Spatial Security Policies for Mobile Agents in a
Sentient Computing environment

David Scott!, Alastair Beresford', and Alan Mycroft?

! Laboratory for Communications Engineering, University of Cambridge,
2 Computer Laboratory, University of Cambridge
William Gates Building, 15 JJ Thompson Avenue, Cambridge CB3 0FD, UK
{djsb55,arb33}@eng.cam.ac.uk am@cl.cam.ac.uk

Abstract. A Sentient Computing environment is one in which the sys-
tem is able to perceive the state of the physical world and use this
information to customise its behaviour. Mobile agents are a promis-
ing new programming methodology for building distributed applications
with many advantages over traditional client-server designs. We believe
that properly controlled mobile agents provide a good foundation on
which to build Sentient applications.

The aims of this work are threefold: (i) to provide a simple location-
based mechanism for the creation of security policies to control mobile
agents; (4i) to simplify the task of producing applications for a pervasive
computing environment through the constrained use of mobile agents;
and (74¢) to demonstrate the applicability of recent theoretical work using
ambients to model mobility.

1 Introduction

The goal of pervasive computing is to create systems that disappear [18]—
systems that fade into the background leaving users free to concentrate on their
own tasks rather than explicitly “using the computer”. Sentient Computing works
towards this goal by adding perception to software; applications become more re-
sponsive and useful by observing and reacting to their physical environment [7].
The ability to sense the location of people and objects is an important building-
block of such sentient systems. One of the most natural ways a program can react
to user movement is to move itself around the network (e.g. consider a desktop
“teleportation” program which moves a user’s screen, mouse and keyboard to
the computer nearest their current physical location). Mobile code opens up a
number of tantalising possibilities, including: (i) exploiting resources near to
the user’s current location (e.g. multimedia hardware, keyboards and mice); (i)
supporting the illusion that user applications and their state is omnipresent—
allowing a user to use any application from any location; and (%4) maximising
efficiency by spreading resource-intensive tasks to where resources are under-
used.

Unfortunately the use of mobile code has severe security implications [14].
Aiming to deploy mobile agent-based applications on the global Internet, the

research community has concentrated on solving two difficult problems: (i) pre-
venting malicious mobile code from gaining unauthorised access to resources
controlled by the hosting machine; and (#) stopping a malicious virtual ma-
chine learning secret information such as cryptographic keys by disassembling
mobile agents. There is a third critical problem which is less well-studied: user
control. How do we allow users to control the activities of mobile agents in an
intuitive way, providing just enough security whilst still reaping the benefits of
mobile code? How can users trust agents, written by other people, to respect
their wishes when they enter their space and use their resources?

Clearly users need an understandable mechanism to constrain the behaviour
of agents. They need a way to control what happens with things that matter
to them in their world i.e. their data and their computers. Without this ability
users will never fully trust mobile code technology and will never allow it to be
used in practice.

To address this need, we propose a framework for creating spatial (i.e. location-
based) security policies for mobile agents. This framework provides users with an
easy to comprehend way to restrict and monitor the activities of agents within
a Sentient Computing environment. By using location-based policies we hope
to exploit structure which users are already familiar with. People are used to
security policies governing physical spaces (e.g. “no unauthorised personnel are
allowed in this area”); we extend this idea seamlessly into the ethereal world of
mobile agents.

We believe that our framework will (i) promote the development of mobile-
code based Sentient Computing applications; (i¢) allow users fine-grained control
over where agents are allowed to run, bypassing problems associated with situa-
tions where the agent does not trust the machine or vice-versa; and (74) provide
a demonstration of the applicability of recent theoretical work in the research
community modelling mobility.

The remainder of this paper is structured as follows: Section 2 describes the
design of our framework in detail. Examples of possible policies are found in
Section 3. Related work may be found in Section 4, and Section 5 concludes.

2 Spatial Policy Framework

In this section we describe (i) how we model the world incorporating both phys-
ical objects and mobile agents; (i) our language for expressing mobility security
policies; and (#4) our proposal for an arbitration scheme to reconcile conflict-
ing policies. Implementation details are omitted for brevity; they may be found
elsewhere [15].

2.1 Overview

Users write security policies to influence both their own agents and any objects
in which they have an interest (e.g. the computers in their office). Examples of
policies might be “this agent should never leave my office” or “never let any agent

enter this zone”. The system continuously monitors the locations of both physical
objects and mobile agents, keeping track of which policies are being violated.
Since the system has no physical presence, it cannot act to block the movements
of physical objects. Therefore the system cannot guarantee that policies will
never be violated; instead policies are associated with an action, a command to
be executed if and when a policy is violated (e.g. a command to kill the offending
agent).

In contrast to physical objects, the system has full control over the life-cycle of
mobile agents. Agents requesting permission to migrate between hosts will have
their requests blocked if the movement would violate a policy. Agents which are
physically moved (typically by being carried on a laptop by a user) in violation
of a policy may find themselves being suspended or killed.

Policies written by different people may conflict with each other. The system
implements an arbitration scheme which exploits the natural structure of the
spatial model to resolve these conflicts when they arise.

2.2 Modelling the world

We model the world as a tree of nested entities, analogous to ambients in the
Ambient Calculus [2]. We begin our description by defining the following set of
terms:

entity name: label used to name entities, equivalent to an entity minus any
contents. Examples include the names of physical places, computers and
mobile agents. By convention we use 7 to range over all entity names and a
to range over mobile agent entity names.

entity: description of a particular location (given by an entity name) along with
its contents. Note that, in a similar fashion to the Ambient Calculus, we
are not restricted to describing only physical places but can represent any
bounded region where activity happens. For example an office containing
people may be described as an entity, as can a virtual machine containing
mobile code. By convention we say that e ranges over entities.

path: sequence of entity names describing a route through the entity hierarchy
naming a specific entity. Paths are written in the form 7; | ... | 0, and are
described further in Section 2.4.

path expressions: regular expression-like facility to efficiently name a set of
entities. Path expressions are described further in Section 2.4.

We divide our entity names into sorts each representing a different kind of
object. The exact sorts used in any deployed system will depend on the kinds
of things being modelled (e.g. an aviation-based system may introduce the sort
“aircraft”). Here we restrict ourselves to use the following sorts:

room: a physical volume of space corresponding to buildings, offices etc.
person: an autonomous physical entity able to move between rooms
workstation: an immovable physical object which can host computer processes
laptop: a mobile physical object which can host computer processes

context: a virtual machine capable of running mobile code
agent: a piece of mobile code

person laptop context agent mobile sorts

O

room workstation fixed sorts

Fig. 1. The relation SortContainable

We write e <1 s to mean entity e is of sort s. The formula SortContainable(s1, s2)
holds when entities of sort s; may be nested inside entities of sort s;. This formula
is defined graphically in Figure 1. Intuitively, physical objects may nest in the
obvious way (e.g. a workstation may nest inside a room). For convenience we
define a relation Containable(ey,ez) which indicates that entity es is permitted
to nest inside e;. These relations are related as follows:

Containable(e1, ez) < e1 < 81 A eg < 82 A SortContainable(sy, s2)

We define a partial function, privs : entity — permission set, which is
only defined on context entities and gives the set of permissions which are
granted automatically to any agent nested inside. Examples of permissions in-
clude “can_play_sound” and “can_record_sound”. This association between entities
and sets of permissions allows us to use our spatial security policies to control
more than simply the location of mobile agents; by creating appropriate con-
texts we can control access to arbitrary resources. By convention, every com-
puter (workstation or laptop) has at least one default context with an empty
permission set.

A state of our world model may be written down with the following syntax
(where 7 ranges over a set of entity names):

entity «— enlity | entity (siblings)
entity <« nlentity] (nesting in a place 7)
entity «— 0 (void)
entity «— In (entity factory)

By convention we consider an entity factory !n to be a special kind of entity
which can create other entities, i.e. the factory n can spawn the entity 7[0], an
empty entity ready for population. Note that every mobile agent which wishes
to be created must be associated with at least one of these factory entities.

The entity e = nfey | ... | en] is well-sorted if Containable(e,e1) A ... A
Containable(e, e,,). The case n = 0 corresponds to the entity being empty i.e.
n[0]. Observe that this syntax is similar to the subset of the ambient calculus
which has no active processes and which describes only the structure of space,
like that used in the semistructured data format described in [1].

As is conventional in mobility theory we next define a congruence relation, =,
under which entities are equal up to simple rearrangements of parts. In addition
to reflexivity, symmetry, transitivity and context (X =Y = n[X] = n[Y])
this relation (often referred to as a structural congruence relation) is also com-
mutative (X | Y =Y | X), associative (X | (Y | Z) = (X |Y) | Z) and “ignores
zeros” (X | 0= X).

2.3 Example

Consider a simple environment containing people, computers and several mobile
agents. A graphical depiction of the model corresponding to this world at a
particular time is displayed as follows:

. Key:
Allce laptop default agent
World
Charlie’s office @ —— A Room
~ audio music player @ Person
PC - —
\ / A Workstation
(7 / |E \ default agent
° . & Laptop
Chariie Permissions: A
‘s offi . vm C
Bob’s office @ rivs — CL’LLdZO N { can_play_sound} - ontext
P - default — { } /N | Agent

There are various things to note about this configuration:

1. Alice is carrying a laptop inside Charlie’s office. This laptop is currently
running some mobile agent code. Note that such agents have potentially
entered the room without having to migrate to a different host.

2. The PC in Charlie’s office has been configured with an additional con-
text, called audio. This context has been associated with a permission,
can play sound, allowing agents to play sounds on a set of attached speak-
ers. Therefore the agent, music player is able to play music in the office.

Although we have presented entity names as flat identifiers, they are likely to
be more complicated in practice. For example they could contain secret data or
be protected by a digital signature — possible benefits of such schemes include:
(¢) policies could be applied to whole classes of agents (e.g. all those signed by a
particular key); or (#4) only people possessing the secret data would be able to
successfully name an agent in a policy. For simplicity in the rest of this paper we
will continue to use simple english names (like music player) for mobile agents.

2.4 Paths and Path Expressions

We uniquely name a single specific entity by providing a path from the root
entity using the nesting relation, |. We say that a | b if b is a child of a,

i.e. b is contained within one level of nesting of a. A path to an entity will
therefore have the form 7, | 2 | ... | 7. For example, in the diagram in
Section 2.3 an expression for the location of the entity music player would be
World | Charlie’s office | PC | audio | music player.

Path expressions, similar to regular expressions, are used to quantify over a
set of paths. We first define the |* operator as the reflexive transitive closure of
| and then write the syntax of location expressions as follows:

element «— n (entity name)

| {n,n} (alternation)

| s (any)

expression <« element (root)
| expression/element (direct nesting)

| expression/.../element (transitive nesting)

We define the matching set of a path expression exp as the set of paths paths
where Vp € paths (withp=p1 | ... | pn)

— every step ej/es in exp corresponds with a step p1 | p2 in p where the
element e; matches p1 and es matches po;

— every step e1/. ../es in exp corresponds to a sequence of steps p1 | ... | pn
for some n where the element e; matches p; and es matches py;

— the element {1,172} matches the entity with name 7 if n; = n or 192 = n;

— the element * matches any entity name; and

— the trivial path element 1 matches an entity with name 7.

Path expressions provide a similar function to that of XPath [4], used for naming
elements of XML documents.

2.5 Updating the model

The model is updated dynamically to reflect the real-time configuration of the
environment. Location sensors register changes in the physical configuration of
the world (e.g. the movements of objects) which are then reflected by changes in
the model. In addition, mobile agents may be programmatically created, frozen,
killed or migrated, constrained only by the installed security policies. We define
legal updates to the world by a labelled transition relation, —. We use labels
to represent the side-effects of transitions, in particular the emission (emit(7))
and reception (receive(y)) of an agent during migration. The absence of a label
on a transition indicates the lack of side-effects. A valid transition must have
no labels at the top level — labels must always be matched and cancelled by the
rule (migrate) described below. For brevity we write a < b if the transition is
reversible i.e. if both a — b and b — «a are legal transitions. The runtime system
(described in a companion paper [15]) ensures that every event that occurs is
represented by a legal transition.

For entities X,Y, Z and entity names a, b, c where a < person, b <1 room and
¢ < laptop we define the following rules:

bla[X] | Y] (walk in/out)

[X] [b[Y]
| e ale[Y] | X] (pick up/put down)

a >
alX]| Y] <
In plain terms these rules describe how a person may freely walk into and out of
rooms and pick up or drop any portable physical objects (represented by entities
of sort laptop).

For simplicity everything that can happen to a mobile agent (i.e. being cre-
ated, frozen, defrosted, killed or migrated) is considered as a sequence of primi-
tive operations of the following two types: () leaving a particular context; (i1)
entering a particular context. For example an agent creation is considered a sin-
gle event — the new agent entering its initial context. Killing an agent is a single
leaving event. An agent migration from a to b is considered a sequence of two
events: () leaving the source context a; and (ii) entering the destination context
b. Freezing an agent is considered as a migration into a special context called
frozen and defrosting is a migration out again.

To represent the installed security policies, we assume a pair of infix pred-
icates, can_enter and can_leave, defined later in Section 2.8, which for a given
agent d and context e behave as follows:

d can leave e holds if the policies allow d to leave the context e
d can_enter e holds if the policies allow d to enter the context e

For entities d < agent, and e < context we write the rule:
elld| X] — eld]0] |'d| X] iff d can_enter e (agent created)

This rule asserts that agents may be created in those places containing an ap-
propriate agent factory (represented by !d) provided the new agent is allowed to
enter the surrounding context. Similarly, agent destruction is only permitted if
the agent is allowed to leave the containing context, as described by this rule:

eld| X] — e[X] iff d can_leave e (agent killed)

Agents are frozen by moving them into specially created frozen contexts, created
dynamically. These contexts are associated with no permissions i.e. privs(frozen)
is {}. Consider the example in Section 2.3 — if the music player agent were
frozen then it would lose the ability to play sound. The acts of freezing and
defrosting are described by the following rules:

eld | X] — e[frozen[d] | X] iff d can_leave e (agent frozen)
elfrozen[d] | X] — e[d]| X] iff d can_enter e (agent defrosted)

Note that, to be frozen, an agent must be allowed by the security policies to leave
its current context. There is no guarantee the agent will ever be unfrozen again;
unfreezing may only occur if the agent has permission to reenter the original
context.

Agent migration between contexts is handled by the following rules:

eld | X] emii(d) e[X] iff d can_leave e (agent leaves)
e[X] receive(d) eld| X] iff d can_enter e (agent enters)
X mit(j) VY v TeCive)(v) '
~ 7 (migrate)
=

Note that the act of migration is a compound operation where the side-effect
emit(y) must be matched by a corresponding side-effect receive(y). Therefore
migration may only happen if the policies allow both the leaving step and the
arriving step; it is impossible for the agent to get stuck somewhere in between. It
is important to emphasise that only the results of toplevel transitions are visible
to applications — applications cannot see any intermediate states of the model.
We get away with this because our work so far has focused on a trusted “intranet”-
style environment where complications due to unreliable network communication
and partial failure are minimised.

Agent migration could be represented differently if we allowed agents to sim-
ply climb the entity hierarchy and then walk down again — the approach taken
in the Ambient Calculus. This would allow us to simplify our rules by removing
the labels on our transition relation. However, allowing an agent to move any-
where in the hierarchy could lead to violations of the sorting rules (described in
Section 2.2). Additionally there is a subtle semantic difference with respect to
the security policies: by using the “teleporting” approach described here, only
the configurations at the start (the leaving step) and at the end (the arriving
step) are relevant. If the agent were to have to walk from one place to another
then the migration could potentially be blocked by a policy attached to an entity
somewhere in the middle.

To complete our description of how the model can be updated we have the
following rules where X’ and Y are entities:

In — In|n[0] iff nl[0] 4 agent (non-agent entity created)

XY XY
+ (nested update) + (parallel update)
n[X] = nlY] X|Z=Y1]2

X=X,XxXLvy=Y
x' 2y

Informally the first rule states that non-agent entities may be created in entity
factories (note that agent entities may only be created if allowed by the security
policies, using the rule (agent created) described earlier). The other three rules
state that transitions may occur anywhere in the entity nesting hierarchy, in
parallel with arbitrary other entities up to structural congruence. Note that the
labels on the transitions are preserved but must eventually be cancelled further
up the tree (by the rule (migrate)).

(update =)

2.6 Expressing Policies

A security policy is defined as a 4-tuple (location, formula, times, onfail) where
location is a path expression (see Section 2.4) designating a set of specific entities
where the assertion given by formula should hold. If, with respect to the time
period described by times, the assertion becomes violated (e.g. by the physical
movement of an object) then the system will attempt to execute the command
described in the field onfail.

The policy field times can contain one of two possible types of values: Always(t)
and Sometime(from, to,t). In both cases the parameter ¢ specifies how much “re-
action” time the system has before the policy onfail action is executed. The value
Always(t) indicates that the assertion formula should hold for all time during
which the system is running. The value Sometime(from, to,t) states that formula
should hold® at some point in the time interval between the times from and to.

The policy field onfail specifies an action to take should the policy be violated.
The action can be of the following types:

— Log(message) causes a message to be written to a log;

— Kill(pathexpr) asks the system to terminate agents identified by the path
expression pathexpr;

— Freeze(pathexpr) requests agents named by pathezpr be frozen; and

— Create(path) requests the agent factory named by path create an agent.

For both the Kill and Freeze values we adopt the convention that if the path
expression has a missing initial element (i.e. it starts with / or /../) we auto-
matically prepend the full path to the specific entity the formula is currently
being applied to. For example if the policy location field is a/* and the policy
is violated at a | b then the onfail expression Kill /c is expanded to Kill a/b/c
i.e. a request to terminate only the entity named by a | b | ¢ and not any other
element (e.g. a | d | ¢). This ability to refer to previously matched data in a
pattern is also found in other systems using regular expressions, e.g. perl [17].

The policy field formula contains an expression written in a simple spatial
modal logic similar to the Ambient Logic [3]. The core syntax is as follows, where
7 ranges over entity names:

formula — T (true)
| —formula (negation)
| formula V formula (disjunction)
| O (void)
| nlformula] (named entity)
| In (named agent factory)
| formula | formula (composition)
| <e (somewhere modality)

3 This is similar to the concept of obligation in traditional Role-Based Access Control
(RBAQC) systems i.e. it states that someone should perform some action during some
time interval.

F (false), a A b and Oa (everywhere modality) may be written using the core
syntax as =T, —(—-a V —w) and (—<{-a) respectively. These constructs may be
familiar to those versed in modal logics, but we summarise their meaning in the
following section.

2.7 Satisfaction

We say that an entity e satisfies the logical formula f (i.e. the formula f holds
at e) by writing e = f. Intuitively, we may think of a formula f as matching an
entity e if e = f. The relation, = is defined informally as follows:

— e =T for any entity e —ekEnflife=n[M]and n =n
— e = —f if e = f does not hold and M = f

— el fVvgifeithere=forel=g —eEflgife=N|M, f= N and
— e =0 if e is “nothing” gEM

—ekElnife=ly —eEOfifdeel*eande = f

For example, the formula 0 only matches “nothing” (or “void”) i.e. the absence
of anything. The formula f | g matches e if e can be written as the composition
of two expressions N and M (remember the equivalence relation =) such that
f matches N and g matches M. The formula < f matches e if there is an entity
e’ somewhere in the tree rooted at e where ¢’ matches f.

2.8 Reasoning about Policies

If we allow individual users to write their own security policies then we must
also provide a mechanism to resolve policy conflicts when they arise. Conflicts
between rules in our system are similar to those found in Active Databases [5].
Many mechanisms have been proposed, ranging from a simple numeric priority
schemes to more complex algorithms comparing rules based on their general-
ity [8] (e.g. the more general rule holds except when the less general does not or
v.v.). There is no single best strategy that works perfectly in all circumstances.
Our main goal is to make the system be intuitive enough for ordinary users to
understand. Security policies in our system are based on a spatial modal logic
therefore we also use a spatial mechanism for arbitrating between conflicting
policies.

Recall that we model the state of the world as a nested tree of entities (see
Section 2.2). We observe that within a real life enterprise people too are often
arranged into a hierarchy, with the boss at the top, managers in the middle and
normal employees at the leaf nodes. In such an organisation, a manager would be
able to set a policy which would override those of subordinates but which could
itself be overridden by the boss. These two hierarchies, one describing the world
and one describing the people, can be linked together by associating entities with
a set of people (“owners” or “administrators”) via a function

owners : entity — person set

such that for an entity e we have owners(e) = {person,, ..., person,} where
person, ..., person, are the direct “owners” of e. In a typical configuration, the

boss would “own” the root entity while normal employees would “own” their
individual offices. Our scheme for arbitrating between conflicting policies may
be informally described as:

For a proposed change to entity e, policies instituted by a user u” €
owners(e") override those policies instituted by a user v’ € owners(e’)
where ¢’ |* ¢’ and ¢’ |* e as long as ¢’ # ¢’ and u” # u'.

Recall from Section 2.5 that the installed security policies may be represented
by a pair of predicates, can_leave and can_enter which, given an agent and a
context hold precisely when an agent is allowed to leave or enter the context
respectively. Both of these predicates are computed in the following way: For a
proposed change in the configuration at context ¢ (e.g. an entity wishes to leave
¢) we first compute the set of users who “own” any of the entities on the path
p1l ... | pn from the “root” entity p; which designates ¢
n
users = U owners(pr | ... | pr)
k=1
Each user u € users is allocated a single vote on the proposed change. Note
that this effectively means that although users may write policies about entities
they do not “own” these policies will be easily overridden by other users who
do “own” these entities. A user u votes for the proposed change if the number
of their policies which are in violation decreases, votes against if the number in
violation increases and abstains otherwise. We define a function vote(user) as

follows:
—1 if user votes against the proposal

vote(user) = ¢ 0 if user abstains
+1 if user votes for the proposal

We then compute the value of

overall vote = Z Z prio(i)vote(o)

=1 o€owners(pi|...|pi)

where p; | ... | p; refers to the ith entity on the pathp =p; | ... | p, and the
function prio(i) gives the priority of owners of this entity. One possible priority
function is given by prio(i) = =% where x is a tunable vote weighting factor. The
parameter x determines how many people who “own” an entity p,, are needed in
order to equal the vote of a single person who “owns” a “more important” entity
Pn—1. If & > maz; (Jowners(p;)|) then it is impossible for the owner of a more
important entity to be overridden by a group of people who own a less important
entity. The system will allow the proposed change if overall vote > 0 and veto
it otherwise.

3 Policy Examples

In this section we demonstrate the kinds of policies which are expressible in
our system by means of a series of examples set in a typical shared workplace

environment. A snapshot of the world configuration is presented in Section 2.3.
The top-level entity is named World and contains child entities Bob’s office
and Charlie’s office representing the offices of users named Bob and Charlie
respectively. We assume that ordinary employees by default “own” the entities
corresponding to their offices and for the sake of an interesting example we
further assume that Bob is the boss and also “owns” the top-level entity, World.

A user, called Alice, writes and deploys a “follow-me” music playing mobile
agent which follows her around, playing music where she goes. She is worried
about the agent running amok and so writes the following policy to enable the
system to monitor the agent:

(location = World,
formula = <(Alice[T] | Omusic player[T]|T), (1)
times = Always(10 seconds),
onfail = Log)

“for all time, wherever in the World I am, an agent called music player
should be in the same space as me. If this is not true for more than 10
seconds, log the error”

Remember that e = f | g holds whenever f and g are children of e and that T
matches anything, including 0, the absence of anything. In the formula above
the third T means that the formula will hold irrespective of whatever else is in
the same space as Alice.

The consequences of this policy are summarised as follows:

1. When the music player attempts to migrate, the system prevents the agent
from leaving the same room as the user. Note it does not directly force the
agent to move properly, it just stops it from moving inappropriately.

2. Upon observing Alice move to a new room the system assumes the agent is
broken if it has not followed her within 10 seconds. The system will log the
error for Alice to use in debugging her errant agent.

3. If Alice moves to a room which already has a music player agent the system
will not complain even if Alice’s agent fails to follow her.

Consider a second user, Bob, who is Alice and Charlie’s boss. Bob prefers
peace and quiet where he works. To prevent wandering music playing agents
disturbing him he writes a rule:

(location = World/x*,
formula = O-Bob[T]V (CBob|[T| A O-audio][-0]), @)
times = Always(3 seconds),
onfail = Freeze /.../audio/*)

“if ever I’'m in an office with a music playing agent, freeze the agent if it
has not left within 3 seconds”

The policy location field World/* causes the rule to be applied to all chil-
dren of the entity named World, i.e. in the diagram in Section 2.3 this corre-
sponds to all the offices, World | Bob’s office and World | Charlie’s office.
The same formula is applied individually to each of these entities. The for-
mula O0-Bob[T] holds if the entity Bob is nowhere inside the office; the formula
<OBob[T] holds if the entity Bob is somewhere inside the office and the formula
O-audio[—0] holds if there is not a non-empty audio context anywhere within
the office. Taken together, the whole formula may be read as

Either Bob is not inside the office concerned (in which case there is no
violation) or he is inside the office but there is no sound playing.

If the policy is violated in the office named z then the onfail action is expanded
to Freeze World/x/.../audio/* causing audio playing agents inside office = to
be frozen.

The consequences of this policy are summarised as follows:

1. If a music player agent attempts to migrate inside the same office as Bob
the request will be denied, assuming that his policy is not overridden by
anyone more senior in the company.

2. If a music player agent running on a laptop or PDA is physically moved
inside his office by someone else, that agent will be frozen.

Now consider what will happen when Alice enters Bob’s office. Clearly the
two policies 1 and 2 now conflict. Alice’s mobile agent will attempt to migrate
inside Bob’s office so the system will apply the conflict resolution rules described
in Section 2.8. Assuming the system knows that Bob “owns” the entity named
World (since he is the boss) his policy will override those belonging to Alice and
the migration request will be blocked.

Imagine a third user, Charlie, with more malicious intent. This user attempts
to lure hapless agents into his domain and then trap them there forever. He
decides to go after Alice’s music playing agent and writes the following;:

(location = World/Charlie’s office,
formula = <(music player[T)), (3)
times = Always(0 seconds),
onfail = Log)

“for all time the music player agent should remain inside my office.”

Consider what happens when Alice is enticed into Charlie’s office for a coffee
and biscuit. Initially Alice’s music player’s request to migrate into Charlie’s
office is accepted since it does not violate any policy (in fact it causes rule 3 to
no longer be in violation — an improvement!) When Alice leaves the office the
music player attempts to follow her. Charlie’s and Alice’s rules are now in direct
conflict. Unfortunately for Alice since Charlie “owns” his office his policies take
priority and therefore the agent’s request to leave is denied. What can Alice do?
The only solution for Alice in this situation is to appeal to a higher authority —
in this case Bob — someone whose policies are ranked higher than Charlie’s. Bob
may write a policy to evice Alice’s agent, overriding Charlie’s wishes.

4 Related Work

There have been many proposed mobile agent systems, e.g. TACOMA [12]
(Tromsg And COrnell Moving Agents), Agent-TCL [6] and Telescript [16]. Sim-
ilarities with our work include: mobile agents on mobile devices (PDAs [9] and
mobile phones [10]) in TACOMA and the concept of regions (similar to our en-
tities) in Telescript. Unlike our work, none of these previous systems attempted
to exploit spatial modal logic to bridge the gulf between the physical world of
people and the virtual worlds of mobile agents.

Jiang and Landay [11] consider risks to privacy in context-aware systems.
They base their work on the abstraction of information spaces, similar to our
entities. They envisage a system where documents have associated privacy tags
which are used to prevent the unwanted leakage of data. IBM Aglets [13] provide
a Java-based API for building mobile agents. Their security mechanism is based
on the Java-2 security model: code is selectively trusted or not depending on
its origin and/or the presence or absence of signatures. The LocALE (Location-
Aware Lifecycle Environment) framework provides a CORBA-based mechanism
to control the life-cycle (i.e. creation and destruction) and location of software
objects residing on a network. LocALE defines the notion of a Location Domain
— a group of machines physically located in the same place. The difference be-
tween all three of these systems and our work is that none of them allow the
specification of spatial mobility security policies.

Our work is inspired by the theoretical work on the Ambient Calculus [2]
and the Ambient Logic [3]. Although our model is a great deal simpler than
that proposed in the Ambient Calculus, it still allows us to combine together
the physical world of people and the virtual world of mobile agents into a single,
unified representation. The subset of the Ambient Logic used in our policy defi-
nitions remains computationally decidable and simple for humans to understand
while still allowing the a great deal of flexibility and expressiveness.

5 Conclusion and Future work

We have presented a technique for expressing spatial (i.e. location-based) security
policies for mobile agents. These policies can be used to make both positive and
negative assertions about the dynamic location of agents. Assertions may refer
to the location of both physical and virtual objects in the world, a feature useful
for location-aware Sentient applications. This technique provides a useful way
to constrain the mobility of agents, to use mobile agent technology safely and to
simplify the development process of future Sentient applications.

Our work was inspired by recent theoretical work on mobile computation,
specifically the Ambient Calculus [2] and the Ambient Logic [3]. In future we
would like to investigate how we could enhance our model of the world by adding
in Ambient Calculus-style process expressions representing agents. Entities like
people could be represented by mobile agents which have the capability to move
anywhere at any time. The process expression associated with a mobile agent

could be considered a characterisation of its behaviour — a contract with the
system — which could be checked for consistency with global policy before the
agent is allowed to run.

It is currently possible to do a small amount of up-front static checking of
security policies: policies about locations which are known to be fixed can be
checked at policy-install time. However, since we only have limited control over
the physical environment we cannot do much about a policy which says, “the
company laptop never leaves the building”. Clearly this policy could be violated
by an individual picking up the laptop and walking home with it.* Additionally,
some agents may wish to perform limited checking of policies at runtime. For
example Alice’s music player agent from Section 3 may pose the question “if
I enter Charlie’s office, will I definitely be allowed to leave?” in an attempt to
avoid being trapped.

Perhaps the most interesting avenue for future work is to investigate how to
scale the system up beyond one organisation. Our model of the world assumes
that everything can be arranged in a single hierarchy, with a world controller
in absolute control of everything. This approach might work adequately for a
small organisation but to scale any further we need to cope with a multitude of
problems: unreliable wide-area network communication, mutual distrust between
organisations etc. One possibility is to employ a two-level approach where within
an “intranet” agents are managed using this system while the “internet” case is
handled differently.

A further enhancement to this work is to provide support for multiple simul-
taneous parallel hierarchies, allowing the same object to exist in several places
at once. This facility could be used to represent different “views” of the same
environment (for an analogy consider that a user may be present and active in
more than one Internet “chat-room” simultaneously). When an object moves in
one world they may also have to move in another. Reconciling these parallel
views is an interesting topic of future work.

In summary, based on the research described in this paper we claim that our
work provides a strong foundation for the building of Sentient, location-aware
applications with a basis in theory. We believe that Sentient environments are
an interesting niche for applications developed using mobile agent technology
and our models help design these applications in a less ad-hoc manner.

Acknowledgements

This work was supported by the Schiff Foundation and the Engineering and
Physical Sciences Research Council (EPSRC) and sponsored by AT&T Labo-
ratories Cambridge Ltd. The authors would like to thank Richard Sharp for
valuable comments and Andy Hopper for all his advice and support.

* We could envisage a system in which the doors are under our control and can be
locked to prevent the laptop leaving. However consider that Health and Safety leg-
islation would require the doors to automatically unlock if there was a fire!

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Luca Cardelli. Semistructured Computation. In Proceedings of 7th Interna-

tional Workshop on Database Programming Languages, DBPL’99, Kinloch Ran-
noch, Scotland, UK, September 1999.

Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation Structures (FoS-
SaCS), volume 1378, pages 140-155. Springer-Verlag, 1998.

Luca Cardelli and Andrew D Gordon. Anytime, Anywhere Modal Logics for Mobile
Ambients. In Principles of Programming Languages (POPL), 2000.

World-Wide Web Consortium. XML Path Language (XPath) Specification,
November 1999. http://www.w3.org/TR/xpath/.

Umeshwar Dayal, Eric N. Hanson, and Jennifer Widom. Active database systems.
In Modern Database Systems, pages 434-456. 1995.

R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In M. Diekhans
and M. Roseman, editors, Fourth Annual Tcl/Tk Workshop (TCL 96), pages 9-23,
Monterey, CA, 1996.

Andy Hopper. 1999 Sentient Computing. Phil. Trans. R. Soc. Lond., 358(1):2349-
2358, 2000.

Yannis E. Toannidis and Timos K. Sellis. Conflict resolution of rules assigning values
to virtual attributes. In Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, 1989.

Kjetil Jacobsen and Dag Johansen. Mobile Software on Mobile Hardware — Ex-
periences with TACOMA on PDAs. Technical report, Department of Computer
Science, University of Tromsg, Norway, 12 1997.

Kjetil Jacobsen and Dag Johansen. Ubiquitous Devices United: Enabling Dis-
tributed Computing Through Mobile Code. In Proceedings of the Symposium on
Applied Computing (ACM SAC’99), February 1999.

Xiaodong Jiang and James A. Landay. Modeling Privacy Control in Context-Aware
Systems. IEEE Pervasive Computing magazine, 2002.

Dag Johansen, Robbert van Renesse, and Fred B Schneider. An Introduction to
the TACOMA Distributed System Version 1.0. Technical report, Department of
Computer Science, University of Tromsg, Norway, 6 1995.

Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley, 1998.

K. Schelderup and J. Olnes. Mobile Agent Security — Issues and Directions.
Lecture Notes in Computer Science, 1597:155-167, 1999.

David Scott, Alastair Beresford, and Alan Mycroft. Spatial policies for sentient
mobile applications. Draft Manuscript. Available on web page http://www.recoil.
org/~djs/papers/spatial02.html, December 2002.

J. Tardo and L. Valente. Mobile agent security and Telescript. In IEEE CompCon
’96, pages 58-63, 1996.

Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly & Associates,
Inc., Sebastopol, CA, 1992.

Mark Weiser. The Computer for the 21st Century. Scientific American, 9 1991.

