Technical Report A

Number 99

Computer Laboratory

An overview of the
Poly programming language

David C.]. Matthews

August 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1986 David C.J. Matthews

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

An Overview of the Poly Programming
Language

David C.J. Matthews

12 August 1986

Poly is a general purpose programming language based on the idea of treat-
ing types as first-class values. [t can support polymorphic operations by passing
types as parameters to procedures, and abstract types and parameterised types
by returning types as results.

Although Poly is not intended specifically as a database programming language
it was convenient to implement it in a persistent storage system. This which allows
the user to retain data structures from one session to the next and has allowed
large and can support large programming systems such as the Poly compiler and
a Standard ML system.

1 Poly and its Type System

Poly[Mat85] is based on the idea of types as first class values first used in the
language Russell.[Dem79! In the terms used by Cardelli and MacQueen|Car85: it
uses the abstract witness model of a type. Treating a type this way means that
polymorphism, parameterised types and modules are all handled by the general
concept of function application.

1.1 Types as Values

A type in Poly is a set of values, normally functions. For example the type integer
has operations +, — etc. Other types may have these operations, the type real
also has + and - but will not have a mod (remainder) operation. The operations
need not be functions, ¢nteger also has zero, first and last which are simple values,
and other types may contain types.

All values in Poly have a signature, called a specification in earlier reports,
which is only used at compile-time. [t is the analogue of a type in languages
like Pascal and corresponds in many ways to the idea of a type in Ponder!Fai85..
There are three classes of value in Poly, the simple value which corresponds to
what are normally thought of as values in, say Pascal, numbers, strings, vectors
etc.; the procedure or function which operates on values and the type which is a
set of values. Each kind of value has a signature.

To show why this view of types is useful we will consider some properties of
other languages, and how they are handled in Poly.

1.2 Polymorphism

A polymorphic function is one that can be applied to values of many different
types. The phrase is sometimes used where overloading would be more appropriate.
for example the + operator in Pascal. In Pascal, or languages like it, there are
operators which can be applied to values of more than one data type and their
meanings are different according to the type of their arguments. They can be
thought of as a set of overloaded operators in the same way as operators in Ada
can be overloaded. Truly polymorphic functions are somewhat different. They are
functions which are applicable to values of a wide variety of data types, including
types which may not exist at the time the function is written. The fundamental
difference is that a new polymorphic function can be written in terms of other
polymorphic functions, while a function written in terms of overloaded functions

o

must be defined for each data type even if the program is the same for each. For
example

function min(i.5: integer):integer
begin
if 1+ <7 then min := 1 else min :=)
end;

function min(7.5: real):real
begin
if i1 <7 then min := | else min .=
end;

The ML [Mil84| programming language provides polymorphic operations on
an all-or-nothing basis. This allows one to write an identity function which simply
returns its argument, and this function is applicable to values of any type. One
can also write functions which operate on lists of any type or on functions of any
type. This generally works very well but has problems when one wants to write
an operation which operates differently on different data types. For example it is
still necessary to overload = since comparing two integers is different to comparing
two lists of real numbers. The min function cannot be written as a single function
in ML. What is required is a way of writing operations which are type-dependent.

A type in Poly is characterised by the operations it has. Both real and integer
have < operations though they will be implemented in different ways. Many other
types may have < operations since Poly allows the user to make new types. Poly
allows a function to be written which selects certain operations from a type and
values of any type with those operations can be used as a parameter. For example
there is a single < function which works on types which have a < operation and
simply applies the operations to the arguments. The effect is as though < were
being overloaded. However, we can write a function in terms of this, such as the
min function. This will also work on values of any type which has a < operation.
For example, min is a function which will work on values of any type with the <
operation. Such a type has signature

type (t) < : proc(t:t)boolean end

This type has an operation, <, which takes two values and returns a boolean. We
will first write a version of min which takes three parameters: a type and two
values of this type and returns a value of the type. It has signature:

proc(t: type (¢) < : proc(t:t)boolean end: ¢: t)t

We can write the whole function.

let min ==

proc(t: type (t) < : proc(t; t)boolean end; z, y: t)t
begin
if z < y then r else y
end;

[t can be applied to integer values
min(integer, 1. 2)

or string values
min(string, "abc”, "abd")

or values of any type with a < operation.

The first parameter is a type which must have a < operation which compares
two values of the type, and the second and third parameters must be values of the
type. When we call

min(integer. 1, 2)

the actual parameters are matched to the formal parameters from left to right.
First the types are matched by checking that the type given has the appropriate
operation, and then the values are matched. They are not of course the same
type as t, since they have type integer, but we invoke a matching rule which says
that if we have matched an actual type parameter to a formal type then we can
match values of corresponding types. In addition the type of the result becomes
matched so that the result has type integer. This can be thought of as a systematic
renaming of ¢ with integer.

1.3 Implied Parameters

Having to pass the types explicitly is often a nuisance so there is a sugared form
which gives a way of omitting the types and having the compiler insert them auto-
matically using the types of the parameters. The only difference to the definition
of the function is that the types are written in square brackets before the other
parameters. The definition of min would then be:

let min ==

proc(t: type (t) < : proc(t; t)boolean end| (z, y: ¢)¢
begin
if z < y then z else y
end;

It can be used by just giving the values.

min(1. 2);
min("abc”, "abd");

This sugaring also allows us to define operators such as + and < which simply
apply the operation with the same name from the types of their arguments giving
the effect of overloading.

let + ==

proc infix 6 [t: type (t) + : proc(t: t)t end]| (z. y: ¢)t
begin
t$+ (z. y)
end;

2 Parameterised Types

So far we have seen how having types as parameters to a procedure allows us to
write polymorphic operations. Types can also be returned from procedures and
this provides a way of defining types which are parameterised by either types or
values. As an example, suppose we wanted to construct an associative memory
in which to store values of arbitrary type together with a number which would
identify each. This could be defined as follows

let associative ==
proc(element: type end)
type (assoc)
enter: proc(assoc; integer; element)assoc;
lookup: proc(assoc: integer)element;
empty: assoc
end
begin
type (assoc)
extends struct(nert: assoc: indezx: integer; value: element);
let empty == assoc$nil;

[4

let enter ==
proc(table: assoc: num: integer: val: element)assoc
begin
assoc$ constr(table, num, val)
end;
letrec lookup ==
proc(table: assoc: num: integer)element
begin
if table = assoc$nil
then raise not_found
else if table.indez = num
then table.value
~ else lookup(table.nezxt, num)
end
end
end:

This is a very simple minded definition but it illustrates the point. We start by
giving the header of the procedure which includes the signature of the argument,
in this case that element is a type but that any type will do, and the signature of
the result. The result is a type with three objects, a value which denotes the empty
table and procedures to enter and look up items from the table. It is implemented
in terms of a struct (a record with a nil value and equality) which makes up, a
list of index/value pairs. enter just returns a new list with the new pair “cons-ed”
onto the front!. A better implementation would check to see if there was already
an entry with that index and return a list with the old entry replaced by the
new one. lookup searches the list for an entry with the required index and either
returns the value or raises an exception.

There is no particular reason why we should use integers as the indexing value,
it would be perfectly possible to use any type which had an equality operation.
The procedure header would then be

proc(element: type end;
indez_type: type (i) = : proc(i:i)boolean end)...

with integer replaced everywhere in the body by indez_type.

'We could have written simply

let enter == assoc$constr:

since the arguments are in the same order

A more efficient implementation for index types with an ordering would be
to use binary trees rather than lists. We would then have to add a > or < to
indez_type, or at least replace the = by one of these. Now, since types are values
we could incorporate an if-statement into the procedure and use one or other of
the implementations depending on the value of a further parameter. We might
want to do this because one implementation may be more efficient for, say, small
tables and the other for larger ones. For the example we will assume a parameter
use_binary_tree. The procedure will now look something like this.

proc(element: type end:
index_type: type (i) =, < : proc(i:i)boolean end:
use_binary_tree: boolean)...
begin
if use_binary_tree
then
type ... { Binary tree implementation }
end
else
type { List implementation }
end
end

This could now be called as

let a_table == associative(string, integer, true):
let another_table == associative(string, integer, size > 30);

In the second case the expression may not be able to be evaluated when the call to
the procedure is compiled, but this does not matter. We do not know at compile-
time which of the two implementations of the type will be used, but we know that
either of them have all the operations required so they will do equally well.

There is however a problem with this idea of types which this example shows
quite nicely. Since the expression may not be evaluated at compile-time how do
we know when two values have the same type? The type system must ensure
that we apply the lookup procedure which understands the representation of the
particular associative memory. It would be catastrophic to try to look up a value
assuming that the value represented a tree when it was in fact a list. We need the
type system to assure us at compile-time that the expressions

let y == X$enter(XSempty. 1. "hello"):
X$lookup(y):

where X stands for a type or type-returning expression, will not give faults at
run-time because of a mistake in interpreting the representations.

There are several possible approaches to the problem of which Poly and Russell
illustrate two. In Russell values can have types such as

assoctative(string, integer. size > 30)

provided nothing in the expression involves a global variable®. This essentially
means that all functions have to be “variable-free”, not just those which directly
return types. Given this restriction it is possible to say that if two expressions
are syntatically the same in a given context then they return the same value. If
however, size were a variable, or associative looked at the value of a global variable,
~ then we could not say with certainty that two values with type

associative(string, integer, size > 30)

had the same type. Taking a purely synatactic view means that expressions like

associative(string. integer, 2 > 1)

and

associative(string, integer, true)

are not the same type.

In Poly types are only regarded as the same if they are the same named type.
So while values with types which are expressions can sometimes be produced there
is very little that can be done with them. To be useful a type-returning expression
has to be bound to an identifier.

let a_table == associative(string. integer. true);

let a_val == a_table$enter(a_tableSempty, 1, "hello”):

let another table == associative(string, integer, true);

let another_val == another_table$enter(another_tableSempty, 1, "hello”):

a.val and another_val have distinct types a_table and another_table.

A side-effect of this is that “types” such as

*Variable in this context means something whose value can be changed by assignment.

8

list(integer)
cannot be used directly. We have to write
let int_list == list(integer);

and then use int_list as the type. However this is not such a problem as might
at first appear. Since we can write functions which take implied parameters we
can write an append function which will work on values of any type with the
appropriate hd, tl etc., irrespective of their actual implementations.

3 Modules

A module is conventionally thought of as a collection of types and functions which
can be separately compiled. It has an interface which is the types of these functions
so that other modules can make use of it without having to know the precise
implementation.

Types in Poly can be thought of in the same way. A type is a collection of
operations and its signature gives their “types”®. A module which makes use
of other modules, imports them in conventional terms, can be represented as a
procedure which is applied to types and returns a type. Oue of the big advantages
of this view of modules is that binding modules together is done using statements
written in Poly and type-checked using the normal Poly type-checker. There is no
need, as with MESA and C-MESA[Mit79| for a separate module binding language.

The module system for ML{Har85] is esse.nt;ially a system built on top of the
kernel language. Structures and functors correspond to values and functions in the
kernel but the ML type system makes it impossible to unify these concepts.

4 Persistence in Poly

Poly is an interactive system in which the user types expressions and declarations
and these are compiled and executed immediately. When objects are declared
they are added to the objects the system knows about and they can be used in
subsequent expressions. Such systems are quite common and usually work on a

$We usually think of a type as being something like integer which has values, but a type in
Poly can be any collection of objects. So a collection of floating point functions sin, cos etc. could
be combined as a type even though there is no such thing as a value of this type.

9

core image which can be saved from one session to the next. This is fine provided
that the core image does not grow too big. However as the core image gets larger
the costs of reading it in and writing it out get more serious. Also the cost of
garbage-collection rises. There is a further question about the security of the data
if the machine crashes while writing out a large image.

For these reasons Poly is implemented in a persistent store[Atk81a|{Atk81b!
which can be thought of as a core image where objects are only read in when they
are actually required. The cost of loading objects from the image, or database.
depends on the amount of the store which is used by a program rather than the
total size of the image. A simple transaction mechanism ensures that the database
remains in a consistent state in the event of a machine crash or if the program is
killed halfway through writing out. Some experiments have been done on using
multiple databases so that large programs such as the compiler can be shared
, between several users.

Using this persistent store the Poly compiler has been boot-strapped so that it
is just another procedure. A Standard ML compiler has also been written which
uses the same back-end as the Poly compiler.

In a typical interactive programming system there is a single name space for all
identifiers, but as the number of declarations have grown it has become necessary
to divide up the name space into separate environments. An environment is very
similar to a directory in a filing system or to a block in a programming language.
When an environment is selected all new identifiers are entered into it and looked
up in it. There is the equivalent of the scope rules in a programming language so
that an identifier is looked up in a series of nested environments until it is found.
It could be thought of as a Poly type since it is a collection of objects, but it cannot
be quite the same because declarations can be added or removed dynamically to
an environment while a Poly type must be “frozen”.

5 Conclusions

Poly was designed as a general purpose language and has been used successfully
for some medium scale projects (there is about 20000 lines of code in the Poly and
ML compilers). After some years of programming in it the type system has proved
to work very well. Treating types as first-class values seems to result in a generally
simpler language than languages where types are treated as purely compile-time
objects. Experience with Standard ML suggests that pattern-matching and excep-
tions with parameters (exceptions in Poly cannot carry parameters) are something
that should be added. Some kind of type inference based on unification could be
used to reduce the amount of type information which must be given explicitly,
though it cannot remove it completely.

10

The presence of a persistent store tends to break down the distinction between
compile-time and run-time, since the compiler is just another function fo be ap-
plied. Compile-time does have some meaning in this system however. Compiling
an expression means checking the interfaces between functions and their arguments
so that the result can be guaranteed not to produce a type-checking error later
on. If we compile a procedure then we want to produce a type for the procedure
as a whole and remove the type information within it. Not only does this improve
the efficiency of the procedure but it also gives us a degree of certainty that the
procedure will not fail. [t is a little way along the road to proving the correctness
of the procedure. There is a cost in this static tvpe checking in Poly in that some
procedures which are in fact type-correct will fail to pass a static type-checker,
but the advantages of static type-checking more than outweigh the disadvantages.

References

Atk8la] Atkinson M.P., Chisholm K.J. and Cockshott W.P, “PS-Algol: An Algol
J
with a Persistent Heap.” Technical Report CSR-94-31. Computer Science
Dept., University of Edinburgh.

[Atk81b| Atkinson, M.P., Bailey P., Cockshott W.P., Chisholm K.J. and Morrison
R. “Progress with Persistent Programming.” Technical Report PPR-8-
81, Computer Science Dept., University of Edinburgh.

[Car85] Cardelli L. and MacQueen D. “Persistence and Type Abstraction.” Proc.
of the Persistence and Data Types Workshop, August 1985,

Dem79| Demers A. and Donahue J. “Revised Report on Russell.” TR 79-389
Dept. of Computer Science, Cornell University.

[Fai85] Fairbairn J. “A New Type-Checker for a Functional Language.” Proc. of
the Persistence and Data Types Workshop, August 1985.

{Har85] Harper R. “Modules and Persistence in Standard ML." Proc. of the
Persistence and Data Types Workshop, August 1985,

Mat85] Matthews D.C.J. “Poly Manual” SIGPLAN Notices. Vol.20 No.9 Sept.
1985.

(Mil84] Milner R. “A Proposal for Standard ML" in "Proceedings of the 1984
ACM Symposium on Lisp and Functional Programming™. \ustin. Texas
1984.

‘Mit79] Mitchell James G. et al. “MESA Language Manual.” XEROX PARC,
1979

It

