

parallel with memory access without additional instructions, unlike dynamic checks added

by the compiler on a regular processor. Modifications to the compilers and runtimes to

exploit CHERI could therefore bring significant performance improvements.

2.2.1.4 Other protections

Stack canaries place known values between variables and compiler-managed critical state

on the stack, checking before return that the canary is unmodified [13]. The intention

is to detect buffer overflows as they overwrite the canary on their way to the intended

value, typically the return address. This generally makes vulnerabilities less convenient to

exploit, as the attacker needs to also find a way to expose the stack canary.

Address Space Layout Randomisation (ASLR) randomises stack and code addresses to

hinder spatial safety attacks by preventing the attacker from knowing where critical

structures are, relative to the memory they can control [17]. As with stack canaries, this

makes attacks trickier in practice, but certainly does not prevent them, typically just

requiring an additional step to extract the required addresses [116].

Compilers provide further protections against stack-based buffer overflows. For example,

LLVM can split the stack into a safe region and an unsafe region [74]. The safe region

includes code pointers and values statically determined to only be accessed safely. This

prevents some of the most exploitable buffer overflows, but still allows overruns between

objects in the unsafe region, and can be bypassed [53].

36 2.2. SPATIAL SAFETY

2.2.2 Related research

This section lists research aiming to address spatial safety issues in C, but that has not seen

universal adoption. Woodruff et al. [136] and Szekeres et al. [122] give further comparisons

between existing approaches. Approaches primarily aimed at temporal safety are deferred

to Section 2.3.1.

CCured [90] A transformation on C that statically analyses bounds accesses, inserting

dynamic bounds checks for those that cannot be shown to always be in-bounds.

This does guarantee spatial memory safety, but breaks a lot of existing C code, as it

exploits the C specification’s undefined behaviour when a pointer goes more than

one byte out of bounds in an address calculation. It also changes the memory layout

of the program in an unpredictable way to store bounds information. Finally, it has

a large run-time overhead, with a 38% overhead in the SPEC INT benchmarks, but

a worst case overhead of over 800% in their pointer-heavy Ptrdist benchmarks.

Cyclone [61] A safe dialect of C, which, much like CCured, combines static checks

with dynamic bounds checking. However, the language has much less of a focus on

supporting legacy code. For example, traditional pointers cannot be used in pointer

arithmetic. An alternative fat pointer type with dynamic bounds checks must be

used instead. Rewriting programs in Cyclone requires editing approximately 10% of

the lines of code and run-time overheads of around 100% are seen in many programs.

Fail-Safe C [98] A compiler-only modification that aims to support the full C standard

as well as common tricks. The compiler augments all generated memory operations

with bounds checks and doubles the size of pointers, storing bounds information in

the additional bits. They report up to 700% run-time overhead.

HardBound [38] Like CHERI, this approach augments the ISA with instructions to

manipulate bounds, and checks these bounds on pointer dereference. However, the

bounds information is entirely stored in a shadow space, both in registers and in

memory, with compression optimisations to reduce the 3× space overhead this would

incur. This approach achieved a worst-case run-time overhead of below 25% for all

the benchmarks tested. However, there is no guarantee of monotonicity in bounds,

meaning an attacker with access to a bounds-setting gadget can violate memory

safety and malicious code cannot be sandboxed.

SoftBound [88] Operates as Hardbound, with disjoint metadata, but adds software

checks rather than adding hardware. Incurs an average 67% run-time overhead.

M-Machine [26] All pointers are “guarded”, with a permissions field and segment length

stashed in the top 10 bits and an out-of-band tag field. Pointers can then only be

manipulated such that they remain in the same segment and also only dereferenced

CHAPTER 2. BACKGROUND 37

within their segment. This is similar to CHERI, but the reluctance to extend the size

of pointers severely limits the precision guarded by a pointer and the expressiveness

of the permissions.

Arm Memory Tagging Extension [9] All memory locations are tagged with a “colour”

and pointers have a corresponding colour stashed in the top bits, where they are

ignored when determining the address. Spatial safety violations dereference a pointer

outside of its original allocation. Hopefully, this memory is coloured with a different

colour than the original allocation, triggering a hardware exception. This is a fairly

invasive change, requiring full tagged memory support. The protection is only

probabilistic and the small number of colours (16) make circumvention a matter of

retries for the attacker, making this most useful as a debugging feature. Oracle’s

Sparc processor had a similar feature: Sparc ADI [1].

Arm Pointer Authentication [103] Uses cryptography to authenticate and verify

pointers to detect corruption, for example to defend return addresses against Return-

Oriented Programming attacks. The authentication code is stored in the top bits of

the pointer. This significantly limits the number of bits, making this primarily a

debugging feature unable to provide strong protection in the face of an attacker who

can retry.

Califorms [110] Inserts poisoned bytes into memory between valid allocations, adding

an instruction to poison bytes and metadata in cachelines to record this. This

means attempts to overflow buffers are likely to trigger an exception, especially when

combined with ASLR. However, this would prevent common C mechanics such as

type-agnostic copying using memcpy, so they add a mechanism for it to ignore the

exception. Requires changes throughout the processor and reports a 2% to 16%

performance overhead.

Low Fat Pointers [75] Uses bounds compression (inspiring CHERI-Concentrate) to

store bounds in the top bits of pointers. Also has integrity tags and different

instructions to operate on pointers, making them capabilities. Unlike CHERI,

privileged software is allowed to set tags. The extent of pointer compression imposes

severe alignment constraints on capabilities.

Mondrian [133] Allows memory to be split into arbitrary-length segments down to

word-granularity, with user-specific permissions for each. Various optimisations

are suggested to allow rapid checking of dereference, including a sorted segment

table to allow binary search, and sidecar registers to cache previously obtained

permissions. This is good for inter-process protection, but does not give intra-process

data protection, as no check is performed on dereference that a pointer is used to

access the intended object.

38 2.2. SPATIAL SAFETY

Valgrind [91] A debugging framework that takes compiled binaries and converts them

into an intermediate representation. This can then be instrumented with checks in

a modular way: tools can be written as plugins that transform the intermediate

representation. The memcheck tool can provide memory safety guarantees, including

checking for buffer overflows. However, this approach is very expensive (around a

22× run-time overhead), so is used only for debugging purposes.

AddressSanitizer [115] Instruments code and the allocator to detect spatial safety

violations by maintaining a map of inaccessible memory, allowing regions to be

poisoned. Code is added to check this map on every memory access. Again intended

as a debugging tool, it sacrifices the generality of Valgrind to reduce the run-time

overhead to 73% on average. Zhang et al. performed additional optimisations to

reduce this overhead to 63% [147] (although their baseline AddressSanitizer had a

run-time overhead of 108%). HWAsan [72] uses Arm MTE to significantly reduce

the AddressSanitizer memory overhead, but does not improve the run-time overhead.

PACMem [78] By using Arm Pointer Authentication, the authors are able to produce

a memory sanitiser with a 69% geometric mean run-time overhead. This provides

only probabilistic protection, so does not defend against an attacker who can retry.

Intel MPX [99] A now deprecated attempt to enforce memory safety as an extension

to the x86 instruction set. It provided four bounds registers, manipulated with

explicit bounds instructions, that registers could be checked against before being

dereferenced. It incurred an average 50% run-time overhead, with 300% in the worst

cases. It also had poor compatibility for C idioms and was bypassable, with an easy

option to ignore bounds errors.

In-Fat Pointer [142] Like CHERI, uses hardware support to restrict and check bounds.

However, uses the top bits of pointers (at least 16 bits) to index into a lookaside

bounds table. This is to preserve interoperability with unmodified binaries, such as

libraries. Spatial safety errors in these binaries can violate the safety guarantees.

The approach sees significant hardware area overhead (60% LUT increase for CVA6)

and a 12% geometric mean performance overhead across a range of benchmarks.

Overall, the approach is very similar to CHERI, but sacrifices guarantees in the

presence of unprotected code to avoid perturbing memory layouts.

AOS [68] Uses Arm Pointer Authentication for pointers on the heap (both spatially and

temporally), using the resulting MAC to index into a lookaside bounds table. They

see a SPEC run-time overhead of 8.4% in Gem5. However, their approach protects

only the heap, does not allow bounds to be restricted, and relies on probabilistic

protection due to the limited space for authentication bits in the top of pointers.

CODOMs [124] Tags instruction pages with the tags of data pages it can access.

This does not protect spatial safety within an application, but can be used to

CHAPTER 2. BACKGROUND 39

compartmentalise applications in the same address space. To allow sharing, code

can create capabilities to delegate access to a region. Negligible performance impact

was extrapolated from Gem5 microbenchmarks.

2.2.2.1 Summary of approaches

This section gives a summary of the key features of these approaches, highlighting their

fundamental properties and limitations. For example, approaches that only change the

compiler see easier adoption and no hardware overhead, at the expense of the security

being bypassable, and increased software runtime overheads. In addition, protection of

intentionality is omitted in some techniques. The different approaches are summarised in

Figure 2.2. The following qualitative properties are used to categorise the schemes:

Software-only Schemes that avoid requiring hardware support may see easier adoption.

However, such schemes require use of a particular compiler and so do not allow

sandboxing of binaries from unknown sources.

Guaranteed Schemes that offer deterministic protection can provide strong runtime

guarantees. Depending on the amount of entropy, attacking probabilistic schemes

may be simply a matter of retries, making them primarily debugging features.

Mandatory Schemes can allow running untrusted binaries by being non-circumventable.

This requires some mechanism for restricting access to arbitrary machine code in a

way that cannot be reversed without some additional privilege.

Intentional Schemes can enforce intentionality to provide additional security: not only

does the scheme check that an access is to an allowed region, but also the software

must specify the region it was intending to access alongside the actual address.

C Compatibility Schemes vary in how much software change is required to support

the scheme. This can range from being able to use the same binary, to requiring a

recompile, to a complete source-code rewrite. It is worth noting that the purpose of

any protection is to prevent certain unsafe behaviours: software that relies on these

behaviours will therefore no longer work. As such, some C idioms may be forbidden,

some of which rely on undefined behaviour.

One additional point is that schemes can be combined or enhanced to overcome their

limitations and performance overheads. For example, adding hardware support for fast

bounds checking or to track pointers may significantly accelerate a software-only approach.

An example of this can be seen in the difference between SoftBound and HardBound. As

well as being faster, moving from software- to hardware-enforced checks can allow code to

be sandboxed. To a large extent, CHERI can be seen as a combination of these approaches.

40 2.3. TEMPORAL SAFETY

Software-only Guaranteed Mandatory Intent. C Compat.

CCured 3 3 7 3 Recompile
Cyclone 3 3 7 3 Rewrite

Fail-Safe C 3 3 7 3 Recompile
HardBound 7 3 7 3 Recompile
SoftBound 3 3 7 3 Recompile
M-Machine 7 3 3 3 Recompile
Arm MTE 7 7 3 3 Recompile
Arm PAC 7 7 7 3 Recompile
Califorms 7 7 3 7 Recompile

Low Fat Pointers 7 3 3 3 Recompile
Mondrian 7 3 3 7 Recompile
Valgrind 3 3 7 7 Binary

AddressSanitizer 3 7 7 7 Recompile
PACMem 7 7 7 3 Recompile

Intel MPX 7 3 7 3 Recompile
In-Fat Pointer 7 3 7 3 Recompile

AOS 7 7 7 3 Recompile
CODOMs 7 3 3 7 Rewrite

CHERI 7 3 3 3 Recompile
Rust 3 3 7 3 Rewrite

Figure 2.2: A summary of the key qualitative features of the C safety mechanisms
discussed.

2.3 Temporal safety

Temporal safety violations confuse objects at the same memory locations but with different

lifetimes. Computer systems generally have to reuse resources over time: most notably,

virtual address space must be reused as objects are rapidly created and discarded. Temporal

confusion can occur whenever objects are dynamically allocated, most commonly for C

programs on the stack or the heap. On the stack, a violation consists of dereferencing a

pointer to stack-allocated memory that has since been repurposed. This can occur when

the pointer is passed outside of the context that allocated it. On the heap, the most

common vulnerability is a use-after-free, where a pointer is used to access an object that

has since been freed and the backing memory has possibly been repurposed [32]. This

can leak or corrupt privileged state. As lifetime characteristics of stack and heap objects

are usually very different, performant solutions to stack- and heap-based temporal safety

can differ significantly. When discussing temporal safety, this thesis focuses on the heap.

Like spatial safety, temporal safety violations can cause accidental bugs and exploitable

vulnerabilities.

Some of the deployed protections discussed in the context of spatial safety in Section 2.2.1

also protect temporal safety. MMUs and MPUs again provide protection on a process

CHAPTER 2. BACKGROUND 41

granularity, since mappings are destroyed when a process terminates. Safe languages also

ensure temporal safety by never freeing objects with remaining reachable references.

Capabilities naturally solve spatial safety issues, as bounds within pointers prevent confu-

sion between objects at different memory locations. However, temporal safety issues pose

more difficulty. Traditional approaches to revocation in other computer science contexts

involve maintaining a centralised list of revoked references. An example is certificate

revocation for cryptography systems [70]. This works well when references are indirected

through a central resource, so the reference can be rendered useless by deleting the back-

ing entry in the central database. Capabilities do not naturally lend themselves to this

approach, as they can be freely copied and are not indirected: holding the capability

should be sufficient to access the referent object without additional layers of lookup. While

this approach aids performance in the common case, it removes the ability to invalidate

capabilities in bulk. This implies sweeping memory to revoke capabilities. How to achieve

this with small performance impact is investigated in Chapter 7.

Many approaches to temporal safety in systems without capabilities are forced to ap-

proximate whether values are references to revoked objects, or incur a large performance

penalty to track this information. By making it unambiguous which values are pointers

and preventing pointers from being materialised from scratch, capabilities make it possible

to sweep precisely.

2.3.1 Related research

Many attempts have been made to mitigate heap temporal safety vulnerabilities in C,

including:

Boehm-Demers-Weiser Garbage Collector (Boehm GC) [20] A garbage collec-

tor for C that marks and sweeps to replace error-prone manual memory management

with malloc and free. However, without capability metadata, it must be both

conservative and unsafe. The conservativeness is required since pointers cannot be

reliably distinguished from integers due to static typing, so all integers must be

assumed to be pointers to avoid freeing live data. The unsafety is because it frees

memory that cannot be reached by accessible pointers, but it is possible for pointers

to be hidden in C, for example through XOR linked lists.

Capability Boehm [60] Investigates initial adaptation of Boehm GC to CHERI, using

capability metadata to allow the conservativeness and unsafety to be overcome.

The work is ongoing: the paper mostly highlights challenges adapting the existing

code to support capabilities and difficulty coalescing allocated blocks due to bounds

monotonicity. The potential benefits of capability tags available at run-time are

noted but not yet exploited.

42 2.3. TEMPORAL SAFETY

MarkUs [2] Reduces the unsafety of Boehm GC by freeing only the intersection of

manually freed memory (which is kept in quarantine) and memory detected as

unreachable by the mark and sweep. The run-time overheads are reported as 10%

on average with a worst case of 100%.

MineSweeper [44] Uses a linear sweep, very similar to CHERIVoke [138], to ensure no

dangling pointers remain before reusing memory. Not built atop CHERI, it can run

on unmodified hardware but pointers can be hidden from it, so it does not guarantee

safety. Sees a 5.4% geometric mean run-time overhead across SPEC.

Magpie [104] A transformation of C programs that allows them to be used for precise

garbage collection. It automatically generates functions to feed into a garbage

collector to perform traversal to find live variables and rewrites malloc calls as

garbage collector calls. It requires pointers to use the correct type and has undefined

behaviour in the face of pointer arithmetic. They experience up to 400% run-time

overheads.

Fail-Safe C [98] Already discussed in Section 2.2.2. Since the compiler generates typed

fat pointers with full information about bounds, this approach is able to use garbage

collection to ensure memory is not reused until all dangling pointers are invalidated.

Arm Memory Tagging Extension [9] Already discussed in Section 2.2.2. As well

as varying the colour across different allocations spatially, the allocator can change

the colour when malloc reuses memory, meaning all dangling pointers to any old

allocations will raise an exception on dereference. Once again, this protection is only

probabilistic, as colours must eventually be reused.

AddressSanitizer [115] Already discussed in Section 2.2.2. As well as poisoning bytes

surrounding structures for spatial safety, this scheme poisons an allocation when it

is freed, catching use-after-frees unless the memory has been reused.

DangNull [76] Adds a pass to the compiler, registering all stores of pointer types to

their corresponding allocation. free calls then invalidate all pointers registered to

the freed allocation by replacing them with null pointers. It only tracks pointers

on the heap, leaving all other locations, most notably the stack, open to contain

dangling pointers. It incurs an average SPEC run-time overhead of 80%, with a

worst case of over 400%, although they exclude the omnetpp benchmark, which is

usually the worst case.

DangSan [73] Operates as DangNull, but also tracks pointers stored to the stack,

preserves most of the address bits of invalidated pointers (improving compatibility),

and makes efficiency improvements. It is still unable to track all pointers, for example

those copied with memcpy, pointers in registers, and pointers spilled to the stack by

CHAPTER 2. BACKGROUND 43

the compiler. They observe a geometric average of 44% run-time overhead in SPEC,

with a worst case of 672%.

FreeSentry [144] This again operates similarly to DangNull (developed independently

and published concurrently). It achieves a better run-time overhead (SPEC geometric

mean 25%), at the expense of not supporting multi-threaded programs.

pSweeper [81] Similar to DangNull, but avoids maintaining points-to relationships with

code instrumentation, instead just maintaining a list of live pointers with simpler

instrumentation of pointer-typed stores. The approach then exploits additional cores

to run concurrent sweeps through memory, checking if any pointers refer to freed

memory. Freed memory is quarantined until a sweep is complete. Run-time overheads

can be traded off against memory overheads, but average run-time overheads between

12.5% and 17.2% are observed on SPEC, with worst-case overheads on the order of

100%. Note that this uses an additional CPU core for the sweeps.

BOGO [146] Runs atop Intel MPX to provide temporal safety by scanning through

bounds tables on every free, invalidating dangling pointers by restricting their bounds.

To optimise, clears only the most accessed bounds tables, relying on page faults to

invalidate others lazily. Reports an average SPEC performance overhead of 60%,

with a worst case of 16× for omnetpp.

CETS [87] A compiler transformation that augments pointers with a key value and a

pointer to a lock location, checking that the key value matches the value stored

at the lock location on every dereference. Frees change the lock value, implicitly

invalidating all dangling pointers. Incurs an average SPEC run-time overhead of

48%, with a worst case of 175% (omnetpp excluded).

Watchdog [86] Associates every pointer with a side-car register containing bounds and

an identifier that indexes into a table of all allocations. All memory accesses check

this table to ensure the pointer’s identifier is still valid and matches the current

allocation identifier, and that the access is in-bounds. The approach reports an

average 24% run-time overhead on a simulated processor.

Oscar [34] Places objects on separate virtual pages, revoking them by removing the

mapping for the corresponding page. The scheme never reuses virtual addresses for

freed pages, so programs will eventually run out of virtual address space. Reports

a 40% geometric mean overhead over the SPEC benchmarks, with a worst case of

350%.

Cling [3] Like Oscar, avoids virtual memory reuse in general. However, allows type-safe

reuse by inspecting the call stack of the malloc call. This protects against common

vulnerabilities, but does not guarantee safety. Due to the fast reuse path, has low

overheads, negative in many cases.

44 2.4. CHERI

DieHard [16] Provides probabilistic protection against use-after-free errors by randomis-

ing heap allocation decisions. Combined with over-provisioning memory for the heap,

this makes it unlikely for a dangling pointer to point to a useful new allocation.

Reports a 12% geometric mean run-time overhead over SPEC 2000, with a worst

case of 109%. Also offers a mode to maintain replica heaps with different seeds to

detect non-determinism of results.

DieHarder [96] Adapts DieHard to a new allocator, with added security features such as

randomising small allocations and using a sparse page layout. Sees similar run-time

overheads: 20% average and a worst case of 100%.

FreeGuard [118] Combines various probabilistic protection techniques, based on

DieHarder. However, makes tradeoffs in favour of performance over security, such

as making large mmap system calls and avoiding over-provisioning the heap size.

Average run-time overheads of 1.8% are reported, with a worst case of just over 20%.

They report multi-threaded benchmarks rather than SPEC.

CRCount [117] Instruments code to maintain a bitmap of the locations of pointers on

the heap. This is used to detect when a store overwrites a pointer, at which point a

reference count to the pointee allocation is decremented. Allocations are freed once

their reference count reaches zero. Incurs a geometric mean run-time overhead of

22% over SPEC, with a worst case of approximately 130%.

Retrofitting Temporal Memory Safety on C++ [18] Bikineev, Lippautz, and

Payer modified Google Chrome to improve temporal safety by quarantining freed

memory and scanning for dangling pointers before reuse. The authors use Arm MTE

to allow multiple reuses of the same memory—one per MTE colour—before a sweep

is required. This reduces the run-time overhead from 8% to 2%. Once again, due to

pointer hiding, it is possible for this approach to miss dangling pointers. In addition,

the sweeps do not detect dangling pointers moved during a sweep.

2.4 CHERI

This section introduces CHERI, giving the design principles and architecture-neutral model,

as well as common microarchitectural implications. I joined the CHERI project with these

aspects initially developed via the CHERI MIPS processor, and a preliminary proposal for

adaptation to RISC-V. Throughout the course of my project, architectural changes were

investigated, as discussed throughout the thesis. More detailed descriptions of instructions,

as required to understand the content of the thesis, are given in Appendix A. The CHERI

ISA document provides a more complete reference [128].

CHAPTER 2. BACKGROUND 45

2.4.1 Model

CHERI is an instruction set extension, changing an existing ISA by requiring memory

accesses to be performed through tagged capabilities, and adding instructions for inspecting

and manipulating capabilities [136]. Starting as an extension to the MIPS ISA [136, 137],

CHERI has seen increasing interest throughout this project, for example in Arm’s Morello

experimental prototype, adding CHERI to a commercial Arm processor [54]. There is also

a draft CHERI x86 proposal in progress [128].

Capabilities provide security by enforcing the principles of least privilege [112] and inten-

tional use [93]. By minimising the memory accessible to code at run-time, accidental or

maliciously influenced accesses have limited scope to corrupt program state. In addition,

requiring every access to quote the intended capability prevents code from performing an

operation using authority intended for a different operation, mitigating confused deputy

attacks [56]. By making capability use mandatory, enforced by hardware, rather than

optional checking instructions, CHERI also allows compartmentalisation and sandboxing.

For example, with careful page-table management, even the operating system cannot

access a process’ memory without access to an appropriate capability [45]. This thesis

primarily only considers spatial and temporal safety benefits of CHERI, but note that its

benefits extend beyond this.

In practice, CHERI protects the integrity of pointers with a one-bit out-of-band tag.

The hardware guarantees that every tagged capability must have been derived from an

initial root capability by a sequence of permissible operations, each of which can only

monotonically decrease the rights granted by that capability. This ensures all tagged

capabilities have strict provenance. The tags prevent corruption of pointers, immediately

mitigating a large class of attacks that require manipulating pointers by overwriting

them with non-capability data, for example Return-Oriented Programming [108]. In turn,

by requiring every memory access to quote a tagged capability, this protects data from

accidental or malicious corruption, since the capability contains the intended bounds and

permissions. This too immediately mitigates some of the most common attacks, most

notably buffer overflows [77].

A study by Microsoft revealed that roughly 75% of their security bugs are bounds overflows

or temporal safety issues, indicating they would be mitigated by CHERI with temporal

safety support [65]. This provides assurance that CHERI can have a real impact on industry

and users. In addition, monotonicity of the ISA has been formally proven, showing that

the intended invariants are provided by the architecture, if implemented correctly [15].

46 2.4. CHERI

2.4.2 Microarchitecture

CHERI is able to perform dynamic bound-checks while performing better than the software

approaches mentioned in Section 2.2.2 by keeping the bounds information in the pointer and

performing the bounds-check in hardware. The metadata is in-band, treated throughout

the processor as data. The validity tag is out-of-band and accompanies each capability-

aligned granule of data everywhere capabilities can be stored, including registers, caches,

and memory.

The bit pattern of a capability consists of:

A capability tag A one-bit out-of-band field that records whether the capability is valid,

i.e. whether it has been derived only via legal monotonic operations.

A cursor A field giving the current address referred to by the capability. This is all that

is present in a traditional C pointer and the natural integer interpretation of the

capability.

Bounds information The capability only grants access to a single contiguous region of

memory, specified by the bounds field. Changes to the capability can only ever grant

access to a subset of the bounds without triggering an exception or clearing the tag.

Permissions Permissions are required to access memory in different ways: most obviously

read, write, and execute, but also the permissions to read and write capabilities, and

more experimental uses. These can only be modified by a bitwise AND operation,

inherently guaranteeing monotonicity.

Object type (otype) CHERI provides a compartmentalisation mechanism for granting

protected access to objects, represented as a pair of code and data. Code and data

can be sealed with an otype, and primarily only unsealed by the CInvoke instruction,

which atomically jumps to the code pointer and installs the unsealed data capability.

Sealed capabilities cannot be mutated other than via a legal CInvoke or CUnseal

instruction without raising an exception or clearing the tag.

Two major complexities when implementing CHERI are now discussed: compression and

changes to the memory subsystem to support tagged memory.

2.4.2.1 Compression

One of the major performance overheads of CHERI comes from the increased widths of

capabilities compared to traditional pointers. This uses hardware resources, as the register

file is bigger, but also adds cache pressure, as pointers in memory must be accompanied by

metadata. These effects can be somewhat mitigated by capability compression [135], which

reduces the bounds metadata to as little as 39 bits for a 64-bit pointer at the expense

CHAPTER 2. BACKGROUND 47

of alignment constraints on representable positions for large objects. The compression

and decompression is performed directly by the hardware, allowing software to be largely

unaffected.

Capability compression, described in detail in our CHERI-Concentrate paper [135], stores

the bounds as a base (B) of b bits, a top (T) of (b− 2) bits, and an exponent (E) of e bits.

The described bounds are relative to the cursor of the capability (C). The actual base is

determined by shifting B left by E, filling any remaining upper bits with the corresponding

most significant bits of C. The top is similar, except the top two bits of T are determined

in the common case by adding 1 to those of B. As a result, bounds are zero-filled in the

least significant E bits, imposing the requirements on bound-alignment mentioned above.

To save some space, E is only stored when non-zero, in which case (called the internal

exponent case) it takes the place of the least significant bits of B and T (which are then

implicitly zero). This means smaller objects can be represented more precisely than larger

ones. The scheme is currently implemented with b = 14, e = 6 for a 64-bit address space

and b = 8, e = 6 for a 32-bit address space.

Bounds with insufficient alignment to be represented as above are said to be unrepresentable.

CHERI offers two variants of the CSetBounds instruction: one triggers an exception when

unrepresentable bounds are requested, the other just returns the closest larger representable

bounds. In order to guarantee spatial safety, software must add padding (at most 0.2% or

12.5% of the size of the object for 64-bit and 32-bit address spaces respectively) at the

beginning or end of large objects to ensure no other objects use the memory that is within

the bounds due to the rounding. Instructions that modify a capability cursor may also

change the interpretation of the bounds if they modify bits of the cursor that are used

to determine the base and top. Care is taken in the ISA and implementations that such

cases clear the tag of the resulting capability or raise an exception.

2.4.2.2 Memory subsystem changes

Since capabilities can be transferred to and from memory, the capability tags must be

preserved in memory. These tags must be out-of-band, as code should not be allowed to

circumvent the capability system by directly writing the capability tag. In addition, the

tag must be voided whenever the address is written in a way that might corrupt the bits

of an existing capability.

Storage is added for capability tags alongside the data in registers and in caches. CHERI

adds a shadow-space for the tags in memory, only accessible by a new tag controller

component [63]. The tag controller is inserted into the cache hierarchy after the highest

level of cache. It extracts the addresses of requests passing through, uses them to lookup

the relevant tags in the shadow-space, and merges these into responses as they go back

into the cache. This component also maintains a hierarchical cache of tags, reducing the

pressure on memory that would result from two memory accesses per cache miss. An

48 2.4. CHERI

alternative implementation is to extend DRAM by one bit per capability-sized region of

memory. Morello has this option, using Error Correction Code (ECC) bits of DRAM, but

we avoid it to allow us to use consumer DRAM. The tag controller also helps to accelerate

temporal safety by making tags accessible independently of the data, as discussed in

Section 7.3.

2.4.3 Software

C code can simply be recompiled to gain many of the memory safety benefits of CHERI.

This is because C contains information on the bounds of the objects within which pointers

are intended to be dereferenced. This information is traditionally discarded during code

generation. For example, the type of a stack allocation indicates its size: the compiler

already needs to know this to generate code and lay out the stack. Other structures, such

as globals and thread-local storage, can be accommodated similarly. The LLVM compiler

has been augmented by the CHERI group [36] to preserve this information and generate

the relevant bounds restrictions for the MIPS, Arm, and RISC-V backends via the CHERI

MIPS, Morello, and CHERI RISC-V extensions. The last of these was developed alongside

the CHERI RISC-V ISA, OS, and hardware: a co-design process of which this PhD is

a part. Heap allocations—via malloc—also contain the description of the intended size

in the allocation call. By linking against a CHERI-aware library and using its malloc

implementation, the application can no longer get confused between allocated objects.

Ideally, a CHERI malloc implementation would also provide heap-based temporal safety:

this is discussed in Chapter 7.

Some code does need to be changed for compatibility and for protection [129]. Some C code

assumes sizes of pointers and freely casts pointers to integer types and back to perform

arbitrary arithmetic on them (such as XOR linked lists), despite the C standard deeming this

undefined behaviour [111]. With CHERI, this clears the tag and corrupts the metadata:

fixing the code often involves using the correct type throughout [129]. Any code that

takes pointers significantly out-of-bounds also causes compatibility issues, as capabilities

may be taken outside of their representable region. This is, however, not compliant

with the C standard [111], and CHERI does support pointers being taken somewhat

beyond their bounds for common cases. Enabling sub-object bounds—automatically

restricting pointers to structs when a reference to a member variable is taken—causes

more compatibility issues. For instance, imprecision caused by capability compression may

force sub-object capabilities to overlap, and use of various container of macros would

violate monotonicity [107]. As a result, sub-object bounds are optional in the compiler.

Additionally, some code may wish to add additional capability protections, for instance

if implementing a custom allocator. Capability compiler intrinsics are available for this

purpose. Finally, supporting compartmentalisation requires more software work: various

models are being actively researched by the CHERI team.

CHAPTER 2. BACKGROUND 49

The OS can be modified to varying degrees. Initially, the operating system can just change

its interaction with user-level applications, for instance preserving capabilities passed

through the kernel and saving and restoring capability state on context switch. This is

referred to as a hybrid kernel and is fully supported in CheriBSD [23]—an adaptation of

FreeBSD—and Cheri-FreeRTOS [24]. The most complete approach is a purecap kernel,

where the OS itself uses capabilities for all its pointers: a prototype version of CheriBSD

with a purecap kernel has been developed.

50 2.4. CHERI

Chapter 3

CHERI for microcontrollers

This chapter discusses the development of CHERI for RISC-V microcontrollers: in partic-

ular the Piccolo and Flute cores. As the first CHERI RISC-V hardware implementations,

this required significant refinement of the draft CHERI RISC-V ISA. Some of the key

architectural decisions are discussed in the context of their impact on microarchitecture.

An overview is given of the microarchitectural work required to implement the extensions.

The TestRIG and RISC-V Formal Interface with Direct Instruction Injection (RVFI-DII)

frameworks that were developed alongside the processors to accelerate debugging and

verification are also introduced.

The implementation discussed in this chapter directly addresses the question of amenability

of CHERI for RISC-V microcontrollers (Hypothesis H.1). The success of the implementa-

tions is evaluated using FPGA synthesis tools and embedded benchmarks in Chapter 4. The

microcontroller implementations also act as a baseline to compare against the application-

class CHERI implementation discussed in Chapter 5. It therefore enables an investigation

of CHERI scaling across core sizes to address Hypothesis H.3.

3.1 Characteristics of microcontrollers

Many applications call for a small, low-power core, where performance is not a primary

goal, for instance in small Internet of Things (IoT) devices or for managing state-machines.

In these cases, a microcontroller is used, typically running an embedded Real-Time

Operating System (RTOS). Such cores have different characteristics and optimisation

goals to application-class cores. For example, it is often the case that microcontrollers lack

the traditional memory subsystem consisting of DRAM and caches. Some instead have a

small scratchpad of on-chip memory [12]. Microcontrollers also often lack MMUs.

The microarchitecture of microcontrollers also tends to be simple, prioritising low area, for

example using a scalar in-order design with a small number of pipeline stages.

51

52 3.2. BASELINE PROCESSORS

Microcontrollers also present a different security landscape to application-class cores.

Typically the application is known at design-time, so formal verification of the entire

codebase is more feasible. For example, the SeL4 RTOS has been formally proven to

provide isolation between processes [69]. However, microcontrollers are often used in

low-cost environments, meaning the proper security scrutiny might not be affordable. Such

low cost devices are increasingly networked for IoT reasons, making bugs exploitable to

compromise homes, hospitals and traffic control devices, among others [101]. Traditional

MMU-based compartmentalisation is not possible where an MMU is not present, alarmingly

making the entire address space visible to every process. The current solution is to employ

a MPU, practically offering a subset of MMU protections. Section 2.2.1.2 describes the

PMP mechanism, which is RISC-V’s specification for an MPU.

3.2 Baseline processors

This section describes the existing baseline processors, going into details relevant to the

CHERI modifications.

Rather than implementing the processors from scratch, we augment pre-existing processors

with CHERI extensions. As well as saving significant effort, this more accurately represents

the path industry would take to adopt CHERI, since many have a large amount of pre-

existing processor Intellectual Property (IP). In addition, using pre-existing processors gives

more realistic baseline performance, as the processors have been designed and optimised

without capability support in mind. Developing a CHERI processor completely from

scratch could present different optimisation opportunities, but is left as future work. The

particular processors chosen offered an interesting range of configurations and sizes. They

were also implemented in Bluespec, making them extensible and allowing reuse of certain

existing CHERI MIPS components and logic.

The baseline microcontrollers used—Piccolo and Flute—are developed by Bluespec Inc.

Piccolo is a 3-stage in-order pipeline, supporting 32-bit and 64-bit RISC-V, as well as (all

sensible combinations of) the RISC-V A, C, D, F, and M extensions. Flute is an extension

of Piccolo to add two front-end pipeline stages, increasing clock speed at the expense

of reducing Instructions Per Clock (IPC). Flute and Piccolo are separately maintained,

although most changes are kept synchronised between the two processors, minimising the

difference between them.

Piccolo’s pipeline is shown in Figure 3.1. The first stage (Stage1) is a combination of fetch,

decode and execute. The incoming instruction is decoded, and the Arithmetic Logic Unit

(ALU) operations implied by it are carried out, before the calculated next PC is used to

start the fetch of the next instruction. This avoids the complexity of predicting branches

as the architecturally next PC is known when it is needed for fetch, at the expense of

clock frequency as fetch, decode, and execute are all serialised. The second stage (Stage2)

CHAPTER 3. CHERI FOR MICROCONTROLLERS 53

Stage1 Stage2 Stage3

ICache DCache

RF

Figure 3.1: The Piccolo pipeline. Forwarding paths from Stage2 and Stage3 to
Stage1 are omitted.

is devoted to any operation that might be multi-cycle: multiply, memory access, shifting

(if not configured with a barrel shifter), and floating point (if enabled). The third and

final stage (Stage3) is for register writeback. All reasonable forwarding paths are present,

from both Stage2 and Stage3 to Stage1 where the registers are read. The control-path

detects any exceptions, interrupts or bubbles, handling each possibility once the following

stages are clear.

Despite ostensibly being microcontrollers, the processors were designed around offering an

interface to DRAM, with a small write-through L1 cache. Over the course of the project,

support was added for additional configurations, including changing to write-back L1

caches and adding an L2.

The default cache is in-order, write-through, and no write-allocate. This simplifies the

design as all lines are always clean. The cache accepts requests for reads, writes or atomics,

indexing into its BRAMs as it receives the request so it can service the request after a

single cycle on hit. The following cycle, the cache issues the response to the pipeline if

ready, and starts generating AXI transactions as required. RISC-V’s atomic operations

(described in Section 2.1.1) are also supported: the caches perform the required operation

on either a hit or when the relevant response is received from memory. Atomicity follows

from the in-order nature of the caches.

The baseline System on Chip (SoC) was provided by Galois as a Vivado project, consisting

of interconnect between the processor, DRAM and various peripherals, including Ethernet,

UART, and DMA. However, partly due to the lack of RISC-V cache maintenance operations

at the time of implementation, the memory map was split into a cached 3 GiB and uncached

1 GiB region. This requires any DMA to be performed into the uncached region, then

54 3.2. BASELINE PROCESSORS

StageF StageD Stage1 Stage2 Stage3

ICache DCache

RFBrPred
train

Figure 3.2: The Flute pipeline. Forwarding paths from Stage2 and Stage3 to Stage1

are omitted.

copied by the CPU into the cached region, somewhat defeating the performance goals of

DMA.

Flute (Figure 3.2) splits Piccolo’s first stage into three: StageF, StageD, and Stage1.

StageF performs instruction fetch, receiving the fetched instruction, feeds it into the

branch predictor, and requests the next instruction. StageD only serves to decompress

compressed instructions, with all other instruction decoding deferred to switch statements

in the ALU, presumably to maximise logic shared with Piccolo. Stage1 is the remainder

of the corresponding stage in Piccolo, completing the decoding of the instructions and

performing ALU operations.

Flute also adds MMU support via the additional S-Mode privilege ring, implying support

for translation1. A TLB is offered to make performance tolerable, but optimisation is

lacking. One particular quirk is that the TLB does not lookup in the cache on miss, instead

always performing the full access to DRAM. This significantly increases the performance

penalty of a TLB miss. As the caches are write-through, this does not cause coherence

issues.

Since Flute adds a fetch and decode stage, but branches are still resolved in Stage1, there

are two cycles during which the fetched instructions are speculative. Flute therefore adds

a branch predictor, consisting of a Return Address Stack (RAS), Branch Target Buffer

(BTB), and 2-bit saturating taken predictor. The RAS detects calls and returns using

RISC-V-defined hints based on the Application Binary Interface (ABI). The BTB is a

direct-mapped table containing the last address jumped to from each PC. These structures

are trained from Stage1 based on the architecturally correct behaviour.

1While this support is actually included in Piccolo, it is not part of the recommended configuration.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 55

3.3 Architectural changes

Adding CHERI to a processor involves adding extra instructions to manipulate capabilities,

adding checks to both new and existing instructions to ensure security guarantees are

met, and augmenting registers, datapaths, caches, and interconnect to support wider

registers and capability tags. I implement Version 8, as described by the CHERI ISA

document [128].

Pending standardisation, CHERI has been added as a largely greenfield RISC-V extension,

meaning it uses only encoding space reserved for non-standard extensions. In particular,

CHERI uses the 0x5b major opcode for all added instructions. This space is not completely

filled: in total, fewer than 10 million new encodings are added, less than one percent of

the total 32-bit encoding space [128]. The majority of these are taken by the two added

I-type instructions: CIncOffsetImm and CSetBoundsImm. In addition, CHERI re-enables

the encoding for the load/store access width that is double the current xlen (including for

atomics) to enable capability-width accesses: 64 bits for RV32 and 128 bits for RV642.

Furthermore, CHERI adds xcause codes for capability-related exceptions and xccsr

registers for controlling and inspecting capability-related state. Page-table bits are added

for page-granularity capability management: these are most relevant to revocation so are

discussed in detail in Section 7.2.1.

Although the current architecture has been validated in hardware and software, architec-

tural optimisation—deciding which CHERI instructions are required, which need immediate

forms, and optimising for efficient decoding—is work yet to be carried out. It is hoped

that the CHERI-augmented processors can be used to enable this work.

As the first CHERI RISC-V implementations, Piccolo and Flute offered the first oppor-

tunity to investigate the microarchitectural implications of several pre-existing CHERI

architectural questions, described in the rest of this section.

3.3.1 Merged register file

CHERI introduces registers to hold capabilities. These are twice the bit-width of the

addresses in the system, to allow room for the capability metadata [128]. This raises a

question of how these capabilities should be arranged and addressed. One option (the

split register file preferred by CHERI MIPS) is to have the capability registers completely

separate from the integer register file. Instructions are then explicit about whether their

register arguments index into the capability or integer register file. An alternative is to

have some overlap between the two (the merged register file) and define semantics for

reading capabilities as integers if the instruction expects an integer, and writing back

capability registers with integers if an instruction does not produce a capability. Note that

2A specification for supporting 128-bit registers is being developed for RISC-V.

56 3.3. ARCHITECTURAL CHANGES

Split Register File

cnull

cra

csp

cgp

ctp

ct0

ct1

2*xlen

...

capability registers

zero

x1

x2

x3

x4

t0

t1

xlen

...

integer registers

Merged Register File

zero

ra

sp

gp

tp

t0

t1

xlen

addresses /
integer aliases

cnull

cra

csp

cgp

ctp

ct0

ct1

xlen

...

metadata

Figure 3.3: Architectural view of integer and capability RISC-V registers with split
and merged register files as seen by pure capability software. ABI names are given:
hardwired zero (zero), return address (ra), stack pointer (sp), globals pointer (gp),
thread pointer (tp), temporaries (t0,t1). Capability versions are prefixed with c.
With the split register file, integer address ABI registers are redundant, so could be
reused as other integers, such as to provide more temporaries.

not all integer registers need to be extended with this approach, although this is an idea

that remains largely unexplored. Figure 3.3 illustrates the difference in the architectural

view of registers between the two approaches.

The decision has far-reaching consequences for microarchitecture, compilers, and software.

A merged register file uses fewer state bits, for any given number of capability and integer

registers, as bits are shared between capabilities and integers. This saves area in the

processor, especially when synthesising for silicon, where register overhead is not concealed

by BRAMs. Microcontrollers are particularly sensitive to area increase due to additional

registers, since registers correspond to a large fraction of their area.

In addition, the merged register file should reduce area and complexity in the processor,

as it allows the datapath, forwarding paths and control logic to be reused for capabilities.

For some processors, the datapath will need to be widened to accommodate capability

metadata. However, for processors that already need wide data paths, such as 32-bit

processors supporting double-precision floating point (i.e. 64 bits), or processors supporting

vector instructions, the existing wide data paths may be reusable, possibly reducing the

CHERI area overhead. More complex microarchitectures rename registers to avoid false

dependencies. The merged register file allows this mechanism to be reused for capability

CHAPTER 3. CHERI FOR MICROCONTROLLERS 57

registers without modification, as discussed in Chapter 5.

Furthermore, the RISC-V architecture encodes its registers into constant bit-positions in

the instructions, encouraging simple in-order microarchitectures to index the register file

very early in the pipeline. A split register file would therefore likely require an additional

parallel register-read, as the instruction has not been decoded before register indexing

must begin. This would impact power, area, and potentially timing due to the additional

multiplexing required. A merged register file avoids this issue.

For CHERI RISC-V, we choose to implement the merged register file for these reasons.

To preserve the principle of intentional use, the interaction between capability accesses

and integer accesses to the registers must be carefully specified. We choose to have integer

instructions read from the address of the capability register, preserving their interpretation

as integer addresses, with writes producing a null capability with the address set to the

intended integer. This avoids data corruption manipulating pointer dereference, the very

vulnerability capabilities protect against.

3.3.2 Encoding mode

The CHERI instructions to manipulate and inspect capabilities represent a small portion of

the opcode space, since most need only encode up to two registers and no immediates. Only

the CSetBounds and CIncOffset instructions have immediate forms, as they are commonly

used in code to manipulate and access the stack. However, in order to allow incremental

adoption, CHERI provides two modes for accessing memory: legacy and capability.

Legacy instructions allow dereference of integers relative to a Default Data Capability

(DDC), primarily allowing legacy code to run unmodified in a sandbox. Capability mode

requires pointers to be provided as capabilities, allowing finer grained protection and

ensuring intentional use of the relevant bounds and permissions. CHERI MIPS supported

both sets of instructions. However, memory instructions offer large immediates to allow

accessing multiple values at static offsets from a register—most commonly stack-allocated

data—without dynamic overhead. These large intermediates mean providing both legacy

and capability memory instructions wastes vast instruction encoding space to avoid the

performance impact of depriving either mode of immediate instructions. Since it is

anticipated that code will generally run using one set of instructions or the other, switching

infrequently, this use of opcode space seems wasteful. Although RISC-V supports arbitrary-

length instructions in principle, encoding space is still at a premium: instruction cache

pressure is reduced by keeping instructions short and it would be undesirable to require

capability-supporting processors to incur the complexity of fetching and decoding 48-bit

instructions. Instead, the CHERI ISA proposes that the same instructions could be used

for both applications, interpreting its arguments based on a capability encoding mode [128].

As well as memory instructions, this also applies to the auipc instruction, which requires

a capability version (auipcc) and has a 20-bit immediate.

58 3.3. ARCHITECTURAL CHANGES

As part of designing the ISA alongside the Piccolo microarchitecture, we decided to

implement a mode-switching mechanism for CHERI RISC-V. There are many options

for changing encoding mode, each having varying tradeoffs relating to ease of pipelining,

interaction with the branch predictor, and resistance to confused-deputy attacks. In

particular, a mode switch mechanism based on predicted state could require pipeline

flushes, as instructions have been decoded based on the wrong mode. For security, if code

is tricked into running in a different mode than expected, it may use its privilege in an

unintended way.

A mode-switch instruction is the most explicit, keeping the encoding mode state in a

CSR. This avoids any confusion about when a mode-switch is intended unless control-flow

has already been compromised. However, this does not allow a jump-target to ensure

what mode it is run in without adding a mode-switch at every entry-point. One option

is to have separate capability execute permissions: one for run-as-legacy, and one for

run-as-capability. This allows a function to guarantee it can only be run in the intended

mode by clearing the appropriate permission bit in capabilities used to call it. As an

alternative, the Program Counter Capability (PCC) could have a bit added that is not

monotonic, but requires an explicit instruction to switch. This does not provide the same

guarantee, but at least requires explicit manipulation of the PCC to change the target

encoding mode. Both of these approaches use an additional bit in the capability encoding,

which is expensive as these bits exist for every capability in the system. Another option is

the least-significant bit of the target address of a jump3. Unfortunately, this bit is often

used to stash other information in pointers, and also may be corruptible from software, so

does not ensure the same level of intentionality.

We decided to use a mode bit in the PCC to determine the encoding mode, implementing

this as a new flags field that can be freely changed without violating monotonicity. flags

can be freely read and written in a capability using dedicated instructions, provided the

capability is not sealed. Since return capabilities are sealed as Sentry capabilities (see

Section 3.3.3) when linked by jump instructions, this prevents the interpretation of the

returned-to code being altered by the callee of a jump. The encoding mode bit of flags

is interpreted by hardware when the capability is installed as PCC. This means that the

encoding mode potentially has to be predicted, as the architectural PCC may not be

known in time for decode.

3This is the approach taken by Morello.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 59

3.3.3 Secure Entry capabilities

Over the course of the project, a new capability type was added to the CHERI ISA: the

Secure Entry (Sentry) capability. These are capabilities that are sealed, and cannot be

unsealed except when used as a jump target.

This allows more scalable compartmentalisation than the existing object type mechanism,

as compartments do not require their own value in the type space. Compartment-specific

data can still be recovered, albeit with a higher performance overhead than the existing

CInvoke mechanism, such as by storing a data capability alongside the called code.

Another key benefit to this mechanism is the observation that linked addresses, such as

from the RISC-V jalr instruction, are only ever expected to be jumped to unmodified. As

such, linked addresses can be sealed as Sentry capabilities automatically by the processor,

without causing exceptions in the expected case. This has the significant security benefit

of completely mitigating attacks that rely on corrupting return addresses, such as return-

oriented programming.

To validate the approach and enable performance and compatibility measurement, I

implemented Sentry capabilities across the cores. The implementation did not imply

any particular microarchitectural challenges in terms of area or frequency. However, the

additional “kind” of sealed capability required care to handle correctly. This motivated a

type-safe treatment of sealing types in the Bluespec source that forces all possibilities to

be considered. In addition, a few aspects of the implementation were error-prone checks,

for example the need to check that the immediate offset is zero when jumping to a Sentry

capability, causing significant testing overhead.

3.3.4 CHERI-optimised compressed instructions

As discussed in Section 2.1.1, RISC-V improves code density by specifying a set of

compressed 16-bit instructions, each of which expands into a single 32-bit instruction. To

maximise impact, the compressed instructions are intended to be the most commonly used,

meaning a large overlap with compiler-generated blocks such as function prologues and

epilogues. For example, RISC-V specifies the c.addi4spn compressed instruction, which

increments the stack pointer by an immediate number of words. This allows the stack to

be grown and shrunk with minimal instruction bytes for small stack frame sizes (up to

128 words), reducing the code size for this common part of prologues and epilogues.

The CHERI RISC-V extension specifies compressed versions of commonly-used CHERI

instructions, as capability manipulation features heavily in common compiler-generated

code. To allow the code-size reduction for both integer and capability code, the decoding

of the compressed instructions is mode-bit dependent. Thus, while c.addi4spn imm

expands to addi sp, sp, 4*imm in integer mode, it instead expands to CIncOffsetImm

60 3.4. MICROARCHITECTURAL IMPLEMENTATION

csp, csp, 4*imm in capability mode, where the stack pointer is by default a capability.

This mitigates the code density reduction from operating on capabilities instead of integer

pointers, reducing pressure on the instruction cache, thus improving performance.

While the specification of which instructions to compress was carried out by others on the

CHERI team, I implemented the change for the Piccolo, Flute, and Toooba cores. Mostly,

these posed little microarchitectural difficulty, simply hooking into the existing mechanism

in the decode stage to expand compressed instructions into their decompressed aliases.

However, this does imply that the decode stage now requires the capability encoding mode

(as discussed in Section 3.3.2) within the flags field of PCC in order to perform the

decompression correctly. For the Piccolo pipeline, the architectural PCC is fully known at

decode, but in Flute, this is not known until execute, the cycle after. This implies adding

the capability encoding mode to the predicted state, flushing due to a misprediction on

this bit as well as the predicted PCC address. Initially, the encoding mode is predicted as

not changing between instructions, pending investigation of the performance improvement

that would be gained from fully predicting it using the same infrastructure as for the rest

of the PC. This relies on further investigation into software compartmentalisation models

to indicate likely mode-switching frequency.

3.4 Microarchitectural implementation

I have carried out all of the work of adding CHERI (with merged register file) to both

Piccolo and Flute.

3.4.1 Capability decoding

CHERI compresses capabilities to mitigate large memory footprint due to increased

pointer size [135]. An introduction to the compression format is given in Section 2.4.2.1.

Capability decompression introduces some pipeline complexity, as capabilities must be

decompressed before they can be used in the ALU or bounds checked for memory access.

Our CHERI-Concentrate paper proposed a method of decompressing these in multiple

stages [135], which was implemented by CHERI MIPS. While moving to RISC-V, similar

decoding functions were required, but also needed to be shared across multiple processors.

As such, we implemented a typeclass describing operations that can be performed on a

capability to wrap the existing logic. Thus, different stages of decompressed capability can

be described. Operations supported at each level of decompression can be implemented,

while the more advanced operations either have inefficient implementations or give errors,

as required. Transformations between the different forms of the capability can be described

and explicitly called as a type cast at the desired location in the pipeline. This proved

very useful for experimenting with decompressing in different stages in the pipeline to

CHAPTER 3. CHERI FOR MICROCONTROLLERS 61

Internal exponent (IE = 1)

CapMem 1

IE

1

B

8

T

6

CapReg
E

6

B

8

0

T

8

0

addr[E+7:E]

8

CapPipe
E

6

B

8

0

T

8

0

addr[E+7:E]

8

meta

10

Zero exponent (IE = 0)

CapMem 0

IE

1

B

8

T

6

CapReg 0

E

6

B

8

T

8

addr[7:0]

8

CapPipe 0

E

6

B

8

T

8

addr[7:0]

8

meta

10

Figure 3.4: Three stages of decompression of capability bounds as they enter the
pipeline (RV32). Both internal exponent and zero exponent cases are shown. As
per the CHERI-Concentrate algorithms [135], the top two bits of T are restored
based on the top two bits of B and some comparisons, addr bits are selected out of
the capability address (omitted from diagram) based on E, and the meta bits are
computed based on comparisons to determine the representable region.

optimise timing and area. In addition, it avoided common work having to be performed

for the Toooba core: the typeclass and its instances were able to be reused without major

modification.

In particular, we define three instances of the typeclass: CapMem, CapReg and CapPipe.

Figure 3.4 shows the details of the stages of decompression. CapMem is a capability exactly

as encoded in memory, thus consisting of (2*xlen) bits (plus a validity bit). CapReg is a

capability as stored in registers, containing the extracted exponent (based on the IE bit,

either zero, or stashed in the least significant bits of B and T), and using this exponent

to extract the bits of the address field to which the bounds are relative. The width

of a CapReg, excluding tag, is 80 bits in RV32 and 150 bits in RV64. The unpacking

from CapMem is performed on load. Unpacking is relatively expensive, requiring a variable

shift of the address based on the exponent field. CapPipe is a fully decoded capability

that can then be used to extract the fields to implement the required architectural

instructions directly. This is 90 bits wide for RV32 and 160 bits for RV64. This contains

the additional meta field, which allows cases relating to wrapping the representable region

62 3.4. MICROARCHITECTURAL IMPLEMENTATION

to be identified. The details of this field are not relevant to the discussion of Piccolo and

Flute’s implementation, but further information can be found in our CHERI-Concentrate

paper [135]. The unpacking from CapReg is performed as the registers are loaded in the

decode stage. This is cheaper than the CapMem to CapReg decompression as it only requires

arithmetic on the highest three bits of the fields.

Care has to be taken that the redundant decompressed fields are correct after each

capability manipulation operation, as otherwise they could cause incorrect results when

forwarded between instructions. This requires recomputing some of the changed temporary

fields in the ALU.

In addition to reusing the compression operations used by CHERI MIPS, the CHERI

RISC-V implementations required additional efficient functionality that meant directly

interacting with the (partially) compressed capability. For example, RISC-V specifies

that the least significant bits of a jump target PC must be cleared on a jump, since

all instructions are 2-byte aligned with the C extension enabled, and 4-byte aligned

otherwise. Näıvely implementing this with the existing capability compression functions

would require a full representability check on the new address, which would be expensive.

However, masking the least significant bits of an address can never make the capability

unrepresentable provided sufficiently few bits are masked (three fewer than the mantissa

width). This allows the address, and slice of the address extracted when decompressing to

CapReg, to be directly masked without additional checks, which is much cheaper. This

functionality was added to the compression library used by the RISC-V cores.

Further development was required for the Toooba core, and is discussed in Section 5.4.1.

These changes were the applied to the Piccolo and Flute cores also.

3.4.2 Bounds check

The key to security with capabilities is that all memory accesses must be within bounds

of a quoted capability. This includes both legacy RISC-V instructions (which implicitly

dereference DDC) and any newly added instructions. To avoid a performance penalty, the

bounds check should be performed in parallel with existing operations. However, the logic

required is somewhat expensive even on the most decompressed capability type, requiring

a variable shift to extract the base and top then subtractions to compare against the

attempted access.

The required inputs to the bounds check are not ready until the end of the execute stage,

so the check must be carried out in parallel with the first cycle of the memory access stage.

Piccolo and Flute’s interface with the cache enqueues any memory accesses at the end

of execute. However, it is not acceptable for writes to go ahead should the bounds check

fail: this would allow a process to corrupt data it should not have access to, even if it

would go on to raise an exception. I therefore add an additional interface to the cache to

CHAPTER 3. CHERI FOR MICROCONTROLLERS 63

commit the access. Should the check succeed, this interface is triggered, allowing the cache

to proceed with the operation as normal. However, on a failed bounds check, the cache

cancels the operation without making any observable changes. This benefits performance

as it allows the cache to begin lookups in parallel with the bounds check. The commit is

expressed as a condition that must fire the cycle after the access is first enqueued to the

cache, ensuring memory access can only ever occur following a successful bounds check.

Some other instructions also require a bounds check to detect monotonicity violations,

for example CSetBounds, CUnseal, and CBuildCap. Jump instructions must also check

bounds to ensure the target code capability is in-bounds. In general, instructions reuse

the memory bounds check wherever possible: by design, no instruction in the CHERI ISA

requires more than one full bounds check.

In addition, some instructions must compare bounds to determine their result, rather than

just to trigger an exception, for example CTestSubset. Such instructions must either delay

their result a cycle to allow the bounds check to be carried out the stage after execute

before their output can be forwarded, or carry out a simplified check in execute. The check

can be simplified in many cases by exploiting invariants guaranteed by the instruction

itself. When changing to the semantics to tag clearing on error, more instructions move

into this category, as discussed in Section 5.4.

Instruction fetch also requires some bounds checking, as although jump targets are checked

at the caller, code could execute past the end of its last permitted instruction. This is

made additionally complicated as RISC-V instructions with the C extension enabled are

variable-length, meaning the width of an instruction access is not known when it is fetched.

To address this, instruction fetch performs a check that the PCC has access to at least two

bytes—the minimum instruction length—at its current address. Execute then performs

a complete check to ensure the full instruction was in-bounds before it has any effect.

This has the unfortunate consequence of allowing instruction reads to escape to the fabric

despite not being covered by PCC bounds. To some extent this was already a problem

since caches fetch on cacheline granularity. Aside from the possibility of side channels, this

may allow the first few bytes of a side-effecting memory region, for example a FIFO, to be

erroneously accessed if it neighbours instruction memory. The instruction fetch checks are

cheaper than the full bounds check required for memory access, as they are with respect

to a capability’s own bounds and address, meaning the pre-shifted address and temporary

fields can be used.

64 3.4. MICROARCHITECTURAL IMPLEMENTATION

3.4.3 Additional instructions

CHERI requires additional instructions to be added to the processor. These include

instructions to query fields from capability values, such as the base, length, and per-

missions. In addition, there are instructions to manipulate capabilities, changing their

fields. These must ensure capability monotonicity and manipulate the CHERI-Concentrate

encoding [135], making their implementation tricky and error-prone. The TestRIG testing

framework (Section 3.6) helped to address errors as they arose. Additional load, store,

and jump instructions must also be added to allow operands to be capabilities, rather

than integers. This section assumes some detail of the added instructions: the purpose of

each instruction is described in Appendix A, and detailed semantics can be found in the

CHERI ISA document [128].

The CHERI MIPS ISA presented these additional instructions as a “capability co-

processor”, which operated in parallel to the ALU, as this was the conventional way

of extending the ISA. For RISC-V, capability operations are instead considered to be part

of the ALU itself, as this is how extensions are framed in the RISC-V ISA. The distinction

is largely academic, as the synthesis tools will likely optimise the two together, although

it is possible that the RISC-V approach will allow more logic to be shared as high-level

invariants are exploited by the designer.

3.4.3.1 Capability inspection

The capability inspection instructions all query fields of capabilities, possibly after some

manipulation. CGetAddr, CGetFlags, and CGetTag are the only instructions that can

directly extract values from the encoded capability: the other instructions all have various

additional complexities. CGetBase, CGetLen, and CGetOffset must partially decompress

the capability to compute their result. Fortunately, prior work had allowed this to be done

at high frequency for CHERI MIPS, but some changes were required for the new architecture

and microarchitecture. Particular attention is also required for these instructions to handle

queries at the top of the address space, especially when the capabilities are not tagged,

so do not have legal encodings. CGetPerm, CGetType, and CGetSealed simply require

some rearranging of the data into the required format. Treatment of sealed capabilities

required some thought to avoid simple bugs potentially producing significant hardware

vulnerabilities, to some extent adding intentionality to the hardware design itself. This

is made particularly complicated by the different kinds of sealed capabilities, including

sealed with an otype, sealed as a Sentry capability, unsealed, or a different reserved kind.

As such, I implemented the capability type field as a Kind enumerated type that requires

every use to consider all of the possibilities.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 65

3.4.3.2 Capability modification

Several capability modification instructions require a bounds check to ensure they do not

extend a capability or use it out of bounds. As described in Section 3.4.2, the bounds

checks required for capability arithmetic are carried out the cycle after execute, sharing

the hardware for the bounds check on memory accesses. Execute then simply marshals

the control signals and relevant bounds to feed into the check. The processor already had

the ability to raise an exception from this stage, since it also carries out memory accesses.

Since the processor is in-order, the single cycle delay in observing the exception does not

cause problems with side-effects in the pipeline. However, this was found to be a problem

in application-class processors, described in Section 5.3.6.

CAndPerm, CSetFlags, and CClearTag have very direct implementations, simply manipu-

lating the required fields after some checks.

CSeal, CUnseal, and CCSeal manipulate the type field of the result capability, after

performing the checks required to determine that the operation is permissible. This

requires a bounds check to ensure the capability authorising the type-space is in-bounds,

combined with various more sealing-specific checks.

CSetOffset, CIncOffset(Imm), CSetBounds(Imm), CSetBoundsExact, and CSetAddr all

perform arithmetic on the compressed encoding format. These use the common capabil-

ity library discussed in Section 3.4.1, marshalling their arguments into a few common

compression functional units that perform the required representability checks. These

are a setAddr function, a combined set/incOffset function, and a setBounds function.

CSetBoundsExact requires an additional check in series with the main operation to ensure

that no rounding was required. While this was acceptable for Piccolo, it prevented Flute

from achieving its target frequency, requiring optimisations discussed in Section 3.5.2.

CBuildCap requires rederiving a target capability from an authorising capability, for use

in paging and dynamic loading. This is the instruction whose implementation differs

most from its specification. The instruction is designed to allow the hardware to perform

the required checks before setting the tag on the target capability. These checks include

a bounds check, permissions checks, and a derivability check. The derivability check is

of particular interest: it must ensure that the capability requested is one that could be

derived from the almighty capability, forbidding any non-canonical bounds encodings.

This can be done efficiently using a concise check that has been formally proven to be

equivalent to derivability.

CTestSubset is the only instruction requiring a bounds check to determine its result

rather than just whether to raise an exception. As such, it is implemented as a two-cycle

instruction in Piccolo and Flute. The ALU sets signals such that the output of the bounds

check will be used to determine the written back result, and the result is not forwarded

until the end of Stage2. This does not incur a performance penalty unless the following

instruction reads the result.

66 3.4. MICROARCHITECTURAL IMPLEMENTATION

3.4.4 Cache modifications

Beyond the pipeline itself, the data caches also need to be modified. In particular, space

is required for the capability validity tags alongside the corresponding data. Furthermore,

the granularity of the caches must be increased to cover at least one capability, since loads

and stores are added for capability data.

The data cache in the Flute design is responsible for implementing atomic operations. This

implies some additional complexity as capability atomic operations must be implemented.

The added operations include atomic swaps of entire capabilities. Atomic operations down

to byte-granularity are also required, since capability bounds may restrict code from using

a wider access.

The caches also require modification to abort accesses on a failed bounds check, as discussed

in Section 3.4.2.

3.4.5 Memory subsystem changes

The caches need to communicate their capability validity tags to main memory. This

is facilitated by the tag controller component developed for CHERI MIPS, which splits

accesses into requests for tags and requests for data, caching tags to minimise additional

accesses [63, 64]. The integrity tags need to be communicated through the AXI fabric

between the components. AXI offers ruser and wuser fields to allow user-specified out-of-

band metadata to be communicated between components. We use these fields to convey

capability integrity tags everywhere beyond the caches. This minimises the chance of

confusion between data and tags. However, AXI does not define what the behaviour

of these fields should be, including at interconnects. This means care must be taken

when using stock interconnect components: although forwarding the fields is typically the

default, some components expect the fields to be zero-width. We imagine that AXI would

add dedicated bits for capability tags in CHERI systems. Work was required to augment

the tag controller to support an AXI interface on the core side, including support for burst

transactions.

Until the DMA devices are made CHERI-aware, care must be taken that DMA devices

cannot corrupt capabilities, including writing to the tag table, or rewriting capabilities

without going through the tag controller, so without clearing the tag. This is achieved by

only mapping uncached memory for DMA AXI initiators. All uncached transactions are

then assumed not to contain tags (or rather, that all the tags are not set). Future work is

required to determine how CHERI can safely interact with DMA in a performant way.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 67

3.4.6 Other changes

Additional CSR state is required, as some CSRs must be extended with capability metadata

to form SCRs. For example, RISC-V’s mechanism for specifying the exception vector—

mtvec—must be extended to be a capability so that the processor can run the exception

handler without risking overrunning its bounds. Once again, capability compression

complicates this process, as an offset is added to the capability pointer, which may be

sealed, or operations may take it out of bounds or representable bounds. While these cases

should never occur for correct code, their behaviour must be architecturally specified and

enforced to ensure capability monotonicity guarantees cannot be violated when they are

intentionally provoked, undermining compartmentalisation. Extra exception conditions

and exception metadata also add design complexity.

Each processor’s memory management unit (where present) needs alterations due to the

additional CHERI page-table permissions. This includes bits to prevent loading or storing

tagged capabilities from the page, as well as a bit indicating the page is capability-dirty to

accelerate revocation (this is discussed more in Section 7.2.1).

3.5 Flute

Following the initial implementation in Piccolo, Flute was an extension to a deeper

pipeline. The chief new challenges were branch prediction and timing. While Piccolo

avoids needing prediction on branches by having fetch, decode, and execute in a single stage,

Flute introduces branch prediction. This poses some interesting questions for CHERI,

as predicted instruction addresses could now be extended with bounds information. In

addition, compared to Piccolo’s modest 50 MHz target, Flute’s additional pipeline stages

allowed it to be clocked at 100 MHz. Therefore, CHERI extensions were more likely to

cause the design to violate timing. However, investigation showed these delays were not

inherent to the capability model, but could be mitigated with optimisation work.

3.5.1 Branch prediction

Branch prediction poses challenges in capability processors, as the architectural bounds

against which instruction accesses should be checked are not known. This leaves open

many possibilities, including adding all the PCC-metadata to speculated state or bypassing

bounds checks in speculation entirely, cleaning up in the event a misprediction is detected.

In practice, the latter approach is not viable, both because of side-effecting reads (such

as dequeuing a FIFO), and because of speculative execution vulnerabilities [71]. The

former approach mitigates this to some degree, but still allows the capability model to be

bypassed in the face of malicious branch predictor training. In addition, it could incur

68 3.5. FLUTE

a significant performance penalty as mispredictions will be detected (in PCC bounds or

other metadata) where execution would have proceeded the same regardless.

I therefore choose a compromise solution, where the front of the pipeline (StageF and

StageD) works with addresses, assuming the current PCC will be used to fetch them. In

Stage1, the correct PCC of the next instruction is computed, and compared with the next

instruction address that was predicted. This is possible because the PCC metadata is

not required until Stage1, so it never needs to be speculated. The exception to this is

the flags field, which is required to perform decompression in StageD (see Section 3.3.4).

This additional bit therefore does need to be added to the predicted state.

3.5.2 Timing

The baseline processor was synthesised for a VCU-118 FPGA at 100 MHz. Initial CHERI

modifications focused on correctness, with little emphasis on performance. This led to an

initial Fmax of 66 MHz, which was lower than expected from the CHERI MIPS work. I

therefore performed some optimisation to improve timing. To help me do this, I synthesised

the design for a DE4 Stratix IV Intel FPGA board, as I found the path length information

provided by Quartus much more useful for optimising the critical path than the Xilinx

tools. Figure 3.5 shows anecdotally how the timing improved with each of the changes

discussed in this section.

The improvements were mostly either CHERI extension improvements or baseline core

improvements. In some cases, the way I had chosen to add the CHERI extensions caused

needlessly long paths. Some aspects of the baseline Flute processor were not optimised for

timing, since they were not on the critical path for the unmodified processor. In some

cases, adding the CHERI extensions put these aspects onto the critical path, meaning

improvements to them were necessary for a performant design.

Forwarding fixes Initially, Stage2 would perform its bounds check and only proceed

with normal operation if the bounds check succeeded. However, this meant the value

forwarded back to Stage1 depended on the slow bounds check before it could be fed

into the ALU. Removing this dependency took this off the critical path, and was

safe to do as the forwarded value would not be used if the bounds check failed, as

this is an exception case.

Cache-bus latching As discussed in Section 3.4.5, Piccolo and Flute were changed to

use a different AXI library, containing different interconnect implementations to

convey tags. This initially caused timing problems, as paths within the memory

bus were limiting the maximum frequency. Adding additional registers broke these

paths, taking this off the critical path, at the expense of additional cycles to service

cache misses.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 69

Figure 3.5: Changes in timing of the Flute core as improvements were made. Frequen-
cies are those reported by Quartus synthesising for a DE4 FPGA normalised against
the final achieved frequency, which exceeded the 100 MHz target for VCU-118.

Cache interface The cache interface caused timing issues that were unnecessary given

higher level invariants. The interface was specified as an action guarded by whether

the cache was ready. However, by construction, the pipeline would never issue a

request to the cache unless the cache was ready: in any other case, the pipeline

would be waiting for the cache to resolve itself into the ready state by servicing

the pending request. This is a consequence of Piccolo and Flute being in-order:

the pipelines halt under a miss. Exposing this invariant to the Bluespec compiler

required some refactoring of the cache interface. The baseline processors wrote to

the cache registers in the req method, causing logic to be generated to push back

on the pipeline should the caches be busy. I changed the interface to instead write

to Bluespec’s Wires. This frees the compiler to discard the request if not ready,

which is known not to happen. Additional optimisation of the commit interface

discussed in Section 3.4.2 also improved timing. Rather than guarding certain cache

behaviours on the result of the bounds check, the result was propagated all the way

70 3.5. FLUTE

to the valid bits of the AXI write transactions to main memory and the write enable

of the BRAMs containing the cachelines themselves. This allows the evaluation of

the bounds check to be carried out completely in parallel with the processing in the

caches, up until the very end of the cycle when the final values are required.

Latch SCR write CHERI RISC-V defines SCRs: effectively RISC-V CSRs that hold

full capability-width values. Latching the computed values before updating them

in exception cases allowed timing to improve further. Since writes to SCRs are

relatively uncommon, the state machine that handles flushing the pipeline when

they are modified can be extended to shorten the critical path without noticeably

impacting performance.

Mispredict check The next critical path was the comparison between the predicted

PC and the architecturally correct PC, which now depends on an add with the

base of PCC. Since detecting a mispredict is required at the end of execute in the

baseline, the comparison is serialised at the end of the next PC computation in the

ALU, explaining why this path is problematic. Delaying the mispredict check would

incur additional complexity, as the pipeline would need to tolerate one more level of

misspeculated instruction. This would also worsen performance, as the mispredict

penalty would be increased by a cycle. To experiment with precomputing different

functions of the PCC, I replaced all references to the PC with references to a custom

typeclass. An approach that passes timing is to compute the full PCC base eagerly

whenever PCC is updated. This allows the predicted next PCC offset to be computed

in parallel with the architectural next PCC offset in the ALU. Since the offset is the

value observed by the legacy RISC-V instructions, this is the value ready earliest

out of the ALU, so this approach allowed the most direct comparison to detect a

mispredict.

Delay inexact exception The CSetBoundsExact instruction was then on the critical

path, as it required the output of complex rounding logic to determine whether

an exception should be triggered. This could safely be avoided by delaying the

exception by one cycle: the exactness failure was registered and then fed into the

bounds checking logic to trigger an exception from Stage2. This improves frequency

without affecting IPC unless an exception is raised.

Floating point latch The final fixed critical path lay within the floating point execution

unit. Rebalancing the input and output latches allowed this critical path to be

broken without impacting performance.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 71

VEngine

generate compare

network socket network socket

DUT
(Piccolo, Flute,

Toooba. . .)

Golden
(sail-rv, RVBS,

spike, . . .)

DII RVFI

RVFI-DII
interface

Haskell,
OCaml, . . .

BSV, Sail,
C++, . . .

Figure 3.6: The RVFI-DII interface as it connects a Vengine to implementations.

3.6 TestRIG

This section discusses TestRIG (Random Instruction Generation): an automated testing

framework for RISC-V processors. We developed the TestRIG framework to aid with

rapidly bringing up CHERI implementations incrementally with some assurance the

implementation of each instruction was correct. The framework describes the general

design of test-case generators (Vengines) and interfaces to implementations (RVFI-DII). To

enable comparison of CHERI RISC-V processors, we developed QuickCheck Vengine—a

Vengine written in Haskell using the QuickCheck library [28]—to perform CHERI-aware

verification. Testing can then be carried out in a model-based way, with an implementation

being compared side-by-side against an executable model: in our case the Sail CHERI-

RISC-V model.

Due to the inflexibility of hardware systems once manufactured, the economic consequences

of hardware bugs can be very high [102]. This has lead to hardware design companies

devoting a large proportion of their resources to verification. In the case of CHERI, and

other capability systems, the design is even more sensitive than usual to security bugs.

While a common fix for a hardware vulnerability is to offer a means of working around it

in software (possibly with a performance penalty), this would not be an option for many

types of CHERI bug, due to the security model it offers. For example, if operating with

mutually distrusting processes in the same system, the processes are entirely reliant on the

hardware to enforce isolation. Violations in capability monotonicity properties therefore

cannot be mitigated in software, as malicious code could choose not to use the updated

72 3.6. TESTRIG

software. This motivates increased effort for verification: in particular directed random

testing that can find edge-cases that would be difficult to trigger with manual testing.

Traditional testing consists of running a test suite, which runs prescribed code and checks

at predetermined points whether certain execution results match hard-coded values, for

example the RISC-V test suite [21]. While this sort of testing is essential to ensure

processor behaviour matches expectations, it cannot be expected to cover all potential

errors in the processor thoroughly. Fuzzing has been shown to be effective in finding errors

in other applications [123].

TestRIG uses the RVFI-DII protocol to both insert instructions into the CPU, bypassing

instruction fetch (DII, developed by the CHERI group) and report the results of executing

the instructions using the existing RISC-V Formal Interface (RVFI) interface [134]. Report-

ing per-instruction traces with RVFI allows fine-grained comparison of behaviour between

the Design Under Test (DUT) and model. RVFI has already seen use for verification [134].

We use DII to inject instructions to allow for easier random instruction generation, and

counterexample shrinking.

One of the key usability features of QuickCheck Vengine is counterexample shrinking. Since

tests are randomly generated, counterexample sequences can be very long, containing many

instructions that are irrelevant to the errant behaviour. By augmenting QuickCheck’s

shrinking functionality, we are able to remove irrelevant instructions automatically, saving

effort to diagnose failures. An example of this process is given in Appendix C.

Automatically generating tests without directly injecting instructions, especially to test

behaviour of jumps, is made difficult since the input must be generated to ensure the

processor stays within the intended code. This requires highly constrained generation of

jumps. It also restricts counterexample shrinking, which could alter control flow. The

DII approach bypasses this problem by allowing the processor to ignore the PC, and just

execute a predefined sequence of instructions sequentially. The PC the processor believes

it is executing is still reported, so the control flow is still tested. Only the front-end of

the processor, most notably the instruction cache, goes untested. This approach allows

tests to be generated much more freely, as modelling the PC is not required to generate

effective tests.

3.6.1 QuickCheck Vengine

We have implemented a Vengine based on Haskell’s QuickCheck [28] library. The Vengine

includes descriptions of the encodings of RISC-V and CHERI RISC-V instructions. It also

includes a definition of equality between RVFI reports, allowing traces to be compared in

an intelligent way. Finally, it includes libraries of useful templates, including useful mixes

of instructions and templates for getting the processor into particular states.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 73

I added various functionality to QuickCheck Vengine, including smarter instruction shrink-

ing and recursive templates.

3.6.1.1 Smarter instruction shrinking

The existing instruction shrinking just removed instructions from a failing stream and

checked if the stream still gave a counterexample. This could lead to shrunk traces still

being complicated, as they may contain instructions that do not contribute to the bug, but

just serve to pass their operands (slightly modified) into their destination register. I added

functionality to specify simpler versions of each instruction. I then also developed a library

of possible shrinks, enumerating cases where likely bugs in instructions can be observed

in a simpler way. For example, a CAndPerm instruction copies its source capability to the

destination register, ANDing the permissions field with a given bit vector. In cases where

the bug does not relate to permissions, this instruction can be replaced with a simple

CMove giving the same behaviour. I then also added the ability to remove these simple

“bypass” instructions, and replace the subsequent instances of their destination registers

with their source registers until updated later.

3.6.1.2 Recursive templates

The existing generator only allowed a single distribution over instructions to be specified.

This made it difficult for the Vengine to find counterexamples requiring a complex sequence

of instructions to reveal the errant behaviour. For example, detecting an endianness issue

with memory accesses requires loading some immediate to a register, writing that register

to a memory address, writing the same memory address with a different width, then

reading back the value. Recursive templates allow arbitrary combinations of instructions

to be specified to test the processor more deeply. For example, I added a template that

surrounds an existing template with a store to a memory location (including the arithmetic

to generate the address) and a load from that same location. I then produced a set of

these templates that probe behaviour of the CHERI instructions, guided by areas of the

Sail specification lacking coverage and complicated cases. For example, a template to

produce a short capability that is then consumed by other templates identifies common

off-by-one mistakes in interpreting and manipulating the upper bound of a capability.

More information is included in Appendix 3.6.

74 3.6. TESTRIG

3.6.2 Implementing RVFI-DII

Augmenting a processor with RVFI-DII requires that it offer RVFI (prescribed tracing

format) and DII (direct instruction injection).

RVFI is a format designed by Wolf to facilitate formal equivalence proofs between proces-

sors [134]. The format describes the state changes undertaken by a processor when an

instruction is retired, including: the PC of the next instruction to be run; the index of the

written back register and the written data; the memory address written if the instruction is

a store, as well as the data and strobe; and whether the instruction triggered an exception.

Augmenting Piccolo with RVFI reporting had already been done when I joined the project.

The implementation of DII, which I carried out, causes more significant difficulty, since it

involves interposing between the usual instruction fetch mechanism and the pipeline. This

particularly causes problems when speculative execution of instructions would cause the

instruction traces between two processors to go out of synchronisation as one processor

cancels an instruction in the trace while the other does not.

Even though Piccolo is a scalar core with no branch prediction, it still carries out some

speculative execution. In particular, since it may not be known until the end of the second

stage whether an instruction has triggered an exception, all instructions are technically

executing speculatively until their predecessor exits the second stage.

I solved this problem by introducing a replay buffer : a FIFO of recent instructions injected

into the processor. The replay buffer models what instructions are present in the pipeline:

it is enqueued with the instruction injected into decode, and dequeued as the instruction

commits from writeback. Each instruction is tagged with a sequence number, indicating

the instruction’s position in the DII stream. When the processor requests an instruction,

it must provide the expected sequence number as well as the PC, allowing the correct

instruction from the replay buffer to be returned. The PC cannot be used for this purpose

as the processor could be executing a loop or repeatedly triggering an exception, but DII

allows the same instruction address to contain different instructions on different cycles.

The sequence number bit-width and replay buffer depth are parametrisable, allowing

this approach to generalise to any size of pipeline. This approach generalises to solve

the problem for Flute and Toooba, which have much more speculative execution. The

only change required in the pipeline is that it must keep track of the sequence numbers

alongside their instruction metadata. This is fairly straightforward for Flute and Toooba,

as all such requests are carried out in dedicated rules depending on where the mispredict

happened, so each call-site can be annotated with the expected sequence ID.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 75

3.6.3 Testing with TestRIG

While bringing up the CHERI processors, I used TestRIG with QuickCheck Vengine

substantially to perform debugging of features as they were added. The effectiveness of a

testing framework can broadly be split into two categories: productivity impact of running

the tests and thoroughness in finding (significant) bugs.

In terms of productivity, the existing implementation of CHERI RISC-V in Sail provided

a model to test against. The tests could be run as instructions were added, increasing

the test frequency of the most recent instruction to catch simple errors. The Sail model

had yet to be thoroughly tested or used to run significant software itself. Therefore, this

process also allowed refinement of the Sail model as some divergences with the hardware

implementation were revealed to be specification bugs. There are no false-positive failures,

as any divergence is either a bug in the model or the implementation. However, model-

based testing is very pedantic in requiring no unspecified behaviour in the specification,

posing problems for fast representability checking4 and time-sensitive events (such as

interrupt handling).

In terms of discovered errors, as well as many trivial bugs in the bringing up of Piccolo,

TestRIG found several deep bugs in relatively mature projects:

• A critical security flaw in the CHERI MIPS compression implementation, whereby

a three-instruction sequence could turn a zero-length capability into a capability

covering the entire address space. This was caused by incorrect treatment of the top

bits of the bounds overflowing. The bug also revealed an error in the proof script for

checking the correctness of the CHERI MIPS compression code.

• Several compression bugs resulting in overly conservative representability-check

failures.

• A bug in Sail RISC-V’s determination of which memory region contained a given

address.

Appendix C includes more evaluation of TestRIG and QuickCheck Vengine, including

more detail on some discovered bugs.

Furthermore, shrunk counterexamples provide a good candidate to save and quickly run

on the processors for regression testing. We have gathered such counterexamples into a

library. Traces captured from booting operating systems were also used to accelerate the

early stages of operating system bring-up, with counterexample shrinking again rapidly

highlighting areas of divergence.

4To simplify hardware implementations, the CHERI architecture allows some operations to give an
error (by clearing the tag of the result) when they come close to producing an unrepresentable result (see
Section 2.4.2.1), even if the result would actually be representable.

76 3.7. FUTURE WORK

3.6.4 Other verification

We continuously tested both processors against the RISC-V test suite [21]. The high

parametrisability of the cores to support different architectural extensions, and different

microarchitectural decisions (such as whether to have a serial or barrel shift unit) caused

significant additional design and verification effort. To avoid the full combinatorial

explosion of combinations, in continuous integration we simply run the base architecture,

the architecture with each feature enabled individually, then the architecture with all

features enabled.

Both processors have additionally been validated by running respective appropriate CHERI-

extended OSs: in Piccolo’s case Cheri-FreeRTOS [24] and CheriRTOS [139], and in Flute’s

case, additionally, CheriBSD [23]. CheriBSD also includes the cheribsdtest test suite,

which runs successfully.

As part of the ECATS project, we tested the processors further using the Galois-provided

BESSPIN test-suite.

Furthermore, an external project by Gao and Melham attempted to formally verify the

CHERI Flute processor against the Sail specification [51]. I gave significant support to

diagnose and fix any differences discovered between the implementations. In particular, this

required Flute and Sail to agree on the treatment of “underivable capabilities”: capabilities

that cannot be produced by legal capability manipulations so can never exist with a tag,

but can nonetheless exist in registers as untagged values, for example when loaded in from

memory. Since capability inspection instructions can be executed on such capabilities,

the length and base field decoding of such capabilities must be specified. I decided to

do this by clearing the “internal exponent” bit whenever the internal exponent would

otherwise imply a capability granting permission outside the address space (it turns out

this is the only underivable case). This verification work provided further reassurance that

the processor correctly implements the specification, at least on an architectural level.

3.7 Future work

This work has focused on producing correct CHERI implementations, validated by TestRIG

against the Sail specification and running of CHERI software including operating systems

and benchmarking suites. This has enabled co-design of software, hardware and the

architecture, helping to settle some of the architectural decisions discussed in this chapter.

In addition, microarchitectural amelioration has been carried out to bring the performance

and area to an initially acceptable level. However, it is likely that more detailed analysis

and optimisation of the microcontroller cores would allow the CHERI overheads to be

further reduced. This remains as future work.

CHAPTER 3. CHERI FOR MICROCONTROLLERS 77

Security improvements offered by CHERI include spatial safety, temporal safety and

compartmentalisation [128]. This chapter has mostly focused on the spatial safety aspects of

security improvement. Further investigation is required, particularly around temporal safety

and revocation, for instance implementing the CLoadTags instruction: Chapter 7 discusses

this in the context of an application-class core. In addition, fast compartmentalisation

support is yet to be implemented, such as the implementation of the CClearRegs instruction

to enable fast domain transition.

3.8 Summary

This chapter gives an initial qualitative answer to Hypothesis H.1: CHERI is an option

for increasing microcontroller security. We have seen that RISC-V microcontrollers can be

augmented with CHERI to run pure capability code, including RTOS and (in Flute’s case)

application-class capability-enhanced OS support. In particular, the added CHERI RISC-V

ISA features are validated for microarchitectural feasibility, including the merged register

file, capability encoding mode, Sentry capabilities, and CHERI-optimised compressed

instructions. CHERI-Concentrate compression incurs challenges in the pipeline that require

careful consideration to resolve. The critical path was not lengthened in the case of the

processors investigated, albeit with some effort to restore clock frequency in Flute’s case.

The quantitative aspects of Hypothesis H.1 are investigated in Chapter 4.

While the Piccolo and Flute cores provide assurance that CHERI can be applied to

microcontrollers, a gap remains in implementing the extensions for more optimised and

commercially-used cores. Work has been carried out within the CHERI team to add the

CHERI features to the more tightly area-optimised lowRISC Ibex core [22]. In addition,

Microsoft have announced their successful implementation of the CHERI extensions, also

to Ibex [106]. Arm have also announced their investigation of CHERI for their M-class

microcontrollers [105]. However, little has been announced regarding expected area and

performance overheads for these designs.

78 3.8. SUMMARY

Chapter 4

CHERI microcontroller evaluation

This chapter details the evaluation performed to investigate the power, performance,

area and security of the CHERI-augmented microcontrollers discussed in Chapter 3.

The evaluation is carried out on a VCU-118 FPGA board, using the BESSPIN SoC

design. Figure 4.1 gives the configurations of the processors used for benchmarking. The

caveats associated with FPGA evaluation as discussed in Section 2.1 apply. The baseline

processor used is the version based on which the CHERI changes were added, with some

non-CHERI-specific changes backported.

The aim of the evaluation is to investigate the effectiveness of the microarchitectures

developed. This depends on CHERI software development—most notably the toolchain

and OS—to compile and run CHERI code (see Section 2.4.3). This software is not a

contribution to this thesis, and is the result of development by others in the CHERI team.

The evaluation of CHERI overheads addresses the quantitative component of Hypoth-

esis H.1, giving an initial measure of the costs that might be expected when applying

CHERI to microcontrollers. Since the Piccolo and Flute microcontrollers have both been

evaluated, the differences between the overheads also serves as an initial investigation of

how the overheads scale with the size of baseline core (Hypothesis H.3).

4.1 Baseline core information

To provide context for the overheads found in the chapter, I first summarise key metrics for

the baseline processors in Figure 4.2 for the SoC used for evaluation. While the load-to-use

delay is realistic for such simple pipelines, the access latency for DRAM is significantly

lower than would be expected for DRAM on an ASIC, as discussed in Section 2.1. However,

the latency is also much higher than might be expected for a microcontroller connected to

a Tightly-Coupled Memory (TCM).

Possibilities for comparison with other cores are limited, as they will depend on the SoC

and evaluation context. However, the CoreMarks/MHz scores for these cores are at the

79

80 4.2. AREA

Piccolo Flute

Frequency 50 MHz 100 MHz
xlen 32 64

Supported extensions C, M A, C, D, F, M
Supported privilege modes M, U M, S, U

TLB — 12 entries direct-mapped
Pipeline stages 3 5

RAS — 16 entries
BTB — 512 entries direct-mapped

Data cache 4 KiB write-through L1 8 KiB write-through L1
Instruction cache 4 KiB L1 8 KiB L1

Tag cache (CHERI only) 4 KiB 4 KiB

Figure 4.1: Benchmarking configuration for the Piccolo and Flute processors. All
caches are two-way set associative, except the tag-cache, which is four-way set
associative.

Piccolo Flute

CoreMarks/MHz 4.6 3.8
L1 hit load-to-use cycles 1 1

DRAM latency cycles 56 66

Figure 4.2: Metrics for the baseline Piccolo and Flute cores in the evaluation SoC.
The cache latency was determined in simulation. DRAM latency was determined
based on performance counters in the adpcm decode MiBench benchmark. TLB
accesses are performed in parallel on hit, causing no additional delay.

higher end of those reported by Elsadek and Tawfik [43], including lowRISC’s Ibex (2.44)

and Andes’ N22 (3.97). The high performance likely comes at the expense of significantly

higher power and area, and possibly slower clock frequencies. For example, Ibex uses 2,500

6-input LUTs on a Xilinx 7-series FPGA at 50 MHz [125]. Piccolo as used in this chapter

is significantly larger at 20 kLUTs. As can be seen in Figure 4.3, this is primarily due to

the inclusion of caches and CSRs capable of supporting an OS and performance counting.

Full comparisons would require setting up and evaluating the cores in comparable contexts.

4.2 Area

This section investigates the area of Piccolo and Flute before and after adding CHERI.

My particular implementation of CHERI leans towards better performance at the expense

of area: structures are fully extended to allow the common case to be carried out without

additional cycles of delay. As such, most of the overhead of the extensions is expected to

be seen as area overhead.

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 81

Syntheses of the FPGA designs are performed using Vivado 2019.1 for the VCU-118. Vivado

is configured to use the default optimisation strategy for Piccolo, but the “Performance -

ExplorePostRoutePhysOpt” strategy for Flute, which makes more attempts to meet

Flute’s more demanding clock frequency. The strategies used are the same between the

baseline and CHERI versions. Determining the exact source of overhead is made difficult

by the various layers of optimisation performed between specification of the hardware

in Bluespec, and the final synthesised design on the FPGA. Even compiling the design

from Bluespec to Verilog loses some of the structure. The Vivado tool also significantly

rearranges the boundaries between modules during its optimisation, so the attribution of

area to modules is only approximate. To minimise this effect, Vivado “keep hierarchy”

directives are used on all module boundaries to restrict optimisations between modules,

showing the overheads for individual components more accurately. This does change the

overall area numbers, so I also report the fully-optimised area numbers and overhead

separately. While the synthesis results depend on non-deterministic placement and routing

algorithms, Vivado does not provide an easy way to vary the seed used. This prevents

uncertainties from being indicated in the area, power, and timing metrics produced by the

tools.

The VCU-118 board used contains a XCVU9P-L2FLGA2104E FPGA [140]. The two

primary metrics used to measure area overhead are LUTs and Flip-flops (FFs): the VCU-

118 offers 1,182 kLUTs and 2,364 kFFs. LUTs provide combinatorial logic operations:

each can take up to six inputs. Bitstreams program each LUT with a bit for each of the

64 possible input combinations, indicating the corresponding output. This means that

a LUT can potentially act as up to six traditional logic gates chained together. LUTs

therefore give an indication of the area of the processor used for combinational logic. FFs

provide storage of individual bits, giving an indication of the area of the processor used

for preserving state between cycles. BRAMs allow much more area-efficient storage on

FPGAs at the expense of a cycle of delay on access: the VCU-118 offers up to 345.9 Mb of

such storage. In the key cases where these are present, I manually calculate the number

of bits stored to indicate the overheads. LUT overheads for CHERI are generally higher

than FF overheads, so I mostly focus on LUT overheads in analysis.

The LUT and FF overheads for various components of Piccolo and Flute are given in

Figure 4.3 and Figure 4.4 respectively.

The overheads for each component are broken down as follows:

Processor On the processor level, Piccolo has a 62% and Flute a 49% LUT overhead,

with smaller FF overheads of 15% and 24% respectively. This includes everything

written in Bluespec: the pipelines themselves, caches, and components like the debug

module and Platform-Level Interrupt Controller (PLIC), but not peripherals, DMA,

and the corresponding interconnect of the BESSPIN framework. Note that while

caches are included, their main area contribution is hidden by BRAMs on FPGA.

82 4.2. AREA

Figure 4.3: Area overhead of CHERI for the Piccolo processor. The tag controller
and core are included within the processor, and all other components are in turn
contained within the core. “Processor (opt)” shows the fully optimised area, i.e.
without boundaries between modules.

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 83

Figure 4.4: Area overhead of CHERI for the Flute processor. The tag controller
and core are included within the processor, and all other components are in turn
contained within the core. “Processor (opt)” shows the fully optimised area, i.e.
without boundaries between modules.

84 4.2. AREA

Piccolo Flute
Structure Baseline CHERI Baseline CHERI

Integer register file 1,024 2,592 2,048 4,832
FP register file — — 2,048 2,048

Data cache 35,840 36,352 72,320 72,832
Instruction cache 35,840 35,840 72,320 72,320

Tag cache — 38,400 — 38,400

Figure 4.5: Number of stored bits in Piccolo and Flute structures that are hidden
by BRAMs on FPGA. Numbers for caches include data, capability metadata and
tags, and cache lookup tags. CHERI adds bits for capability metadata and tags to
the general purpose register file, capability tags to the data caches, and an entirely
new tag cache. Note also that caches and registers are synthesised very differently
on ASIC due to different access characteristics, so these numbers are not directly
comparable.

This significantly inflates the area overhead: an ASIC design would be expected

to show much smaller fractional overhead as the caches (where capabilities have

a small impact) increase the size of both the baseline and CHERI designs. For

context, CHERI MIPS reported a 32% FPGA logic overhead to a larger (while still

in-order) baseline processor [136]. Almatary reported a 7,588 LUT overhead when

instantiating a 16-entry PMP in Flute (configured to be 32-bit) in a very similar

context [5], corresponding to a 38% relative overhead for Piccolo at this level.

Tag controller The tag controller contributes 3,849 LUTs of design area for Piccolo and

similarly 3,850 LUTs for Flute. This is significant, especially for Piccolo where it

alone contributes 44% of the CHERI processor overhead (18% for Flute). It is not

obvious how to account for the tag controller fairly. On one hand, the tag controller

would be instantiated once per SoC rather than once per core. This is both to reduce

area and to ensure coherence of tags, which is essential to prevent capabilities being

forged. This would imply that the tag controller area should not be included in the

processor area overhead in order to give a more meaningful estimate of the impact

of adding CHERI. However, this is not relevant for SoCs that contain only a single

core. As discussed in Section 3.1, microcontrollers may also be connected to a TCM

rather than DRAM [12]. In this case, where commodity DRAM does not need to be

targeted, the tag controller can be omitted from the design in favour of additional

tag bits inline with the data, at a much smaller logic cost. However, this does have

implications for efficient temporal safety, as the tags are not available independently

from the data (see Section 7.3.3). The tag controller could also see further area

optimisation: for instance, its cache is currently four-way set associative, which may

be more than required in microcontroller contexts.

Core The core area numbers exclude the tag controller, and other components that would

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 85

only occur once per SoC: the debug module and PLIC. The Core-Local Interrupt

Controller (CLINT) is also excluded: this would be reproduced per core, but its area

contribution is relatively small. These other components have minimal changes for

CHERI. On this granularity, Piccolo sees a 24% and Flute a 36% LUT overhead.

ALU Within the core, the ALU LUT overheads are the most striking: 463% for Piccolo

and 298% for Flute. The absolute overhead is greater for Flute than for Piccolo due

to the wider capability-width: 128 bits rather than 64. This alone accounts for 47%

and 37% of the total CHERI area overheads for Piccolo and Flute respectively. A

high overhead here is to be expected due to the complex operations, including shifts,

required to manipulate the CHERI-Concentrate encoding [135].

Register file Since Piccolo and Flute register files are synthesised as BRAMs on FPGA,

they comprise negligible LUTs and FFs, so are not shown on the graph. The CHERI

impact on the size of the register files can be seen in Figure 4.5. By assuming each

bit implies one FF1, the CHERI FF overhead that might be expected on ASIC can

be estimated. For Piccolo, this comes out as an overall FF overhead of 28%, and

for Flute 31%. As discussed in Section 3.3.1, this could be mitigated by reducing

the number of registers extended with capability metadata. This is an idea that

is explored more in the context of physical registers in Chapter 5, where it can be

implemented without affecting the architectural view of the register file.

DCache The data cache LUT overhead differs significantly between the two processors:

25% for Piccolo and 61% for Flute. The reason for this divergence is that the

granularity of Piccolo’s caches, and thus the datapath width between the pipeline

and the caches, was already 64 bits wide on the 32-bit processor. This was presumably

to allow support for double-precision floating point, even though it is not enabled in

our configuration. This allowed capability loads and stores to be supported without

increasing the cache interface width. Thus, the only additional logic required for the

Piccolo cache is to manage tags and support the new commit interface explained

in Section 3.4.2. The Flute caches also had 64-bit granularity, but this needed to

be increased to 128 bits for CHERI due to the wider capability format. This is

compounded by the fact that Flute also supports atomics, giving the wider capability

width a further logic overhead (see Section 3.4.4).

ICache The instruction caches should see no changes due to CHERI. However, both

processors see a LUT decrease in the CHERI version: -68% for Piccolo and -15% for

Flute. This is an artefact of the baseline instruction caches being under-optimised,

perhaps including support for logic only required for the data cache. CHERI further

differentiates the data and instruction caches, meaning their implementations are

1This assumption is validated by the Toooba numbers in Figure 6.3, where the register file is synthesised
as FFs and there is an exact correspondence between the expected number of register bits and the number
of FFs.

86 4.3. FREQUENCY

more strictly separated. For example, instruction caches do not need tag support

and the Flute instruction cache does not need its granularity widened. This seems

to allow Vivado to optimise away more logic from the instruction cache that is only

required for the data cache.

CSRs The CSR register file occupies a significant fraction of Piccolo and Flute. This

is partially due to the processors’ approach to legalisation: handling the complex

rules for each CSR separately. In addition, both processors support performance

counters to allow in-depth investigation of performance effects. CHERI’s impact

on the CSR register file is relatively small: only xtvec and xepc need extending

with capability metadata and additional legalisation, and a few additional exception

codes are added to report capability exceptions. The DDC and PCC are handled

outside of the CSR register file due to the frequency of their access. Piccolo sees a

modest decrease in CSR area with CHERI: -13%. This appears to be an artefact,

with no clear explanation. Flute sees a positive overhead here, as expected: 35%.

Flute additionally extends the supervisor mode CSRs, and each extended register

adds twice as much metadata as in Piccolo’s case.

FPU, integer mul/div, and branch prediction As expected, components largely

untouched by CHERI—the integer multiply/divide module, and in Flute the Floating-

Point Unit (FPU) and branch prediction—show no area overhead2. This helps to

reduce the overall fractional area overhead of CHERI.

These numbers provide additional evidence for Hypothesis H.3: the area overheads are

less significant for the larger baseline Flute processor than for Piccolo. This is due to

a smaller fractional scaling of the key extended components, most notably the ALU, as

well as additional unchanged area in components such as the FPU to dilute the CHERI

overhead. In fact, various artefacts bring the Piccolo and Flute area overheads closer

together than they otherwise would be. This includes Piccolo’s baseline cache granularity

already being wider than required and Piccolo’s anomalous negative CSR area overhead.

4.3 Frequency

CHERI has largely been designed to allow the additional operations to be carried out in

parallel with existing logic in typical pipelines. For example, the capability manipulation

operations are completed in parallel with the ALU’s arithmetic operations: in CHERI

MIPS, this was even presented as a completely parallel capability coprocessor. In addition,

the bounds check is deliberately placed in parallel with the initial cache operations

associated with processing the corresponding request. Ideally, this would mean that there

2This is where the Vivado keep hierarchy annotations are useful, as otherwise some CHERI logic is
factored into these components.

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 87

Fmax (MHz) Design target Baseline CHERI

Piccolo 50.0 82.1 76.4
Flute 100.0 102.3 110.7

Figure 4.6: Maximum frequency of the Piccolo and Flute processors synthesised
for the VCU-118. The target frequency is that provided by Bluespec Inc. for the
baseline processor: no optimisation was attempted beyond this.

is no impact on the critical path, and thus the maximum frequency would be unaffected.

However, in practice other effects do perturb the critical path. Some operations, for

example atomic operations in the caches, are extended because they must now operate on

the capability metadata in addition to the addresses, doubling their bit length. Capability

compression operations also have long paths, so must be carefully managed to ensure they

are not serialised with other logic. In addition, area overhead from capability operations

can cause congestion, increasing the distance between communicating structures.

The FPGA tools cease to optimise once a design meets the specified timing target. By

targeting an unobtainable frequency, we can obtain an estimate for the maximum frequency

at which the processor would pass timing. Figure 4.6 gives the maximum frequencies

after synthesising for the VCU-118, obtained by attempting timing closure at 150 MHz.

These show that the CHERI designs clearly achieve the target frequencies. The initial

Piccolo design passed its relatively conservative timing target. However, as discussed in

Section 3.5.2, some optimisation was required to meet the target for Flute. In the case of

Flute, the CHERI Fmax exceeds that of the baseline: this is an artefact of optimisations

performed to meet timing, as of course there is no reason for CHERI to improve critical

paths.

For Piccolo, the critical path for both the baseline and CHERI designs is Stage1, as might

be expected due to its correspondence with three Flute pipeline stages. The baseline

critical path starts with the instruction read from the cache, passes through the decoding

logic, through the ALU, interacts with control logic, then ends by updating a performance

counter. The CHERI path is similar, starting with the fetched instruction from the

cache, decoding it, then passing through the ALU and in this case feeding back into the

instruction cache BRAM to start fetching the next instruction. This path involves some

compression logic, explaining why it is longer than the baseline.

For Flute, in both cases the critical path takes the read instruction from the cache, partially

decodes it to determine if it is a return, uses this information to decide whether to use

the RAS, possibly performs an add to advance the instruction, then uses the new PC to

start lookup of the next instruction in the cache’s BRAM. The CHERI path appears to

be shorter only due to perturbations of the cache logic, possibly due to the changes to

the request interface discussed in Section 3.5.2, or due to changes with the alternative

AXI library discussed in Section 3.4.5. The path is unaffected by compression logic, since

88 4.4. PERFORMANCE

prediction only deals with addresses and does not interact with capability metadata, as

discussed in Section 3.5.1. In any case, this shows that CHERI can be made to not

limit frequency—in this case leaving the critical path largely unaltered—albeit after some

optimisation as discussed in Section 3.5.2.

No effort has been made to optimise either the baseline or CHERI designs targeting

frequencies beyond the initial target frequencies. Analysis into the impact of CHERI for

higher frequency designs would require optimising the baseline processors to target more

ambitious frequencies; observing whether the CHERI modifications lengthen the critical

path when applied to the optimised baselines; and, if so, seeing if this can be mitigated.

4.4 Performance

The performance of the cores is measured using the CoreMark and MiBench embedded

benchmarks. While we have run the SPEC benchmarks on the Flute core, I focus on

embedded benchmarks here, leaving SPEC analysis for Toooba in Chapter 6. These

benchmarks are introduced in Appendix B, which describes their operation sufficiently to

explain performance observations. The benchmarks are used to measure the performance

impact of moving from RISC-V to CHERI hardware without enabling the additional

protections in software. Finally, the efficiency of the capability operations is investigated

by observing the overhead from enabling the protections.

All benchmarks are compiled with -O3 with the same version of the LLVM compiler

modified to support capabilities, with capability code enabled by an option for pure

capability code. The benchmarks run atop Cheri-FreeRTOS for CHERI benchmarks and

the corresponding version of FreeRTOS for non-CHERI benchmarks. Each is run ten times,

and the values shown are for the sum of these ten runs. Runs are largely deterministic,

with only DRAM latencies introducing variability (typically less than 0.1%) between runs,

so error bars would not be meaningful on the graphs.

4.4.1 Legacy performance

I first show the performance impact of legacy RISC-V operations, relative to the baseline

cores. The CHERI ISA offers complete binary compatibility: the processor boots into a

state where non-capability RISC-V code will run as if on an unmodified processor (with

no protection benefit). This is principally achieved by setting PCC and DDC to be fully

permissive capabilities, implicitly authorising all instruction and memory accesses. This

allows measurement of the impact of the modifications on the core when the protections

are not used. Within the pipeline, these should be cycle-for-cycle identical to the baseline

processor. However, there are some differences within the memory subsystem. The tag

controller must lookup tags for memory as it is accessed, even though these will all be

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 89

Figure 4.7: CoreMark run statistics for the Piccolo baseline core, the CHERI core
running the baseline software (no protection), and the CHERI core running pure
capability code, including relevant performance counters. The working set fits in
cache, so negligible cache misses are observed.

unset, since no capabilities will reside in memory. The tag controller is somewhat optimised

for this case due to its hierarchical table [63]. In addition, the modified AXI interconnect

used to allow tag support may have different latency and bandwidth properties.

The CoreMark results shown in Figure 4.7 and Figure 4.8 include values for the baseline

and CHERI cores running without protections, enabling this comparison. As can be seen,

in both the cases of Piccolo and Flute, the overheads are negligible (within 1%). In fact,

the Flute core is slightly faster with CHERI, perhaps due to favourable perturbation of

latencies in the AXI interconnect. This is not a significant or fundamental effect. The

reported branch, jump, and redirect counters also differ very slightly between the baseline

and CHERI implementations of Flute: this is due to minor perturbations of the BTB.

The MiBench results reinforce the low performance overhead without using capability

features in software. All instruction counts are identical, since identical binaries are run

on both cores. No graph is shown, because cycle overheads are negligible. In fact, once

again, the Flute overheads are almost all slightly negative. The performance counters

confirm that the overall cycle differences correspond to time spent waiting for caches,

again suggesting AXI latency changes as the cause of the discrepancy. The average cycle

90 4.4. PERFORMANCE

Figure 4.8: CoreMark run statistics for the Flute baseline core, the CHERI core
running the baseline software (no protection), and the CHERI core running pure
capability code, including relevant performance counters. The working set fits in
cache, so negligible cache misses are observed.

difference for Piccolo and Flute is less than 1% either way.

4.4.2 Capability performance

The performance of CHERI code is now shown, relative to the baseline code on the same

CHERI processor. This allows some investigation of the impact on IPC and thus the

performance of the added operations, as well as effects due to increased cache pressure

and tag lookups. Note that the performance is heavily sensitive to dynamic instruction

overhead, which depends on the effectiveness of LLVM CHERI code generation and

optimisation. While the compiler is not a contribution of this thesis, some investigation of

the source of instruction overheads provide context for the performance results.

CoreMark results are shown for Piccolo in Figure 4.7, and Flute in Figure 4.8. As mentioned

in Appendix B, CoreMark is designed to only test the core, so the performance does not

depend heavily on the memory subsystem. For Piccolo, the cycle overhead is 11% for

an instruction overhead of 15%. This instruction overhead indicates potential for code

generation optimisation, as few capability-manipulating instructions should be required

given the CoreMark operations are not pointer-heavy. However, instruction overheads will

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 91

Figure 4.9: MiBench overhead of CHERI for the Piccolo core. Arithmetic mean
instruction overhead is 14% and cycle overhead is 16%.

be investigated more thoroughly for MiBench, where even higher overheads are seen. Flute

sees smaller overheads: 6% cycles and 5% instructions. The discrepancy here may be a

consequence of the toolchain being more mature for 64-bit targets. In any case, the cycle

overhead scales comparably with the instruction overhead for both processors, indicating

that microarchitecture is not adversely affecting performance. This might be expected,

since the capability operations added to the processor all execute in a single cycle3, leaving

only the memory subsystem to cause performance anomalies. The merged register file

also ensures that register pressure is similar for capability and baseline code. Note that

the CHERI code generation favours branches over indirect jumps: this is not significant

for Flute, which does not have very sophisticated branch prediction and only has a small

mispredict penalty.

Figure 4.9 and Figure 4.10 show the dynamic instruction and cycle overheads when

running MiBench for the Piccolo and Flute cores respectively. Piccolo sees a 16% cycle

overhead for a 14% instruction overhead. Flute sees a similar 16% cycle overhead for

a 16% instruction overhead. I investigate a few of the benchmarks showing noteworthy

overheads to determine the causes: limits, fft, rc4, and qsort.

3With the exception of CTestSubset, which is not generated by the compiler.

92 4.4. PERFORMANCE

Figure 4.10: MiBench overhead of CHERI for the Flute core. Arithmetic mean
instruction overhead is 16% and cycle overhead is 16%.

limits This benchmark shows zero instruction overhead: the capability code generated is

identical to the baseline, except with capability versions of some instructions. This

is possible because all variables fit in registers, so no stack-allocated variables are

required. There is a small cycle overhead, seemingly because of one additional cache

miss as the memory layout is perturbed to make room for capability metadata.

fft This benchmark has one of the lowest instruction overheads on Piccolo, but a com-

paratively much larger cycle overhead, indicating the microarchitecture might be

introducing wasted cycles. From the performance counters, the main contributor

to cycle overhead is instruction cache misses. The baseline code spends 30% of its

cycles waiting for instruction cache misses to be resolved. This grows to 35% for

the pure capability code. This is the result of a 31% miss increase despite total

instruction cache loads only increasing by 3.5%: the miss rate increases from 1.4% to

1.7%. Each instruction miss takes the same time for both the baseline and CHERI

code: 34 cycles. This seems to be a case of either the additional CHERI instructions

pushing the working set past the 4 KiB of the instruction cache, or more likely

unfortunate aliasing in one of the cache sets causing thrashing of instructions in a

key loop. This is the benchmark that benefits the most from the capability-aware

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 93

compressed instructions described in Section 3.3.4: without them, Piccolo sees a

26% cycle overhead. Flute does not see the thrashing effect: the increased cache size

means that both the baseline and the CHERI implementation spend a much smaller

fraction of their cycles waiting for the instruction cache.

rc4 This benchmark sees one of the highest instruction overheads, but the cycle overhead

is low in comparison. The core encryption loop grows from 21 to 28 instructions

when compiling for pure capability: the added instructions arise from different loop

factoring decisions and do not seem inherent to capability code. Figure 4.11 shows

the encryption and decryption inner loop, showing that the overhead is caused

by unnecessary additional instructions. Four instructions are added for rederiving

globals: since there is no additional register pressure in the capability case, the cause

of this is unclear. Three instructions are added to rederive the state variable 8 bytes

into the ctx structure, while the baseline factors this out of the loop. This is likely

because the addi instructions can not be reordered with the CIncOffset instructions,

pending further code generation optimisation. Since the added instructions are cheap

arithmetic rather than expensive memory accesses, the cycle overhead is smaller

than the instruction overhead.

qsort This has significant instruction overhead, pending pure capability code generation

improvements. The low-level swap implementation within qsort, for instance,

grows by 76% in static instructions when compiled for pure capability. The qsort

implementation is used from the Newlib library, which has been augmented with

CHERI support, rather than being contained in the benchmark itself. We can also

note the significant difference between the instruction overhead in Piccolo and Flute.

This appears to be due to a granularity issue. The elements being swapped consist

of three integers, padded to four for alignment, and a double precision floating-point

number. This makes the structure 24 bytes wide as compiled by LLVM. However,

the swap function has a fast case copying longs at a time, and a slower fall-through

case that copies chars at a time if alignment is not sufficient. In supporting CHERI,

the fast case was changed to copying a capability at a time, both exploiting the

wider architectural access widths and preserving capabilities in the swapped data.

However, this means the structure width for this benchmark is no longer a multiple

of the fast copy width in the 64-bit Flute processor where capabilities are 16 bytes,

so falls through to the byte-by-byte case. This makes each copy 24 iterations as

opposed to the baseline’s three. Piccolo does not have this issue as 24 is a multiple

of its capability width of eight bytes. The cycle overhead scales quickly with the

instruction overhead as the additional instructions tend to be expensive loads and

stores: stack spills and instructions for swapping.

The MiBench benchmarks were also run both with and without the capability-aware

compressed instructions enabled. The numbers reported throughout this section show

94 4.5. POWER

performance with them enabled. Without them, Piccolo incurs a mean cycle overhead of

19% (3% worse) and Flute 16% (no change). While not a huge effect overall, benchmarks

where instruction cache misses are an issue see large benefit from the optimisation: without

it, fft’s cycle overhead grows to 26% and qsort’s to 41% on Piccolo. Flute is less sensitive

to instruction cache pressure due to its increased cache sizes, especially for these embedded

benchmarks.

In summary, while the instruction and cycle overheads are high, at least some of the

overhead appears to be a result of artefacts and code generation anomalies. This is

made worse since many embedded benchmarks consist of a tight core loop that is very

sensitive to added instructions. As future work, compiler improvements could ensure that

the CHERI compiler matches the baseline except where capability operations require

otherwise. As well as bringing down time spent executing unnecessary instructions, this

would also avoid issues due to instruction cache pressure, which is especially relevant for

these microcontrollers with such small caches.

4.5 Power

Power is an important metric for some microcontrollers, especially in battery-powered

devices. Unfortunately, while area itself can give some estimate of how power will scale,

it is difficult to determine ASIC power consumption based on an FPGA design. FPGA

tools provide an estimate of power usage of the synthesised design. However, this is not

fully representative of ASIC power, particularly as the use patterns of the synthesised

components are not known by the synthesis tool, and power usage scales significantly with

how often transistors are switched. The results in this chapter are gathered using Vivado’s

“vectorless power analysis” [141]. This assumes a certain switching distribution for input

pins (switching one in eight cycles), and propagates this through the design. Future work

could improve the accuracy of these measurements by capturing benchmark runs in a way

that could provide Vivado with more dynamic information. Even further, on-board power

measurement tools could be used to capture actual power used during a benchmark run.

However, note that these techniques would increase accuracy of measuring the power used

by the FPGA, rather than more accurately approximating power in an ASIC context.

Where microcontrollers are connected to DRAM, a large fraction of the power drawn is

that required to drive the relatively long wires to DRAM. This means that DRAM traffic

overhead can also increase power consumption.

Figure 4.12 shows the power of the designs reported by Vivado. It gives both the logic-only

power and the overall power, which includes power for clocks, signal transmission, and

BRAMs. The overhead is approximately the same in either case, and scales roughly with

the LUT area of the designs.

The DRAM overhead can also be used as an estimate for power overhead. CHERI causes

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 95

struct {int x; int y; char state [256]} *ctx;

char *src , *dest; int i; char x, y, sx, sy , b, d;

ctx ->x = (ctx ->x + 1) & 255;

auipcc ct0 , 35

clc src , 1246(ct0)

addi t1, ctx ->x, 1 addi t1, ctx ->x, 1

andi ctx ->x, t1, 255 andi ctx ->x, t1 , 255

sx = ctx ->state[ctx ->x];

addi t2, ctx ->x, 8

add t3 , ctx ->state , ctx ->x cincoffset ct3 , ctx , t2

lb sx, 0(t3) clb sx , 0(ct3)

y = (sx + ctx ->y) & 255;

add t4 , ctx ->y, sx add t4, ctx ->y, sx

andi ctx ->y, t4, 255 andi ctx ->y, t4 , 255

sy = ctx ->state[ctx ->y];

addi t5, ctx ->y, 8

add t6 , ctx ->state , ctx ->y cincoffset ct6 , ctx , t5

lb sy, 0(t6) clb sy , 0(ct6)

add &src[i], i, src cincoffset &src[i], src , i

lb src[i], 0(&src[i]) clb src[i], 0(& src[i])

ctx ->state[ctx ->y] = sx;

sb sx, 0(t6) csb sx , 0(ct6)

ctx ->state[ctx ->x] = sy;

sb sy, 0(t3) csb sy , 0(ct3)

b = ctx ->state[(sx + sy) & 255];

add t7 , sy, sx add t7, sy , sx

andi t8, t7, 255 andi t8, t7 , 255

addi t9, t8, 8

add t10 , t8, ctx ->state cincoffset ct10 , ctx , t9

lb b, 0(t10) clb b, 0(ct10)

d = src[i] ^ b;

auipcc ct11 , 35

clc dest , 1180(ct11)

xor d, b, src[i] xor d, b, src[i]

dest[i++] = d;

add &dest[i], i, dest cincoffset &dest[i], dest , i

addi i, i, 1 addi i, i, 1

sb d, 0(& dest[i]) csb d, 0(& dest[i])

Figure 4.11: Compiled inner loop body for the rc4 benchmark for baseline (left) and
pure capability code (right). Registers are renamed for clarity. Extra CHERI instruc-
tions are highlighted: orange shows rederived globals and blue shows instructions
arising from not factoring out the indexing into *ctx to find state.

96 4.6. SECURITY

Power usage Baseline (mW) CHERI (mW) Overhead

Piccolo (logic only) 20 32 60%
Piccolo (overall) 62 98 58%
Flute (logic only) 84 116 38%

Flute (overall) 274 372 36%

Figure 4.12: Power usage of the Piccolo and Flute processors synthesised for the
VCU-118, as reported by Vivado.

additional DRAM overhead, both as a result of the tag controller’s tag lookups, and

metadata that must be stored alongside any pointers. This is again an area where mi-

crocontrollers expect increased overhead compared to larger processors. This is because

smaller caches hide less of the pointer metadata overhead, especially since the caches

are write-through. Figure 4.13 shows the DRAM traffic overheads across the MiBench

benchmarks, with Piccolo reporting a 61% overhead and Flute a 42% overhead. Coin-

cidentally, these match surprisingly well with the power overhead reported by Vivado.

As with performance overheads, it is possible these will improve with code generation

improvements, as fewer additional instruction cache misses cause fewer DRAM lookups.

4.6 Security

Security evaluation of the CHERI model itself has been carried out in various other work

(see Section 2.4.1), for example by Joly, ElSherei, and Amar [65]. This is largely outside

the scope of the thesis.

The implementations were evaluated for security using a Common Weakness Enumeration

(CWE) test suite developed by Galois, and the Fett bug-bounty red-teaming exercise [35].

The security evaluation was carried out by other members of the CHERI team, so is only

summarised here.

The results of CWE testing were largely as expected, in particular highlighting the

protection provided by the core against buffer overruns and exploitable numeric errors

affecting pointer arithmetic. Some buffer overruns were not caught on Piccolo due to its

extreme capability bounds compression. However, the software has been extended to make

these unexploitable by providing the necessary padding.

The Fett bug-bounty program required some work to debug the processor and ensure

it supports all of the required features. The exercise evaluated the effectiveness of the

CHERI extensions at their purpose: to protect against attack by a motivated adversary.

Three exploitable bugs were found: an incorrect capability of realloc in the allocator, a

problem with bounds checking on variadic argument arrays, and an issue with the kernel

not checking the bounds of its capabilities in software before performing optimisations.

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 97

Figure 4.13: MiBench DRAM traffic overhead of CHERI for the Piccolo (top) and
Flute (bottom) cores. Arithmetic mean Piccolo overhead is 61% and Flute overhead
is 42%. The count is of AXI flits: single transfers within a burst.

98 4.7. FUTURE WORK

Although hardware bugs were in-scope for the exercise, most attackers seemed to focus on

more familiar software bugs, so no hardware bugs were reported.

4.7 Future work

For the microcontrollers and benchmarks examined, additional instructions generated

by the compiler that are not inherent to the capability model are perhaps the main

cause of performance overhead. This is exemplified in Figure 4.11. Additional work

is planned on compiler optimisation, identifying the source of added instructions and

enabling optimisations to mitigate them. This is likely to accompany additional work on

CHERI RISC-V architectural optimisation: examining whether additional instructions, or

immediate forms of existing instructions, could improve code density.

The comparisons shown here have kept all parameters the same between the baseline

and CHERI cores to measure the overheads objectively. However, this may not be the

realistic approach taken to augmenting microcontrollers with CHERI: capabilities may

change the tradeoffs that need to be considered in parametrisation. For example, given

the area added to support CHERI in the ALU, it may be worthwhile to increase cache

sizes or associativity to keep performance and DRAM traffic overheads low. Future work

could examine some of these parameters to produce a recommendation of how to augment

microcontrollers with CHERI in practice.

All evaluation has been performed on FPGA platforms, due to the costs associated with

silicon synthesis. It is likely that the different synthesis target will produce different

evaluation results, as discussed in Section 2.1. Further evaluation of the cores using silicon

synthesis tools therefore also remains as future work.

4.8 Summary

This chapter gives an initial quantitative answer to Hypothesis H.1: depending on what

overheads are acceptable for a given context, CHERI is an option for increasing micro-

controller security. It has been shown that CHERI can provide spatial safety for RISC-V

microcontrollers to protect at least against common, existing attacks, as well as initial evi-

dence that it protects against motivated adversaries via a bug-bounty program. The (LUT)

area overheads of Piccolo and Flute were 62% and 49% respectively: the tag controller

and capability manipulation logic form the majority of the overhead. After optimisation

of Flute, timing is not affected, and it seems that CHERI does not fundamentally change

critical paths for these types of microcontrollers. The performance overheads are negligible

for unmodified code (no security benefit), and approximately 16% (average MiBench

cycles) for CHERI-augmented code on both Piccolo and Flute. Code generation issues

CHAPTER 4. CHERI MICROCONTROLLER EVALUATION 99

were identified that are not fundamental to capabilities, and significantly increase the

run-time overheads. Power overheads are measured as approximately 60% for Piccolo and

40% for Flute across both logic overhead and DRAM traffic overhead.

These numbers also give an initial answer to Hypothesis H.3: the area and power overheads

are smaller for Flute than for Piccolo. This is primarily due to additional unmodified

baseline logic, such as the FPU, reducing the fractional overhead. For dynamic measure-

ments of power, this scaling is primarily caused by larger caches being able to absorb

more of the memory overheads arising from capability metadata and increased instruction

cache pressure. However, the performance overhead appears unchanged between the two

processors. Flute is able to absorb the instruction overhead better than Piccolo due to

its larger caches, but the swap anomaly discussed for the qsort benchmark raises Flute’s

instruction overhead, negating this effect.

100 4.8. SUMMARY

Chapter 5

CHERI for application-class

processors

This chapter describes the first open implementation of CHERI RISC-V for an out-of-order

core: an extension to MIT’s RiscyOO processor [145]. The architectural changes from

Chapter 3 all apply, as well as much of the microarchitectural implementation. This

chapter explores the new challenges and opportunities presented for implementing CHERI

for a large, superscalar, out-of-order design. Particular attention is paid to ensuring the

capability model cannot be violated in speculation, motivating further refinement of the

CHERI RISC-V ISA.

This chapter answers general questions about implementing CHERI for application class

cores, addressing Hypothesis H.2. Finally, the implementation enables exploration of

revocation in a new context, targeting Hypothesis H.4 in Chapter 7.

5.1 Characteristics of application-class processors

As discussed in Section 2.1, application-class processors have been developing to ever

higher clock frequencies, instructions-per-clock, and concurrency. Beyond technology

node improvements, this has been achieved via advancements in microarchitecture, for

example increasing superscalarity, extracting instruction-level parallelism, and out-of-order

execution, allowing memory latency to be hidden by speculation and executing independent

instructions.

Unlike for microcontrollers, application-class cores generally require support for memory

virtualisation, so are armed with MMUs for efficient memory translation. This doubles

as a security mechanism, as memory can be mapped per-process, preventing corruption

among processes, or between processes and the kernel, unless memory is explicitly shared.

However, as discussed in Section 2.2, this is far from a complete security solution, as spatial

safety can still be violated within a process. Other partial solutions are already widely

101

102 5.2. BASELINE PROCESSOR

adopted, and their performance penalties accepted, to address this issue, for example

ASLR [17].

The attack-surface is very different from the microcontroller world, as code is often acquired

dynamically and from untrusted sources, such as downloaded from the internet. Servers

accessible via the internet are the highest payload targets for attack, as a single attack

can compromise millions of users’ data, sometimes via a mistake in a single line of code,

for example Heartbleed [41]. This makes the core running the application code the most

obvious choice to add architectural protection.

5.2 Baseline processor

RiscyOO is an open-source RISC-V superscalar, out-of-order processor developed by MIT.

The processor was designed in Bluespec, with the particular aim of being modular and

extensible. A full description of its design is given by Zhang et al. [145], with a general

description focusing on the details relevant to the CHERI modifications reproduced here.

It supports parametrisable superscalar execution, and has been synthesised for ASIC in a

32 nm process at 1 GHz [145]. The processor has been augmented by Bluespec Inc. with

support for compressed instructions, and to fit the same SoC environment as Piccolo

and Flute. They have dubbed this modified processor Toooba, which is the name used

throughout the thesis [59].

Toooba supports the single combination of 64-bit RISC-V with the A, C, D, F and M

extensions, meaning it has support for atomics, compressed instructions, multiply, and

double-precision floating-point. As shown in Figure 5.1, the processor is split into: a front-

end (instruction fetch and decode), register rename, the reorder buffer, instruction-specific

pipelines, and finally a commit stage. There are three pipeline types: memory, arithmetic

(including jumps and branches), and one for floating-point, integer multiply and integer

divide. While the number of arithmetic and floating-point pipelines is parametrisable,

there is always exactly one memory pipeline. The front-end and commit are in-order,

but pipelines are able to process the instructions within the reorder buffer out-of-order.

The processor has support for machine, supervisor, and user modes, meaning full support

for address translation. This allows it to boot application-class OSs including Linux and

FreeBSD.

Toooba is parametrised in its superscalarity by SupWidth: the number of instructions

that can be executed per cycle when operating at full bandwidth. Throughout the

chapter, SupWidth is fixed at two. Various other processor attributes are parametrised,

including cache sizes, maximum number of in-flight instructions, and sizes of reservation

stations. While the CHERI modifications support varying these parameters, the “small”

configuration is consistently used for evaluation: this allows investigation of all the key

Toooba features without causing complications due to over-congestion on FPGA. The

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 103

Fetch1

Fetch2

Fetch3

Decode

BTB

ITLB

ICache

BrPred
train

Rename

enq
ReorderBuffer

RegFile

Res

Disp

Reg

Exe

DTLB

LSQ

DCache

Finish

Memory

Res

Disp

Reg

Exe

Finish

FPU
Integer Mul/Div

Res

Disp

Reg

Exe

Finish

Res

Disp

Reg

Exe

Finish

redirecttrain

Arithmetic

deq

Commit

Figure 5.1: The Toooba processor. Forwarding paths from the arithmetic pipelines’
Exe and Finish stages to all pipelines’ Reg stages are omitted.

104 5.2. BASELINE PROCESSOR

exact parameters of this configuration are listed in Figure 6.1.

Toooba’s front-end fetches up to SupWidth 32-bit instructions at a time (which may be

more instructions due to compression). The front-end pipeline is split into four stages:

three for fetch and one for decode. The first fetch stage takes the predicted next PCs from

the BTB and begins looking them up in the TLB, while also using them to predict the

PCs for the next cycle. The second stage completes the TLB lookup, detecting memory

management exceptions, then issues the request to the instruction cache or Memory-

Mapped Input/Output (MMIO) controller. The final fetch stage completes the instruction

lookup, passing its 16-bit instruction parcels to the decode stage. Decode combines parcels

corresponding to halves of 32-bit instructions, decodes them, and produces a more accurate

PC prediction using decoded fields from the instruction, the direction predictor, and the

RAS.

Once decoded, instructions are passed into the rename stage where their architectural

registers are mapped onto physical registers. The number of physical registers in the

processor depends on the reorder buffer size, allowing every reorder buffer entry to have its

own physical register, in addition to one per architectural register (including floating-point).

This prevents physical register availability ever causing a structural hazard: rename simply

allocates a destination physical register for every instruction that comes through, even

if the instruction does not need it. A table is maintained of the current mapping from

architectural to physical registers. The rename stage enqueues each instruction into the

reorder buffer and into the reservation station of a relevant pipeline. For system instructions

and any other instruction that must clear the pipeline, this is detected in rename and no

more instructions are issued until all prior instructions have been committed.

The reorder buffer contains a record for each in-flight instruction, containing all information

required for when the instruction eventually commits. This includes information to

determine when the instruction is no longer speculative based on when preceding predicted

branches are architecturally resolved. Importantly for the CHERI modifications, each

row contains the full PC of the corresponding instruction, and PC of the next predicted

instruction. For a sense of scale, each reorder buffer entry is approximately 200 bits. The

number of rows in the reorder buffer, i.e. the maximum number of in-flight instructions

(except a few in the fetch, rename and commit stages), is also configurable, with the “small”

configuration containing 64 entries.

All instructions are serviced by a particular type of pipeline, each of which has a similar

structure. Each pipeline has a reservation station that accepts relevant instructions from

the rename stage and buffers them until their register dependencies have been resolved.

The pipelines then have a dispatch stage that updates the required state in the reservation

station and passes an instruction to the rest of the pipeline. Register read latches the

relevant values from the physical register file or forwarding paths if available. Execute

then performs the required operation. The finish stage then updates the reorder buffer

entry and typically writes the result to the physical register file.

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 105

The arithmetic pipeline is special in that all its instructions have a fixed latency. This

allows its reservation station to mark its instructions’ destination registers ready as soon as

the instruction is dispatched. This is possible because any pipeline can safely schedule an

instruction that depends on this value knowing that it will be available through forwarding

by the time the dependent instruction reaches register read. The arithmetic pipeline is

therefore the only pipeline that forwards its outputs from the execute and finish stages to

all pipelines’ register read stages. The arithmetic pipeline’s register read stage also fetches

the instruction’s PC and predicted next PC from the reorder buffer and has the possibility

of reading a CSR. Since control-flow instructions are handled by the arithmetic pipelines,

their finish stages also resolve speculation. This involves redirecting the fetch stage if

required, updating instructions that are speculative based on the current instruction, and

providing information to train future branch predictions.

The pipeline supporting floating-point and integer multiply and divide is a standard

non-forwarding pipeline, but the execute stage is split into several variable latency stages

depending on the operation.

The design of the memory pipeline mirrors that of the other pipelines, with dispatch

and register read performing the same operations. The execute stage performs address

calculation by adding the immediate to the read register value if required, and performs

the required interactions with the Load/Store Queue and data TLB. The Load/Store

Queue is also signalled from other parts of the processor: a slot is initially requested in

the rename stage, and the memory pipeline’s finish stage has to commit the access once

all exceptions are resolved. The finish stage is triggered when the TLB issues a response,

and any exceptions are handled. Crucially, the finish stage does not require the access

to have occurred for a load, giving the core its ability to process out-of-order. Memory

responses are handled asynchronously, possibly after commit, writing their data to the

relevant physical register.

The Load/Store Queue and cache are most relevant to the revocation work, so are described

in more detail in Section 7.3.1.

The commit stage is in-order, so acts as a gathering point for instructions that interfere

with others’ execution, including exceptions and system instructions. The system and

exception cases perform the required flushing of all of the in-flight instructions and redirect

the fetch stage. The common case just dequeues the reorder buffer and commits the

rename of the destination register.

106 5.3. CHERI IMPLEMENTATION

5.3 CHERI implementation

This section discusses our CHERI augmentation of the Toooba core. Note that the

implementation was completed in collaboration with Jonathan Woodruff and Alexandre

Joannou: see Section 1.3. While effort was made to make the changes efficiently, little

optimisation of area has been performed. The implementation has an interesting tradeoff

space: many structures can have capability metadata included inline by widening the

existing hardware, or can sacrifice performance by restricting the amount of metadata stored.

I identify these tradeoffs when they arise, but mostly lean towards taking the widening

approach initially, partly due to the simpler implementation this implies. Investigating

alternative points in the tradeoff space remains as future work, hopefully enabled by this

initial implementation.

Much of the implementation work for CHERI for microcontrollers from Chapter 3 also

applied to Toooba. As discussed in Section 3.4, the library for capability compression was

reused for Toooba, and the CHERI-tag-aware AXI interconnect and tag controller could

also be directly reused. Capability instruction and CSR encoding tables could also be

shared. TestRIG was used to verify the processor, reusing the effort in creating templates

for Piccolo and Flute. The architecture details, including merged register file, capability

encoding mode, Sentry mechanism, and capability-aware compressed instructions all apply.

5.3.1 CHERI instruction pipeline

For the original CHERI MIPS implementation, the capability arithmetic was described

as a capability co-processor [136]. As discussed in Section 3.4.3, the more natural model

in CHERI RISC-V was to think of the capability arithmetic extending the ALU. When

extending a superscalar processor, more options present themselves. Since Toooba has

multiple different types of pipeline, capability instructions could be implemented alongside

arithmetic, memory access, or even have a pipeline to itself.

I decided to augment each arithmetic pipeline with capability arithmetic, allowing pointer

arithmetic to be performed largely cycle-for-cycle identical to the baseline, except where

additional instructions are required for security. The arithmetic pipelines are the most

natural choice to extend with capability arithmetic. These pipelines are designed for

single-cycle operations, unlike the floating-point and memory pipelines, which tolerate

variable latency. By design, the capability arithmetic can all be carried out in a single cycle.

The arithmetic pipeline can therefore forward results of capability manipulations to all

pipelines. In addition, the number of arithmetic pipelines scales with the superscalarity of

the processor, meaning capability-aware arithmetic pipelines maximise capability operation

throughput.

The memory pipeline remains unmodified, except to allow the new access types and

perform the required capability checks to ensure accesses are authorised. This approach

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 107

requires the capability bounds checks, including the expensive bounds decompression, to be

duplicated between the memory pipeline and arithmetic pipelines. However, since Toooba

is a much larger processor than those discussed in Chapter 3, this area overhead is expected

to be small as a fraction of the core. In addition, since control-flow instructions are handled

by the arithmetic pipelines, these would need a bounds check anyway. Implementing the

capability arithmetic per arithmetic pipeline does mean paying for its area multiple times:

dynamic instruction measurements may indicate that a single capability pipeline could

be sufficient depending on common capability operation density in compiled code. To

avoid any capability overhead in the unmodified pipelines would likely require that these

pipelines not be capable of performing jumps1. While investigating alternative approaches

to the capability arithmetic pipeline is future work, the design has been carried out in a

modular way to enable this research.

Unlike Piccolo and Flute, which decode in a switch statement in the execute stage, Toooba

has a distinct decode stage. This allows the capability instructions to be properly decoded

into more direct control signals for the capability module within the ALU. Operations are

grouped into options for common functional units, with register arguments reordered to

maximise sharing without incurring multiplex overhead in the ALU. Capability arithmetic

itself is carried out as in Piccolo and Flute. The partial decompression from CapReg to

CapPipe discussed in Section 3.4.1 occurs in the register read stage of the arithmetic

pipeline.

Exception conditions, for example checking for modifications to sealed capabilities or

violation of capability permissions, are mostly checked in parallel with the ALU, again

similar to Piccolo and Flute. As before, the expensive bounds check is handled differently,

since it depends on the base and top values that are produced late within the ALU. The

execute stage produces signals that are fed into the bounds check in the finish stage of the

ALU pipeline. In all cases, the exceptions do not affect the produced value, instead setting

an exception field in the reorder buffer entry that is checked in the commit stage. As

discussed in Section 5.3.6, this initial approach opened the door to speculative execution

attacks, motivating an alternative architecture and design.

5.3.2 Memory pipeline

The memory pipeline must be extended with modest additional instructions, again requir-

ing additional signals emitted from decode. These instructions mostly extend existing

functionality, for example adding byte-granular and capability atomic operations, and

adding additional exception cases to the data TLB. The width of the interface to the

Load/Store Queue must be extended to full capability-width. In addition, the register

read stage of the pipeline must read DDC in case it is used to authorise and offset legacy

memory operations. Address calculation is extended to work with capabilities: addition of

1This could be a worthwhile tradeoff independent of capabilities.

108 5.3. CHERI IMPLEMENTATION

Location Purpose Read/Write

Fetch Fetch the next instruction Read

Fetch Update to next speculated instruction Write

Decode Determine capability encoding mode Read

Execute Jumps and auipc(c) Read

Execute Fix misprediction Write

Commit Update mepc(c) on exception Read

Commit Install mtvec/mtcc on exception Write

Figure 5.2: Usage of the PCC within Toooba.

the immediate to the address register in the baseline becomes an increase of the authorising

capability register’s offset by the immediate in the CHERI version.

In addition, the memory pipeline requires its own checks to ensure memory accesses only

occur when authorised by an in-bounds capability with relevant permission bits set. This

requires checks, including the bounds check, to be carried out before accesses can have

side-effects on the memory subsystem. As in the arithmetic pipeline, the simple checks

are carried out in execute and the more complex bounds check is prepared in execute to

be carried out in the finish stage. Fortunately, the pipeline already has a commit call to

the Load/Store Queue in the finish stage to support TLB exceptions. This means the

additional interface that was required for Piccolo and Flute (described in Section 3.4.2) is

not required here.

5.3.3 PCC implementation

CHERI extends the PC with capability metadata, forming the PCC, to protect control-flow

and enable code compartmentalisation.

The tracking of this metadata posed some interesting questions even for the scalar processors

(see Section 3.5.1), where there are already several notions of the PC: one for each of the

instructions in the pipeline, the architectural PC to be taken if the processor is interrupted,

and predicted PCs passed into the instruction cache to be fetched. This complexity is

compounded in Toooba, presenting many options to store metadata.

Figure 5.2 gives a summary of the various PCC interactions within the processor. The

baseline Toooba has several copies of the PC within the front-end, including within

prediction structures. The ALU pipelines are the only ones requiring the PC: for the

auipc instruction and to link and calculate the new PC after a jump or branch. The

commit stage also needs the PC, as it must be installed in mepc in the event the instruction

traps. This implies that the PC must be preserved in the reorder buffer. Each occurrence

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 109

of the PC needs to be considered when adding CHERI to reflect the fact that it has

architecturally become a capability.

When extending the PC with capability metadata to produce PCC, one extreme is to

include the metadata in all cases. This presents the simplest option, as it requires no

change of structure from the unmodified processor. However, this may have significant area

impact due to scaling up of all of the structures. The other extreme is to have only one

set of PCC bounds present in the processor, with a pipeline flush whenever PCC bounds

change. This may significantly reduce the area overhead, at the expense of performance in

code that regularly changes PCC bounds. Current CHERI code generation does not tightly

bound the PCC within functions, since globals are still accessed relative to the current

PCC. Therefore, this approach is unlikely to carry a significant performance penalty in

the benchmarks shown in this thesis. However, work on compartmentalisation is likely to

experiment with tighter bounding of PCC, so we opt to augment all instances of the PC

with bounds in the initial implementation to enable this research.

A particular concern for area growth is the reorder buffer: this is a large structure,

comparable to the physical register file itself. In the baseline processor, for the configuration

shown in Figure 6.1, there are 64 entries, each consisting of 225 bits. Most notably, this

includes: 64 bits for the PC, 64 bits for another union field, and 32 bits for the original

encoded instruction. The union field can contain the predicted PC, the value to write to

a CSR, or the virtual address of a store. The remaining bits are all for various tracking

metadata. The current implementation of CHERI adds 138 bits to each entry: 65 bits of

capability metadata and 65 bits for the other union field, as well as a few bits to track

SCRs and CHERI exception codes.

A possible compromise is to allow a limited number of distinct PCCs to exist in the

processor, storing the full metadata in a lookaside table and only storing an index into

each table and the PC as an offset in the other structures in the processor. The upper

bits of the PC address could also be moved to this structure, making this a potential

saving even without CHERI. Once again, performing a study to determine an appropriate

tradeoff between area and performance is future work, depending on software elaboration

of compartmentalisation models.

5.3.4 Special Capability Register implementation

The baseline Toooba processor takes a very conservative approach to dealing with CSR

writes. This is because CSRs can have wide-reaching effects on other instructions: for

example a change to frm can change the rounding mode of all floating-point instructions,

and a change to mtvec would change the address to take on any exception. The designers

therefore choose to allow implicit CSR reads freely within the pipeline, and stall the pipeline

on any architectural access to a CSR as it reaches rename, waiting for all outstanding

instructions to complete before issuing it directly to commit.

110 5.3. CHERI IMPLEMENTATION

CHERI adds SCRs that serve a similar purpose to CSRs but hold capabilities. These are

initially treated akin to CSRs since the assumption that they are infrequently modified

holds for current capability code. This allows them to be freely read within the processor

at the expense of a pipeline flush on write. However, one particularly contentious SCR is

DDC, which is implicitly used as the capability authorising and offsetting legacy RISC-V

memory operations. Therefore, similar to some other CSRs, the effects of writing DDC

are far-reaching for other, seemingly independent, instructions. DDC could potentially be

used for compartmentalisation to protect non-CHERI-aware libraries from each other, so

it is not yet known how often DDC will be written. If the performance cost of flushing

the pipeline on every DDC write is too high, an alternative implementation is to add it,

and possibly other SCRs, as renamed registers. This would mean extending the physical

register file modestly, as its size is determined by the number of architectural registers

plus the maximum number of in-flight instructions to eliminate structural hazards due to

register contention. The size of register indices throughout the pipeline, for example in

forwarding paths, would also need to grow. However, the main cost would be additional

physical register file read ports to distribute the value to the memory pipeline. As with

other optimisations, this approach could also benefit the baseline core, as commonly

modified CSRs could also be forwarded with negligible additional cost.

5.3.5 Extending structures

In addition to the reorder buffer and pipelines already mentioned, other structures within

the processor pose a tradeoff when extending them with capability metadata, most crucially

the physical register file and Load/Store Queue. Figure 5.3 gives an overall summary of

the key extended structures.

5.3.5.1 Physical register file

Superscalar processors have large physical register files, allowing registers to be renamed

to avoid false dependencies. We initially extend every register to capability-width. As

discussed in Section 3.4.1, this grows registers from 64 bits to 151 bits due to partial

decompression. Metadata is decompressed from a CapMem to a CapReg on the path into the

register file from memory on load, and vice versa when storing a capability. Integers are

stored in the register file with null capability metadata, presenting significant redundancy

depending on the mix between capabilities and integers. On read, the CapReg is further

decompressed to a CapPipe in the register read stage of the relevant pipeline. The merged

register file makes implementation particularly convenient: interactions with registers,

including forwarding, can simply reuse the existing control logic but with a different

datatype.

The area impact from extending every physical register is large: our configuration has 128

physical registers. Limiting the physical register usage by only extending some registers to

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 111

Structure Change Potential optimisation Optimisation impact

Pipelines
Add capability
manipulation

logic

Extend only a single
pipeline

Throughput of dense
capability operations

Register file
Support

capability
metadata

Extend only a subset
of registers

Throughput
depending on live

integer/capability mix

Load-store
queue

Widen data width
Extend only a subset

of entries
Throughput of dense

capability stores

Reorder
buffer

Add PCC
metadata

Restrict live PCCs
with different bounds

Performance of
compartmentalised

code

Figure 5.3: Summary of the key Toooba structures extended to support capabilities,
and potential optimisations to reduce the area impact.

full capability width would reduce this overhead at the expense of performance, stalling

whenever a capability register is needed but unavailable. Therefore, future work would

investigate how many physical registers are required for capabilities for common generated

capability code. However, Toooba is designed to avoid any structural hazards due to

scarcity of physical registers, so this approach would also require some extra complexity.

An alternative to having a limited subset of capability registers is to allocate a sidecar

register when non-null metadata is required. This is the approach taken by Watchdog [86]

(discussed in Section 2.3.1), although the authors used a pipeline simulator, meaning they

did not validate the approach in microarchitecture. This would require significant changes

to register rename and would once again require a mechanism to stall when insufficient

sidecar registers were available. One possible variation of this approach would be to allow

registers to hold either integers or metadata. This would make capabilities consume two

physical registers, trading further complexity for less wasted area.

5.3.5.2 Load/Store Queue

Application-class processors also tend to feature a Load/Store Queue between the pipeline

and caches, allowing bursts in cache activity to be absorbed, and out-of-order cache

responses to be supported without violating memory model ordering constraints. Such

structures contain records of data transferred to the memory subsystem, often at the

maximum granularity of atomic access (the maximum width that can be loaded or stored

per instruction). CHERI RISC-V doubles this width by allowing 128-bit capabilities to be

loaded and stored in a single instruction. The most natural way to accommodate this is

112 5.3. CHERI IMPLEMENTATION

to widen the entries in the Load/Store Queue, but this may lead to a large area increase.

This is the approach we take, keeping the number of Load/Store Queue entries the same

and doubling the size of the entries for stores, which must hold the stored data. For our

configuration, there are only 14 Load/Store Queue entries for stores, so this overhead is

less significant than the other structures discussed.

Alternatively, one could support this in different ways, such as dividing the capability

accesses into their address and metadata bits, and being careful to ensure all accesses are

atomic between these. This would reduce the area overhead, at the cost of performance

if the Load/Store Queue fills up with the additional entries. This is very similar to the

tradeoff presented by the physical register file, except in this case the performance penalty

scales with the maximum number of outstanding capability stores, rather than the number

of capabilities live in the register file.

5.3.6 Safe speculation

The recent Meltdown [80] and Spectre [71] attacks have shown that processors can be

attacked using cache side channels triggered by code that has speculatively bypassed

security checks. Following these initial attacks, Canella et al. have performed a systematic

overview of transient execution attacks and defences [25]. Capabilities can interact with

these attacks in two very different ways. Capability hardware may make it easier to

mitigate speculative execution attacks efficiently, since bounds checks can be carried out

even on speculative paths. Work on this is proceeding within the CHERI group [130].

Conversely, speculative attacks may be used to bypass the capability security model, for

example using a capability out of its bounds if the bounds check is delayed. This section

discusses the second interaction in the context of the CHERI Toooba implementation.

Work by Fuchs, in collaboration with the rest of the CHERI team, identified a significant

security vulnerability in the initial CHERI Toooba implementation [48]. Fuchs discovered

Meltdown Capability Forgery: an attack that allows capabilities to be forged in speculation

and used to signal cache side channels. As discussed in Section 5.3.1, the initial CHERI

adaptation of Toooba determined the exception conditions in parallel with executing the

instruction, with the exception flag not being checked until commit. This gives a window

of opportunity for the capability to be read from the physical register file or forwarded

until the instruction is committed.

More explicitly, the attack proceeds as shown in Figure 5.4. Microarchitecturally, the first

load is committed, but the branch cannot be dispatched into the ALU pipeline until the

value is read from DRAM. This clogs the in-order commit stage. The CSetBoundsImm is

dispatched out-of-order to the ALU, where it marks in the reorder buffer that an exception

is required on commit, but produces the capability with the requested bounds, sending

it on forwarding paths and writing it to the physical register file. The reorder buffer

entry stays queued up behind the branch, giving the rest of the code time to run before

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 113

Perform a load that will miss the cache

cld t0, 0(ca1)

Branch on loaded value , trained not taken

bnez t0 , exit

Branch will be architecturally taken

The rest runs only in speculation:

Extend the bounds

csetboundsimm ct1 , ca0 , 24 # Would trap if committed

Load the secret

cld t2, 16(ct1)

Load a cacheline dependent on the secret

cincoffset ct3 , ca2 , t2

cld t4, 0(ct3)

Figure 5.4: A CHERI RISC-V program that violates capability guarantees on Toooba
using a speculative side channel. Reproduced based on work by Fuchs [48]. ca0

contains a capability pointing at its base, with bounds of potentially just a single byte.
An attacker knows that a secret is stored 16 bytes after the base of the capability,
but the secret is beyond its top. While 16 is used for illustration, there is no limit
on how far out-of-bounds this attack can reach, so long as the secret is resident in
the cache. ca1 contains a capability whose address is known to be not resident in
the cache. ca2 contains a capability to memory also known not to be resident in the
cache: after this attack is run, this memory can be probed to determine which line
was fetched, extracting the secret.

the exception is committed. This includes loading the secret: even though the memory

pipeline does check the bounds and tag, even in speculation, the capability that has been

presented to it is perfectly valid. Finally, the original load returns and the branch resolves,

squashing all the speculative instructions, but leaving behind the effect on the caches.

Once the mechanism for Meltdown Capability Forgery was identified, it became possible

to audit the Toooba core comprehensively for potential similar vulnerabilities. Since

the CHERI error conditions were all specified as raising exceptions, all possibilities for

transiently monotonicity-violating operations can be identified from the source code. In

particular, any instance of the ALU pipeline setting the exception field of the instruction’s

reorder buffer entry could potentially imply a vulnerability. This allowed other vulnerabil-

ities related to the initial proof-of-concept test case exploiting the CSetBounds instruction

to be predicted. This was done in parallel with work by Fuchs et al. to generate attacking

code automatically using TestRIG [49], validating each others’ findings.

The following vulnerabilities existed in the initial implementation, all exploitable using

the same framework as shown in Figure 5.4. More detailed descriptions of the purposes

and intended semantics of the instructions are given in Appendix A.

• CSetBounds changes the bounds of the input capability, raising an exception if the

114 5.3. CHERI IMPLEMENTATION

new bounds are not a subset of the original. Any length can be given, and will be

honoured (and possibly rounded up) in the forwarded value, allowing any larger

addresses to be transiently accessed. Due to compression, the capability pointer, i.e.

the requested new base, can only stray so far below the original base, limiting access

below the capability, although rounding down of the base with large lengths and

repeated CSetBounds instructions can likely be leveraged to access any address.

• CBuildCap performs various checks to ensure a capability is a subset of an authorising

capability before setting its tag, and otherwise raising an exception. By exploiting the

fact that the forwarded value is tagged, even if the input capability is not a subset

of the authorising capability, an attacker can produce any (unsealed) capability

based on any bits they choose to craft. Thus, this turns out to be a very convenient

vulnerability for an attacker.

• CUnseal removes the sealing type of an otherwise immutable, sealed capability

provided the operation is authorised by a suitable unsealing capability. Once again,

any errors are signalled only using an exception, so capabilities can be unsealed in

speculation without a valid authorising capability to allow them to be dereferenced,

despite this normally being forbidden.

• Similarly, CSeal seals a capability, making it immutable after checking the operation

is permitted. Again, an attacker could use Meltdown Capability Forgery to create a

sealed capability illegally in speculation, though the utility of this is questionable.

• Any instruction that modifies a capability value raises an exception if the value was

sealed. This can be bypassed in speculation, although this also has limited utility to

an attacker given we have already seen that they can freely unseal capabilities in

speculation.

• Jumps also signal capability-related errors as exceptions, so may be used to violate

capability guarantees. Jumps can only change capabilities in limited ways: changing

the offset (with atomic tag clear if unrepresentable) and possibly unsealing them

(with associated non-monotonic compartment change). This prevents jumps from

being used to forge capabilities. Execution outside of the architecturally correct

behaviour is fundamental to branch-prediction and speculative execution, so a full

fix of control-flow based attacks is future work, possibly orthogonal to capabilities.

Notably, certain instructions, such as CAndPerm, were not vulnerable due to not being able

to express a non-monotonic operation. CSetAddr and other instructions that change the

pointer of a capability can change the interpretation of the bounds by taking the pointer

outside of the representable region. This cannot lead to an attack as the architecture

specifies to clear the tag in such cases rather than raising an exception. This prevents

monotonicity being violated by the forwarded values, even in speculation.

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 115

In the context of Hypothesis H.2, these attacks violate the capability model, and would

potentially limit CHERI’s applicability to superscalar cores if not resolvable. Fortunately,

the implementation of Toooba can be fixed to be resilient against Meltdown Capability

Forgery.

Fixing the vulnerabilities posed varying levels of difficulty. For the checks that are

performed in the execute stage, the tag of the forwarded value can be gated based on

whether an exception condition is detected. This prevents the resulting capabilities from

being used by the memory pipeline. Minimal additional hardware is incurred: simply an

additional AND gate on the tag of the value produced.

However, this does not fix the most egregious of the vulnerabilities. As discussed in

Section 5.3.1, the bounds check used by CSetBounds and CBuildCap, among others, is

performed during the finish stage of the ALU pipeline. This means that the value would

be forwarded before it is even known whether the operation should trigger an exception.

One option is to delay the forwarding in these cases, essentially making these instructions

multi-cycle. Due to the nature of forwarding and register scoreboarding in Toooba, this

would mean the destination register could not be marked as available in dispatch as

then it may not be ready in time for other pipelines that depend on it. Therefore, the

scoreboard would either have to delay marking the register as ready until the end of

the pipeline, or add the option to signal it as ready from the next stage (register read).

While this may be acceptable for some instructions, CSetBounds is relatively common,

so delaying its result may incur a significant performance penalty. I instead attempt

to break into the compressed capability encoding to accelerate determining whether the

results will be in-bounds so that this can be indicated in the forwarded value. Since these

changes remove the motivation for an architecture that raises exceptions on monotonicity

violations, I implement this as part of switching to tag-clearing error semantics, discussed

in Section 5.4.1.

5.4 Avoiding exceptions

For CHERI to provide security, it must signal errors when monotonicity violations are

detected, for example when an attempt is made to widen the bounds of a capability. This

is discussed in more detail in Section 2.4.1. These can be signalled immediately, via an

exception, or postponed by clearing the integrity tag of the returned capability. Raising

an exception as soon as possible after the error aids debugging and arguably security as

the system spends less time in an unexpected state. Microarchitecturally, it is tempting

to consider that an exception-based approach is simpler since the datapath can näıvely

perform the intended operation while the error conditions are checked independently

and only influence the control path. However, Section 5.3.6 highlights that performing

this optimisation safely is not as easy as it might appear. To avoid bypassing capability

116 5.4. AVOIDING EXCEPTIONS

security, the processor must avoid forwarding the results of exception-triggering operations

to operations that could affect cache state before the exception flushes the pipeline. Tag

clearing may in fact simplify microarchitecture by limiting the set of instructions that can

raise exceptions, especially if certain pipelines are otherwise unable to do so. In addition,

tag-clearing error behaviours provide more opportunity for compiler optimisation, as more

operations can be reordered safely if they have no possibility of causing an exception.

Furthermore, the possibility of instructions raising exceptions, such as when handling

capabilities passed as an argument, can be a large burden for code that cannot tolerate

exceptions, for instance in exception handlers themselves.

CHERI MIPS and the initial CHERI RISC-V specification chose to deliver exceptions

on monotonicity-violating instructions, primarily due to the importance of debugging in

initial CHERI work. However, due to the reasons discussed above, we made the decision to

switch CHERI RISC-V to tag-clearing semantics. This also matches Arm’s design choice

for Morello of avoiding exceptions in favour of tag clearing where possible. Operations that

use capability privilege—memory accesses and jumps—still need to trigger an exception.

However, register-to-register operations can have their exception conditions replaced with

tag clearing. This presents a timing difficulty for hardware: all the checks must be

performed before the value can be forwarded. However, it should be noted that this work

is required in any case to avoid capability forgery in speculation.

I made the required changes to the architecture to avoid unnecessary exceptions, including

the CHERI architecture document and Sail CHERI RISC-V model, as well as performing

the microarchitectural changes for Toooba, Piccolo, and Flute.

Most of the removed CHERI exceptions can be split into the following categories:

Tag assertion exceptions Exceptions not required for security, but where the operation

being performed only makes sense on a tagged capability. For example, the original

CHERI RISC-V specification threw an exception when modifying the permissions

of an untagged capability. These exceptions aid debugging, as a cleared tag can

be found earlier than waiting for the capability to be dereferenced. However, they

can be particularly troublesome for software that needs to avoid exceptions. In this

case, the exception condition can safely be completely removed architecturally. If

the programmer prefers to have the exception for debugging purposes, the compiler

can emit a tag assertion before any instance of the instructions, preserving the old

behaviour.

Sealed modification exceptions These are raised when an attempt is made to modify a

sealed capability. The sealing mechanism creates immutable capabilities that can be

used for limited non-monotonic transitions between security compartments, or Sentry

capabilities that can only be jumped to unmodified, impeding control-flow based

attacks. Attempting to modify a sealed capability formerly produced an exception,

but with tag-clearing semantics the resulting capability is instead untagged. This is

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 117

a relatively easy change to make in hardware: the tag bit is gated based on the type

of the input capabilities in parallel with the operations.

Bounds modification exceptions Operations that change bounds must be monotonic

to prevent privilege escalation. Due to the compressed capability format, these are

some of the trickier cases to detect in hardware, lengthening critical paths. As such,

I add logic to compute efficiently whether the result of a CSetBounds instruction

will be in-bounds in parallel with carrying out the operation. Section 5.4.1 goes into

more detail on this change.

Bounds checking instructions Other than for restricting bounds, several capability

modification instructions must perform bounds checks. Sealing and unsealing oper-

ations must ensure the authorising type capability is in-bounds. These checks are

relatively cheap as determining whether a capability is within its own bounds can

be determined simply (without any expensive shifts) from the mantissa bits of the

base and top alongside the corresponding address bits that are already extracted

in the CapReg format. CBuildCap is a trickier case as it must perform a full subset

check with minimal constraints on the input. This instruction is designed to be used

in a very limited set of circumstances, so it is possible it can tolerate an additional

cycle of latency.

5.4.1 Fast bounds check

One of the difficulties with moving from exceptions to tag-clearing is that the legality of

CSetBounds must be determined before the result is forwarded. This would need to be

solved even without any architectural changes to avoid Meltdown Capability Forgery [48].

Achieving high frequencies requires either a stall before the value is forwarded as the new

tag is determined, or faster logic to allow the new tag to be calculated in a single cycle.

While the general-purpose bounds check cannot be performed dependent on the result

of the ALU, the particular constraints of CSetBounds allow specific optimisations. In

particular, the new base is determined by the capability cursor of the input capability.

The CapReg partially-decoded format present in registers already contains a copy of the

address bits shifted by the exponent. This means a mantissa-width comparison is sufficient

to determine whether the requested base is above the existing base and thus legal. The

new top is trickier, as it is specified as the new length of the intended capability. By

shifting the requested length down by the capability’s initial exponent, any bits above

the mantissa width immediately disqualify the length from being legal. The base bits

plus this shifted increment can be compared against the top bits to determine whether

the requested top is in-bounds, with the carry of the lower bits of the increment plus the

address being used in case of equality.

118 5.5. SOFTWARE AND VERIFICATION

This gives an algorithm to determine the monotonicity of the CSetBounds that may

allow single-cycle implementation. The näıve approach—computing the full bounds then

performing the comparisons—requires a full 64-bit shift followed by a 64-bit subtract.

The new approach also requires a shift, but this is followed only with mantissa-width

arithmetic (14 bits rather than 64). This should significantly reduce the critical path

length. Due to Toooba’s modest frequency (see Section 6.3), both approaches pass timing

when instantiated in its ALU. Evaluating the effect of this algorithm on the critical path

length concretely would therefore require an alternative synthesis platform. Performing

this evaluation is future work. However, I have checked the correctness of the algorithm

by testing equivalence with the näıve approach. This was done using BlueCheck [89], and

by exhaustive search on a cut-down 32-bit capability format.

5.5 Software and verification

As with the microcontroller implementations, TestRIG was used to check correctness of

instructions as they were added, significantly accelerating implementation and verification.

The generality of the TestRIG framework was very useful: by augmenting Toooba with

the RVFI-DII interface, all of the templates written to verify the CHERI instructions

for Piccolo and Flute could be reused for Toooba. The RISC-V test suite [21] was also

run continuously as the processor was developed, although this does not test the new

capability operations.

As well as running Cheri-FreeRTOS like the microcontrollers, Toooba runs the application-

class CheriBSD OS. This allows the FPGA platforms to be used for OS evaluation, and

run as (somewhat slow) interactive machines, including support for SSH and common

FreeBSD utilities, as well as allowing cheribsdtest to be run. This also allows the SPEC

benchmarks to be run, enabling the evaluation in Chapter 6.

As the baseline processor supported instantiation with multiple cores, Toooba presented

the first opportunity for multicore CHERI RISC-V: this is fully supported and CHERI

Toooba can boot CheriBSD with multiple cores. One difficulty with this was augmenting

the Bluespec-designed debug module to support multiple Hardware Threads (Harts).

5.6 Future work

This chapter has highlighted several tradeoffs between area and performance, summarised

in Figure 5.3. Future work would evaluate these. This would involve performing the area-

saving optimisations on FPGA to determine the microarchitectural complexity and impact

on frequency. Separate work could analyse capability software patterns to determine the

performance penalties from different points in the space.

CHAPTER 5. CHERI FOR APPLICATION-CLASS PROCESSORS 119

The changes to the architecture proposed in Section 5.4 imply microarchitectural changes

that may cause timing difficulties. Attempts to mitigate these, for example the fast

bounds check for CSetBounds in Section 5.4.1, would require a higher-frequency FPGA

implementation or ASIC synthesis tools to validate fully.

The protections against speculative execution attacks described in Section 5.3.6 only protect

against the Meltdown Capability Forgery attack described by Fuchs [48]. Further work

would investigate robustness against speculative attacks more broadly, such as Spectre [71]

attacks.

As with the microcontroller implementations, CHERI Toooba currently lacks support for

the CClearRegs instructions for accelerating compartmentalisation.

5.7 Summary

This chapter has confirmed the qualitative component of Hypothesis H.2 by showing

that there are no fundamental obstacles to implementing CHERI for application-class

processors. An implementation of CHERI is presented that is sufficient to boot capability

operating systems. Tradeoff spaces in implementation of key structures are identified,

highlighting the choice between area and performance overheads for the pipelines, physical

register file, load-store queue, and reorder buffer. While näıve implementations may be

vulnerable to Meltdown-like speculative execution attacks, it is possible to produce an

implementation robust against such attacks. The architecture itself can be changed to

tag-clearing rather than exception semantics, encouraging such implementations while

deriving further compiler and software benefits.

120 5.7. SUMMARY

Chapter 6

CHERI application-class processor

evaluation

The Toooba CHERI implementation is evaluated in a similar manner to the microcontrollers

in Chapter 4. FPGA tools are used to estimate timing and area, and the SPEC benchmarks

are used to measure impact on IPC and performance. The microcontroller benchmarks

MiBench and CoreMark are also run to enable comparison with Piccolo and Flute.

The evaluation performed is again of FPGA frequency, area, power, performance and

security on a VCU-118 FPGA within the BESSPIN SoC. Once again, the software and

compiler work relied on is not a contribution of this thesis. The configuration of the

processor used throughout is shown in Figure 6.1.

The evaluation enables answers to the quantitative component of Hypothesis H.2. In

addition, I investigate whether the trends for how the overheads scale with core size

indicated by Chapter 4 continue to the significantly larger microarchitecture. This

addresses Hypothesis H.3 more fully.

6.1 Baseline core information

Figure 6.2 shows performance metrics for the Toooba baseline core. Once again, the cache

latencies appear realistic, while the DRAM latency is dramatically reduced compared to

an ASIC environment.

The CoreMarks/MHz score is competitive, significantly exceeding Rocket (2.94) and CVA6

(2.08) but behind BOOM (6.25) according to Dörflinger et al. [40]. As with microcontrollers,

care should be taken drawing direct comparisons as results may depend on evaluation

environment and core parameter choices.

121

122 6.2. AREA

Toooba

Frequency 25 MHz
Core count Dual-core

xlen 64
Supported extensions A, C, D, F, M

Supported privilege modes M, S, U
L1 TLB 32 entries fully associative
L2 TLB 1024 entries four-way associative

Pipeline stages 11
Superscalar width Two-way

Reorder buffer 64 entries
Physical registers 128

Max. outstanding branches 12
Load/Store Queue 24 load entries, 14 store entries

RAS 16 entries
BTB 1024 entries two-way associative

Data L1 cache 32 KiB eight-way associative
Instruction L1 cache 32 KiB eight-way associative

L2 cache 1 MiB 16-way associative
Tag cache (CHERI only) 128 KiB four-way associative

Figure 6.1: Benchmarking configuration for the Toooba processor.

Toooba

CoreMarks/MHz 4.6
L1 hit load-to-use cycles 5

L1 miss penalty cycles (L2 hit) 22
DRAM latency cycles 16

Figure 6.2: Metrics for the baseline Toooba core in the evaluation SoC. Cache
latencies were determined in simulation. DRAM latency was determined based on
performance counters in the adpcm decode MiBench benchmark. TLB accesses are
performed in parallel on hit, causing no additional delay.

6.2 Area

This section investigates the area impact of the initial augmentation of Toooba with capa-

bility support. Little effort has yet been made to optimise the area overhead. In addition,

as with the Piccolo and Flute processors, the CHERI changes have been implemented so

as to increase the size of structures liberally. In other words, we choose increased area

over the possibility of new performance bottlenecks. Further investigation of this tradeoff

space is future work enabled by an initial implementation and evaluation.

The LUT and FF usage of various structures within Toooba is shown in Figure 6.3. See

Section 4.2 for discussion of these two metrics. For Toooba, we use the “Congestion -

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 123

Figure 6.3: Area overhead of CHERI for a dual-core Toooba processor. The core, tag
controller, and L2 cache are contained within the processor. All other components
are in turn contained within the core. Since the two cores are identical, only one is
shown, including for its constituent components.

124 6.2. AREA

SpreadLogic High” optimisation strategy to avoid synthesis failures due to congestion.

This also obviates the need for “keep hierarchy” directives, which otherwise do not suit

Toooba due to its different module structure.

Processor Excluding hardware for interconnect with DMA and other peripherals, CHERI

has a 45% LUT overhead, and a 24% FF overhead. These are very similar to the

overheads found in Flute, although the FF overhead is significantly lower. The LUT

overhead significantly overestimates the die-area overhead that would be expected

from a silicon synthesis as the caches, which are not significantly enlarged by CHERI,

are implemented as BRAMs on FPGA, so do not show in the baseline or CHERI

variants.

L2 cache The L2 cache is not significantly altered for CHERI, so does not see much area

overhead. Only tag support needs to be added.

Tag controller While the tag controller has a very similar size here as for the

microcontrollers—4,091 LUTs—it is dwarfed by the other components of the

processor, contributing only 2% of the CHERI LUT overhead. This is in stark

contrast to the microcontrollers, where it was a major contributor to the area

overhead.

Core Zooming in to a single core, and excluding components shared between the cores—

most notably the PLIC and debug module—gives a core area overhead of 47% LUTs

and 26% FFs.

ALU pipelines The primary source of LUT overhead is the ALU pipelines. Assuming

symmetry between them, each grows from 10,561 to 31,870 LUTs: a 202% increase.

This alone constitutes 38% of the overall CHERI LUT overhead. The primary

causes of overhead here are the capability manipulations themselves, including the

capability decompression, as well as the bounds checking and other checks. The

wider path to and from the register file (including forwarding paths) is also a likely

contributor. This observation further motivates future work to examine whether a

single capability-enabled pipeline is sufficient.

FPU pipeline The FPU pipeline is not extended by CHERI so sees no real LUT or FF

growth, helping to reduce overall fractional overhead, especially since this pipeline is

a significant fraction of the baseline area.

Memory pipeline The memory pipeline sees a LUT overhead of 72%: smaller than

the ALU pipelines, but still significant. This includes the Load/Store Queue and

L1 data cache. The area increase is likely attributable to the liberal widening of

these structures, as well as the widening of the incoming data from the register file

and forwarding paths. The bounds check and additional atomic operations also

contribute.

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 125

Front end The front end of the processor (which includes the L1 instruction cache and

branch prediction) grows by 49%. This is so high because of the multiple copies of

PC, all of which are extended to include capability metadata. In addition, the front

end also grows checks to ensure that instruction accesses are within bounds.

Register file Unlike the microcontrollers, Toooba’s physical register file synthesises to

FFs. Note that the number of FFs exactly corresponds to what would be expected

based on the baseline and CHERI register types. Each has 128 registers: for the

baseline these are 64-bit integers, giving 8,192 bits, and for CHERI these are 150-

bit (plus one bit tag) CapReg instances, giving 19,328 bits in total. This 136%

increase could be mitigated by limiting the number of physical registers that can

hold capabilities, as discussed in Chapter 5.

Reorder buffer The reorder buffer grows significantly: 66% LUTs and 28% FFs. This

can be explained by the additional fields in each entry to track capability information,

most notably the PCC metadata.

This analysis of the area overheads allows insight into the potential savings of the optimi-

sations in Figure 5.3. Only extending a single ALU pipeline with capability logic could be

expected to save 21,309 LUTs and 2,217 FFs per core. Limiting the number of capability

physical registers could save an upper bound of 14,496 FFs per core. Avoiding widening

the Load/Store Queue entries could save an upper bound of 30,400 LUTs and 4,973 FFs

per core. This may be a very loose upper bound, as it assumes all of the memory pipeline

overhead comes from the Load/Store Queue. Finally, avoiding extending the PCC and

other fields in the reorder buffer could save up to 10,990 LUTs and 5,101 FFs per core.

This suggests prioritisation for applying the optimisations, depending on the tradeoff

between LUT and FF overhead and the possible performance penalties. The lower bound

of the overall processor overheads after applying all of these optimisations is approximately

a 20% LUT and 4% FF overhead. However, it should be stressed that these are lower

bounds, assuming very aggressive savings.

The fractional area overheads are smaller than Piccolo, but similar to Flute, at least

in LUTs. This contradicts Hypothesis H.3: the much larger Toooba core sees a similar

fractional logic overhead to the smaller Flute. The reason for this is that the structures

added to support out-of-order execution and superscalarity all need augmentation with

metadata, while little is added that is unchanged by CHERI. However, the area-saving

optimisations discussed above could provide quick wins to bring the overhead down for

Toooba, without changes to the architecture, while Flute has fewer such opportunities.

126 6.3. FREQUENCY

Fmax (MHz) Design target Baseline CHERI

Toooba 25.0 43.8 38.7

Figure 6.4: Maximum frequency of the Toooba processor synthesised for the VCU-118.
The target frequency is that provided by Bluespec Inc. for the baseline processor:
no optimisation was attempted beyond this. For timing only, Toooba is synthesised
single-core to avoid congestion errors from Vivado and keep synthesis times reasonable.

6.3 Frequency

The baseline maximum frequency is much lower than that of the microcontrollers. The

design is not optimised for FPGA: for example, the register file synthesises as FFs rather

than BRAMs. Zhang et al. report that RiscyOO achieves 40 MHz on an AWS F1 FPGA,

but up to 1.1 GHz on a 32 nm ASIC flow [145]. This limits the extent to which the

frequency impact of the CHERI changes can be evaluated.

As discussed in Section 4.3, most of the CHERI changes apply in isolation to select parts

of the processor, where they can operate in parallel, such as the bounds check. This means

they are unlikely to cause timing issues in Toooba, especially as similar operations passed

timing within Flute at 100 MHz. However, increases in congestion due to area overheads

can increase critical path lengths.

Figure 6.4 shows the Fmax for Toooba on the VCU-118, again attempting timing closure at

the unachievable 150 MHz. The CHERI processor has a slightly lengthened critical path.

However, since it comfortably met the target timing, no optimisation work was performed,

and there is no reason to believe that the frequency worsening is fundamental.

The critical path in both the baseline and CHERI cases takes the loaded value from the

data cache, passes it through the Load/Store Queue, and seems to interact with register

rename and a write to the register file, possibly via a control dependency. Once again,

substantial further work would be required to optimise the baseline processor to the point

that the CHERI impact for high-frequency cores could be investigated more thoroughly,

but it can be seen that CHERI has not significantly altered the critical path as it stands.

6.4 Performance

To measure application-class performance, the SPEC benchmarks are run atop CheriBSD.

See Appendix B for a brief description of each benchmark. Although the synthesised

design is dual-core, the benchmarks are single-threaded. They are pinned to a single

core to minimise benchmarking noise. CheriBSD running on the other core introduces

some variability, especially in the shared L2 cache, so this is commented on in the results.

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 127

Benchmarks are run in the train configuration, compiled with the (capability-augmented)

LLVM compiler with -O3.

6.4.1 Legacy performance

We first examine the performance of the modified hardware without using the CHERI

protections in software. As in the microcontroller case, this should be cycle-identical

within the core, with only memory subsystem changes affecting performance. Only the

tag controller is fundamental, since it interposes on memory accesses, adding latency in

the event of a miss. Once again, the difference is small, and is in fact negative in some

cases. This may be caused by changes in AXI interconnect latency characteristics. The

average difference is less than 1%. This confirms that capability hardware does not incur

performance overhead unless the security features are used.

6.4.2 Capability performance

We next compare the performance of the benchmarks on the same CHERI-enabled hardware

with and without CHERI enabled in the benchmark software. Note that the overheads

of pure capability software are dependent on compiler optimizations, such as deciding

when bounds subsetting can be elided based on static analysis. The SPEC pure capability

benchmarks are compiled without capability-aware compressed instructions, so some

instruction cache overhead is expected. The results also depend on the effectiveness of the

microarchitecture. Overheads are expected from increased instruction cache pressure from

the extra capability instructions, as well as the execution of these instructions themselves.

Data cache pressure from the storing of metadata alongside pointers will also contribute to

cycle overheads. As the CHERI Toooba implementation liberally extended all structures

with metadata, most instructions within the CHERI core should perform the same as the

baseline, with the added capability instructions completing and forwarding their results in

a single cycle.

The results are shown in Figure 6.5: mean instruction and cycle overheads match at 9%. I

now investigate the overheads, with analysis of potential causes based on the output of

performance counters. Note that, since Toooba is out-of-order and superscalar, accounting

of cycles by performance counters is only approximate. For example, while the number of

cycles spent by caches waiting for load misses is recorded, the core can proceed with other

non-dependent instructions while the corresponding load resolves. Appendix B describes

the benchmarks, including whether they are expected to be pointer-heavy, which is a

significant factor in determining the capability overhead.

The bzip2, h264ref, astar, and hmmer benchmarks all see the smallest instruction

overheads and even lower cycle overheads. These were all expected to be relatively pointer-

light benchmarks. This is confirmed by the results: between them, on average only 17%

128 6.4. PERFORMANCE

Figure 6.5: SPEC overhead of CHERI for the Toooba core. Arithmetic mean
instruction overhead is 9% and cycle overhead is 9%. All benchmarks were run three
times, excluding one anomalous run of xalancbmk. Error bars show one standard
deviation (at most 0.24%).

of their loaded values are tagged capabilities, explaining their low overheads. The added

instructions are likely to be mostly capability manipulations, which Toooba is able to

execute quickly due to its superscalarity, even hiding this time behind memory latency.

This effect is demonstrated by dividing the absolute instruction overhead by the absolute

cycle overhead. Across these four benchmarks, this gives an average IPC of 3.1 for the

added capability operations. Since Toooba is configured to be two-way superscalar, the

maximum IPC is 2, so this proves that capability instruction overhead is being masked

behind other latency. This explains the reduction in cycle overhead compared to instruction

overhead for these benchmarks.

sjeng and gobmk both see relatively high instruction overheads and matching cycle

overheads. These benchmarks are similar to each other: both are game engines, so explore

game trees, meaning they are relatively pointer-dense. In both cases, approximately 30%

of their loaded values are tagged capabilities. A large fraction of the overhead is caused by

instruction cache misses: between them there is an average 70% increase in misses. The

time spent by the instruction cache waiting to resolve misses accounts for 28% of the cycle

overhead in both cases. This should be improved when the benchmarks are compiled with

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 129

support for compressed CHERI instructions. The data caches see less overhead: a 50%

miss increase in both cases, which only accounts for 9% of the extra cycles for sjeng and

16% for gobmk.

omnetpp and xalancbmk see much higher cycle overheads than their instruction overheads.

These are the most pointer-heavy benchmarks: in both cases approximately 60% of their

loads are of tagged capabilities. Both see an approximate 100% increase in data cache

misses due to extra bounds metadata: for omnetpp this corresponds to 26% of the gained

cycles and 70% for xalancbmk. The instruction cache also sees more pressure, with 138%

more misses for omnetpp and 64% more misses for xalancbmk. This corresponds to 48%

and 32% of the added cycles respectively1. This should reduce when the benchmarks are

compiled with CHERI-aware compressed instructions.

libquantum sees by far the highest instruction overhead, despite being very pointer-light:

less than 2% of its loaded values are tagged capabilities. The cycle overhead is similar,

and all other microarchitectural overheads are tiny (while instruction cache misses grow by

61%, less than 0.1% of the cycles are spent waiting for instruction cache loads). This points

towards a code generation issue in a tight loop that is not fundamental to capabilities,

similar to the rc4 embedded benchmark (see Figure 4.11). Given the purpose of the

libquantum code, it is likely that the tight loop is the inner loop of matrix multiplication.

However, since the SPEC benchmarks are significantly larger in static instructions than

the MiBench benchmarks, analysing code generation difficulties is trickier, and beyond

the scope of this thesis.

In summary, performance overheads mostly vary as expected with pointer-density. With

more pointers, data cache pressure increases due to metadata cache pollution. Instruction

cache pressure also increases, though this may in part be caused by a lack of compressed

capability instructions. Within the pipeline, there appears to be little unexplained cycle

overhead that would indicate a microarchitectural issue.

Comparing to the microcontrollers’ performance overheads, the instruction and cycle

overheads are smaller for Toooba, supporting Hypothesis H.3. For pointer-light benchmarks,

Toooba is able to have significantly lower cycle overheads than instruction overheads,

indicating that the out-of-order engine is able to hide the capability operations behind

memory latency. However, application-class workloads with high pointer-densities are able

to pressure the data caches in a way that was not seen for the microcontroller benchmarks.

1Note the percentages for xalancbmk sum to more than 100% due to out-of-order execution allowing
the processor to continue on a cache miss.

130 6.4. PERFORMANCE

Figure 6.6: CoreMark run statistics for the Toooba baseline core, the CHERI core
running the baseline software (no protection), and the CHERI core running pure
capability code, including relevant performance counters. The working set fits in
cache, so negligible cache misses are observed.

6.4.3 Microcontroller benchmarks

To enable direct comparison with the Piccolo and Flute microcontrollers, the same

CoreMark and MiBench benchmarks are run atop Cheri-FreeRTOS on Toooba. The

overheads of these benchmarks on the microcontrollers was described in Section 4.4.

Figure 6.6 shows the results of running CoreMark on the Toooba core. Despite a 5%

instruction overhead, Toooba sees a -8% cycle overhead: a decrease. This is a result of the

CHERI code generation’s preference for branches over indirect jumps, leading to much

more successful branch prediction on Toooba. This benefit is due to a code generation

choice, and is not fundamental to capabilities.

The MiBench overheads are shown in Figure 6.7. The instruction overhead is the same

as for Flute (since the binaries are identical) at 16%, while the cycle overheads are lower

at 10%. Most of the benchmarks tell the same story of cycle overheads somewhat lower

than their instruction overheads as Toooba hides the added instructions behind memory

accesses. Since these benchmarks have small memory footprints, the caching effects seen

for SPEC are not repeated here. qsort sees a more significant reduction in cycle overhead:

since the large instruction overhead is caused by the copying granularity issues discussed

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 131

Figure 6.7: MiBench overhead of CHERI for the Toooba core. Arithmetic mean
instruction overhead is 16% and cycle overhead is 10%.

in Section 4.4, the smaller accesses can be forwarded within the Load/Store Queue. rc4

does not see a reduction in its cycle overhead compared to its instruction overhead, despite

the added instructions all being simple arithmetic (see Figure 4.11). This is because the

baseline achieves almost maximum performance—an IPC of 1.84—so there is no latency

in which to hide the added instructions. While the lower Toooba frequency would be

expected to reduce its cycle overhead compared to Flute due to reduced DRAM latency,

this effect is not relevant since the benchmark data all comfortably fits in the caches so L2

misses are negligible.

These results match the predictions of Hypothesis H.3: the larger processor sees lower

performance overheads.

132 6.5. POWER

Power usage Baseline (mW) CHERI (mW) Overhead

Toooba (logic only) 252 406 61%
Toooba (overall) 808 1,289 63%

Figure 6.8: Power usage of the Toooba processor synthesised for the VCU-118, as
reported by Vivado.

6.5 Power

As with the microcontroller evaluation, I report the power estimates generated by Vivado

as well as DRAM traffic overheads, in this case for SPEC.

Figure 6.8 shows the power report for Toooba (dual-core) generated by Vivado. Toooba’s

overall CHERI power overhead is 63%, significantly exceeding its area overhead. As noted

in Section 4.5, these power numbers can only be approximate, as dynamic usage patterns

of the different logic elements are not known to the synthesis tools.

Figure 6.9 shows the L2 cache miss overhead due to CHERI on the Toooba core: an

average of 21%. As can be seen in the graph, the number of cache misses, and so the

significance of this overhead, varies between benchmarks. The L2 cache miss overhead

estimates the DRAM traffic overhead, except that tag controller accesses are excluded.

The tag cache is much larger for Toooba (128 KiB) than the microcontrollers (4 KiB).

This avoids anomalies due to having so few tag cache lines. Therefore, the DRAM traffic

overhead due to tag lookups can be expected to be significantly smaller. As a very loose

upper bound, a miss in the tag cache on every lookup would imply a doubling of DRAM

traffic overheads compared to L2 cache miss overheads.

The increase in Vivado power overhead for Toooba compared to Flute defies the trend

proposed by Hypothesis H.3. This is at least in part due to the area-heavy design choices

made, but the reason that the power overhead exceeds the area overhead by so much is

unclear. The power overhead incurred by added DRAM traffic is smaller for Toooba than

the microcontrollers, however. This is true even taking a conservative estimate for the

traffic generated by tag lookups. DRAM traffic overheads scale well because the larger

and more sophisticated caches can absorb much of the extra capability metadata traffic.

For example, the write-through nature of the microcontroller caches led to significant

additional DRAM traffic overhead from capability writes.

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 133

Figure 6.9: Toooba core L2 cache misses per thousand cycles for SPEC with and
without CHERI. CHERI incurs an arithmetic mean overhead of 21% cache misses
per thousand cycles. Note that the misses are normalised per baseline cycle, which
avoids an apparent reduction in misses for CHERI due to cycle overhead. This
estimates DRAM traffic overhead, but excludes the traffic from the tag controller.
All benchmarks were run three times, excluding one anomalous run of xalancbmk.
Error bars show one standard deviation.

6.6 Security

Toooba was evaluated using the same methodology as Piccolo and Flute, although was

not part of the Fett bug-bounty program.

Due to implementing the same architecture as Flute, the Toooba core performed the same

against the CWE test suite [30], demonstrating defence against spatial safety vulnerabilities

and numeric errors that impact pointer arithmetic. It also does not share Piccolo’s bounds

overflow failures due to rounding, as the 128-bit capability format allows high bounds

precision.

As discussed in Section 5.3.6, evaluation by others of the processor for speculative

side-channel security revealed the serious Meltdown Capability Forgery vulnerably [48].

Prompted by this, an audit of the microarchitecture (described in Section 5.3.6) charac-

terised all possible instances of this attack, confirming that they are mitigated by switching

to a tag-clearing architecture.

134 6.7. FUTURE WORK

6.7 Future work

Two further aspects of evaluation could be measured as future work: SPEC overheads

with capability-aware compressed instructions, and additional DRAM accesses from the

tag controller. However, these seem unlikely to change the overall conclusions drawn.

In addition, the Toooba processor evaluated does not include the change to tag-clearing

discussed in Section 5.4. This change cannot affect performance, as it does not affect any

operations unless there is a security violation, which does not occur for the benchmarks

used. The area overhead is expected to be small, or even negative as some checks are

removed. Confirming this is future work.

As with the microcontrollers, all evaluation was carried out on FPGA. Synthesis using

ASIC tools may give different insights into area and timing overheads. This would also

allow the timing impact to be evaluated meaningfully at higher frequencies. The difference

in relative DRAM frequency, especially given Toooba’s low FPGA frequency, may also

make a significant performance difference. Another approach to mitigate this effect might

be to delay memory accesses on FPGA artificially.

6.8 Summary

This chapter has given answers for the quantitative aspects of Hypothesis H.2, confirming

that CHERI is plausible for application-class processors. We have seen that the CHERI

extensions help to provide spatial safety for Toooba. The LUT area overhead was 45%.

Again, the capability manipulation logic is a significant contributor to the overhead,

but almost all components (apart from the FPU) see significant overhead to support

capabilities. This confirms the potential for the optimisations suggested in Figure 5.3 to

produce significant area savings. The critical path of the design is not significantly affected,

though no timing optimisation was carried out. Performance overheads are negligible for

unmodified code, and 9% (average SPEC cycles) for pure capability code. Power overheads

are mixed, with Vivado reporting a 63% overall power overhead, but with average L2

cache miss overhead across SPEC at 21%.

Hypothesis H.3 holds in that performance, DRAM traffic overhead, and timing (which

required no effort to optimise) have scaled well compared to the microcontrollers. The

performance improvement is due to out-of-order execution allowing new operations to

run in parallel with memory accesses. However, area does not show such a strong trend

and logic power shows the reverse trend due to the widespread extension of processor

components with capability metadata. It is expected that the trend will be restored after

applying further optimisations to the CHERI Toooba implementation.

As noted in this chapter and Chapter 5, CHERI poses a tradeoff between performance,

power, and area in its implementation. However, the underlying core already offers many

CHAPTER 6. CHERI APPLICATION-CLASS PROCESSOR EVALUATION 135

parameters that allow these metrics to be tailored, for example superscalar width and

reorder buffer size. Therefore, it is not possible to offer a definitive evaluation without being

aware of the particular constraints of an application. In order to keep application-class

processors fed with instructions and data, a large fraction of their silicon die area is used

for caches. This may make a relatively high CHERI area overhead less of a problem in

practice, as the core occupies a small area of the chip and the caches can be modestly

scaled down without significant performance impact.

136 6.8. SUMMARY

Chapter 7

Accelerating temporal safety

This chapter discusses heap-based temporal safety atop CHERI, including developments

to the architecture-neutral model for revocation and microarchitectural work to adapt and

accelerate this for RISC-V, addressing Hypothesis H.4. While the discussion applies to

all scales of RISC-V core, implementation is only carried out for Toooba, which has the

most sophisticated memory subsystem so highlights the most obstacles. Temporal safety

on CHERI is still an area of active research, with the revocation algorithms still being

developed, so this chapter surveys a wide range of features, only some of which have been

implemented.

7.1 High-level approach

Temporal safety can refer to a wide variety of properties. For example, race conditions

allow behaviour to deviate from what was intended based on different interleavings of

concurrently executing threads [92]. The difference in behaviour may be exploitable. For

instance, time-of-check to time-of-use vulnerabilities occur when a property is checked

and the result is used to authorise some operation non-atomically, allowing the property

to be changed before the operation is performed [19]. It is possible to prevent race

conditions in certain contexts: for example, Rust prevents data races with its “ownership”

enforcement [83]. This problem is out-of-scope for this chapter. As defined in Section 2.3,

temporal safety in this chapter only refers to enforcement that objects be used only within

their lifetime. However, it should be noted that CHERI’s atomic enforcement of bounds

checks in hardware prevents time-of-check to time-of-use vulnerabilities where the check is

that a pointer is in-bounds, and the use is dereferencing it.

Within this definition of temporal safety, we further restrict to discussion of temporal

safety on the heap. Other early work has shown promise of capabilities for enforcing

temporal safety on the stack [52]. Temporal safety violations on the heap take the form of

use-after-free violations. To avoid vulnerabilities due to heap use-after-free errors, dangling

137

138 7.1. HIGH-LEVEL APPROACH

pointers, i.e. pointers to freed memory, must be invalidated before that memory is reused.

This prevents confusion between the old and new object. Double frees occur when the same

pointer is passed to free twice [31]. These can be considered a subset of use-after-free

violations, requiring only that the allocator checks that the pointer is still valid on free.

Many attempts have been made to mitigate temporal safety issues in this way: these

are discussed in Section 2.3.1. Some approaches, such as Boehm GC, are conservative,

sweeping memory to ensure there are no pointers that alias with allocations before freeing

them. This means they suffer from both false positives, as memory cannot be freed if an

integer holds a value that aliases with its address, and false negatives, as pointers to freed

memory may be hidden and recovered, or even synthesised from nowhere. Approaches

that avoid being conservative, such as DangNull, track pointers by instrumenting loads

and stores of pointer types. This contributes to their large slowdowns by making loads

and stores of pointers incur significant additional memory pressure. They can also suffer

from false negatives in the presence of pointer arithmetic. Type-agnostic operations, most

notably memcpy, also cause problems that must be addressed in various ways. Capabilities

offer a way of avoiding the issues with these two approaches. Pointers are tracked precisely

by the capability integrity tag, avoiding the need for conservatism. In addition, since the

memory hierarchy already keeps track of what can be a pointer, memory instructions do

not require further instrumentation from the compiler, avoiding this performance penalty.

7.1.1 Sweeping revocation

Compared to its direct spatial safety benefits, CHERI makes revocation of granted

authority difficult since capabilities can be liberally copied and are not indirected. Present

revocation techniques over CHERI therefore require all of memory to be scanned to find

and invalidate all copies of the capability to be revoked. This overhead can be hidden,

such as by amortising over a large number of collected frees [138], or sweeping on a parallel

hardware core [132]. Parallel sweeping requires an invariant to be maintained: running

applications must not be able to bypass the sweep by copying data from unswept pages to

swept pages. This can be ensured either by prohibiting stores to unswept pages or loads

from swept pages. This is discussed more in Section 7.2.1.

Prior to my project, proposals for CHERI revocation revolved around “filter registers”:

a small number of registers describing contiguous ranges currently being revoked. This

was to allow the sweeping invariant to be easily maintained as memory accesses into

swept regions could be quickly checked against the filter register to determine if they

copied revoked allocations. The number of filter registers had to be kept small due to the

associative checks—analogous to a PMP—that had to be performed on every memory

access. This restricted revocation sweeps to revoking access to very small regions at a

time, despite sweeping all of memory each time. I proposed instead to maintain a shadow

bitmap: a region of memory containing bits corresponding to all of userspace, where each

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 139

bit describes whether a 16-byte allocation granule at the corresponding address is within

a revoked allocation. This allowed each sweep of memory to process an unlimited number

of revoked capabilities. The results of this approach, including a software implementation

of the revoker (and additional optimisations) by other members of the CHERI team,

are described in our CHERIVoke paper [138]. The resulting algorithm broadly works as

follows:

• Mark in the shadow bitmap when memory is freed.

• Quarantine the memory in the allocator, preventing it from being reused until all

capabilities to it have been revoked.

• Wait until a large amount of memory has been freed.

• Perform stop-the-world sweeps, searching over the entire address space for capabilities

into freed memory. Any matching capabilities have their tag cleared, revoking them.

The approach is divided between the allocator, running in userspace, and the revocation

service provided as a syscall into the kernel. This syscall takes the revocation bitmap

as an argument. The revocation loop itself then runs as a concurrent kernel process.

The allocator is responsible for quarantining freed allocations until the kernel reports

the relevant revocation sweep is complete. This means that the application gains use-

after-reallocation guarantees simply by using a CHERI-enabled allocator. The allocator

is already trusted by the application for this kind of correctness, such as to ensure that

allocations do not alias spatially. Therefore, the trust relationship between the application

and the allocator is not significantly changed.

The results of this approach are discussed in Section 7.4.

7.2 Optimising sweeping revocation

Given the changes to the sweeping algorithm described above, the core of the intra-page

revocation loop is as shown in Figure 7.1. This loop is critical for optimisation since it

must be run for a large fraction of pages in the system on revocation sweeps. This section

discusses optimisations that can be made to improve the performance of the sweep, and

how they have been or could be applied to the Toooba core. Optimisations for finding

tags, discussed in Section 7.3, can also accelerate sweeping.

140 7.2. OPTIMISING SWEEPING REVOCATION

for (cap_t *cline = start; cline < end; cline += STRIDE) {

int tags = CLoadTags(cline);

size_t cline_offset = 0;

while (tags > 0) {

if (tags & 1) {

cap_t cap = cline[cline_offset];

if (CGetTag(cap) && !(CGetPerms(cap) & VM_PROT_PERM)) {

if (getShadowMap(cap)) {

cap = CClearTag(cap);

cline[cline_offset] = cap;

}

}

}

tags >>= 1; ++ cline_offset;

}

}

Figure 7.1: C-like pseudocode implementation of the core CHERI revocation loop.
Reproduced based on the algorithm in our CHERIVoke paper [138]. CLoadTags,
CGetTag, CGetPerms, and CClearTag each use intrinsics to execute the corresponding
CHERI instruction. cap t is a type to hold a capability: in real code, this can be a
void* pointer. STRIDE is detected dynamically by the OS on startup, and indicates
the number of tags returned by CLoadTags. VM PROT PERM is a mask extracting
the capability permission indicating the capability belongs to the allocator itself,
so should not be revoked. getShadowMap performs a simple transformation of the
base of the input capability to find whether it points to revoked memory. To enable
concurrent sweeping, care is required to avoid race conditions with other threads.

7.2.1 Virtual memory

Virtual memory can be used to track which pages have been swept during concurrent

revocation and can allow entire pages to be omitted from sweeps if they are known not to

contain any capabilities that need revoking.

In CHERIVoke, we described a store-side barrier, where hardware prevents processes from

storing revoked pointers to pages that have already been swept. The recent CheriBSD

revocation kernel has moved to instead maintaining a load-side barrier, preventing processes

from ever loading in a revoked capability from an unswept page. The load-side barrier

requires altered virtual memory support to raise an exception on capability-width loads

from such pages, so that the revoker can check the loaded capability and sweep the page in

case it is accessed again. This prevents the application from repeatedly taking exceptions

due to accessing the same page. I have implemented these virtual memory changes in

Toooba by augmenting the TLB to raise exceptions when capability-width loads are

attempted from a page with this bit set. A further optimisation would only raise the

exception when the loaded value is tagged. However, this would prevent the instruction

from retiring until the value is returned from memory, potentially harming performance.

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 141

Evaluation is required to determine whether this is worthwhile.

Furthermore, we used capability-dirty tracking to exclude pages containing no capabilities

from the sweep. This again requires virtual memory support to track which pages have

been written with capabilities. A bit is added to the PTE to record this information. The

tracking can be implemented either by changing the PTE atomically in hardware, or by

raising an exception whenever a capability is stored to a capability-clean page. I have

implemented the second approach in Toooba. Note that the first implementation poses

difficulty on multicore processors to write the changed PTE from the TLB to memory.

For this reason, the baseline Toooba implementation also does not atomically update

its analogous bits that track whether the page is accessed or dirty, instead taking the

exception approach.

7.2.2 As-user memory accesses

In addition, hardware support is required to allow the revoker—running in supervisor

mode—to act as the user while examining the capabilities in memory. For example,

RISC-V page-tables contain bits to prevent supervisor mode from mistakenly accessing

user memory, either accidentally or by deceit. The revoker must bypass this protection.

RISC-V has an existing mode, switched via a CSR, to allow supervisor mode to access

these pages. However, a finer granularity is required for performance as user-mode accesses

(to the heap) need to be regularly interleaved with supervisor-mode accesses (to the shadow

map) while sweeping.

This required implementation of additional copies of load and store instructions: primarily

adding the additional decode cases, and allowing the override of privilege mode to be

routed to the TLBs, where the permission checks are performed. An as-user version of

CLoadTags was also required.

7.2.3 Prefetching

The revocation loop is a prime candidate for optimisation using prefetching [138]. Since

memory is scanned sequentially, the lines can be prefetched in iterations ahead of when

they are needed. The sweeping loop accesses many lines that are unlikely to be resident in

cache, so avoiding the latency for cache misses has the potential to speed it up significantly.

RISC-V prefetch instructions have only recently been specified [47], and are not present

in the Toooba processor. However, a prefetch can be achieved by performing a normal

load into register zero. On an out-of-order processor, this loads the value into the cache

hierarchy, but does not have to delay execution for the cacheline to be returned, as no

other instructions depend on the value. I have confirmed that this approach can improve

performance by benchmarking a small prefetch loop (see Figure 7.2). However, this

142 7.2. OPTIMISING SWEEPING REVOCATION

Figure 7.2: Performance of Toooba for an artificial benchmark loop with and without
software prefetch. The loop iterates through memory, loading a value that misses in
all caches each iteration. The prefetch loop has an additional load of the following
cacheline into register zero. Each iteration then performs a variable number of
dependent arithmetic instructions. Note that performance drops at factors of the
reorder buffer size (64) as one fewer concurrent load can be issued. Prefetch does not
help for small loops, as the reorder buffer has space for eight loads: the maximum
that can be serviced concurrently. Executed on the VCU-118, as in Chapter 6.

prefetching approach potentially requires software to check before prefetching that the

load will not trigger an exception due to running past the page being swept. Dedicated

prefetch instructions would not raise exceptions in this case.

7.2.4 Dedicated sweeper

Cornucopia [132] confirmed that offloading the sweep onto a parallel hardware core

significantly reduces application overhead. However, this prevents that core from doing

other application work, harming multicore application performance. To address this,

specialised hardware could be provided to perform revocation sweeps. This would have

a much smaller area than an entire core, so could give the benefits of offloading without

reducing the number of cores available for applications.

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 143

One possibility is to implement a device akin to a DMA controller, specifically dedicated

to revocation. This would accept requests to sweep pages, perform the sweep, then report

it has finished in a way that allows epochs to progress. However, as the shadow map is

specified in virtual memory, such a device would require core-like page-table walk and TLB

hardware. In addition, the OS kernel overhead from managing such a device and handling

interrupts from it is likely to undermine most of the performance benefit, especially if

pages are specified only on a 4 KiB granularity.

A more practical alternative would be to have a smaller core, such as Flute, with the

revocation process pinned to it. This heterogeneous compute approach is reminiscent of

Arm’s big.LITTLE architecture [8], and indeed the core could be used for general-purpose

compute when not required for sweeping. The smaller core could be specialised for efficient

sweeping, for example with streaming caches and customised hardware prefetching.

7.3 Finding tags

CHERI MIPS implemented CLoadTags for Cornucopia [132]. This section investigates its

implementation for RISC-V and in particular the implications for Toooba’s more mature

memory subsystem.

CLoadTags loads the capability tags of consecutive capabilities in memory from a given start

address, returning the result as a bitmask. The number of tags returned is implementation-

defined, but is expected to correspond to the width of a cacheline.

Regardless of the method of describing capabilities to revoke and the invariant maintained,

memory addresses can quickly be excluded from the sweep if they do not contain a

capability. Allowing tags to be queried separately from the corresponding data enables

more efficient sweeping: this is the purpose of the CLoadTags instruction. An immediate

saving is in the presentation of the information to software, allowing untagged values

to be skipped over more quickly by loading multiple tags at a time and avoiding the

requirement for CGetTag instructions. However, a more fundamental potential saving is

that the data itself need not be loaded in, avoiding power and performance penalty from

accessing DRAM. In addition, tags can be cached much more densely alone than alongside

the data: Toooba’s configuration of the tag controller holds 64 bits of tags (a quarter of a

page’s worth) per cacheline. Further, it may be possible to avoid polluting the cache with

the unneeded data, provided tags can be read around the caches.

This section discusses a spectrum of alternative implementations for CLoadTags:

• Loading the cacheline in as normal and servicing the request in the L1 cache;

• Adding a separate tag-only state to the caches and fetching the tags from the tag

controller without data;

144 7.3. FINDING TAGS

• Adding way-restriction for tag-only lines to avoid cache pollution;

• Relaxing coherence requirements and fetching the tags directly from the tag controller.

While the latter two approaches are described in detail, implementing them is future work.

An evaluation to quantitatively compare the approaches is also future work.

Apart from the relaxed coherence approach, these implementations are architecturally

equivalent, making TestRIG invaluable in fuzzing them against one another to identify

bugs quickly. By constructing a template, including a sub-template to ensure a cacheline is

evicted from the cache, simple bugs were revealed quickly, while deeper bugs were caught

with specific template design. Each implementation was also tested using cheribsdtest

to ensure they allowed the revoker to detect tags correctly.

7.3.1 Toooba memory subsystem

This section describes the Toooba memory system, giving the required context to under-

stand the implications for implementing CLoadTags.

Each Toooba core has a single memory pipeline, which makes requests to a Load/Store

Queue. The Load/Store Queue in turn makes requests to a per-core L1 data cache. The

L1 caches interact with a shared L2 cache, which in turn makes DRAM transactions. In

the CHERI version, the tag controller is added on the path between the L2 cache and

DRAM, as discussed in Section 3.4.5. The caches are all coherent, using the standard

MESI [100] cache coherence protocol. Each L1 cache records the state of each cacheline,

and the L2 cache keeps a directory of the states of lines in the child caches to coordinate

the coherence protocol and broadcast required updates. Coherent DMA is supported via

an additional interface of the L2 cache.

The Load/Store Queue contains entries for pending memory accesses. On a new access,

the address is checked to determine if it overlaps with any other pending access. This

allows forwarding from stores to loads. The size of the Load/Store Queue used throughout

this chapter is shown in Figure 6.1.

The L1 cache can support up to eight concurrent transactions, while the L2 cache can

support 16. This aligns with the number of ways per cache set in the two caches,

guaranteeing an idle way is always available for each pending transaction.

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 145

7.3.2 Initial implementation

The many locations tags can be stored [63] implies a somewhat complex implementation

of the CLoadTags instruction to ensure coherence. Ideally, a large array of tags could be

fetched directly from the tag controller’s tag cache (or its backing memory). However,

this would cover multiple lines of data, each of which could be present in caches with

tags updated to be more recent than those stored in the tag table. As such, in the initial

implementation, CLoadTags requests are limited to providing tags for a single cacheline

at a time: the smallest granularity on which tags are held in the memory hierarchy. The

implementation must check for hits in all caches up the hierarchy, the same as for normal

data loads.

The baseline implementation of CLoadTags I implemented simply loads the data into the

L1 cache then presents the tags for the cacheline to software. This only requires changes on

the interface between the pipeline and the L1 cache, and is sufficient to allow the revoker

to run on the Toooba core. Care is required in the Load/Store Queue, as the CLoadTags

can overlap with multiple existing stores. This approach does not provide the key benefit

of CLoadTags: preventing data from being loaded into the caches for lines that contain no

capabilities.

7.3.3 Avoiding data loads

Rather than avoiding some arithmetic instructions, the primary aim of the CLoadTags

instruction is to allow optimisations within the caches. The main observation is that the

data is completely unused if there are no tags in the cacheline, and thus a miss does not

need the data to be fetched from DRAM. Since DRAM accesses use significant dynamic

power, and since a large portion of cachelines contain no valid capabilities, this alone could

mitigate a large fraction of the power overhead of sweeping. An improved implementation

of CLoadTags is to fetch only the tags in the event of a cache miss, since the tags are

cached densely in the tag cache and can be fetched independently of the data.

Several options present themselves to allow caches to deal with tags separately to the

corresponding data. One option is just to read around each cache once it is confirmed

that it does not contain the relevant cacheline. This is the approach taken by CHERI

MIPS. However, this approach presents challenges for Toooba’s more mature memory

subsystem, which must support concurrent requests, since there is no existing means

to make a request to a parent cache without allocating the cacheline in the child cache.

Reading around the caches may cause coherence difficulties due to race conditions: without

careful implementation, a tag-only read could overtake a write in the cache and read stale

tags. This approach would also require adding an entirely new interface to the L2 cache

and tag controller to allow the core to query them directly, rather than via the child

caches.

146 7.3. FINDING TAGS

M

E

S

T

I
tag-only read

(no data)

tag-only read
(data available) data read

data read

other core read
(data or tag-only)

Figure 7.3: The MESTI cache coherence protocol for Toooba’s L1 data caches. Red
arrows show transitions that may incur a DRAM data read. Transitions are omitted
that are not altered compared to MESI: from every state to M on a data write, from
every state to I on another core’s data write and also from I or T to S on a data
read where the cacheline is already resident in another core’s cache.

To avoid these problems, I use the existing cache coherence mechanism, augmenting it to

inherit its coherence guarantees automatically, and avoid additional complexity. To allow

caches to contain data for tags only, I augment Toooba’s MESI cache coherence protocol

with an additional state: tag-only (T). The T state is functionally the same as the S state,

but indicates that only the tags and not the data are valid. Since capability tags cannot

be modified within the ISA without writing the corresponding data, the tag-only state is

necessarily read-only so fits between the S and I states in the protocol. I thus refer to this

as the MESTI cache coherence model (see Figure 7.3).

A tag-only request hits if the cacheline is resident in any state other than I, i.e. M, E, S,

or T. Care is required, since upgrading the state from T to S or any higher state requires

an access to the next level of cache, since the data is not correct. This previously could

not occur, since any non-I state implied the data was correct, and the only consequence

of an upgrade was to send a message to invalidate sibling caches’ copies of the cacheline.

Thus, careful consideration of the cache state machine was required to ensure incorrect

data could never be loaded into the processor.

Since the revocation use-case is expected to CLoadTags each cacheline in a page exactly

once per sweep, keeping a cacheline in the T state is unlikely to be useful since the tags will

not be needed again unless the data is also required. A possible further optimisation would

be to make an upgrade request to the E state in L1 cache automatically if a tag-only request

returns any non-zero tags, in anticipation of the revoker loading the full capability. If

all-zero tags are returned, the cacheline could be prioritised for eviction (see Section 7.3.4).

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 147

The interface between the L2 cache and the tag controller also required augmentation to

allow the caches to communicate a tag-only request. Rather than adopting the MIPS

approach of adding an additional interface to the tag controller for this purpose, I instead

opted to signal the request using the existing AXI interface. The aruser field is extended

to one bit, with a value of 1 signalling that the request is tag-only. I modified the tag

controller to convert such an AXI request into an internal tag-only request. Care was also

required to ensure that tag-only responses would not be interleaved within data response

bursts.

7.3.4 Avoiding cache pollution

In the course of sweeping through a page, tags will be loaded in for every cacheline,

implying every cache set is touched and has its data evicted. This implies subsequent

cache misses as the data is fetched back in.

Since the (hopeful) common case for a revocation sweep is to load the tags for a cacheline

once, realise they are zero so nothing needs revoking, and move onto the next cacheline,

streaming semantics are desirable. Tags are not expected to be reused, so there is no

incentive to keep them around in the cache. Thus, an approach that avoids them evicting

other data should reduce performance loss when switching back to the non-revocation

thread. This optimisation is most significant when applied to the L2 cache as it is shared

between the child cores.

A natural implementation might restrict tag-only lines to a single way in each cache set.

This way would need to contain space for the data as well, to allow the cacheline to be

upgraded in-place if the data is also needed. However, the Toooba caches fix the size of

their operation queue equal to the number of ways per cache set, allowing the caches to

make progress even if all outstanding operations access the same cache set. Way-limiting

tag-only lines would break this invariant, as a second CLoadTags to the same set would have

to either stall or overwrite the first’s metadata. This should never happen in revocation as

memory is scanned sequentially, so there will be an even alternation between sets, and

as many concurrent CLoadTags can be supported as sets in the cache: eight in Toooba’s

default configuration. However, it is important to ensure correct behaviour even if the

instruction is not used for revocation. This would mean adding logic to stall CLoadTags

in this case.

As an alternative implementation, all ways could be permitted to hold tag-only lines, but

the first way of each set prioritised for tags to constrain cache pollution when sweeping.

This would mean that the common case will have the desired behaviour—only one cacheline

in each cache set is used for tags—while behaviour will be correct even in the face of

unexpected usage patterns. Note that, since the cacheline is resident after the CLoadTags,

upgrades to the cacheline will occur in-place, so the cacheline will stay in the intended

way even if it contains non-zero tags.

148 7.4. EVALUATION

7.3.5 Relaxing consistency

An alternative CLoadTags implementation would be to significantly relax the consistency

requirements on the CLoadTags instruction. The correctness of load-side sweeping relies

only on finding all capabilities that existed at the start of the sweep. Thus, provided

tags presented by CLoadTags are at least as recent as the start of the current sweep,

revocation will be correct. This would allow CLoadTags to obtain its tags directly from

the tag controller, bypassing the processor caches, provided tags are written back to the

tag controller at the beginning of a sweep. As well as a simpler lookup state-machine, this

would allow CLoadTags to return many more tags at a time than a cacheline’s worth (64

rather than four).

As the epoch is switched, all processes must be suspended to scan their register files for

revoked capabilities. This presents an opportunity to write back the contents of the caches

in parallel while minimising the impact on application performance. The writing back

could be performed asynchronously, triggered by an explicit instruction, with regular

memory accesses prioritised. Conservatively, all dirty lines could be written back to

memory. However, this may incur significant DRAM traffic. An alternative is to just write

the tag bits back to the tag controller, allowing the tag cache to become inconsistent with

the data in memory. Since the only case where this inconsistency occurs is where there is

more recent data in the processor caches, this cannot lead to confusion. The processor will

see only the content of the caches until the cacheline is written back, in which case the tag

cache is brought back in line with the data in memory. Furthermore, only the tags of dirty

lines with the tags set need be written back. This introduces a tradeoff between additional

write traffic at the start of an epoch and redundant loading of data during sweeps of lines

that actually contain no capabilities. The worst case would write back 16,384 lines for

Toooba’s 1 MiB L2 cache.

7.4 Evaluation

This section estimates the performance that can be expected for RISC-V revocation, based

on the results of Cornucopia [132]. Actually running the revoking kernel on RISC-V

hardware is future work.

Our CHERIVoke algorithm was implemented and evaluated by Cornucopia. The authors

perform evaluation on the dual-core CHERI MIPS processor on a Stratix IV FPGA at

50 MHz. Overheads are relative to pure capability code, so assuming spatial safety is

provided by the baseline. An allocator-agnostic wrapper performs the necessary shadow-

map management on every call to malloc and free. The results, including ablation to

determine the causes of overheads, are shown in Figure 7.4. The geometric mean run-time

SPEC overhead of revocation by the CheriBSD kernel is 5.8% (1.9% with offloading)

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 149

 0

 5

 10

 15

 20

 25

 30

 35

 40

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

Hmmer Omnetpp Astar Xalanc
R

u
n
ti

m
e
 O

v
e
rh

e
a
d
 (

%
)

2.04%

9.17%

0.84%

7.39%

3.45%
0.72%1.19%

28.64%
30.92%

24.27%

7.18%

2.88%
1.52%

22.48%

17.19%
18.87%

Interpose
Bookkeeping

Quarantine
Shadow

Revoke
Zero

O�oad

Figure 7.4: Performance overheads on worst-performing SPEC (test) for Cornu-
copia sweeping revocation using a generic wrapper across a range of allocators. The
figure is extracted with permission from Cornucopia [132]. Results are included to
show the application overhead when sweeping is offloaded to another hardware core.

with a worst case of 26.9% (8.9% with offloading). This is much lower than alternative

approaches to temporal safety, as shown in Figure 7.5.

Optimisations performed on CHERI MIPS to enable these results included: use of page

table bits to exclude pages that cannot contain capabilities; architectural support for a

streaming CLoadTags; and performing sweeps without stopping the world, so that the

pause time is reduced. The concurrent sweeps can then also be offloaded to another core.

As discussed in this chapter, these optimisations can all be applied to the RISC-V Toooba

core, so the results provide an estimate for the performance overheads of temporal safety

in this new context. In fact, Toooba’s out-of-order microarchitecture may significantly

accelerate the sweeping loop. Further refinements have also since been made to the

sweeping algorithm by others in the CHERI team, for example the load-side barrier

discussed in Section 7.2.1.

7.5 Alternative capability semantics

As discussed above, the need for sweeping revocation stems from capabilities being both

freely copied and not indirected, meaning that granted authority can spread throughout

the system without mediation of its use. Relaxing either of these capability constraints has

the potential to allow much cheaper revocation: linear capabilities cannot be copied, and

indirect capabilities are indirected through another capability. These are both proposed as

experimental extensions to the CHERI architecture [128]. They both allow revocation in

constant-time, without having to sweep through memory. Unfortunately, either approach

150 7.5. ALTERNATIVE CAPABILITY SEMANTICS

 0

 50

 100

 150

 200

astar
bzip2

gobmk
hmmer

libquantum
omnetpp

sjeng

xalancbmk

P
e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d
 (

%
)

Boehm GC

431% 543%

AddressSanitizer
Cornucopia

Cornucopia Offload

Figure 7.5: Performance overheads on SPEC (test) for Cornucopia sweeping re-
vocation, compared to Boehm GC [20] and AddressSanitizer [115]. The figure is
extracted with permission from Cornucopia [132]. Results are included to show the
application overhead when sweeping is offloaded to another hardware core.

would require significant compiler and software upheaval, since they change the way in

which code interacts with pointers. As such, they remain only theoretical: this section

discusses how they might be implemented in RISC-V.

7.5.1 Linear capabilities

Linear capabilities cannot be copied: any move, store or load operation invalidates the

original capability. This allows the allocator to confirm that the capability has been

revoked by simply checking that the capability has been returned, since this guarantees no

other copies can exist. Skorstengaard, Devriese, and Birkedal prove that enforcement of

linear capabilities can guarantee control flow and data encapsulation properties [120].

Direct implementation requires multiple register writebacks to invalidate the source register

while also updating the destination. This would complicate RISC-V microarchitecture,

which otherwise only ever writes back one general-purpose register per instruction. This

is particularly problematic for Toooba, which allocates a single physical register per

instruction, allowing it to avoid the possibility of structural hazards by parametrising

its physical register file size. The linearity must also extend to memory, meaning load

instructions targeting linear capabilities would need to invalidate those capabilities in

memory as a side effect. Since they cannot be copied, operations must be provided to split

linear capabilities apart and merge them back together to allow nested use, for instance

in incrementally dividing up the stack. This again requires multiple register writebacks,

and is problematic given our compressed capability representation [135], as alignment

restrictions on bounds prevent capabilities from being precisely divided.

RISC-V does already contain a mechanism to swap data atomically: CSR instructions both

write the value of a general-purpose register to a CSR and read its previous value into a

CHAPTER 7. ACCELERATING TEMPORAL SAFETY 151

destination register. This could be used to move a linear capability, for example using the

mscratch CSR, guaranteeing it is overwritten at its source. For memory operations, one

option is to require linear capabilities to be read and written only using (already existing)

atomic swap instructions, again guaranteeing that the source capability is overwritten.

To avoid circumvention, hardware would need to strip tags of any linear capability not

moved in one of these permitted ways: an atomic access or CSR write with the destination

register index the same as the source.

This approach would be very slow, since CSR writes incur a full pipeline flush on the

microarchitectures discussed in this thesis. Adding the CSR to the set of renamed registers

would not solve the problem, as then CSR instructions would again write to two physical

registers. Its practicality would therefore depend on how often linear capabilities need to

be moved. However, it may serve as an initial stepping stone to evaluate the feasibility of

the modifications to software and compilers.

7.5.2 Indirect capabilities

Indirect capabilities do not themselves confer authority, but point to another capability

that does. The indirect capability can then be freely copied, but the authority can simply

be revoked by invalidating the indirected capability. This would allow a compartment

to share a region of memory but quickly reclaim ownership. Another application could

be to grant indirect capabilities from malloc calls and free by invalidating the indirected

capability, preventing use-after-free vulnerabilities.

Indirect capabilities could be implemented in different ways, the primary decision being

whether the indirection is opaque to software. One option that requires software to be aware

of the indirection is to use a model similar to pairs of load-linked and store-conditional.

Dereferences of the indirect capability could require the intermediate capability to be

loaded immediately before use. Another option would be to have this occur transparently

to software, with hardware performing the chained accesses akin to a page-table walk. A

cache of recently used indirections could reduce the required memory accesses, similar to

a TLB, although entries would need to be invalidated when the capability is revoked.

7.6 Future work

This chapter has estimated evaluation of performance overheads for revocation on RISC-V

based on other work. However, future work would run the CheriBSD revoking kernel on

the RISC-V hardware to determine concrete results. Preliminary evaluation was performed

on an early prototype of a revocation-supporting kernel, confirming temporal safety is

achieved, but a version of CheriBSD with full temporal safety support has only recently

152 7.7. SUMMARY

been released. Ideally, this evaluation would include an ablation study of the effects of the

individual optimisations discussed in this chapter.

Various of the optimisations discussed remain as future work to implement. The most

significant is the investigation of heterogeneous cores for revocation, for example using a

Flute core to perform the sweeps while applications run on Toooba cores. Additionally, it is

future work to complete the options for CLoadTags implementations in the Toooba caches,

including the relaxed coherence approach. Finally, an investigation into tag-dependent

exceptions on loads in Toooba would reveal whether this is worthwhile to support the

load-side barrier.

Future work could also perform further exploration and implementation of the linear and

indirect capability types to provide constant-time revocation, albeit with a significant

change to the software model.

7.7 Summary

A high-level revocation approach has been developed to bring revocation overheads down

to acceptable levels, with a key component being the shadow-map of revoked capabilities.

Optimisations found by others to accelerate this approach to sweeping have been imple-

mented for Toooba, including page-table and TLB modifications, as-user memory accesses,

and prefetching. This confirms that application-class cores do not prohibit their imple-

mentation. Options have been enumerated for using heterogeneous compute to further

reduce (multicore) overheads.

The CLoadTags instruction has been implemented for Toooba, again showing it can

be applied to such a microarchitecture. This includes a näıve implementation, and a

more optimised implementation that required modifying the cache coherence algorithm.

Opportunities for further optimisation are elaborated in some detail, including way-

restriction and relaxation of CLoadTags consistency requirements.

Linear and indirect capabilities have also been considered for RISC-V to allow constant-time

revocation.

Overall, while concrete evaluation of temporal safety on RISC-V has not been performed,

this chapter provides evidence that revocation is plausible, since much of the architectural

support that was required for CHERI MIPS has been implemented. This supports

Hypothesis H.4.

Chapter 8

Conclusion

This chapter uses the evidence throughout the thesis to give answers to the hypotheses

posed. I then go on to draw overall conclusions from the answers to these hypotheses.

8.1 Answering hypotheses

The hypotheses presented in Section 1.2 are reproduced here. All have seen initial answers

from this project. This section gathers the evidence for and against each hypothesis from

throughout the thesis.

This work formed part of the DARPA System Security Integration Through Hardware

and Firmware (SSITH) program [143]. Where relevant, the results are compared against

the objective targets set by the program based on consultation with industry.

Hypothesis H.1

CHERI can be implemented to provide spatial safety for RISC-V microcontrollers,

with a small area, power, clock frequency, and performance impact.

CHERI has been validated for RISC-V microarchitectures in a microcontroller context,

addressing Hypothesis H.1. Careful management of bounds checking and capability

compression are required to produce correct implementations. A library is provided to help

future CHERI processor implementations, based on the existing CHERI-Concentrate [135]

algorithms. While initial implementation reduced frequency in some cases, it was found

this could be recovered with moderate optimisation. Security evaluation showed the

modifications to be effective for improving spatial safety. Area overheads of 49-62%

were observed in the least favourable metric: LUTs. Capability arithmetic logic and

the tag controller comprised a large proportion of the overhead. Power overheads were

similar, seeing a 36-61% increase in both logic overhead and mean DRAM traffic overheads.

Performance overheads spanned 0.19-55% for the benchmarks investigated, with an average

across MiBench of approximately 16%. The highest performance overheads were shown

153

154 8.1. ANSWERING HYPOTHESES

to result at least in part from code generation and software inefficiencies that are not

fundamental to capability code.

The final phase of the SSITH program gave targets of 30% area overhead, 10% performance

overhead, and 0% power overhead (measured as DRAM traffic) [143]. Some tradeoff

between metrics was allowed. The metrics were provided by the SSITH program manager

after consultation with a range of possible consumers of the secure processor technology.

These targets apply to the entire SoC, including components for DMA and interconnect,

rather than just the cores themselves as provided here. This reflects the fact that often

processors only occupy a small fraction of their containing SoC as a whole. On this level,

the area overheads of CHERI for Piccolo and Flute are only 9% and 17% respectively, well

below the target. A small fraction of the remaining budget can be invested to reduce the

performance and DRAM traffic overheads to meet the target. This was done by increasing

the size of the tag cache, and increasing associativity of select structures: Piccolo’s L1 cache

and Flute’s TLB. This observation reinforces that CHERI overheads can be mitigated by

exploring the overall processor design space.

Hypothesis H.2

CHERI can be implemented to provide spatial safety for RISC-V out-of-order

superscalar application-class cores, with a small area, power, clock frequency, and

performance impact.

To answer Hypothesis H.2, CHERI has been applied to an open, superscalar, out-of-order

processor for the first time. Key implementation tradeoffs have been identified, with

the initial implementation prioritising simplicity and performance over area in each case.

Following discovery of Meltdown Capability Forgery by Fuchs [48], improvements are

made to prevent this attack, and the core is audited to confirm the absence of similar

vulnerabilities. This motivates a change to the CHERI RISC-V architecture to clear tags

rather than raise exceptions on capability monotonicity violations, and corresponding

implementation of a single-cycle algorithm to check whether new requested bounds are

legal. Once again, evaluation confirms that the extensions mitigate spatial safety attacks.

Timing is not significantly affected by CHERI so the target frequency is still comfortably

achieved. A 45% area overhead is measured, with capability arithmetic again using a

significant proportion of this. A 63% FPGA power overhead is reported, but DRAM traffic

overheads appear much lower, with average L2 cache miss overheads of 21%. Performance

overheads of 0.68-24% (average 9%) are measured across the SPEC benchmarks. The

processor is able to use out-of-order execution to hide some of the instruction overhead.

On the other hand, cache pressure increases due to capability metadata and instructions

increase the overheads for pointer-heavy benchmarks.

The same SSITH targets applied for the application-class processor as for the microcon-

trollers. A 34% area overhead (single core) is seen on the SoC granularity for the version

of CHERI Toooba evaluated in this thesis, slightly exceeding the 30% target. The SPEC

CHAPTER 8. CONCLUSION 155

performance overheads shown meet the 10% performance target. DRAM traffic over-

head significantly exceeds the target, and it seems relatively fundamental that capability

metadata will increase cache pressure and so miss rates to some extent. Applications

requiring low DRAM traffic overhead may therefore have to increase data cache sizes to

compensate for this overhead, or simply tolerate the overhead as the price for increased

security. It should be noted that negligible DRAM traffic overhead is incurred by the

CHERI-enabled processor when running legacy code, allowing the application programmer

to make tradeoffs between performance and security.

Hypothesis H.3

The CHERI area, power, and performance impact becomes less significant for larger

cores.

The implementations performed for this thesis across the three different sizes of core

provide the first evidence for Hypothesis H.3: it has largely been found to hold. The

comparison between Piccolo and Flute shows that bigger caches can mask some of the

CHERI cycle overhead and that area scaling is favourable due to added components, such

as the FPU, that do not need to be changed for CHERI. The comparison between the

microcontrollers and Toooba, in turn, show that out-of-order execution can mask some

of the cycle overheads. The reduction in area overhead from Flute to Toooba is lower

than expected, as the structures added to support the more complex microarchitecture

are also extended with capability metadata. Power sees a similar effect, with Toooba’s

initial Vivado-reported power overhead exceeding that of Flute. It is expected that the

optimisations identified can mitigate this effect.

Hypothesis H.4

Temporal safety can be implemented efficiently atop CHERI for RISC-V processors.

During the thesis, alongside work from others, overheads for temporal safety atop CHERI

have been reduced to levels acceptable for many applications: a 5.8% (1.9% with offloading)

geometric mean overhead across the SPEC benchmarks [138, 132]. I have contributed

a change in high-level sweeping approach to adopt a shadow-bitmap, giving orders-of-

magnitude benefits to the number of capabilities revoked per sweep compared to previous

approaches based on CHERI. Furthermore, I have investigated microarchitectural optimi-

sation to improve support for revocation software, including virtual memory optimisations

and approaches to finding tags in a sophisticated memory subsystem, leading to the MESTI

approach to coherence for tags. Optimisations required to reproduce Cornucopia [132]

can be implemented for RISC-V hardware, though overheads have yet to be evaluated

concretely in this context. This work gives evidence to support Hypothesis H.4, but more

work is needed to further optimise revocation and evaluate it on RISC-V. Nevertheless, our

existing published work [138, 132] already demonstrates that overheads are class-leading

compared with prior temporal memory safety schemes.

156 8.2. OVERALL CONCLUSIONS

8.2 Overall conclusions

The results show great promise for CHERI, both in the context of RISC-V and beyond.

CHERI has been validated as fit for instantiation in hardware beyond its initial implemen-

tation in CHERI MIPS1. The validity of the hypotheses shows that CHERI suits a range of

microarchitectures, with the overheads seeming to only decrease as the baseline processor

becomes more sophisticated. This provides a route to efficient spatial and temporal

memory safety. As with many other processor developments, new ideas and incremental

improvements within and beyond the CHERI team are expected to bring the overheads

ever lower. Historically, this trend has been seen in features such as ever-improving

prefetching [85] and branch prediction [121].

Increasing pressure on the software industry to provide security in computer infrastructure,

for example via the Global Data Protection Regulation (GDPR) [4], provides incentive

to fundamentally improve processor security. Processor vendors have demonstrated that

they are willing to invest area and sacrifice performance for security, for instance in their

response to speculative execution attacks [14]. This gives reassurance that CHERI can be

adopted if its benefits can be shown to outweigh its overheads, as this thesis has suggested.

As well as the implementation itself answering the hypotheses discussed, the Piccolo, Flute,

and Toooba cores provide a good basis for the research community to perform further

architectural security research. Being open-source, these processors allow others to perform

work investigating hardware changes without completely reimplementing CHERI.

As part of the thesis, the first microarchitectures with various new features of the CHERI

architecture have been implemented, validating them for both microcontrollers and

application-class cores. This principally includes the merged register file, which was

found to reduce the complexity in changing the baseline processor’s control logic. In

addition, clearing tags as opposed to raising exceptions has been motivated and the

microarchitectures modified to support the alternative semantics. Tag clearing has there-

fore been shown to be the advisable approach, especially in light of the speculative side

channel implications. Compressed capability-aware instructions, the Sentry mechanism,

and the capability encoding mode bit, have also been implemented. The thesis has thus

produced recommendations for how CHERI should be implemented going forward, from a

microarchitectural perspective.

Finally, the TestRIG framework and QuickCheck Vengine implementation have been

elaborated. I have designed and implemented features that significantly improve the utility

of QuickCheck Vengine, including recursive templates and smart instruction shrinking.

I also designed the first hardware implementations of the DII interface, requiring a new

approach to handle pipeline flushes. TestRIG proved an indispensable tool to quickly

bring-up the three processors with incremental testing of instructions, and correctness

1The concurrently developed Arm Morello prototype provides further assurance of this.

CHAPTER 8. CONCLUSION 157

testing of optimisations to the cores.

8.3 Future work

Future work has been highlighted at the end of each chapter, but I summarise those I see

as the most significant here.

The main topic for further investigation is optimisation of the processors’ area and power:

an approximate 50% overhead in these aspects seems higher than ideal, and may be a

barrier to adoption in certain contexts. However, these provide only an initial stepping

stone in the process of refining the microarchitecture. My work provides insights into

where these optimisations could start for CHERI RISC-V. Initial avenues have been

identified to reduce the overheads purely in microarchitecture for application-class cores,

while optimisation for the microcontrollers may require architectural changes or further

refinement to the CHERI-Concentrate [135] compression algorithms.

As set out in the scope of the thesis, all evaluation was performed on FPGA. I believe this is a

useful first step, and reasonable given the resources available for this project. This approach

provides more realism than instruction set simulators, as it ensures microarchitectural

feasibility of the techniques used. However, it is not entirely clear how FPGA timing,

area, and power overheads would map onto ASIC overheads. Future work would therefore

investigate the designs using an ASIC synthesis flow. The lower FPGA frequencies also

produce discrepancies in performance measurements, due to the relative speed of DRAM.

Future work would go further to mitigate this effect, for example by artificially delaying

DRAM transactions.

Finally, enough implementation was carried out to provide initial reassurance that RISC-

V hardware, and in particular application-class processors, can be augmented for the

CHERIVoke [138] approach to achieve temporal safety. However, many further opportuni-

ties for hardware acceleration were identified that future work could implement to further

improve revocation performance. In addition, future work would explicitly evaluate the

performance overheads of revocation using the RISC-V hardware. This would be enabled

by the recently released version of CheriBSD with support for temporal safety in the

kernel.

158 8.3. FUTURE WORK

Appendix A

CHERI RISC-V Instructions

This section lists all CHERI instructions mentioned in the thesis, briefly explaining their

semantics and intended purpose. Complete descriptions can be found in the CHERI

architecture document [128]. Due to the change in error semantics throughout the project

discussed in Section 5.4, it is left vague whether failed checks raise an exception or clear

the resulting tag.

A.1 Capability inspection

These all take a single capability and extract some information about it.

CGetTag Returns whether the capability has a valid tag, i.e. whether it has legal provenance.

While the tag is checked in hardware whenever a capability is dereferenced, this

instruction exposes the information to software.

CGetAddr Returns the absolute address of the capability.

CGetOffset Returns the offset of the capability, i.e. its address relative to its base.

CGetPerm Returns the permissions of the capability, presented as a bit-mask. Permissions

include read, write, execute, read-capability, load-capability, and several others.

CGetFlags Returns the flags field of the capability. Currently, this is just a single bit

indicating whether to execute in capability encoding mode when the instruction is

installed as PCC.

CGetBase Returns the base of the capability.

CGetLen Returns the length of the capability, i.e. the difference between its top and base,

saturating on overflow.

159

160 A.2. CAPABILITY MODIFICATION

CGetType Returns the otype of the capability, with special bit-patterns to indicate

unsealed capabilities, the Sentry type, and reserved types.

CGetSealed Returns whether the capability is sealed, as a shortcut for CGetType followed

by comparison with the unsealed type.

A.2 Capability modification

These instructions allow capabilities to be modified in restricted ways. All except CMove

and CUnseal must check their input capability is not sealed.

CMove Takes a capability and copies it into the destination register. Unfortunately, none of

the other modification instructions can reliably be used to do this simple operation,

due to treatment of sealed capabilities.

CClearTag Takes a capability and clears its tag. Note that there is no option to set a

tag, which would imply forging a capability without valid provenance. CBuildCap

achieves a similar effect safely.

CSetAddr Takes a capability (cap) and a new address (addr) and sets the address of cap

to addr. The instruction must check that the resulting capability is representable.

CSetOffset Takes a capability (cap) and a new offset (off) and sets the address of

cap to its base plus off. The instruction must check that the resulting capability

is representable. This accelerates addressing into arrays and structures, which is

typically performed relative to their start.

CIncOffset Takes a capability (cap) and an increment (inc) and increases the address

(and therefore the offset) of cap by inc. The instruction must check that the resulting

capability is representable. This accelerates iterating through memory.

CIncOffsetImm Form of CIncOffset with inc a 12-bit immediate rather than a register.

This accelerates iterating through memory in statically known increments, such as

to loop through an array.

CAndPerm Takes a capability (cap) and a permissions mask (mask), setting the permissions

of cap to the bitwise AND of its original permissions with mask. This allows a capability

to have its permissions restricted, such as to remove the execute permission on the

stack capability. Note that its interface prevents non-monotonic operations without

requiring additional checks.

CSetFlags Takes a capability (cap) and an integer (flags) and sets the flags field of

cap to the value of flags. Currently, this is just a single bit indicating whether to

execute in capability encoding mode when the instruction is installed as PCC. Note

that this can be performed freely without violating monotonicity.

APPENDIX A. CHERI RISC-V INSTRUCTIONS 161

CSetBounds Takes a capability (cap) and a new length (len) and restricts the bounds

of cap. The new base is the address of cap, and the new top is this base plus len.

Checks are performed that the new bounds are a subset of the old bounds. Due to

bounds precision imposed by capability precision, the base may be rounded down,

and the top rounded up. The instruction allows capabilities to be subset, for example

to restrict a capability for the whole stack to a single stack-allocated variable.

CSetBoundsImm Form of CSetBounds with len a 12-bit immediate rather than a register.

This accelerates the common case of statically known small stack allocations.

CSetBoundsExact Behaves identically to CSetBounds, but also checks that no rounding

is required. This allows software to assert that no padding is required.

CSeal Takes a capability (cap) and an authorising capability (auth) and sets the otype of

cap to the address of auth. It must check that auth gives permission to use its address

as a type rather than a memory address (this is signified with a permission bit), and

that auth is in-bounds. This makes the resulting capability immutable, except for

use with CUnseal and CInvoke. This mechanism enables compartmentalisation as

capabilities can be passed safely through untrusted compartments.

CCSeal Behaves identically to CSeal, but with different behaviours in error cases. This is

required to accelerate restoring capabilities of known types with multiple possible

authorising capabilities, such as when paging them back in.

CUnseal Takes a capability (cap) and an authorising capability (auth) and unseals cap,

provided auth has the required permissions and bounds. The inverse of CSeal, this

allows a compartment to recover its sealed capabilities.

A.3 Memory access

The capability-based memory instructions mirror the existing RISC-V memory instructions,

but prefixed with c. Loads and stores of capabilities themselves use double the access

width of xlen, such as cld on RV32 and clq on RV64.

A.4 Control flow

As well as versions—CJAL and CJALR—of the RISC-V control flow instructions that jump

to and link capabilities, RISC-V also provides secure domain transition:

CInvoke Takes a sealed code capability and a data capability sealed with the same type,

jumping to the code capability and installing the data capability into a fixed register.

162 A.5. OTHER INSTRUCTIONS

Performs various checks, e.g, that the otypes match. This allows secure domain

transition to a compartment, atomically jumping into its control while giving it

access to its data.

A.5 Other instructions

CTestSubset Takes two capabilities and checks if the first is a subset of the second in

bounds and permissions, returning 1 or 0 to indicate the result. Hardware has

to perform subset checks in the background to ensure monotonicity, such as for

CSetBounds. This instruction exposes this logic to software to allow it to perform

custom checks.

auipcc Mirrors RISC-V’s auipc instruction, adding a large immediate to the PCC and

returning it. This is used to retrieve globals relative to the PC and in address

calculations for long jumps.

CLoadTags Loads the capability tags starting from the input address, typically for a

cacheline. This accelerates revocation sweeps, as discussed in Section 7.3.

CClearRegs An instruction to clear registers in bulk. This is intended to enable fast

context switching without leaking data between compartments. A floating-point

version is also specified. Note that these instructions were not implemented for the

processors discussed in this thesis.

CBuildCap Takes two capabilities (auth and bits), and sets the tag on bits provided it

can legally be derived from auth. This instruction is formally specified to modify

auth to set every field equal to that of bits, clearing the tag if any of these

transformations is illegal. This makes the flow of authority clearer. The instruction

has applications for dynamic linking and paging.

Appendix B

Benchmarks

To evaluate the impact of the capability modifications, we use several benchmark suites,

comparing their execution between the baseline and CHERI-enabled cores. In the micro-

controller context, we use CoreMark and MiBench, and for application-class performance

we use SPEC. This appendix describes these benchmarks, giving context for the likely

effects of capabilities on their performance.

B.1 CoreMark

CoreMark [50] is an embedded benchmark that aims to indicate performance using data

structures and algorithms common to most applications. It performs list operations, matrix

processing, and state machine processing. The memory footprint is designed to fit within

2 KiB to target small microcontrollers, meaning it easily fits in the caches of all processors

discussed in this thesis.

B.2 MiBench

MiBench [55] is a set of benchmarks aimed at covering representative applications for

embedded processors, analogous to SPEC for application processors. In particular, we

use MiBench2, which ports the benchmarks for IoT devices [84]. These were provided by

Galois for the baseline Piccolo and Flute cores, and recompiled by the CHERI team to

allow comparison with the CHERI cores.

Unfortunately, not all benchmarks were successfully ported by Galois, so some are ex-

cluded from evaluation. These are the bitcount, lzfx, overflow, patricia, regress,

stringsearch, susan, and vcflags benchmarks that fail to compile for the baseline,

and dijkstra, picojpeg, rsa, and sha that encounter run-time errors on the baseline.

randmath also does not seem to run correctly on the baseline, executing fewer than ten

163

164 B.2. MIBENCH

instructions per run. All benchmarks that run on the baseline successfully ran compiled

for purecap.

To allow discussion of MiBench2 overheads, I give a description of the benchmarks that

were run on the cores. Detail is given as required for the discussion in the thesis.

limits This tests a variety of fixed-iteration loops with their end conditions expressed

differently, presumably mostly targeting branch prediction. There are 13 different

loops, each running between 0 and 14 iterations. The end conditions are expressed

as extern functions, preventing static analysis short-circuiting the loops, but also

meaning that calls into very short functions are benchmarked.

adpcm encode Performs ADPCM encoding on a 1.3 MiB input.

adpcm decode Performs ADPCM decoding on a 330 KiB input.

fft Performs two Fast Fourier Transforms [97]: one forwards on 128 elements and one

inverse on 256 elements.

crc Computes a cyclic redundancy check on a short string (10 bytes) in several different

ways.

blowfish Encrypts and decrypts a 300 KiB string using the Blowfish block cipher.

rc4 Rivest Cipher 4 (RC4) [62] is a (now insecure) simple fast stream-cipher, on which

Wired Equivalent Privacy (WEP) was based. The stream cipher itself maintains 256

bytes of state (initialised based on the key), with each round swapping two bytes

and replacing a third based on their values. The simplicity of the stream cipher is

such that the encryption loop compiles to a single basic block of approximately 25

RISC-V instructions. This benchmark encrypts a test message of 2,048 bytes using

the cipher, then decrypts it again, comparing against the original.

aes This runs the AES [33] block cipher in ECB and CBC modes: encrypting and

decrypting with each for message lengths of up to 64 bytes.

qsort This computes the floating-point distance from the origin of 11,240 3D integer

co-ordinates, then calls the C standard library qsort function to perform a quicksort

based on the computed distance.

APPENDIX B. BENCHMARKS 165

B.3 SPEC

The SPEC benchmark suite [29] is designed to cover a range of applications to assess the

performance of high-end cores. We use the SPEC CINT 2006 suite.

Compiling the benchmarks for CHERI (with full protection) varies in difficulty across the

benchmarks. Some require only small changes, while others would be large projects, for

example those that themselves perform compilation: gcc and perlbench. mcf also requires

further modification to support CHERI, so is excluded. The remainder had already been

adapted for CHERI for CHERI MIPS, so were available to run on CHERI RISC-V.

A brief description of the characteristics of each benchmark that was run gives context for

the benchmarking results. These are based on the official descriptions given by SPEC [29].

Particular focus is given to code patterns most relevant to capabilities such as memory

access patterns and pointer density.

bzip2 Tests compression and decompression using the common bzip2 file-compression

algorithm. The benchmarks therefore consist of linear accesses through memory to

access the file, as well as accesses to internal data structures to exploit repeating

patterns.

h264ref Performs AVC video compression and decompression. Similar to bzip2, this

will involve linear memory accesses to the files and accesses to smaller internal data

structures, so not many pointers.

astar Runs variants of the A* algorithm for pathfinding in game AI. There are two

variants operating on 2D space, which will be pointer-light, and a variant adapted

to work on graphs, which will be pointer-heavy.

hmmer Runs database searches and statistical tests on databases representing DNA se-

quence alignments. This involves repeated linear searching and very few pointers.

sjeng Analyses positions in chess using an engine. To represent the game tree, the code

is likely relatively pointer-dense.

gobmk Analyses positions in the game Go using an engine. Similar to sjeng, this will

involve storing and regularly traversing a pointer-heavy game tree.

omnetpp Performs discrete event simulation of an Ethernet network. This will require a

pointer-heavy structure describing the edges of the network graph.

xalancbmk Transforms XML documents into different formats. Since the XML documents

are represented as trees of nodes, this is relatively pointer-heavy.

libquantum Simulates a quantum computer to run Shor’s factoring algorithm on the

input. This mostly involves intense matrix computations, so is pointer-light.

166 B.3. SPEC

Appendix C

TestRIG

This appendix contains our TestRIG paper, pending publication. It is the result of

collaboration between myself and the listed authors.

167

1

Randomized Testing of RISC-V CPUs using Direct
Instruction Injection

Alexandre Joannou, Peter Rugg, Jonathan Woodruff, Franz A. Fuchs, Marno van der Maas, Matthew Naylor,
Michael Roe, Robert N. M. Watson, Peter G. Neumann, Simon W. Moore

I. INTRODUCTION

TestRIG (Testing with Random Instruction Generation) is a
testing framework for RISC-V implementations. The RISC-V
community has standardized a formal model of the architecture
in the Sail language1. Ideally, a RISC-V implementor could
formally prove equivalence between their implementation and
the Sail model, but proof tools are not yet sufficiently auto-
mated to be routinely used on the whole-processor level. As a
pragmatic compromise, we use TestRIG to check equivalence
between the model and an implementation by generating ran-
dom instruction sequences, executing the same sequences on
the model and the implementation under test, and comparing
execution traces (tandem execution). This approach does not
prove equivalence but can demonstrate divergence, and is
usable in all stages of development.

TestRIG uses the RISC-V Formal Interface (RVFI) standard
to observe the change in state after each instruction of the
implementation under test, and uses a novel technique that we
are calling Direct Instruction Injection (DII) for test injection.

In normal program execution, the next instruction is fetched
from program memory at an address determined by the
program counter. With Direct Instruction Injection, the next
instruction to be executed is provided by the test harness,
regardless of the CPU’s program counter.

We are not testing completed, fabricated chips. Rather,
we are comparing executable formal models, software ISA
simulators and simulated execution of hardware designs. This
requires us to instrument the CPU design with an additional
interface for Direct Instruction Injection used by the test
harness during tandem verification.

We have added the Direct Instruction Injection interface to
the Sail RISC-V formal model2, and to two high-performance
emulators: Spike3, and QEMU4. We have also instrumented
four RISC-V processor implementations with RVFI-DII, span-
ning from embedded to superscalar implementations. We have
used TestRIG to test many standard RISC-V extensions, and
the experimental CHERI security extension.

We found TestRIG to be easier to use than unit tests, and to
give more thorough test coverage. It is effective at detecting
not just issues in instruction semantics, but also the in pipeline
and the data caches. As a result, TestRIG has completely
replaced our instruction-set level unit testing for development.

1https://github.com/riscv/sail-riscv
2https://github.com/CTSRD-CHERI/sail-riscv
3https://github.com/riscv-software-src/riscv-isa-sim
4https://github.com/CTSRD-CHERI/qemu

II. THE DREAM – MODEL-BASED VERIFICATION

Architectural extensions are traditionally specified starting
with a prose specification, and then four implementations are
produced largely independently:

1) Assembler
2) Executable model (simulator)
3) Instruction-level unit-test suite
4) Hardware implementation
While this ensemble of implementation efforts is laborious

when done once, its greatest cost lies in discouraging design
exploration; design changes require consistency among five
independent code bases.

A formal, executable instruction-set architecture (ISA) spec-
ification can greatly simplify this workflow. We use the
Sail [3] domain-specific language, which features human-
readable syntax. Sail excerpts serve as pseudocode in our ISA
documents [14]. Sail also produces a simulator (item 2), and
will eventually provide verification (item 3) and the assembler
(item 1) to be derived from it automatically.

A. Model-based Formal Verification

Formal verification tools for RISC-V have often used the
RVFI tracing (see Section IV) interface5 along with tools
like Cadence’s JasperGold to prove that a series of traces
from a simple HDL model is equivalent to a series of traces
from a pipelined HDL implementation. Unfortunately, these
tools can handle only simple pipelines, and require specialist
knowledge. As a result, the formal-verification approach does
not yet replace functional testing for entire processors.

B. Model-based Random Testing

While formally proving equivalence for complex microar-
chitectures has been elusive, pragmatic tools have used other
ways to detect divergence from a model. These approaches
cannot prove equivalence between a formal model and an
implementation but can refute it with counterexamples.

For example, directed-random test-sequence generation has
been used to debug pipeline and memory bugs, as well as
to uncover unexpected divergences in implementation behav-
ior [1], [12]. There exist multiple test generators for RISC-V,
e.g., RISC-V RTG [13], but RISCV-DV6 remains the most
advanced such sequence generator for RISC-V, and it works
well for these use cases, particularly where detailed traces can

5https://github.com/SymbioticEDA/riscv-formal
6https://github.com/google/riscv-dv

168

2

be compared. RISCV-DV generates assembly programs, ready
to be converted to in-memory images for execution. RISCV-
DV includes a number of test generators for RV32IMAFDC
and RV64IMAFDC – including support for page-table in-
teractions, privileged CSR use, and handling traps/interrupts.
These generated test programs are executed on both a golden
model and a processor in development. A RISCV-DV test
framework would typically detect a divergence by comparing
the execution traces.

Although randomly generating tests is a promising ap-
proach, it can have several drawbacks:

• Automatically generated counterexamples can be long
and convoluted, while hand-written tests can be made
short and easy to understand.

• The generator must ensure that useful instructions are
found at the target of each randomly generated branch.

Automated reduction of failing test cases has previously
been used in software testing. For example, C-Reduce [10]
can take a program that triggers a bug in a C compiler and
reduce it to a minimal example that triggers the bug.

PyH2P [7] applies automated test case reduction randomly
generated RISC-V instruction sequences. PyH2P often pro-
duces test sequences that contain less than 5 instructions, with
every instruction being meaningful for reproducing the error.
Nevertheless, PyH2P has three shortcomings:

1) PyH2P does not perform full trace comparison with its
internal PyMTL3 model, but only with final memory
and register state.

2) PyH2P has difficulty shrinking through branches, as it
must produce a valid in-memory program.

3) PyH2P does not use community-standard interfaces that
have been proven across a range of implementations.

PyH2P points in an encouraging direction, and TestRIG ma-
tures the approach, proposing a standardized communication
interface so that verification engines (VEngines), models, and
implementations are interchangeable and can be improved in-
dependently. Additionally, instruction injection allows straight-
forward shrinking of sequences with branches. This has al-
lowed us to completely replace instruction-level unit tests for
the sophisticated CHERI extension [15], greatly improving
both productivity and assurance, and enabling extension of an
array of simulators and processors more efficiently than the
CHERI implementations on MIPS or ARM.

III. TESTRIG

Figure 1 gives an overview of the modular TestRIG ecosys-
tem. In TestRIG, an interactive Verification Engine (VEngine)
stimulates RISC-V implementations over RVFI-DII sockets,
which are detailed in Section IV. An RVFI-DII compatible
RISC-V implementation can reset, consume instruction se-
quences, and report execution traces via its RVFI-DII interface.
A VEngine can drive one or more RVFI-DII compatible
implementations; a VEngine might have an internal RISC-
V model, similar to PyH2P, or could drive two independent
implementations and compare their RVFI traces, as we have
done with QCVEngine, which is presented in Section V.
VEngine instruction sequences could be loaded from disk,

Verification Engine (VEngine)

Consume Execution Trace(s) Generate Instructions

RISC-V
Implementation

Socket

RISC-V
Implementation

RISC-V
Implementation

Socket Socket

DII

…

…

RVFI

Fig. 1. An illustrative example of the TestRIG ecosystem with a Verification
Engine communicating with any two RISC-V implementations over sockets.
The Verification Engine injects instruction sequences and compares the
execution traces until it finds a divergence.

generated randomly, or produced with interactive architecture-
driven state-space exploration.

The RVFI-DII bytestream interface allows models and im-
plementations written in various languages to communicate
through widely supported networking sockets. QCVEngine is
written in Haskell, and the Sail RISC-V model is written
in the Sail domain-specific language (either interpreted by
an OCaml program or compiled into C). Spike and QEMU
are RISC-V simulators written in C and C++. TestRIG also
supports hardware implementations like RVBS, Ibex, Piccolo,
Flute, and Toooba, which are written in either SystemVerilog
or Bluespec. RVBS7 is a reference implementation, Ibex8

and Piccolo9 are simple 32-bit implementations, Flute10 is
a 5-stage in-order pipeline processor implementing RV64,
and Toooba11 is a RISC-V 64-bit superscalar out-of-order
processor.

Participants in the TestRIG ecosystem are expected to be
identical in every architecturally visible way. Besides a RVFI-
DII interface, TestRIG requires 8 MiB of memory accessible at
address 0x80000000 (all other addresses returning an access
fault), and must support resetting to a known state (zeroed
registers, known default values for RISC-V control and status
registers, zeroed 8 MiB of memory) upon injection of a “reset”
DII packet.

IV. RVFI-DII

To participate in the TestRIG verification ecosystem, imple-
mentations must be extended with RVFI-DII instrumentation.
To ease development, we distribute data structures and libraries
in several languages to facilitate RVFI-DII connections over
TCP ports.

The RISC-V Formal Interface (RVFI), specified by Claire
Wolf, is an existing trace format for formal verification us-
ing symbolic instructions. RVFI exposes select architecturally
significant signals such as the instruction encoding and any

7https://github.com/CTSRD-CHERI/RVBS
8https://github.com/CTSRD-CHERI/ibex
9https://github.com/CTSRD-CHERI/Piccolo
10https://github.com/CTSRD-CHERI/Flute
11https://github.com/CTSRD-CHERI/Toooba

APPENDIX C. TESTRIG 169

3

memory address or value, as well as the numbers and values
of the operand and writeback registers.

TestRIG extends RVFI with Direct Instruction Injection
(DII). DII is for instruction input, RVFI is for trace output,
and RVFI-DII supports full interactive verification. Interactive
verification enables automated simplification and shrinking, as
discussed in Section V-A. Existing RISC-V cores that imple-
ment RVFI can be augmented to participate in the TestRIG
ecosystem by implementing DII, and conversely RVFI-DII
designs may benefit from RVFI formal verification tooling.

Not all architectural updates are reported in the RVFI
interface, e.g., floating-point registers and extended CHERI ca-
pability registers. While this is a limitation, PyH2P relies only
on final register and memory state and is still able to usefully
detect divergence. We found that occasional instructions that
move unexposed values into RVFI-visible state could produce
sufficiently succinct counterexamples. This strategy was also
used in RVFI formal verification efforts.

An RVFI interface exports internal signals of an RTL de-
sign, or internal variables of a simulator or emulator. For more
complex RTL designs, such as pipelined or superscalar mi-
croarchitectures, extracting the appropriate values may require
preserving state for an RVFI report in a commit/write-back
stage that did not previously have access to them. Extending
the superscalar Toooba core for RVFI-DII required two extra
records for each instruction in the Reorder Buffer.As these
records are present only when built for simulation with RVFI,
this is not a physical overhead for the design.

DII directly specifies the instruction sequence expected in
the output trace, and does not associate instructions with
memory addresses. This requires custom pipeline instrumen-
tation, but enables greatly simplified sequence generation
and shrinking, as the program counter does not affect the
instruction stream.

A DII interface receives a reset command followed by a
sequence of instructions. A Bluespec implementation of this
interface is shown below:
typedef struct {

Bool rvfi_cmd; // Instruction or reset command?
Bit#(10) rvfi_time; // Time to inject instruction
Bit#(32) rvfi_insn; // Instruction word (32/16 bit)

} RVFI_DII_Instruction

For an emulator, this interface simply replaces each fetched
instruction with an encoding from the DII queue. For RTL
designs, DII support is more complex. An RTL design can
remove the instruction cache entirely (but not address trans-
lation of the PC, which is architecturally visible) to ensure
maximal pipeline packing, or can exercise the instruction
cache and replace the bytes of the instruction after they have
been fetched. RISC-V compressed instructions present another
choice: to substitute picked instructions before decode, or
inject 16-bit instruction fragments from DII to exercise the
picking logic. The simple single-issue design of Piccolo and
Flute enabled us to replace the cache entirely with a DII queue
that delivered one instruction every cycle, either compressed
or uncompressed. For superscalar Toooba, we began with
unmodified instruction-cache access, substituting the vector
of picked instructions before decoding. In an effort to debug
instruction picking itself, we later moved to bypassing the

instruction cache and providing 16-bit instruction fragments
to the pipeline, relying on the instruction picker and decode
to reconstitute the correct DII instruction sequence.

Canceled instructions present a further challenge to DII.
Synchronization is required when instructions are dropped
in the pipeline, as RVFI-DII requires a single RVFI trace
entry for each DII instruction injected. While adding RVFI-
DII to Flute, we arrived at a mature design that attaches a
sequence ID to each RVFI instruction and carries it with the
PC through the pipeline. Instruction Fetch actively requests
each instruction ID from the DII sequence (as with PC requests
to the cache), allowing pipeline redirects to work naturally. We
adapted this approach to Toooba by adding superscalar fetch
and assigning IDs to compressed instruction fragments. This
more capable DII unit is available in our RVFI-DII libraries12,
and has been backported to Flute. While DII instrumentation
may appear daunting, we have found that beginning with this
mature strategy greatly reduces both implementation effort and
design disturbance. In retrospect, the few hours invested in this
implementation have greatly streamlined the otherwise much
longer testing phase.

V. QUICKCHECK VENGINE

Our TestRIG Verification Engine, QCVEngine, leverages
Haskell’s QuickCheck library [5]. Due to the simplicity of
Direct Instruction Injection execution, which decouples the
instruction stream from control flow, QCVEngine can use
unmodified QuickCheck utilities to generate, compare, and
shrink instruction sequences.

QuickCheck receives a function with a pass/fail return value,
and generates inputs in search of a failure. To facilitate this, we
construct a function that receives a list of instructions, sends
these over two DII sockets, collects RVFI traces back from
these sockets, asserts that they match, and returns the result.
We then provide a set of generators of arbitrary instruction
sequences that are used by QuickCheck to produce inputs to
this function.

We use convenience functions to define instructions in a
syntax closely resembling the RISC-V ISA manual, and pro-
vide tailored generators for each instruction field to promote
register reuse. QuickCheck automatically discovers and uses
these generators through the type system and uses them to con-
struct arbitrary instruction sequences. We also provide targeted
generators for simple subsets of the instruction set, as well as
generators that leverage templates of varying complexity to
reach deeper states, including virtual memory mappings and
cache conflicts. Templates are a common tool for random test
generators; for example, IBM’s Genesys-Pro [1] is built on
templates to intelligently solve for desired deep states.

A. Smart Shrinking

While Direct Instruction Injection allows us to primarily
rely on QuickCheck’s builtin shrinking strategies, we aug-
mented these with smart shrinking functions that not only
eliminate instructions, but intelligently transform them to
simplify the sequence.

12https://github.com/CTSRD-CHERI/BSV-RVFI-DII

170

4

Once a counterexample is found by QCVEngine,
QuickCheck uses a builtin list-shrinking function that
removes sequences from the list and tests again, hoping to
eliminate instructions with no relevance to the errant behavior.
Illustratively, here is an initial counterexample found for an
artificial hardware bug where the LSB of the add instruction’s
result (but not addi’s) is stuck at zero:
addi x7, x4, 123 # Generate odd immediate
addi x5, x3, 42 # Generate even immediate
addi x6, x7, 0 # Move x7 to x6
xori x1, x5, 745 # Irrelevant
add x1, x5, x6 # Perform buggy add

The builtin list shrinking results in:
addi x7, x4, 123 # Generate odd immediate
addi x6, x7, 0 # Move x7 to x6
add x1, x5, x6 # Perform buggy add

The middle instruction can also be eliminated if the final
add takes register 7 as an operand directly. To automate this
functionality, we further augment shrinking to intelligently
propagate an instruction’s output register to future input
operands. This allows another pass of list-shrinking to further
reduce the counterexample:
addi x7, x4, 123 # Generate odd immediate
add x1, x5, x7 # Perform buggy add

We also add a library of simplifications to be used during
shrinking that eliminate esoteric instructions used to perform
mundane functions that might distract from the root cause.
For example, memory operations often trap; thus, we might
attempt to simplify a memory operation to an ecall, an
instruction that only traps, to make the error more obvious.

Any shrinking or simplification is safe to try for model-
based testing; any change that still diverges is kept. In rare
circumstances, the shrinking may reveal an alternative bug,
obscuring the original, but still producing a useful result.

B. Sequence Import/Export

Instruction traces can be converted to (and from) a human-
readable format both for terminal reporting, and for reading
and writing trace files – individually or in bulk from a direc-
tory. This has enabled us to collect a library of regression tests
to quickly check all previous counterexamples. Unlike hand-
written tests with assertions, these do not require maintenance,
as expected behavior updates naturally with the model as
the instruction set evolves. We have also used this feature
to replay recorded test-suite examples (including riscv-tests
and RISCV-DV), adding full trace-equivalence check with
shrinking. This feature has also allowed us to capture traces
of an operating system booting on the model implementation,
which we could then use to aid bring-up of the same operating
system on implementations, with instruction shrinking rapidly
highlighting any problems.

C. Non-shrinkable Sequences

Sequences can be annotated as non-shrinkable. This has
been used to force initialization to cover divergences in initial
state. For example, one implementation did not initialize
floating-point registers, which produced trivial counterexam-
ples. A non-shrinkable initialization sequence allowed us to

progress to interesting divergences in exception conditions and
rounding modes.

D. Assertions

Sequences can include assertions – e.g., that the value
written by the previous instruction was non-zero. These make
it possible to fail without a divergence. Unusually, sequences
with assertions do not require tandem verification to discover
a failure, and we have used these to test the limits of
implementation-defined behavior.

VI. EVALUATION

A. A Coverage Study

Architectural coverage is the first metric for basic veri-
fication. We evaluated coverage of the RISC-V architecture
using sailcov13, which measured how many branches of the
RISC-V Sail model were explored during a run. We compared
QCVEngine over TestRIG with the RISC-V test suite (riscv-
tests14) and the RISCV-DV generator.

For our coverage study we conduct two runs of each
testing framework (TestRIG, riscv-tests, and RISCV-DV) for
RV32IMC and RV64IMAFDCZicsr. For RV32IMC, we take
the Sail RISC-V model coverage of the I, M, and C extension
instructions as well as the coverage of the general-purpose
registers. For RV64IMAFDCZicsr, we measure the coverage
of I, M, A, F, D, C, and CSR instructions as well as the
coverage of the general-purpose and floating-point registers.
For riscv-tests, we measure the coverage of the Sail RISC-
V model running the test binaries. For RISCV-DV, we pro-
duce TestRIG traces from the Spike simulator executing the
tests and replay them through RVFI-DII while measuring
the coverage of the Sail RISC-V model. For QCVEngine,
we configure it with the two architecture strings and let it
run 500 sequences of each generator. The RV32IMC results
are similar across all three testing frameworks, indicating
that QCVEngine can support a suitable alternative to unit
testing and torture testing, at least with respect to breadth of
coverage. The RV64IMAFDCZicsr results more variance, but
all three remain comparable except in floating point register
coverage, in which RISCV-DV excels and CSR instructions in
which TestRIG excels. QCVEngine chooses from a subset of
floating-point registers to increase the probability of operand
reuse, at a cost to overall coverage. As failures based on
register number are rare, we have made a trade-off between
increasing the probability of finding violations that require
multiple permutations and increasing the overall FD register
coverage.

B. Counterexample Complexity

Counterexample complexity is another useful metric. Our
archive of QCVEngine traces comprises 3509 shrunken coun-
terexamples discovered during development of our CHERI
processor extensions. Figure 2 shows the distribution of our

13https://github.com/rems-project/sail/tree/sail2/sailcov
14https://github.com/riscv-software-src/riscv-tests

APPENDIX C. TESTRIG 171

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

lo
g 1
0(

in
st

ru
ct

io
n

co
un

t)

QCVEngine riscv-tests riscv-dv

Fig. 2. Counterexample size complexity

archive of counterexample lengths versus riscv-test and riscv-
dv trace lengths, which do not allow shrinking. The me-
dian value is 3 instructions, and the third quartile is only
5 instructions. The median for riscv-tests 561 instructions,
which is more than 3 times the maximum counterexample
found by QCVEngine, and the median riscv-dv sequence is
15339. QCVEngine’s small counterexample size is facilitated
by Direction Instruction Injection and smart shrinking as de-
scribed previously. Single digit counterexample length greatly
accellerated our discovery of failures and development of fixes
compared to even a traditional unit test suite.

VII. ILLUSTRATIVE CASES

TestRIG is useful for a broader range of verification than
instruction-level unit tests and improves productivity in all
cases. Architectural bugs, which are traditionally targeted
by hand-written test suites, are usually discovered quickly
with TestRIG. Microarchitectural mistakes, such as register
forwarding or pipeline-flush problems, are also discovered
quickly and deterministically in TestRIG, but are difficult to
anticipate and target in unit-test suites. Memory mistakes, such
as cache bugs or memory speculation failures, have also been
discovered efficiently with targeted generators, and are notori-
ously hard to discover using static unit tests. Finally, TestRIG
has found unexpected interactions, where architectural features
interact in unforeseen ways , while unit-test suites are unlikely
to test these cases. We have applied TestRIG not only to RISC-
V, but also to CHERI-RISC-V (our security extension, noted
below).

A. CHERI Introduction

Capability Hardware Enhanced RISC Instructions (CHERI)
is a security extension of conventional Instruction Set Ar-
chitectures that adds capabilities – unforgeable and bounded
tokens. A capability is a fat pointer [8] containing the address
and metadata including permissions and bounds information.
Furthermore, validity of capabilities is ensured by a hidden
tag.A capability authorizes access to a region of memory, and
no data or instruction access is possible without a valid ca-
pability. Furthermore, all capability operations are monotonic
and therefore cannot increase the privileges a capability grants.

As a result, CHERI enforces spatial safety, enables temporal
safety, and supports fine-grained software compartmentaliza-
tion.

B. Architectural Bug

When developing the compressed encoding of CHERI ca-
pabilities, we had a bug that unnecessarily cleared the tag
of a pointer when setting an address that wrapped the address
space. This bug was found with this shrunken counterexample:
cSetBoundsImmediate x3, x1, 1106 # Set a short bound
cIncOffsetImmediate x2, x4, -197 # Small negative integer
cSetAddr x4, x3, x2 # Set the integer as the address
cGetTag x1, x4 # XXX Untagged

While this case may have been covered in an extensive
unit-test suite composed at significant effort, our TestRIG
generator required only a list of CHERI instructions to produce
a counterexample far more compact than most hand-written
tests.

C. Microarchitectural Bug

We have also used TestRIG for discovering microarchitec-
tural vulnerabilities in transient execution. One such generator
produces a sequence of arbitrary instructions, followed by
an assertion that no additional cache misses were counted,
which would indicate a transient violation of the capability
system. The following shrunken counterexample demonstrated
a vulnerability in cSetBoundsImmediate:
.noshrink
... # initialize counters
... # bound x31 to 8 bytes
.shrink
Illegally increase the bound on a pointer
cSetBoundsImmediate x31, x4, 797
Load through this illegal capability
lb.cap lb.cap x31, x31[0]
... # Delay for counter to propagate
.noshrink
csrrs x30, hpmcounter3 (0xc03), x0 # Read L1 cache miss
.assert rd_wdata == 0x0 ""

Because CHERI only allows bounds to be reduced, the
cSetBoundsImmediate instruction is illegal and throws an ex-
ception due to attempting to enlarge the bounds. Nevertheless,
the capability that would have been produced is forwarded in
the pipeline during the flush and causes a cache fill that could
lead to side-channel attacks.

This sequence uses both noshrink and assert. Noshrink is
required to initialize the state of the counters so that the final
assertion on the L1 cache miss counter is deterministic.

D. Cache Bug

We received Flute as a working in-order RV64G design, and
discovered that the data cache was direct-mapped and 4 KiB,
rather than 2-way associative and 8 KiB – as specified. An
experiment with parameters confirmed that the 2-way cache
could not boot the operating system. This bug had not been
found with the unit-test suite, so we used a generator that
constructs addresses within the TestRIG memory range (see
Section III), as well as random loads and stores. This generator
quickly discovered the bug with the following shortened
sequence, after 42 tests and 20 rounds of shrinking:

172

6

lui x1, 262148
slli x1, x1, 1
lui x20, 262148 # Value used as data
ori x3, x1, 1 # A page address
lui x2, 262148
slli x2, x2, 1 # The same page address
lhu x4, x3[1] # Load from address
sh x20, x2[2] # Store to an overlapping byte
lhu x2, x3[1] # Divergence on reloading

The final sequence contains only three memory operations:
two loads with a single store in between, all to overlapping
addresses. This counterexample was found less than 10 sec-
onds into the TestRIG run, and was fixed within the hour. The
fix is reproduced below:
Bool hit = False;
for (Integer way = 0; way < num_ways; way = way + 1)

begin
Bool hit_at_way = (tags[way].state != EMPTY)

&& (tags[way].tag == pa_tag);
hit = hit || hit_at_way;
if (hit_at_way) // XXX This line was missing!

way_hit = fromInteger (way);
end

While this bug was trivial to resolve with a TestRIG
counterexample, it had escaped the entire development process
of the Flute processor. It was not found with the RISC-V unit-
test suite and was overwhelmingly difficult to debug from a
full software trace.

VIII. FUTURE OF TESTRIG

Despite having an array of models, simulators, and imple-
mentations supporting RVFI-DII, the generators of our initial
TestRIG verification engine, QCVEngine, are still rudimentary.

QCVEngine Generators: The Haskell infrastructure in
QCVEngine supports rich and complex generators. How-
ever, the generators for virtual memory, cache testing, and
floating-point operations can be enriched with more intelligent
directed-random templates for reaching deeper states.

Memory Concurrency Testing: TestRIG should support
memory-model testing. RVFI-DII instruction streams injected
with specified timestamps into multiple shared memory cores
should allow precise stimulation of concurrency behaviors.
These would require a more advanced verification engine that
tests RVFI traces not only for equivalence, but also against
higher-level memory-model semantics – as in AXE [9].

Pipeline Performance: Similarly, a higher-level model of
pipeline scheduling and performance could be used to analyze
the timing of instruction traces committed in a pipeline to dis-
cover performance bugs and track performance improvements.
The high level of control possible with direct instruction injec-
tion should enable precise detection of performance anomalies.

Model-derived Engine: TestRIG’s modular design en-
ables a variety of engines to drive RVFI-DII compatible RISC-
V implementations. With QCVEngine, the test maintenance
burden is greatly simplified, but not entirely eliminated. Past
experience suggests that even deep-state tests can be automat-
ically generated from a model specification, as with IBM’s
Genesys [1]. Previous CHERI work used tests generated from
a formal model of our CHERI-MIPS ISA (written in the L3 [6]
specification language), compiling from L3 to HOL4, and then
using constraint solving to automatically generate instruction
sequences to reach a desired state without triggering undefined

behavior. This approach has also been applied to the CHERI
ARM Morello instruction set starting from a Sail model [4],
[11]. Brian Campbell, a key contributor to this work, has also
begun on a Sail-OCaml VEngine with direct access to the data
structures of our Sail RISC-V model. This eliminates indepen-
dent encodings in the VEngine, and we expect this approach to
be taken further to automate generation of templates that target
specific deep states in the architectural model using constraint
solving.

IX. COUNTEREXAMPLE-DRIVEN DEVELOPMENT

TestRIG’s model-based testing leads to counterexample-
driven development, an advancement over test-driven devel-
opment, a widely known technique of software engineering.
Typical test-driven development for processor design requires
a basic working design before architectural unit tests can be
used. Counterexample-driven development using TestRIG can
automatically provide reduced stimulus for the most basic
features and can carry development all the way to advanced
interactions. The CHERI extension to Ibex was a striking
example. After extending Ibex with RVFI-DII support, a
summer intern was able to independently add full CHERI
functionality to Ibex in a month, due to the tight cycle of
reduced counterexamples provided by QCVEngine.

X. CONCLUSION

We have collated all the current TestRIG-compatible im-
plementations and verification engines into the open-source
TestRIG repository15. This repository includes documentation
that has been followed and improved multiple times by new
users. TestRIG accelerates development at all stages, providing
a tighter debugging loop than we have experienced in any
other processor development paradigm. We expect TestRIG to
lead the way to a standardized testing framework for RISC-
V that leverages instrumentation of open implementations, to
greatly simplify verification. Such a framework improves upon
traditional instruction-set-level unit testing in every way, and
subsumes specialized random test generators into a cohesive
community of easy-to-use verification tools.

REFERENCES

[1] Allon Adir et al. Genesys-pro: Innovations in test program generation
for functional processor verification. IEEE Design & Test of Computers,
21(2), 2004.

[2] Merav Aharoni, Sigal Asaf, Laurent Fournier, Anotoly Koifman, and
Raviv Nagel. FPgen–a test generation framework for datapath floating
point verification. In Eighth IEEE International High-Level Design
Validation and Test Workshop, pages 17–22, 2003.

[3] Alasdair Armstrong et al. Isa semantics for armv8-a, risc-v, and cheri-
mips. Proc. ACM Program. Lang., 3(POPL), jan 2019.

[4] Thomas Bauereiss et al. Verified security for the morello capability-
enhanced prototype arm architecture. Technical report, University of
Cambridge, Computer Laboratory, 2021.

[5] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. Acm sigplan notices, 46(4), 2011.

[6] Anthony Fox. Directions in ISA specification. In ITP, 2012.
[7] Shunning Jiang et al. PyH2: Using PyMTL3 to create productive and

open-source hardware testing methodologies. IEEE Design & Test,
38(2), 2020.

15https://github.com/CTSRD-CHERI/TestRIG

APPENDIX C. TESTRIG 173

7

[8] Trevor Jim et al. Cyclone: A safe dialect of C. In ATEC 2002, Berkeley,
CA, USA. USENIX.

[9] Matthew Naylor et al. A consistency checker for memory subsystem
traces. In FMCAD 2016. IEEE.

[10] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. Test-case reduction for C compiler bugs. In 33rd
ACM SIGPLAN Conference om Programming Language Design and
Implementation (PLDI 2012), 2012.

[11] Peter Sewell. Engineering with full-scale formal architecture: Morello,
cheri, armv8-a, and risc-v. In FMCAD 2021. IEEE.

[12] Shajid Thiruvathodi and Deepak Yeggina. A random instruction se-
quence generator for arm based systems. In 2014 15th International
Microprocessor Test and Verification Workshop. IEEE.

[13] Dai Duong Tran, Thi Giang Truong, Truong Giang Do, and The Duc
Do. Risc-v random test generator. In 2021 15th International Conference
on Advanced Computing and Applications (ACOMP), pages 150–155,
November 2021.

[14] Robert N. M. Watson et al. Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture (Version 8). Technical
Report UCAM-CL-TR-951, University of Cambridge, Computer Labo-
ratory, October 2020.

[15] Jonathan Woodruff et al. The CHERI capability model: Revisiting RISC
in an age of risk. In ISCA 2014, Minneapolis, MN, USA. IEEE.

174

Bibliography

[1] Kathirgamar Aingaran, Sumti Jairath, Georgios Konstadinidis, Serena Leung, Paul

Loewenstein, Curtis McAllister, Stephen Phillips, Zoran Radovic, Ram Sivaramakr-

ishnan, David Smentek, and Thomas Wicki. “M7: Oracle’s Next-Generation Sparc

Processor”. In: IEEE Micro 35.2 (2015), pp. 36–45. doi: 10.1109/MM.2015.35.

[2] Sam Ainsworth and Timothy M. Jones. “MarkUs: Drop-in use-after-free prevention

for low-level languages”. In: 2020 IEEE Symposium on Security and Privacy (SP).

2020, pp. 578–591. doi: 10.1109/SP40000.2020.00058.

[3] Periklis Akritidis et al. “Cling: A memory allocator to mitigate dangling pointers”.

In: 19th USENIX Security Symposium (USENIX Security 10). 2010.

[4] Jan Philipp Albrecht. “How the GDPR will change the world”. In: Eur. Data Prot.

L. Rev. 2 (2016), p. 287.

[5] Hesham Almatary. CHERI compartmentalisation for embedded systems. Tech. rep.

UCAM-CL-TR-976. University of Cambridge, Computer Laboratory, Nov. 2022.

doi: 10.48456/tr-976. url: https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-976.pdf.

[6] Ross Anderson, Chris Barton, Rainer Böhme, Richard Clayton, Michel JG Van

Eeten, Michael Levi, Tyler Moore, and Stefan Savage. “Measuring the cost of

cybercrime”. In: The economics of information security and privacy. Springer, 2013,

pp. 265–300.

[7] Arm. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite

ACE and ACE-Lite. 2013. url: https://developer.arm.com/documentation/

ihi0022/e/.

[8] Arm. Arm big.LITTLE. url: https://www.arm.com/technologies/big-little.

[9] Arm. Armv8.5-A Memory Tagging Extension. 2019. url: https://developer.

arm.com/documentation/102925/0100.

[10] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, KE Gray, R Norton-

Wright, C Pulte, S Flur, and Peter Sewell. The Sail instruction-set semantics

specification language. 2021. url: https://raw.githubusercontent.com/rems-

project/sail/sail2/manual.pdf.

175

https://doi.org/10.1109/MM.2015.35
https://doi.org/10.1109/SP40000.2020.00058
https://doi.org/10.48456/tr-976
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-976.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-976.pdf
https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/
https://www.arm.com/technologies/big-little
https://developer.arm.com/documentation/102925/0100
https://developer.arm.com/documentation/102925/0100
https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf
https://raw.githubusercontent.com/rems-project/sail/sail2/manual.pdf

176 BIBLIOGRAPHY

[11] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. “Chisel: Constructing

hardware in a Scala embedded language”. In: DAC Design Automation Conference

2012. 2012, pp. 1212–1221. doi: 10.1145/2228360.2228584.

[12] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel. “Scratchpad

memory: a design alternative for cache on-chip memory in embedded systems”. In:

Proceedings of the Tenth International Symposium on Hardware/Software Codesign.

CODES 2002 (IEEE Cat. No.02TH8627). 2002, pp. 73–78. doi: 10.1145/774789.

774805.

[13] Arash Baratloo, Navjot Singh, and Timothy Tsai. “Libsafe: Protecting critical ele-

ments of stacks”. In: White Paper (1999). url: http://www.research.avayalabs.

com/project/libsafe.

[14] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuffrida.

“Branch history injection: On the effectiveness of hardware mitigations against cross-

privilege Spectre-v2 attacks”. In: USENIX Security. Vol. 11. 2022.

[15] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence

Esswood, Ian Stark, Graeme Barnes, Robert NM Watson, and Peter Sewell. “Verified

security for the Morello capability-enhanced prototype Arm architecture”. In:

European Symposium on Programming. Springer, Cham. 2022, pp. 174–203.

[16] Emery D. Berger and Benjamin G. Zorn. “DieHard: Probabilistic Memory Safety

for Unsafe Languages”. In: SIGPLAN Not. 41.6 (June 2006), pp. 158–168. issn:

0362-1340. doi: 10.1145/1133255.1134000. url: https://doi.org/10.1145/

1133255.1134000.

[17] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. “Address obfuscation: An

efficient approach to combat a broad range of memory error exploits”. In: 12th

USENIX Security Symposium (USENIX Security 03). 2003.

[18] Anton Bikineev, Michael Lippautz, and Hannes Payer. Retrofitting Temporal Mem-

ory Safery on C++. May 2022. url: https://security.googleblog.com/2022/

05/retrofitting-temporal-memory-safety-on-c.html.

[19] Matt Bishop, Michael Dilger, et al. “Checking for race conditions in file accesses”.

In: Computing systems 2.2 (1996), pp. 131–152.

[20] Hand-J. Boehm, Alan Demers, and Mark Weiser. A garbage collector for C and

C++. url: https://hboehm.info/gc/.

[21] University of California. RISC-V Tests. 2014. url: https://github.com/riscv-

software-src/riscv-tests.

[22] University of Cambridge. Ibex. url: https://github.com/ctsrd-cheri/ibex.

[23] University of Cambridge and SRI International. CheriBSD. url: https://github.

com/ctsrd-cheri/cheribsd.

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/774789.774805
https://doi.org/10.1145/774789.774805
http://www.research.avayalabs.com/project/libsafe
http://www.research.avayalabs.com/project/libsafe
https://doi.org/10.1145/1133255.1134000
https://doi.org/10.1145/1133255.1134000
https://doi.org/10.1145/1133255.1134000
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://hboehm.info/gc/
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://github.com/ctsrd-cheri/ibex
https://github.com/ctsrd-cheri/cheribsd
https://github.com/ctsrd-cheri/cheribsd

BIBLIOGRAPHY 177

[24] University of Cambridge and SRI International. CheriFreeRTOS. url: https:

//github.com/CTSRD-CHERI/FreeRTOS-mirror.

[25] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von

Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. “A

systematic evaluation of transient execution attacks and defenses”. In: 28th USENIX

Security Symposium (USENIX Security 19). 2019, pp. 249–266.

[26] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. “Hardware Support

for Fast Capability-based Addressing”. In: Proceedings of the Sixth International

Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS VI. San Jose, California, USA: ACM, 1994, pp. 319–327. isbn:

0-89791-660-3. doi: 10.1145/195473.195579. url: http://doi.acm.org/10.

1145/195473.195579.

[27] Christopher Celio, David Patterson, and Krste Asanovic. “The Berkeley Out-

of-Order Machine (BOOM) Design Specification”. In: University of California,

Berkeley (2016).

[28] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random

Testing of Haskell Programs”. In: SIGPLAN Not. 46.4 (May 2011), pp. 53–64. issn:

0362-1340. doi: 10.1145/1988042.1988046. url: https://doi.org/10.1145/

1988042.1988046.

[29] Standard Performance Evaluation Corporation. CINT2006 (Integer Component of

SPEC CPU 2006). url: https://www.spec.org/cpu2006/CINT2006/.

[30] The MITRE Corporation. Common Weakness Enumeration. 2022. url: https:

//cwe.mitre.org.

[31] The MITRE Corporation. CWE-415: Double Free. 2018. url: https://cwe.mitre.

org/data/definitions/415.html.

[32] The MITRE Corporation. CWE-416: Use After Free. 2018. url: https://cwe.

mitre.org/data/definitions/416.html.

[33] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[34] Thurston HY Dang, Petros Maniatis, and David Wagner. “Oscar: A Practical

{Page-Permissions-Based} Scheme for Thwarting Dangling Pointers”. In: 26th

USENIX security symposium (USENIX security 17). 2017, pp. 815–832.

[35] DARPA Announces First Bug Bounty Program to Hack SSITH Hardware Defenses.

url: https://www.darpa.mil/news-events/2020-06-08a.

https://github.com/CTSRD-CHERI/FreeRTOS-mirror
https://github.com/CTSRD-CHERI/FreeRTOS-mirror
https://doi.org/10.1145/195473.195579
http://doi.acm.org/10.1145/195473.195579
http://doi.acm.org/10.1145/195473.195579
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://www.spec.org/cpu2006/CINT2006/
https://cwe.mitre.org
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://www.darpa.mil/news-events/2020-06-08a

178 BIBLIOGRAPHY

[36] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann,

Simon W. Moore, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Wesley

Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,

J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M. Nor-

ton, Michael Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. “CheriABI:

Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX

C Run-time Environment”. In: Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 379–393. isbn: 978-

1-4503-6240-5. doi: 10.1145/3297858.3304042. url: http://doi.acm.org/10.

1145/3297858.3304042.

[37] Jack B. Dennis and Earl C. Van Horn. “Programming Semantics for Multipro-

grammed Computations”. In: Commun. ACM 9.3 (Mar. 1966), pp. 143–155. issn:

0001-0782. doi: 10.1145/365230.365252. url: https://doi.org/10.1145/

365230.365252.

[38] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. “Hardbound:

Architectural Support for Spatial Safety of the C Programming Language”. In:

SIGPLAN Not. 43.3 (Mar. 2008), pp. 103–114. issn: 0362-1340. doi: 10.1145/

1353536.1346295. url: http://doi.acm.org/10.1145/1353536.1346295.

[39] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald Micha-

lik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic.

“A Comparative Survey of Open-Source Application-Class RISC-V Processor Im-

plementations”. In: Proceedings of the 18th ACM International Conference on

Computing Frontiers. CF ’21. Virtual Event, Italy: Association for Computing Ma-

chinery, 2021, pp. 12–20. isbn: 9781450384049. doi: 10.1145/3457388.3458657.

url: https://doi.org/10.1145/3457388.3458657.

[40] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald Micha-

lik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic.

“A Comparative Survey of Open-Source Application-Class RISC-V Processor Im-

plementations”. In: Proceedings of the 18th ACM International Conference on

Computing Frontiers. CF ’21. Virtual Event, Italy: Association for Computing Ma-

chinery, 2021, pp. 12–20. isbn: 9781450384049. doi: 10.1145/3457388.3458657.

url: https://doi.org/10.1145/3457388.3458657.

[41] Durumeric, Kasten, Adrian, Halderman, Bailey, Li, Weaver, Amann, Beekman,

Payer, and Paxson. “The Matter of Heartbleed”. In: ACM Conference on Internet

Measurement (2014).

[42] Michel J. G. van Eeten and Johannes M. Bauer. Economics of Malware. 2008.

doi: https : / / doi . org / https : / / doi . org / 10 . 1787 / 241440230621. url:

https://www.oecd-ilibrary.org/content/paper/241440230621.

https://doi.org/10.1145/3297858.3304042
http://doi.acm.org/10.1145/3297858.3304042
http://doi.acm.org/10.1145/3297858.3304042
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/1353536.1346295
https://doi.org/10.1145/1353536.1346295
http://doi.acm.org/10.1145/1353536.1346295
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
https://doi.org/https://doi.org/https://doi.org/10.1787/241440230621
https://www.oecd-ilibrary.org/content/paper/241440230621

BIBLIOGRAPHY 179

[43] Islam Elsadek and Eslam Yahya Tawfik. “RISC-V Resource-Constrained Cores: A

Survey and Energy Comparison”. In: 2021 19th IEEE International New Circuits

and Systems Conference (NEWCAS). 2021, pp. 1–5. doi: 10.1109/NEWCAS50681.

2021.9462781.

[44] Márton Erdős, Sam Ainsworth, and Timothy M. Jones. “MineSweeper: A “Clean

Sweep” for Drop-in Use-after-Free Prevention”. In: Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems. ASPLOS ’22. Lausanne, Switzerland: Association for Computing

Machinery, 2022, pp. 212–225. isbn: 9781450392051. doi: 10.1145/3503222.

3507712. url: https://doi.org/10.1145/3503222.3507712.

[45] Lawrence G. Esswood. “CheriOS: Designing an untrusted single-address-space

capability operating system utilising capability hardware and a minimal hypervisor”.

PhD thesis. University of Cambridge, July 2020.

[46] Matthew Field. “WannaCry cyber attack cost the NHS £92m as 19,000 appoint-

ments cancelled”. In: The Telegraph (Aug. 2018). url: https://www.telegraph.

co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-

19000-appointments-cancelled/.

[47] RISC-V Foundation. RISC-V Base Cache Management Operation ISA Extensions.

Nov. 2021. url: https://github.com/riscv/riscv-CMOs.

[48] Franz A Fuchs. “Analysis of Transient-Execution Attacks on the out-of-order

CHERI-RISC-V Microprocessor Toooba”. In: Masters Thesis (2021).

[49] Franz A Fuchs, Jonathan Woodruff, Simon W Moore, Peter G Neumann, and

Robert NM Watson. “Developing a Test Suite for Transient-Execution Attacks

on RISC-V and CHERI-RISC-V”. In: Fifth Workshop on Computer Architecture

Research with RISC-V (June 2021).

[50] Shay Gal-On and Markus Levy. “Exploring coremark a benchmark maximizing

simplicity and efficacy”. In: The Embedded Microprocessor Benchmark Consortium

(2012).

[51] Dapeng Gao and Tom Melham. “End-to-End Formal Verification of a RISC-V Pro-

cessor Extended with Capability Pointers”. In: 2021 Formal Methods in Computer

Aided Design (FMCAD). IEEE. 2021, pp. 24–33.

[52] Äına Linn Georges, Alix Trieu, and Lars Birkedal. “Le Temps Des Cerises: Efficient

Temporal Stack Safety on Capability Machines Using Directed Capabilities”. In:

Proc. ACM Program. Lang. 6.OOPSLA1 (Apr. 2022). doi: 10.1145/3527318. url:

https://doi.org/10.1145/3527318.

[53] Enes Göktaş, Angelos Economopoulos, Robert Gawlik, Elias Athanasopoulos,

Georgios Portokalidis, and Herbert Bos. “Bypassing clang’s safestack for fun and

profit”. In: Black Hat Europe (2016), p. 21.

https://doi.org/10.1109/NEWCAS50681.2021.9462781
https://doi.org/10.1109/NEWCAS50681.2021.9462781
https://doi.org/10.1145/3503222.3507712
https://doi.org/10.1145/3503222.3507712
https://doi.org/10.1145/3503222.3507712
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://github.com/riscv/riscv-CMOs
https://doi.org/10.1145/3527318
https://doi.org/10.1145/3527318

180 BIBLIOGRAPHY

[54] R. Grisenthwaite. “Arm Morello Evaluation Platform -Validating CHERI-based

Security in a High-performance System”. In: 2022 IEEE Hot Chips 34 Symposium

(HCS). Los Alamitos, CA, USA: IEEE Computer Society, Aug. 2022, pp. 1–22. doi:

10.1109/HCS55958.2022.9895591. url: https://doi.ieeecomputersociety.

org/10.1109/HCS55958.2022.9895591.

[55] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.

“MiBench: A free, commercially representative embedded benchmark suite”. In:

Proceedings of the Fourth Annual IEEE International Workshop on Workload

Characterization. WWC-4 (Cat. No.01EX538). 2001, pp. 3–14. doi: 10.1109/WWC.

2001.990739.

[56] Norm Hardy. “The Confused Deputy: (or why capabilities might have been in-

vented)”. In: ACM SIGOPS Operating Systems Review 22.4 (1988), pp. 36–38.

[57] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. 5th ed. Amsterdam: Morgan Kaufmann, 2012. isbn: 978-0-12-383872-8.

[58] Bluespec Inc. Bluespec Compiler. url: https://github.com/B-Lang-org/bsc.

[59] Bluespec Inc. Toooba. url: https://github.com/bluespec/Toooba.

[60] Dejice Jacob and Jeremy Singer. “Capability Boehm: Challenges and Opportunities

for Garbage Collection with Capability Hardware”. In: Proceedings of the 18th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.

VEE 2022. Virtual, Switzerland: Association for Computing Machinery, 2022,

pp. 81–87. isbn: 9781450392518. doi: 10.1145/3516807.3516823. url: https:

//doi.org/10.1145/3516807.3516823.

[61] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,

and Yanling Wang. “Cyclone: a safe dialect of C.” In: USENIX Annual Technical

Conference, General Track. 2002, pp. 275–288.

[62] Poonam Jindal and Brahmjit Singh. “RC4 Encryption-A Literature Survey”. In:

Procedia Computer Science 46 (2015). Proceedings of the International Conference

on Information and Communication Technologies, ICICT 2014, 3-5 December

2014 at Bolgatty Palace & Island Resort, Kochi, India, pp. 697–705. issn: 1877-

0509. doi: https://doi.org/10.1016/j.procs.2015.02.129. url: https:

//www.sciencedirect.com/science/article/pii/S1877050915001933.

[63] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N. M.

Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka, P. G.

Neumann, A. Mazzinghi, A. Richardson, S. Son, and A. T. Markettos. “Efficient

Tagged Memory”. In: 2017 IEEE International Conference on Computer Design

(ICCD). Nov. 2017, pp. 641–648. doi: 10.1109/ICCD.2017.112.

[64] Alexandre Joannou. “High-performance memory safety - Optimizing the CHERI

capability machine”. PhD thesis. University of Cambridge, May 2018.

https://doi.org/10.1109/HCS55958.2022.9895591
https://doi.ieeecomputersociety.org/10.1109/HCS55958.2022.9895591
https://doi.ieeecomputersociety.org/10.1109/HCS55958.2022.9895591
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://github.com/B-Lang-org/bsc
https://github.com/bluespec/Toooba
https://doi.org/10.1145/3516807.3516823
https://doi.org/10.1145/3516807.3516823
https://doi.org/10.1145/3516807.3516823
https://doi.org/https://doi.org/10.1016/j.procs.2015.02.129
https://www.sciencedirect.com/science/article/pii/S1877050915001933
https://www.sciencedirect.com/science/article/pii/S1877050915001933
https://doi.org/10.1109/ICCD.2017.112

BIBLIOGRAPHY 181

[65] Nicolas Joly, Saif ElSherei, and Saar Amar. Security analysis of CHERI ISA. Oct.

2020. url: https://github.com/microsoft/MSRC-Security-Research/blob/

master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf.

[66] Nikolai Joukov, Aditya Kashyap, Gopalan Sivathanu, and Erez Zadok. “An Electric

Fence for Kernel Buffers”. In: Proceedings of the 2005 ACM Workshop on Stor-

age Security and Survivability. StorageSS ’05. Fairfax, VA, USA: Association for

Computing Machinery, 2005, pp. 37–43. isbn: 159593233X. doi: 10.1145/1103780.

1103786. url: https://doi.org/10.1145/1103780.1103786.

[67] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol

Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing

Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste

Asanovic. “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation

in the Public Cloud”. In: 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA). 2018, pp. 29–42. doi: 10.1109/ISCA.2018.00014.

[68] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. “Hardware-based Always-On Heap

Memory Safety”. In: 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). 2020, pp. 1153–1166. doi: 10.1109/MICRO50266.

2020.00095.

[69] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. “SeL4: Formal Verifi-

cation of an OS Kernel”. In: Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA: Associa-

tion for Computing Machinery, 2009, pp. 207–220. isbn: 9781605587523. doi:

10.1145/1629575.1629596. url: https://doi.org/10.1145/1629575.1629596.

[70] Paul C Kocher. “On certificate revocation and validation”. In: International con-

ference on financial cryptography. Springer. 1998, pp. 172–177.

[71] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th

IEEE Symposium on Security and Privacy (S&P’19). 2019.

[72] S. Kostya, S. Evgenii, S. Aleksey, T. Vlad, and V. Dmitry. Hwasan: An aarch64-

specific compiler-based tool. 2018. url: https : / / clang . llvm . org / docs /

HardwareAssistedAddressSanitizerDesign.html.

[73] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. “DangSan: Scalable

Use-after-Free Detection”. In: Proceedings of the Twelfth European Conference

on Computer Systems. EuroSys ’17. Belgrade, Serbia: Association for Computing

Machinery, 2017, pp. 405–419. isbn: 9781450349383. doi: 10.1145/3064176.

3064211. url: https://doi.org/10.1145/3064176.3064211.

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://doi.org/10.1145/1103780.1103786
https://doi.org/10.1145/1103780.1103786
https://doi.org/10.1145/1103780.1103786
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/MICRO50266.2020.00095
https://doi.org/10.1109/MICRO50266.2020.00095
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3064176.3064211

182 BIBLIOGRAPHY

[74] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. “Code-Pointer Integrity”. In: The Continuing Arms Race: Code-

Reuse Attacks and Defenses. Association for Computing Machinery and Morgan

& Claypool, 2018, pp. 81–116. isbn: 9781970001839. url: https://doi.org/10.

1145/3129743.3129748.

[75] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre

DeHon. “Low-Fat Pointers: Compact Encoding and Efficient Gate-Level Imple-

mentation of Fat Pointers for Spatial Safety and Capability-Based Security”. In:

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-

tions Security. CCS ’13. Berlin, Germany: Association for Computing Machinery,

2013, pp. 721–732. isbn: 9781450324779. doi: 10.1145/2508859.2516713. url:

https://doi.org/10.1145/2508859.2516713.

[76] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long

Lu, and Wenke Lee. “Preventing use-after-free with dangling pointers nullification.”

In: NDSS. 2015.

[77] Kyung-Suk Lhee and Steve J. Chapin. “Buffer overflow and format string overflow

vulnerabilities”. In: Software: Practice and Experience 33.5 (2003), pp. 423–460.

doi: https://doi.org/10.1002/spe.515. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/spe.515. url: https://onlinelibrary.wiley.

com/doi/abs/10.1002/spe.515.

[78] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and

Chao Zhang. “PACMem: Enforcing Spatial and Temporal Memory Safety via ARM

Pointer Authentication”. In: Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’22. Los Angeles, CA, USA:

Association for Computing Machinery, 2022, pp. 1901–1915. isbn: 9781450394505.

doi: 10.1145/3548606.3560598. url: https://doi.org/10.1145/3548606.

3560598.

[79] Samuel Lindemer, Gustav Midéus, and Shahid Raza. “Real-time thread isolation

and trusted execution on embedded RISC-V”. In: Proceedings of the International

Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V). 2020.

[80] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”.

In: 27th USENIX Security Symposium (USENIX Security 18). 2018.

[81] Daiping Liu, Mingwei Zhang, and Haining Wang. “A Robust and Efficient Defense

against Use-after-Free Exploits via Concurrent Pointer Sweeping”. In: Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

CCS ’18. Toronto, Canada: Association for Computing Machinery, 2018, pp. 1635–

https://doi.org/10.1145/3129743.3129748
https://doi.org/10.1145/3129743.3129748
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1145/2508859.2516713
https://doi.org/https://doi.org/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.515
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.515
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598

BIBLIOGRAPHY 183

1648. isbn: 9781450356930. doi: 10.1145/3243734.3243826. url: https://doi.

org/10.1145/3243734.3243826.

[82] Chris A Mack. “Fifty years of Moore’s law”. In: IEEE Transactions on semicon-

ductor manufacturing 24.2 (2011), pp. 202–207.

[83] Nicholas D. Matsakis and Felix S. Klock II. “The Rust Language”. In: Ada Lett.

34.3 (Oct. 2014), pp. 103–104. issn: 1094-3641. doi: 10.1145/2692956.2663188.

url: http://doi.acm.org/10.1145/2692956.2663188.

[84] MiBench2 for SSITH. url: https://github.com/ctsrd-cheri/mibench2.

[85] Sparsh Mittal. “A Survey of Recent Prefetching Techniques for Processor Caches”.

In: ACM Comput. Surv. 49.2 (Aug. 2016). issn: 0360-0300. doi: 10.1145/2907071.

url: https://doi.org/10.1145/2907071.

[86] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. “Watchdog: Hard-

ware for safe and secure manual memory management and full memory safety”.

In: 2012 39th Annual International Symposium on Computer Architecture (ISCA).

2012, pp. 189–200. doi: 10.1109/ISCA.2012.6237017.

[87] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

“CETS: Compiler Enforced Temporal Safety for C”. In: SIGPLAN Not. 45.8 (May

2010), pp. 31–40. issn: 0362-1340. doi: 10.1145/1837855.1806657. url: https:

//doi.org/10.1145/1837855.1806657.

[88] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

“SoftBound: Highly Compatible and Complete Spatial Memory Safety for C”. In:

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’09. Dublin, Ireland: ACM, 2009, pp. 245–258.

isbn: 978-1-60558-392-1. doi: 10.1145/1542476.1542504. url: http://doi.acm.

org/10.1145/1542476.1542504.

[89] Matthew Naylor and Simon Moore. “A generic synthesisable test bench”. In: 2015

ACM/IEEE International Conference on Formal Methods and Models for Codesign

(MEMOCODE). IEEE. 2015, pp. 128–137.

[90] George C. Necula, Scott McPeak, and Westley Weimer. “CCured: Type-safe

Retrofitting of Legacy Code”. In: Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’02. Portland, Oregon:

ACM, 2002, pp. 128–139. isbn: 1-58113-450-9. doi: 10.1145/503272.503286. url:

http://doi.acm.org/10.1145/503272.503286.

[91] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation”. In: SIGPLAN Not. 42.6 (June 2007), pp. 89–100.

issn: 0362-1340. doi: 10.1145/1273442.1250746. url: http://doi.acm.org/10.

1145/1273442.1250746.

https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1145/2692956.2663188
http://doi.acm.org/10.1145/2692956.2663188
https://github.com/ctsrd-cheri/mibench2
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2907071
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1145/1837855.1806657
https://doi.org/10.1145/1837855.1806657
https://doi.org/10.1145/1837855.1806657
https://doi.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
https://doi.org/10.1145/503272.503286
http://doi.acm.org/10.1145/503272.503286
https://doi.org/10.1145/1273442.1250746
http://doi.acm.org/10.1145/1273442.1250746
http://doi.acm.org/10.1145/1273442.1250746

184 BIBLIOGRAPHY

[92] Robert HB Netzer and Barton P Miller. “What are race conditions? Some issues

and formalizations”. In: ACM Letters on Programming Languages and Systems

(LOPLAS) 1.1 (1992), pp. 74–88.

[93] Peter G Neumann. “Fundamental trustworthiness principles”. In: New Solutions

for Cybersecurity (2018).

[94] RISC-V Community News. Xuantie IOMMU from T-Head for RISC-V. url: https:

//riscv.org/blog/2022/04/xuantie-iommu-from-t-head-for-risc-v-

chong-ren-alibaba-cloud.

[95] R. Nikhil. “Bluespec System Verilog: efficient, correct RTL from high level specifica-

tions”. In: Proceedings. Second ACM and IEEE International Conference on Formal

Methods and Models for Co-Design, 2004. MEMOCODE ’04. 2004, pp. 69–70. doi:

10.1109/MEMCOD.2004.1459818.

[96] Gene Novark and Emery D. Berger. “DieHarder: Securing the Heap”. In: Proceedings

of the 17th ACM Conference on Computer and Communications Security. CCS ’10.

Chicago, Illinois, USA: Association for Computing Machinery, 2010, pp. 573–584.

isbn: 9781450302456. doi: 10.1145/1866307.1866371. url: https://doi.org/

10.1145/1866307.1866371.

[97] Henri J Nussbaumer. “The fast Fourier transform”. In: Fast Fourier Transform

and Convolution Algorithms. Springer, 1981, pp. 80–111.

[98] Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. “Fail-Safe

ANSI-C Compiler: An Approach to Making C Programs Secure Progress Report”. In:

Software Security — Theories and Systems. Ed. by Mitsuhiro Okada, Benjamin C.

Pierce, Andre Scedrov, Hideyuki Tokuda, and Akinori Yonezawa. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003, pp. 133–153. isbn: 978-3-540-36532-7.

[99] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. “Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System

Stack”. In: Proceedings of the ACM on Measurement and Analysis of Computing

Systems (2018).

[100] Mark S. Papamarcos and Janak H. Patel. “A Low-Overhead Coherence Solution for

Multiprocessors with Private Cache Memories”. In: Proceedings of the 11th Annual

International Symposium on Computer Architecture. ISCA ’84. New York, NY,

USA: Association for Computing Machinery, 1984, pp. 348–354. isbn: 0818605383.

doi: 10.1145/800015.808204. url: https://doi.org/10.1145/800015.808204.

[101] Mark Patton, Eric Gross, Ryan Chinn, Samantha Forbis, Leon Walker, and Hsinchun

Chen. “Uninvited Connections: A Study of Vulnerable Devices on the Internet of

Things (IoT)”. In: 2014 IEEE Joint Intelligence and Security Informatics Confer-

ence. 2014, pp. 232–235. doi: 10.1109/JISIC.2014.43.

https://riscv.org/blog/2022/04/xuantie-iommu-from-t-head-for-risc-v-chong-ren-alibaba-cloud
https://riscv.org/blog/2022/04/xuantie-iommu-from-t-head-for-risc-v-chong-ren-alibaba-cloud
https://riscv.org/blog/2022/04/xuantie-iommu-from-t-head-for-risc-v-chong-ren-alibaba-cloud
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/800015.808204
https://doi.org/10.1145/800015.808204
https://doi.org/10.1109/JISIC.2014.43

BIBLIOGRAPHY 185

[102] Vaughan Pratt. “Anatomy of the Pentium bug”. In: TAPSOFT ’95: Theory and

Practice of Software Development. Ed. by Peter D. Mosses, Mogens Nielsen, and

Michael I. Schwartzbach. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,

pp. 97–107. isbn: 978-3-540-49233-7.

[103] Qualcomm. Pointer Authentication on ARMv8.3. Jan. 2019. url: https://www.

qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-

auth-v7.pdf.

[104] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. “Precise Garbage

Collection for C”. In: Proceedings of the 2009 International Symposium on Memory

Management. ISMM ’09. Dublin, Ireland: Association for Computing Machinery,

2009, pp. 39–48. isbn: 9781605583471. doi: 10.1145/1542431.1542438. url:

https://doi.org/10.1145/1542431.1542438.

[105] Arm Research. University of Cambridge: CHERI blossoms. url: https : / /

community . arm . com / arm - research / b / articles / posts / university - of -

cambridge-cheri-blossoms.

[106] Microsoft Research. What’s the smallest variety of CHERI? url: https://msrc-

blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/.

[107] Alexander Richardson. Complete spatial safety for C and C++ using CHERI

capabilities. Tech. rep. UCAM-CL-TR-949. University of Cambridge, Computer

Laboratory, June 2020. doi: 10.48456/tr-949. url: https://www.cl.cam.ac.

uk/techreports/UCAM-CL-TR-949.pdf.

[108] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. “Return-

Oriented Programming: Systems, Languages, and Applications”. In: ACM Trans.

Inf. Syst. Secur. 15.1 (Mar. 2012), 2:1–2:34. issn: 1094-9224. doi: 10.1145/2133375.

2133377. url: http://doi.acm.org/10.1145/2133375.2133377.

[109] J. H. Saltzer and M. D. Schroeder. “The protection of information in computer

systems”. In: Proceedings of the IEEE 63.9 (Sept. 1975), pp. 1278–1308. issn:

0018-9219. doi: 10.1109/PROC.1975.9939.

[110] Hiroshi Sasaki, Miguel A. Arroyo, M. Tarek Ibn Ziad, Koustubha Bhat, Kanad

Sinha, and Simha Sethumadhavan. “Practical Byte-Granular Memory Blacklisting

Using Califorms”. In: Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO ’52. Columbus, OH, USA: Association

for Computing Machinery, 2019, pp. 558–571. isbn: 9781450369381. doi: 10.1145/

3352460.3358299. url: https://doi.org/10.1145/3352460.3358299.

[111] Herbert Schildt. The Annotated ANSI C Standard: American National Standard

for Programming Languages: C. 1990, pp. xvi + 219. isbn: 0-07-881952-0.

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://doi.org/10.1145/1542431.1542438
https://doi.org/10.1145/1542431.1542438
https://community.arm.com/arm-research/b/articles/posts/university-of-cambridge-cheri-blossoms
https://community.arm.com/arm-research/b/articles/posts/university-of-cambridge-cheri-blossoms
https://community.arm.com/arm-research/b/articles/posts/university-of-cambridge-cheri-blossoms
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/
https://doi.org/10.48456/tr-949
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
http://doi.acm.org/10.1145/2133375.2133377
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1145/3352460.3358299
https://doi.org/10.1145/3352460.3358299
https://doi.org/10.1145/3352460.3358299

186 BIBLIOGRAPHY

[112] F. B. Schneider. “Least privilege and more [computer security]”. In: IEEE Security

Privacy 1.5 (Sept. 2003), pp. 55–59. issn: 1540-7993. doi: 10.1109/MSECP.2003.

1236236.

[113] David Seal. ARM architecture reference manual. Pearson Education, 2001. Chap. A6.

[114] Abderrahmane Sensaoui, Oum-El-Kheir Aktouf, David Hely, and Stephane Di Vito.

“An In-depth Study of MPU-Based Isolation Techniques”. In: Journal of Hardware

and Systems Security 3 (4 Dec. 2019), pp. 365–381. doi: 10.1007/s41635-019-

00078-6. url: https://doi.org/10.1007/s41635-019-00078-6.

[115] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.

“{AddressSanitizer}: A Fast Address Sanity Checker”. In: 2012 USENIX Annual

Technical Conference (USENIX ATC 12). 2012, pp. 309–318.

[116] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. “On the Effectiveness of Address-Space Randomization”. In: Proceedings

of the 11th ACM Conference on Computer and Communications Security. CCS ’04.

Washington DC, USA: Association for Computing Machinery, 2004, pp. 298–307.

isbn: 1581139616. doi: 10.1145/1030083.1030124. url: https://doi.org/10.

1145/1030083.1030124.

[117] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yunheung Paek, et al. “CRCount:

Pointer invalidation with reference counting to mitigate use-after-free in legacy

C/C++”. In: Network and Distributed System Security Symposium. 2020, pp. 1–15.

[118] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu.

“FreeGuard: A Faster Secure Heap Allocator”. In: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. CCS ’17. Dallas,

Texas, USA: Association for Computing Machinery, 2017, pp. 2389–2403. isbn:

9781450349468. doi: 10.1145/3133956.3133957. url: https://doi.org/10.

1145/3133956.3133957.

[119] Nicholas Wei Sheng Sim. “Strengthening memory safety in Rust: exploring CHERI

capabilities for a safe language”. In: Masters Thesis (2020).

[120] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. “StkTokens: Enforcing

Well-bracketed Control Flow and Stack Encapsulation Using Linear Capabilities”.

In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 19:1–19:28. issn: 2475-1421.

doi: 10.1145/3290332. url: http://doi.acm.org/10.1145/3290332.

[121] James E Smith. “A study of branch prediction strategies”. In: 25 years of the

international symposia on Computer architecture (selected papers). 1998, pp. 202–

215.

[122] L. Szekeres, M. Payer, T. Wei, and D. Song. “SoK: Eternal War in Memory”.

In: 2013 IEEE Symposium on Security and Privacy. May 2013, pp. 48–62. doi:

10.1109/SP.2013.13.

https://doi.org/10.1109/MSECP.2003.1236236
https://doi.org/10.1109/MSECP.2003.1236236
https://doi.org/10.1007/s41635-019-00078-6
https://doi.org/10.1007/s41635-019-00078-6
https://doi.org/10.1007/s41635-019-00078-6
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1145/3290332
http://doi.acm.org/10.1145/3290332
https://doi.org/10.1109/SP.2013.13

BIBLIOGRAPHY 187

[123] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. “SecFuzz: Fuzz-

testing Security Protocols”. In: Proceedings of the 7th International Workshop on

Automation of Software Test. AST ’12. Zurich, Switzerland: IEEE Press, 2012,

pp. 1–7. isbn: 978-1-4673-1822-8. url: http://dl.acm.org/citation.cfm?id=

2663608.2663610.

[124] Llüıs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo

Valero. “CODOMs: Protecting Software with Code-Centric Memory Domains”. In:

SIGARCH Comput. Archit. News 42.3 (June 2014), pp. 469–480. issn: 0163-5964.

doi: 10.1145/2678373.2665741. url: https://doi.org/10.1145/2678373.

2665741.

[125] Philipp Wagner. An update on Ibex, our microcontroller-class CPU core. June 2019.

url: https://www.cl.cam.ac.uk/~jrrk2/blog/2019/06/an-update-on-ibex-

our-microcontroller-class-cpu-core/.

[126] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual,

Volume I: User-Level ISA. Mar. 2019.

[127] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual,

Volume II: Privileged ISA. Nov. 2021.

[128] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hes-

ham Almatary, Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall,

Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard Grisen-

thwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore,

Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson,

Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability Hardware En-

hanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8). Tech.

rep. UCAM-CL-TR-951. University of Cambridge, Computer Laboratory, Oct. 2020.

doi: 10.48456/tr-951. url: https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-951.pdf.

[129] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David

Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala,

Peter Sewell, and Peter G. Neumann. CHERI C/C++ Programming Guide. Tech.

rep. UCAM-CL-TR-947. University of Cambridge, Computer Laboratory, June 2020.

doi: 10.48456/tr-947. url: https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-947.pdf.

[130] Robert N. M. Watson, Jonathan Woodruff, Michael Roe, Simon W. Moore, and Peter

G. Neumann. Capability Hardware Enhanced RISC Instructions (CHERI): Notes

on the Meltdown and Spectre Attacks. Tech. rep. UCAM-CL-TR-916. University of

Cambridge, Computer Laboratory, Feb. 2018. url: https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-916.pdf.

http://dl.acm.org/citation.cfm?id=2663608.2663610
http://dl.acm.org/citation.cfm?id=2663608.2663610
https://doi.org/10.1145/2678373.2665741
https://doi.org/10.1145/2678373.2665741
https://doi.org/10.1145/2678373.2665741
https://www.cl.cam.ac.uk/~jrrk2/blog/2019/06/an-update-on-ibex-our-microcontroller-class-cpu-core/
https://www.cl.cam.ac.uk/~jrrk2/blog/2019/06/an-update-on-ibex-our-microcontroller-class-cpu-core/
https://doi.org/10.48456/tr-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://doi.org/10.48456/tr-947
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf

188 BIBLIOGRAPHY

[131] WCCFTech. x86 and Arm rival, RISC-V architecture ships 10 billion cores. url:

https://wccftech.com/x86-arm-rival-risc-v-architecture-ships-10-

billion-cores.

[132] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth,

Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexan-

der Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka,

Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Nor-

ton, Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore,

Peter G. Neumann, and Robert N. M. Watson. “Cornucopia: Temporal Safety for

CHERI Heaps”. In: 2020 IEEE Symposium on Security and Privacy (SP). 2020,

pp. 608–625. doi: 10.1109/SP40000.2020.00098.

[133] Emmett Witchel, Josh Cates, and Krste Asanović. “Mondrian Memory Protection”.

In: Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems. ASPLOS X. San Jose, California:

ACM, 2002, pp. 304–316. isbn: 1-58113-574-2. doi: 10.1145/605397.605429. url:

http://doi.acm.org/10.1145/605397.605429.

[134] Claire Wolf. End-to-end formal ISA verification of RISC-V processors with riscv-

formal. url: http://www.clifford.at/papers/2017/riscv-formal.

[135] J. Woodruff, A. Joannou, H. Xia, B. Davis, P. G. Neumann, R. N. M. Watson, S.

Moore, A. Fox, R. Norton, D. Chisnall, and A. Fox. “CHERI Concentrate: Practical

Compressed Capabilities”. In: IEEE Transactions on Computers (2019), pp. 1–1.

issn: 0018-9340. doi: 10.1109/TC.2019.2914037.

[136] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis,

B. Laurie, P. G. Neumann, R. Norton, and M. Roe. “The CHERI capability

model: Revisiting RISC in an age of risk”. In: 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA). June 2014, pp. 457–468. doi: 10.

1109/ISCA.2014.6853201.

[137] Jonathan D. Woodruff. CHERI: A RISC capability machine for practical memory

safety. Tech. rep. UCAM-CL-TR-858. University of Cambridge, Computer Lab-

oratory, July 2014. doi: 10.48456/tr-858. url: https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-858.pdf.

[138] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael

Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore,

Robert N. M. Watson, and Timothy M. Jones. “CHERIvoke: Characterising Pointer

Revocation Using CHERI Capabilities for Temporal Memory Safety”. In: Proceed-

ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

MICRO ’52. Columbus, OH, USA: Association for Computing Machinery, 2019,

pp. 545–557. isbn: 9781450369381. doi: 10.1145/3352460.3358288. url: https:

//doi.org/10.1145/3352460.3358288.

https://wccftech.com/x86-arm-rival-risc-v-architecture-ships-10-billion-cores
https://wccftech.com/x86-arm-rival-risc-v-architecture-ships-10-billion-cores
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/605397.605429
http://doi.acm.org/10.1145/605397.605429
http://www.clifford.at/papers/2017/riscv-formal
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.48456/tr-858
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-858.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-858.pdf
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288

BIBLIOGRAPHY 189

[139] Hongyan Xia, Jonathan Woodruff, Hadrien Barral, Lawrence Esswood, Alexandre

Joannou, Robert Kovacsics, David Chisnall, Michael Roe, Brooks Davis, Edward

Napierala, John Baldwin, Khilan Gudka, Peter G. Neumann, Alexander Richardson,

Simon W. Moore, and Robert N. M. Watson. “CheriRTOS: A Capability Model for

Embedded Devices”. In: 2018 IEEE 36th International Conference on Computer

Design (ICCD). 2018, pp. 92–99. doi: 10.1109/ICCD.2018.00023.

[140] AMD Xilinx. UltraScale Architecture and Product Data Sheet: Overview. Nov. 2022.

url: https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview.

[141] AMD Xilinx. Vivado Design Suite User Guide: Power Analysis and Optimization

(UG907). Oct. 2022. url: https://docs.xilinx.com/r/en-US/ug907-vivado-

power-analysis-optimization.

[142] Shengjie Xu, Wei Huang, and David Lie. “In-Fat Pointer: Hardware-Assisted Tagged-

Pointer Spatial Memory Safety Defense with Subobject Granularity Protection”.

In: Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS ’21. Virtual, USA:

Association for Computing Machinery, 2021, pp. 224–240. isbn: 9781450383172. doi:

10.1145/3445814.3446761. url: https://doi.org/10.1145/3445814.3446761.

[143] Lok Yan. System Security Integration Through Hardware and Firmware (SSITH).

May 2021. url: https://www.darpa.mil/program/ssith.

[144] Yves Younan. “FreeSentry: protecting against use-after-free vulnerabilities due to

dangling pointers.” In: NDSS. 2015.

[145] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind. “Composable Building Blocks

to Open up Processor Design”. In: 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). Aug. 2018, pp. 68–81. doi: 10.1109/

MICRO.2018.00015.

[146] Tong Zhang, Dongyoon Lee, and Changhee Jung. “BOGO: Buy Spatial Mem-

ory Safety, Get Temporal Memory Safety (Almost) Free”. In: Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Associ-

ation for Computing Machinery, 2019, pp. 631–644. isbn: 9781450362405. doi:

10.1145/3297858.3304017. url: https://doi.org/10.1145/3297858.3304017.

[147] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Triandopoulos, and

Jun Xu. “Debloating Address Sanitizer”. In: 31st USENIX Security Symposium

(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022, pp. 4345–

4363. isbn: 978-1-939133-31-1. url: https://www.usenix.org/conference/

usenixsecurity22/presentation/zhang-yuchen.

https://doi.org/10.1109/ICCD.2018.00023
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/r/en-US/ug907-vivado-power-analysis-optimization
https://docs.xilinx.com/r/en-US/ug907-vivado-power-analysis-optimization
https://doi.org/10.1145/3445814.3446761
https://doi.org/10.1145/3445814.3446761
https://www.darpa.mil/program/ssith
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1145/3297858.3304017
https://doi.org/10.1145/3297858.3304017
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen

	Glossary
	Introduction
	Architectural security
	Hypotheses
	Contributions
	Publications
	Open-source contributions
	Thesis overview

	Background
	Processor design
	RISC-V
	Bluespec

	Spatial safety
	Deployed protections
	Related research

	Temporal safety
	Related research

	CHERI
	Model
	Microarchitecture
	Software

	CHERI for microcontrollers
	Characteristics of microcontrollers
	Baseline processors
	Architectural changes
	Merged register file
	Encoding mode
	Secure Entry capabilities
	CHERI-optimised compressed instructions

	Microarchitectural implementation
	Capability decoding
	Bounds check
	Additional instructions
	Cache modifications
	Memory subsystem changes
	Other changes

	Flute
	Branch prediction
	Timing

	TestRIG
	QuickCheck Vengine
	Implementing RVFI-DII
	Testing with TestRIG
	Other verification

	Future work
	Summary

	CHERI microcontroller evaluation
	Baseline core information
	Area
	Frequency
	Performance
	Legacy performance
	Capability performance

	Power
	Security
	Future work
	Summary

	CHERI for application-class processors
	Characteristics of application-class processors
	Baseline processor
	CHERI implementation
	CHERI instruction pipeline
	Memory pipeline
	PCC implementation
	Special Capability Register implementation
	Extending structures
	Safe speculation

	Avoiding exceptions
	Fast bounds check

	Software and verification
	Future work
	Summary

	CHERI application-class processor evaluation
	Baseline core information
	Area
	Frequency
	Performance
	Legacy performance
	Capability performance
	Microcontroller benchmarks

	Power
	Security
	Future work
	Summary

	Accelerating temporal safety
	High-level approach
	Sweeping revocation

	Optimising sweeping revocation
	Virtual memory
	As-user memory accesses
	Prefetching
	Dedicated sweeper

	Finding tags
	Toooba memory subsystem
	Initial implementation
	Avoiding data loads
	Avoiding cache pollution
	Relaxing consistency

	Evaluation
	Alternative capability semantics
	Linear capabilities
	Indirect capabilities

	Future work
	Summary

	Conclusion
	Answering hypotheses
	Overall conclusions
	Future work

	CHERI RISC-V Instructions
	Capability inspection
	Capability modification
	Memory access
	Control flow
	Other instructions

	Benchmarks
	CoreMark
	MiBench
	SPEC

	TestRIG
	Bibliography

