
- --- - ------

1.cs IU lOt I j r ~,f< P~r

Polymorphi c Type Schemes and Recursive Def i nit i ons

Al an Mycroft
Programming Met hodol ogy Group

Ins t itut ionen for Informat i onsbehandling
Chal mers Tekniska Hogs kol a
5-4 12 96 Goteborg, Sweden

Abstract : An extension to Milner's polymorphic type sys tem is proposed and proved
cor rect. Such an ext ens i on appea rs to be necessary for the class of lang uages with
mutual l y recursive top- l evel defi ni t i ons . We can now ascribe a more general type to
such definitions than before .

1. Introduction

The polymorphic type sys t em introduced in ML /GMW/ and formally proved correct by

Milner /M i/ has become popular. That this is so seems to be due to two factors.
Firstly the polymorphism provi des a type system which is sound (i.e. can detect all

type er ror s) but without t he irritating need to duplicate similar code at different

ty pes as occur s in Al go168 or Pascal: a function can be defined to operate on lists

_of type 0. rather than having to define separate functions for operating on lists of

integers and on lists of booleans. (Incidentally Holmstrom /Ho/ demonstrates that a

po lymorphic program' can be translated into a monomorphic one which uses a Pascal-like

type system.) Secondly, the polymorphic type system can be used without user specified

types and types are then inferred. Thi s makes it useful for interactive work.

This popularity has brought the use of such type schemes into other languages,

_~ _not ably HOPE /BMS/ and Prolog /MO/. The problem is that the exemplified languages

have a mutually recursive top level of definitions which, as implemented, non-trivially

extend the ML type system without semantic justification. The problem we encounter

is that in Mi lner's scheme the . mut ually recursi~e definition of map and squarelist in

Ir.ap(f, r.) = if nul l f z) then 2 e l-se cons(f{hd .e.), map{f,tl 2))

squarelist(l) = map(Ax,X L , t)
gi ves	 the types

map : (int-~int) x int list -;- int list

squarelist: int list int list
7

whereas their sequential ly recursive definition (first of map, then of squarelist) gives

t he 'ex pec t ed' type of
rna p: "if as • (a->B) x a l i s t -+ 13 1i s t

Wor se s t il l, if a third mu t ual ly recursive definition were to use map at a different

ty pe (e.g. bool list) then th e three definitions could not be well-typed. This fact is

seemi ngl y not well-known and much reduces the usefulness of the type system f or l ang­

uages wi th such a fea tu re. Al th ough in the above exarnp] e the type checker could det er ­

mi ne t ha t map and squarelist are not mutually recursive and so treat them as sequent ial ly

recur s i ve def i niti ons , we avoid such an i dea s ince small changes in the program can

dras t i cal ly change the potential calling graph. Moreover this scheme fails to solve the

-,,..

underly ing probl em whi ch also exists in ML; th ere are non-contrived examples assoc iated
wi th "obj ec t or iented" programmi ng which fall foul of the res t r i c tion in a less avoi d­

able man ner and whose resol ut i on requ i res duplication of functi onal ly identical code .
(See sec t i on 8 .)

In the l anguage Exp, introduced in section 2, we have a recursion opera tor in which
t he above def i ni ti on can be wr it ten

l e t (map,squarel i st) = fi~ (ma p,squarelist). (~(f, ~) , A~).
We cent re i n on t hi s and not e t ha t IMi ,OMI give th e same type rules for fix x.e as they
would for FIX(\ x.e) where FIX is assumed t o be a predeclared func tion of type

U' Ct.(CL-+a.) -+a.. Our solution is to give new, and more general, type rules for the former

t han t he l at te r although, of course, they are intended to have the same semantics. In

par ti cul ar , we wi l l allow dif ferent occurences of x in e to take on different instance
ty pes of tha t of x , subject to the types of x and e matching in a sense made precise
1ate r.

This idea is entirely pa ral l el to the more general treatment of l e t x=e i n e'

compared wi t h (\x . e')e which are semantically equivalent, but the first has more

general ty pe rul es which allow x to take on different instance types in e ' unlike the

second. See IM il for more discussion on this point which is closely related to the
idea of generic and non -gener ic ty pe variables.

Related work includes IMOI in which the restriction on recursive definitions was

fi rst l i f t ed for the spec ial ca se of Prol og and !O~S! in which cer t a in definiti ons

such as f i x f. Ax.f which we will consider ill-typed can be given the recursive

(infinite) type ~T. 'ti a. CLT = 'ti o ~ · · .aO-+a.l •••• Note that they seek to give semanti cs
to recursively defined types, whereas our aim is to give (finite) types to recursive

definitions. Thi s paper attempts to f'ol l ow the notation of !D~1/ who set the initia l

work of IMi! in a clearer framework and who sketched completeness. A completeness

proof has also been given by IHo/.

Sections 2 and 3 give the syntax of and operators on expressions and types. Section

4 follows by giving semantics for both and section 5 gives a semantically sound type

inference system and proves the resulting inferrable types are principal. Section 6

- uses unification to give a (semi-) algorithm for most genera l type assignment which

i s sound and complete for inference. This is Fo l l owed by section 7 which gives an

effectiv~, though over-restrictive, condition to ensure termination.

2. The language

We fo l l ow !r~il and define the language Exp of expressions e to be given by the

(abstract) syntax

e ::= x I e e I I AX.e f i.-.: x. e Le t x=e in e I

where x ranges over a set Id of i dent i f i ers . We omit Milner's if e t hen e' eZ e e"

construct since its effect (for ty pe-checking purposes) is exactly that of the

app l i cat i on IF e e' e" where IF is an i dent ifier of ty pe 'tJ ,1. bool -loo:+Q.-ret .

3. Types

.Types are absen t f rom the la nguage Exp and we now introduce the i r syntax and oper ­

at ors . Discuss i on of t he i r semant ic s occurs in section 4.

We assume a set TVar of type v l'i ab l es ranged over by .S.y and a set TCons of type

cons tructor each with their ari ty. For simplicity we here assume that TCons = {i nt ,

boo Z,+} having arity 0 except for + which has arity 2 and written infixed.

The set Type of (simpZe) types , ranged over by T is given by the set of arity­

respec tin g te rms in the gra mmar

Type - TVar I TCons(Type •... ,Type).

The set TScheme of -type schemes , ranged over by a is similarly given by

TSch eme - Ty pe I 'tJ TVar.TScheme.

It will be la t er useful to adjo in an element err to TScheme. MonotJpes are types which

do not contain type variables and are ranged over by~. We have nat ural concepts of

free and bound ty pe variables. A' type scheme is closed if it has no free type var iabl es.

Following I Mi,DMI but not IMPSI our type schemes have quantification ('tJ) at the outer­

--most level only.

A (type) substitution S i s a f inite map TVar-rType often written h , / ::t 1, •.• ,T/':).n}.

I t ;s nat urally ext ended t o a map Type+Type and, by acting on free variables only, to a

- map LScheme-Lscheme , We say o ' i s an i ns t ance of 0 if 0 ' =5.: for some substitution S. --­

We say 0'= VB, ... Sm .T' is a gener i c i ns t anc e of 0= 'tJ a.'···~n.T if there is a substit­
, _ ut i on S acting only on {Q, · • •a } such that i '5St and no Si is free in o. We write thisn

as 0=0 ' (/Mi/ uses o~o ') . We naturally write 0 =0 ' if o ~ a'~J. Under this equivalence

_ TScheme is a partial order with least element '[«,«: It can be completed by adding the _

el ement err with X ~ err. We will later consider monotonic functions on TScheme and it is

- convenient to draw part of it (fig 1). We note that in the ~ order' type variables act

l i ke niladic type constructors and that infinite properly ascending chains have limit

eri>. Moreover any subset X of TScheme has a gr eat es t Loiaer bound nX wi th n{}= err'. .,
- - If Xis a subset of TVar and oeT-Scheme we define X(o) = 'tJ , •• · In. o where the 0-; are - ­

free in 0 but not in X. X is retractive on TScheme.

Figure l : the cpo (TScheme)!':)

4. Semant ic s

Th i s sec t i on defines the semantics of Exp and types. The interpreting doma i n for
Exp wi l l be ~i ven by V which sa t i sf ies the i somorphism

V = lB + 71. + (V -)- V) + {w2'ong }1
where B is t he 3- el ement cpo of t ruth val ues, II the cpo of integers with 1 and + the

coal esced sum. The three injection functions are called i nB, in and inp r espectively.z
We can now def ine the not i on of enirironmeni: Env , ranged over by 1;, as a finite

(par t ial) map Id V. Given such a f] we define dOI11(Yl) to be the subset of Id on which it

is defined. I t is the n standard that we 'def i ne a semantic function
E: Ex p + Env -;. V

in the obvious manner (see /Mi/).

We now f'o l l ow /~tPS/ and give closed type schemes a semantics in a similar manner.

The meanings of types will naturally be (Ze f t) i dea l s , that is downward closed and

directed comp l et e IMi ,MPS/ subse t s of V whi ch do not contain wrong . The set of all such

ideal s is called IV' The semantics of a closed type scheme 0 is T(.) where T:TScheme-I V

- is given by

T [bOoZ'] = i' "B(lB)

T [~~ ~] = i n 7.(II)

<J

T [T 11
] = i nF{ f e V+V : f(T [T) C T[TI] }

T [oJ = n n[u] : os , JJ monotype)

- -Lemma / MS/ :

o s 0' :::;. T [0] ~ T [0']

FolTowing normal practice we define the space of t ype asswnptions TA, ranged over by
A, to be the set of fin i t e maps Id -)- TScheme. A is closed if Ax is closed for al l x in

_ dom(A) . We will write A{x:o} on type assumptions to stand for the usual A{ o/ x} which
denotes the function agreeing with A except at x where its value is a. By (helpful)

1

--abuse of notation we will define T on TA -}- (f(Env) by

j T [A = {n e Env: dom(') :.:dom(A). 'tJx s domt n}. 11(X) E T['A;g]}.

The atomic proposition A Fe: cr is now defined. Intuitively it means that 2

21 whenever e is evalua ted with its free variables having values in types indicated by A

. t hen its result wi l l have type o. Forma lly it is defined by

A F e: c <~ \j n e T A • EITe] n e: TIT0]
rovi ded A and 0 a re closed. Otherwise we define A F e: a to be true iff all its closed

i nst ances 'are .

5. Type Inference

In this section we def i ne a relat ion _ t- _ :_ ~ CTA x Exp x TScheme) which will
enable us to deduce some t rue things about _ ~ _ :_ . It is defined to be the least

5

2

rela t i on sa t i s fy i ng the fol l owi ng axioms. In this we follow IOMI, but the f i x ru l e is

new and d i scus sed af t erwards.

TAUT: A 1-	 xo (if Ax =o)

~'--_ :_a (i f not in A)

A r e :o ' A e: 'rio..a

SPEC:	 ~ (if OEO ') GEN: - e_ __ 0. free

COMP: ~	 e : T'+T A t e ' :T ' ASS: A{X: T' } t e: T

A ree': T A r AX.e: T' +T

FIX:	 A{x: o} r e: a LET: A L
I e: o A{x: o} r e ' :T

A r f i x x.e: 0 A t l e t x=e in e' : T

In IMi/ the FI X ru l e is given as (modulo change of notation)

FIX": A{X: T} t e: T

A f i x x. e: T

and IOM/ implicitly give t he sa me .rule by treating f ix x.e as FIX(Ax.e) where FIX is

- a n identifier of type 'ri o.0(o.-..a)-+-a. The proper generalisation (of FIX over FIX") is

the basis of this work and enables the examples of the introduction to be typed in a

na t ural way. since the type 0 given to x in fix x.e can now be instantiated (with SPEC)

-a t different occurrences of x wi th in e. This extension is justified since it still

results in only true things about F ue inq f.- lnfe'YTable. Formally this is:

fh eor em (semantic soundness)
1 .. For all A,e,G we have ·A r e : c ::::;> A ~ e r o

Proo f

/D~1/ claim a proof by induction on e, to which we add the case for f i x x .e .

--As sume , therefore, A{x: o} r e: J, its implicant A ~x: o } F e: a. By the FIX rule we can

deduce A r fix x . e :a ..and hence we must show A 1= fixx.e:a.

L:et A' = Alx ;o) and n be an arbitrary member of T IT ATI .

We have E[fi x x.e] n = Y(Av.E [e nl v/ xl) = U Vi

wher e Vo =l a nd v . 1 = E[e] n{v./x }
1+	 1

By assumption A' F e: a that is 'ri n' e: T["A'] .EIT eD n ' e: T[a] ,

but we also have v e: T 0- =9 n{v/ x} e: T [A'] by definition of T

hence v e: T [a TI =? E[ell nl v/ xl c T 0:..

So "o =1 e: T[oIl and by t he above Vi e: T a ~ vi + 1 - l [all .

Hence E[fi x. -x . e 11 = U V e: T o by directed completeness of idea ls.

i

Si nce n was arbitrary th e la s t line holds for all 11, which is just the definition of

- A 1= fi x x.e :o as requi r ed .

., Not e : To empha s ise the point, if we are to have a computable set of types there can be

no corresponding sem ntic completeness . When we come to discuss completeness it wil l

be t he syntactic c~n letene of an algorithm to infer instances of A ~ e: a.

1

As ment ioned in sect ion 3, we adjoin e r> !' to TScheme so it becomes a cpo ...lith

n{} = err . We still requi re a £ TScheme- {er r } for A ~ e: a to hold ~

IO MI	 show tha t the type inference rul es (exce pting our new FIX ru1e) are pri nc i pal,
i.e.	 for a giv en A and e, l e t tin g a = n {a ": A ~ e: a I } , we have

a %err =9 A 1- e :a. (0 is a principal type scheme for e in A.)

Of cour se , by t he INST rul e we also have
{a': A1- e :a ' } = fa ' : a-a ' } , which is a principal (right) ideal of TScheme- Lar-»}

We now show t ha t this resul t extends to the FIX rule, and derive a monotonic opera tor
on TScheme used later. We prove the result by induction, assuming the e below cont ains

at most	 n ~ O nested f ix expressions and show it holds for n- l ,

For a given A £ TA and f ix x.e e Exp, define the function
F~·e: TScheme .or TScheme: [a .or n { a ' : A{x: o} I- e: c'}

err _ .or erl'

We will often omit the sub- and super-script of F if the context is clear.
Lemma :

(i) F is monotonic and (ii) F(a)%err =9 A{x:c} :- e:F(c).
Proof :

(i)	 By l emma 1 of IOMI we have that a l~a 2 &A{x:a2} ~ e: a' ~ AtX: Ol } e: a'

by transforming derivations. The result follo\'JS from Xl"? X;:'=9 n X l~ n X 2 .

(ii) By the principality of types for A{x:a}and e (inductive hypothesis).

Now, by t he FIX inference rul e, possibly followed by an INST rule we have:
..	 Proposi tion 5. 1:

A I- f ix x , e : a <=;> a~ F~ ., e (a) & a%err
=

- In other words the derivable types of fix x.e are just the non-er r pre-fixpoints of F.
, ~ Moreover the 1eas t fixpoint is the most general (~ smallest) such a and is expressible,

1(
.as	 U F V .a) if this is non- ez-r-. If the limit is en' then fi:;:x.e has no deducible

- ty pe under A. Th e former case gives a principal type scheme to fix x.e thus completing
t he inductive step. (In the latter case there ;s nothing to prove.)
Remark:

The induction over' e could have been carried out without reference to the result ­

of IOMI and this would gi ve us a characterisation of principality without reference _
to an algorithm for cal culating principal types. (Principality is like confluence.) ­

The followi ng proposition illustrates how the fixpoint iteration on types progresses

and also shows t ha t our approach treats the type of a recursive definition as the limit

of types gained by expanding out the definition a finite number of times.

Propos it i on 5. 2 :

[F~ · e) n (Va .a) = n { a : A ~ l e t x=l in e.x=e in .:.:J in x: o}

Proof: n It ·.~1l1 ''3C

St ra ight forward induction on n using pricipality.

(t): Adding A e:er r as an axiom simplifies the formalism in some places.

6. Type Ass i gnment

Following /D~1/ we define an algorithm (here semi-algorithm since we do not guarantee

termina t i on but see secti on 7) whi ch giv en a t ype assignment A and a t erm e produces a

subst i tu t ion S and a type T such tha t SA e:T. The produced Sand T are in some

sense the mo s t general such pa i r . If there is no such S and ~ the program fails or
loops.

Recall the definition of Yeo) from section 3. If A is a type assignment we will

wri te A(o) to mean X(~) where X is the set of free type variables of A. Recall also

the exis tence of a unification algorithm:

Proposition /Ro/:

There is an algorithm U: Type x Type ~ Subst + {fai l} such that

--- (i) If U(T1,LZ) ~ f ai l then there is no substitution 5 with 511 ~ STL •

(i i) If U(T1,LZ) ~ S then 5"1 = 5" 2 and any other 51 with this property can be factored

5' = RS f or some substitut ion R.

Mo reover the produced 5 is i dempotent and only acts on variables of T1 and Tz .

We can now define algorithm W, which copies that of 10M/ exactly except for the

f i x case and typographical corrections.

Algo rithm W(A,e):

case e of

X: i fAx = \.i a 1••• a then . (1 { 81/ a1, •• ', 8/ Cinh) 'wh-ere the Bi are new" n ' . T . '
else fail and 1 the identity function

= W(A,e,}e1 e2: let (51,T,)

let (52' T 2) ~ W(5
 1A, e2)
let V U(5 2T1, T2+6) where 6 ;s new

u.;
in (1/5 25 1 ~ VB)

Ax.e,: let (Sl,T) = W{A {x:(3}, e where 8 is newt l)

i n (Sl' S18+ 1)

tet x=e1 i n eZ ~

let (5, , T l) = W(A,~

let A1 -: = {x: S1 A(1)} (51A)

let (S2, TZ) = W(A
 1,e2)

in (5251, T Z)

f i x x. e 1:

1et 00 = ~ B.S wher~ B is any type variable l1}

l e t A = A x: aO} (2)
O

repea t let (S o 1, T. 1)' = W(A .,e) for i ~ O (3)
1+ 1+ 1 1

1et a . 1 = 5. 1A.(-,. 1) (4)
1+ 1+ 1 1+

let A. 1 = (5. 1A .){x:~. 1} t s)
1+ 1+ 1 1+

until 5. l a . = o . 1 (6)
1+ 1 1+

in (Si+1"' .5 25 1, 1;+1) P)

I .

------..- - .. ._.

8

No tes :

1. This	 def i ni tion assumes a l anguage like ML jGMWI in which there a re separate fa i l

val ues whic h cause (fail ure) termi nat i on of the whole algorithm. We could s imul a t e

.such val ues	 by us i ng expl icit injec t i ons and tests into a sum type but this complic­

a t es th e defi ni tion f or no gain in clarity.

2. The HOPE l anguage JBMSj requi res a type scheme 0 to be specified for each top-level

defin i t i on and hence the f i x case could be replaced by the code

l et AO = A{x:o}

let (5 1, T 1) = W
(AO,e1)
if S1 = SlAO(l l) the n (Sl,T,) else' fail

which merely checks that the user did supply a fixpoint.

- 3. If Wis impl emented in a si de- effecting style and the effect of line 4 achieved by

side-effec ti ng l ;+l then we mu s t arrange for this to be undone on loop exit (or t o

use a new generic instance of o . , in the result). Similar comments apply to note 2.
1+

- 4 .	 The definition of th e f i x x.e case is taken from that of the l e t case in that, for

any n, W(A, f i x x.e) defines Si (i ~n) and Tn so that

W(A, Le t: x=l i n J e t x=e in . .u!" x) = (Sn ... Sl' Tn) or both fail to exist.
1 .

n t une s

This	 is apparent from the code.

Proposition (Syntactic) soundness and completeness of W for 1-; Given A,e we have

(i)	 If W(A, e) succeeds with (S,y) then SA ~ e:T

(ii)	 If for some S' ,0 we have S'A ~ e: c then

ta) W(A,e) succeeds with (S,y) and

(b) S'A = RSA and R(SA(T)) ~ a for some substitution R.

Proof:

A fa i rly convincing proof can be constructed from the equivalence of approximants ."'

such as given in note 4 above and f i x expressions together with proposition 5.2 giving .
1

- a principal type for such approximants. However , we prefer to give a separate proof of
_ cor rect ness based on the suggested proof by induction on e in IOM/. We accordingly give

the	 fix x.e case inductively assuming (i) for e:

Suppose that the f ix iteration terminates after n steps (otherwise there is nothing
7

to	 prove. For O~i ~n we have

. Si+1 Ai ~ e: Ti+ 1 by the induction hypothesis and 1ine (3) of W.

Si+1Ai ~ e: oi + l by line (4) and GEN steps.

We hence have

0 ,+ 1	 E { 0 ' : (S, 1A.) I- e: 0 ' } = {0 ": (S . 1A.){x :S. 1a 1' } 1- e: 0 I }
1 1+ 1 1+ 1 1+

e
 so	 ° i +1 n {a ' : (S. 1A.) {x:S . 1<J·} ~ e i c ' l = Fx
A (S . 10 .) .1+ 1 1+ 1 s·

. 1 . 1+ 1

By using 0n+1 = Sn+ lon we have 1+ 1

e
o ~ Fx ·e A (on+1) = Fx •e (0) since the two subscripts to Fx.
nt 1 s 1	 Sn+1", S2S A n+1

n+ n	 on 1y di ffera t x,

By proposit i on 5. 1 cherac t er i s i nq pre- f i xpoi nt s we thus have

Sn+l.· .S,A 1- f i x x.e : 0n+ 1
~nd we can d~rive a correspondi ng formula with 0n+ l replaced with T +1 by INST.n
Therefore the i nduct i ve case is proved with (line 7) S ~ Sn+1 .,.Sl and T = T +1.n

7. Termination Properties

The above arguments about soundness and completeness were only concerned with Wsucceed­

ing i f and only if there is a certain ~ derivation. They we re not concerned with what

behaviour Wexhibited in failing to give a successful answer. As in the case without

fi x W may fail because unification fails or because a variable does not have a type

--- i n the type assu mption. But now a new behaviour can occur - one of the type fixpoint

i te ra tions may fail to converge. This new case can actually happen: consider the

expres s i on J~ix f.Ax.f. It gives a a given by \;f a ···0 a "';":i + ••• -+0: Of course,n 0 n' 0 1 n:
compl eteness means that the associated F has no non -er r fixpoint either. As mentioned

in the introduction, the work of IMPSI is concerned with giving such expressions in fin­

i t e or circular types.

We now turn to the problem of deriv1ng effective termination criteria w1th which

we can pred ict beforehand whether a given fixpoint iteration will converge. Th t s section

is of a much more tentative nature than the previous sections but is included because

-'- it illustrates the problems and because it does give an effective termination criterion

which however is a little too strong - it faults some programs which have a convergen t _
.­

type iteration. (Perhaps this provides a good reason for adopting a type system like

~ HO P E in which the user has to give the types of all recursive functions thereby avoiding

the problems of this section.)

. "
We can see the problem of determining Whether an iteration will converge is very .

'-'­ 1ike that of the "occur check" in un i f ica t t on which forbids the unification of a with -

a term containing a. Taking the above example, we see that a type .Wh1Ch llmits the 9

0i .:would need to satisfy the equations:
O'=T and o='tiCt, ••• Ctn. T' -+T ';;:

which is impossible on symbol counting grounds. The problem appears to pose dlfflculties

for unification due to th e _ inequality since un1ficat10n 1S based on equality relations.

2_'_	 The problem does not appear to have the flavour of undec i daoi l t ty out an exact charac t -.;

erisation of convergence does not seem very close at hand e1ther.

The	 par t ial solution proposed here is to add the fall owi ng 11nes of :'code to W just

-- - before t he 11 ne numbered (1)
nlet (5, T') = W(A. Ax 1••• Ax . e1) (0.1)

1e t (r 1-+· •·-+T ~ -+t 0) = T' (0.2)

letV. = U(T~,-O') (0.3)
1 1

where e' is the expression derived from e, by replacing its n free occurrences of x1
with the new 1i dent i' f i er-s x ' ...xn . The effect is still to allow x to take on different

2

--- - - ------ --

ty pes a t diff erent occurrences in e (but in a sl ightly more restr-icted manner as we1
demonst rat e i n the exampl e below). Basically, the idea is that the type 1 1 of

;,x" ' . ;,xn.e i i s t hen checked (0.3) to ensure that there is a unifier of ri and TO'
Thi s serves t o f a i l t he cal l t o W(by t he sid e-effect of U) if I' has a form l i ke
a + (S+a) produced by Af . ;'x. f from our exampl e f ix f. ~x.f. Note that the un ification

of t ~ and T6 is sole ly perfo rmed to check this and any side effec t mus t be undone.
Theorem :

Wi s now (i) sound (ii) not complete and provided A is closed (iii) total.

Proof sketch es:
(i) Since the modi f i ca t i on does not enable Wto give any answer it did not give before.
(ii) An example is

f i x f. l e t g=f t.n ... g(true) ... g(3) •••

Thi s is f a i l ed by t he modi f i ca t ion to Wbecause 9 is given a type (not a type scheme)

due to line (0.1) and so cannot be differently instantiated at its two occurrences .
.- Programs of th i s form can however be well typed accordi ng to [- (and hence the 01d

ver s i on of W). Not e that if compl et eness is thought to be a vital requirement it coul d

be rest ored by res trictin g ~ by giving a weaker fix rule along the lines of
IFIX A ~ ;,x1 ••• ;,x n . e~ ; '1,+" '+1 1 (if Ti '!:: a = 'tf a1· · ·ak. T); n-+ 0 O

A r f i x x.e,: a (and a 1... a k are not free in A)

which corresponds to our derived rule for the expression

f ix x • (AX, ••• x •e1) x ••• x

n

used bel ow. FIX' is of intermediate power between our FIX and ~li1ner 's FIXII .defined in _
sec t i on 5.

'-5- (i i 1) ~Je first show that the iteration c +' = F~·e(an) always converges in a finite .::n

number of steps (to a type scheme or err) subject to the given condition.
'0

lWe start by noting that f ix x.e and f ix x.(\X) x ••• x have the same sem---­
1··;,xn.e

~ "antics and the former can be well typed in type assumption A whenever the latter .can ~

(by transforming derivations). Here e ' is derived from e as indicated above.
' 8 ---- Now let A be an arbitrary type as sumption. Associated with the former expression ;s -- ­

1 ~ the type scheme transformation F~·e given in section 5. We can similarly define one
for the latter. We define

G~·e(G) = n{ol: A{x;o} ~ (AX' ••• xn.el)x ••• x: o '} 2

,,_._BY the above remark on type derivations we have that F~·e(::J) !: G~·e(a) .and hence if
an iteration (G)n('1;/ 0.' '.1.) converges to a non-ere- value then so does (F)n('I;/~' a.). ­

In t he following we will assu me that the free type variables of A are contained in

{Y l ' YZ",,} and that t a . } and {p . } are two further disjoin t subsets of TVar.
" 1 nNow, le tting 'tf 2,·· · Sm. l1-+·· ·+Tn-+TO = n {a ' : A ~ AX "'Ax .~I; c ' l be the most

general ty pe for the A-expression and a = \;/ a with l' = {o.(i_1)k+j/ ~j;' = j ~k }T,1···a k.T

we can wri t e (by the Cm'lp ru1e)

G~' e ('J) = 'tf a , ••• "n k8, •.• 8 .Uh, ,-:- ')... U(Tn' In)(~ 0) m
if this exists and where the unifiers can only instantiate {a. ;·B · } , J

= err otherwise.

Fi na l l y , we show that t he exis t ence of V. with V.(:.) = V.(T) and the V. not
1 1 1 1 O 1

instantiat i ng t he {Yj } gives a convergence c r i t e r ion f or Gr('i a" :d and henc e for

Fr (Va "a) . It s uff i ce s to show tha t there is a a ~ e:p!' such t ha t a :! G(o) si nce
i(by monotoni c ity G Va·cd _ Gi(o) ~ a and all bounded increasing sequences are eventual l

cons tan t.

We start with the case n=1. If 'V(r1) = V(T) then we may as sume that only Yi are f l-eeO

i n V(TO) by using V' = RV if necessary to instantiate any B

i
.

Now G(V(r1» = 'tJ B1 · · · 8 , U(V(' 1) , r ,) (r O)
 m
5 V S1• " •8 '. V(TO) . since V unifies V(T 1) and 1 and is hence

m
less general than U(V(T) ,T1 1).

= V(T1) as nOll is free in V(TO) = V(r1).

For the case n>1 we consider

Gi(o) = aU V l···ak Bl··· Sm.U(r,Ti)(lO).

Ea ch G. is mon otonic and the mutual p r.e ~f ~xpoints of the G. are the pre-fixpoints of G.
1	 . .. 1

1() (1 n i
Moreover G I;j ::t" ;j, ~ G ... G ('t/ a· ,1.) ~ G (\f a·:).). Hence the result. n 1)

To apply the result to W in the absence of free variables of A (i.e. no enclosing

J..- expressions)we merely not e that .F i(\l' o:·a) is exactly a . of the iteration.
1

8. ML example

The following example which I ac t ually encountered in my role of programmer (it

occurred in the ML compile :) shows that not all typing problems can be resolved by

sort i ng recu r sive definitions into 'really' mutually recursive cliques.

~_	 I n i t t i s t and dZist are isomorphic data structures having operations hd,tl ,null, dhd, _

dtl pdnull giving respective list processing primitives. The code skeleton was:

let ,rec	 f(x: structure) = case x of

basecase(y): ...

listcase(y): g(y~ (hd,tl,nu11));

dlistcase(y): g(y~ (dhd,dtl,dnull)))

• :I	 and g(x:o., (xhd: C1-;.B~ xtl: :Y.~~ xnull: a-+boot) =

if xnu11(x) then () else (f(xhd x); g(xtl x , (xhd,xtl~xnu11)))

---:!.- whi ch was (over the Ia rqer body of code) a natural programming solution involving

pa rame t er i s i ng common code. The f ix rule we suggest can successfully typecheck this. ,

9 . Concl us i ons

. _ We have ex t ended ~lilner's polymorphic type scheme to a11ov, more general typing of

recursive de fin i tions as required for languages with mutually recursive top level envir ­

onments as we l l as some examples in ML itself. We did this for a minimal language, EXp,

~ - but t he techn i que should readily extend to a larger' set of type constructors.

We have given an a l gor i thm like Milner's, but with a type iteration to determine t he

type of recur s i ve definitions. A natural question is whether there is an algorithm

to do this without ite ration or how t o f i nd an exact termination criterion. Pragmat ic­

ally, there may be grounds for restr ic t ing thc usc of this extended algorithm (as it

stands) t o the t op level of def i ni t ions only, due the the exponential cos t of anal ­
ysing nest ed j~ x def i ni t i ons .

Acknowl edgment s

Thanks to S~ren Ho l m s t r ~m for helpful comment s and to Chris Wadsworth for the

fi x f.Ax.f exampl e . Financ ial support was provided by Chal mers and the Swedish STU.

Ref erences

IBMSI	 Burstall, R. , Macqueen, 0.8. and Sannella, D.T.

HOPE: an experi mental applicative language.

Int ernal re port, Dept. of Computer Science, Edinburgh University, 1980.

IOMI	 Damas , l. and Milner, R.

Principal type schemes for functional programs.

Proc. 9th Aet~ Symp. on Pri nci p1es of programm ing 1anguages, 1982.

IGi·H~1	 Gordon, M., Milner, R. and Wadsworth, C.

Edinburgh LCF.

Springer-Verlag LNCS 78, 1979.

IHol	 Ho l ms trom, S....
Polymorphic type schemes and concurrent computation in functional languages. _ .

PhD thesis, Dept. of Computer Science, Chalmers TH, 5-412 96 Goteborg, 19H3.

l~lil i·l i 1ner, R.

A theorY of type polymorphism in programming.

." Journal of comouter and system sciences, 17(3), 1978 .

li'lOI	 Mycroft, A. and O'Keefe . R.A.

A polymorphic type system for Prolog.

To appear in Artificial Intell igence. Prel iminary version in DAI research

report. Dept. of Artificial Intelligence, Edinburgh Universlty.

IMPS;	 MacQueen, O.B•• Plotkin, G.D. and Sethi. R.

An ideal model for recursive polymorphic types.

Proc. 11th ACM Symo. on Principles of programming languaqes. 1984.

li·1SI	 MacQueen, U.~. and Sethi, R.

A semantic model of tYDes for applicatlve languages.

Proc. Aspenas work shop 1982.

I Ro/	 Robinson, J.A.

A machine oriented logic based on the resolution Drinciple.

JACi~ 12(1), 1965.

