Technical Report TR

Number 985

Computer Laboratory

Scalable agent-based models
for optimized policy design:
applications to the economics
of biodiversity and carbon

Sharan S. Agrawal

August 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2023 Sharan S. Agrawal

The following report is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) licence:

https://creativecommons.org/licenses/by/4.0/

UNIVERSITY OF CAMBRIDGE and the Coat of Arms are
registered trade marks of The Chancellor, Masters, and
Scholars of the University of Cambridge (“University
Marks”). For the avoidance of doubt, the University Marks
are not included in this Creative Commons licence.

This technical report is based on a dissertation submitted
June 2023 by the author for the degree of Master of
Philosophy (Advanced Computer Science) to the University
of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://creativecommons.org/licenses/by/4.0/
https://www.cl.cam.ac.uk/techreports/

Abstract

As the world faces twinned crises of climate change and biodiversity loss, the need for
integrated policy approaches addressing both is paramount. To help address this, a new
agent-based model (ABM), the VDSK-B, was developed. Using Dasgupta’s review of the
economics of biodiversity [1], it builds on the Dystopian Schumpeter meets Keynes (DSK)
climate economics model [2] to link together the climate, economy and biosphere. To our
knowledge, this is the first ABM proposed that integrates all 3 key elements.

Existing ABM frameworks struggled with global policy design needs due to their inability
to scale to planetary-sized models, and optimize model parameters at the large scales
needed for policy design. A new ABM framework called SalVO was built using a formalism
for ABMs that expressed agent updates as recursive applications of pure agent functions.
This formalism differs from existing computational ABM models but is shown to be
expressive enough to emulate a Turing complete language. SalVO is built on a JAX
backend and designed to be scalable, vectorized, and optimizable. Employing hardware
acceleration, tests showed it was more performant and more able to scale on a single
machine than any existing ABM framework, such as FLAME (GPU) [3].

Techniques for using backpropagation to create optimized policies differentiable, deter-
ministic ABMs were further extended and implemented in SalVO. A novel protocol, GP-
ABM, using William’s REINFORCE algorithm [4], was developed to optimize parameters
in non-differentiable, stochastic ABMs. Both approaches are shown to be able to optimize
ABMs for thousands of parameters, with backpropagation learning a highly non-trivial
policy to move the centroid of a flock to a target location. This represents an innovation
over current state-of-the-art techniques, such as Simulated Minimum Distance, which do
not scale past fifty at most.

Finally, the VDSK-B model was implemented in SalVO, showing its capability of ex-
pressing highly complex ABMs. SalVO proved to be highly scalable, running a 5x bigger
version of VDSK-B using just 4% of the time taken by the current open-source imple-
mentation, significantly strengthening its position as a preferred tool for large-scale ABM
studies. While further work remains to be done on VDSK-B’s calibration and correctness,
SalVO’s marriage of speed, scale and optimization has the potential to reshape how we
approach, design, and apply agent-based models.

Acknowledgements

I would like to thank my supervisors Anil Madhavapeddy and Srinivasan Keshav for their
guidance, patience, advice, ideas and time they kindly gave throughout the year. I'd like
to thank them for introducing me to such a wonderful and impactful field of study and
for their enthusiasm and vision for the work we conducted; I look forward to the work yet
to be done.

Contents

1 Introduction 7
1.1 Thesis e 7
1.2 Backgroundo 7
1.3 The importance of simulation in policy design 8
1.4 Agent-based models, and the economics of biodiversity 8
1.5 Summary of research o 9

2 Gaps in existing research 11
2.1 Biodiversity modelling and ecological economics 11

2.1.1 ABMs in climate economics L. 11
2.2 Agent based model simulation frameworks 13
2.2.1 Comparable ABM computation frameworks 13
2.2.2 SalVO’s design strengths 0oL 14
2.2.3 Learningin ABMs oo 15

3 SalVO: Scalable, vectorized, and optimizable agent based model simu-
lations 17
3.1 Introductiono 17
3.2 ABMs formalized 18

3.2.1 SalVO ABM formalism 18
3.2.2 Shared state and dependency graphs 19
3.2.3 FEmulating a Turing complete language 20
3.3 Achieving scale 20
3.3.1 Vectorization and hardware acceleration 21
3.4 Huge scale parameter optimisation and calibration 21
3.4.1 Parameter calibration with backpropagation 21
3.4.2 Policy gradient-based parameter calibration 22
3.4.3 GP-ABM 24
3.5 SalVO architecture and implementation 25
3.5.1 Design requirements 25
3.5.2 Platform 26
3.5.3 Core architecture and implementation 26
3.5.4 Example ABM implementations 29
4 Background in ecological economics 31
4.1 Review of the Dasgupta framework 31
4.1.1 Introduction 31
4.1.2 Summary of model 32
4.1.3 Criticisms 33
4.2 Review of the Dystopian Schumpeter meeting Keynes (DSK) model 33

>

The Vectorized Dystopian Schumpeter meeting Keynes, with Biodiver-

sity (VDSK-B) Model

5.1 Filling in the blanks: vectorizing the DSK model
5.1.1 Capital good firmso
5.1.2 Consumption good firms L.
5.1.3 Labour market
5.1.4 Emergyindustry
5.1.5 Climate box
5.1.6 Imitation process

5.2 Incorporating Dasgupta into VDSK L.
5.2.1 Modifications to incorporate Dasgupta

Evaluation

6.1 VDSK-B
6.1.1 Implementation L
6.1.2 Speed andscale

6.2 SalVO evaluation
6.2.1 Speed and hardware acceleration
6.2.2 Learning

Discussion, conclusion and future work

7.1 Discussion and criticism Lo
71.1 VDSK-B
7.1.2 SalVO . . . o

7.2 Conclusion

7.3 Future work

The Dystopian Schumpeter meeting Keynes (DSK) Model
A.1 Capital good firms
A.2 Consumption good firms oL

A.3 Labour

A4 The banking sector
A5 Energyindustry
A6 Climate box

B Criticisms of and issues with the DSK model

Dasgupta on the economics of biodiversity

C.0.1
C.0.2
C.0.3
C.04
C.0.5
C.0.6
C.0.7
C.0.8
C.0.9

Introduction
The Impact Inequality
The model
Total Factor Productivity (TFP)
Human impact on the biosphere
The human population
Human capital, produced capital, innovation and investment
Summarizing assumptions
The Utility Maximization Problem

D Additional Future Work

D.1 ABMs as timely data flow
D.2 Extensions to VDSK-Bo

Chapter 1

Introduction

1.1 Thesis

Integrated global policies addressing both biodiversity and climate change are desperately
needed, and agent-based models (ABMs) are a powerful instrument to understand the
effect of such policies on the world. Such ABMs will be highly complex and huge, and
better simulation tools are needed for policymakers to express the model in a way that is
easy to scale, fast, painless to calibrate, and optimizable.

1.2 Background

Our world is facing several simultaneous existential threats, including climate change and
the decimation of global biodiversity [5]. So terrible has human impact been on our bio-
sphere, that human activity is said to have triggered the sixth major extinction event in
the history of our planet [6]. The implications of climate change and biodiversity loss are
profound; we rely on the ecosystem for everything from fundamental biogeochemical phe-
nomena, to raw material provision and agriculture, to regulating and minimizing extreme
weather events [7].

While scientific advances are critical in addressing these challenges, transformations in
the aggregate behaviour of society will be the defining factor in whether humanity can
meet these challenges [8]. Having already exceeded the safe operating space for three out
of nine identified planetary boundaries [5], that of climate change, biodiversity loss, and
changes in the nitrogen cycle, the need for global policy changes capable of simultaneously
addressing the multiple challenges we face has never been more pressing. Global calls for
an integrated policy response towards both biodiversity and climate change [9] recognize
the crucial interrelation of the two challenges and that they cannot be effectively addressed
alone [10].

Ultimately humanity’s advancement has come from treating biosphere services as “free”
[1]. The biosphere cannot be treated as external to humanity’s progress; it must be treated
as part of our collective wealth. Economic and social policies must incentivise changes in
societal behaviours to reflect the value placed in our biosphere.

7

1.3 The importance of simulation in policy design

Global policymaking is extraordinarily hard: aside from geopolitical frictions, the systems
we attempt to control are tremendously complex with many moving parts, and there is no
guarantee the policies we design will work as intended. Policies are even harder to change
once made; policies made now will have a lasting impact on our future. Consequently,
while modelling these systems is daunting, and can be misleading, it is also essential in
providing an environment where hypotheses can be tested. To paraphrase George E. P.
Box no model is correct, but some are useful. A useful and understandable model and a
powerful framework to express and optimize it, when carefully used, is an invaluable aid
to policy making [11].

The field of ecological economics recognizes the trade-off inherent between economic
growth, and ecological costs [12, 13]. Common modelling approaches use Integrated As-
sessment Models (IAM) [14], often with Dynamic Stochastic General Equilibrium (DSGE)
! models (e.g. [15]) for economic components. However, well-documented limitations in
DSGE economic models exist, based on its strong assumptions of rationality, representa-
tive agents, and, most importantly, equilibrium [16] [17]; these challenges are by definition
putting society into disequilibrium. A promising alternative approach are agent based
models which don’t need assumptions of rational individuals and can capture environ-
ments whose equilibrium is in flux and whose dynamics are immensely complex; ABMs
are consequently widely recognized as powerful alternatives to DSGE models for climate
economics [18] [17].

1.4 Agent-based models, and the economics of biodi-
versity

ABMs are digital laboratories in which you can test hypotheses, capture emergent and
highly non-linear phenomena, and design interventions. By specifying the behaviour of
individual agents and the rules of an environment in which they interact, ABMs allow
the study of complex systems with emergent phenomena. However, ABMs are only as
useful as their parameters; powerful calibration and optimisation of ABM parameters
are needed to create better ABMs and derive more insights. As shown in §2, current
ABM frameworks fall short of the scales and utility needed for policy design at the scales
discussed here.

This research proposes extensions to ABM simulation theory that are better adapted to
the massive-scale simulations needed to understand macroeconomic emergent phenomena.
It develops calibration and optimisation tools rooted in machine learning techniques to
develop possible economic policies to incentivize better aggregate behaviour to address
these challenges. It uses techniques from neural network training and multi-agent rein-
forcement learning (MARL) to derive powerful methods to optimize and calibrate ABM
parameters. The research implements a new Python-based library called SalVO (§3) in
which massive ABMs can be built and easily deployed across large networks of hetero-
geneous devices, and use hardware acceleration effectively to achieve scale and efficiency.
It can also leverage the learning frameworks derived to easily calibrate ABM parameters

'DSGE models are a macroeconomic framework that is built around modelling demand and supply
by assuming what ”representative” agents of the economy (households, firms, etc.) and their utilities
look like. It uses the assumption that the interaction between demand and supply will create an overall
equilibrium.

and create optimized policies.

To start applying SalVO effectively to the simulation and optimisation of societal be-
haviours in the context of climate challenges, this work will also start operationalizing
influential work by Dasgupta [1] on the economics of biodiversity. Dasgupta provides a
view into the economics of biodiversity viewed from a traditional economic perspective,
with equilibrium dynamics and rational agents forming the bedrock of the analysis but
with an addition of natural capital into the mix. Traditionally economics treats biosphere
services, such as climate regulation, as free services. The Dasgupta model treats it as
another capital factor that forms the wealth of society. If society maximizes wealth over
time in a traditional capitalist setting, it must also seek to maintain or improve natural
capital, rather than degrade it. This influential perspective on the biosphere’s role in the
economy and society is currently based on a very theoretical view of the economy. This
work will propose modifications of existing influential ABMs modelling climate economics
to incorporate the key elements of the framework Dasgupta proposed. This has the key
benefit of looking at the model from a disequilibrium, agent-based perspective, as well as
producing simulation data that can be analysed for insight.

In summary, this work aims to achieve two key outcomes:

1. The development of a new ABM framework that has better performance and scal-
ability, and allows for huge-scale parameter learning, optimized policy design, and
ABM calibration.

2. The proposal and implementation in SalVO of a new ABM that captures the inter-
related dynamics of society, the climate, and the biosphere in ways in which their
study and policy design are useful. It will be based on operationalizing the Dasgupta
report [1].

Ultimately, the quantity we are concerned with is the ability of our earth to sustain life
and human enterprise. Biodiversity is often defined as the variety of different forms of
life seen on our planet, and it isn’t linked to the ability of our biosphere to sustain life.
However, many studies have found that biodiversity is one of the most critical factors
in our biosphere’s ability to sustain itself and withstand stresses and shocks [19, 20, 21].
Therefore, when we refer to biodiversity, we use it interchangeably as both the variety in
forms of life and the biosphere’s ability to sustain life.

1.5 Summary of research

This work addresses three key areas which have either not been addressed, or in which
better solutions can be created:

1. Biodiversity: no existing ABM marries biodiversity and the biosphere at a planetary
scale with climate change and the economy.

e Using a review of the principal components of the Dasgupta report [1] in §4, §5
integrates the key insights into a proposed ABM called the VDSK-B ? model,
built to take advantage of the benefits offered by SalVO.

e While VDSK-B is proposed and implemented, it is not fully operationalized due
to the immense amount of research and calibration needed to actually match
the biodiversity mechanisms with reality, beyond the scope of this report.

2Vectorized Dystopian Schumpeter meets Keynes, with Biodiversity

e By operationalizing the Dasgupta framework within an existing ABM of cli-
mate economics, we allow the design of integrated policies addressing both
climate change and biodiversity loss.

2. ABM scalability: no existing ABM framework allows for the speed and easy scala-
bility (defined more precisely in §3) achieved by SalVO.

e An expressive formalism of ABMs allows us to build a computational model
to easily scale ABMs across large networks of heterogeneous devices in a way
that takes advantage of hardware acceleration using vectorization.

e SalVO, presented in §3, implements this framework as a Python library, and
§6 presents benchmarks of common ABMs vs. existing frameworks.

3. ABM trainability: we develop a novel methodology to train ABMs using backprop-
agation and MARL (§3.4.3).

e This ABM formalism also allows us to develop tools to develop optimized
policies in the underlying ABMs.

e The theory and implementation in SalVO are described in §3, and empirical
tests are summarized in §6.

10

Chapter 2

Gaps in existing research

2.1 Biodiversity modelling and ecological economics

2.1.1 ABMs in climate economics

ABMs have already found a home in ecological economics simulations, from a farmer’s
decision-making affecting nitrogen run-off and water quality [22] and agroforestry [23], to
emissions trading [24] and interactions of climate and monetary policy [25]. Since both
ecology and economics involve dynamics that emerge from the interaction of millions or
more heterogeneous participants whose combined (not necessarily equilibrium) interac-
tions determine the overall state, ABMs have found widespread recognition as a useful
modelling tool [26, 27].

However, while extensive studies of both the general and climate policy-specific studies
of the interactions of the climate and economy exist, no ABM integrating the study of
biodiversity as well into the climate/economic models at a global scale has been created.
Existing approaches tend to focus on specific elements of the economy and its interaction
with the biosphere, such as fisheries [28], green energy transitions [29], forestry [30], or
the use of bioproducts [31]. A framework for describing broad-based interactions of the
economy with the biosphere has been missing until the recent work by Dasgupta [1] on
the economics of biodiversity. While key influential ABMs like ENGAGE [32], DSK [2]
and erin [33] provide views into the effect of climate policies on the economy and climate
through CO2 emissions and global temperatures, and the extensive survey by Hardt [27]
details several ABMs studying different interactions with economic agents and climate
policies, none specifically capture the interaction between the economy and the biosphere.

Recent studies have shown that current policy is insufficient at preventing the loss of
biodiversity, [34] and approaches such as market-based solutions are inadequate [35]. In-
tegrating biodiversity into such ABMs is useful to help examine what policies can be
introduced, either regulatory or market-based, to better protect biodiversity and the bio-
sphere.

Rather than implementing an ABM capturing climate dynamics, the global economy;,
and the biosphere from scratch, we will build on an existing, influential ABM with peer-
reviewed and accepted methodology. To determine which ABM is most appropriate, we
carried out a gap analysis on some of the most influential and relevant ABMs in literature
in table 2.1.

The categories being assessed include whether it captures the key state variables in the

11

Dasgupta framework, including the biosphere stock (some measure of the biosphere, e.g.
the carbon stock it contains), human capital (changes in human populations and our
earnings/ability to consume), technological innovation and productivity, produced capital
(e.g. roads, machinery, infrastructure, etc.), and natural resource extraction (e.g. mining,
forestry). We also look at whether market-based solutions, such as carbon markets,
useful for future explorations of market-based mechanisms for biodiversity preservation,
are included. Finally, we look for a model for biosphere impact, some measure of how
the economy/climate affects biosphere dynamics, and the inclusion of emissions from
economic activity into a dynamically updating climate model. It also includes a qualitative
assessment of model features, such as how easy the model is to work with and extend,
how configurable the simulation is, and whether the framework is modular.

Carbon Flux from Economic Activity

Model Biosphere Stock (S)
Model Human Capital (H)
Model Productivity (A)
Model Produced Goods (K)
Model Biosphere Services (R)
Model for Carbon Markets
Model for Biosphere Impact
Simulation Configurable

Model Extensible

Framework Modular

Open source implementation

DSK [2 =7]
Macroeconomic Eif%%E 132 A A
/A]gll\l/[mate Policy MADIAMS [36]

Lagom RegiO [37]

Stock Flow [38] Vv

{

CETS [39]
Auctions [40]
Andrade et al [41]

Carbon Credit
Based ABM

=

Biodiversity Ng et al [22]
Focused ABM Noeldeke [23]

Table 2.1: Gap analysis of existing ABMs vs. requirements for ABM being developed

Out of the surveyed models, the Dystopian Schumpeter meets Keynes (DSK) model [2]
was the obvious candidate for extension. Not only did it capture a significant number of
features needed for the Dasgupta model, it also was structured in a modular, extensible
manner, and had an open-source implementation available. Other ABMs, such as the
Stock Flow Fund Model [38] captured a number of important features but were not well
structured and hard to work with, with no clear logical separation between the different
components, and lacking an open source implementation.

12

2.2 Agent based model simulation frameworks

2.2.1 Comparable ABM computation frameworks

During the implementation of the proposed ABM, it became apparent that existing ABM
frameworks were lacking in several important areas including;:

e Scale: planetary-sized ABMs, as needed for global climate policy, will need an ABM
framework that is easily distributed across a network of devices. An example of such
a huge ABM is the EURACE ABM of the European economy [42].

e Hardware acceleration/speed: Frameworks running on the CPU on a single thread
such as Mesa [43] will never be performant for large ABMs, and hardware acceler-
ation is needed for fast simulations on large, complex models.

e Usability: Frameworks like FLAME [44] permit hardware acceleration but have a
steep learning curve and complex DSL, and are difficult to debug, making developing
truly huge models hard.

e Calibration: No framework found natively offers calibration as part of its toolkit.
Calibration is widely recognized as one of the key challenges to ABM use [18], and
solutions should be part of the framework.

e Creating optimized policies: No framework also allows for the automated design of
optimal policies using global loss functions. We see this as a critical requirement for
any ABM framework used for global policy design.

Existing ABM frameworks are diverse in their abilities. Several ABM frameworks aim
at being usable and easy to develop in, but not performant. For instance, Mesa [43]
is a very popular Python library for ABMs, built with the principle of being natively in
Python. It is extremely usable, built by defining agent types as classes that contain within
them a set of agents with state. However, computation happens via a single process on
the CPU (bound by Python’s GIL), and it is consequently extremely slow and hard to
scale [45]. MASON [46] and NetLogo [47] were among the earliest general-purpose ABM
frameworks that were developed in Java. However, NetLogo, built with simplicity in mind,
can’t handle complex ABMs, and MASON requires significant expertise and familiarity
with a complex DSL to implement, and still suffers from poor performance due to the lack
of hardware acceleration [45]. Repast [48] is a framework originally built in Java built on
a tick-based event framework with complex scheduling that is very expressive, but again
lacks scalability from distributional capabilities and is slow and hard to implement due
to its dependence on Java. Several smaller frameworks such as ABCE [49] exist which
are more specialized and field-specific, but still lack inbuild scalability, and the use of
hardware acceleration.

Several other frameworks attempt to be more performance and distributable. For instance,
Agents.jl [50] is built in Julia and takes advantage of the massive speedup offered compared
to languages like Python to achieve high speeds with little sacrifice on usability [45].
However, it still lacks the ability to take advantage of hardware acceleration and offers no
easy way to distribute/scale. FLAME [44] is a powerful framework built in C++ using
an X-Machine abstraction for its agents, turning them into state machines with state
transitions, input/output messages etc. It uses MPI for message passing between agent
groups and a common message boarding system and intelligent distribution strategies (for
instance distributing agent sets who are neighbours in the simulation on adjacent nodes)
to achieve scale. It also natively implements hardware acceleration using GPUs [3], where

13

a carefully written program can be compiled into CUDA kernel for GPU acceleration.
However, there are several drawbacks to FLAME, found through experimentation. It is
very hard to use, with debugging being difficult and scaling poorly with larger programs.
It also uses a custom DSL with a steep learning curve and very careful specifications
needed for hardware acceleration. Scaling and distribution are cumbersome and hard
to set up. Hardware acceleration also relies on custom CUDA transpilers in FLAME
which will never be as good as transpilers available through frameworks such as PyTorch
[51] and TensorFlow [52], a fact clearly seen in the experiment described from previous
work [53] below where GPU utilization using FLAME was between 5%-50% compared to
consistently 100% for a TensorFlow based implementation.

Repast4Py [54] extends Repast to Python and achieves hardware acceleration and vec-
torization through the combined use of Numba for just-in-time compilation, and PyTorch
for hardware acceleration. It also attempts to use similarly clever distribution strategies
as did FLAME to locate similar neighborhoods on adjacent nodes. In doing so it gets
closest to SalVO. However, its primary focus is on a design for agents communicating
and interacting across multiple processes using libraries like MI4Py. While concepts such
as shared projection are extremely useful, all of these IPCs are implemented within the
framework, and PyTorch is used only for hardware acceleration when needed. Our the-
sis is that this approach will be less efficient than the approach SalVO takes, where the
computation graph and device placement are optimized internally within frameworks like
JAX, TensorFlow, and PyTorch (backed by huge companies with large engineering teams)
and optimized using frameworks like TVM [55], assessed in §6. The LSD framework [56]
achieves speed through the compilation of a very difficult-to-use and debug DSL into a
C++ binary, but is hard to use and not scalable. Several other frameworks like D-MASON
[57], Pandora [58] and Care HPS [59] use a combination of C++ and OpenMPI to achieve
distribution but not with inbuilt hardware acceleration.

Finally, all of these frameworks lack the ability to calibrate and optimize ABM param-
eters as part of the framework at scale. Critically none of them create ABMs that are
differentiable, necessary for our approach of learning ABM parameters through backprop-
agation.

These shortcomings resulted in the initial development of the ”Dataflow ABM” by the
author [53]. This was a framework built from first principles through a formalism of ABM
where agent functions are pure functions of previous state, parameters, and exogenous
messages. This permits a model of execution inspired by large-scale data processing frame-
works, with vectorized execution using hardware acceleration, and using a scatter-gather
programming paradigm, to scale across networks of heterogeneous devices. Benchmarks
run in previous work [53] showed that implementation of the framework in TensorFlow us-
ing the Circles ABM benchmark [60] resulted in extraordinarily fast simulations, beating
even FLAME [3], as seen in figure 2.1. This early framework will be extensively refined
and extended in this work.

2.2.2 SalVO’s design strengths

SalVO was developed with several critical design principles in mind, including ease of use,
ease of scale, hardware acceleration through vectorization, and in-built learning capabil-
ities. A comparison of these principles vs. current frameworks is summarized in table
2.2.2, showing the need for this framework.

Agents.jl supports BlackBoxOptim.jl that uses evolutionary algorithms for AB calibration,

14

Time per FRNN Iteration by ABM Size 4000

—— TensorFlow
120 4 FLAME (64bit) 3500

FLAMEGPU fp32
FLAMEGPU fp64
MASON

* > e

Repast Simphony

_. 3000

=
o
=1

2500

@
o
L

~
=1
=3
=]

o
w
o
1=

Average Iteration Time (ms)
&
o
)

o
=}
Average Iteration Time (ms

)

=]
"
o
=1
o

0 50000 100000 150000 200000 250000 300000
Number of Agents in ABM 50000 100000 150000 200000 250000 300000

Agent Population

w
=]
=]

o
!

o

Figure 2.1: Comparison of execution speeds of the fixed radius nearest neighbours search
benchmark by Chisholm [60] of FLAME and other ABM frameworks vs. the TensorFlow
dataflow ABM implementation, from [53].

a slow and unscalable but built-in, approach. FLAME and Repast4Py both support
distributed computing, but expert guidance is needed to deploy them in a multi-node
setting. SalVO also doesn’t yet have any in-built visualization tools; as its built-in Python,
powerful visualization packages such as Seaborn can easily be used to visualize ABM
execution traces.

2.2.3 Learning in ABMs

A key innovation of SalVO ABMs is that they are differentiable as long as the agent
functions are differentiable. This is extraordinarily powerful since it allows for the train-
ing of ABM parameters at huge, neural network scales. Previous work by the author
showed that training was trivially posible at the scale of 100,000+ parameters [61]. Com-
parative techniques like simulated minimum distance [62] or bayesian optimisation [63],
or even mean-field approaches [64] do not scale to significant numbers of parameters,
with experiments with bayesian optimisation failing to scale over 10 parameters, whereas
backpropagation calibrated 100,000 parameters with much higher accuracy and less noise.

This backpropagation approach was developed independently, but very recent literature
has also published some preliminary work on differentiable ABMs and training using
backpropagation [65, 66]. It achieves powerful results, demonstrating large-scale param-
eter learning in the context of epidemiological ABMs. However, the published work has
major drawbacks: it lacks the formalism and theoretical basis of the approach developed
here and doesn’t address the key limitations faced by differentiable ABMs, i.e. the need
for deterministic, differentiable agents. This is an assumption that doesn’t work for the
majority of ABMs. In addition to a unified framework for extraordinarily fast, hardware-
accelerated, and scalable ABM simulations, SalVO also provides an environment where
backpropagation-based training can occur natively and also implements an approach that
overcomes the differentiability and deterministic needs of backpropagation-based training.

15

— =z
— = 0,
g B2 &
= = o] <t
o = £ 7 3
> < z g g
= — o0 o Q
Category Strength n = < = o
Usability Simulation and analysis both in Python
Inbuilt visualization tools
Should have an easy-to-code API and
low barriers to entry
o Parameter calibration is an in-built fea-
Optimized
. . ture of the package
policy design / . : .
. . Parameter calibration using backprop-
calibration .
agation
Parameter calibration using policy gra-
dient
Supports auto-differentiation of ABMs
Supports in-built hardware accelera-
Parallelization tion

and scalability

Supports (easy) distributed computing
Built on current high performance com-
puting frameworks

Should be highly scalable even on a sin-
gle machine

Table 2.2: Comparison of SalVO’s key design principles and achievements vs. its closest

competitors.

16

Chapter 3

SalVO: Scalable, vectorized, and
optimizable agent based model
simulations

SalVO stands for the 3 key properties of the novel Agent Based Modelling (ABM) simu-
lation framework presented here: ScALable, Vectorized, and Optimizable.

This section lays out the theoretical foundation of agent based models backing the ap-
proach adopted by SalVO, and discusses its implications on the computational models
used to execute the simulations. It then builds SalVO, a novel Python-based ABM li-
brary implementing this approach, and details the design principles and decisions used in
the library’s implementation. It also reviews how the formalism developed enables ABM
parameter learning and optimisation using backpropagation. It concludes by presenting
an extension using a novel application of Multi-Agent Reinforcement Learning (MARL)
techniques to overcome the limitations of using backpropagation but still learn parameters
at similar scales.

3.1 Introduction

Intuitively an agent based model is quite simple: take many different agents, each with
their own set of states and actions, place them in an environment in which they can
interact, simulate them, and study the results. There are many different formalisms that
could fit this pattern, for instance, the communicating X-Machines [67] based formalism
used by FLAME [44]. We develop one from scratch by making a very basic observation of
the system: the only input to the system is the initial state and configuration of the agents.
Every subsequent state, and final output of the ABM, is simply a recursive implementation
of the agent function. If Sy where the initial state, A the agent function, and T* the
termination time, then the next state as a function of the previous one is S;.1 = A(S;),
and the output of the ABM is simply: Sp+ = A(A(...A(Sp))). In a formalism where the
agent functions are pure, the simulation is a simple recursive application of arbitrarily
complex agent functions on appropriate inputs. Finally, a user will want two things from
these agents: a trace of their execution history, and measurements of their final state.

One useful result of a pure agent function was given by Grazzini [62, 63] who showed that
with state calculated as recursive applications of an agent function, if an ABM is ergodic
and m a measurement of the state and P the initial configuration, then:

17

E[m(S,)|t > T*] = y. = g"(So, P)

L.e. an ABM is ergodic if it reaches the same statistical equilibrium for the same initial
conditions. If this equilibrium is absorbing, then all initial conditions eventually lead to
the same measurement: ¢*(Sp, P) = m*(P). An extension to this model developed in
previous work by the author [68] showed that if the initial conditions are taken to be
random and the model ergodic, then the long run statistics are a stochastic function of
the measurement: y, = m.(P) + ¢;. This is an important result that will be used later.

3.2 ABMs formalized

The formalism presented below greatly extends prior work on ”Dataflow ABMs” [61] [53]
with crucially being able to handle multiple agent types parsimoniously. We also claim
it is able to express most types of ABM simulations and show that the formalism can
express any Turing complete program, thus demonstrating its expressivity.

3.2.1 SalvO ABM formalism
Definition 1. SalVO ABM:
1. A set of agents of J different types, I1,Zs,...,L;
2. A collected set of states of all agents Sy € S
e This can be subdivided into St(l),St(Q), ...,St(J),St(ShMEd) €S

. St(j) represents the collected state of each agent type, j € J that are belong
solely to agents of that type and that only they can update

° St(Shared) represents a shared state that is common across multiple agent types

W

. A set of exogenous messages, My € M injected into the ABM

e This allows agents to react to external stimuli rather than for all effects to be
endogenous

o This is a critical requirement to make agent functions pure but calibratable
4. A set of parameters P = {Prigea; Pfree} € P configuring the behaviour of the ABM
® Ptizea represent parameters that cannot be changed, such as physical constants

® Pyree represent calibrated parameters for which the true value is only estimated

&

. A set of dead or alive parameters v; € [0, 1]7**iesNi representing whether agents are
alive or dead, with one needed for each of the N; agents of type j, for all J agent

types

6. An edge set & € [0,1]%ie/Ni*EiesNi which is an adjacency matriz representing the
connectivity of each agent to all others

7. An edge set generator g : S X Ml x P x v x E — E which generates the next edge set
from the current collective state of the ABM

8. A set of J agent functions, AV, A® . AU where each agent function is a map
that generates the next state from the current state: AU : SxMxPxyxE — Sx~y

18

st{shared) > A2 » A4 » StH(shared)

A3

Figure 3.1: A DAG representing an ordering between agent types for a shared state
update. Agent functions 1, 2, and 3 can be independently executed, but 4 can only be
executed after 2 and 3.

a) Fach agent is responsible for updating both its section of the state S(j) and
(a) g P pdating . S,
shared)

the shared component St(
9. A set of measurement functions that summarize agent state and can be used for
calibration, m : S x M — II;c g RM:

This formalism is examined in more detail and operationalized in §3.5. Note this formalism
assumes that time moves in discrete steps in the simulation, which is reasonable, and
asynchronous activations can be modeled through external signals through M; or baked
into the agent functions AY).

3.2.2 Shared state and dependency graphs

A key issue in definition 1 is that since St(i}iared) comes from compositions of AY) applied

to S the ordering of the compositions is important and can determine the output.
In most ABM simulations like Mesa [43], scheduling is customizable, but typical sched-
ules include random agent activations, or simultaneous activations (all agents activated
one after the other in deterministic order). In each of these options, there is not much
information content in the choice of scheduler.

Since our formalism groups together agents of the same type into a single vectorized func-
tion, we can solve this problem by defining a directed acyclic graph (DAG) of dependencies
between agent types. This is exemplified in figure 3.1, which represents computation in
equation 3.1.

A(l) (St(shared))
St(shared) N St(shared) _ ParMap A(Q) (St(shared)) . St(j_iiared) — A(B) (St(shared)) (3 1)
A(3) (St(shared))

This is a powerful abstraction, since not only can it represent how updates to shared state
are correctly made, it also gives an opportunity for parallel execution of vectorized agent
types across available nodes.

19

3.2.3 Emulating a Turing complete language

There are clear restrictions in the formalism above compared to the free-flowing agent-level
implementations achievable in frameworks like Mesa; for instance, all agents of the same
time are expressed through one vectorized function. This is nonetheless a very expressive
construct. As a sketch of the computational flexibility of this framework, we will show
that, with a sufficiently expressive agent function, this formalism is capable of expressing
programs in Brainfuck (BF) [69], a simple, 8 instruction, Turing complete language.

Using the formalism from definition 1, let:
e P contain the program
e M, be the user inputs at step t
e Let Sy contain:
— A sufficiently large byte array (BF requires 30,000 bytes minimum)
— An instruction pointer [€ N* which indexes where in P we are
— A data pointer d € NT which indexes where in the byte array at step ¢t we are
e A implement the 8 BF instructions and update S; accordingly:
— 7>/ <7 — increment/decrement d, and increment [
— 7+ /=7 — increment/decrement S;[d], and increment [

— 7.7 — Increment [

”» o

— 7.7 — set §;[d] = M, and increment [
— "[” — if §[d] is zero, then set | = next(”]”,P) + 1

— 7" — if §[d] is non-zero, then set | = last(”[",P) + 1

%N

e m be a measurement function that, if P[l] = ”.”, records in the trace the byte at

Si[d]

Then, any BF program can be expressed by applying A on S; to generate S;,; until we
reach t = T;T = len(P). This choice of A allows for the emulation of any program in
BF, a Turing complete language. This shows that, while the computation model implied
by the formalism differs from traditional ABM frameworks, it is capable of expressing a
very wide range of programs and ABMs.

3.3 Achieving scale

We define "scale” in ABM simulation to be the ability to increase the number of agents,
or environmental size, to very large levels successfully, without significantly needing to
alter how the ABM is written, and without inducing very significant overhead. Scale is
achieved through two means: increasing the throughput on a single device using hardware
acceleration, and scaling computation to a network of devices when needed. The former
is discussed below, and the latter in §3.5.1 and §7.3.

20

3.3.1 Vectorization and hardware acceleration

A consequence of the formalism we have chosen to adopt is that it naturally embeds
vectorized execution of agent functions. An agent function of type j, AU can express any
number of agents, and their simultaneous calculation can take advantage of many modes
of parallel execution.

Single instruction multiple data (SIMD) is a common mode of parallelism where a sin-
gle instruction can be simultaneously applied across multiple data streams using array
processors, implemented by most modern CPUs. Hardware acceleration using GPUs, for
instance, using Nvidia’s CUDA [70], use a variant of SIMD called single instruction mul-
tiple threads (SIMT), which enables far greater parallelism by splitting single instructions
into threads, each responsible for the execution of a block of instructions on a large array
of processing units with their own registers and shared memory.

If agent functions can be made to operate on state represented in tensors [52], huge
efficiencies through hardware acceleration are attainable, by compiling the application of
an agent function on a state tensor into a kernel, which gets executed on the chunked
tensorized data by threads operating on a block of processors on the GPUs. An example of
such an ABM design is the VDSK presented in §5, and the results of hardware acceleration
are clearly seen in §6.

A constraint introduced by vectorization is that if tensorized state and agent function
dimensions were to change every step, the kernel would have to be recompiled, resulting in
a significant slowdown introduced to the process. Implementations should ideally strive to
have constant dimensionality throughout the simulation, which makes agent deaths hard
to integrate. However, this can be dealt with by treating agents as toroidal (dead agents
come back to life with a new state) or by keeping dead agents dead and summarizing their
state using measurement functions.

3.4 Huge scale parameter optimisation and calibra-
tion

This section shows how backpropagation and techniques from MARL can be used to learn
ABM parameters at huge scales. It builds on previous work by the author [61] imple-
menting backpropagation-based learning using a simpler, less general formalism. It also
presents a novel framework using policy gradient techniques to overcome the assumption
of deterministic, differentiable agents needed for backpropagation.

3.4.1 Parameter calibration with backpropagation

The ultimate goal of ABMs is to calculate measurements of the final state: m(Sr). The
final state is calculated from an application of the agent function (assuming one agent
type): St = A(Sr—1, Mr_1,P,yr_1,Er—1). This can further be recursively expanded:
Sr = A(A(Sr—o, Mr_o2, P,y7—9,Er—2), Mp_1,P,yr_1,Er—1). Since the edge sets also
get generated as a function of previous states, this can be recursively expanded down to
the initial state and parameter sets.

This formulation shows parallels with that of deep neural networks, where an agent func-
tion parallels activation functions, and state parallels weights. The other inputs are not
relevant; either they are computable from state (7, &;), or an exogenous input. If A; de-
notes the application of the agent function of state S; (and other inputs), then parameter

21

sets can be learnt by using backpropagation through recursive applications of the chain
rule until the derivative in equation 3.2 can be computed.

om(Sr) _ d(m(Sr) 0Ar—1 DA
aP 0Ar_ 0Ar_, 0P

(3.2)

This can be easily extended to multiple agent types using the dependency structure de-
scribed earlier and insights from graph neural networks. Envisioning our vectorized ABM
as a GNN with agent types as nodes, and the edges from the dependency graph from
§3.2.2, then each node’s state gets updated at each timestep ¢, with connected edges as
&, using a nearly identical formulation to Hamilton’s for GNNs [71]:

S\, = UPDATE(S;!, AGGREGATE([J Sf)) (3.3)

ke&:

While the necessary properties of permutation equivariance aren’t formally discussed in
the context of definition 1, it is intuitive. In either case, once we can calculate the
differential in equation 3.2, we can then proceed with parameter learning using gradient
descent [61]:

P=P- n%{fﬂ (3.4)

3.4.2 Policy gradient-based parameter calibration

Backpropagation enables huge-size parameter learning, but has two critical flaws: the
agent functions have to all be differentiable, and the simulation (agent functions and ex-
ternal inputs) cannot be stochastic. These are key limitations that disallow vast classes of
ABMs; e.g. most epidemiological simulations have probabilistic transmissions of diseases.

To circumvent these limitations, we look at reinforcement learning for inspiration. With
a stochastic ABM, our performance measure will now be J(P) = E[m(S7)|P], called a
reinforcement signal. A critical assumption is the signal needs to be stationary; this is a
less restrictive assumption than no stochasticity, but still restrictive.

Now E[m(Sr)|P] is a fully defined but unknown function. We want to find a P* such that
E[m(Sr)|P*] > E[m(Sr)|P] VP € P. For this, we propose to use William’s REINFORCE
algorithm [4], a type of policy gradient method, where, given a reward signal, parameter
updates can be made as P=P— nVpJ. The main problem is in determining the policy
gradient, VpJ.

Say that parameters update according to equation 3.5:

Jlng
AP= . (m(S) - b) (3.5)
Learning rate Baseline

Here, William’s denoted the function g as the probability density function of a unit’s
output, in a feedforward neural network [4]. In our case, g would represent the proba-
bility density function of an agent type of their output state, conditioned on parameters:

9(&,P) = Pr{S = ¢|P}.

22

REINFORCE stipulates that for an appropriate specification of reward, the average pa-
rameter update vector lies in the same direction as in which the expected measurement
increases [4], i.e. (E[AP|P], VpE[m(Sr)|[P]) > 0. Williams shows that this is equiva-
lent to saying that equation 3.5 is an unbiased estimate of OE[m(Sr|P]/OP. This is an
immense relaxation of the constraints of backpropagation. Now we need only that the
output of agents is a stationary distribution of inputs and parameters.

Now our key goal is to fit Pr{y, = £|S;, P}, which relies on stationarity. Fortunately, we
can obtain this under certain conditions, as discussed in §3.1. This model is amenable to
emulation via Gaussian Processes if the measurement function output is continuous and
stationary. With these assumptions, we can use y ~ GP(u(P),c(P)) as our Gaussian
process, and the REINFORCE algorithm will be:

0GP

There are several obvious drawbacks to this approach:

1. The formalism above works for a single functional mapping being recursively applied
from the base state Sy to the final state S7, i.e. a single agent type or multiple
agent types with no shared state. SalVO assumes that multiple agent types can be
emulated, but it needs to be more formally described.

2. This only works for continuous measurement outputs, but any alternative discrete
probabilistic model should also work.

3. The dimensionality over which we can fit a Gaussian Process without resorting to
special tools for high dimensional GPs is low.

4. Fitting a Gaussian process is inherently tough:
(a) The choice of hyperparameters and kernel function is more art than science

(b) The number of data points we will need will scale non-linearly with the number
of parameters.

5. If we fit a single Gaussian process for the overall model as done in [68], then the
number of parameters that can be optimized is incredibly low and the quality of
optimisation is poor.

6. If we do so at an agent level, then fitting the Gaussian process will be incredibly
computationally expensive and likely also noisy; so we have to do so at an agent-type
level. However, agents can be heterogenous even with the same type.

7. This is an ABM formulation with a global reward, but one that is achieved by
maximizing each agent type’s parameter sets independently. This would only be the
case for agents which had independent transitions and block-reward independence,
as per Amato [72], which aren’t guaranteed to be the case in practice.

8. We don’t explicitly include the exogenous messaging system in our ABM definition.

9. We will have to run many different iterations of the ABM simulation to gather
enough data to fit a valid GP, particularly for many parameters.

All of these are significant issues that need deep theoretical investigations and resolution,
which unfortunately there was not sufficient time for. Instead, we propose a practitioner’s

23

empirical protocol which should be able to address a number of these concerns, including
handling the effects of agent interaction and agent heterogeneity.

3.4.3 GP-ABM

This can be summarized into a proposed protocol for the GP-ABM:

1. We first fully specify a (possibly stochastic) ABM that runs from a specified initial
state and parameters to its end.

2. We generate N different samples over a hypercube of P, with the sampling strategy
to be specified later.

3. We run the simulations N times and record, for each agent of every different type,
the output of the agents. Say for agent type j € J, we have M different agents, this
gives us a dataset of J x M x N data points (assuming scalar outputs).

4. We use this dataset to calibrate J different Gaussian processes, one per agent type.
We use the outputs of each agent as noisy observations to calibrate the kernel
hyperparameters using MLE and fit the overall GP.

5. We now assume that each agent contains a copy of this Gaussian process. We can
then optimize parameters at a single agent i level using the following REINFORCE
update equation:

8GP1.U)
AP;; = a(m(Sr) = b)—5—Ipr=r,
(@)
We compute 8%—];" by first calibrating the GP, and then carrying out inference at P; to

get a specification for its density, g(u, o) in equation 3.6. We can then differentiate the log
density to calculate the gradient we use. Given a kernel function x(z,x) over observable
data x, new data x* and outcome y:

y ~ N (k(x*, 2)" (k(z, 2)+0?1) "y, k(z*, 2"+ 0?4 k(x*,) (k(z, 2)+0*I) k(2 2)) (3.6)

This is quite a powerful protocol and has numerous advantages, including;:

1. By calibrating the GP for agents from observations from an agent type; we obtain
M observations per run across N steps, which reduces the number of runs needed
to calibrate the GP.

2. By using M observations, one from each agent, we handle agent heterogeneity as
noise in the GP fitting process, whilst still retaining information about the overall
influence of a parameter on the average behaviour of agents.

3. By allowing each agent to have its own copy of the Gaussian process we allow for
the calibration of up to J x M x 10 parameters (assuming all J agent types have
M agents).

4. By using the agent outputs at time 7" we are able to leverage the long-run station-
arity of the simulation to obtain (theoretically) stationary observations to calibrate
the GP.

5. This formulation only works for stationary rewards and outputs; this still needs to
be carefully dealt with in practice, for instance by differencing outputs.

24

The implementation is discussed in the next section.

3.5 SalVO architecture and implementation

This section describes the implementation of the ABM framework we have laid out here
into SalVO, a Python library implementing scalable, vectorized, and optimizable ABM
simulations. We implement several common ABMs to demonstrate the power and speed
of the framework, as well as its capacity for large-scale parameter learning.

3.5.1 Design requirements

It is worth being more prescriptive about some of SalVO’s design requirements. SalVO is
intended to be easy to use, a contrast to FLAME [44] and LSD [56]. The purpose is to
allow researchers and policymakers the ability to focus more on creating a useful model,
than on worrying about its implementation. It aims to be accessible to a broader set of less
technical users, users who likely have more value to add by creating a useful model than
by coding in an incredibly complex DSL. This means it needs to be very easy to debug,
ideally by being based in an interpreted language allowing for easier online debugging [73],
based on a commonly used language accessible to non-computer scientists, and need little
custom configuration. These are addressed in SalVO by basing it in Python, with the
only setup needed being the installation of dependent packages and hardware acceleration
libraries like CUDA.

Hardware acceleration is a very broad categorization. It can include SIMD vectorization
using instruction sets like AVX, AVX-512, and SSE, or SIMT vectorization used by CUDA-
based GPUs and other specialty hardware, discussed in §3.3.1. It can extend to other
forms of parallelization, such as SPMD, where forks of the same program operate on
multiple data streams. In SalVO, we aim to support the full gambit of vectorization
across all forms of hardware by leveraging libraries like JAX and numpy, which implement
Google’s XLA [74] and BLAS/MKL [75] respectively for hardware acceleration. XLA has
the added advantage of compiling instructions for specialty hardware (GPUs and TPUs);
using JAX as SalVO’s backend allows us to take advantage of this with little overhead.

Distributed computing here is defined as the ability to scale the ABM simulation to a
network of nodes. Traditional approaches to the distributed data flow model adopted
by SalVO include frameworks like timely dataflow [76], CIEL [77] and X-Stream [78].
However, the recent explosion in deep neural network architectures has created a litany
of large-scale distributed deep learning frameworks optimizing execution across pools of
specialized hardware like GPUs. These include parameter server frameworks like Geeps
[79], Horovod [80] and DistBelief [81]. These have the added benefit of having implemen-
tations in libraries like TensorFlow and JAX, through which SalVO can take advantage
of them to achieve effective distribution.

However, these approaches are generally optimized for neural network training and infer-
ence, and large-scale dataflow models are likely more scalable for SalVO. Timely dataflow
as a computation model is explored for SalVO in §7.3, but not yet implemented in SalVO
due to time constraints.

25

3.5.2 Platform

While previous work [53] explored implementations of ABMs in TensorFlow, SalVO was
ultimately implemented with JAX [82] as its backend. While TensorFlow [52] and PyTorch
[51] have many desirable features, such as inbuilt hardware acceleration, and handling
of distribution and interprocess communication, they work on dynamic compute graphs
that can be difficult to work with, and harder to debug. They also rely on precompiled
kernels for various operations stitched together before the graph’s execution. This is
powerful for standard expressions like neural network cells, but for arbitrarily complex
agents. However, JAX’s just-in-time compilation uses XLA to generate code for the entire
function. The allows it to take advantage of far more optimisations, like operator fusing,
to generate more efficient compiled code.

JAX also operates via function transformations on pure functions, an approach pleas-
ingly in-sync with our choice of pure agent functions. It is also incredibly easy to code
in, with its API built on top of numpy while applying JIT compilation and hardware
acceleration on top. Furthermore, it has incredibly powerful forward and backward mode
auto-differentiation (AD), able to apply AD through branches in native Python code and
on a wide variety of functions. It also has 3 crucial primitives for ABM simulations: vmap,
which automatically vectorizes operations, scan, which allows for the main ABM loop to
be JIT-compilable and differentiable, and pmap, which allows for trivial scaling of opera-
tions across multiple devices. Most critical are the in-built support for PyTrees in JAX,
making highly complex agent state incredibly easy to express in SalVO while still making
use of JIT compilation, hardware acceleration, and autodifferentiation. These make JAX
the clear choice as the backend for SalVO.

3.5.3 Core architecture and implementation

SalVO is a transpiler of an ABM definition contained in the files in table 3.1. The
core architecture is laid out in figure 3.2. The architecture operates on creating a state
flow between pure, vectorized, agent functions in JAX. Agent functions are parsed by
the SalVO transpiler, and their outputs are traced and collated with the dependency
graph. Measurement functions are treated on parity with agent functions, where inputs
are components of the state for any agent function, and outputs are measurements. These
are inserted into the dependency graph as soon as the state it measures appears (for the
last time). The agent deaths, -y, are treated as part of the state, and the edge set generator
g is treated like an agent function (as shown in §3.5.4).

Once the state flow has been mapped, hardware information is also gathered. In the final
product, this information will be used to commit state to the right device before agent
function execution, and all independent agents will execute asynchronously across avail-
able hardware. However, the current implementation only supports a single device, since
an optimal device placement strategy must be considered for good scaling performance.

This amalgamated information is then used to generate a function that runs a single
step, Orchestrate. This outputs two PyTrees, the next state S; (and edge set &, dead or
alive parameters), and measurements, m(S;). A function that runs the entire simulation
using JAX’s 1lax.scan is also created, called Run, which is used for optimisation. External
messages M; is passed by marking the parameter with [iter], to pick up the message a
the right simulation time.

26

File

\ Description

parameters.json

All static ABM parameters and initial values.

config.py

The dependency graph between agent types, and the
state flow definitions are defined here.

simulation.py

This pulls together the parameters and collates all in-
puts needed for simulation, including M,.

agent_functions.py

Contains all (vectorized) agent functions.

measurements.py

Contains all (vectorized) measurement functions.

run.py

The Run Environment - collates simulation and runs it.

backpropagation.py

Contains the target parameters being optimized, the
gradient descent optimizer and associated parameters.

policy_gradient.py

Contains the target parameters for optimisation and
their space definitions, the GP kernel definition, and
acquisition function.

Table 3.1: Description of files in SalVO ABM definition.

27

8¢

Compiles the ORCHESTRATE and RUN functions from the ABM definition

Run Environment:

IMain entry point to run SALVO::

Algorithm 2 Run Simulation

ABM Definition:

Setup Files Simulation Files

[o]

agent_functions py }

itial_state, params < simulation.py
2 fs, m = RRUN(initial state, params)

“JORCHESTRATE([state, params)| step) Vatepe Steps

Algorithm 3 Apply Backpropagation

initial_state,

1: initial state, params < simulation.py

2: backprop_cfg + backpropagation.py

3: params_opt = BACKPROP(params, backprop_cfg)
1: fs, m = rUN(initial_state, params_opt)

X
Algorithm 4 Apply Policy Gradient

» 1o initial state, params < simulation.py
2: agent_functions < agent_functions.py
: pe-cfg « backpropagation.py
- GPs = crorrr{agent_functions, pg-cfg)
: params.opt = REINFORCE(params, GPs, pg.cfg)
6: s, m = rUN(initial_state, params_opt)

(9

x

moa oW

x

% % x

SALVO Optimize:

[parameters json] [measurements. py }

[simulation.py] [run.py }

Calib/Optim Files

[backpropagation py }

[policy_gradient.py

SALVO core reads ABM definition file and transpiles single step
ORCHESTRATE function, and full smulation RUN function.

Use REINFORCE module to apply calibration using gradients from fitted GP's.

SALVO Core:

Algorithm 1 Transpile

16:

18:
19:
20:
2L
22:
23:

=

: DAG layered = vaver_pac(DAG)
3 JAX_Orchestrate
: for layer € DAG do

: initial state, params < simulation.py
. DAG, state_flow < config.py

: ;lg('nl_fum'tiuns € ;lgl‘[ll_rl][l['l.i(lllS,]l}'
: measurements < mMeasiurements.py

jit « {True or False} & User selected

¢ VALIDATE_DEPENDENCY_GRAPH(DAG) & Check valid DAG
: VALIDA TE_FLOW (state_flow) > Check state flow in DAG correct
: & Now compile DAG into an ORCHESTRATE function that runs a single step

& DAG into independent layers
CODEGENERATOR(empty)

ADD_PLACE_STATE_ON_DEVICE(DAG[layer].state, JAX_Orchestrate)
ApD_PMAP(DAG [layer].agent_functions, JAX_ Orchestrate)
ADD_MEASUREMENTS(DAG [layer].measurements, JAX_Orchestrate)
end for
ADD_OUTPUT(state, measured_values, JAX_Orchestrate)

> Finally, put together RUN which runs ORCHESTRATE over all ABM steps
RUN = COMPILE_RUN(JAX_Orchestrate, params.num_steps)

RETURN RruN

Fit GPs to agent types using targets and parameter spaces defined in config

|

Algorithm 5 Optimize Parameters: Backpropagation

Algorithm 6 Optimize Parameters: Fit Gaussian Processes (GP_FIT)

Algorithm 7 Optimize Parameters: REINFORCE

: initial_state, params < simulation.py

: RUN() + Run Environment

: backprop_cfg « backpropagation.py

: params_target = GET_OPTIM_TARGET(params, backprop_cfg)

hyperparameters (e.g. learning rate) defined in backpropagation py.

use BACKFPROPAGATION module, with optimization targets and

NS R TR

© D_RUN - JAX.GRAD(run, target—params_target)

: for i ¢ 0, ..., backprop_clg.iter do

grad = p_rUN(initial_state, params)

9: params_target = BA(,'KI‘IL(}P_(:J»‘L‘,.U1"1‘(]);11';11115_targct. grad)
10: params — COMBINE(params, params_target)

11: end for

® =1

oW e

- sample
: GPs = FIT_GAUSSIAN_PROCESS(params_target, pg_cfg)
: for i € pg_efg.num_bo_iter do

: initial_state, params ¢ simulation.py
: RUN() + Run Environment
3]lg.::fg € p()li['y_y,ra:li('ul,py
: params_target

GET_OPTIM_TARGET(params, pg_cfg)

HYPERCUBE_SAMPLE(params_target, pg_cfg)

GPs = Baves_orr(GPs, pg_cfg.acquisition_function)

. end for
: RETURN GPs

1:
2
kH
4:

GPs « Run Environment

RUN() < Run Environment

initial_state, params « simulation.py

params_target = GET_OPTIM_TARGET(params, pg_clg)

: D_GPs - jax.Grap(GPs)
: reward « RUN(initial_state, params)
: for i € 0, ..., backprop_cfg.iter do

grad = D_GPs(params_target)

params_target = PG_CFG.OPT(reward, params_target, grad)
params — COMBINE(params, params_target)

reward ¢ RUN(initial_state, params)

: end for

Figure 3.2: Outline of SalVO architecture and implementation of key subcomponents. Everything stems from the ABM definition, where each
ABM implements the 6 required files for simulation, and the optional 2 files for the 2 methods of calibration implemented. This definition gets
transpiled into the Run Environment, where the simulation can be run and optimized policies can be derived.

agent_functions.py config.py

@jax.jit dependency = {
def agent_function(agent_positions, i, radius, k_rep, k_att): "agent_function_orchestrate"”: ["identity"],
"identity": [],
Vectorize and carry out computation }
cf = partial(state_flow = {
hlp.compute_force_vector, "agent_function_orchestrate”: {
agent_positions=agent_positions, “inputs": [“agent_positions”, "radius", "k_att", "k_rep"], ,
radius=radius, "outputs": ["agent_positions"],
k_rep=k_rep, },
k_att=k_att, "identity": {

])(. " “inputs”: ["agent_positions"],

v = jax.vmap(cf) s “outputs": ["agent_positions_measured"],
force_vector = fv(agent_positions) - -
agent_positions += force_vector

1
return agent_positions, agent_positions J

simulation.py parameters.json run.py

param_fpath = pathlib.Path(ifilei).parent.resolve()” o (import salvo_core as core

parameters = core.load_parameters(str(param_fpath) + "/parameters.json™) "W": 100, from circles import (simulation, agent functions,
key = random.PRNGKey (0) ”E‘,d%m": 2, measurements, config)

w = parameters.w radius”: 2e, X X X .

e_dim = parameters.e_dim "a_pop”: 100, sim = core.build_simulation(

radius = parameters.radius "k_att™: 1e-2, simulation, config.dependency,

a_pop = parameters.a_pop “k_rep": le-2, config.state_flow, agent_functions,

k_att = parameters.k_att
k_rep = parameters.k_rep
rounds = parameters.rounds

"rounds”: 10 measurements, True

})

ces . . . exec(sim.code)
agent_positions = random.uniform(key, shape=(int(a_pop), e_dim)) * w

Figure 3.3: Implementation of the Circles ABM [60] in SalVO

3.5.4 Example ABM implementations
Circles

The Circles ABM is based on an ABM benchmark by Chisholm [60] for fixed radius nearest
neighbour (FRNN) finding. It consists of circles that are attracted/repelled from each
other depending on the distance to all nearby balls. It was used by previous work [53] in
a TensorFlow-based implementation benchmarked against FLAME, and is implemented
in SalVO to demonstrate its speed and usability.

The implementation can be seen in figure 3.3. A single agent type is present agent_functions.py,
implemented in one agent function that takes advantage of JAX’s auto-vectorization
through vmap. The dependency graph and state flow in config.py contain the measurement
function as well as the agent function, and the SalVO transpiler automatically identifies
measurement functions and places them appropriately, and figures out end-to-end state
flow and measurements correctly. The simulation is set through static parameters in
parameters.json, from which a complex initial state is calculated in simulation.py.

Forest Fires

Forest Fires is a more complex ABMSs, taken from Agents.jl [50], which showcases a
more complex agent-type dependency structure, as well as the flexibility of the state flow
paradigm. Agents are a set of trees spread over a N x N grid, which can either be dead,
alive, or on fire. Trees are dead if they were on fire in the last round, and on fire, if they
were alive in the last round and an adjacent tree was on fire. Dead trees also come back
to life with probability p, and alive trees catch fire with probability f.

This was implemented by setting tree state to be S = {0, 1,2} signifying the dead, alive
or on-fire states. Note how the dead or alive parameter, v, was taken into account in the
state. A convolution filter was then used to identify if adjacent trees were on fire in a
vectorized way, a standard approach in SalVO.

For simplicity, only config.py is shown in figure 3.4. There are 2 measurement func-
tions, number_of trees_on_fire and number of trees_live, that depend on regrowth

29

dependency = {
"regrowth": ["number_of_trees_on_fire", "number_of_trees_live"],
"fire_spread_and_dead_tree_update": ["regrowth"],
"adjacency_matrix_update": [“fire_spread_and_dead_tree_update"]
"number_of_trees_live": [],
"number_of_trees_on_fire": [],
"identity": [],

1
J

state_flow = {

"regrowth": {
"inputs”: ["key", "tree_state", "p"],
"outputs": ["key", "tree_state"],

by

"fire_spread_and_dead_tree_update": {
"inputs": ["key", "tree_state", "adjacency matrix", "f"],
"outputs": ["key", "tree_state"],

1
1
"adjacency_matrix_update": {

"inputs": ["tree_state"],

"outputs": ["adjacency_matrix"],
Iy
"number_of_trees_on_fire": {"inputs": ["tree_state"],

"outputs": ["trees_on_fire"]},
"number_of_trees_live": {"inputs": ["tree_state"],
"outputs": ["trees_alive"]},
"identity": {"inputs": ["tree_state"],
"outputs”: ["tree_state_record"]},

Figure 3.4: [Left] Dependency graph and state flow for the Forest Fires ABM. [Right]
Screenshots from simulation, with the initial forest being torn down by fires, followed by
regrowth and reaching a steady state.

finishing for the step, which in turn depends on fire spread and dead tree_update.
This shows the power of SalVO’s abstraction, where agent functions aren’t necessarily
just agent types but general computation steps that need to happen in the dependency
graph in the ABM’s execution. The careful design here also increases the potential for
parallelization. The results of this ABM are shown in figure 3.4.

Bird Flocking

The bird flocking variation of the classic boid flocking algorithm [83] developed in previous
work [53] was also implemented in SalVO. Here, a number of birds move towards the
centroid of the flock with a velocity of v = max(vme., @D) where D is the (vector)
distance from the centroid of the flock, a is the control parameter, and v,,,, is the max
velocity. Birds essentially all flock to the centroid with diminishing velocity as they reach
the centroid of the flock. The original version [53] included stochastic wind, which was
removed from this implementation.

30

Chapter 4

Background in ecological economics

Now that we have a powerful ABM framework in which to express our ABMs, we turn
our attention to the creation of an ABM integrating the economy, climate, and biosphere,
based on the DSK model. This section reviews the background necessary for the opera-
tionalization of this ABM. A more full accounting is given in appendix C.

4.1 Review of the Dasgupta framework

4.1.1 Introduction

One of the key challenges in addressing recent dramatic declines in biodiversity and our
biosphere has been a mismatch of incentives from those who wish to conserve it, and those
that get economic benefits from exploiting it [84]. Unfortunately, those who benefit from
exploitation are also those who degrade it the most through the extraction of resources
and the use of our biosphere as a sink for waste.

To summarize this model succinctly: traditional economic approaches assume that human
activities cannot affect the biosphere enough to destabilise it, and in that sense biosphere
services are effectively ”free”. Unbounded GDP growth then follows assuming a positive
rate of technological innovation - i.e. we can do more and more with what we have, over
time. If, however, you accept that human activities can infact devastate the biosphere
and that in turns destroys human activities, GDP can only grow at at most a rate at
which by our impact on the biosphere is offset by its natural regeneration, or at least that
we don’t push it over some critical boundary into instability.

Dasgupta argues our prices and wealth should reflect our value of the biosphere, both from
the perspective of future economic value we can derive from a biosphere better sustained,
and the intangible value we reap from it. He also argues that we cannot rely on indefinite
technological innovation, and that technological innovation is ultimately bounded by the
rules of entropy in a "bounded” earth, i.e. one where planetary boundaries exist whose
traversal will tip the earth’s ecosystem into instability. This assumption is key for any
attempt to operationalize this model, and we will revisit it later.

31

4.1.2 Summary of model

A foundational element of the Dasgupta framework is the impact inequality, relating the
rate of regrowth of the biosphere !, G(S(t)), to humanity’s impact on it. Denote global
output (GDP) as Y (t) = Ny(t), with a population of N, then Dasgupta formulates the
impact of resource extraction (e.g. through mining, forestry, etc.) from the biosphere on
its growth rate as Ny(t)/a,, and the impact of waste as Ny(t)/c,. This can then be used
to express the dynamics of the biosphere in equation 4.1.

—:G(S(t))—@_ma ol > o, >0 (4.1)

dt 7 a ‘

Dasgupta formulates a Cobb-Douglas-like formula for GDP as a function of capital inputs
in equation 4.2. Crucially, GDP depends on the traditional capital inputs of K, produced
capital (infrastructure, machinery, etc.), H, human capital (health, education, earnings,
etc.) and A (productivity and innovation). Additionally Dasgupta includes R, resources
extracted from the biosphere (wood, metals, minerals, etc.), and S, biosphere regulating
services (climate regulation, nitrogen cycle, etc.).

Y(t) = AOSH)PK) HE)'RE)'™", a,b,(1—a—b)>0,8>0 (4.2)

Dasgupta also models the dynamics of the human population assuming that humans
“target “ a population size depending on the level of human capital available, J(h), in
equation 4.3. This is backed by empirical studies [85] that found a higher standard of
living generally reduced desired family size, and vice versa.

d]g_t(t) = N(t)(J(h) — N(t)), J >0, dJ(h)/dh <0 (4.3)

Similarly, produced capital depreciates with a certain rate A, and is offset by investment,
Ik (t), leading to equation 4.4. Innovation and productivity is likewise boosted by in-
vestment in research and development, in equation 4.5, and investment in human capital
Iy (t) (building schools, hospitals, parks, and other infrastructure to improve quality of
life) leads to increases in human capital, in equation 4.6.

_dffhft) — Ic(t) = MK (1) = Y (1) = C(t) — Iu(t) = La(t) — AK (1) (4.4)
%Et) — L) (4.5)

dH(t) .. dh(t) AN(t)
— L = NO— L+)= = = In(t) (4.6)

Given the dynamics of the system defined above, Dasgupta attempts to maximize a joint
utility function, n(c(t), S(t)). Dasgupta notes that the key control variables available to
the designer are c(t), aggregate consumption, Iy (t), investment in human capital, 14(¢),
investment in innovation, and R(t), resource extraction. More details are in appendix C.

!Dasgupta “heroically “ assumes the biosphere is representable in a single scalar value S

32

4.1.3 Criticisms

Aside from the extremely broad and often vaguely justified assumptions driving many of
these dynamics, there is a crucial missing element in the equations presented above. This
is the impact that a declining biosphere has on several key state variables, such as:

e N(t): a worsening biosphere resulting in natural disasters, desertification, the loss
of livable land, all will likely also affect birth rates and our population size. In
Dasgupta, N(t) is affected by h(t), which only relies on Iy(t), a control variable,
but not S(t).

e K(t): increased natural disasters from a worsening biosphere will affect our capital
stock; changing climates, extreme weather patterns, etc. will all destroy or impact
our machinery (e.g. extreme storms destroying off-shore wind power plants)

e A(t): the pace of innovation will be affected by biosphere degradation. As the
issue becomes more important, more research will go into mitigation. However,
with increased global catastrophes, resources will be diverted towards dealing with
contemporaneous issues than research.

These will be addressed as part of the VDSK-B ABM proposal in §5.

4.2 Review of the Dystopian Schumpeter meeting
Keynes (DSK) model

As discussed in §2, the DSK model from Lamperti et al [2] was chosen as the base model
on which to develop to operationalize Dasgupta’s investigations into the economics of
biodiversity. Using the DSK model presents 2 key technical challenges:

1. Scale: the model is highly complex, with over 16,000 parameters in the open source
implementation by Pereira [86], even with only 250 agents.

2. Integration of Dasgupta: the model will have to be modified to endogenously contain
the critical features of Dasgupta’s framework presented in §4.

The model was developed over the last 13 years, and we work from 5 key papers by
Dosi, Lamperti et al [2, 87, 88, 89, 90]. It is highly complex, and its implementation in
the Sant’Anna LSD simulator [86] even more so. An outline of the key components and
interactions is given in figure 4.1. At a high-level, the model is an Agent Based Integrated
Assessment Model consisting of the following agents/mechanisms:

1. A labour force

An energy industry choosing between green and dirty power plants

A capital goods industry making machinery for the consumption goods industry
A consumption goods industry making products for the labour force to consume

A financial industry supplying loans to the capital and consumption goods industries

ISEI AN B R

A climate box recording the effects of emissions on the climate and generating
" disasters”

Appendix A contains a detailed account of the published version of the DSK model
collated across the 5 papers cited. However, a critical review of the published papers in

33

Climate Box Climate Box

Capital Good
Firms

Capital Goods
Energy Sector Labour —| Households Energy Sector % Households
;

sssssssss

i Consumption Good
Firms Firms

Financial System Financial System

(a) economic flows (b) climate flows

Figure 4.1: An outline of the DSK model from [2]. Economic flows occur between economic
agents, whose emissions alter the climate, leading to shocks applied to the economic agents
in terms of their inventory and productivity.

appendix B reveals that published works omit numerous key details of the DSK models
and it is impossible to implement the model just the published works. Examples of details
omitted include how output is constrained by the available labour, how to determine
required labour from the current production, or how to calculate inflation or average
productivity (some of these elements were obtained from the code). Additionally, the
papers contain numerous errors which would affect the output of the model, and it is
not clear how or whether these were resolved by the authors in their publications. For
instance, a mistake in the coefficients of the DICE-2013R temperature model [91] cause
temperatures to collapse to 2 degC after the model starts if implemented as the paper
describes (see appendix B for detail). The only available open source implementation
by Pereira [86] using the LSD simulation framework [56] differs greatly from published
works, including using a different climate model and several different types of agents not
mentioned in the DSK or other related papers, and so cannot easily be used to fill in the
gaps. The criticisms and issues are summarized in appendix B.

All these issues will be addressed in the Vectorized-DSK re-implementation in §5, with
details filled in from the open source implementation [86] where possible and assumed
where not.

34

Chapter 5

The Vectorized Dystopian
Schumpeter meeting Keynes, with
Biodiversity (VDSK-B) Model

5.1 Filling in the blanks: vectorizing the DSK model

Now that we have a powerful framework, SalVO, in which to express our ABM, we
will modify Lamperti’s DSK model [2] into a vectorized from that we can express in
SalVO. In doing so, we will also demonstrate the numerous benefits of SalVO, including
its succinctness, speed through hardware acceleration, and scale. It will also allow us to
leverage auto-differentiation and MARL techniques to allow for parameter learning.

A more thorough introduction to the DSK model is given in appending A, with its trans-
formation into VDSK contained here. For this work, assume we have N capital good
firms and M consumption good firms. We further assume consumption firms replace
their machinery after J years, and energy firms replace their dirty power plants every K
years.

Let ® will represent the Hadamard product, and e; € 1! be a vector of ones of length I.

5.1.1 Capital good firms

The state for capital good firms is deeply complex. To begin with, we have each of the 6
key variables characterising machinery produced by the firms, {A|B}, pppp(t) € RV*!
representing the labour productivity (L), environmental friendliness (EF), and energy
efficiency (EE) respectively affecting the output of capital good firms (B) and consumption
good firms (A). Since each capital good firm is only producing one machine at a time, we
only need to keep track of the coefficients for the latest vintage, aiding in vectorization.
We can then compute the state updates in a vectorized way. Capital firms incur cost ¢(t)
per unit for producing machinery at with market wage w(t) and cost of energy c.,(t), and
they sell the machinery to consumption good firms with a fixed markup p at price p(t),
in equations 5.1 and 5.2.

c(t) = w(t)B. + cen(t)Byp(t) (5.1)
p(t) = c(t)(1 +) (5.2)

35

As per DSK [2], a random adjacency matrix representing connections between capital
good and consumption good firms is instantiated, & € Ber(0.5)"*¥. Consumption firms
can only place orders with those consumption firms they are connected to. For now, this is
held static, but further improvements will add random changes. Since no demand clearing
mechanism is specified by Lamperti [2], we allocate demand from consumption good firms,

Qs (t) € RM | equally across capital good firms QP (t) = &Q " (t)(El en) L.

A research and development process works to improve technology stochastically through
an innovation process, improving machinery energy efficiency, environmental friendliness,
and productivity. Firms invest a fraction of past sales, RD(t) = vS(t — 1) into R&D.
Innovation success is then a draw from a Bernoulli random vector I° ~ Ber(#) where
P11 f‘v’i £ j,and § = 1 — e $BPM_ If innovation is successful, then coefficients are
updated from a random draw from a beta distribution, as per standard DSK.

DSK also includes an imitation process, where firms have a probability of setting their
coefficients to that of a close neighbour based on a random probability. This process was
harder to vectorize and is not fundamentally different from innovation, so in VDSK we in-
corporate imitation through a correlation in the innovation vector. Intuitively, innovative
firms are likely to be copied, resulting in a higher probability of innovations elsewhere.
We add this by adding a correlation, p, to the Bernoulli innovation success draw. This is
detailed in §5.1.6.

Innovations don’t necessarily have to be positive in each dimension. They can include
productivity increases that reduce environmental friendliness (e.g. our recent uptick in
AT use). Firms choose which machinery to produce based on a payback period, detailed
in appendix A.

Finally, the profit of capital good firms is: TI(¢) = (p(t) — c(t)) © Q°*?(t) — RD(t).

5.1.2 Consumption good firms

Consumption good firms use machinery produced by capital good firms to produce a good
consumed by the population. They own a capital base of machines, K“"(t), consisting of
machines of various vintages. Each machine vintage encodes the technology capital good
firms were making at the time (through their coefficients {A|B}FEIEF (¢)). This could
be the agricultural industry, for example, producing food from agricultural machinery
produced by capital good firms.

Consumption good firms calculate the orders they expect according to Q%(t) = D¢(t) +
Ne(t) — N(t — 1), where D¢(t) is the expected demand (set to the last period’s demand),
N(t) is the desired inventory, and N(t — 1) is leftover inventory from the last period.
This leads to the desired level of capital of K$*(t) = Q%(t). The actual amount that
firms can produce is limited based on their available capital (the stock of machinery they
have purchased so far), their labour force allocation, and energy allocation (see §5.1.3
for labour and §5.1.4 for energy) as per equation 5.3. Firms then calculate an expected
investment to reach their desired level of capital as EI(t) = max(KJ"(t) — K“"(t),0).
The authors [2] also did not specify a mechanism for consumers to choose the firm they
consume from, so in VDSK demand is allocated proportionally to 1/1/p(t).

Qd(t) — min(KconS<t), LS /CL7 Eavaz’lable<t)) (53)

cons cons

Firms keep track of the set of coefficients across each one of their vintages and replace

36

vintages older than J, so they only need to track Ay pppr(t) € RM>*J — We compute
replacement in a vectorized way by knowing that the vintage in the current step is ¢
mod J in this matrix, and updating that column per step.

We compute consumption good firms cost through a weighted average of the machines
they own. Say the fraction each firm owns in each vintage is M(t) € RY¥*" such that if
er € 17, then M(t)e, = ey and K (t) © M(t)e, = K(t). Then we can compute the total
unit cost of production as:

o(t) = w(t)[(Az(t) © M(t)ey] " + cen((ApE(t) © M(t))ey) (5.4)

Firms also replace machines when better technology becomes available, when the price
earned by new machines p*(t), their cost ¢*(t), and weigh it against their current weighted
cost ¢(t). They buy new machines when p*(t) — b(c(t) — ¢*(t)) < 0. We compute a
mask: Mpg(t) = [p*(t) — b(c(t) — c¢*(t)) < 0] € RM*/ and calculate new orders as:
NewOrders(t) = (M (t) ® Mg(t))e,) ® K(t). Total investment is then: I(t) = EI(t) +
Replacement(t) + NewOrders(t).

Pricing is then computed through a straightforward vectorization of the mechanism de-
scribed in appendix A. The price consumption good firms charge is calculated from this
markup and average cost as p(t) = (1 + p(t))c(t).

Consumption good firms can also take on debt to meet their required investments, 1(t),
only partially funded by net wealth. Say NW (t) is the net wealth of all consumption good
firms. The total debt ceiling the bank sector is allowed to give out is MTC(t) = e NW (t),
and each firm is also similarly constrained on the amount of debt they can take on by the
sales to debt ratio, a(Deb(t)®S(¢)~') = A(t). The original specification did not detail how
to handle the debt ceiling being reached, so in VDSK we specify ¢(t) as an adjusted fraction
of investments coming from debt. This can be computed from the desired loan amount
vs. the actual loan amount. Say that lev(t) = eT Deb(t — 1), MTC(t) = e’ NW (t — 1)
and req(t) = eTI(t)(1 — ¢), then:

1. If req(t) + lev(t) < MTC(t) then all loan requests can be fulfilled

2. Else we fulfill ¢;(t) = %@lev(t) of requests

3. Now at the firm level, if Deb(t —1)+(1—c)I(t) > A(t) then we fulfill % =

co(t) of requests

~

4. So finally we fulfill ¢(t) = min(c;(¢), c2(t)) of (1 —¢)I(t), so (¢)(t) =1 —¢&(t)(1 — ¢)

Lamperti et al [2] also did not specify a mechanism to pay off debt, so we pay off a fraction,
b, from profit. We can then have the debt update as Deb(t) = Deb(t — 1)+ (1 — ¢&(t))1(¢),
and, given a profit of I1(t) = (p(t) — c(t)) © QL(t) — rDeb(t), we compute final net wealth
as NW(t) = NW(t— 1)+ (1 = b)IL(t) — é(t)I(¢).

5.1.3 Labour market

To compute the wage, we need 3 scalar inputs: AB (t), the average worker productivity,
cpi(t), the average price inflation, and U(t), the unemployment rate. The calculation of
cpi(t) and AB(t) was omitted from the original specification, so we infer it in VDSK as:

37

AAB(t) _ pcap(t>TQcap(t) _l’;gcons@)TQcons(t)

T ,.cap T ,cons
. enp“P(t) | enpe™(t)
t) =
cpi(t) I +

Published papers specified that labour was demanded by firms, but neglected to mention
how such demand is calculated. Pereira’s implementation is highly complex and well
beyond any published details [86], so in VDSK, we proxy it using a coefficient of labour,
(1, representing how much labour is needed per unit of output, and the amount of
output produced in the last period by consumption good, capital good, and energy firms.
If the labour demand exceeds the supply, then it is prorated according the last output
produced by industry, and output is constrained by the amount of labour available as:
() = max(Kooty (£): Ly ()

industry industry

Qcap t _ 1 QCOTLS t _ 1 QeneTgy t _ 1
LP = max(e%—éL) + eﬂ éL) + C<L)

, L)
Finally the unemployment rate is calculated as: U(t) = L — LP. Here L® is the labour

market supply which is calculated with a static growth rate over time from an initial
amount: L°(t) = (1+ g)¥ L5(0).

5.1.4 Energy industry

Almost everything in the energy industry is a single scalar agent, so vectorization is
only used to deal with dirty power plants of varying vintages. We have at most F' dirty
power plants, with Ag(t) € R being the coefficients of production efficiency, and
emg.(t) € R™ the emissions the dirty plant produces. We again use ¢ mod F as the
current index of machines we operate on. Say we have Mg (t) € R as the normalized
capacity across the power plants such that (Mg (t) ® Ag(t))ep = Age(t). Then, the
realized cost of the dirty plants is then: é(£) = p*(¢)/Aqe(t), where p*(t) is the cost of the
fossil fuel used to generate electricity, and total capacity is Ky (t) € R,

Now capacity is replaced every F periods, and we expand capacity if there is excess
demand over current capacity, in which case we create new capacity using green plants
if the cost of green plants is lower than the cost of dirty plants ICy.(t) < béq(t), or else
dirty power plants (for free). The innovation process proceeds exactly as described in the
DSK model in appendix A. We can compute the effective emissions coefficient across the
vector of dirty plants as above: (Mg (t) ® emg.(t))er = emge(t).

Another thing missing from published DSK papers is how lack of energy capacity affects
output, or how firms utilize it. Similar to the labour market, VDSK prorates energy
capacity across industries based on the last period’s output, and max output is limited
by mazx (t) = maX(Kindustry(t), ngail (t))

industry industry

5.1.5 Climate box

The climate box proceeds as per our interpretation the DSK specification, in appendex
A, with the exception of how emissions are calculated, which is vectorized. We have the
following environmental friendliness coefficients for each agent type:

38

Tm as a function of time

—— Incorrect lambda as 2.9 from Lamperti et al
—— Correct lambda as 1/2.9

17.5 1

15.0 4

12.5 4

10.0 +

7.5 1

Temperature (DegC)

5.0

2.5 7

T
0 20 40 60 80 100
Time (yrs)

Figure 5.1: Temperate as a function of time with emissions growth of 1.2% per year over
100 years. Incorrect A used in Lamperti et al causes temperatures to plunge and stay low.
Even with corrected coefficient, the model shows temperature plunging until emissions
increase it again after 20 years.

1. In a consumption good firm, we have AZF € RM*/
2. In a capital good firm, coefficients are BFf" € RV*!
3. In the energy sector, we have eing(t) € R¥>F

Then, given the output vectors across the different industries, QP (t), Q"(t), Q%*(t),
total emissions are:

em(t) = QU ()T (M(t) ® AP ey + eh(Q“P(t) ® BEY) + Q™ (t)eimge(t)

One significant error in how the DICE-2013R [91] temperate model is implemented uses
an incorrect coefficient of 2.9 for A in equation A.1, which should instead by 1/2.9. This
causes temperatures to plunge and stay low, although even when corrected temperatures
initially plunge before recovering, seen in figure 5.1.

5.1.6 Imitation process

The innovation process samples from an uncorrelated Bernoulli vector with coefficients
0 =1— etP® In the traditional DSK model, the exponent is the amount invested in
innovation and imitation respectively. In VDSK, we replace it with the total R&D expen-
diture, and instead add a correlation to the multivariate Bernoulli distribution Ber ().

This is achieved by defining a Gaussian standard normal vector Z ~ N (0, 1) and a static
correlation p € R, We construct the covariance matrix using the static correlation
parameter p assuming unit variances, and then sample from Z' ~ N(0,%,). A Bernoulli

39

draw can then be simulated from this by first determining a threshold 7 = ®~1(6), and
then defining the Bernoulli draw as 1{.>.y.

5.2 Incorporating Dasgupta into VDSK

There are some crucial similarities between the Dasgupta framework presented in §4, and
the DSK model. In particular, the output Y'(¢) which measures the amount of economic
output produced by the economy in the Dasgupta framework is directly observable as the
sum of the machinery, consumption good, and energy firms output (Qcons+@Qcap+Qenergy)-
The produced capital, K(t), will effectively be the total value of machinery produced by
the capital goods industry, used by the consumption goods industry. We don’t have other
forms of capital in this model, such as buildings, roads, or otherwise. Human capital,
H(t) can be measured using a variety of approaches, but a common way is the income
approach [92], proxied by simply sum the wages across the labour force.

Now, two key components of the Dasgupta framework are not present in the DSK model,
which we will propose modifications for in this chapter and detail the additional research
needed to operationalize fully. These are:

1. The biosphere is represented as a single scalar value S(¢). The biosphere’s dynamics
are driven by three things:

(a) The natural dynamics of S(t), driven by the growth rate G(S(t))

(b) Resources extracted from the biosphere to manufacture goods and machinery,
R(t) in Dasgupta’s notation

(c) Waste dumped back into the biosphere from our consumption, Y(¢)/a, in
Dasgupta’s notation

2. Changes in population sizes as a function of human capital per person. The cross
dynamics between the economy, the population size, and the biosphere is an im-
portant second-order effect: a degrading biosphere causing extreme weather events,
desertification and natural disasters would reduce economic output which would
reduce the target population size, reducing the labour available for the economy.

These two components form the basis of the modifications we make to the VDSK model to
construct the Vectorized Dystopian Schumpeter meets Keynes, with Biodiversity (VDSK-
B) model. This will be a powerful ABM capable of endogenously modelling both biodi-
versity and climate change and the economy’s co-evolution with them.

5.2.1 Modifications to incorporate Dasgupta

Introducing biodiversity into a model of climate economics is very non-trivial and requires
a lot of design and parameter choices to match reality. In this section, we lay out a
framework in which such choices can be made. However, actually making the correct
choices is beyond the scope of this report as it will require careful investigations into the
biosphere, how it evolves over time, to what extent and how waste and natural resource
extraction affects it, etc.

The biosphere: S(t)

The critical addition to the DSK model is the addition of Dasgupta’s single scalar pa-
rameter, S(t), "heroically” representing the entire biosphere. The requirements for this

40

parameter are that:
1. It is proxies well the ability of our biosphere to sustain life
2. Biosphere dynamics (growth and decline rates) are well captured and explained

3. Resource extraction linearly negatively affects the global growth rate of the param-
eter

4. Waste and pollution also cause linear declines in the global growth rate of this
parameter

There is significant supporting literature that both 1. and 2. are very well proxied by the
amount of carbon in our biosphere [93, 94, 95, 96].

The effects of resource extraction are more complex; certain activities like forestry both
directly deplete carbon in the biosphere, and have knock-on impacts on biodiversity from
habitat loss, whereas activities like mining deplete ecosystem services indirectly. In both
cases, literature is supportive of carbon loss acting as an (imperfect) measure of bio-
sphere damage from resource extraction since the impacts tend to be damage to the local
ecosystem that degrades its ability to sustain life and store biomass [97, 98|.

Biosphere carbon is also an appropriate measure for the degradation of the biosphere
from waste and pollution. Waste comes in many different forms; agricultural waste for
instance includes fertilizer run-off, soil degradation, biocides and pesticides entering the
water table, all of which degrade the ability of the local ecosystem to sustain life [99].
The deposits of persistent chemicals and plastics into the environment actively damage
flora and fauna and their ability to reproduce [100]. All of these reduce the amount of
biomass in the biosphere.

As a result, we augment VDSK-B with an additional state variable, S(), in the climate
box, representing the GtC present in the biosphere, initially set to 3,700 GtC as per
Managi [101].

Resources extracted from biosphere, and pollution

Looking at equation 4.1, there are two detractors from the natural growth of the biosphere.
Resources extracted from the biosphere, R(t), are measured by Dasgupta as Y (t)/a,
through the coefficient «,. Pollution and waste flow back to the biosphere, degrading its
growth rate through Y (¢)/c,.

We also note the parsimony between now Dasgupta models the effect of waste and resource
extraction, Y (t)/a, and how DSK models emissions, Qcons/Agr. Therefore, propose to
model this within the VDSK-B model by introducing a set of new coefficients:

o Ag, Bg, A%: These model the efficiency with which resources are extracted from the
biosphere to machine manufacture (Ag) and consumption good manufacture (Bp,
a function of machinery’s ability). and dirty power plants from the extraction of
fossil fuels.

— The removal of carbon from the biosphere is then Q.ons/Br for consumption
good firms, Q..p/Ar for capital good firms, and ngwrgy /A% for dirty power
plants.

e Ay, By, A% Cy: These model the biosphere exhaustion coming from waste and
pollution from capital good firms, consumption good firms, dirty power plants, and

41

household consumption.

— The reduction in biosphere growth rate is then me% for consumption

good firms and households (who consume what consumption good firms make
and throw away plastic and other waste), Q)cqp/Aw for capital good firms, and

energy /A% for dirty power plants.

These coefficients are subject to same innovation process as in VDSK that accumulates
innovation capital, A(t), over time. The calibration of the initial value of coefficients, as
well as the impact of innovation processes, are key to using this mechanism. However,
this is beyond the scope of this work and is left for future work.

Integration into pricing

Biosphere degradation (and also emissions) can be incorporated in the pricing of con-
sumption and capital goods products by modifying the cost equations 5.1 and 5.4 to:

w_i_cen()

Ceons(t) = B, B, + @5 —l— o + ¢4 Br (5.5)
t en ca ca 1 ca 1
ccap(t) _ wA(L) + CA() + ¢ p_ + ¢ P_ + ¢ P~ (56)

Ag

This is extraordinarily powerful since a key control variable in Dasgupta is the aggregate

consumption, C(t), and no mechanism to control it exists in the DSK model. By intro-

ducing coefficients @] ;lcap not only do we introduce a mechanism to control consumption

through pricing, and a target for optimization via SalVO.

Biosphere dynamics

We now incorporate S(¢) into the Climate Box. At each step, the growth rate of the
biosphere stock, G(S(t)) is calculable using Dasgupta’s proposed formulation. The drain
to this growth rate comes from resources extracted and waste produced from the previous
step. The final state equation for the biosphere update is:

St+1) = G(SH) (5.7)
Growth rate of biosphere

B C cons ca gf@er
Qcons W'_ W_Q _Q L - 9y (58)

CwBW BW AW Ag{;

J/

-~

Degradation from waste
de
. Qcons . Qcons . Qcap _ Xenergy (5 9)
de :
R BR BR AR AR

Degradation from resource extraction

DSK also contains a term for Net Primary Production coming from atmospheric CO2
absorption into the biosphere. The goal of this term is to update the atmospheric CO2
concentration, not to actually model changes to biomass over time. As a result, while it
captures atmospheric CO2 updates, it doesn’t necessarily truly model biomass changes
accurately; the model is based on models of the carbon cycle from Goudriaan [94] and

42

Oeschger [102] and doesn’t include biomass from fauna reproduction, etc. Therefore, we
suggest modelling G(S(t)) as:

L) + NPP(t) (5.10)

Here the coefficient 7 needs to be calibrated to included components not coming from
NPP, the selection is beyond the scope of this report. Adding N PP(t) into this has the
added benefit of integrating global temperature into biosphere dynamics.

Climate shocks to the economy

Degradation of the biosphere should lead to similar shocks as seen from rising tempera-
tures in the DSK model, as a result of effects such as desertification leading to droughts
and food shortages. We can therefore make the climate disaster generating function a
function of both temperature and S(t), so disasters get worse if biosphere stock gets
depleted and if temperature worsens.

Realistic damage functions are one the key items recognized as not adequately addressed
by existing literature [18]. In VDSK-B we incorporate climate damage by extending
the DSK temperature-based damage model by sampling damages from a bivariate beta
distribution that is a function of both S(t) and 7,,(t), sampled over the support D €
[0,0.5)%

D~ B <(a0TM(1 + long(t))>7 (bf:aﬁ”;(@)/o%’;(t))) (5.11)

ag (1 +log S(1)) Ogloy(o)/any(t>

The key parameters 7, aj, by need to be calibrated (beyond report scope). The shocks are
then applied as el D.

This misses several important considerations in the Dasgupta report, such as the ineffable
value of the beauty of nature, and that loss of biodiversity equates to loss of life, a concept
entirely separate from economics. However, given the bounds of the DSK model, we can
keep the scope limited for now.

Population

Population size in DSK is calculated using a constant growth rate, g, as N(t) = (1 +
9)'N(0). In VDSK-B, to incorporate human population dynamics from Dasgupta, we
will make g a function of the unfilled consumer demand, i.e. the demand made for goods
from the population L° on consumption good firms, Qgemand, and the consumption good
firms ability to meet them based on their machine’s productivity and available labour and
energy, (Jeons- There is evidence that while the human population grows in the presence of
plentiful resources, there is a subsistence level below the ideal needs of the society beyond
which it will start to shrink [85], fs. We will use a logistic function to model this as:

G G
2

g(t) - 1 — ek(l_fstemand/Qcons) - (512)

Whenever supplied consumption goods exceed the minimum subsistence needed by con-
sumers, the population will grow up to G percent per year, and vice versa. With a variable
population size, the simulation should result in interesting dynamics where shocks from

43

climate disasters lead to a worse economy, lower wages and a smaller population target
size and less demand in the future for companies. This will have to be very carefully
designed and tested in future work.

44

Chapter 6

Evaluation

6.1 VDSK-B

6.1.1 Implementation

The VDSK-B model from §5 was implemented in SalVO by first deriving a vectorized
form of the DSK model, and implementing it using the same initial parameter configura-
tions as those given in Lamperti et al [2]. The only exception is the innovation correlation
parameter, p, which was arbitrarily set to 0.1. This implementation was exceedingly com-
plex, ending in the creation of an ABM with 132 different state components. However,
table 6.1 shows SalVQO’s succinctness and ease of use; the VDSK model was implemented
in only 2104 lines of code (LOC), compared to the 9058 needed by the open source im-
plementation, which is albeit more complex with a more nuanced climate model, banking
sector and labour allocation mechanism [86].

The complexity of the model is significant and the description of the implementation in
Lamperti et al [2] is insufficient. As a result, the outputs of the model, while reasonable,
do not match the expectations set by the paper or Pereira’s implementation of the DSK
model. The differences need further investigation to determine if they are coming from
flaws in the implementation or from the added complexity in Pereira’s implementation.

The biosphere modifications inspired by the Dasgupta report in §5.2 were also introduced.
These were successfully included in a vectorized way to make the VDSK-B model, and
the additional LOC and time benchmarks are included in table 6.1. However, the results
of the model are useless without the correct set of parameters needed for the additional
components in §5.2, which is beyond the scope of this work. Therefore, while the model
was implemented, showing SalVO’s speed and ease of use, its calibration and simulation
are left to future work.

5x bigger time

Model LOC Time taken (s) taken (s)
SalVO - VDSK-B 2104 7.24£0.29 7.49 £ 0.64
LSD - Pereira DSK [86] 9058 14.13 £ 0.64 151.34 + 2.82

Table 6.1: Lines of code (LOC) and the average time taken across 5 runs of VDSK and
VDSK-B in SalVO, and Pereria’s DSK implementation in LSD. A model with the number
of agents increased by 5x was also tested and timed.

45

FLAME
. . %
Benchmark Rubric SalvO Agents.jl Mesa (GPU)
Circles [60] Time/iteration (ms) 0.3+0.1 |- - 222+1.8
Flocking [45] Total sim. time (ms) 24.0£3.8 ;?42'7 + 23,974.1 -
. . . 146.2 £ | 4457 £
Forest Fires [50] Total sim. time (ms) 917 29 8 136,842.2 | -

Table 6.2: Running times across example ABMs across frameworks. SalVO executed on
the GPU with JAX. ABM configurations are identical to cited sources. Note that JIT
compilation times were excluded from the SalVO benchmarks. *Mesa times are inferred
from benchmarks in [45].

6.1.2 Speed and scale

As seen in table 6.1, the SalVO implementation of VDSK-B running on the GPU is ex-
ceedingly fast, running 2x as fast as Pereira’s implementation in LSD, which compiles
a C++ binary from a DSL (using all 20 logical processors for execution). The bench-
mark was generated for identical initial configurations, with 50 capital good agents, 200
consumption good agents, and a labour force of 3000 at the start.

The remarkable observation in table 6.1 is that scaling the model by 5x to 250 capital
good firms, 1000 capital good firms and 15,000 consumers, causes a 10x slowdown in
LSD, but since it can still easily fit into GPU VRAM, hardly changes the SalVO runtime.
The additional overhead in memory transfer barely registers. Once the GPU runs out of
memory, SalVO may not be able to complete the computation without additional batch-
ing, but this demonstrates the strong scalability achieved by SalVO for single-machine
simulations. While not explicitly tested, this also shows how efficient multi-device scaling
will be in SalVO.

6.2 SalVO evaluation

6.2.1 Speed and hardware acceleration

A critical design requirement for SalVO is that it can utilize vectorization and subsequent
hardware acceleration to achieve phenomenal speed and scale on a single machine. Table
6.2 shows the results of benchmarks for the example ABMs defined in §3.5.4. In all cases,
SalVO is significantly more performant, with the difference vs. FLAME (GPU) for circles
particularly remarkable. A key reason for this are optimisations such as operator fusing
applied by the JAX JIT compiler, as well as much more full GPU utilization achieved by
JAX over FLAME.

For other ABMs, Agents.jl achieves remarkable performance, but since it lacks hardware
acceleration, it is unable to reach the speeds SalVO can do for both the Flocking and

Forest Fires ABM. This combined with the VDSK runtimes shows SalVO’s ability to take
advantage of vectorization and hardware acceleration to reach significant speeds.

Tests on multi-device scalability, unfortunately, could not easily be performed due to the
lack of time and a multi-GPU setup. In theory, SalVO should be able to scale better
than most frameworks from its use of JAX’s data sharding and computation distribution
framework, but these have not been evaluated in this work.

46

6.2.2 Learning

This section evaluates the application of the backpropagation and policy gradient mod-
ules in SalVO to training example ABMs. Unfortunately, due to time constraints, training
could not be applied directly to the VDSK-B model since it first needs research on pa-
rameter choices, but they are instead applied on ABMs in §3.5.4.

Backpropagation

The bird flocking ABM from §3.5.4 was used to test the application of backpropagation
to ABM training. Note this ABM is differentiable in SalVO since JAX [82] supports auto-
differentiation of the max function except at the discontinuity. Since previous work [61]
showed the application of backpropagation (outside of SalVO) in an optimisation context
by maximizing GDP without any specific target, this work shows backpropagation within
SalVO applied to a calibration task. Our objective is seemingly simple but actually very
hard: to move the centroid of the flock to a target specified by the user.

In particular, if S; € RY¥*2 is the vector of bird locations, C' € R'*2 the target, and e the
identity vector, then we set our objective function as:

GTSt

EZZtETH N

—Cll (6.1)

We target a € RT*Y (see §3.5.4) as the optimisation target, with 7" = 100 and N = 500,
resulting in 50,000 parameters. Changing the centroid of the flock is extremely non-
trivial: as birds collapse to the centroid, their velocities reach 0, so no choice of @ moves
them. The only choice the ABM has to optimize equation 6.1 is to move the centroid
itself, rather than individual birds.

Backpropagation is applied through SalVO by specifying a backpropagation.py file.
Since ABMs are very "deep”, we apply clipped gradient descent to control explosive gra-
dients. Parameters such as learning rate, clips, training iterations are specified
here, as is a function update, which applies the gradient descent step (allowing for cus-
tom optimizers). It also contains the loss function and a targetspec which contains the
state-flow for the loss function and the target of the optimisation.

The results can be seen in figure 6.2, with the training curve and learnt « policies seen in
figure 6.1. The achievements are remarkable: SalVO is able to learn all 50,000 parameters
with a very non-trivial optimized policy, where certain birds are flung out away from the
centroid in figure 6.2 so that the centroid itself moves towards the target, before grouping
them back. The only bird with the 0 alpha is the one at the centroid already. The
remaining birds have their alpha collapse to the initial value of 0.1. This shows both the
optimized policy creation and calibration capability of SalVO.

GP-ABM

The Forest Fires ABM was used to demonstrate learning using the GP-ABM framework
from §3.4.3. Since fires spread from adjacent trees, a dense forest (i.e. a strongly connected
set of trees) will always burn down. As seen in figure 6.3, as the forest regrows, it either
reaches an equilibrium with the rate of Forest Fires, or it regrows so quickly that it starts
to form dense patches which again cause the forest to burn down. We want to find a
regrowth probability, p, that maximizes the average amount of trees alive through the

47

Backpropagation Loss vs Step in Bird Flocking ABM Alpha policies learnt through backpropagation in Bird Flocking ABM

3.5 4 — Loss

3.01

2.54 0.2 4

Loss
Alpha
o
(=]

154

1.0 4

0.5

T T T T T T T T T T T U T T
0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100
Training Step ABM Step

Figure 6.1: [Left] The training curve over 10 iterations. [Right] Learnt a policies for all
individual birds.

10 - 10 10 10
. e -
KPR et
R LSO S L)
B IREY AR PR Byt ay, 8 8
¢ . .o
s 3, 35" e &.ig _‘- ,::. .
$ 2oy % ¢ o3 2
R R o w8 of 6 6
o2 - oy S WS
b,* Lo o
4 .-'g. 8o rl;:'&“ .
4—-:.- St e 2 v..' . 4 4 4
e e Tt L ‘:'.;. L Y W o,
s e « el » i i '
IR R (% 2 b | 2 . - 2 o
- ot o . A% . . . -,
RO T “ ° to .
P Y o s ®e wey L
. P .4 o)

Figure 6.2: Bird flocking optimized to move the centroid from the center to the red dot.
SalVO learns to cast birds far to move the centroid, before collapsing at the target.

forest’s history. This will be such that it doesn’t cause dense forests that burn down, and
not so little that we haven’t yet reached equilibrium.

We imbue each tree with a static probability of regrowth p € [0,1]" for 10,000 trees.
The GP-ABM is then learning 10,000 parameters. Now, this ABM is both stochastic
and non-differentiable, leading to backpropagation not being a viable option. However,
it is, as per Grazzini [62], ergodic and has an absorbing equilibrium for small values of p.
[.e. the number of trees alive is dependent only on its parameters and has a stationary
distribution, as shown by figure 6.3. This satisfies William’s conditions [4] for reward
stationarity, enabling us to apply the GP-ABM.

We follow the protocol laid out in §3.4.3. We fit a Gaussian Process using agent-level data
on the tree state, S € 0,1: S ~ GP(u(p),o(p)) using the RBF kernel. We then use this
calibrated GP to generate a density given the value of p for an agent: g(5)|,—p,. We then
use JAX’s auto-differentiation to calculate 0ln g/dp. We further use a dynamic baseline
in REINFORCE from Weaver and Tao [103]. Note that we use a GP that predicts a
distribution over a single tree’s state given p to optimize the overall average number of
trees alive.

The results of this calibration can be seen in figure 6.4, where the training curve clearly
shows an increase in the average number of trees alive up to an asymptote. The learnt
trajectories show a clear, smooth convergence over time to 0.09 for all 10,000 parameters.
The outcome can be seen in figure 6.3, where a p = 0.15 leads to unstable behaviour. Now,
it’s easy to see that a stable packing of trees with none adjacent would fit 2,500 trees in
a 100x100 grid. Our GP-ABM reaches 2150 trees. The stable packing is only reachable
with p = 0 for trees that should stay dead. This is discussed more in §7.1.2.

48

Forest Fires ABM in SALVO p=0.01 Forest Fires ABM in SALVO p=0.15

T .
fo00 —— trees_alive 10000 . T
—— trees_on_fire
7000 _on_fire |
8000 -

6000
£ 5000 1 0
g ﬁ 6000 -
5
5 s — trees_on_fire
S 4000 5 _on |
T 1] ~—— trees_alive
£ £
§ 3000 E 40004 1
z 4

2000 1

2000
VNSNS AN AP
1000
0 04—
0 200 400 600 800 1000 0 200 400 600 800 1000

Step

Figure 6.3: [Left] Trees alive and on fire under baseline settings. [Right] Trees alive/on
fire under an unstable setting, where dense forest regrowth triggers full burns.

Forest Fires GP-ABM Optimization in SALVO Trajectories of p in Forest Fire GP-ABM Optimization in SALVO
2250 4 7 : : 10
2000 /,-

1]
g 1750 / 0.08
[
>
©
c
© 1500 A 2 0,06
2 2
© [
¢ 1250 5
5 § 004
= S o
k]
S 1000 A
&
E

J 0.02
3 750

500 — reward |
| —— baseline 0.00
' T
0 50 100 150 200 250 0 50 100 150 200 250
Training Iteration Training Iteration

Figure 6.4: [Left] Training curve of the GP-ABM. [Right] How p changes for each agent
with training, from its initial distribution from Uni form(0,0.1).

49

Chapter 7

Discussion, conclusion and future
work

7.1 Discussion and criticism

7.1.1 VDSK-B

The VDSK-B model creates crucial linkages through the tracking of the additional climate
state variable, the biosphere, S(t), from Dasgupta [1] and links it to the economy with the
climate through the use of a joint damage function. It is able to represent nearly every
crucial element of the framework laid out by Dasgupta, including population dynamics,
the biosphere stock levels and dynamics, waste, and resource mining. The integration
of it into VDSK, along with the success of SAVLO’s optimizable policy design suite,
unlocks powerful potential studies using Dasgupta’s key control variables of consumption
patterns (through price controls), investment in innovation and human capital (through
unemployment wages), and limitations on resource mining.

However, the model is extraordinarily complex and difficult to implement. This work
tried to implement the model using descriptions from Lamperti et al [2], and while a
model was successfully designed and implemented, it doesn’t display behaviour in line with
published results or Pereira’s implementation [86]. For instance, in VDSK prices generally
fall as innovation happens, but they tend to trend sideways in Pereira’s implementation.
This could be due to implementation issues in VDSK but is more likely from incorrect
extrapolations, necessary to fill in missing details in the DSK-published papers. Much
more work is needed here to understand the gaps and close them. Similarly, VDSK-B
requires research on parameters matching reality for stable simulations.

The lack of useful implementations is a stumbling block for future research, but the
successful implementation of VDSK and VDSK-B into SalVO, and the simulation per-
formance achieved, clearly demonstrate SalVO’s ability to handle highly complex ABMs.
While the speed isn’t a totally fair comparison (since Pereira’s implementation contains
more complexity than described in Lamperti’s original work) it does not contain twice as
much complexity, and the results at a 5x scale are incontrovertible.

7.1.2 SalvVO

SalVO’s implementation based on the ABM formalism in definition 1 shows clear benefits.
The expressivity of the formalism is borne out by the numerous examples of ABMs, and

20

the highly complex VDSK, implemented successfully in SalVO. §6 contains clearly positive
results when evaluating SalVO against its design goals of being scalable, vectorized, and
optimizable. In every test that was run, SalVO, using GPU acceleration, outperformed
its closest competitors in terms of speed and scale on a single machine. The VDSK
implementation ran in half the time of the LSD [56] library that compiles its DSL into a
C++ binary and in 4% of the time taken by LSD with a 5x scale up. It outperformed
Agents.jl on the forest fire and flocking benchmarks by between 2-3x. It even outperformed
FLAME’s GPU implementation on the Circles benchmark [60].

However, speed isn’t everything, and there are clear downsides to this framework. While
SalVO is much faster by using hardware acceleration, these aren’t really fair benchmarks
since neither LSD nor Agents.jl use GPUs. SalVO’s performance using JAX’s JIT on
CPUs would be a more fair test, but this wasn’t formally assessed here due to time
constraints. Furthermore, Agents.jl runs on the CPU not necessarily using its entire
capacity across cores, which means that some simultaneous runs of an ABM model should
be possible on a single machine. However, for parallel model runs in SalVO, we’d need
likely multiple GPUs. This isn’t the case for LSD, however, which used all available CPU
logical processors for its DSK simulation.

Furthermore, while SalVO claims to be scalable to multiple devices by leveraging JAX’s
data sharding and pmap capabilities, there wasn’t sufficient time to assess this in this
work. Additionally, SalVO’s performance is heavily dependent on the choice of GPU.
For instance in §6.2.1 in the Circles benchmark, SalVO’s blazing speed is attributable to
an operator fusion optimisation carried out by JAX’s JIT compiler. However, this also
actually prevented single-machine scale in this case, since it caused the GPU to go out
of memory at a mere 35,000 agents, whereas both FLAME and a previous TensorFlow
implementation by the author [53] scaled to 100,000+ agents. Smaller GPUs with in-
sufficient VRAM could end up being a bottleneck in SalVO’s performance, a fact not
sufficiently explored due to time constraints.

One benefit of SalVO is that it is intuitive and easy to use; anecdotally a colleague was able
to implement an ABM in SalVO unassisted in under an hour. Comparable frameworks like
LSD/FLAME took the author several hours to just get familiar with the DSL. However,
one key drawback is that ABMs in SalVO have to be expressed in a way that permits
vectorization. This does require more thought than generic for-loops, but the results are
well worth it.

SalVO did demonstrate a strong ability to learn parameters both for differentiable ABMs
through backpropagation, and non-differentiable /stochastic ABMs using policy gradients.
However, it is important to note that ABMs can be very “deep“ (i.e. have many steps).
This can cause issues with vanishing or explosive gradients. The latter is handled using
clipped gradient descent, but the former remains important to remediate. The backpropa-
gation approach, while clearly powerful, can only be applied to differentiable, deterministic
ABMs, a crucial drawback if not applied carefully.

The policy gradient-based approach overcomes both these limitations and was also seen
to learn a large number of parameters successfully. It is also surprisingly sample efficient,
requiring data from only a single run of the Forest Fires ABM to calibrate a useful
Gaussian process successfully. This is because it was learning a GP for tree state as a
function of the tree’s p, and so it obtained 10,000 observations from a single ABM run.
However, this approach has clear drawbacks. It is only applicable in the case where the
reward is stationary, otherwise, the assumptions behind William’s REINFORCE [4] would
break down. It also needs all useful information to be encoded into the learnt probabilistic

51

model, which is impossible for ABMs. For example, by learning a GP for a single tree,
we missed the joint effect of all the tree’s regrowth probabilities on ultimate tree states.
So we were not able to learn a policy for p where there are no adjacent trees, leading to
2,500 trees alive, since it had no idea that setting some p’s to 0 would enable others to
survive. However, even by missing this crucial interaction from other agent parameters,
it still was able to create an optimized policy.

In both learning approaches, this work is limited in that it only evaluated two simple
ABM cases where they worked well. There was not sufficient time to properly assess
a full gambit of ABMs, particularly in cases where they would fail or would be hard
to implement. SalVO also doesn’t implement traditional calibration techniques such as
simulated minimum distance or Bayesian optimisation natively yet.

7.2 Conclusion

To build an ABM that captures the integrated dynamics of the economy, climate and
biosphere, this work recognized gaps in both existing ABM computation frameworks and
current ecological economic ABM models. No existing ABM captures the interaction of
these 3 elements. Building on Lamperti et al’s DSK model [2], a vectorized form, the
VDSK, was derived. Using Dasgupta’s work [1], the biosphere was integrated into the
ABM, creating the VDSK-B ABM.

Recognizing the need for large-scale calibration and optimized policy design to be an
essential component of any ABM framework, this work built SalVO (§3). Based on an
ABM formalism proven to be expressive enough to emulate programs in a Turing complete
language, SalVO is a library in which backpropagation and policy gradient techniques from
machine learning literature can be used for truly large-scale parameter calibration. Both
proposed learning approaches need many evaluations of the ABM in order to generate
optimized parameters, motivating the need for fast ABM simulations. SalVO achieved
extraordinarily fast simulations by leveraging vectorization and using JAX’s [82] XLA
compiler to generate kernels capable of hardware acceleration across CPUs, GPUs and
TPUs.

Results showed that simulations in SalVO ran significantly faster than comparable frame-
works, such as FLAME (GPU) [3]. Scaling ABMs on a single machine also showed sig-
nificant promise, with a 5x scale-up in VDSK resulting in a negligibly slower simulation.
ABM training through backpropagation was also successfully demonstrated, with a very
non-trivial policy learnt across 50,000 parameters to guide a flock centroid to a target
location. Policy gradient-based training also successfully enabled parameter learning for
stochastic, non-differentiable ABMs.

The VDSK-B ABM was successfully implemented in SalVO, demonstrating its ability
to handle complex ABMs. However, simulation results don’t match those in published
papers or open-source implementations, showing the need for further research for proper
operationalization.

While SalVO shows much promise, there are many drawbacks to address, including im-
plementing scalability across a network of devices. Policy gradient-based training (the
GP-ABM protocol) contains many theoretical issues discussed in §3.4.3 which merit fur-
ther investigation. A more thorough evaluation of SalVO across more complex ABMs is
also warranted.

However, it is also the first ABM framework to introduce large-scale parameter learning

52

as a key feature for both differentiable, deterministic, and non-differentiable, stochastic
ABMs. It unlocks a world of possibilities for optimized policy design and calibration,
as well as easy scalability to large ABM sizes without the need for complex DSLs and
specialist knowledge, democratising performant, scalable and optimizable ABMs for non-
computer scientist researchers.

7.3 Future work

The clear avenue for future work is the proper operationalization of the VDSK-B model.
The current implementation is based on descriptions in published works since Pereira’s
implementation differs significantly. However, inconsistent results show the need for a
deeper investigation. Furthermore, the VDSK-B model introduces a number of new pa-
rameters for the biosphere element which need calibration to real-world data before the
model can be useful.

A fuller evaluation of SalVO’s training capabilities across different ABMs would be valu-
able to better explore the usefulness of the GP-ABM and backpropagation protocols.
Scale to multiple devices using JAX’s data-sharding and pmap capabilities also needs
full implementation and testing. Finally, SalVO’s GP-ABM protocol only works with
stationary rewards; more powerful training tools are needed to relax these constraints
further.

Additional further work is captured in appendix D

23

Bibliography

1]

2]

[10]

P. Dasgupta, The economics of biodiversity: the Dasqupta review: full report. Lon-
don: HM Treasury, updated: 18 february 2021 ed., 2021.

F. Lamperti, G. Dosi, M. Napoletano, A. Roventini, and A. Sapio, “Faraway, So
Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated
Assessment Model,” Ecological Economics, vol. 150, pp. 315-339, 2018.

P. Richmond and M. K. Chimeh, “FLAME GPU: Complex System Simulation
Framework,” in 2017 International Conference on High Performance Computing €
Simulation (HPCS), pp. 11-17, 2017.

R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Reinforcement learning, pp. 5-32, 1992. Publisher: Springer.

J. Rockstrom, W. Steffen, K. Noone, Persson, F. S. Chapin III, E. Lambin, T. M.
Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, and others, “Planetary bound-

aries: exploring the safe operating space for humanity,” Ecology and society, vol. 14,
no. 2, 2009. Publisher: JSTOR.

F. S. Chapin III, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L.
Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack, and

S. Diaz, “Consequences of changing biodiversity,” Nature, vol. 405, pp. 234-242,
May 2000.

C. Parmesan and G. Yohe, “A globally coherent fingerprint of climate change im-
pacts across natural systems,” Nature, vol. 421, pp. 37-42, Jan. 2003.

S. Diaz, J. Settele, E. S. Brondizio, H. T. Ngo, J. Agard, A. Arneth, P. Bal-
vanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi,
K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnar,
D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. R.
Chowdhury, Y.-J. Shin, I. Visseren-Hamakers, K. J. Willis, and C. N. Zayas,
“Pervasive human-driven decline of life on Earth points to the need for trans-
formative change,” Science, vol. 366, no. 6471, p. eaax3100, 2019. _eprint:
https://www.science.org/doi/pdf/10.1126 /science.aax3100.

C. Turney, A.-G. Ausseil, and L. Broadhurst, “Urgent need for an integrated policy
framework for biodiversity loss and climate change,” Nature Ecology € Evolution,
vol. 4, pp. 996-996, Aug. 2020.

M. Bélint, S. Domisch, C. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer,
K. Theissinger, S. U. Pauls, and C. Nowak, “Cryptic biodiversity loss linked to
global climate change,” Nature Climate Change, vol. 1, pp. 313-318, Sept. 2011.

54

[11] P.-M. Boulanger and T. Bréchet, “Models for policy-making in sustainable devel-
opment: The state of the art and perspectives for research,” Fcological FEconomics,
vol. 55, no. 3, pp. 337-350, 2005.

[12] H. Daly and J. Farley, FEcological Economics: Principles and Applications. 2nd
edition ed., Jan. 2011.

[13] J. Gowdy and J. D. Erickson, “The approach of ecological economics,” Cam-
bridge Journal of Economics, vol. 29, pp. 207-222, Mar. 2005. _eprint:
https://academic.oup.com/cje/article-pdf/29/2/207/4768301 /bei033.pdf.

[14] D. Pearce, “The Social Cost of Carbon and its Policy Implications,” Oz-
ford Review of Economic Policy, vol. 19, pp. 362-384, Sept. 2003. _eprint:
https://academic.oup.com/oxrep/article-pdf/19/3/362/1208529 /grg002.pdf.

[15] M. Golosov, J. Hassler, P. Krusell, and A. Tsyvinski, “Optimal Taxes on Fossil Fuel
in General Equilibrium,” Fconometrica, vol. 82, no. 1, pp. 41-88, 2014. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA10217.

[16] J. E. Stiglitz, “Where modern macroeconomics went wrong,” Ozford Review of
Economic Policy, vol. 34, pp. 70-106, Jan. 2018.

[17] G. Fagiolo and A. Roventini, “Macroeconomic Policy in DSGE and Agent-Based
Models Redux: New Developments and Challenges Ahead,” Journal of Artificial
Societies and Social Simulation, p. 48, Jan. 2017.

[18] J. D. Farmer, C. Hepburn, P. Mealy, and A. Teytelboym, “A Third Wave in the
Economics of Climate Change,” Environmental and Resource Economics, vol. 62,
pp- 329-357, Oct. 2015.

[19] S. Barrett, A. Dasgupta, P. Dasgupta, W. N. Adger, J. Anderies, J. van den Bergh,
C. Bledsoe, J. Bongaarts, S. Carpenter, F. S. r. Chapin, A.-S. Crépin, G. Dalily,
P. Ehrlich, C. Folke, N. Kautsky, E. F. Lambin, S. A. Levin, K.-G. Méler, R. Naylor,
K. Nyborg, S. Polasky, M. Scheffer, J. Shogren, P. S. Jgrgensen, B. Walker, and
J. Wilen, “Social dimensions of fertility behavior and consumption patterns in the
Anthropocene.,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 117, pp. 6300-6307, Mar. 2020. Place: United States.

[20] D. U. Hooper, F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. La-
vorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala,
A. J. Symstad, J. Vandermeer, and D. A. Wardle, “EFFECTS OF BIODI-
VERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT
KNOWLEDGE,” FEcological Monographs, vol. 75, no. 1, pp. 3-35, 2005. _eprint:
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/04-0922.

[21] M. Wackernagel, B. Beyers, and K. Rout, Ecological footprint : managing our bio-
capacity budget. Gabriola Island, BC, Canada: New Society Publishers, 2019.

[22] T. L. Ng, J. W. Eheart, X. Cai, and J. B. Braden, “An agent-based
model of farmer decision-making and water quality impacts at the water-
shed scale under markets for carbon allowances and a second-generation

biofuel crop,” Water Resources Research, vol. 47, mno. 9, 2011. _eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029,/2011WR010399.

95

23]

[24]

[25]

33]

[34]

B. Noeldeke, E. Winter, and E. B. Ntawuhiganayo, “Representing human decision-
making in agent-based simulation models: Agroforestry adoption in rural Rwanda,”
Ecological Economics, vol. 200, p. 107529, 2022.

[. Bakam and R. B. Matthews, “Emission trading in agriculture: a study of design
options using an agent-based approach,” Mitigation and Adaptation Strategies for
Global Change, vol. 14, p. 755, Oct. 2009.

I. Monasterolo and M. Raberto, “The EIRIN Flow-of-funds Behavioural Model of
Green Fiscal Policies and Green Sovereign Bonds,” Ecological Economics, vol. 144,
pp. 228-243, Feb. 2018.

S. Heckbert, T. Baynes, and A. Reeson, “Agent-based modeling in ecological eco-
nomics,” Annals of the New York Academy of Sciences, vol. 1185, no. 1, pp. 39-53,
2010. Publisher: Wiley Online Library.

L. Hardt and D. W. O’Neill, “Ecological Macroeconomic Models: Assessing Current
Developments,” Ecological Economics, vol. 134, pp. 198-211, 2017.

J. R. Nielsen, E. Thunberg, D. S. Holland, J. O. Schmidt, E. A. Fulton, F. Bas-
tardie, A. E. Punt, I. Allen, H. Bartelings, M. Bertignac, E. Bethke, S. Bossier,
R. Buckworth, G. Carpenter, A. Christensen, V. Christensen, J. M. Da-Rocha,
R. Deng, C. Dichmont, R. Doering, A. Esteban, J. A. Fernandes, H. Frost, D. Gar-
cia, L. Gasche, D. Gascuel, S. Gourguet, R. A. Groeneveld, J. Guillén, O. Guyader,
K. G. Hamon, A. Hoff, J. Horbowy, T. Hutton, S. Lehuta, L. R. Little, J. Lleonart,
C. Macher, S. Mackinson, S. Mahevas, P. Marchal, R. Mato-Amboage, B. Map-
stone, F. Maynou, M. Merzéréaud, A. Palacz, S. Pascoe, A. Paulrud, E. Plaganyi,
R. Prellezo, E. I. van Putten, M. Quaas, L. Ravn-Jonsen, S. Sanchez, S. Simons,
O. Thébaud, M. T. Tomczak, C. Ulrich, D. van Dijk, Y. Vermard, R. Voss, and
S. Waldo, “Integrated ecological-economic fisheries models—Evaluation, review and
challenges for implementation,” Fish and Fisheries, vol. 19, no. 1, pp. 1-29, 2018.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111 /faf.12232.

A. Welfle, P. Thornley, and M. Roder, “A review of the role of bioenergy modelling in
renewable energy research & policy development,” Biomass and Bioenergy, vol. 136,
p. 105542, May 2020.

P. J. Verkerk, P. Anttila, J. Eggers, M. Lindner, and A. Asikainen, “The realisable
potential supply of woody biomass from forests in the European Union,”
Ecology and Management, vol. 261, pp. 2007-2015, June 2011.

A. Pyka, G. Cardellini, H. v. Meijl, and P. J. Verkerk, “Modelling the bioecon-
omy: Emerging approaches to address policy needs,” Journal of Cleaner Production,
vol. 330, p. 129801, 2022.

M. D. Gerst, P. Wang, A. Roventini, G. Fagiolo, G. Dosi, R. B. Howarth, and M. E.
Borsuk, “Agent-based modeling of climate policy: An introduction to the ENGAGE
multi-level model framework,” Environmental Modelling € Software, vol. 44, pp. 62—
75, 2013.

Forest

I. Monasterolo and R. Marco, “A Hybrid System Dynamics — Agent Based Model
to Assess the Role of Green Fiscal and Monetary Policies,” SSRN, Mar. 2016.

D. Tilman, M. Clark, D. R. Williams, K. Kimmel, S. Polasky, and C. Packer,
“Future threats to biodiversity and pathways to their prevention,” Nature, vol. 546,
pp. 73-81, June 2017.

56

[35]

[36]

37]

[38]

[39]

[40]

[41]

R. Pirard, “Market-based instruments for biodiversity and ecosystem services: A
lexicon,” Environmental Science € Policy, vol. 19-20, pp. 59-68, 2012.

K. Hasselmann and D. V. Kovalevsky, “Simulating animal spirits in actor-based
environmental models,” Environmental Modelling & Software, vol. 44, pp. 10-24,
2013.

S. Wolf, S. First, A. Mandel, W. Lass, D. Lincke, F. Pablo-Marti, and C. Jaeger,
“A multi-agent model of several economic regions,” Environmental Modelling €
Software, vol. 44, pp. 25-43, 2013.

Y. Dafermos, M. Nikolaidi, and G. Galanis, “A stock-flow-fund ecological macroe-
conomic model,” Fcological Economics, vol. 131, pp. 191-207, 2017.

L. Tang, J. Wu, L. Yu, and Q. Bao, “Carbon emissions trading scheme exploration
in China: A multi-agent-based model,” Energy Policy, vol. 81, pp. 152-169, 2015.

L. Tang, J. Wu, L. Yu, and Q. Bao, “Carbon allowance auction design of China’s
emissions trading scheme: A multi-agent-based approach,” Energy Policy, vol. 102,
pp. 30-40, 2017.

P.R. d. Andrade, A. M. V. Monteiro, and G. Camara, “From Input-Output Matrixes
to Agent-Based Models: A Case Study on Carbon Credits in a Local Economy,” in
2010 Second Brazilian Workshop on Social Simulation, pp. 5865, 2010.

C. Deissenberg, S. Van Der Hoog, and H. Dawid, “EURACE: A massively parallel
agent-based model of the European economy,” Applied mathematics and computa-
tion, vol. 204, no. 2, pp. 541-552, 2008. Publisher: Elsevier.

D. Masad and J. Kazil, “MESA: an agent-based modeling framework,” in 14th
python in Science Conference, vol. 2015, pp. 53-60, Citeseer, 2015.

M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and C. Greenough,
“FLAME: Simulating Large Populations of Agents on Parallel Hardware Architec-
tures,” in Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, (Richland, SC),
pp. 1633-1636, International Foundation for Autonomous Agents and Multiagent
Systems, 2010. event-place: Toronto, Canada.

G. Datseris, A. R. Vahdati, and T. C. DuBois, “Agents.jl: a performant and feature-
full agent-based modeling software of minimal code complexity,” SIMULATION,
vol. 0, p. 003754972110688, Jan. 2022. Publisher: SAGE Publications.

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “MASON: A Mul-
tiagent Simulation Environment,” SIMULATION, vol. 81, no. 7, pp. 517-527, 2005.
_eprint: https://doi.org/10.1177/0037549705058073.

S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complex-

ity,” in International conference on complex systems, vol. 21, pp. 1621, Citeseer,
2004.

N. Collier, “Repast: An extensible framework for agent simulation,” The University
of Chicago’s Social Science Research, vol. 36, p. 2003, 2003.

D. Taghawi-Nejad, R. H. Tanin, R. M. Del Rio Chanona, A. Carro, J. D. Farmer,
T. Heinrich, J. Sabuco, and M. J. Straka, “ABCE: A Python Library for Economic

o7

[50]

[51]

[53]

[54]

[58]

[59]

[60]

[61]

[62]

[63]

Agent-Based Modeling,” in Social Informatics (G. L. Ciampaglia, A. Mashhadi, and
T. Yasseri, eds.), (Cham), pp. 17-30, Springer International Publishing, 2017.

A. R. Vahdati, “Agents. jl: Agent-based modeling framework in Julia,” Journal of
Open Source Software, vol. 4, no. 42, p. 1611, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and others, “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing sys-
tems, vol. 32, 2019.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, and others, “${$tensorflow$}$: a system for ${S$large-scale$}$

machine learning,” in 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265-283, 2016.

S. Agrawal, “Dataflow Agent Based Models: Using Large Scale Data Processing to
Scale ABMs,” Jan. 2023.

N. T. Collier, J. Ozik, and E. R. Tatara, “Experiences in Developing a Distributed
Agent-based Modeling Toolkit with Python,” in 2020 IEEE/ACM 9th Workshop on
Python for High-Performance and Scientific Computing (PyHPC), pp. 1-12, 2020.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, and others, “${$tvm$}$: An automated ${$end-to-end$}$ optimiz-
ing compiler for deep learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pp. 578-594, 2018.

M. Valente and M. Pereira, “Library for Simulation Development (LSD 8.0),” May
2022.

G. Cordasco, R. D. Chiara, A. Mancuso, D. Mazzeo, V. Scarano, and C. Spagn-
uolo, “Bringing together efficiency and effectiveness in distributed simulations: The
experience with D-Mason,” SIMULATION, vol. 89, no. 10, pp. 1236-1253, 2013.
_eprint: https://doi.org/10.1177/0037549713489594.

X. Rubio-Campillo, “Pandora: A Versatile Agent-Based Modelling Platform for
Social Simulation,” Jan. 2014.

F. Borges, A. Gutierrez-Milla, E. Luque, and R. Suppi, “Care HPS: A high perfor-
mance simulation tool for parallel and distributed agent-based modeling,” Future
Generation Computer Systems, vol. 68, pp. 59-73, Mar. 2017.

R. Chisholm, P. Richmond, and S. Maddock, “A Standardised Benchmark for As-
sessing the Performance of Fixed Radius Near Neighbours,” Euro-Par 2016 Work-
shops, pp. 311-321, 2017.

S. Agrawal, “Agent Based Networks: Multi-Agent Learning for Creating Optimal
Policies in Agent Based Models,” Mar. 2023.

J. Grazzini and M. Richiardi, “Estimation of ergodic agent-based models by sim-
ulated minimum distance,” Journal of Economic Dynamics and Control, vol. 51,
pp- 148-165, 2015. Publisher: Elsevier.

J. Grazzini, M. G. Richiardi, and M. Tsionas, “Bayesian estimation of agent-based
models,” Journal of Economic Dynamics and Control, vol. 77, pp. 26-47, 2017.
Publisher: Elsevier.

o8

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[76]

78]

W. Lu, G. Xiong, X. Liu, S. Liu, P. Ye, and L. Zhang, “Fast Calibration of Agent-
Based Model using Mean-Field Approach,” in 2021 IEEE 1st International Confer-
ence on Digital Twins and Parallel Intelligence (DTPI), pp. 266-269, 2021.

A. Chopra, A. Rodriguez, J. Subramanian, B. Krishnamurthy, B. A. Prakash,
and R. Raskar, “Differentiable agent-based epidemiological modeling for end-to-end
learning,” in ICML 2022 Workshop Al for Agent-Based Modelling, 2022.

A. Quera-Bofarull, A. Chopra, A. Calinescu, M. Wooldridge, and J. Dyer, “Bayesian
calibration of differentiable agent-based models,” arXiv preprint arXiv:2505.15540,
2023.

J. Barnard, J. Whitworth, and M. Woodward, “Communicating X-machines,” In-
formation and Software Technology, vol. 38, pp. 401-407, June 1996.

S. Agrawal, S. Olowu, B. Mutua, and I. Iraoui, “Bayesian Emulation and Optimiza-
tion of Agent Based Models Applied to COVID-19 Interventions,” Jan. 2023.

U. Muller, “Brainfuck: An Eight Instruction, Turing-Complete Programming Lan-
guage,” 1993.

M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, “Parallel Computing Experiences with
CUDA,” IEEE Micro, vol. 28, no. 4, pp. 13-27, 2008.

Hamilton, Graph Representation Learning, vol. 14 of Synthesis Lectures on Artificial
Intelligence and Machine Learning. 2020.

C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J. Kochenderfer,
“Decentralized control of partially observable Markov decision processes,” in 52nd
IEEE Conference on Decision and Control, pp. 2398-2405, IEEE, 2013.

T. G. Evans and D. L. Darley, “On-Line Debugging Techniques: A Survey,” in
Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, pp. 37—
50, New York, NY, USA: Association for Computing Machinery, 1966.

A. Sabne, “XLA : Compiling Machine Learning for Peak Performance,” 2020.

C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and others, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, 2020. Publisher: Nature
Publishing Group UK London.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
A Timely Dataflow System,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP 13, (New York, NY, USA), pp. 439-455,
Association for Computing Machinery, 2013. event-place: Farminton, Pennsylvania.

D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and
S. Hand, “${Sciel$}$: A Universal Execution Engine for Distributed ${$data-
flow$}$ Computing,” in 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 11), 2011.

A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-Centric Graph Pro-
cessing Using Streaming Partitions,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, (New York, NY, USA),

29

[82]

[83]

[90]

[91]

[92]

pp- 472-488, Association for Computing Machinery, 2013. event-place: Farminton,
Pennsylvania.

H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “Geeps: Scal-
able deep learning on distributed gpus with a gpu-specialized parameter server,”
in Proceedings of the eleventh european conference on computer systems, pp. 1-16,
2016.

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in
TensorFlow,” arXiv preprint arXiw:1802.05799, 2018.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and others, “Large scale distributed deep networks,” Advances
in neural information processing systems, vol. 25, 2012.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: com-
posable transformations of Python+NumPy programs,” 2018.

C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral Model,”
SIGGRAPH Comput. Graph., vol. 21, pp. 25-34, Aug. 1987. Place: New York, NY,
USA Publisher: Association for Computing Machinery.

U. Pascual, W. M. Adams, S. Diaz, S. Lele, G. M. Mace, and E. Turnhout, “Biodi-
versity and the challenge of pluralism,” Nature Sustainability, vol. 4, pp. 567-572,
July 2021.

M. Cain, “Fertility as an Adjustment to Risk,” Population and Development Review,
vol. 9, no. 4, pp. 688-702, 1983. Publisher: [Population Council, Wiley].

M. Pereira, “DSK Refresh (climate-augmented K+S) Model (version 0.4.1),” Jan.
2022.

G. Dosi, G. Fagiolo, M. Napoletano, A. Roventini, and T. Treibich, “Fiscal and
monetary policies in complex evolving economies,” Journal of Economic Dynamics
and Control, vol. 52, pp. 166—189, Mar. 2015.

G. Dosi, G. Fagiolo, M. Napoletano, and A. Roventini, “Income distribution, credit
and fiscal policies in an agent-based Keynesian model,” Rethinking Economic Poli-
cies in a Landscape of Heterogeneous Agents, vol. 37, pp. 1598-1625, Aug. 2013.

G. Dosi, G. Fagiolo, and A. Roventini, “Schumpeter meeting Keynes: A policy-
friendly model of endogenous growth and business cycles,” Journal of Economic
Dynamics and Control, vol. 34, no. 9, pp. 1748-1767, 2010.

G. Dosi, M. Napoletano, A. Roventini, and T. Treibich, “Micro and macro policies in
the Keynes+Schumpeter evolutionary models,” Journal of Fvolutionary Economics,
vol. 27, pp. 63-90, Jan. 2017.

W. Nordhaus, “Estimates of the Social Cost of Carbon: Concepts and Results from
the DICE-2013R Model and Alternative Approaches,” Journal of the Association of
Environmental and Resource Economists, vol. 1, pp. 273-312, Mar. 2014. Publisher:
The University of Chicago Press.

K. G. Abraham and J. Mallatt, “Measuring Human Capital,” Journal of Economic
Perspectives, vol. 36, pp. 103-30, Aug. 2022.

60

93]

[94]

[95]

[99]

[100]

[101]
[102]

[103]
[104]

[105]

[106]

[107]

[108]

J. M. Warren, P. J. Hanson, C. M. Iversen, J. Kumar, A. P. Walker, and S. D.
Waullschleger, “Root structural and functional dynamics in terrestrial biosphere
models — evaluation and recommendations,” New Phytologist, vol. 205, no. 1, pp. 59—
78, 2015. _eprint: https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.13034.

J. Goudriaan and P. Ketner, “A simulation study for the global carbon cycle, in-
cluding man’s impact on the biosphere,” Climatic Change, vol. 6, pp. 167-192, June
1984.

S. Zaehle, S. Sitch, B. Smith, and F. Hatterman, “Effects of pa-
rameter uncertainties on the modeling of terrestrial biosphere dynam-
ics,” Global Biogeochemical Cycles, vol. 19, mno. 3, 2005. _eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029,/2004GB002395.

V. Smil, The Farth’s biosphere: Evolution, dynamics, and change. Mit Press, 2003.

E. A. Ripley and R. E. Redmann, Environmental effects of mining. CRC Press,
1995.

G. Bridge, “CONTESTED TERRAIN: Mining and the Environment,” Annual Re-
view of Environment and Resources, vol. 29, no. 1, pp. 205-259, 2004. _eprint:
https://doi.org/10.1146 /annurev.energy.28.011503.163434.

R. Nagendran, “Chapter 24 - Agricultural Waste and Pollution,” in Waste (T. M.
Letcher and D. A. Vallero, eds.), pp. 341-355, Boston: Academic Press, 2011.

M. K. Hill, Understanding Environmental Pollution: A Primer. Cambridge Univer-
sity Press, 2 ed., 2004.

S. Managi and P. Kumar, Inclusive wealth report 2018. Taylor & Francis, 2018.

H. Oeschger, U. Siegenthaler, U. Schotterer, and A. Gugelmann,
“A" box diffusion model to study the carbon dioxide exchange
in nature,” Tellus, vol. 27, mno. 2, pp. 168-192, 1975. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2153-3490.1975.tb01671.x.

L. Weaver and N. Tao, “The Optimal Reward Baseline for Gradient-Based Rein-
forcement Learning,” 2013. _eprint: 1301.2315.

U. Nations, “System of Environmental-Economic Accounting— Ecosystem Ac-

counting (SEEA EA),” The United Nations (SEEA).

P. Ehrlich and J. Holdren, “Impact of population growth,” Population, resources,
and the environment, vol. 3, pp. 365377, 1972. Publisher: US Government Printing
Office Washington, DC.

W. D. Nordhaus, “An optimal transition path for controlling greenhouse gases,”
Science, vol. 258, no. 5086, pp. 1315-1319, 1992. Publisher: American Association
for the Advancement of Science.

M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos,
H. Held, E. H. Van Nes, M. Rietkerk, and G. Sugihara, “Early-warning signals for
critical transitions,” Nature, vol. 461, no. 7260, pp. 53-59, 2009. Publisher: Nature
Publishing Group.

W. Steffen, K. Richardson, J. Rockstrom, S. E. Cornell, 1. Fetzer, E. M. Bennett,
R. Biggs, S. R. Carpenter, W. De Vries, C. A. De Wit, and others, “Planetary
boundaries: Guiding human development on a changing planet,” Science, vol. 347,

61

[109]

[110]

[111]

no. 6223, p. 1259855, 2015. Publisher: American Association for the Advancement
of Science.

W. Steffen, J. Rockstrom, K. Richardson, T. M. Lenton, C. Folke, D. Liverman,
C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, and others, “Tra-
jectories of the Earth System in the Anthropocene,” Proceedings of the National
Academy of Sciences, vol. 115, no. 33, pp. 8252-8259, 2018. Publisher: National
Acad Sciences.

K. J. Arrow, P. Dasgupta, and K.-G. Maéler, “The genuine savings criterion and
the value of population,” Economic theory, vol. 21, pp. 217-225, 2003. Publisher:
Springer.

M. Hoel and T. Sterner, “Discounting and relative prices,” Climatic Change, vol. 84,
no. 3-4, pp. 265-280, 2007. Publisher: Springer.

62

Appendix A

The Dystopian Schumpeter meeting
Keynes (DSK) Model

A.1 Capital good firms

Capital good firms are each characterised by a set of 6 coefficients per machine vintage
7 in the DSK model, A;{ﬁ’EF’EE} and Bif’EF’E}E. The A coefficients are characteristics of
the machines that affect the output of the consumption good firms using them to create
output. The B coefficients correspond to the manufacturing process of the capital good
firms, and its efficiency, cost, and pollution. The indices of the coefficients correspond
to labour productivity (L), energy efficiency (EE), and environmental friendliness (EF).
These coefficients are set for every vintage of machine produced at each unit of time. The
cost incurred at producing machinery at time ¢, so 7 =t for firm ¢, given a market wage
w(t) and price of energy c.,(t), would be:

B w(t) Cen(t)
- By, BfF

¢ (t)

2

Finally, the environmental friendliness, BE determine how much emissions firm i pro-
duces as a result of its activities.

At each timestep, the capital good firms price their machinery using a fixed markup,
p1. as pi(t) = (14 p1)ci(t). Capital good firms also "market” their goods to a list of
customers, who pick amongst them to get the best priced machinery according to their
needs.

Now, each piece of machinery has associated with it coefficients that characterise the cost
of using it, A;-{i’EF’EE}. The cost to a consumption firm j using such machinery from
capital good firm 7 is:

B w(t) Cen(t)
AR APET

cig - (t)

Therefore, each firm chooses at each t a machine to produce that minimizes the price
minus a payback period multiplied by cost. They choose between the machinery available
to them at the time, or alternatives that are constructed from the innovation or imitation
processes:

63

min p,, (t) — bes™(t) m = 1,in,im

Now each capital good firm can either innovate and improve the efficiency of their ma-
chines, or else imitate the closest firm to them in terms of technology. To do so they choose
a certain fraction of their past sales to invest in R&D based on a fraction, v € [0, 1] of past
sales RD;(t) = vS;(t — 1), split between innovation and imitation based on a parameter
€ €00,1], IN;(t) = ERD;(t) and IM;(t) = ERD;(t). These investments create a proba-
bility of change on each of the 6 major coefficients characterizing the capital good firms.
The investments in innovation and imitation are fed into a Bernoulli random variable with
parameters 0/ (t) = 1 — e8IV and /M (t) = 1 — e~ &/M:®) _[f innovation or imitation
are successful, then improvements to the 6 coefficients are drawn from a beta distribution
with support defined by static input parameters.

Finally, the profit for a capital good firm is defined as:

IL(t) = pi(t)Qi(t) — ;™" (1)Qi(t) — RD;(t)

Qi(t) are the number of orders made for capital good firm 4 from all of its consumption
good clients.

A.2 Consumption good firms

Consumption firms use machines to produce output which is then consumed by the labour
force. Consumption firms determine their desired level of produced based on a forecast
of demand, D5(t) = f(D;(t — 1), D;(t —2),...). The desired level of production also takes
into consideration the desired inventory and the remaining stock from previous periods.
In this model, the forecast demand is set to the last period’s actual demand.

Their forecast level of production needed is then constructed using the desired inventory
N#(t) and the actual inventory N;(t — 1) as:

Qj(t) = Dj(t) + Nji(t) — Nj(t — 1)

The amount of output a firm can produce is limited based on their capital stock, K (?).
Capital stock is the sum of the outputs of all the machinery that the firm owns, where
each machinery’s contributions to capital are normalized to 1. It also computes the
level of capital needed to fulfill its desired production, K¢(t)(= Q4(t)), and the expected
investment it needs to make in new machinery as EI;(t) = K{(t) — K;(t).

Now, machinery is replaced either when it is older than a threshold 7, or when new tech-
nology becomes relatively cheap, i.e. then p*(t) —b(c;7**(t) —c*(t)) < 0. This replacement
expense is added to the expected investment for new machinery, producing the overall

expected investment [;(¢).

The pricing of consumption food firms is determined based on competitive dynamics,
where firms controlling more market share use their power to price goods higher, but
the market is cleared using the lowest price goods first, acting as a natural inhibitor to
monopolies developing.

64

The competitiveness of a firm is E;(t) = —wip;(t) — wal;(t), where ;(t) is the amount of
demand unfilled in the last period. w; o are simulation constants. The average competi-
tiveness at the industry level is E(t), and is the competitiveness of each agent weighted
by its market share. The current market share then evolves according to:

(t) = E(1)

) = 0 =)0+

Now that the market share has been established, we can calculate the markup consumption
firms charge on their goods. Like capital good firms, consumption good firms apply a
markup on their cost of production, but unlike capital good firms the markup is variable:
p;(t) = (1 + p;(t))c;(t), where the markup is:

fit=1) — f;(t —2)
fi(t —=2)

pi(t) = p(t = (1 +v)

Now consumption good firms have the ability to access capital markets. They each retain
a metric of their net wealth, NW,(¢), and finance all investments using a combination of
their wealth and debt. Up to ¢ € (0,1) is financed from net wealth, and the remainder
from debt, up to a maximum debt to sales ratio.

Deb;(t) = Debj(t — 1) + (1 — ¢)I;(t)

Finally, the profits that each consumption good firm earns is:

IL;(t) = p;()Q;(t) — ¢;(1)Q;(t) — rDebj(t)

The net wealth is similarly updated as:

If the net wealth of the firm reaches 0, they are considered bankrupt and are replaced by
a new firm with initial characteristics coming from probability distributions.

When the net wealth of a consumption good firm reaches 0, it is treated as bust and is
instantly replaced by another firm with an initial net wealth drawn from a distribution.

A.3 Labour

The labour market is modelling as one environmental agent that contains the state of the
entire labour force. The wage level is static across all works and is set using the following
formula:

i AAB(t) Acpi(t) AU(t)
) = el = Dy T g -) T T 1)

65

All wages (and governmental subsidies if any) are consumed through purchasing goods
from the consumption firms. The workforce consists of a supply of labourers, L. Sim-
ilarly, a demand for labourers, L” is created by the consumption and capital good in-
dustries. This labour force in the DSK model changes with a constant positive growth
rate.

The labour productivity is the total output of the economy, which is the sum of production
across capital and consumption good firms, divided by the labour demand. The labour
demand is calculated by dividing the total output of all firms employing workers by their
labour productivity coefficients.

A.4 The banking sector

Like the labour market, the banking sector is a single environmental agent who’s sole
responsibility is to determine the level of interest rate in the economy that the firms pay
on their debt. The rate is determined by the Taylor rule based on a target level of interest
rate rr, target inflation rate cpir, and target unemployment Ur:

e =T+ ’)/sz(CpZOf) - CpiT) + ’YU(U(t) - UT)

There is a further constraint that the banking sector puts on loans. In addition to the
maximum leverage ratio at a firm level, the total amount of loans given also cannot exceed
the net wealth of all (consumption good) firms in the simulation, MT'C(t) = £;NW,(t).

A.5 Energy industry

The energy industry again consists of a single environmental agent controlling a number
of power plants. The power plants supply electricity to the capital and consumption good
industries. Power plants can be either dirty, or green.

Here we can start by stating the profit of the energy industry and then drilling into its
components:

He(t) = pe(t)De(t) - Ce(t)De(t) - Ie(t) - RDe(t)

Here p.(t) and c.(t) are the price charged for energy, and the cost of generating it. D,(t)
is the demand, and I.(t) and RD.(t) are the expansion/replacement costs and the R&D
expense costs respectively.

The DSK model assumes that green energy is produced at a 0 running cost, whereas dirty

power plants generate energy at a cost of cg(t) = 2 AQ), where p*(t) is the cost of the
de

commodity input and A}, is the thermal efficiency of the power plant. Dirty power plants

also emit em],, whereas green power plants have no emissions.

The energy sector first satisfies any energy demand using green power plants, and then it
switches on dirty power plants. In the DSK model, the energy demands are normalized
to one, and so the capacity is simply the number of existing power plants. Once again, if
the amount of energy demanded is less than available capacity, K.(t), then this triggers
a net investment EI.(t) = D.(t) — K.(t).

66

Now, notably the dirty power plants are assumed to have a 0 cost relative to green plants,
which have a cost of ICy.(t). The energy sector chooses to build green power plants to
cover this excess capacity whenever the (current) cost of the green plant is less than the
(lowest) discounted running cost of the dirty plants, ICy.(t) <= b.Cqc(t). This is largely
dependent on commodity prices.

Finally, the energy sector also invests in R&D. Similar to the capital good sector, they
put a portion of their sales into R&D: RD.(t) = v.S.(t — 1). A certain fraction of that
investment gets put into green innovation I N, (t) = £ RD.(t), and the rest into innovation
for dirty plants, INg.(t) = (1 — &)RD.(t). The probability of successful innovation is
determined identically to the capital goods industry.

Successful innovation in the green sector decreases the cost of green power plants, /C,.(t) =
IC,e(t — 1)(1 — z4e), where x4 is sampled from a beta distribution. Successful innova-
tion in the dirty energy sector increases the thermal efficient, A7, = A7 "'(1 + %), and
decreases its emissions em], = em7 (1 — 29™).

A.6 Climate box

Ultimately the goal of the climate box is to compute the ocean temperature, T,,, so that
climate shocks can be computed as a function of T},,. Temperature is updated as a function
of 2 key variables, Fro, (), the radiative forcing effect, and Ty(t — 1), the temperature of
the deep layers of the ocean. Ty(t) is computed as Ty(t) = Ty(t — 1) + c4(opma[Tin(t — 1) —
Ta(t—1)]). Here, o4, ¢4 are constants. Finally, the temperature of the mixed layer T,,(t)
is determined as:

To(t) = T (t — 1) + c1{Foo, — NTn(t — 1) — c3[Tn(t — 1) — Ty(t — 1)} (A.1)

This temperature is then used as a parameter in the distribution generating climate
shocks. The radiative forcing effect is calculated as a function of the stock of carbon in
the atmosphere, C,(t):

0
Cu(0)

Feo,(t) = vlog|

The procedure modelling anthropogenic climate change is as follows:

1. The energy, capital goods and consumption goods sectors produce carbon emissions
in t:
em(t) = ;3 (eme(t, T) + eMeons(t, T) + €Meqp(t, 7))

2. These emissions affect the atmospheric carbon stock to a disequilibrium level:

~

Cu(t) = Co(t — 1) + em(?)

3. The biosphere and deep ocean layers absorb some of this excess carbon:

(a) Biosphere:

NPP(t) = NPP(0)(1 + B¢ log g(%)))1+ B, T (t — 1)

67

(b) Ocean mixed layer (disequilibrium):

>

Con(t) = Con(0)[1 = B, Th(t — 1)) ((é)) ot lenl G)

A

(¢) Ocean deep layer:

[Cm(t—l) B Cd(t—l)]

Calt) = Calt — 1) + Feagy—2= T da

(d) Ocean mixed layer (equilibrium):

Con(t) = Cpu(t) — AC,a(t)

4. Finally we compute the equilibrium atmospheric carbon content as:

Co(t) = Cu(t) = ANPP(t) — ACy, (t) — AC4(t)

5. From this we compute the radiative forcing, Fro,(t), and finally 7,,(t) using equa-
tion A.1.

Once we have the mixed layer temperature, we can then draw climate shocks for each
of the 6 machine parameters for capital good firms, as well as the thermal efficiency and
emissions of dirty power plants, and can destroy inventories of consumption good firms
(e.g. through destroying crops).

The shocks are drawn from a beta distribution over (1,1) with parameters a(t) = ao[l +

log T, ()], and b(t) = o2l

a10y(t)

68

Appendix B

Criticisms of and issues with the
DSK model

Presented here are some of the key criticisms and shortcomings of how the model is
presented in the paper, along with how it is resolved in the VDSK approach developed
in chapter 5. Where the resolution is taken from the open source implementation of the
DSK refresh model, it is cited.

Section Problem Resolution in VDSK
General The parameter values given in the appen- | Take initial values from the open
1 dices of all reviewed papers is incomplete and | source implementation where
omits critical information. possible [86].
The authors give values for the initial number
f capital fi i e 1 e)
of capital good firms (50), consumption good The initial distribution of capital
firms (200) and workforce (3000) but no de-)
General| and wealth is computed to clear
tail on the initial conditions of the agents in
2 e : the market (see chapter 5 for de-
terms of their initial inventory, capital, etc. tails)
How these initial conditions are set have a '
big impact on the simulation dynamics.
Non-zero tax rates are mentioned across the
. . . . | Pay unemployed workers up to a
papers and its also mentioned that this is C
General minimum of the unemployment
used to pay unemployment benefits, but then .
3 .| wage and taxes collected, wy =
the level of the unemployment benefit is min(Tazes, wy L) /LS
treated as a fixed external parameter. U
General | Initial prices and commodity prices are not
4 specified.

69

General
5

No indication is given of the machine param-
eters, A|B pppp- This is troublesome for
multiple reasons:

1. Since prices are a linear combination
of the cost of energy and the prevailing
wage, Cepn,w(t), setting A[BMEE to 1
sets initial prices to 2, making it hard
to clear the market.

2. Atmospheric carbon is measured in gi-
gatons of carbon, but A|B . is just a
dimensionless parameter. It is impos-
sible to know how to calibrate it such
that emissions increase in a realistic

way without a calibrated value avail-
able.

A|BL(0) is set to 40, A|Byz(0)
is set to 10, and A|B,(0) to 1 as
per Pereira [86].

General
6

The paper talks about parameters that are
not even specified in any equation or sup-
porting paper, such as Sry;.

Make best guesses as to what pa-
rameters the authors were actu-
ally referring to, such as (.

Cons/Cap
Good
Firms 1

There is no indication of how labour is split
or demanded across firms in the economy, or
how much labour is needed per unit of out-
put. The open source model allocates work-
ers to each firm using a complex set of rules,
including having specific workers for R&D,
which are mechanisms not mentioned in the
papers.

We prorate labour supply across
firms based on the previous step’s
demand for goods from the firm.

Cons/Cap
Good
Firms 2

Capital good firms have no net wealth or
costs that could exceed the profit they make
in any period since R&D costs are a frac-
tion of sales and adopting new innovations
have no cost. However, the paper mentions
that firms with 0 market share/net wealth
across either industry go bust and are re-
placed, which is not possible for capital good
firms as specified in the paper.

Implement agents as specified in
the paper.

Cons/Cap
Good
Firms 3

No mechanism is explicitly given for how con-
sumers choose consumption firms, and how
consumption good firms choose among their
suppliers. There is an implicit suggestion
that consumers prioritize firms by price until
inventories are cleared, but this is not any-
where stated.

Allocate consumer demands in
proportion to 1 \/(pm'ce).

70

Labour 1

There is no indication of how labour is split
or demanded across firms in the economy, or
how much labour is needed per unit of out-
put. The open source model allocates work-
ers to each firm using a complex set of rules,
including having specific workers for R&D,
which are mechanisms not mentioned in the
papers.

We prorate labour supply across
firms based on the previous step’s
demand for goods from the firm.

Labour 2

In wage updates, there is no indication of
how to calculate the productivity of the econ-
omy, or the CPI, needed for wage updates.

Using a similar approach to
Pereira [86] we calculate produc-
tivity as the sum of produced
goods across firms, and CPI as
the average capital good, con-
sumption good, and energy price,
detailed in chapter 5.

Energy
Sector 1

There is no mention of net wealth for en-
ergy firms, but they still make investments
in green energy. These can’t be unlimited
and only a function of dirty machinery cost,
as the model currently implies.

Keep track of net wealth and use
it for green energy investments.
When net wealth runs out build
dirty power plants instead.

Energy
Sector 2

There is no limit to how much energy capac-
ity can be added in a step, which is unrealis-
tic.

Limit capacity addition to 10%
per quarter [from [86]].

Energy
Sector 3

Lamperti et al do not detail how the lack of
available energy capacity limits the output of
consumption good or capital good agents in
any way. In the presented model, lack of en-
ergy capacity does not constrain the output
of consumption/capital good firms.

Limit output of consump-
tion/capital good firms based
on energy capital allocation
computed using their previous
step’s energy demand: K, =
min(Kinstalleda Eallocated X CE)
where Euiocated = Koo x

actual
Q/Qtotal .

Energy
Sector 4

There is no mention of the parameters of the
distribution from which energy innovations
are drawn in any published papers.

Use the same (a, b) parameters as
consumption/capital good firms
but with supports rescaled to the
domains mentioned in the paper.

Energy
Sector 5

The initial commodity price and how it
changes is not specified.

As per Pereira [86] the commod-
ity price is set to a constant of
1. However, this misses very im-
portant dynamics that can result
from how commodity prices affect
investment in green technology.

Climate
Box 1

Initial carbon in the mixed ocean layer is not
specified.

We compute it in accordance to
Pereira [86].

71

Climate
Box 2

The explicit procedure to actually calculate
temperature updates is actually not specified
at all other than very high level descriptions
not sufficiently detailed to actually carry out
calculation. Furthermore, the open source
implementation by Pereira [86] uses an en-
tirely different climate model to DICE-2013R
[91].

Through trial and error arrived at
the procedure described in chap-
ter A.

Climate
Box 3

The paper mentions that shocks and agents
are randomly matched, but there is no mech-
anism to do the matching, e.g. through a
Bernoulli random variable.

Apply individually sampled ran-
dom shocks to each agent.

Climate
Box 4

How shocks are actually applied to the agent
parameters is not specified anywhere in the
papers. It mentions that shocks are applied
to infrastructure parameters and inventories
but isn’t explicitly clear about how or where
it is applied, or even how it is sampled be-
yond from a heavy tailed beta distribution.

Climate
Box 5

The shocks are drawn from a beta distribu-
tion using the 10 year standard deviation in
T,,, which isn’t determined until 10 years
into the simulation. Pereira simply doesn’t
calculate the climate box for 10 years to deal
with this.

Set an initial value and let it up-
date as new temperature readings
come in.

Climate
Box 6

The update equation for T, is wrong. The ef-
ficiency coefficient A that calculates the feed-
back from the current temperature is taken
by Lamperti et al to be 2.9. However, this is
incorrect; in DICE-2013R 2.9 is the tempera-
ture increase from a doubling of atmospheric
carbon, and A is actually 1/2.9.

We correct it to 1/2.9.

Climate
Box 7

The application of the DICE-2013R model
seems flawed. Looking at equation A.1 for
T,,, the temperate increases if:

Foo, > NTn(t—1) — e[T (t — 1) — Tyt — 1)]

However, Fro, is in a log scale, and the
starting value based on current atmospheric
carbon as 830 and initial atmospheric carbon
of 590 is 0.8. As seen in figure 5.1 this causes
temperatures to plummet in the model at the
start of the period. Even correcting for A,
this initial plummet exists.

Pereira corrected this phe-
nomenon by not allowing the
climate box to run for the first
10 years. We allow it to run but
recognize this as a flaw in the

model.

Banking
Sector 1

The interest rate is said to update using the
Taylor rule, but the coefficients for the Taylor
rule equation are never given.

Use commonly accepted values in
literature [12].

72

Appendix C

Dasgupta on the economics of
biodiversity

C.0.1 Introduction

Dasgupta’s model is built on a so-called "bounded economy” model; it is built to oper-
ate in the regime where the biosphere isn’t tipped past an unsustainable point, thereby
destroying life as we know it. This creates bounds on what the economy can do as a
function of the interaction with the biosphere, even when including technological change
(which is novel, since technological innovation made economies able to be unbounded in
size in traditional economics).

Dasgupta’s report studies the structure of the economy at an abstract level, and attempts
to draw together the camps of economic exploitation and conversation through economic
arguments about the value of biodiversity and a strong biosphere. It argues that we
fundamentally mis-value the biosphere due to our economic short-termism, our reliance
on technological innovation and our assumption that it will fix all future problems, and
misspecification in our national accounting identities. In particular, he argues that nature
should be treated as a form of capital, akin to human or produced capital.

Dasgupta argues that not only is growth bounded, but so is the total size, using planetary
resources only. His argument is that due to the laws of entropy, it isn’t possible to convert
all our waste back into products that make no further demands on the biosphere, so at
some point we will reach a peak capacity where we are using all available services and will
be unable to grow. Dasgupta further argues that inclusive wealth, not GDP, should be
used as a measure of economic progress, and this wealth should include natural capital as
well. It is possible to generate more GDP in the short run by unsustainably using your
assets, decreasing future wealth but boosting current GDP. This is because GDP is a flow
- it is the produced output of an economy, not its stock (i.e. assets).

An illustration of changes in wealth from Managi and Kumar [101] is given below in figure
C.1. 1. Here are the definitions of the various measures:

1. Produced Capital: this is the value of all physical, non-human capital that we rely
on, such as land, machinery, physical infrastructure, housing, etc.

!Natural capital is notoriously difficult to measure. The field of ecosystem accounting tries to address
measurement challenges using proxy measures; a UN report covers the challenges and approaches in detail
here: [104]

73

Figure 4.8 Global Wealth Per Capita, 1992 to 2014

100 —

80 I~

60 |~ ‘
o~ Produced capital
o))
O 40 |
@
(@)
< 20 Human capital
(%]
>
e R T
©
<
PR Natural capital
o~

40

_60 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1

o~ N 0 b=y S 5 e m
S & & 2 S 2 2 2
Year

Figure C.1: Changes in global wealth per capita [101]

2. Human Capital: this includes items such as health (i.e. the marginal ability to
produce more during their lifetimes), income, etc.

3. Natural Capital: stock in fossil fuels, metals and minerals, fertile land, forests, etc.

C.0.2 The Impact Inequality

A lot of Dasgupta’s economic arguments and rationale for the model stem from the Impact
Inequality [1]. This inequality models the difference between economy’s the demand for
services from the biosphere, and the biosphere’s ability to supply them. One key aspect of
this is that the demand can be decomposed into 2 major components: harvesting natures
goods for consumption/production, such as fish, etc., and using nature as a sink for our
waste. Recognizing these two factors is important in allowing us to see what kind of
policy levers there are to pull to steer the economy to a better balance.

Say that we can look at the global economy as the number of people N multiplied by the
GDP per capita, y, so Y = Ny. Let’s define two additional factors corresponding to our
2 uses of nature:

1. «a, representing the efficiently with which we convert biosphere goods into GDP
2. «a,, which is the extend to which the biosphere is affected by our waste

We can define X = NY/a, as the value of what we extract from the atmosphere, and
Z = Ny/a, the demand we make on the biosphere as a sink for our pollution. Then, a
proxy measure of our global ecological impact from our aggregated economic activity is:

Ny/a =X +7Z = Ny/a, + Ny/a, (C.1)

Dasgupta ”heroically” assumes we can measure the entire accounting value of the bio-
sphere into one scalar S, and we can represent the regeneration of the biosphere as a

74

Supply: G(S)

G Rate at which the] c
biGsphereliegenerates Iﬁ_ Biosphere regeneration G(S)
S Stock of the biosphere
+ & - \\’\
Demand: Ny c

o
N Human population N
6(S)

~

y Human economic activity
per capita

a Efficiency with which the
biosphere’s goods and
services are converted
into GDP and the extent)
to which the biosphere
is transformed by our
waste products

Ny

[Ecological footprint o

Figure C.2: The Impact Inequality: natural biosphere regeneration is offset by humanity’s
ecological footprint (a function of human population, economic activity, and our technol-
ogy). Note the feedback loop between G(S) and our ecological footprint - G(.5) is not a
constant offset but degrades as we deplete S, our biosphere. Figure from [1].

function G(S). The balance between the biosphere regeneration rate, G(S), and the eco-
logical footprint of our use of the biosphere, Ny/a, is the so-called Impact Inequality.
Note that this assumes that to pollute has the same impact as conservation. A concise
illustration of the impact inequality is given in C.2. The Impact Inequality is:

N N N
_y_G(S):_y_|_ y_
(e (07% (%

G(S) >0 (C.2)

This concept of ecological "impact” comes from classic ecological economics literature,
where Ehrlich and Holdren [105] proxied the ecological impact of humanity in terms of a
set of factors such as population, affluence and technology. The direction of the inequality
is currently that human ecological impact exceeds the biosphere’s ability to regenerate.
Wackernagel and Beyers [21] report that the ratio of Ny/a related to G(S) increased
from 1 in 1970 to 1.7 in 2019. The rate at which a needs to grow to offset our impact on
the biosphere is 10%, vs. a historical average of 3.5% as reported by Managi and Kuamr
[101]. Le. we need a whole lot more efficiency in how we treat waste and in our use of
natural products to reach a balance.

Note that there is also empirical evidence that ecological footprint is an increasing function
of income, i.e. y;/a; < y;y1/q;1 with i representing an ordering over income. This is
ominous, since it suggests that egalitarian income leads to larger ecological footprints,
which has terrifying moral implications.

C.0.3 The model

This model starts by looking at aggregate demand of the economy, whose output, Y (a
scalar), is either consumed C' or invested I. This model can be applied at any level, for
instance Y could represent the economic value of just a single good. Four categories of
capital are considered: K, produced capital (e.g. infrastructure, goods, etc.), H, human
capital (labour, health, education), A, available knowledge (productivity and innovation),

75

Figure C.3: Example of how the Cobb-Douglas form models economic output as a com-
bination of 2 sources of capital. Note the constant returns to scale as well as marginally
decreasing output. Figure from [1].

and natural capital. Natural capital is broken out into 2 components: R, provisioning
services provided by the biosphere, such as wood, metals, crops, fish, etc., and S, which
are regulating services, like the nitrogen cycle, climate regulation, soil regeneration, etc.
In continuous time, the Dasgupta model presents the output, in a Cobb-Douglas-like form,
as:

Y(t) = At)S(t)PK(t)*H(t)"R(t) ~° (C.3)
a>0,b>0,(1—a—5b)>0,>0

The condition of the exponents summing to 1 except for § comes from production being
subject to constant returns of scale, i.e. doubling the amount of K, H and R leads to a
doubling of Y all else equal. This is a standard assumption in economics and one that
Dasgupta uses. This assumption can be challenged on obvious grounds: its not clear that
producing twice the amount of timber would automatically produce twice the output of
the furniture industry, even with twice the machinery and human capital, given increased
administrative costs, etc. but can be taken as stated for now. The exponents also act as
a measure of elasticity - i.e. if you were to increase R by 1%, the output Y would increase

by (1 —a—0)%.

Note that this kind of model is called the Cobb-Douglas form after economists who de-
veloped and tested it against empirical evidence of how 2 or more capital inputs produces
economic output. The relationship between the 2 classical capital inputs with typical
exponent values is shown in figure C.3.

C.0.4 Total Factor Productivity (TFP)

TFP is the ratio between the total production of an economy, and the estimated ” capital
inputs” - i.e. labour, natural resources, etc. This measures how much of growth is
explained by innovation and our ability to produce more from existing capital, rather

76

Beta: 1.5 Beta: 0.5

Beta: 1

0.6 TFP

““ 0.4
Sty 08 0.0

Figure C.4: How different estimates of 5 affect the TFP estimate

than from just growth in capital. In this model, the Total Factor Productivity (TFP) is
given as:

TFP = A(t)S°(t) (C.4)

This is also a key innovation in Dasgupta’s report: the TFP is not just from human
knowledge and ability (A(¢), e.g. from using computers, or machinery, or the assembly
line) but also from the biosphere’s regulating services S, when 5 > 0. Traditionally
biosphere services aren’t included in productivity measures. This is already a critical
feedback loop, since as S lessens, ”productivity” declines even potentially with increasing
A and increasing capital.

We can see the effect of S(¢) and A(t) on TEFP for different values of 5 in figure C.4. When
f > 1, TEFP increases superlinearly with A(t), and for a fixed amount of services provided
by the biosphere, increased innovation produces greater-than-linear increases in economic
ouptut. The converse is true if § < 1. In current estimates of TFP, § is assumed to be 0
since services rendered by the biosphere are ignored. This is a key accounting flaw flagged
by ecological economists [106] [12] [18] in how traditional accounting measures like GDP
completely ignore our climate and biosphere, despite them being critical to the success
of the species. By excluding the degradation of natural capital from our wealth and
GDP calculations, we overestimate our actual wealth, and so incentive economic agents
to degrade the biosphere further and faster to maximize GDP.

7

C.0.5 Human impact on the biosphere

Human impact on the biosphere is the sum of the resources we take from it, and the waste
we send back to it. We saw in equation C.3 that the capital from resources extracted from
the biosphere is R(t). So, in terms of equation C.2, human impact is R(t) + Y (¢)/c., and
so Dasgupta takes R(t) to be Y (t)/a,.

Here Dasgupta makes a set of very significant assumptions about the model that merit
some discussion. Firstly Dasgupta assumes that human knowledge, A, contributes both
to Y and a,, i.e. a, = a,(A). Dasgupta argues that o, must be bounded above to some
value of. Dasgupta argues that if a,, can go to infinity, then Y/a, goes to 0 for finite Y,
which says that with enough technological progress, we can break free of the biosphere
entirely (whilst still remaining terrestrial). If a, and Y go to infinity at the same rate,
then that’s equivalent to us saying we can make any demands on our biosphere without
experiencing a breakdown. If «, increases more slowly than Y, then Y/« is unbounded,
so Dasgupta argues "we may as well assume «, is bounded”.

From this, Dasgupta frames an equation for the dynamics of the biosphere using the
impact inequality C.2:

—:G(S(t))—m—@, a, > 0,0, >a, >0 (C.5)

dt Ay o,

Now Dasgupta assumes a functional form for G(S) taken from Scheffer’s formulation [107]
of the dynamics of fisheries:

S(t).,S(t) — L

GES) =r3t)1 - =) (—g—)

(C.6)

This functional form says if S were to fall below its safety zone L, the biosphere would
collapse. L is given motivation through the idea of ”planetary boundaries” discussed in
literature such as [5] [108] [109]. In the absence of consumption of natural resources, the
biosphere would settle to some carrying capacity, S. The graph of this growth rate is
given in figure C.5.

C.0.6 The human population

Denote the human population as N(¢). Each term in Dasgupta model can then be written
as a per person value multiplied by the human population, H(t) = h(t)N(t). Dasgupta
stipulates population cannot be controlled directly, but that it can be influenced by in-
vestment into human capital. That is making a very strong statement composing of two
items:

1. Humans on average have a "target” number of children desired by a household - this
is backed up by many empirical studies such as Bongaarts and Cain [85] in rural
Bangladesh during times of famine and just after.

2. This target is a function of the investment in human capital we as a society make:
better standards of living, more expensive education and health, access to family
planning services, lack of need for familial manual labour, all reduce the desired
family size.

78

0

l%m%

\%
N

—e
(Sl *

I
W

o N_"

Figure C.5: An illustration of equation C.6 from [1]. Growth rates when stock is below
the safety zone is negative - the biosphere is no longer self-sustaining. Growth rates above
the carrying capacity would also see negative growth from overcrowding.

To quote Dasgupta: “women’s education and knowledge of, and access to, modern family
planning services reduce desired family size“ [1]. Dasgupta notes that more nuance can
be applied by making J a function of K as well, with smaller positive K resulting in
better diet, hygiene, etc. resulting in a baby boom, and large positive K reducing birth
rate, but omits this from his logistic specification of population size, taken from Arrow,
Dasgupta, and Maler [110], in equation C.7.

szift(t) = N(t)(J(h) — N(t)), J >0, dJ(h)/dh <0 (C.7)

C.0.7 Human capital, produced capital, innovation and invest-
ment

A canonical decomposition of GDP by national accountants is that it is a sum of con-
sumption and investment. This measure of aggregate demand is the familiar ¥ =
C+ 1+ G+ (X — M), where G is governmental expenditure and X, M are exports
and imports respectively. Dasgupta states that investment can be broken out into: accu-
mulating capital from produced (Ix) and human (1) capital and expenditure on research
and developement which increases A, (14). Aggregate demand can then be expressed as
per equation C.8.

Y(t)=Ct)+1(t) =C(t)+ Ig(t) + Ix(t) + 1a(t) (C.8)
Produced capital always depreciates (machinery rusts, buildings wear, entropy rises).
Dasgupta assuming it to depreciate with a constant A\ and writes the change in produced

capital in equation C.9.

79

df;ft)- =Ix(t) = AK(t) =Y (t) — C(t) — Iy(t) = L4(t) — AK(t) (C.9)

Innovation is expressed more simply in equation C.10.

dA(#)

— = 1a(®) (C.10)

Finally, Dasgupta gives human capital, using the chain rule on H(t) = h(t)N(t), in
equation C.11.

Y S N(t) =2 4 h(t) =2 = Iy(t) (C.11)

C.0.8 Summarizing assumptions

Now that the dynamics of each of the state variables have been defined, all the copius
assumptions made in the process of derivation can be summarized:

About the biosphere

1. The biosphere has a natural regeneration rate that can be expressed as a function of
its current state: G(5), which can be expressed with a simple closed form function

2. The biosphere’s value can be expressed as a single scalar accounting value, S

3. There exist planetary boundaries, or a natural tipping point, where if we push past
it, we Kkill the biosphere

4. There is a carrying capacity at which the biosphere would operate at if we didn’t
consume any of its resources

About human interactions with the biosphere
1. Humans interact with the biosphere in 2 key ways:
(a) to get natural resources such as fish, timber, fossil fuels and metals, and
(b) as a store for our waste.

2. Humans cannot completely free themselves of the biosphere’s services, there must
always be a reliance even with technological advance, as long as we're on this planet.
This causes 3 colloraries:

(a) Human innovation cannot create a world where we produce waste that doesn’t
disrupt the biosphere at all

(b) Human innovation cannot free us from biosphere services entirely

(¢) Human innovation cannot make it such that we can do whatever we want
without it pushing past the biosphere tipping point

3. Human innovations can affect how efficiently we extract services from the biosphere
in terms of maximizing our GDP per unit of resource, and how we efficiently feed
our waste back to the environment, in terms of the impact on the biosphere

80

About the economy
1. We can place a price on all capital, including ineffable things like innovation
2. We have a good understanding of investments in capital

3. Humanity on average has a target number of children which varies as a function of
human capital only

4. Several functional forms are assumed, e.g. a logistic form for human population
dynamics

5. Produced capital depreciates linearly and at a constant rate

C.0.9 The Utility Maximization Problem

Let’s say that we have a consumption per capital as ¢(t). We want to maximize some utility
of the population. Dasgupta defines the a ”well-being” utility as a function u(c(t), S(t)).
The ”well-being” element comes form Dasgupta’s arguments that the "non-use value” of
nature is more important than it’s "use value”. Non-use value means the value coming
from regulating services as well as happiness derived from natural beauty, etc. whereas
use value is the value of the resources we get from nature. Using such a utility states that
we as humans value the parts of nature that we don’t directly consume more than the
parts of nature that we do.

Dasgupta tries to use this framework to look at the case when people care more about
the quality of the environment as their standard of living rises. This is a well documented
empirical observation, as per Hoel and Stermer [111]. Mathematically, Dasgupta notes
that that means: 0(us/u.)/0c > 0. The total social well-being is N (t)u(c(t),S(t)).

Given the economic framework we’ve described so far, Dasgupta now puts on the hat
of a ”social evaluator” who is looking at all possible futures and trying to maximise
their expected utility, in equation C.12. Dasgupta’s social evaluator only cares about the
futures where the biosphere is stable and hasn’t crossed a the threshold. This evaluator
has to pick the best possible future given the initial conditions in its 5 key state variables
as A(0), S(0), K(0), N(0), h(0), given that each of the 5 key state variables have to follow
the dynamical equations specified above. The social evaluator has the ability to vary 4
key control variables, C(t), Ix(t), [a(t) and R(t) to achieve the best possible future.

V(0) = /0 T u(elt), S()etdt, 8> 0 (C.12)

81

Appendix D

Additional Future Work

This appendix presents additional future work that can be undertaken on SalVO and
VDSKB.

D.1 ABMs as timely data flow

Previous work [53] showed that (even using its simpler formalism) this mode of ABM
computation is very amenable to the scatter-gather programming model [78], illustrated
in figure D.1.

Note that there is a clear issue of timing here. Figure D.1 represents agent partitions
across different nodes of a single agent type, which can happen synchronously in our
formalism. However, agents of different types, as discussed in §3.2.2, require a DAG
dependency graph’s execution per step. This is attainable in large-scale data processing
frameworks using a timely dataflow [76] computation model for execution, illustrated and
described in figure D.2. In this model, each loop context would contain nodes where
agents of a single type had been partitioned. The collection of agent type loop contexts
is held within one broader loop context that executes the main simulation flow.

D.2 Extensions to VDSK-B

Once the modifications in the previous section have been made, a few possible extensions
that we can study from the resulting ABMs are detailed here. There are 4 key avenues
that are possibly inter-related we want to explore:

1. Planetary Boundaries: The key planetary boundaries under stress [108] are climate
change, biosphere integrity, biochemical flows and land-system change. Out of these,
only biosphere integrity and climate change are directly modelled in the Modified
DSK formulation proposed above. In this proposal, we should define a ”planetary
boundary” on temperature and S(t), and initialize various taxation systems that
penalize economic participants based on global proximity to the boundary.

2. Green Taxes: various static taxes on carbon emissions and pollution can be imple-
mented and explored for their effect vs. the baseline pathway.

3. Carbon Marks: firms in DSK ultimately try to gain market share, and pay taxes on
profits. We could impose a compliance market where firms are limited in how much
goods they can produce by the emissions they produce unless they purchase carbon

82

Figure D.1: Scatter-gather applied to state flowing between agent types. Each node is a
partition of agents of a single type across nodes. Each agent first gathers state updates
from other partitions, and then computes its own state update and emits it. Figure from

[53].

Figure D.2: A timely-dataflow illustration of figure 3.1. Nodes within each loop context
compute updates to their state and broadcast it to their sister nodes, before notifying
the egress node of completion. The entire flow is itself in a loop context that handles the
ABM stepping.

83

credits, or reduce the emissions through R&D. The prices of carbon credits could
potentially be set centrally by the government, and could be a potential optimisation
target for Backpropagation based ABM learning. Reducing carbon emissions could
directly alter the temperature, which would feed back to S(t) through the growth
rate.

. Biosphere markets: a compliance limitation can be placed on the resources drawn
from the biosphere in terms of R(¢). Firms can be limited in terms of how much they
can produce unless they enter into a compliance market for R(t) and purchase the
right to consume more. The price would again be set centrally. This would implic-
itly influence S(¢) by changing the growth-rate, but wouldn’t change temperature
directly in the Modified DSK model.

84

	Introduction
	Thesis
	Background
	The importance of simulation in policy design
	Agent-based models, and the economics of biodiversity
	Summary of research

	Gaps in existing research
	Biodiversity modelling and ecological economics
	ABMs in climate economics

	Agent based model simulation frameworks
	Comparable ABM computation frameworks
	SalVO's design strengths
	Learning in ABMs

	SalVO: Scalable, vectorized, and optimizable agent based model simulations
	Introduction
	ABMs formalized
	SalVO ABM formalism
	Shared state and dependency graphs
	Emulating a Turing complete language

	Achieving scale
	Vectorization and hardware acceleration

	Huge scale parameter optimisation and calibration
	Parameter calibration with backpropagation
	Policy gradient-based parameter calibration
	GP-ABM

	SalVO architecture and implementation
	Design requirements
	Platform
	Core architecture and implementation
	Example ABM implementations

	Background in ecological economics
	Review of the Dasgupta framework
	Introduction
	Summary of model
	Criticisms

	Review of the Dystopian Schumpeter meeting Keynes (DSK) model

	The Vectorized Dystopian Schumpeter meeting Keynes, with Biodiversity (VDSK-B) Model
	Filling in the blanks: vectorizing the DSK model
	Capital good firms
	Consumption good firms
	Labour market
	Energy industry
	Climate box
	Imitation process

	Incorporating Dasgupta into VDSK
	Modifications to incorporate Dasgupta

	Evaluation
	VDSK-B
	Implementation
	Speed and scale

	SalVO evaluation
	Speed and hardware acceleration
	Learning

	Discussion, conclusion and future work
	Discussion and criticism
	VDSK-B
	SalVO

	Conclusion
	Future work

	The Dystopian Schumpeter meeting Keynes (DSK) Model
	Capital good firms
	Consumption good firms
	Labour
	The banking sector
	Energy industry
	Climate box

	Criticisms of and issues with the DSK model
	Dasgupta on the economics of biodiversity
	Introduction
	The Impact Inequality
	The model
	Total Factor Productivity (TFP)
	Human impact on the biosphere
	The human population
	Human capital, produced capital, innovation and investment
	Summarizing assumptions
	The Utility Maximization Problem

	Additional Future Work
	ABMs as timely data flow
	Extensions to VDSK-B

