A Statically Allocated Parallel Functional
Language

Alan Mycroft!:? and Richard Sharp?

! Computer Laboratory, Cambridge University
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

2 AT&T Laboratories Cambridge
24a Trumpington Street, Cambridge CB2 1QA, UK

am@cl.cam.ac.uk
rwsQuk.research.att.com

Abstract. We describe SAFL, a call-by-value first-order functional lan-
guage which is syntactically restricted so that storage may be statically
allocated to fixed locations. Evaluation of independent sub-expressions
happens in parallel—we use locking techniques to protect shared-use
function definitions (i.e. to prevent unrestricted parallel accesses to their
storage locations for argument and return values). SAFL programs have
a well defined notion of total (program and data) size which we refer
to as ‘area’; similarly we can talk about execution ‘time’. Fold/unfold
transformations on SAFL provide mappings between different points on
the area-time spectrum. The space of functions expressible in SAFL is
incomparable with the space of primitive recursive functions, in partic-
ular interpreters are expressible. The motivation behind SAFL is hard-
ware description and synthesis—we have built an optimising compiler
for translating SAFL to silicon.

1 Introduction

This paper addresses the idea of a functional language, SAFL, which

— can be statically allocated—all variables are allocated to fixed storage loca-
tions at compile time—there is no stack or heap; and
— has independent sub-expressions evaluated concurrently.

While this concept might seem rather odd in terms of the capabilities of modern
processor instruction sets, our view is that it neatly abstracts the primitives
available to a hardware designer. Our desire for static allocation is motivated
by the observation that dynamically-allocated storage does not map well onto
silicon: an addressable global store leads to a von Neumann bottleneck which
inhibits the natural parallelism of a circuit. SAFL has a call-by-value semantics
since strict evaluation naturally facilitates parallel execution which is well suited
to hardware implementation.

To emphasise the hardware connection we define the area of a SAFL program
to be the total space required for its execution. Due to static allocation we see
that area is O(length of program); similarly we can talk about execution time.
Fold/unfold transformations [1] at the SAFL level correspond directly to area-
time tradeoffs at the hardware level.

In this paper we are concerned with the properties of the SAFL language
itself rather than the details of its translation to hardware. In the light of this
and for the sake of clarity, we present an implementation of SAFL by means of
a translation to an abstract machine code which we claim mirrors the primitives
available in hardware. The design of an optimising compiler which translates
SAFL into hardware is presented in a companion paper [11]. A more practical
use of SAFL for hardware/software co-design is given in [9].

The body of this paper is structured as follows. Section 2 describes the SAFL
language and Section 3 describes an implementation on a parallel abstract ma-
chine. In Sections 4 and 5 we argue that SAFL is well suited for hardware
description and synthesis. Section 6 shows how fold/unfold transformations can
represent SAFL area-time tradeoffs. Finally, Sections 7 and 8 discuss more theo-
retical issues: how SAFL relates to Primitive Recursive functions and problems
concerning higher-order extensions. Section 9 concludes and outlines some future
directions.

Comparison with Other Work

The motivation for static allocation is not new. Gomard and Sestoft [2] describe
globalization which detects when stack or heap allocation of function parameters
can be implemented more efficiently with global variables. However, whereas
globalization is an optimisation which may in some circumstances improve per-
formance, in our work static allocation is a fundamental property of SAFL en-
forced by the syntactic restrictions described in Section 2.

Previous work on compiling declarative specifications to hardware has cen-
tred on how functional languages themselves can be used as tools to aid the
design of circuits. Sheeran’s muFP [12] and Lava [13] systems use functional pro-
gramming techniques (such as higher order functions) to express concisely the
repeating structures that often appear in hardware circuits. In this framework,
using different interpretations of primitive functions corresponds to various op-
erations including behavioural simulation and netlist generation. Our approach
takes SAFL constructs (rather than gates) as primitive. Although this restricts
the class of circuits we can describe to those which satisfy certain high-level prop-
erties, it permits high-level analysis and optimisation yielding efficient hardware.
We believe our association of function definitions with hardware resources (see
Section 4) to be novel.

Various authors have described silicon compilers (e.g. for C [4] and Oc-
cam [10]). Although rather beyond the scope of this paper, we argue that the
flexibility of functional languages provides much more scope for analysis and
optimisation.

Hofmann [6] describes a type system which allows space pre-allocated for
argument data-structures to be re-used by in-place update. Boundedness there
means that no new heap space is allocated although stack space may be un-
bounded. As such our notion of static allocatability is rather stronger.

2 Formalism

We use a first-order language of recursion equations (higher order features are
briefly discussed in Section 8). Let ¢ range over a set of constants, z over vari-
ables (occurring in let declarations or as formal parameters), a over primitive
functions (such as addition) and f over user-defined functions. For typograph-
ical convenience we abbreviate formal parameter lists (z1,...,2;) and actual
parameter lists (e1,...,er) to Z and € respectively; the same abbreviations are
used in let definitions. SAFL has syntax of:

— terms e given by:

eux=c|xz|if e; then ey else e3|let Z=¢€ in eg
)

a(er, ... Jem‘z’ty(a)) | fer,..., Carity(f)
— programs p given by:
p = fun f1(Z) = e;y and ...and f'"1(Z) = erp,
fun f™(Z) = en and ...and f(T) = epny, -
We refer to a phrase of the form
fun (%) = e;1 and ...and fii(Z) = ey,

as a (mutually recursive) function group. The notation f¥ just means the jth
function of group i. Programs have a distinguished function main (normally f""™)
which represents an external world interface—at the hardware level it accepts
values on an input port and may later produce a value on an output port.

To simplify semantic descriptions we will further assume that all function
and variable names are distinct; this is particularly useful for static allocation
since we can use the name of the variable for the storage location to which it is
allocated.

We impose additional stratification restrictions' on the e;; occurring as bod-
ies of the f¥; arbitrary calls to previous definitions are allowed, but recursion
(possibly mutual) is restricted to tail recursion to enforce static allocatability.
This is formalised as a well-formedness check. Define the tailcall contexts, TC by

TC ::=[]|if e; then ey else TC|if e; then TC else e
|let Z=¢€ in TC

! Compare this with stratified negation in the deductive database world.

The well-formedness condition is then that, for every user-function application
f%(€) within function definition f9%(&) = ey in group g, we have that:

i<gV(i=gAICETC).emu =Cf9(e)])

The first part (i < g) is merely static scoping (definitions are in scope if previ-
ously declared) while the second part says that a call to a function in the same
group () as its definition (g) is only valid if the call is actually in tailcall context.

3 Implementing SAFL

We give a translation [-] of SAFL programs into an abstract machine code
which mirrors primitives available in hardware (its correctness relies on SAFL
restrictions). Each function definition corresponds to one block of code. In order
to have temporaries available we will assume that each expression and sub-
expression is labelled by a unique label number (or ‘occurrence’) from which a
storage location can be generated. Label names are assumed to be distinct from
variables so we can use the notation M, and M, to mean the storage location
associated with variable x or label £ respectively. We use the notation £ : e to
indicate expression e has label £. The expression

if x=1 then y else f(x,y-1)

might then be more fully written as (temporarily using the notation e instead
of £ : e used elsewhere):

(if (X€21=1£22)€2 then y€3 else (f(XMl,(y€421_1£422)£42)€4)€1

We write f.formals to stand for (My,,..., M,,) where Z is the tuple of formal
parameters of f (which are already assumed to be globally distinct from all other
variable names). Similarly, we will assume all functions f¥ in group i leave their
result in the storage location M i+ yesy1c—this this is necessary to ensure tailcalls
to other functions in group i behave as intended.? (The notation i* in general
refers to a common resource shared by the members of function group i.)

In addition to the storage location as above, we need two other forms of
storage: for each function group ¢ we have a location L;. to store the return
link (accessed by JSR and RET); and a semaphore S;. to protect its (statically
allocated) arguments, temporaries and the like from calls in competing PAR
threads by enforcing mutual exclusion.

The abstract instructions for the machine are as follows:

2 A type system would require that the result type of all functions in a group are
identical —because they return each others’ values—s0 M i+ ;o5 has a well-defined
size.

m:=m/' Copy m' to m.
(ma,...,mg) = (m},...m}) Copy the m} to the m; in any order.
m ;= PRIMOP,(my,...my) Perform the operation corresponding to built-in
primitive a.

LOCK(S) Lock semaphore S.
UNLOCK (S) Release semaphore S.
JMP ep) Branch to function entrypoint ep—used for tail-
call.
JSR(m, ep) Store some representation of the point of call in
location m and branch to function entrypoint ep.
RET(m) Branch to the instruction following the point of
call specified by m.
COND(m, seqq, seqs) If location m holds a ‘true’ value then execute
opcode sequence seq; otherwise seg,.
PAR(seqq,...,seq;,) Execute opcode sequences seqq, . .., seq;, in paral-

lel, waiting for all to complete before terminating,.

Instructions are executed sequentially, except that JSR, JMP and RET alter the
execution sequence. The PAR construct represents fork-join parallelism (each of
the operand sequences are executed) and COND the usual conditional (one of
the two operand sequences is executed).

Assuming e is a sub-expression of a function body of group g the compilation
function [e]’m gives an opcode sequence which evaluates e to storage location m
(we omit g for readability in the following—it is only used to identify tailcalls):

[eJm =m :=c
[x]m =m = M,
[if (£:e1) then e; else e3]m =

|[€1]]M1f§
COND (M, [es]m, [es]m)
[let (z1,...,2zx) = (€1,...,€x) in e]m =
fA]]R([[el]]me B [[ek]]MZ‘k);
€ep|m

[a(fy :e1,..., 8 ex)]m =
PAR([[el]]MfU sy [[ek]]MZk);
 mi= PRIMOP,(My,, ..., My,)

[f7(l:er,.. Lk s eg)]m =
PAR([[el]]Mlla L) [[ek]]Mlk);
LOCK (Six);

Mfij.formals = (Mfla tey Mlk);
m:i= Mf"*.result;
) UNLOCK (S..)

[f7(l - ery... by ex)]m =
PAR([ex]My,, - - -, [ex]Me,,);
Mfij.formals = (Mfla"')Mfk); lf’L =g
JMP(EntryPt;;)

ifi<g

Finally we need to compile each function definition to a sequence of instruc-
tions labelled with the function name:

EntryPt;; :

[[fun fz] (xla .- 7$k) = eij]] = [eij]]sz"*.result;
RET(L;.)

The above translation is naive (often semaphores and temporary storage loca-
tions are used unnecessarily) but explains various aspects; an optimising compiler
for hardware purposes has been written [11].

Proposition 1. The translation [e] correctly implements SAFL programs in
that executing the abstract machine code coincides with standard eager evaluation

of e.

Note that the translation would fail if we use one semaphore-per-function instead
of one-per-group. Consider the program

fun f(x) = if x=0 then 1 else g(x-1)
and g(x) = if x=0 then 2 else f(x-1);
fun h(x,y) = x+y;

fun main() h(£(8),g(9));

where there is then the risk that the PAR construct for the actual arguments
to h will simultaneously take locks on the semaphores for £ and g resulting in
deadlock.

4 Hardware Synthesis using SAFL

As part of the FLaSH project (Functional Languages for Synthesising Hardware)
[11], we have implemented an optimising silicon compiler which translates SAFL
specifications into structural Verilog. We have found that SAFL is able to express
a wide range of hardware designs; our tools have been used to build a small
commercial processor.?

The static allocation properties of SAFL allow our compiler to enforce a
direct mapping between a function definition:

f(@)=e
and a hardware block, Hy, with output port, Py, consisting of:

— a fixed amount of storage (registers holding values of the arguments Z) and
— a circuit to compute e to Py.

3 We implemented the instruction set of the Cambridge Consultants XAP processor:
http://www.camcon.co.uk; we did not support the SIF instruction.

Hence, multiple calls to a function f at the source level corresponds directly
to sharing the resource Hy at the hardware level. As the FLaSH compiler syn-
thesises multi-threaded hardware, we have to be careful to ensure that multiple
accesses to a shared hardware resource will not occur simultaneously. We say that
resource, Hy, is subject to a sharing conflict if multiple accesses may occur con-
currently. Sharing conflicts are dealt with by inserting arbiters (cf. semaphores
in our software translation). Program analysis is used to detect potential sharing
conflicts—arbiters are only synthesised where necessary.

Our practical experience of using the FLaSH system to design and build real
hardware has brought to light many interesting techniques that conventional
hardware description languages cannot exploit. These are outlined below.

4.1 Automatic Generation of Parallel Hardware
Hammond [5] observes:

“It is almost embarrassingly easy to partition a program written in a
strict [functional] language [into parallel threads]. Unfortunately, the
partition that results often yields a large number of very fine-grained
tasks.”

He uses the word unfortunately because his discussion takes place in the context
of software, where fairly course-grained parallelism is required to ensure the
overhead of fork/join does not outweigh the benefits of parallel evaluation.

In contrast, we consider the existence of “a large number of very fine-grained
tasks” to be a very fortunate occurrence: in a silicon implementation, very fine-
grained parallelism is provided with virtually no overhead! The FLaSH compiler
produces hardware where all function arguments and let-declarations are eval-
uated in parallel.

4.2 Source-Level Program Transformation

We have found that source-level program transformation of SAFL specifications
is a powerful technique. A designer can explore a wide range of hardware imple-
mentations by repeatedly transforming an initial specification.

We have investigated a number of transformations which correspond to con-
cepts in hardware design. Due to space constraints we can only list the transfor-
mations here:

Resource Sharing vs Duplication: Since a single user-defined function cor-
responds to a single hardware block SAFL provides fine-grained control over
resource sharing/duplication.

Static vs Dynamic Scheduling: By default, function arguments are evalu-
ated in parallel. Thus compiling f(4)+f(5) will generate an arbiter to se-
quentialise access to the shared resource Hi. Alternatively we can use a
let-declaration to specify an ordering statically. The circuit corresponding
to let x=f(4) in x+f(5) does not require dynamic arbitration; we have
specified a static order of access to Hs.

Area-Time Tradeoffs: We observe that fold/unfold transformations correspond
directly to area-time tradeoffs at the hardware level. This can be seen as a
generalisation of resource sharing/duplication (see Section 6).

Hardware-Software Partitioning: We have demonstrated [9] a source-source
transformation which allows us to represent hardware/software partitioning
within SAFL.

At the SAFL level it is relatively straightforward to apply these transformations.
Investigating the same tradeoffs entirely within RTL Verilog would require time-
consuming and error-prone modifications throughout the code.

4.3 Static Analysis and Optimisation

Declarative languages are more susceptible to analysis and transformation than
imperative languages. In order to generate efficient hardware, the FLaSH com-
piler performs the following high-level analysis techniques (documented in [11]):

Parallel Conflict Analysis is performed at the abstract syntax level, return-
ing a set of function calls which require arbitration at the hardware level.

Register Placement is the process of inserting temporary storage registers
into a circuit. The FLaSH compiler translates specifications into intermedi-
ate code (based on control/data flow graphs) and performs data-flow analysis
at this level in order to place registers. (This optimisation is analogous to
minimising the profligate use of M, temporaries seen in the software trans-
lation [-].)

Timing Analysis (with respect to a particular implementation strategy) is
performed through an abstract interpretation where functions and operators
return the times taken to compute their results.

4.4 Implementation Independence

The high level of specification that SAFL provides means that our hardware de-
scriptions are implementation independent. Although the current FLaSH com-
piler synthesises hardware in a particular style,* there is the potential to develop
a variety of back-ends, targeting a wide range of hardware implementations.

In particular, we believe that SAFL would lend itself to asynchronous cir-
cuit design as the compositional properties of functions map directly onto the
compositional properties of asynchronous hardware modules. We plan to de-
sign an asynchronous back-end for FLaSH in order to compare synchronous and
asynchronous implementations.

5 A Hardware Example

In order to provide a concrete example of the benefits of designing hardware in
SAFL consider the following specification of a shift-add multiplier:

4 The generated hardware is synchronous with bundled data and ready signals.

fun mult(x, y, acc) =
if (x=0 | y=0) then acc
else mult(x<<1l, y>>1, if y.bitO then acc+x else acc)

From this specification, the FLaSH compiler generates a hardware resource,
Hpu1t, with three data-inputs: (%, y and acc), a data-output (for returning the
function result), a control-input to trigger computation and a control-output
which signals completion. The multiplier circuit contains some control logic, two
1-place shifters, an adder and three registers which are used to latch data-inputs.
We trigger Huu1t by placing argument values on the data-inputs and signalling
an event on the control-input. The result can be read from the data-output when
a completion event is signalled on the control-output.

These 3 lines of SAFL produce over 150 lines of RTL Verilog. Synthesising a
16-bit version of mult, using Mentor Graphics’ Leonardo tool, yields 1146 2-input
equivalent gates.® Implementing the same algorithm directly in RTL Verilog took
longer to write and yielded an almost identical gate count.

6 Fold/Unfold for Area-Time Tradeoff

In section 4.2 we observed that the fold /unfold transformation [1] can be used
to trade area for time. As an example of this consider:

fun £ x = ...
fun main(x,y) = g(f(x),£f(y))

The two calls to f are serialised by mutual exclusion before g is called. Now use
fold/unfold to duplicate f as £’, replacing the second call to f with one to £°.
This can be done using an unfold, a definition rule and a fold yielding

fun £ x = ...
fun £ x = ...
fun main(x,y) = g(f(x),£’(y))

The second program has more area than the original (by the size of £) but runs
more quickly because the calls to £ (x) and £’ (y) execute in parallel.
Although the example given above is trivial, we find fold/unfold to be a use-
ful technique in choosing a hardware implementation of a given specification.
Note that fold/unfold allows us to do more than resource/duplication sharing
tradeoffs. For example, folding/unfolding recursive function calls before compil-
ing to synchronous hardware corresponds to trading the amount of work done
per clock cycle against clock speed—mult can be mechanically transformed into:

fun mult(x, y, acc) =
if (x=0 | y=0) then acc
else let (x’,y’,acc’) = (x<<1, y>>1,
if y.bitO then acc+x else acc) in

5 This figure includes the gates required for the three argument registers.

if (x’=0 | y’=0) then acc’
else mult(x’<<1, y’>>1, if y’.bit0 then acc’+x’ else acc’)

which takes half as many clock cycles.

7 Theoretical Expressibility

Here we consider the expressibility of programs in SAFL. Clearly in one sense,
each such program represents a finite state machine as it has a bounded number
of states and memory locations, and therefore is very inexpressive (but this
argument catches the essence of the problem no more than observing that a
personal computer is also a finite state automaton).

Consider the relation to Primitive Recursive (PR) functions. In the PR def-
inition scheme, suppose g and h are already shown to be primitive recursive
functions (of k¥ and k + 1 arguments), then the definition of f

fO,z1,...,2) = g(x1,...,2k)
fn+1,21,...,2) = h(f(n, 21, .., %K), T1,- .., Tk)

is also primitive recursive of k+1 arguments.® We see that the SAFL restrictions
require h to be the identity projection on its first argument, but that our defini-
tional scheme allows recursion more general than descent through a well-founded
order (n+1 via n eventually to 0 in the integer form above). In particular SAFL
functions may be partial.

Thus we conclude that, in practice, our statically allocatable functions rep-
resent an incomparable subset of general recursion than that subset specified by
primitive recursion. Note that we cannot use translation to continuation-passing
form where all calls are tailcalls because SAFL is first order (but see the next
section). Jones [7] shows the subtle variance of expressive power on recursion
forms, assignability and higher-order types.

As a slightly implausible aside, suppose we consider statically allocatable
functional languages where values can range over any natural number. In this
case the divergence from primitive recursion becomes even clearer—even if we
have an assertion that the statically allocated functional program is total then we
cannot in general transform it into primitive recursive form. To see this observe
that we can code a register machine interpreter as such a statically allocated
program with register machine program being Ackermann’s function.

8 Higher Order Extensions to SAFL

Clearly a simple addition of higher-order functions to SAFL would break static
allocatability by allowing recursion other than in the program structure. Con-
sider for example the traditional

5 In practice we widen this definition to allow additional intensional forms without
affecting the space of functions definable.

let g(n,h) = if n=0 then 1 else n * h(n-1,h)
let f(n) = g(n,g)

trick to encode the factorial function in a form which requires O(n) space.”

A simple extension is to allow functions to be passed as values, and function
valued expressions to be invoked. (No closures can be constructed because of
the recursion equation syntax). One implementation of this is as follows: use a
control-flow analysis such as 0-CFA to identify possible targets of each indirect
call (i.e. call to a function-valued expression). This can be done in cubic time. We
then fault any indirect calls which are incompatible with the function definition
hierarchy in the original program—i.e. those with a function f¥ containing a
possible indirect call to f9* where g > i (unless the indirect call is in tailcall
context and g = 7). Information from 0-CFA also permits a source-to-source
transformation to first-order using a case branch over the possible functions
callable at that point: we map the call e’'(€) where e’ can evaluate to g, h or i
into:

if e'=g then g(€) else if e'=h then h(&) else i(&)

The problem with adding nested function definitions (or A-expressions) is
that it is problematic to statically allocate storage for the resulting closures.
Even programs which use only tail-recursion and might at first sight appear
harmless, such as

fun r(x) = (some function depending on x)
fun f(x,g) = if x=0 then g(0)
else f(x-1, r(x) o g

require unlimited store. Similarly, the translation to CPS (continuation passing
style) transforms any program into an equivalent one using only tailcalls, but at
the cost of increasing it to higher-order—again see [7] for more details.

One restriction which allows function closures is the Algol solution: functions
can be passed as parameters but not returned as results (or at least not beyond
the scope any of their free variables). It is well known that such functions can be
stack implemented, which in the SAFL world means their storage is bounded.
Of course we still need the 0-CFA check as detailed above.

9 Conclusions and Further Work

This paper introduces the idea of statically allocated functional languages which
are interesting in themselves as well as being apposite and powerful for expressing
hardware designs. However there remains much to be done to explore their uses
as hardware synthesis languages, e.g. optimising hardware compilation, type
systems, synchronous versus asynchronous translations, etc.

" Of course one could use an accumulator argument to implement this in O(1) space,
but we want the statically allocatability rules to be intensional.

Currently programs support a ‘start and wait for result’ interface. We realise
that in real hardware systems we need to interact with other devices having
internal state. We are considering transactional models for such interfaces in-
cluding the use of channels. Forms of functional language input/output explored
in Gordon’s thesis [3] may be also be useful.

Acknowledgments

We are indebted to Neil Jones, Martin Hofmann, Simon Peyton-Jones and the
anonymous referees for comments which have improved this paper.

References

1. Burstall, R.M. and Darlington, J. A Transformation System for Developing Re-
cursive Programs, JACM 24(1), 1977.

2. Gomard, C.K. and Sestoft, P. Globalization and Live Variables. Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 166-177. ACM Press. 1991. SIGPLAN NOTICES, vol. 26, number 9.

3. Gordon, A.D., Functional Programming and Input/Output. Distinguished Disser-
tations in Computer Science. Cambridge University Press, 1994.

4. Greaves, D.J. An Approach Based on Decidability to Compiling C and Similar,
Block-Structured, Imperative Languages for Hardware Software Codesign. Un-
published memo, 1999.

5. Hammond, K. Parallel Functional Programming: An Introduction, International
Symposium on Parallel Symbolic Computation, World Scientific, 1994.

6. Hofmann, M. A Type System for Bounded Space and Functional In-Place Update.
Proc. ESOP’2000 Berlin, Springer-Verlag LNCS, 2000.

7. Jones, N.D. The Expressive Power of Higer-order Types or, Life without CONS.
J. Functional Programming, to appear.

8. Milner, R., Tofte, M., Harper, R. and MacQueen, D. The Definition of Standard
ML (Revised). MIT Press, 1997.

9. Mycroft, A. and Sharp, R.W. Hardware/Software Co-Design using Functional
Languages. Submitted for publication.

10. Page, I. and Luk, W. Compiling Occam into Field-Programmable Gate Arrays. In
Moore and Luk (eds.) FPGAs, pages 271-283. Abingdon EE&CS Books, 1991.

11. Sharp, R.W. and Mycroft, A. The FLaSH Compiler: Efficient Circuits from Func-
tional Specifications. Technical Report tr.2000.3, AT&T Laboratories Cambridge.
Available from: www.uk.research.att.com

12. Sheeran, M. muFP, a Language for VLSI Design. Proc. ACM Symp. on LISP and
Functional Programming, 1984.

13. Bjesse, P., Claessen, K., Sheeran, M. and Singh, S. Lava: Hardware Description
in Haskell. Proceedings of the 3rd ACM SIGPLAN International Conference on
Functional Programming, 1998.

