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ABSTRACT

It is argued that the technique of stepwise re-
finement applies just as well to semantics as to
programming. Accordingly we develop concise and
exact characterisations of the semantics of logic
programs (with the usual depth first search strat-
egy) starting from resclution as a base. The re-
sulting operational semantics closely resembles
traditional implementations, and the denotational
version provides the first denotational semantics
og PROLOG as used in practice. Confidence in the
correctness of the semantics comes from their sys-
tematic development from PROLOG's mathematical
foundations.

1 INTRODUCTION

The PROLOG language [8] has never benefited
from having a proper semantics, but has been used
on the assumption that its procedural semantics (i.
e. the rules by which answers to a computation are
derived) agrees with the interpretation of PROLOG
programs as Horn clauses in first-order logic. One
can see the incorrectness of this assumption by ob-
serving that the standard depth-first procedural
interpretation may take more than & steps to dis-
cover that a goal is satisfiable as specified by
the logic interpretation, whereas computationally
this must be regarded as 1 or the empty set of re-
sults.

Apt and van Emden have provided [1] several pre-
cise characterisations of the semantics of Horn
clauses (the formal equivalent in logic of PROLOG
programs) , including the SLD-trees used in this pa-

per. They stop short, however of presenting a seman-

tics of PROLOG as it is actually used, as a deter-
ministic programming language.
In this paper we specify the semantics of PROLOG

in two ways: a (direct) Scott-Strachey style denota-

tional semantics and an operational semantics ex-—
pressed as an SECD-style interpreter which is suit-
able for computer implementation. The two semantics
are developed from Kowalski's SLD-refutation proce-
dure [8,9] by sequences of semantics-preserving
transformations. The results represent, to our know-
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ledge, the first computational semantics of PROLOG
which are well-founded in the underlying theory.
Moreover, both our operational and denotational se-
mantics are extremely concise, and we believe that
the derivation from a mathematical rule has con-
tributed to this.

We provide in addition the first formalisation
of the cut operator (which finds its way into most
practical PROLOG implementations for reasons of ef-
ficiency and its ability to exert some control on
the pure backtracking implementation as given by
Kowalski). We propose the denotational version of
the semantics as a definition of (depth-first) PRO-
1L0G with cut, observing that the cut operation rits
naturally into this form and produces little in-
crease in complexity.

We also use the derivation of the denotational
form of PROLOG semantics to discuss what comprises
a correct denotational definition and the nature of
the difference between direct- and continuation--—
style semantics.

Related work includes an operational semantics
due to Komorowski [7] (expressed in the META-IV me-
talanguage from the Vienna development method [2h
and the informal development of a PROLOG interpret-
er by van Emden [6]. Nilsson's META IV semantics
[13] for PROLOG uses substitution sequences similax
to those of Section 7.

2 OVERVIEW

The traditional use of resolution is to show
that a formula is a theorem by asserting axioms and
the negation of the formula, and deriving a contra-
diction. Our goal formula will be written as a con-
junction A1,...,Ap and the axioms as clauses of the
form Ci,...,Ch¥B1,... /By where Aj, Bj and C, are
atomic formulas (which we call "atoms" as in fl]).
Such a clause is interpretedasCiV.. .VCP CBiA...ABy,
with an implicit universal quantification over the
variables of the C;'s and Bs's.

The axioms are then extended with the negative
(p=0) clause <RA1,..., which denies AiA...AAp and
resolution is applied with the hope of exhibiting
a contradiction in the augmented axiom set. A PRO-
LOG program has the form P;N where P is a finite
sequence of definite (p=1) or Horn clauses and N is
a negative clause (the goal) . A nondeterministic
interpreter is easily defined; its state is the
current goal formula and its computation steps con-
sist of replacing the current goal by one of its re-
solvents repeatedly until < is obtained.




l

\

Any real implementation of semantics must in-
corporate some form of search process to express
this mechanism. To this end Apt and van Emden [1]
have defined an SLD-tree which organises many reso-
lution sequences into a single data structure, and
have shown any SLD-tree to be a complete search
space: goal < Al,...,An is refutable if and only
if some SLD-tree with the goal as root contains a
contradictory clause. Moreover, if one SLD-tree for
a given goal contains such a contradictory clause
then all SLD-trees for that goal do. Both our oper-
ational and denotational semantics will be based on
this notion of SLD-tree traversal.

A major desire is to give some form of formal
specification of the cut operator in PROLOG. This,
unfortunately, is only well-defined with respect to
some particular search strategy (=evaluation order).
In this paper we define it with respect to the usual
depth-first left-right traversal, although others
are certainly possible (see [9, 17]). We have no
great philosophical bias in choosing a definition
of depth-first PROLOG, but observe that it is the
current implementation choice and that cut appears
not to be well-defined for any other evaluation or-
der.

One further difference between PROLOG and reso-
lution theorem proving, is that we are not merely
interested in the refutation of a theorem, but also
in the particular values of the free variables of
the theorem that cause this refutation. Such answer
values are naturally expressed as the composition
of the substitutions (unifiers) obtained from the
resolution steps in the computation. There may be
more than one distinct such substitutions which re—
fute the augmented axiom set (or none) and most
PROLOG interpreters will provide them as a sequence
as they are encountered during the backtracking
process. We will actually define the output of a
PROLCG program to be this (possibly infinite) se-~
quence of substitutions.

The paper is structured according to the fol-
lowing scheme: Section 3 contains the syntax of our
version of PROLOG and various notations and minor
definitions, and Section 4 provides an introduction
to SLD-resolution and its treatment as a computa-
tion step. Section 5 and 7 both develop successive
semantics for PROLOG, respectively in operational
(SECD-style as in [10]) and denotational Fformula-
tion. The semantics are developed from a simple
specification of SLD-tree traversal into respec-
tively a sophisticated interpreter and a denota-
tional semantics. We take great care in both the
operational and denotational cases to make our ini-
tial semantics as close as possible to SLD-resolu-
tion, and then to derive successive semantics by
(we hope) obviously correct transformations. We be—
lieve that this stepwise development of closely re-
lated semantics obviates the need for complicated
(and unreadable) proofs of equivalence of different
semantic formulations of the same language. This is
an analogous idea to Burstall and Darlington's [4]
successive program transformations in which simple
transformation steps are proved correct and then
composed, safe in the knowledge that correctness of
such a composition is inherent.

In a succeeding paper we will show how an ef-
ficient compiler can be derived from the opera-
tional semantics by use of the compiler generator
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system described in [5].

3 NOTATION AND AUXILIARY DEFINITIONS

3.1 Mathematical Preliminaries

For any set, a say, we will use the notation a*
to stand for the set of finite sequences of elements
of a. It can be defined by

a* = {nil} + a x a* .

where + is the disjoint union operator. Objects in
the right summand will be constructed by means of a
function which will be written as an infix operator
:: (to be considered right-associative). We will
follow the popular style and write [] for nil and
[a,b,...,2] for a::[b,...,z] where this aids reada-
bility.

Another useful function associated with :: is
the append function, written as infix 9, and defined
by

@: a* X g* - g*
[l ea=a
(a::b) @ ¢ = a (b@c)

3.2 Syntax of PROLOG

In the following we assume the existence of
disjoint sets of symbols revresenting names of pre-
dicates (Pred), functors (Functor) and variables
(Var) .

In the following the notation for example)
t:Term will indicate that meta-variables with name
t (possibly subscripted) will be used to range over
Term. The abstract syntax of PROLOG that we con-—
sider is constructed from the following rules:

£: Term ::= Var + Functor(Term¥)
a: Atom ::= Pred(Term*)
b: Body ::= (Atom + {"t"})*
c: Clause ::= Atom < Body.
P: Sentence ::= Clause*
Program ::= Sentence; < Body

The letter q will be used to range over the guery
in the program P;+q. We follow Apt and wvan Emden
and use the name Atom to refer to atomic formulae
which are compound structures, which conflicts with
the other use of "atom" denoting an indivisible ob-
ject. "t" will be referred to as the cut symbol.

For clarity and to indicate the logical context,
A and true will be used (consistently) as replace-
ments for :: and [] when constructing the sequence
of Atoms which constitute a Body, so [aj,as] will
be written ajAasAtrue.

3.3 Substitutions, Renamings and Unifiers

The set Subst of substitutions (ranged over by
% and 8) is defined to be the function space

Subst = Var - Term.

The set Rename of renamings is that subset of
Subst given by the injective maps in the function
space

Rename = Var - var

and ranged over by Y. We will permit substitutions
and renamings to act on Term, Atom, lists of Atom
and the like by the standard free extension. We




differ from Apt and van Emden's notation in our use
of prefix application for substitutions instead of |
their postfix application. This enables us to use
the standard notation for function composition to
compose substitutions, so (80¢)t = 68(¢(t)) for any
term t. The identity substitution will be written
Id. As we noted above, sequences of substitutions
are the natural form for the result of a PROLOG pro-
gram. :

In order to guarantee that an atom and a clause
selected for resolution against that atom have no
variables in common, we wish to rename the clause
so that this is indeed the case. Our method for per-
forming this is to partition Var into a countable
number of disjoint sets {Varg,vVar:i,...} which are
all isomorphic, with Varg containing all the vari-
ables which may validly occur in the program source,
We then isolate a sequence of bijective renamings
Yh: Varg = Var, (n>0) which will be used to rename
the clauses selected for resolution. Yq is the iden-
tity function.

We assume the existence of a unification func-
tion as first exhibited by Robinson [15]}. Manna and
Waldinger give much insight in their recent work
(11] which examines unification very carefully. The
unification algorithm gives a function

MGU: Atom x Atom = Subst + {fail}

such that MGU(aj,az) is the most general unifier of
ay; and az if it exists and giveé fail otherwise. By
abuse of notation we will say that MGU(ai,a,) does
not exist if it gives value fail. We assume that
when MGU(aji,az) exists it is equal to the identity
function on all variables not occurring in a; or

az .

For the purposes of computation another formu-
lation of this function has been used to great ef-
fect in real PROLOG implementations. This is the
so~called "structure-sharing" idea [3, 16]. This
will be used in the later semantics and gives a sim-
ilar function defined by

MGU,.: Subst x Atom X Num x Atom - Subst + {fail}

MGUSS(¢,a1,n,az) = MGU(@(al),?n(az))
with n acting as renaming index. Moreover, it a-
chieves this effect without performing the substi-

tutions implied by the above definition.

4 SLD-TREES AND THEIR PROPERTIES

4.1 SLD-resolution

We use the terminology of Apt and van Emden [1]
and define an SLD-derivation to be a sequence
Ng,N1,... of negative clauses such that for each i,
if N; has the form

€ ain...hay
then N;., has the form
+e(a1A...Aak_lAW(a'lA...Aa'm)Aak+1A...Aan)
satisfying
1. 1<k<n (ak is the selected atom)

2. a'*—a‘lA...Aa'm is a clause in P (the
selected clause)

3. ¥ is a renaming such that Y(a'+a'ia...hatpy)
has no variables in common with al,...,an
4. Sak = 8(Ya')

An SLD-refutation of Ny is an SLD-derivation
ending in <true, the contradictory goal. If No,ov.,
Np—q N =+true is an SLD-refutation which uses sub-
stitutions 91,62,...,8m, the composition 8p0...001
is called the answer substitution.

4,2 SLD-trees

Given a PROLOG program P;+q an SLD-tree (as de-
fined in [1]) consists of nodes labelled with nega-
tive or empty clauses. If node N has label
*aiA...Aap then a selected atom a, is designated
(1<k=<n}). Further N has exactly one son for each
clause a'<b’' such that ay and a' can be unified (af-
ter renaming), the son being labelled with the re-—
solvent. The sons are ordered according to the order
that clauses appear in P. The root is labelled “q.

An SLD-tree represents a collection of SID-de-
rivations all starting with <g. A complete search
strategy is to traverse an SLD-tree (its branching
factor is bounded by the number of clauses) search-
ing for refutations. A parallel search strategy
would thus be complete. However, for efficiency rea-
sons, most PROLOG interpreters defined so far have
used a depth-first search strategy which is neces-
sarily only weakly complete (i.e. if it terminates
then it is complete, but non-termination may oCccur
even when a refutation exists, See [12]). An excep-
tion is the Loglisp system of Robinson [17] which
uses breadth-first search.

The main impetus of this work has been to de~
scribe the standard form of PROLOG interpreter sum-
marily described as leftmost search of the leftmost
SLD-tree rather than the full generality of choice
of SLD-resolution rules. By the leftmost SLD-tree
we mean the one in which the leftmost atom is al-
ways selected for resolution. Its leftmost search
is that implied by the depth-first search of sons
of a given node ordered by the textual ordering of
the clauses of the program.

5 OPERATIONAL SEMANTICS

In all the interpreters which follow the pro-
gram is assumed to be of the form P;<qg. We will feel
free to reference the sentence P freely from the
interpreters - more formally we would add it to each
interpreter state for use when required. The start
will be specified by q.

5.1 Interpreters without Structure-sharing

The definition of "refutation” in essence de-
fines the following non-deterministic PROLOG inter-
preter. The interpreter is based on the leftmost
SLD-tree given by choosing aj as the selected atom
in the resolvent aiA...Aa_. We have said nothing
yet about the output - this will be added later.

The following interpreter simulates interpreter
I by depth-first left-right search of the leftmost
SLD-tree, using a stack to maintain backtracking
information.




I: Non-deterministic rewriting interpreter

State = Body x Num
Start state: (q,0)
Stop state : (true,n)

State transition rule (= is a relation on
State x State)

(aAb, n) - (8Y¥,,,b' @ 8b, n+1)
if (a'+b') is a clause in P and

8 = MGU(a,¥,,,a') exists

II Rewriting interpreter with backtracking

[omitted]

5.2 Interpreters with Structure-sharing

The structure sharing technique of [3, 16, 19]
may be used to avoid completely with creation of
new atoms and terms not present in the original
program. (We note that every substitution in the
previous interpreters in general creates a differ-
ent atom when applied.) The technique is widely
used in real PROLOG interpreters and represents a
substituted body by a pair (shape,9) where shape
is a substructure of the original oprogram togeth-
er with a substitution 9 representing a deferred
application. This is also used to represent re-
naming, and a renamed body will be represented by
a pair (body,n) with the index n representing Wn.
The reason that this is worthwhile is that there
is a version of the unification algorithm (MGU_.)
which can perform unification efficiently on two
such objects {16]. dpplying this idea to inter-
preter I, we obtain

III Non-deterministic structure-sharing interpreter

o: State = Stack ¥ Subst x Num

s: Stack = (Body X Num)*

Start State: ((g,0)::nil, Id4, 0)

Stop State: (nil, ¢, n) giving an answer
substitution ¢

Transition rules

1. Select subgoal
((aAb,m)::s, &, n)=> ((b',n+l)::(b,m)::s,
804, n+l)
if 8==MGUSS(¢OWm, a, ntl, a') exists and
(a'+b') is a clause of P

2. Satisfied subgoal
((true,m)::s, 3, n) = (s,,n)

A stack s = [(b1,m1),...,(b,,m,)] represents a con-
junction of as-yet-unsatisfied goals, each with its
own renaming index. In state (s,3,n) n is the cur-
rent renaming index (= the number of steps in the
current refutation attempt so far), s represents
the current goal and é holds the current accumulat-
ing answer substitution.

[Omitted: correctness proof.]

We now consider backtracking with structure
sharing. This is obtained from interpreter III by
using a stack in precisely the same way that inter-
preter II was obtained from interpreter I. We take
advantage of the fact that the length of the State
gives the current renaming index.
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IV Structure-sharing interpreter with backtracking

g: State = (Stack x Subst x Clause*)*
s: Stack = (Body x Num)*

Start State = ((g,0)::nil, Id, P) :: nil
Stop State = nil
Transition rules
1. Apply clause to select subgoal
((anb,m)::s, ¢, (a'+b')::c*) :: ¢
= ((o',n+l)::(b,m)::s, 60, P) :: o'

if 8 = MGU S(¢°Wm,a,n+1,a') exists
- ¢' otherwise
where n = length{(o)
and o' = ((a b,m)::s,9,c*) :: 0

2. Goal not (further) satisfiable: backtrack
((aAb,m)::s, ¢, nil) :: o= ¢

3. Satisfied goal; continue with brother goals
((true,m)::s, o, c*) :: o> (s8,9,P) :: ©

4, Satisfied main goal: produce output (see
later) and backtrack

(nil, 4, c*) :: C = ¢
4 is an answer substitution

Implementation remarks: the bodies aAb, b occurring
here are all tails of bodies appearing in the given
program and so can be represented by pointers (as
can the clause sequences in a similar fashion to
interpreter II). The copving of stack s can clearly
also be avoided by the use of a pointer, leaving the
only significant overhead the manipulation of sub-
stitutions. These can also pe implemented efficient-
ly using techniques such as those described in [6,
19].

5.3 Handling cut

We would now like to add to the definition some
description of "cut". Cut is generally described as
making the computation, from the call of a particu-
lar atom in whose definition the cut symbol appears,
deterministic up to that point. Therefore the simple
technique adopted here (which corresponds closely
to real implementations) is to add a dump component
to Stack representing (the backtracking part of) the
calltime state which can be restored on encounter-
ing the cut, thereby removing backtracking points
encountered since the cail. One small ccmplication
is that the next renaming index (n) may no longer be
the length of the state, so we must insert it as an
explicit component as in the non~deterministic ver-
sions (I and III).
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V Structure-sharing interpreter with cut

o: State = (Stack x Subst x Clause* x Num)?*
s: Stack = (Body x Num x Dump)*

d: Dump = State

Start State: ({(g,0,nil):: Id, P, O) :: nil
Stop State : nil

Transition rules

1. Apply clause to select subgoal, saving ¢ as
Dump for cut

((aab,m,d)::s, ¢, (a'<b')::c*, n) :: ¢
- ({(b',n+l,0)::(b,m,4d)::s,
80¢, P, n+l) :: ¢
if ¢ = MGUSS(¢°Wm,a,n+1,a') exists
- g' otherwise
where o' = ((aAb,m,d)::s,¢,c*,n) :: o

2. Goal not (further) satisfiable: backtrack

((aab,m,d)::s, ¢, nil, n) :: ¢ > o
3. Cut operator: remove part of backtrack stack

(("t"Ab,m,d)::s, ¢, c*, n) g~
((b,m,d)::s, ¢, c*, n) :: 4

4, Satisfied goal: continue with brother goals

((true,m,d)::s, ¢, c*, n) g -

(s,6,Pyn) :: 0

Satisfied main goal: produ output (see
</§ig> and backtrack

6

5.

(nil, ¢, c*, n) g =20 S~

$ is an answer substitution

Note that the Dump component is always a terminal
segment of the current state and so can be imple-
mented as a pointer into it.

6 DOMAINS AND SUBSTITUTION SEQUENCES

Suppose interpreter V (for example) is extended
to write its answer substitution each time a transition
by rule 5 is taken, there are then three possible re-~
sults of the computation; production of an infinite
sequence of output; production of finitely many out~
puts followed by termination; or production of finitely
many outputs followed by an infinite computation with-
out output. Domain theory as used in denotational se-
mantics provides a suitable formalism for describing
these possibilities, and is also used in Section 7.

6.1 Review of Domain Theory

[Details omitted, but follow the lines of [14].
Keypoints:

+ 1is the coalesced sum
x 1is the smash product
DL is D augmented by a new least element L ]

6.2 Extracting the Result of a Computation

The desired domain of finite or infinite se-
quences of substitutions can be defined by

Subst” = {nil}, + Subst x (Subst+)J_

To see this, write the pairing operation as :: (a
right-associative infix CONS operator), and write
[1 for nil and [a,b,...,z] for a::[b,...,z]. This
gives a natural injection of Subst* into Subst™.
The definition ensures for example that
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[a,b,L,c,d] = [a,b,Ll], so the only infinite se-
quences in Subst’ have the form [al,az,...] where
each aj € Subst. Intuitively, Subst’ is the class
of (tail-)lazy substitution lists which can be ter-
minated in nil.

The output is now obtained by defining func-
tions Outputy which give the partial output of a
program after k evaluator steps and are defined by

Output, : State - Substt
Outputg (o) = L
Outputy,, (nil) = nil

Outputk+l((nil,¢,c*,n) 1 0)
= ¢ :: Outputy (o) (add Output by rule 5)
Output (g) = Outputk(o‘) if o-0' by rule 1,

k+1
2,3 or 4.

The output can now be defined as the limit (ko) of
Outputk(start—State).

The great virtue of such a definition of the
output from a program is that it distinguishes be-
tween the output of a program which produces sub-
stitutions o31,02 and then stops, and one which pro-
duces the same substitutions but subsequently car-
ries on computing forever without producing further
results. Out model of the output of the former
would be o3 g2 :: nil and the latter
g1 :: Oz 3: L.

As an aside, we observe that the conventional
notion is that this limit should be taken at w =
{0,1,2,...}, but that State may then still contain
unexplored backtracking choices due to the depth-
first search. We leave as an open question whether
a generalisation of the notion of sequence to high-
er ordinals would produce a better (larger) result
set. This matter of a SLD-tree traversing inter-
preter not covering the whole of the search space
?ft?r Wo steps is examined in much more detail in

12].

6.3 A Domain Definition for Cut

An elegant way to handle ’‘cut’ denotationally
can be obtained by slightly modifying the domain
equation for Subst®., We first introduce the type
operator A which acts on a given type, « say, in
the following manner:

ah = {nil,cut}_L +a x (uA)L

This defines the type ¢” to consist of finite
or infinite lists of elements of a, such that the
finite lists may be terminated with either nil orxr
cut. By a convenient abuse of notation we will
consider the types ot and o* to be subsets of aA by
the natural inclusions. The full power of o/ will
only be needed to describe the semantics of cut,
elsewhere a¥ can (and will) be used.

Again we define the diadic append operator
(written as infix @):

A x o 5 ogh
@m=a ::
m=m

m = cut
=1

s a
s k
nil @
cut @
L agm

(S

(k @ m)

'a' is thus a (continuous) function which acts like
the traditional append on lists terminated in nil,
but ignores the second parameter for those whose
first parameter ends in cut. Technically this only
defines @ on finitely constructed elements of u




(here these are just finite seguences anded with
nil, cut or l). The definition is extended to the
whole of o (also including the infinite sequences)
by defining

L em= L' @ m'
2'cl,m'tm
£',m' finite

Analogous extensions to the whole of a” are im-
plicitly assumed in the definitions of Eppend and
Uncut given below.

We now define an Append functional (compare the
I functional for summation) to be a version of a
extended to concatenate a sequence of such objects.
If t{i] is a (mathematical) term with free variable
i then

Append t[i] = t[a] @ Append(t[i])
1 € a::b i€b

il

Append t{i]
i€ x

X 1f x = nil, cut or L

For example, if x = [1::nil, nil, 2::(3::cut),
4::(5::nil)] then
Append i = 1::(2::(3::cut)).
i€ x

7 DENOTATIONAL VERSION

7.1 A Simple Semantic Definition

Again we develop a series of semantics. The
first version will be the simplest definition which
has any denotational flavour. We will discuss its
shortcomings and derive successively 'better' se-
mantics.

To this end we start by defining a Lookup func-—
tion which gives a representation of the sons of a
node in an SLD-tree:

Lookup: Atom x Sentence - (Body X Subst)*

Lookup(a,[]) = []
Lookup (a, (a'+b')::2))
= (b',8) :: Lookup(a,z) if

0 = MGU(a,a') exists
= Lookup(a,z) otherwise

We will ensure that uses of Lockup are such that
its two parameters contain disjoint sets of vari-
ables.

The very simplest, 'denotational' semantics
which can be given for PROLOG is given by:

Semantics I

B: Body - Num - Sentence - Subst — Subst?
V: Program - Subst’

Bltruellnpé¢ [¢]

BllaabllnP¢ = append (B [[b"]] (n+l) P (894))
(b',0) € Lookup(a,Wn+1(P))

where b" = 0(b' @ b)

vip;«qll = BlqlloPI4

This directly models interpreter I, the simple left-
most tree-walking system, presented in Section 5.
Nondeterminism is modelled by letting the output
produced at a SLD-tree node with sons be merely the
concatenation (in order) of the output produced by
each of the sons. Note that the sentence P must be
explicitly carried around in the greater foxmality

+

}
of denotational semantics, compared to the opera-
tional semantics.

It is- illuminating to consider why this should
not be considered a valid form of denotational se-
mantics, since (we claim that) it gives the correct
answer substitution list. The main reason is that
it fails to match the spirit of a denotational de-
finition since, apart from the meaning of a program
being a substitution list, there are no denotations
-~ Jjust symbol manipulation. A general, but unspoken,
requirement of denotational definitions is that they
should only contain substructure of the original
program inside [ ]] brackets. a subsidiaxy reason is
that the definition does not derive meaning of sub-
structure of the program, but merely follows an in-
terpretive style blindly.

7.2 Lemma

PROLOG implementations typically try to satisfy
goal (anb) by first satisfying a, yielding an answer
substitution ¢, and then satisfying ¢b. This can be
justified as follows.

LEMMA A negative clause +a1A..‘Aan is refutable
if and only if for some %, <ai is refutable with
answer substitution 4 and ¢(a2A...Aan) is refutable.

[Proof omitted]

7.3 Better Semantic Definitions

As suggested in the discussion of 7.1 we need a
technique like structure-sharing to avoid manipula-
tion of program text. Following an idea from inter-
preter III, it is natural to use two semantic func-
tions

A: Atom — Num = Sentence ~ Subst ~ Subst®t
B: Body ™ Num ™ Sentence ~ Subst ~ Subst¥

and to define B[[b]lmP+¢ as the sequence of all re-
futations of (QOWm)b obtained under PROLOG's search
strategy, and define A analogously. The lemma just
proved gives a way to compute B [[aab]] which can be
informally described by

B [larbllmP g =1et [81,65,...]=a [al] (m+1) P
in (B[ mPp (6,990 @@ (b mP(8,%)N e ...

A lazy implementation of this corresponds to
PROLOG's usual search strategy. There is, however,
a technical problem to solve before giving a struc-
ture-sharing denotational semantics based on this
idea. The complication is that we need to know the
highest renaming index used inside A [[al]l , in order
to avoid conflicts with possible renaming needed for
atoms in b (or their descendants). Therefore the do-
main must be complicated somewhat:

A: Atom -»Num -Sentence -»Subst- Num - (Subst x Num) T,

To use this in the semantics an auxiliary function
to map down a sequence of pairs extracting the se-
quence of first components is required:

First: (Subst x Num)® x Substt
First L = L
First [] = []

First ((¢,n) M) = &

This enables us to write

First (M)




Semantics II

A: Atom-> Num - Sentence - Subst -» Num - (Subst x Num)*
B: Body - Num - Sentence - Subst - Num - (Subst x Num)*
V: Program—*Subst+

AflalmPén = Append(B [[b]] (n+1) P (89¢) (n+1))

(b,8) € Lookup((¢0Wm)a, Wn+IP)

|

BltruellmPén = [(¢,n)]
BHLarbImPoén = BAppend(B [[bllmP (6°9¢) n")
(6,n') € allallmPén

vip;«q)] = First (B[qll0 P 1d 0)

Semantics II still fails to meet the spirit of a
denotational definition due to the manipulation of
P as a textual object. Worse still, this leads to
the use (in A) of a semantic function to a body
which is not a substructure of the rule being de-
fined. This can lead to an infinite regress in a
mathematical definition which is not permissible,
unlike the situation in programs which the mathe-
matics describes.

This cbjection may be overcome by representing
the sentence by a recursively defined environment
Env which replaces Sentence in the semantic equa-
tions and represents the effect of the sentence in
terms of its effect of mapping atoms to substitu-
tion lists. We have essentially used the definition
of Env to replace the symbol string representation
of Sentence with its meaning. This leads to:

Semantics IIT

Env = Atom - Num - Subst - Num - (Subst x Num)*
Body - Num - Env - Subst - Num ~ {Subst x Num)*
Sentence = Env - Env

Program- Subst*

Bltruellmeén = {(4,n)]
Bl arbllmoan = Append(B [b]lm p (8°¢) n')
(5,n") € pllallm ¢ n

< owm®©v

pll {11 amédn =[]

8]
pDa'<b'::c’loamén=c0c@o
where o = B b (n+1) ¢ (89%) (n+1)
if 9 = MGUSS(¢0Wm,a,n+1,a') exists
= [] otherwise
and o' =D [c 1 pamén

v [p;+qll = First (B[qll0p 1d0)
where p = £ix D [[P]]

The last line is well defined since D [[P]] is a
continuous function on a cpo.

Now every semantic function is applied only to
substructures of its syntactic argument. Lookup has
been replaced by 0 ffall m ¢ n, which according to
the definition of D finds all possible ways to sat-
isby a by resolution with the clauses of P, taken
in left-to-right order.

The remaining problem is to define a semantics
for cut. The existence of the cut symbol poses some
problems for a direct denotational semantics for
PROLOG. This is normally seen as removing some sub-
stitutions from the meaning of a program in a con-
tinuation-style semantic model. In Section 6.1 we
modelled cut directly by introducing a data-type o/
analogous to lists but with an extra constructor,

cut, which as a special (absorbing) effect on the
append operator, and has previously been unused in
the semantic equations.

We require the auxiliary function

Uncut: aM - ot

Uncut(a::k) = a Uncut (k)
Uncut (cut) = nil
Uncut (nil) = nil

which has the effect of replacing any terminal cut
in its parameter with nil. This is used to limit
the effect of a cut to the bodies of clauses which
match the subgoal invocation.

7.4 Semantics for PROLOG with cut

Our final semantics (which we believe formal-
ises the standard semantics for depth-first PROLOG
with cut) is:

0: Env =Atom - Num - Subst - Num - (Subst x Num) *
B: Body - Num - Env - Subst - Num > (Subst x Num)”
D: Sentence - Env = Env

V: Program - Subst¥

B {truellmosn = [ ($,m]
Bllarbllmoon = Append(B [[bpm]} (80o¢) n')
(8,n') €pllallm ¢ n

B"1"abl medn = (Bblim pé n) @ cut
pll {] Noamén = (1
p{la<+b'::c*T opamén = Uncutlo @ o)

wnere 7 = B [b'1] (n+l) o (8%9%) (n+D)

if 8 = MGUSS(jO?m,a,n+l,a') exists

1}

[1 otherwise

D ﬁc*]]o am4sn

"

and '

v ([P;+g]] = First (B [[qli 0p Id0) whereo = £ix D [[P]]

The above definition has the property that sub-
stitutions are merely composed and that no substi-
tution (or renaming) is ever applied to any part of
the program source. Indeed, substitutions are never
applied, except implicitly during the unification
process (MGU, ). This gives the property that the
only terms which appear as the first parameter to
any semantic function (B,D or V) are subterms (in
the mathematical sense) of the original program
{p;«all .

This is an essential requirement for being able
to base a compiler on the semantic definitions given
here. That this is so, is a consequence of the fact
that the given program has only a finite number of
subterms, and we can compile each one f{actually on-
iy a subset of these as indicated by the semantic
equations) into code by generating a fragment of
code for B [[x]] for each terminal segment x of (the
Body of) each Horn clause in the program. More de-
tails on compiler generation according to this
scheme are given by Christiansen and Jones [5].
Work is currently in progress to develop a real
PROLOG compiler by such techniques.

8 CONCLUSIONS

We have given operational and denotational defi-
nitions of the PROLOG language including the cut
operation. These we developed by stepwise refine-
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ment from a math%matical formulation of computation
step. We believe that technique is a valid method
of deriving semantics and is much easier to under-
stand than the traditional approach of just giving
semantic equations with cursory explanation. In a
sense we 'show our working' involved in producing
an elaborate semantics. That this technique is ap-
plicable follows from the fact that PROLOG is based
on an already well-understood theory of computation
step, a fact which is unfortunately not true of
most programming languages,

It would be interesting to repeat the work for
the equivalent case of a high-level language sound-
ly based on A-calculus.
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