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Separation logic has become an important tool for formally capturing and reasoning about the ownership

patterns of imperative programs, originally for paper proof, and now the foundation for industrial static

analyses and multiple proof tools. However, there has been very little work on program testing of separation-

logic specifications in concrete execution. At first sight, separation-logic formulas are hard to evaluate in

reasonable time, with their implicit quantification over heap splittings, and other explicit existentials.

In this paper we observe that a restricted fragment of separation logic, adopted in the CN proof tool to

enable predictable proof automation, also has a natural and readable computational interpretation, that makes

it practically usable in runtime testing. We discuss various design issues and develop this as a C+CN source to

C source translation, Fulminate. This adds checks – including ownership checks and ownership transfer – for

C code annotated with CN pre- and post-conditions; we demonstrate this on nontrivial examples, including

the allocator from a production hypervisor. We formalise our runtime ownership testing scheme, showing

(and proving) how its reified ghost state correctly captures ownership passing, in a semantics for a small

C-like language.
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1 Introduction
Assurance of systems software has been a critical problem for decades, and is increasingly so in

the modern threat environment, but it remains practically out of reach for the production systems

code that widely-used computer systems rely on. There are many reasons for this – among the

most important is the fact that such code is largely written in C or C++, with the investment in

this codebase making it impractical to rewrite it in bulk. These are imperative languages in which

programmers manually manage memory with complex ownership patterns, which are notoriously

hard even to describe, let alone to reason about.

Separation logic has become one of the most important tools for formally capturing and reasoning

about the ownership patterns of imperative programs. Originally used for paper proof [42], it is

used in industrial static analyses, notably Infer [1, 7], and for multiple proof tools, including Iris [21],

VST [9, 55], VeriFast [17], CN [40], Viper [35], Prusti [4], Gillian [29, 45], FCSL [47], and others.
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However, there has been very little work on program testing using separation-logic specifications
(we discuss some exceptions in §6). We see two main reasons for this.

First, there is the cultural reason that testing and verification have largely been the focus of

different communities, one focussed on bug-finding and the other on high assurance. There is an

important potential intersection: the ability to use the same specifications both for runtime testing

and for verification offers potential benefits for both, e.g. for quickly discovering some code and

specification errors before embarking on proof, or for runtime testing of remaining proof obligations.

This idea dates back at least to the 1970s, e.g. in Euclid [23] and Anna [27], and can be seen in

the modern runtime verification, contracts, and gradual typing communities – but it arguably

remains under-appreciated in the field of verification as a whole. A prominent recent example

is the Frama-C E-ACSL [14, 50, 51]. E-ACSL is an executable fragment of the ACSL specification

language that can be compiled to in-line C code for runtime assertion checking, but it, like other

specification languages of the time, is based on first-order logic (albeit extended with some built-in

predicates for heap footprints), making it hard to express complex ownership patterns.

Second, there is the technical reason that separation-logic formulas appear at first sight to be very

hard to evaluate in reasonable time, even on a concrete memory state. A separating conjunction

𝑃 ∗𝑄

holds for a heap ℎ if there exists some partition of ℎ into two heaps ℎ1 and ℎ2 with disjoint footprint

such that 𝑃 holds for ℎ1 and 𝑄 holds for ℎ2, and that existential quantification has size 2
size(ℎ)

.

Separation logic formulas often also involve existentials over memory addresses or values, e.g. to

say that there exists some successor node 𝑦 in a linked list (with no payload) linked from a first

node at 𝑥 :

∃𝑦, 𝑧. 𝑥 ↦→ 𝑦 ∗ 𝑦 ↦→ 𝑧

The CN proof system of Pulte et al. [40] uses a separation-logic refinement type inference system,

with an SMT backend, for C verification. CN aims for as predictable a verification user experience

as possible, to either cleanly accept or reject each input program rather than timing out or reporting

‘unknown’ when heuristics or the SMT solver fail (with a fallback to interactive Rocq proof when

this is not possible). To that end, it is based on a type inference system that generates SMT queries

only in the decidable SMT fragment. It restricts its specification language to a novel syntax for

separation logic, using variable scoping to ensure that programmers write formulas in a way that

inference can always succeed – a syntactic analogue of the input/output mode checks used in

earlier systems such as VeriFast [17] and Gillian [29, 45].

The key observation of the current work is that this simple restriction is almost exactly what one

needs for separation-logic specifications, of C function preconditions, postconditions, etc., to also

have a natural and readable computational interpretation, that could be used in runtime testing.

Our contributions are:

• We identify that this restriction, introduced previously for proof, is also good in principle for

specification executability (§2.1 and §2.4).

• We describe various design issues involved in making a practical system based on it, using

reified ghost state to record ownership information at runtime (§2.2).

• We provide a simple formalisation of our runtime ownership testing scheme, showing how

this reified ghost state correctly captures ownership passing, in a semantics for a small C-like

language with explicit ownership passing (§3).

• We describe the actual system, Fulminate (to make false CN specifications fail fast, especially

on ownership errors), and the host of additional issues and engineering required to make
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this work for a substantial fragment of real C, as a C+CN to C source translation that inlines

checks of CN specifications (§4).

• We demonstrate all this on nontrivial examples, including the CN tutorial examples, a subset of

the VeriFast tutorial [18] examples, a simple hashtable from Verifiable C [3], and, much more

substantially, a “buddy” allocator from a production hypervisor, Google’s pKVM developed

for and deployed to protect virtual machines and the Android kernel from each other (§5).

We conclude with discussion of related (§6) and future work (§7). Together with the earlier work

on CN, this gives a separation-logic specification language for which the same specifications can

be used both for runtime testing and for proof, that is reasonably expressive w.r.t. separation and

ownership properties. The main challenges were the observation of the first bullet (simple and

obvious in hindsight but not in the previous proof-focussed research on separation logic), setting

up the formal model to realistically capture the main ideas without largely-irrelevant C complexity,

and making this work for a substantial fragment of real C, which is considerably more involved

than one might think at first.

2 Key Ideas and High-Level Design
2.1 The CN Specification Language Looks Executable in Principle
We begin by recalling the CN specification language, originally designed for predictable proof, and

illustrate on two simple examples how it intuitively has a computational interpretation for testing.

void f(int **p) {

int *q = *p;

*q = 0;

}

Consider the C function on the right, that takes a pointer to a

memory location containing a pointer to an integer, and zeros

the latter. In classic separation logic, a natural specification of

this would be a precondition saying that, on entry, there exists

some address 𝑟 and integer 𝑣 such that the memory at 𝑝 contains

𝑟 , the memory at 𝑟 contains 𝑣 , and we have ownership of both 𝑝 and 𝑟 , with a postcondition saying

that the same ownership is returned, with 𝑝 still containing some 𝑟 but with 𝑟 containing 0:

{∃𝑟, 𝑣 . 𝑝 ↦→ 𝑟 ∗ 𝑟 ↦→ 𝑣} f(p) {∃𝑟 . 𝑝 ↦→ 𝑟 ∗ 𝑟 ↦→ 0}
Naive runtime checking of this would require a search for 𝑟 and 𝑣 – but, at least for this example,

the values of 𝑟 and 𝑣 on entry are obviously determined by the value of p and the heap.

The CN specification language captures this with simple variable scoping: instead of primi-

tive 𝑥 ↦→ 𝑦 points-to predicates, separating conjunction of arbitrary formulas, and existential

quantification, it combines ownership assertions and binders. The CN formula:

take r = Owned(p); P

both asserts ownership of location p, and binds the value at that location to r in the remaining

predicate P. It is equivalent to the classic separation logic ∃𝑟 . 𝑝 ↦→ 𝑟 ∗ 𝑃 , whereas quantification of

the left-hand-side of a points-to, ∃𝑝. 𝑝 ↦→ 𝑟 ∗ 𝑃 , is intentionally not always CN-expressible.

CN supports such formulas in function pre- and post-conditions embedded in C source, as on the

void f(int **p)

/*@ requires take r1 = Owned(p);

take v1 = Owned(r1);

ensures take r2 = Owned(p);

take v2 = Owned(r2);

r2==r1 && v2==0i32;@*/

{ int *q = *p;

*q = 0; }

right. For runtime checking of a take r1 = Owned(p);P in

a requires precondition, one has to check that the caller

provides ownership of the memory at p, read its value

from the actual memory on function entry, and evaluate

P with r1 replaced by that value. For runtime checking

of take r2 = Owned(p);P in an ensures postcondition, one

has to check that the current function has ownership of

the memory at p, read its value from the actual memory

on function exit, and evaluate P with r2 replaced by that
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value. For any access in the body of the function, e.g. the *p, one has to check that this function has

ownership of that memory.

Separation logic uses inductively defined predicates to describe pointer data structures. For

example, C linked lists, say of nodes that each contain an integer and a (possibly null) pointer to

another node:

struct node { int x; struct node *next; };

can be captured by the predicate IntList(𝑝, xs) on the left below, that asserts ownership of a linked

list starting at pointer 𝑝 and says that list can be viewed abstractly as the mathematical list xs.

IntList(𝑝, xs) =

( 𝑝 = NULL ∧
xs = nil )

∨
( ∃hd, 𝑞, tl.
(𝑝 ↦→ (hd, 𝑞) ∗
IntList(𝑞, tl)) ∧
xs = cons(hd, tl)

)

predicate integer_list IntList (pointer p) {

if (p == NULL) {

return (Nil {});

}

else {

take node = Owned<struct node>(p);

take tl = IntList(node.next);

return (Cons {hd: node.x, tl: tl});

}

}

On the face of it, that is hard to execute on a concrete memory: the general disjunction might need

backtracking, the existential quantification might need search for values, and the ∗ needs search
for memory splittings.

Now contrast with the CN version of this predicate definition, on the right above. This CN

resource predicate looks like a function definition, that takes a pointer argument and returns

a mathematical integer_list result, while also asserting ownership of the list nodes. It uses a

conditional if. . .else instead of disjunction to avoid backtracking. The two takes, of the built-in

predicate Owned and the recursive call to IntList, assert ownership of the list node at p and the

remaining linked list, respectively, and also bind the mathematical values returned by each, to

identifiers node and tl in the continuations.

The simple but powerful observation underlying this paper is that such CN predicates can be

straightforwardly evaluated, over concrete memory states augmented with some reified ghost state

recording ownership. Executing the CN IntList(p) requires walking over the heap, reading values

and asserting ownership for takes of the primitive Owned predicate, constructing the mathematical-

list result, and recursing as needed.

We conjecture that this computational reading will be natural and understandable for non-

verification-aware programmers, for whom fancier logical constructs (quantifiers and inductive

predicates, and indeed mode analysis) may be quite foreign. User studies will be required to

determine whether this is true in practice.

2.2 The Fulminate Design Goals for CN Specification Testing
The above observation is simple, especially in hindsight, but going from that to a practical system

for runtime testing of CN assertions for actual C code requires one to consider many design and

implementation questions. We begin with some high-level goals and how they have determined

our design.

Runtime testing on concrete executions. Fulminate supports runtime testing of CN assertions,

covering both their ownership and pure-value aspects, in concrete execution of the underlying C
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program. Like other runtime testing approaches, it is thus testing whether pre- and post-conditions

hold of the concrete states reached at those program points within a complete execution, not

whether pre-conditions imply post-conditions.

Flexible usage models for a shallow on-ramp to higher assurance. Fulminate aims at a very light-

weight user experience, providing a gentle on-ramp to higher assurance in a variety of testing and

testing+proof workflows. Conventional developers, who are not verification experts, might start by

writing partial CN specifications – initially not much more than C asserts – and get immediate ben-

efits from them by quickly detecting errors in CN testing, without any proof whatsoever. They could

then gradually add richer ownership and functional-correctness properties. In higher-assurance

contexts, verification experts might extend these and write more specifications for proof, in exactly

the same CN specification language, and use Fulminate to quickly debug both their specifications

and their code by testing them, interleaved with using CN refinement-type proof to verify them.

Testing of (a substantial fragment of) actual C. Fulminate supports a substantial fragment of

actual C, rather than an idealised C-like language (though there are a number of features that

are not yet supported, as we describe in §7). To this end, it uses the front-end of the Cerberus C

semantics by Memarian et al. [31–33] to parse, typecheck, and desugar C source files, as does CN.

To inject the translations of CN specifications into the C code, we have developed new machinery

as a part of Cerberus.

Testing using conventional build processes and tools, and with arbitrary existing test harnesses and
tests. Like systems from Anna [27] to the Frama-C E-ACSL [14, 50, 51], Fulminate is structured

as an annotated-C source to C source translation, which adds instrumentation to check the CN

specifications. The result of this translation can be built with a conventional C compiler, just like the

original C source. The instrumented binary can then be executed in the same way as the original

program, in whatever test harness and on whatever test suite the developers normally use. It is

an on-line checker, obviating the need for logging that an off-line checker would have. Fulminate

checking (optionally) involves checking every memory access, so logs would quickly become very

large.

Design for usability: error reporting. Design for usability also makes it essential to give good

error reports on runtime test failures, including e.g. both the C source location and CN predicate-

definition source location on runtime ownership and other failures. We plan also to include optional

ghost state to support reporting of which CN predicates own which parts of the heap, and thus

which are involved in ownership errors. Even highly expert kernel developers may not have the

ownership patterns of their code explicitly in mind, as they currently have no way to write them

down, beyond prose comments, and no way to test or verify them. CN specifications and such

feedback from testing may help develop a solid intuition and understanding of this.

Design for usability: debugging dynamic failures. Design for debuggability leads us to build a

translation that closely follows the structure of the source program, preserving its layout and

comments, and with the injected instrumentation in human-readable C. This means that one can,

for example, sensibly use gdb or lldb on the generated code – including examination of the abstract

states computed by CN predicates, and the reasons why CN assertions fail.

Minimal dependencies for bare-metal execution. One of our intended targets is systems code that

runs in restricted execution environments, including hypervisor code such as Google’s Android

pKVM hypervisor [13], which runs as an isolated component at Arm-A Exception Level (EL) 2,

above the Android kernel at EL1 and user code at EL0. Such code has to work in a very limited

context, without the C standard library or most operating-system services. Fulminate has not yet
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been demonstrated running at EL2, but this goal leads us to make the generated instrumentation

essentially bare-metal C, without runtime dependencies.

Performance. Runtime testing is intrinsically expensive comparedwith uninstrumented execution,

and runtime testing of separation logic predicates and ownership has to walk the relevant part of

the heap, and check and/or update the corresponding ghost state, whenever such a specification

is reached. Compared with sanitisers, for example, Fulminate is checking much richer properties,

and one should expect it to have substantially more performance cost. However, Fulminate targets

relatively small bodies of critical C code. Our working hypothesis is that, for such code operating

over relatively small datastructures, even a relatively naive implementation is fast enough to be

useful, and to explore how it behaves in practice – so long as it is on-line and translates to reasonable

C, as described above. There are many potential optimisations, and the underlying scheme would

support sampling – checking only a random subset of function executions – but we do not explore

them in this paper.

Test generation. Fulminate does not itself do test-case generation, but it should work well with

property-based testing: if one can automatically synthesise unit test cases, benefitting from CN

ownership specifications for function preconditions, then one will be able to test the rich CN

properties in unit-test executions, making performance much less critical. Fulminate may also work

well with fuzzing, guiding fuzzing with rich-specification failures.

2.3 Ghost State Instrumentation for Ownership
The CN proof tooling checks each function in isolation, symbolically, in the usual program-logic

fashion: for each function f, it assumes its requires P precondition and checks that implies that the

body is free of undefined behaviour, and that the body establishes the ensures Q postcondition. For

a call to another function g within the body of f, this checking uses the specification of g rather

than its implementation: it checks that P' holds at that program point and assumes Q' afterwards.

As it is a resource-aware logic, this involves checking that the resources of P' are available at that

point, and it returns the resources of Q' to the remaining verification of f.

ty f(...parameters...)

/*@ requires P

ensures Q @*/

{

...

g(...);

...

return ...;

}

ty’ g(...parameters...)

/*@ requires P'

ensures Q' @*/

{

...

return ...;

}

Runtime testing is instead based on whole-program execution. For runtime testing of owner-

ship properties, one should think in terms of explicit resource passing: at the call to g, the P'

resources that g requires have to be taken from the ambient available resources (flagging a dy-

namic failure if that is not possible), and on return from g, the Q' resources that g ensures have to

be returned. Pre- and post-conditions can also constrain pure properties of the values, as in the

take v2=Owned(r2); r2==r1 && v2==0i32 above, which also need to be checked and flag dynamic

failures if false.

Resources are created for global variables, function parameters (which in C are mutable variables

within the function body), block-scoped local variables, and allocators, and destroyed at function
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return, block-end, and free(). For each memory access, runtime testing should check that its

footprint is in the ambient available resources, flagging a dynamic failure otherwise.

In Section 3 we make this precise with an ownership-passing operational semantics for a small

C-like calculus, that includes globals, C-like function parameters, and block-scoped locals, and a

small fragment of the CN specification language.

For the actual Fulminate implementation, however, it is more convenient to use a rather different

but essentially isomorphic representation. Instead of passing the ambient resources around explicitly,

we maintain reified ghost state that encodes a finite partial function that, for each byte of memory,

gives the C stack depth of the C function holding ownership of that byte (if any). This gives a

simple implementation scheme, in outline:

(1) At each ownership creation point (globals, function parameters, block-scope entry) we add

instrumentation to map the footprint of the created variable to the current stack depth.

(2) At the corresponding ownership destruction points (function exit and block-scope exit) we

add instrumentation to unmap the appropriate footprint.

(3) For each requires P clause, we add instrumentation that computes the CN predicate P, walking

over the heap as needed, checking that the required resources are mapped at the immediate

caller’s stack depth, and updating them to the current stack depth.

(4) For each ensures P clause, we add instrumentation that computes the CN predicate P in a

different mode: walking over the heap as needed, checking the required resources are mapped

at the current stack depth, and updating them to the caller’s stack depth. We also optionally

check that no resources are leaked.

(5) For each memory access, we add instrumentation that checks that the footprint of the access

is owned at the current stack depth.

This supports, for example, passing the address of a local variable, which might transiently be

involved in some pointer datastructure spanning it and parts of the heap, down to a callee function.

In Section 3 we also make this precise, with an instrumented version of the operational semantics,

and prove the two coincide, and in Section 4 we describe our implementation, which has to handle

many more issues.

2.4 The CN Specification Language
The CN specification language, that Fulminate translates into runtime checks, is a first-order

language that syntactically distinguishes linear resource types and freely duplicable constraint

types, featuring (possibly mutually recursive) definitions of resource predicates, specification

functions, and datatypes. To explain what Fulminate has to translate, we briefly describe here

(almost) the full CN specification language.

C functions are specified using requires and ensures condition lists, where each condition is either
a resource take binding, a constraint, or a let binding. Resources comprise the built-in predicates

Owned (points-to indexed by C-types) and Block (points-to for uninitialised memory), as well as user-

defined predicates and iterated separating conjunctions of predicates: an each(bty 𝑥; 𝑡){p(𝑡1, . . . , 𝑡𝑛)}
asserts ownership of resource p(𝑡1, . . . , 𝑡𝑛) for each instance of the quantified 𝑥 , of type bty, for
which the guard expression 𝑡 holds. Constraints are boolean-typed expressions, possibly universally

quantified using each.

toplevel_def ::= c_function_def | spec_predicate_def | spec_function_def | datatype_def
c_function_def ::= cty f (cty1 id1, .. , ctyn idn)/*@ requires conditions ensures conditions′ @*/block
condition ::= take id = resource | constraint | let id = 𝑡 conditions ::= condition1; ... ; conditionn;
resource ::= p(𝑡1, .. , 𝑡n) | each (bty id; 𝑡) { p(𝑡1, .. , 𝑡n)}
𝑝𝑟𝑒𝑑_𝑛𝑎𝑚𝑒, p ::= Owned <cty> | Block <cty> | id
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constraint ::= 𝑡 | each (bty id; 𝑡) { 𝑡 ′ }

Users can define first-order pure specification functions and resource predicates. The latter

syntactically distinguish predicate input and output arguments with a function-like syntax:

predicate bty id (bty
1
id1, . . . , bty𝑛 id𝑛) {specs} defines resource predicate id with input arguments

id1, . . . , id𝑛 and output type bty; the predicate body specs is a list of guarded clauses in the form of

nested if-then-elses, each clause comprising a list of conditions and a return statement that defines

the output value.

spec_function_def ::= function bty id(bty1 id1, .. , btyn idn) { 𝑡 }

spec_predicate_def ::= predicate bty id(bty1 id1, .. , btyn idn) { specs }

specs ::= spec | if (𝑡) { spec } else { specs } spec ::= conditions return 𝑒;

Expressions in resources and constraints range over base types void (unit), unbounded integers,

fixed-width integers such as u8 and i32, (untyped) pointers, structured types (structs, tuples, and

records), collections (lists, sets, and maps), and user-defined datatypes.

base_type, bty ::= id | void | bool | integer | u nat | i nat | pointer | struct tag | tuple <bty1, .. , btyn>
| { bty1 f1, .. , btyn fn } | list <bty> | set <bty> | map <bty1, btyn> | datatype tag
datatype_def ::= datatype tag { constructor1, .. , constructorn }

constructor ::= C { bty1 f1, .. , btyn fn }

Expressions include CN function application, pattern matching, pointer-shift operations, iterated

conjunction over constant ranges (each), accesses and pure updates of struct, record, and map

values, constructors for tuples and lists, and standard binary and unary operators.

𝑡𝑒𝑟𝑚, 𝑡 ::= k | id | unop 𝑡 | 𝑡 binop 𝑡 ′ | id(𝑡1, .. , 𝑡n) | let id = 𝑡 ; 𝑡 ′ | if (𝑡1) { 𝑡2 } else { 𝑡3 }

| match 𝑡 { match_cases } | each (bty id : int_range; 𝑡) | (bty)𝑡 | &id | array_shift <cty>(𝑡1, 𝑡2)
| member_shift <tag>(𝑡, f ) | good <cty>(𝑡) | sizeof <cty> | offsetof (tag, f ) | 𝑡[𝑡 ′] | 𝑡[𝑡1 : 𝑡 ′

1
, ... , 𝑡 ′n : 𝑡n]

| { f1 : 𝑡1, ... , fn : 𝑡n } | 𝑡 .id | { f1 : 𝑡1, ... , fn : 𝑡n ..𝑡 } | C { f1 : 𝑡1, .. , fn : 𝑡n } | [𝑡1, .., 𝑡n]
| default <bty>
match_case ::= pattern=> { 𝑡 } pattern ::= _ | id | C { f1 : pattern1, .. , fn : patternn }

unop ::= ! | - binop ::= * | / | + | - | == | != | < | > | <= | >= | && | || | ==> int_range ::= k1, k2

Expressions in CN are pure: they can include identifiers of C function arguments, to refer to their

initial values, and the addresses of C variables in scope (function arguments and globals), but can

depend on the heap only by reference to take-bound outputs of Owned, Block, or derived predicates.

(The CN implementation lets specification expressions “dereference” owned pointers, e.g. using

*p following take v = Owned<int>(p); this is merely surface-level syntactic sugar for 𝑣 , which we

elide here.) Unlike CN proof, runtime execution does not require loop invariants; a Fulminate

implementation of this is in progress and omitted here. CN also includes annotations for guiding

proof and for specifying lemmas, which are not needed for runtime checking.

2.4.1 CN Specifications as Refinement Types. We recall from Pulte et al. [40] how CN specifications

relate to mathematically presented refinement types. Absent any use of take id = resource, CN

requires and ensures specifications correspond to types with constraints in the decidable fragment

of SMT solvers, following the liquid types discipline of Rondon et al. [43]. Recalling and updating

an example from Pulte et al. [40], we start with a pure function that increments a signed integer.

To avoid undefined behaviour in C, it must have the pre-condition that its value is strictly less than

the maximum value of a signed integer. We see that the corresponding refinement type for this

function translates and binds computational C arguments using Π𝑖 , and puts constraints on the left

of an implication arrow⇒. For ensures clauses, the type binds the computational return using a

Σreturn, and puts constraints on the left of a conjunction ∧. Lastly, it terminates types with 𝐼 .
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signed int incr(signed int i)

/*@ requires i < MAXi32();

ensures return == i + 1i32; @*/

{ return i + 1; }

Π𝑖 : i32. 𝑖 < MAXi32() ⇒
Σreturn. return = 𝑖 + 1i32 ∧ 𝐼

When resources enter the picture, types also include logical variables, separating implications, and

separating conjunctions. We omit constraints about pointer-alignment to focus on how the syntax

relates to more traditional presentations of separation logic and refinement types. We adjust the

previous example to now increment an integer accessed via a pointer rather than the value itself.

To do so, we take ownership of the pointer in the requires clause so we may dereference and write

to it, and return that ownership in the ensures clause because we do not free it. The type for the

requires clauses puts resources on the left of separating implications −∗, and introduces and binds

their outputs immediately before the resources with a ∀. The refinement type then proceeds on to

the ensures clauses; it puts resources on the left of separating conjunctions ∗, and introduces and

binds their outputs immediately before with an ∃. Because CN syntax guarantees correct modes

via variable scoping, ∀ and ∃ can be inferred based solely on terms derived from inputs.

signed int incr_ptr(signed int *p)

/*@ requires take i = Owned(p);

i < MAXi32();

ensures take i2 = Owned(p);

return == i2;

i2 == i + 1i32; @*/

{ return ++*p ; }

Π𝑝 : pointer.

∀𝑖 : i32.𝑝 ↦→ 𝑖 −∗
𝑖 < MAXi32() ⇒

Σreturn. ∃𝑖2 : i32. 𝑝 ↦→ 𝑖2 ∗
return = 𝑖2 ∧
𝑖2 = 𝑖 + 1i32 ∧

𝐼

2.4.2 Executability. The specification language design includes several restrictions of classic sep-

aration logic, originally to enable reliable inference, that turn out to be beneficial for runtime

checking. (1) Instead of general quantifiers, take bindings restrict quantification to just the outputs
of a resource. These can be automatically inferred in proof, and computed in runtime execution:

inputs are arguments needed to make predicates precise (e.g. for Owned, the pointer) whereas outputs

can be derived from inputs and the owned memory (e.g. for Owned, the pointee). For instance, given

a concrete p, the output x in take x = Owned<int>(p) can be computed by reading the heap at p.

In predicate definitions users specify how outputs can be computed from inputs and the owned

memory (using return). (2) Instead of general disjunction, predicate definitions use if-then-else

with guarded clauses (similar to RefinedC [44]). This allows the type inference, in proof, and the

runtime checking to determine without backtracking which clause of a resource predicate applies

(if any). (3) Instead of general, separating or non-separating, conjunction, function specifications

and predicate definition clauses are phrased as “flat” lists of conditions.
In addition to these restrictions, previously already imposed for proof, we further restrict quan-

tifiers: the guard expression of an each iterated resource or universally quantified constraint has to in-

clude lower and upper bounds; i.e. it has to have the shape each(bty id; 𝑒1<=id && id<𝑒2 && . . .){ . . . }

(or similar) so that Fulminate can translate it to the C for-loop the CN syntax alludes to. Note that

𝑒1 and 𝑒2 do not have to be constant, but can be arbitrary expressions, including heap-dependent

expressions referring to take-bound resource outputs, where the syntactic input/output discipline

described above ensures their computability at runtime.

In summary, the restrictions of classic separation logic Fulminate relies on are:
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(1) Existential quantifiers are restricted to resource outputs, computable from their inputs and

owned memory; this ensures precise predicates.

(2) Predicate definitions use if-then-else instead of regular disjunction.

(3) Specifications do not support general conjunction (separating or non-separating).

(4) Universal quantifiers have upper and lower bounds.

3 Formalisation
To clarify the Fulminate reified ghost state design, and how that relates to explicit ownership

passing, in this section we formalise a fragment of Fulminate for a small “miniCN” language.

Previous work by Makwana [40, §4] formalised and proved type safety for “kernel CN”, a calculus

in A-normal form. That was based on the internal “Core” language of Cerberus [31–33]: Cerberus

elaborates C source to Core, and the CN proof tool uses the result of that elaboration. Fulminate,

on the other hand, is a C+CN source to C source translation, so it is more instructive to use a

calculus close to C+CN source. In this section we just highlight the most interesting aspects; the

full formalisation and proofs are available online.

3.1 MiniCN Base and Specification Language Syntax
The base language is roughly a fragment of C, chosen to illustrate some key aspects of the instru-

mentation while remaining manageably small; its grammar is below. We include global variables,

C’s mutable function parameters, and block-scoped local variables, and early return, but omit

loops and other control flow crossing block boundaries. The base memory object model is just a

finite partial function from natural-number addresses to natural-number values. We effectively

restrict to the C types ctype, 𝜏 ::= int | 𝜏*, though these types are not used in the semantics.

We include address-of &id and dereferencing *e, so one can for example pass the address of a

function parameter or local to a callee, but simplify C’s lvalue language. We omit all structured

data (C arrays, structs, unions, pointer arithmetic, and representation-byte accesses), for simplicity.

Structured data adds some complexity to the actual implementation, but does not affect ownership

checking in fundamental ways. We combine statements and expressions into a single grammar.

Base language programs just consist of a collection of global-variable and function definitions, one

of which should be main.

declaration, decl ::= 𝜏 id; lvalue_expression, le ::= n | id | *le block ::= { decls e}
expression, e ::= n | id | &id | uope | ∗e | !e | e1 bop e2 | le = e | if (e) e1 else e2 | e;e′ | f (e1, .. , ek) | block
| return e
function_definition, func ::= 𝜏 f (𝜏1 id1, .. , 𝜏k idk)function_spec block;
program, P ::= spec_decls decls func1 .. funcj

We then add a fragment of the CN specification language described in §2.4 to this base: func-

tion pre- and post-conditions, which are CN predicates spec that can involve recursive predicate

definitions and pure-function definitions; the latter with bodies from a pure-term grammar t.

function_spec ::= /*@ requires spec1 ensures ret .spec2 @*/

spec ::= return t | 𝑝 (t1, .. , ti) | assert (t);spec | let id = t;spec | take id = spec;spec′

| if (t){spec1} else {spec2}
𝑝 ::= Owned | id
spec_function_def ::= function bty f (bty1 id1, .. , btyk idk){t}
spec_predicate_def ::= predicate bty p(bty1 id1, .. , btyk idk){spec}
spec_term, t ::= v | {t} | id | suop t | t1 sbop t2 | if (t) t1 else t2 | f (t1, .. , ti)
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3.2 MiniCN Operational Semantics
To have a clear correspondence between the MiniCN formalisation and the actual Fulminate

implementation, so that one can see what Fulminate is testing and when, we give the former a

dynamic semantics as a small-step abstract machine, with an explicit stack S of stack frames F for

function and block invocations, environments giving the memory locations of mutable variables

(rather than substituting them out), and a single heap H , which is just a function from N to N. This
makes the top-level small steps of the base-language semantics reasonably close to the behaviour of

a standard C implementation (at least when compiling without optimisation), and one can identify

the start and end of each allocation’s lifetime.

3.2.1 Base Language Semantics. For the base language, the main judgement is, in the context of a

program P and global-variable environment Eg, that configuration c takes a reduction step to c′.

P, 𝐸g ⊢ c −→ c′

A configuration consists of an expression, stack, and heap, along with resource-passing and imple-

mentation ghost-state instrumentation that we return to below:

configuration, c ::= ⟨e, S, H , R, G⟩

A stack is just a list of stack frames, each either of function or block kind; stack frames contain the

expression continuation C (just a list of expression atomic evaluation contexts) and the environment

E for their local variables, mapping identifiers to the memory locations where they are allocated.

Function stack frames contain the name f of the function, a specification language term value

environment V , and resource-passing instrumentation.

stack_frame_kind, K ::= Func(f ,V , R) | Block
stack_frame, F ::= ⟨K,C, E⟩

3.2.2 Extensions with CN Predicate Checking. We extend the base language semantics with dynamic

checking of MiniCN assertions, and with dynamic semantics for the MiniCN specification language,

in two ways:

(1) expressed in terms of explicit resource passing, as introduced informally at the start of

Section 2.3, and

(2) expressed in terms of ghost state mapping each memory address to the stack depth (if any)

that currently owns it, modelling the Fulminate implementation, as described in the later

part of Section 2.3.

We describe the two side-by-side (adding both to the base language semantics), to make it easy to

see the correspondence, and in the next subsection prove that they are equivalent.

The resource-passing semantics uses sets of resources R, which are essentially just finite subsets

of the memory addressesN. The ambient resources for expression execution are in the R component

of configurations, and each C function stack frame includes the resources of the caller not required
by the currently executing function. That is to say, the stack frame includes resources which are

framed in the separation-logic sense, so that they may be restored (alongside any post-condition

resources) into the configuration upon function return.

The implementation semantics uses ghost ownership mappings G, which are finite partial

functions from memory addresses N to stack depths N. The current stack depth is the number of

function stack frames in the stack, with 0 as the notional stack depth for global variables. There is

just a single such mapping, in the G component of configurations.

The initial configuration for a program allocates the globals, initialises them to 0, takes an

empty stack, and invokes the main function. In the resource-passing semantics, we initialise R to
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the footprint of the globals, while in the implementation semantics, we initialise G to map that

footprint to 0.

P = spec_decls 𝜏1 id1; .. 𝜏i idi; func1 .. funcj
𝐸g = id1 ↦→ n1, .. , idi ↦→ ni
S = emp

H = n1 ↦→ 0 ∗ .. ∗ ni ↦→ 0

R = Owned (n1) ∗ .. ∗ Owned (ni)
G = n1 ↦→ 0 ∗ .. ∗ ni ↦→ 0

P −→ (P, 𝐸g ⊢ ⟨main( ), S, H , R, G⟩) prog_init

An R-value read of a C variable id first finds its location, in an environment of an enclosing

block or function stack frame up to the first function stack frame (inclusive), or otherwise in the

global-variable environment (the R-value coercion), and rewrites it to an explicit dereference of

that address:

lookup𝐸g S id = n
P, 𝐸g ⊢ ⟨id, S, H , R, G⟩ −→ ⟨*n, S, H , R, G⟩

var

(L-value identifier lookup and taking the address of a variable &id are similar.)

A dereference of a concrete address involves a runtime check: in the resource-passing semantics,

it has to check that the address is in the ambient resources R, while in the implementation semantics,

it has to check that the address is mapped by G to the current stack depth – as C functions do not

automatically have access to the local variables of their caller. Then it just finds the heap value of

that address:

runtime_check_res (n ∈ R)
runtime_check_imp (G(n) = stackdepth(S))
H (n) = n′

P, 𝐸g ⊢ ⟨*n, S, H , R, G⟩ −→ ⟨n′, S, H , R, G⟩ unop_dereference

(L-value indirection, and assignment, are similar)

Function entry and block entry, and function return and block exit, are interestingly similar and

different. Functions and blocks both introduce new mutable local variables for their syntactic scope:

the function parameters and block-scoped local variables respectively (recall that in C function

parameters are mutable, and that the lifetime of a local variable is that of its enclosing block).

However, on function entry, the environment of the caller and its parents becomes irrelevant (they

are no longer in scope, and lookup does not recurse into them), and the callee should only gain

ownership that is explicitly passed, by any takes in the function precondition. On block entry, on

the other hand, the new local variables are effectively added to the current environment, and those

resources are implicitly added to the ambient resources.

A function call of f finds the function definition in the program P , creates a new environment

E′ for the function parameters, creates new allocations H ′
for the function parameters, creates a

new specification pure-values environment V , checks the precondition spec holds, and executes

the function body (block) in the new configuration. In the process of checking the precondition,

the rule also (a) checks resources required by the precondition are in the ambient resources R and

puts them in R′
1
, leaving those to be framed on the stack in R′

2
; (b) checks resources required by

the precondition are mapped to stackdepth(S) in G and increments their mappings in G′
; and (c)

updates the specification pure-values environment to V ′
, so that the initial values of arguments

upon function entry and any pure-values bound using let 𝑖𝑑 and take 𝑖𝑑 are available when
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checking the postcondition 𝑟𝑒𝑡 . spec′ upon function return.

P (f ) = 𝜏 f (𝜏1 id1, .. , 𝜏k idk)/*@ requires spec ensures ret .spec′ @*/ block;
E′ = id1 ↦→ m1, .. , idk ↦→ mk
H ′ =m1 ↦→ n1 ∗ .. ∗mk ↦→ nk
V = id1 ↦→ n1, .. , idk ↦→ nk
P, 𝐸g,H , inc, stackdepth(S) ⊢ ⟨spec, V , emp, R, G⟩ −→∗ ⟨·, V ′, R′

1
, R′

2
, G′⟩

R′′ = Owned (m1) ∗ .. ∗ Owned (mk)
S′ = ⟨Func(f ,V ′, R2), emp, E′⟩ :: S
G′′ =m1 ↦→ stackdepth(S′) ∗ .. ∗mk ↦→ stackdepth(S′)
P, 𝐸g ⊢ ⟨f (n1, .. , nk), S, H , R, G⟩ −→ ⟨block, S′, H ∗ H ′, R′

1
∗ R′′, G′ ∗ G′′⟩ call

A block entry likewise has to create new environment E′ and allocations H ′
, for the block-scoped

local variables, but these are simply added to those already available (respectively by creating a

new Block frame, which lookup will recurse through, and by starring onto the existing H ). The

resource-passing and implementation instrumentation follow suit, with the latter using the current

stack depth (which is unaffected by the Block frame).

block = { 𝜏1 id1; .. 𝜏i idi; e}
E′ = id1 ↦→ n1, .. , idi ↦→ ni
H ′ = n1 ↦→ 0 ∗ .. ∗ ni ↦→ 0

R′ = Owned (n1) ∗ .. ∗ Owned (ni)
G′ = n1 ↦→ stackdepth(S) ∗ .. ∗ ni ↦→ stackdepth(S)

P, 𝐸g ⊢ ⟨block, S, H , R, G⟩ −→ ⟨e, ⟨Block, emp, E′⟩ :: S, H ∗ H ′, R ∗ R′, G ∗ G′⟩ block_start

For a function return, the base-language semantics discards the Func stack frame, along with

all its Block frames, and removes the footprint of the function parameters and block-scoped

locals from the heap, with the resource-passing and implementation instrumentation doing the

same. It updates the specification pure-value environment with the returned value (V , ret ↦→ n)
(so the postcondition can talk about it), and checks the post-condition spec′ holds. This: (a) in
the resource-passing semantics, checks resources ensured by the postcondition are exactly the

ambient ones R1 (no leaks); (b) in the implementation instrumentation, (b.1) checks resources

ensured by the postcondition are mapped to stackdepth(S) in G′
and decrements their mappings

in G′′
; and (b.2) checks for leaks by iterating through all of G′′

and ensuring all ghost mappings

are bounded by stackdepth(S′), one less than stackdepth(S); and (c) updates the specification

pure-values environment with any pure-values bound using let 𝑖𝑑 and take 𝑖𝑑 .

S = ⟨Block,C1, E1⟩ :: .. :: ⟨Block,Ci, Ei⟩ :: ⟨Func(f ,V , R2),C, E⟩ :: S′
H ′ = H\ dom (E1, .. , Ei, E)
R1 = R\dom (E1, .. , Ei, E)
G′ = G\ dom (E1, .. , Ei, E)
P (f ) = 𝜏 f (𝜏1 id1, .. , 𝜏k idk)/*@ requires spec ensures ret .spec′ @*/ block;
P, 𝐸g,H , dec, stackdepth(S) ⊢ ⟨spec′, (V , ret ↦→ n), emp, R1, G′⟩ −→∗ ⟨·, V ′, R1, emp, G′′⟩
runtime_check_imp (stackdepth(S′) ⊢ G′′)

P, 𝐸g ⊢ ⟨return n, S, H , R, G⟩ −→ ⟨n, S′, H ′, R1 ∗ R2, G′′⟩ return

A block end just has to discard the Block stack frame and the footprint of its locals.

P, 𝐸g ⊢ ⟨n, (⟨Block, emp, E⟩ :: S), H , R, G⟩ −→ ⟨n, S, H\ dom (E), R\dom (E), G\ dom (E)⟩ block_end

3.3 Dynamic Semantics of the MiniCN Specification Language
The above function call and return rules appeal to semantics for CN specifications, to check the

ownership and pure-value aspects of the requires precondition and ensures postcondition, and

to transfer ownership appropriately. The syntactic form of CN specifications means they can be
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executed as recursive functions. In this formalisation, we capture this with a small-step dynamic

semantics, while in the Fulminate implementation, they are translated to plain C, which is compiled

and executed with the conventional C toolchain.

The specification dynamic semantics is expressed as a judgement:

P, 𝐸g,H , incdec, sd ⊢ ⟨spec, V , R1, R2, G⟩ −→ ⟨spec′, V ′, R′
1
, R′

2
, G′⟩

Specifications may contain references to user-defined predicates, the definitions of which are

looked up in the program P . Their execution only reads from, but does not write to the heap H ,

which remains constant. Specifications may also refer to and take ownership of globals, and so

𝐸g provides their address. Specific to ghost ownership checking, we also have incdec and sd. The
construct incdec parameterises over the slightly different modes needed for executing specifications

in requires and ensures contexts. That is, requires transfers ambient resources up the stack and

so increments their ghost ownership mappings; ensures transfers ambient resources down the

stack and so decrements their ghost ownership mappings. The current stack-depth sd is used to

check that resources used during the course of executing the specification are in fact the ambient
ones at that stack-depth. Similar to globals, specifications are defined with function parameters in

scope, but unlike globals, it is their r-values, not their addresses. (Specifications would be confusing

to read if function parameters were mutable, and tedious to write if the user had to take ownership

of a function parameter to read it.) The pure-value environment V is initialised to this mapping

of function parameter r-values, and accumulates further bindings for every let id or take id it

executes. In the resource passing semantics, 𝑅1 represents exactly those used ambient resources

which are going to move up or down the stack. In contrast, 𝑅2 represents the ambient resources

from which are so far not used, that is not to be transferred to the ambient resources of the callee

(and instead, framed on the stack), or so far leaking from the caller.

An assertion evaluates by checking that the value 𝑣 it contains is equal to true.

runtime_check_res (v = true)
runtime_check_imp (v = true)

P, 𝐸g,H , incdec, sd ⊢ ⟨assert (v);spec, V , R1, R2, G⟩ −→ ⟨spec, V , R1, R2, G⟩
spec_assert

A let evaluates by updating the pure-value environment with its value (V , id ↦→ v).

P, 𝐸g,H , incdec, sd ⊢ ⟨let id = v;spec, V , R1, R2, G⟩ −→ ⟨spec, (V , id ↦→ v), R1, R2, G⟩
spec_let

A call to a user-defined predicate p(v1, .. , vk), finds the definition in the program, P (p) =

predicate bty p(bty1 id1, .. , btyk idk){spec}, constructs a mapping of its formal parameters to the

pure specification values with which it was called, pushes this mapping to the top of the specification

pure-value environment stack (id1 ↦→ v1, .. , idk ↦→ vk) :: V (to ensure lexical scoping), and finally

steps to the body of p, spec.

P (p) = predicate bty p(bty1 id1, .. , btyk idk){spec}
V ′ = (id1 ↦→ v1, .. , idk ↦→ vk) :: V

P, 𝐸g,H , incdec, sd ⊢ ⟨p(v1, .. , vk), V , R1, R2, G⟩ −→ ⟨spec, V ′, R1, R2, G⟩
spec_pred_user

We syntactically require that all calls to predicates are bound to a take. Therefore, all predicates

evaluate underneath the binding of a take.

spec_take_step

P, 𝐸g,H , incdec, sd ⊢ ⟨spec, V , R1, R2, G⟩ −→ ⟨spec′, V ′, R′
1
, R′

2
, G′⟩

P, 𝐸g,H , incdec, sd ⊢ ⟨take id = spec;spec1, V , R1, R2, G⟩ −→ ⟨take id = spec′;spec1, V ′, R′
1
, R′

2
, G′⟩
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We syntactically require all user-defined predicates must end in a return v. This means that

eventually, all predicates evaluate to a return v, which can then be bound to the binder id of a

take. Since calls to predicates push on to the pure-value environment stack, returns pop from the

top (again, to ensure lexical scoping).

spec_take_return

P, 𝐸g,H , incdec, sd ⊢ ⟨take id = return v;spec, V1 :: V , R1, R2, G⟩ −→ ⟨spec, (V , id ↦→ v), R1, R2, G⟩

Recall that take v = Owned(p) is CN syntax for∃𝑣 .𝑝 ↦→ 𝑣 in separation logic. A call to the primitive

Owned predicate: (a.1) checks that 𝑛 is in the ambient resources runtime_check_res (n ∈ R2); (a.2)
removes that resource from the ambient resources R2 = R′

2
∗ Owned (n); (a.3) marks that resource

as used R′
1
= R1 ∗ Owned (n); (b.1) checks that the ghost ownership mapping is at the correct stack-

depth runtime_check_imp (G(n) = sd); (b.2) updates its mapping G′ = G1 ∗ n ↦→ incdec(sd) by
incrementing or decrementing as per the left of the turnstile; (c) looks up the value pointed to by 𝑛

in the heap H (n) = n′; and (d) steps to that value as return n′. For consistency with the evaluation

of user-defined predicates, this also pushes an empty environment · to the top of the pure-value

environment stack.

H (n) = n′

runtime_check_res (n ∈ R2) R2 = R′
2
∗ Owned (n) R′

1
= R1 ∗ Owned (n)

runtime_check_imp (G(n) = sd) G = G1 ∗ n ↦→ sd G′ = G1 ∗ n ↦→ incdec(sd)
P, 𝐸g,H , incdec, sd ⊢ ⟨Owned(n), V , R1, R2, G⟩ −→ ⟨return n′, · :: V , R′

1
, R′

2
, G′⟩ spec_pred_owned

We demonstrate this semantics using the postcondition shown earlier, assuming a heap such

that H (n) = 0 and 𝑉 = (id ↦→ n, ret ↦→ 0), 𝑡 = (id′ == 0 && ret == id′).
⟨take id′ = Owned(id);assert (t);·, V , emp, Owned (n), G ∗ n ↦→ sd⟩
−→ ⟨take id = Owned(n);assert (t);·, V , emp, Owned (n), G ∗ n ↦→ sd⟩
−→ ⟨take id′ = return 0;assert (t);·, (· :: V ), Owned (n), emp, G ∗ n ↦→ inc(sd)⟩
−→ ⟨assert (t);·, (id′ ↦→ 0,V ), Owned (n), emp, G ∗ n ↦→ inc(sd)⟩
. . .

−→ ⟨assert (true);·, (id′ ↦→ 0,V ), Owned (n), emp, G ∗ n ↦→ inc(sd)⟩
−→ ⟨·, (id′ ↦→ 0,V ), Owned (n), emp, G ∗ n ↦→ inc(sd)⟩.

3.4 Correspondence between Resource Passing and Implementation Instrumentation
To prove that that the MiniCN implementation instrumentation correctly checks for ownership,

we define a formal relation between it and the resource passing dynamic semantics. We then prove

that this is preserved by each step of the dynamic semantics with a proof that the two versions

bisimulate each other.

Let 𝑆𝑟 be a stack in the resource passing version, and 𝑆 be a stack in the implementation version.

Let 𝑅 be the ambient resource of a resource passing configuration and 𝐺 be the implementation

ghost state. Let 𝑠𝑑 be the stack-depth of 𝑆𝑟 , and let 𝑅𝑖 be the resources in the function frames in the

stack 𝑆𝑟 , for 0 ≤ 𝑖 ≤ 𝑠𝑑 − 1.

Definition 3.1 (Resource passing and implementation instrumentation are related.). (𝑆𝑟 , 𝑅) ∼ (𝑆,𝐺)
iff 𝑆 is 𝑆𝑟 with resources erased from function frames, and 𝐺 =

(∗𝑠𝑑−1
𝑖=0 ∗Owned(𝑛) ∈𝑅𝑖 𝑛 ↦→ 𝑖

)
∗(∗Owned(𝑛) ∈𝑅 𝑛 ↦→ 𝑠𝑑

)
.
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This definition formally captures the informal description earlier that the ghost state maps “each

memory address to the stack depth (if any) that currently owns it”.

Lemma 3.2 (∼ is an invertible relation.). There exists ∼′ such that for all 𝑆𝑟 , 𝑅, 𝑆, 𝐺 , (𝑆𝑟 , 𝑅) ∼
(𝑆,𝐺) ⇔ (𝑆,𝐺) ∼′ (𝑆𝑟 , 𝑅).

Proof: §1.1 of the supplementary materials.

This definition can be straightforwardly lifted to entire configurations as follows.

Definition 3.3 (Resource passing and implementation configurations are related.). For resource
passing configuration 𝑐𝑟 = ⟨𝑒, 𝑆𝑟 , 𝐻, 𝑅⟩, and implementation configuration 𝑐 = ⟨𝑒, 𝑆, 𝐻,𝐺⟩, 𝑐𝑟 ∼ 𝑐𝑔
iff (𝑆𝑟 , 𝑅) ∼ (𝑆,𝐺).

With these definitions established, we prove that the resource passing and implementation

instrumentation versions of the semantics are related initially.

Theorem 3.4 (Initial resource passing and implementation instrumentation are related.).

For all programs 𝑃 and globals 𝐸𝑔,
• if P −→ (P, 𝐸g ⊢ 𝑐𝑔) then there exists a 𝑐𝑟 such that P −→ (P, 𝐸g ⊢ 𝑐𝑟 ) and 𝑐𝑟 ∼ 𝑐𝑔,
• if P −→ (P, 𝐸g ⊢ 𝑐𝑟 ) then there exists a 𝑐𝑔 such that P −→ (P, 𝐸g ⊢ 𝑐𝑔) and 𝑐𝑟 ∼ 𝑐𝑔.

Proof: §1.4 of the supplementary materials.

And we prove that the resource passing and implementation instrumentation versions of the

semantics, once related, remain related.

Theorem 3.5 (Resource passing and implementation instrumentation bisimulate each

other.). For all resource passing configurations 𝑐𝑟 = ⟨e, 𝑆𝑟 , H , R⟩, and implementation configurations
𝑐𝑔 = ⟨e, S, H , G⟩, such that 𝑐𝑟 ∼ 𝑐𝑔,

• if P, 𝐸g ⊢ 𝑐𝑟 −→ 𝑐′𝑟 then there exists a 𝑐′𝑔 such that P, 𝐸g ⊢ 𝑐𝑔 −→ 𝑐′𝑔 and 𝑐
′
𝑟 ∼ 𝑐′𝑔,

• if P, 𝐸g ⊢ 𝑐𝑔 −→ 𝑐′𝑔 then there exists a 𝑐′𝑟 such that P, 𝐸g ⊢ 𝑐𝑟 −→ 𝑐′𝑟 and 𝑐
′
𝑟 ∼ 𝑐′𝑔.

Proof: §1.5 of the supplementary materials.

Corollary 3.6 (Resource passing and implementation instrumentation fail under the

same conditions.). This consists of two aspects.
• For all related configurations ⟨e, 𝑆𝑟 , H , R⟩ ∼ ⟨e, S, H , G⟩,
runtime_check_res (n ∈ R) ⇔ runtime_check_imp (G(n) = sd),

• For all stacks S, 𝑆𝑟 , pure-value environments V , resources R′, and instrumentation G,
(𝑆𝑟 , ⟨·, V , R′, emp⟩) ∼dec (𝑆,𝑢, ⟨·, V , G⟩) ⇔ runtime_check_imp (dec(stackdepth(S)) ⊢ G).

Proof: corollaries in §1.1-3 of the supplementary materials.

The key steps of this proof hinge on the evaluation of specifications in function calls and returns.

Whilst the judgement for the specification evaluation abstracts over the choice of inc or dec, for

the proof, it is convenient to handle these two cases separately.

Definition 3.7 (Resource passing and implementation ghost state are related during inc specification
evaluation.). (𝑆𝑟 , 𝑅′, 𝑅′′) ∼inc (𝑆,𝐺) iff 𝑆 is 𝑆𝑟 without resources in function frames and 𝐺 =(∗𝑠𝑑−1

𝑖=0 ∗Owned(𝑛) ∈𝑅𝑖 𝑛 ↦→ 𝑖

)
∗
(∗Owned(𝑛) ∈𝑅′′ 𝑛 ↦→ 𝑠𝑑

)
∗
(∗Owned(𝑛) ∈𝑅′ 𝑛 ↦→ 𝑠𝑑 + 1

)
.

This relation is used in the proof that call preserves ∼. Specifically, we show that 𝑐𝑟 ∼ 𝑐𝑔
implies the initial conditions for the inc specification evaluation – (𝑆𝑟 , emp, 𝑅) ∼inc (𝑆,𝐺) –
and that the final conditions (𝑆𝑟 , 𝑅′

1
, 𝑅′

2
) ∼inc (𝑆,𝐺 ′) imply (𝑆 ′𝑟 , 𝑅′

1
∗ 𝑅′′) ∼ (𝑆 ′,𝐺 ′ ∗𝐺 ′′) where

𝑆 ′𝑟 = ⟨Func(𝑓 ,𝑉 ′, 𝑅′′
2
), emp, 𝐸′⟩ :: 𝑆𝑟 .
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C program + CN annotations

Cerberus front-end

parsing, desugaring, C type inference/checking

Typed Ail

Typed C abstract syntax

Cerberus elaboration

Cerberus Core of C

Core operational semantics

Core executions

MuCore of C + MuCore of CN

CN proof tooling

refinement type inference+SMT

CN verification yes/no

Fulminate

C+CN to C translation

generated C

gcc/clang

conventional binary executions with

CN specification failure detection

gcc/clang

conventional

binary executions

Fig. 1. Fulminate architecture

Definition 3.8 (Resource passing and implementation ghost state are related during dec specification
evaluation.). (𝑆𝑟 , 𝑅′, 𝑅′′) ∼dec (𝑆,𝑢,𝐺) iff 𝑆 is 𝑆𝑟 without resources in function frames and 𝐺 =(∗𝑠𝑑−1

𝑖=0 ∗Owned(𝑛) ∈𝑅𝑖 𝑛 ↦→ 𝑖

)
∗
(∗Owned(𝑛) ∈𝑅′ 𝑛 ↦→ 𝑠𝑑 − 1

)
∗
(∗Owned(𝑛) ∈𝑅′′ 𝑛 ↦→ 𝑠𝑑

)
and 𝑢 = {𝑛 |

Owned (𝑛) ∈ 𝑅′}.

This relation is used in the proof that return preserves ∼. Specifically, we show that 𝑐𝑟 ∼ 𝑐𝑔
implies the initial conditions for the dec specification evaluation – (𝑆𝑟 , emp, 𝑅) ∼dec (𝑆,𝐺) –
and that the final conditions (𝑆𝑟 , 𝑅, emp) ∼dec (𝑆,𝐺 ′) imply (𝑆 ′𝑟 , 𝑅, 𝑅𝑠𝑑−1) ∼ (𝑆 ′,𝐺 ′ ∗𝐺 ′′) where
𝑆𝑟 = ⟨Block,𝐶1, 𝐸1⟩ :: .. :: ⟨Block,𝐶𝑖 , 𝐸𝑖⟩ :: ⟨Func(𝑓 ,𝑉 ′, 𝑅𝑠𝑑−1), emp, 𝐸′⟩ :: 𝑆 ′𝑟 .

4 Implementation
4.1 Architecture
CN builds on the Cerberus C semantics by Memarian et al. [31–33], benefitting from its coverage

of intricate C features and well-validated semantics to handle much of real C, not some idealised

C-like language. It uses the Cerberus front-end to parse, desugar, and C-type-check, producing the

Typed Ail intermediate language, and a variant of the Cerberus elaboration to translate thatMuCore,
capturing many aspects of the C dynamic semantics. The CN proof tooling – its separation-logic

refinement type inference – works over MuCore, using an SMT solver.

Fulminate reuses some of this infrastructure but not all, as it is a C+CN to C source to source

translator. As shown in Fig. 1, it uses the same front-end to Typed Ail, and the elaboration of CN

specifications to their MuCore form, to generate executable versions of CN specifications as Typed

Ail; it then injects a pretty-print of this generated code into the appropriate places in a copy of the

original source file (and in other new files). Injecting into the original source, rather than simply

pretty-printing modified Typed Ail, keeps the structure, layout, and comments of the original,

making the generated code easier to navigate when necessary. The result can be built and executed

with standard C compilers such as gcc and clang.
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The translation has to handle aspects arising from the CN specification language, which as we

saw in §2.4 includes a substantial first-order functional language, from C, with its many intricacies,

and from the various ways in which CN specifications can be intertwined with the surrounding

C and CN code: they can mention function parameter and return values, refer to C types, and, in

arguments to Owned, refer to the C heap. They can also refer to CN datatype, predicate, and function

definitions.

4.2 Basic Translation Scheme
The basic translation scheme is simple, and is what one would expect. CN specifications appear in

C chiefly in pre- and post-conditions. For a minimal example with just a pure CN precondition,

that requires the function argument to be zero:

void f(int x) /*@ requires x==0i32; @*/

{

return;

}

Fulminate injects an executable C version of the check x==0: reading the function argument,

converting it to the Fulminate C representation of the CN mathematical value thereof (which here

is essentially a no-op), computing the appropriate equality, and reporting an error if that fails.

Simplified slightly for presentation, the generated code is:

void f(int x) /*@ requires x==0i32; @*/

{

cn_bits_i32* x_cn = convert_to_cn_bits_i32(x);

cn_assert(cn_bits_i32_equality(x_cn, convert_to_cn_bits_i32(0)));

return;

}

The injected code computes the abstract value of each function argument on entry, and after that

the specifications just talk about pure values. CN specifications can also refer to any return value of

a function, and in C one can return from any point (perhaps inside blocks or loops), so the injected

code computes the abstract value for any return and then gotos to an added epilogue that checks

the postcondition.

CN predicate and function definitions, which are embedded in C source files in top-level comments

/*@ ... @*/, are translated to C function definitions at those points.

4.3 Translation of CN Types and Type Definitions
A conventional compiler would typically either be free to use its own binary representations or

conform to a standard ELF representation. Here, to make the generated code readable (for ease

of debugging dynamic CN specification failures), and to exploit the type checking of the C target

language as much as possible (limited though that is), for ease of debugging the translator, we map

CN types onto corresponding C types. CN values are uniformly mapped into pointers to in-memory

structs, e.g. the CN x above, which has CN type i32 in the specification (for the pure value of the C

function argument), is translated to x_cn, of C type struct cn_bits_i32*.

A C struct definition, e.g. struct s { signed int x;};, is translated to the corresponding in-

strumentation C struct definition struct s_cn { cn_bits_i32* x; };, together with a conversion

function from the former to the latter, and an equality function for the latter.

CN lists, sets, and maps are translated into C representations using a small Fulminate library,

with a hashtable for maps.
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CN datatype definitions are translated into C tagged unions. For example, this seq type of

mathematical lists of i32 integers:

datatype seq { Seq_Nil {}, Seq_Cons {i32 head, datatype seq tail} }

is translated into the C tagged union:

enum seq_tag { union seq_union {

SEQ_NIL, struct seq_nil* seq_nil;

SEQ_CONS }; struct seq_cons* seq_cons; };

struct seq_nil { };

struct seq_cons { struct seq {

struct seq* tail; enum seq_tag tag;

cn_bits_i32* head; }; union seq_union u; };

4.4 Translation of the CN Expression Language
The translation of CN expressions has to take into account the fact that the C target distinguishes

expressions and statements, and that they can be used in various kinds of contexts. We use a

destination-passing style, loosely analogous to that of Shaikhha et al. [48], and OCaml GADTs for

this. Our implementation handles four kinds of statement language context: AssignVar x, Return,

Assert and PassBack. These can be used flexibly to propagate expressions throughout the translation.

CN expressions include pattern matching, for which we generate C implementations following the

matrix algorithm of Maranget [30]. For the CN integer operations, we generate implementations

for each type (width and signedness) at which they are used, using macros that take the CN and C

types. The CN iterated separating conjunction each(bty 𝑥; 𝑡){p(𝑡1, . . . , 𝑡𝑛)} is translated to a loop

over its range, which for testing (though not for CN proof) must be bounded.

4.5 Ownership
The implementation of ownership checking follows the general scheme outlined in §2.3 and

formalised in §3: it maintains reified ghost state recording the stack depth at which each byte of

memory is owned, as a global variable. Currently this is a simple hashtable from virtual addresses

to that metadata, for simplicity; many optimisations are obviously possible.

4.5.1 Updating Ownership Metadata on Object Creation/Deletion. For object creation, for globals,
function parameters, and block-scoped local variables, Fulminate injects code to update this mapping

at the lifetime starts: in main, the function preamble, and at block-scoped declarations. For function

parameters and block-scoped locals, it injects code to delete the corresponding ownership, in the

(CN-introduced) function epilogue and at block-end.

C has various forms of unstructured control flow: early return, break, continue, and goto. All of

these can exit one or more block scopes, which also requires deleting any associated mappings (for

block-scoped mappings, only those that have been reached by the early block exit point). Exotically,

C goto can also be used to jump into block scopes, which requires creating mappings for all the

locals of the entered blocks. Fulminate uses an analysis of the Typed Ail to compute the ownership

that must be created and destroyed for each of these, so it can inject code to do so just before the

control-flow change – though currently only return and break are fully implemented.

For C locals whose address is not taken, there is an obvious potential optimisation to omit

ownership recording and checking, but at present we uniformly track ownership for all allocations.

4.5.2 Updating and Checking Ownership Transfer on Function Call and Return. The ownership
checks and transfer on a function call and return, for any takes in requires and ensures clauses,
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was outlined in those previous sections: in brief, the injected code executes the (translation of) the

CN predicates, as compiled to (possibly recursive) C functions. This ends up with invocations of

the primitive Owned predicate. For example, the translation of:

void f(int *p)

/*@ requires take v = Owned<int>(p);

ensures take w = Owned<int>(p); @*/

{ }

which requires and ensures ownership of the target of p, computes the CN representation of that

pointer value (basically a no-op):

cn_pointer* p_cn = convert_to_cn_pointer(p);

and then for the precondition and postcondition makes two calls to the CN implementation of

Owned for that type, parameterised on whether in GET (inc) mode:

cn_bits_i32* v_cn = owned_signed_int(p_cn, GET);

or PUT (dec) mode:

cn_bits_i32* w_cn = owned_signed_int(p_cn, PUT);

Such functions are generated for all the required types; they check and update the reified ghost-state

finite map from addresses to ownership depth, as described earlier.

4.5.3 Checking Ownership at Memory Accesses. Fulminate also (optionally) instruments all memory

accesses, to check that their footprint is in the ambient ownership. This involves instrumenting all

instances of lvalue conversions, assignments and postfix increment and decrement expressions.

We experimented using existing AddressSanitizer compiler instrumentation for accesses, instead

of injecting instrumentation into the source. At first sight this is promising: there are flags, albeit

some undocumented, which together make it instrument most memory accesses with calls to

instrumentation functions (taking the address and size of the access) which we could replace.

However, it turned out that C compound literals were not consistently instrumented, and avoiding

AddressSanitizer instrumentation of the Fulminate instrumentation was awkward. Moreover,

depending only on Cerberus rather than also on a specific compiler simplifies use. For ease of use

we also wanted to avoid Clang- or GCC-specific extensions.

4.6 Dealing with the C
The fact that CN is embedded in C, with C variables and type names usable within CN, including

the ability to talk about pure values corresponding to C struct types, is crucial for usability. The

surface language shields the user from the underlying scoping complexity, but Fulminate has to

correctly handle it in the generated code: all the CN-generated C types and C functions need to be

visible in all the translated code. At present we inject prototypes at the original definition points,

and generate definitions into a single cn.c file. Our examples have manual includes, which we

handle, but not multiple-file compilation units, which we do not at present.

4.7 Design for Usability
Generated code is notoriously often hard to work with, but the above care to make it readable

C, including the preservation of the original source-file layout and comments, and insertion of

comments identifying the different kinds of injected code, pays off: one can make sense of the

generated code, when debugging the translation and, we believe, when debugging runtime checking

failures. One can reasonably use standard debuggers such as gdb or lldb on the generated code.
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We have also devoted considerable effort to error-message reporting, both for CN base typecheck-

ing and for runtime checking failures. The latter report both the original C+CN source location

and the generated-code location.

5 Examples
5.1 Queues
We illustrate Fulminate runtime testing first on a relatively simple integer queue example. Though

informally simple to describe as a first-in-first-out data structure, giving a formal specification that

correctly handles ownership is nontrivial. We first briefly explain the key aspects of a correct CN

specification, and then move on to how realistic mistakes (ones actually made during development)

can be diagnosed from runtime assertion failures in the instrumented execution.

A struct int_queue is a pair of two pointers, front and back, pointing respectively to the head

and to the last element of a linked list. The nodes of the linked list are struct int_queueCells which

contain the integer payload first and a pointer to the subsequent node next.

struct int_queue {

struct int_queueCell* front;

struct int_queueCell* back; };

struct int_queueCell {

int first;

struct int_queueCell* next; };

Predicate IntQueuePtr takes a pointer to a struct int_queue. It requires ownership of this, with

take Q = Owned<..>(..), so that it may be dereferenced and its members accessed. The asserted

invariant (assert (both || neither)) describes the two valid possibilities: either the queue is

empty when both its pointers are NULL (let both = ..), or it is non-empty when neither are

NULL (let neither = ..). It then defers to take L = IntQueueFB(..) to traverse/claim ownership

over any linked queue cells, and produce a ghost value representing the queue as a linked list.

/*@ predicate (datatype seq)

IntQueuePtr (pointer q) {

take Q = Owned<struct int_queue>(q);

let both = is_null(Q.front)

&& is_null(Q.back);

let neither = !is_null(Q.front)

&& !is_null(Q.back);

assert (both || neither);

take L = IntQueueFB(Q.front, Q.back);

return L;

} @*/

/*@ predicate (datatype seq)

IntQueueFB (pointer front, pointer back) {

if (is_null(front)) {

return Seq_Nil{};

} else {

take B = Owned<struct int_queueCell>(back);

assert (is_null(B.next));

take L = IntQueueAux (front, back);

return snoc(L, B.first);

}

} @*/

Predicate IntQueueFB takes as its arguments two potentially null pointers. Since it is used only

by IntQueuePtr, it tests only front to check if it is null before returning the empty list. Otherwise,

it takes ownership of the back of the queue (take B = Owned<..>(..)), and asserts it has no next

node. Taking ownership directly from the top here is critical for pushing on to the end of the

queue in constant time. The predicate then recursively claims ownership of the rest of the queue

(take L = IntQueueAux(..)), using the auxiliary predicate to represents a segment of a linked list

from front to back.

Using these, and standard mathematical list functions, we can define the interface and specifica-

tions for the queue’s three operations: IntQueue_empty creates an empty queue (with the invariant

in place); IntQueue_pop removes an integer from the front of a non-empty queue; IntQueue_push
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adds an element to the back of a queue. As we will see later, the last one has the most complex

ownership reasoning.

struct int_queue* IntQueue_empty()

/*@ ensures take ret = IntQueuePtr(return); ret == Seq_Nil{}; @*/

int IntQueue_pop (struct int_queue *q)

/*@ requires take before = IntQueuePtr(q); before != Seq_Nil{};

ensures take after = IntQueuePtr(q); after == tl(before); return == hd(before); @*/

void IntQueue_push(int x, struct int_queue *q)

/*@ requires take before = IntQueuePtr(q);

ensures take after = IntQueuePtr(q); after == snoc (before, x); @*/

We omit the definition of some functions which are no-ops in C, but whose pre-conditions assert

the value of the queue as lists. When translated from CN+C into C by Fulminate, the code tests

that any sequence of operations executes and gives observably correct values, and also that the

assertions and ownership are correct at every step. We also omit a main function that exercises the

queue with a sequence of creates, pushes and pops.

If the specification and implementation are consistent, then the instrumented code will run to

completion. Otherwise (so long as the test case exercises the code sufficiently), there will be a

dynamic error. For example, a copy-paste mistake resulted in snoc always returning the empty list.

This gives a CN assertion failed error, pointing to the before != Seq_Nil {} in the pre-condition

of IntQueue_pop. Since we know we pushed to the stack before calling pop, we can use a debugger to

see that *(queue->back) is definitely not empty, and so the specification must be wrong to conclude

before == Seq_Nil{}. Memory management issues such as leaked resources also trigger dynamic

errors.

Errors frommistaken predicate definitions give users the ability to incrementally discover general

predicate definitions from concrete feedback, in manual counter-example guided refinement. For

example, for these queues, it is easy to try claim ownership for the pointer to the last node twice,

because it is aliased both from queue->back, and from traversing from the queue->front. Logs of the

instrumented execution show such duplicated ownership, pointing to the place where a specification

change is needed.

5.2 CN, VeriFast and Verifiable C tutorial examples
The CN Tutorial is a series of 75 examples designed to teach people how to use CN for verifying C

programs, by Pulte, Pierce, and Austell [41]. It consists of annotated C files, covering the major

features of CN proof mode such as signed and unsigned integer arithmetic, pointers, arrays,

datatypes, and dynamic allocation; it culminates with a few more involved examples such as linked

lists, stacks with sizes, and the above queues.

For this paper, we have combined some of these (where multiple related functions were split

into separate files for verification exercises) into 54 whole programs, and extended those with main

functions to exercise the code. These are intended to pass testing, occasionally with different ways

to prompt failure mentioned in comments. More involved tests have been added for the list, stack

and queue data structures.

We also similarly ported a subset of the VeriFast C tutorial, excluding examples for which CN

does not support the required features (such as function pointers, polymorphism, concurrency),

and a simple hashtable from Verifiable C.

All examples run successfully in Fulminate; additionally, the CN and VeriFast tutorial examples

were verified using CN’s proof mode.
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5.3 pKVM Buddy Allocator
For a more substantial example we apply Fulminate to an allocator implementation from the

production pKVM hypervisor [12] for Android. The allocator, an earlier version of which was used

as a case study for CN proof [40], lets us demonstrate Fulminate on production systems software

that requires subtle ownership invariants for reasoning about computed memory accesses; it has

320 lines of C code and 702 lines of CN specification.

The allocator follows a buddy scheme: it subdivides its available memory into units of 2
𝑛
pages

for a range of values of 𝑛, called orders. It maintains a free list of groups of pages for each such size.

A client can request a contiguous aligned block of pages at such an order, for which the allocator

will look in the corresponding free list. If that is empty, it will look in successively larger free lists,

splitting a larger block as needed. Conversely, when a client releases a block (actually, when it

decrements a reference count to zero), the allocator will maximally coalesce that block with its

sibling, if that is also free, and iterate this upwards.

Allocator memory is divided into contiguous memory regions, called pools, each tracked in a

struct hyp_pool that has the free lists (the actual bodies of the free lists are nodes in free pages).

1 struct hyp_pool {

2 struct list_head free_area[MAX_ORDER];

3 phys_addr_t range_start;

4 phys_addr_t range_end;

5 u8 max_order;

6 };

Following initialisation using hyp_pool_init the allocator owns a large contiguous region of memory

available for allocations.

1 int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages, unsigned int reserved_pages);

Fig. 2 shows the main allocator invariant, the CN Hyp_pool predicate. We will not explain this in

detail, but note that it involves several iterated separating conjunctions and auxiliary CN predicates,

along with intricate numerical detail.

To exercise Fulminatewe experimentedwith injecting errors into the buddy allocator specification

or implementation.

For example, we break the Hyp_pool predicate with an incorrect page-ownership invariant,

omitting one of the conditions in the guard, which requires page ownership only when the vmemmap

metadata indicates the page is not subsumed by a larger surrounding page group:

1 take APs = each(u64 i; (start_i <= i) && (i < end_i)

2 && ((V[i]).refcount == 0u16)

3 // && ((V[i]).order != (hyp_no_order ()))

4 && ((not (excluded (ex, i)))))

5 {AllocatorPage(array_shift<PAGE_SIZE_t>(ptr_phys_0, i), true, (V[i]).order)};

Commenting out the corresponding line, as above, leads Fulminate to detecting a runtime ownership

assertion failure. We run the allocator initialised for a pool of 8 order-0 pages (of 2
12
-bytes each),

under a client that first allocates 2 0-order pages, then hands both back to the allocator (henceforth

“2+2 test”); this produces, in 0.37s runtime after 29s generation time, the Fulminate error shown in

Fig. 3. In detail, when function __hyp_attach_page (output line 2) calls page_add_to_list_pool (l4),

the ZeroPage precondition (l6) fails; ZeroPage (l9) requires ownership of a page of zero’ed Bytes (l11),

in the form of an iterated separating conjunction of ByteV resources; however, ownership of these

(l14) has already been used up – moved to a higher function call stack depth (l19,20) – presumably

due the incorrectly strengthened Hyp_pool invariant.
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1 predicate {

2 struct hyp_pool pool

3 , map <u64, struct hyp_page> vmemmap

4 , map <u64, struct list_head> APs

5 }

6 Hyp_pool (pointer pool_l, pointer vmemmap_l, pointer virt_ptr, i64 physvirt_offset)

7 {

8 let ex = exclude_none ();

9 take P = Owned<struct hyp_pool>(pool_l);

10 let start_i = P.range_start / page_size();

11 let end_i = P.range_end / page_size();

12 take V = each(u64 i; (start_i <= i) && (i < end_i))

13 {Owned(array_shift<struct hyp_page>(vmemmap_l, i))};

14 assert (hyp_pool_wf (pool_l, P, vmemmap_l, physvirt_offset));

15 let ptr_phys_0 = cn__hyp_va(virt_ptr, physvirt_offset, 0u64);

16 take APs = each(u64 i; (start_i <= i) && (i < end_i)

17 && ((V[i]).refcount == 0u16)

18 && ((V[i]).order != (hyp_no_order ()))

19 && ((not (excluded (ex, i)))))

20 {AllocatorPage(array_shift<PAGE_SIZE_t>(ptr_phys_0, i), true, (V[i]).order)};

21 assert (each (u64 i; (start_i <= i) && (i < end_i))

22 {vmemmap_wf (i, V, pool_l, P)});

23 assert (each (u64 i; (start_i <= i) && (i < end_i)

24 && ((V[i]).refcount == 0u16)

25 && ((V[i]).order != (hyp_no_order ()))

26 && ((not (excluded (ex, i)))))

27 {vmemmap_l_wf (i, physvirt_offset, virt_ptr, V, APs, pool_l, P, ex)});

28 assert (each(u8 i; 0u8 <= i && i < P.max_order)

29 {freeArea_cell_wf (i, physvirt_offset, virt_ptr, V, APs, pool_l, P, ex)});

30 return {pool: P, vmemmap: V, APs: APs};

31 }

Fig. 2. Main buddy allocator invariant

We injected another subtle specification bug, into the postcondition of __hyp_extract_page, a

function involved in handing out pages. When a page at order 𝑛 is requested, the allocator finds the

minimal order𝑚 ≥ 𝑛 for which a free page 𝑝 is available (if any). It calls __hyp_extract_page to extract

𝑝 , breaking apart larger pages that may subsume 𝑝 and removing any free-list entries, and calls

hyp_set_page_refcounted(p). Among various wellformedness conditions, the Hyp_pool invariant

requires that pages not subsumed by larger pages, and with 0 refcount, must be part of a free list.

Following __hyp_extract_page and before hyp_set_page_refcounted(p), 𝑝 is not, and so a correct

postcondition of __hyp_extract_page has to carefully “carve out” 𝑝 as an exception to the Hyp_pool

invariant at that point. The same 2+2 test from above catches an incorrect __hyp_extract_page

postcondition lacking this exception, in 1.40s (28s with generation and compilation).

We also experimented with breaking the allocator code. We modified __hyp_attach_page, a central

function responsible for re-attaching pages returned to the allocator, to incorrectly coalesce pages

(omitting a p = min(p, buddy)); using the 2+2 test from above, in 0.37s runtime (and 31s generation

time) Fulminate flags an error, indicating that a function call by __hyp_attach_page violates an

alignment precondition of __find_buddy_avail.
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1 . . .

2 function __hyp_attach_page, file driver-exec.c, line 3350

3 ************************************************************
4 function page_add_to_list_pool, file driver-exec.c, line 2740

5 original source location:

6 /*@ requires take ZP = ZeroPage(virt, true, order); @*/

7 ^cn-pKVM-buddy-allocator-case-study//driver.pp.c:1297:19:

8 ************************************************************
9 function ZeroPage, file cn.c, line 658

10 original source location:

11 take Bytes = each (u64 i; (vbaseI <= i) && (i < (vbaseI + length)))

12 ^cn-pKVM-buddy-allocator-case-study//driver.pp.c:715:10:

13 ************************************************************
14 function ByteV, file cn.c, line 607

15 original source location:

16 take B = Owned<char>(virt);

17 ^cn-pKVM-buddy-allocator-case-study//driver.pp.c:688:8:

18 Precondition ownership check failed.

19 ==> 0x7fc24f801000[0] (0x7fc24f801000) not owned at expected function call stack depth 4

20 ==> (owned at stack depth: 5)

Fig. 3. Fulminate output for a bug injected into the buddy allocator specification.

Set of examples Gen. time Runtime (U) Space (U) Runtime Δ Space Δ
mean SD mean SD mean SD mean SD mean SD

CN tutorial 0.18 0.11 0.22 0.03 520.43 3.94 0.10 0.54 25.70 55.32

Verifast examples 0.29 0.24 0.21 0.02 520.00 0.00 0.02 0.05 31.20 17.30

Buddy (single run) 28.64 – 0.20 – 536.00 – 0.10 – 24064.00 –

Fig. 4. Performance metrics for various benchmark examples. This shows the mean and standard deviation
(SD) of the time taken to generate executable CN specifications for an example; the runtime (s) and space
usage (KB) of running the uninstrumented code, denoted by (U); the difference in time (s) between running
the executable for instrumented code versus uninstrumented code; and the difference in space (KB) between
running the executable for these.

5.4 Performance
In §2.2 we hypothesised that for the small critical-code examples that are our main current target,

even a relatively naive implementation of Fulminate is fast enough to be useful. We confirm this

by measuring its time and space costs for the above examples, looking at the runtime cost of

generating the instrumented code, the compilation and linking time of that, and the runtime cost

of executing the instrumented code (and the latter compared to the runtime cost of executing the

uninstrumented code). For all of these the total time is small, as shown in Fig. 4, so eminently

usable. The differences between the examples are in the noise except that for three of the larger

examples generation takes an extra 0.2s – this, and the usable but long generation times for buddy,

suggest there is some unfortunate scaling in the generator, which we have not yet investigated;

it may just be CN well-formedness checking. For the real-world hypervisor code of the buddy

allocator, finding the synthetic bugs of §5.3 are likewise quick, as noted above: 0.4s to 1.4s runtime,

after around 30s generation time.

Our focus on small critical examples that one aims to verify makes this an interestingly different

regime to those of some previous work on dynamic assertion checking, where performance on

larger examples has been one of the main goals, as we return to in §6. We hypothesise that the fact

that CN assertions can be highly discriminating means that bugs (in code or in specs) can often
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# elements # dynamic Owned calls Runtime (U) Space (U) Runtime Δ Space Δ
2 38 0.22 520 -0.01 64

4 94 0.24 520 -0.02 84

8 278 0.21 520 0.04 144

16 934 0.21 520 0.00 360

32 3398 0.20 520 0.01 1100

64 12934 0.20 520 0.04 3848

128 50438 0.22 520 0.02 14284

256 199174 0.21 520 0.17 55184

512 791558 0.20 520 0.65 216828

1024 3155974 0.20 524 2.70 859596

Fig. 5. Performance metrics for a stack example taken from Software Foundations, Vol. 6 [10], exercised using
different numbers of stack elements (from 2

1 to 210).

# pages # dynamic Owned calls Runtime (U) Space (U) Runtime Δ Space Δ
2 335613 0.20 536 0.10 24060

4 1096694 0.20 544 0.32 76648

8 4849348 0.22 572 1.35 331252

Fig. 6. Performance metrics for the buddy allocator, exercised using different numbers of pages (2, 4 and 8).

be found with rather small test cases. That is true for the buddy allocator example above, where

the test case comprises only four simple function calls into the allocator, though this does involve

a nontrivial amount of memory (2
12

bytes per page + hypervisor metadata) whose ownership

Fulminate tracks byte-wise.

Nonetheless, performance on larger examples and test cases will certainly be a concern in

future, and there are many obvious optimisations one could do. Here we establish a baseline by

measuring the current cost of scalable versions of two of the above: a stack example taken from

Software Foundations, Vol. 6 [10], with stacks of increasing size (Fig. 5), and the buddy allocator,

with an increasing number of pages to be allocated (Fig. 6). One would expect Fulminate costs

to scale polynomially beyond that of the uninstrumented code, as the code is doing traversals

of datastructures of increasing size, and in each of those, the CN instrumentation is also doing

traversals to mark or check ownership and compute the CN predicates that abstract from the

concrete heap state. The space usage here essentially measures the total instrumentation allocation,

as we have deferred implementing memory management – because even the very naive approach

we currently take, of simply never de-allocating instrumentation allocations, still works for our

primary examples. We envisage more sophisticated schemes in due course, partly region-based;

they should support concurrency and run bare-metal as hypervisor code. A more informative

measure of the Fulminate cost is perhaps the overhead per dynamic occurrence of Owned, which in

the largest examples above is 0.3𝜇s or 0.9𝜇s.

5.5 Dynamic and Static Checking
With Fulminate, CN specifications serve a dual role, both as assertions for dynamic checking, and

as specifications for static program proof. We envisage differing interplay between the two in

different scenarios.

In some cases, CN assertions may be used solely as generalised assertions, in a rich specification

language that can express ownership properties, without any intention to use them as proof. In

those cases, the Fulminate ability to dynamically check them will be the only way to check whether

the programmers’ code and intent (as expressed in such assertions) are consistent or not.

In other cases, where one does aim ultimately as proof, dynamic checking will be useful along

the way. Classically, most verified code is developed in concert with its correctness proof, and such
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programs are carefully structured to maintain program invariants and ease the proof. However,

most code “in the wild” is not developed with proof in mind, and programmers often write code

which tangles together multiple invariants, re-establishes invariants just as they are needed, and

use many idioms (such as implementing ad hoc objects with a record of function pointers) which

can require very sophisticated program reasoning techniques to verify. So to verify pre-existing

code, one has to do a lot of work to figure out what the invariants actually are – and being able

to quickly and easily dynamically check candidate invariants should be a powerful technique for

discovering the invariants needed to do verification.

Although anecdotal, our experience in using Fulminate supports this intuition. Two users of

CN had attempted to verify a VST example (a string-to-integer hashtable) in CN, but abandoned

the effort because of abstract error messages. Using Fulminate, it became possible to find and

fix high-level defintions early and often: a few minutes to correct a misspecified hash function;

around ninety minutes to correct a double owned in the central hashtable predicate, mostly spent

in locating where the ownership was first claimed. This demonstrates an alternative, and arguably

more natural way of refining simple definitions and specifications across a wide range of functions,

rather than guessing all the information needed to verify one function at a time.

6 Related Work
As mentioned in the introduction, there is relatively little work on dynamic testing of separation-

logic specifications. Agten et al. [2] do runtime checking of separation-logic contracts for module

boundaries. Similar to Fulminate, this is by translating them into C, though relying on a mode

distinction rather than the syntactic restriction of CN specifications used here. An integrity check

ensures that the untrusted context has not mutated the module state, on entry. Focussing on

those module boundaries, this is not (unlike Fulminate) doing fine-grain checks of all separation-

logic assertions and of all accesses. Nguyen et al. [36] do runtime checking of separation-logic

properties for Java, recording ownership in marks associated with each object and checking and

adjusting it in pre- and post-conditions. The presence of disjunction in their specification language

requires undoing this colouring when disjuncts fail. It too relies on a mode analysis. Perry et al.

[37] and Jia [19] do runtime checking of contracts in a linear logic, adjoining the LolliMon linear

logic-programming runtime [26] to an OCaml interpreter for a small C-like language. Calcagno

et al. [8] and Brotherston et al. [6] give complexity results and, in the latter, a model-checking

algorithm for separation logic. They note that while this is EXPTIME-complete in general, imposing

natural syntactic restrictions makes it NP-complete or polynomial. These restrictions essentially

rule out various forms of nondeterminism in the model-checking problem, and partly inspired the

restrictions that CN assertions impose.

The Dryad logic of Madhusudan et al. [28] introduced a variant of separation logic for heap

verification, and like CN (andmany other tools), made the observation that workingwith determined

predicates (where the heap splits are determined by the structure of the assertions) simplifies

automated verification. This restriction is similar to CN’s restriction to precise predicates, though

our observation that this makes runtime checking of separation logic predicates feasible appears to

be novel.

At present every time CN checks an assertion it traces the heap anew, but the Ditto work of

Shankar and Bodík [49] exploits the observation that heap assignments happen one-by-one to

give an incremental algorithm for checking that data structure invariants are maintained. Gyori

et al. [15] build on this work to give specialized (and optimized) algorithms for the case of list-

manipulating programs. These papers suggest that it is potentially possible to incrementalise CN

heap-shape checking, which could significantly decrease the cost of runtime checking.
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The Stacked Borrows operational semantics for Rust [20] dynamically checks a borrowing

discipline on pointers. It tracks the flow of ownership between pointer aliases by recording, per

memory location, a stack of borrowing pointers and their permission types (rather than the function

call stack depth at which the location is owned, as in Fulminate), and checks pointer accesses and

creation. Its main purpose is for analysing compiler optimisations, but it has also been implemented

as an executable checker to test aliasing disciplines in unsafe Rust code. While Fulminate’s C

translation allows ownership testing within the existing language and using standard debugging

tools, Stacked Borrows relies on the Miri Rust interpreter.

Implicit Dynamic Frames [53] is a variant of separation logic that supports executable heap-

dependent expressions in assertions. Smans et al. discuss the possibility of runtime checking of

specifications as one advantage, and draw parallels between Nguyen et al. [36]’s implementation

of separation logic runtime checking and the access sets used by Implicit Dynamic Frames. The

paper, however, focuses on proof, not testing.

There is a large literature on non-separation-logic runtime testing and its interactions with

verification, dating back to Euclid [23] and Anna [27] in the 1970s, with Eiffel’s design by contract

being particularly influential. Hatcliff et al. [16] give a useful survey of behavioural interface

specification languages. Leavens et al. [25] describe the JML integration of runtime checking and

verification. Frama-C’s E-ACSL [5, 14, 38, 50–52] is an important example of these. Developed over

the last decade, it translates the first-order logic specifications of ACSL into executable C code, and

it also supports some custom memory footprint predicates, with optimised runtime ghost state to

support that. It is substantially more engineered than Fulminate, but (inheriting from ACSL) is not

designed for a separation-logic view of ownership. For embedded software, ownership may not be

a primary concern, but for the critical systems software we target, it certainly is.

Several papers discuss explaining proof failures with some form of runtime tests: Müller and

Ruskiewicz [34], Petiot et al. [39], and Kosmatov et al. [22]. Christakis et al. [11] describe Delfy, a

system for exploring Dafny verification failures with testing.

AddressSanitizer and MemorySanitizer [46, 54] are now widely used and highly optimised, but

check only the implicit specifications of the absence of certain C undefined behaviours.

Further from testing, separation-logic static analysis has been very successful in Infer [1, 7], and

more recently incorrectness separation logic is also a promising bug-finding technique [24]; both

are much more elaborate than concrete testing, and aimed at implicit specifications and large code

bases rather than the explicit specifications for small critical code that we target here.

7 Conclusion: Limitations and Future Work
Fulminate covers most of the CN specification language and much of C. As we have seen, this

is enough to handle substantial small examples, and for the small critical code that it targets (in

domains where users aim to write specifications), that is already interesting. However, there remain

several features of CN and C to be supported, that will be required for a production-quality tool.

Many of these are straightforward engineering, with a few more substantial.

On the CN side, Fulminate currently assumes that CN maps are indexed by bitvectors or integers

rather than the arbitrary CN base types supported by the proof tool. This will require generating

comparison functions for CN types used as map indices, much like we currently generate equality

functions for all used CN types. CN distinguishes uninitialised Block and initialised Owned resources,

but Fulminate does not. This will need an additional bit in the ghost state for each allocated memory

byte.

On the C side, Fulminate currently does not support goto into or out of blocks. The infrastructure

to compute the corresponding ownership ghost-state updates is in place; it just needs to be plumbed

in. Like CN, it currently does not support multi-compilation-unit programs (though it does support
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simple #includes), or C unions. Like Cerberus and CN, it operates on C source after preprocessor

macro expansion, which is semantically correct but can be annoying when writing specifications

or reporting errors.

Our focus to date has been on writing a correct checker, not a fast checker (beyond the basic

architectural choice to do on-line checking in readable generated C). CN and Fulminate target small

critical code, for which checker performance is less of a concern than in some other domains, and it

is more than fast enough for the examples we described, but there are nonetheless many potential

optimisations worth doing. Most acutely, it will need a bare-metal concurrent garbage collector

that can run at EL2.

Fulminate checks user-written specifications. The Cerberus elaboration from Typed Ail to Core

identifies the implicit specification of all the C sequential undefined behaviours, but because

Fulminate operates as a source-to-source translation from the Typed Ail, that information is not

readily available. It is unclear whether the industry sanitisers already practically identify all those

cases, or whether tooling based on the Cerberus Core execution, or an extension of Fulminate that

adds explicit such checks (as Frama-C can), would be worthwhile.

Fulminate is structured as an annotated-C source to C source translation, so that the result can

be built and executed conventionally. A quite different design would be to directly execute concrete

operational semantics for the programming and specification languages, but with the same runtime

tracking of ownership. That would have substantial pros and cons that would be interesting to

explore, both for CN and for other verification tools.

CN, and thus Fulminate, do not yet support concurrency, though their separation-logic foundation

should make sequentially consistent and release-acquire concurrency relatively straightforward to

add. In the instrumentation, this could just record the owning hardware thread ID, and separation-

logic permissions, along with the existing stack depth. The ownership of lock invariants could be

done simply with “fake” stack depths.

Beyond executable checking it would be very interesting to see if there are other ways of

exploiting Fulminate’s code generation: since Fulminate outputs regular C code it may be possible

to use it in conjunction with property-based testing, or to guide fuzzing, or with existing C analysis

tools, such as using CBMC for model checking against separation logic specifications.

Finally, we look forward to evaluating how Fulminate is received by non-academic users, in

planned HCI studies. Assessing and tuning the user experience will be a very interesting direction

following the current work.
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