LN(S /{[,‘ ,":'r’-(/I*["»AL A ﬁ(’ra,’ﬂn»wmh (TAU(\'U'(/7((‘{[1

J o

Polymorphic Type Schemes and Recursive Definitions

Alan Mycroft
Programming Methodology Group
Institutionen for Informationsbehandling
Chalmers Tekniska Hogskola
S-412 96 Goteborg, Sweden

Abstract: An extension to Milner's polymorphic type system is proposed and proved
correct. Such an extension appears to be necessary for the class of languages with
mutually recursive top-level definitions. We can now ascribe a more general type to
such definitions than before.

1. Introduction

The polymorphic type system introduced in ML /GMW/ and formally proved correct by
Milner /Mi/ has become popular. That this is so seems to be due to two factors.
Firstly the polymorphism provides a type system which is sound (i.e. can detect all
type errors) but without the irritating need to duplicate similar code at different
types as occurs in Algol68 or Pascal: a function can be defined to operate on lists

_of type a rather than having to define separate functions for operating on lists of
integers and on lists of booleans. (Incidentally Holmstrom /Ho/ demonstrates that a
polymorphic program can be translated into a monomorphic one which uses a Pascal-like
type system.) Secondly, the polymorphic type system can be used without user specified
types and types are then inferred. This makes it useful for interactive work.

This popularity has brought the use of such type schemes into other languages,

notably HOPE /BMS/ and Prolog /MO/. The problem is that the exemplified languages
have a mutually recursive top level of definitions which, as implemented, non-trivially
extend the ML type system without semantic justification. The problem we encounter
is that in Milner's scheme the mutually recursive definition of map and squarelist in

map(f,2) = <ZFf null(L) then & else cons(f{hd &), map(f,tl 2))

squarelist(1) = map(Ax.x?, &)
gives the types

map: (int*int) x 1int }ist =+ int list

squarelist: 1int 1list - int list
whereas their sequentially recursive definition (first of map, then of squarelist) gives
the 'expected' type of

map: YaRe(a*B) x o list » B Tist
Worse still, if a third mutually recursive definition were to use map at a different
type (e.g. bool 1ist) then the three definitions could not be well-typed. This fact is
seemingly not well-known and much reduces the usefulness of the type system for lang-
uages with such a feature. Although in the above example the type checker couwld deter-
mine that map and squarelist are not mutually recursive and so treat them as sequentially
recursive definitions, we avoid such an idea since small changes in the program can
drastically change the potential calling graph. Moreover this scheme fails to soive the

underlying problem which also exists in ML; there are non-contrived examples associated
with "object oriented" programming which fall foul of the restriction in a less avoid-
able manner and whose resolution requires duplication of functionally identical code.
(See section 8.)

In the Tanguage Exp, introduced in section 2, we have a recursion operator in which

the above definition can be written
let (map,squarelist) = fiz (map,squarelist). (A(f,2). ..., A%. ...).

We centre in on this and note that /Mi,DM/ give the same type rules for fix x.e as they
would for FIX(Ax.e) where FIX is assumed to be a predeclared function of type
va.(osa)+a. Our solution is to give new, and more general, type rules for the former
than the latter although, of course, they are intended to have the same semantics. In
particular, we will allow different occurences of x in e to take on different instance
types of that of x, subject to the types of x and e matching in a sense made precise
later.

This idea is entirely parallel to the more general treatment of Ilet x=e in e
compared with (Xx.e')e which are semantically equivalent, but the first has more
general type rules which allow x to take on different instance types in e' unlike the
second. See /Mi/ for more discussion on this point which is closely related to the
idea of generic and non-generic type variables.

Related work includes /MO/ in which the restriction on recursive definitions was
first 1ifted for the special case of Prolog and /DMS/ in which certain definitions
such as fiz f. Ax.f which we will consider i11-typed can be given the recursive
(infinite) type wut. Va.oot = Yage+r.apoa,>-+-, Note that they seek to give semantics
to recursively defined types, whereas our aim is to give (finite) types to recursive
definitions. This paper attempts to follow the notation of /DM/ who set the initial
work of /Mi/ in a clearer framework and who sketched completeness. A completeness
proof has also been given by /Ho/.

Sections 2 and 3 give the syntax of and operators on expressions and types. Section
4 follows by giving semantics for both and section 5 gives a semantically sound type
inference system and proves the resulting inferrable types are principal. Section 6
uses unification to give a (semi-) algorithm for most general type assignment which
is sound and complete for inference. This is followed by section 7 which gives an
effective, though over-restrictive, condition to ensure termination.

2. The language

We follow /Mi/ and define the language Exp of expressions e to be given by the
(abstract) syntax
e :i= x | ee' | xx.e | fixx.e | let x=e in e'

where x ranges over a set Id of identifiers. We omit Milner's if e then e' else e"

construct since its effect (for type-checking purposes) is exactly that of the

n

—If X is a subset of TVar and o=TScheme we define X{o) = V;11---an.c where the a; are

application IF e e' e" where IF is an identifier of type V a.bool+aro-n.
3. Types

.Types are absent from the language Exp and we now introduce their syntax and oper-

ators. Discussion of their semantics occurs in section 4.

We assume a set TVar of type variables ranged over by «,B8,y and a set TCons of type
constructors each with their arity. For simplicity we here assume that TCons = {int,
bool,»} having arity 0 except for + which has arity 2 and written infixed.

The set Type of (simple) types, ranged over by 1 is given by the set of arity-

respecting terms in the grammar

Type ::= TVar | TCons(Type,...,Type).
The set TScheme of type sechemes, ranged over by o is similarly given by

TScheme ::= Type | ¥ TVar.TScheme.
It will be later useful to adjoin an element err to TScheme. Monotypes are types which
do not contain type variables and are ranged over by u. We have natural concepts of
free and bound type variables. A type scheme is elosed if it has no free type variables.
Following /Mi,DM/ but not /MPS/ our type schemes have quantification (¥) at the outer-
most level only.

A (type) substitution S is a finite map TVar-Type often written {t /%1,...,rn/an}.
It is naturally extended to a map Type-Type and, by acting on free variables only, to a

“map TScheme+Tscheme. We say o' is an Znstance of o if ¢'=S¢ for some substitution S.

We say o' = VBy.. Bm.T' is a generic instance of o= Von1---:Ln.T if there is a substit-
ution S acting only on {a1---an} such that 1'=St and no Bi is free in g. We write this
as o=c' (/Mi/ uses o2c'). We naturally write o=0' if o=s'Ss. Under this equivalence
TScheme is a partial order with least element Va.z. It can be completed by adding the
element err with xSerr, We will later consider monotonic functions on TScheme and it is

“convenient to draw part of it (fig 1). We note that in the = order type variables act
like niladic type constructors and that infinite properly ascending chains have limit
err. Moreover any subset X of TScheme has a greatest lower bound [|X with []{} = err.

free in o but mot in X. X is retractive on TScheme.

err

'u***uzr \
\\/

\J'a-ar*—m, Yoo VOLBY w*B—*‘{

o*int. bool int « Yad. a+B
\\}l.a/

_Figure 1: the cpo (TScheme, <

N —

4, Semantics

This section defines the semantics of Exp and types. The interpreting domain for
Exp will be given by V which satisfies the isomorphism
V =B + Z + (V=+V) + {wrong}
where B is the 3-element cpo of truth values, Z the cpo of integers with l and + the

coalesced sum. The three injection functions are called Zn,, Zn, and Zn, respectively.

B? Z F
We can now define the notion of enviromment Env, ranged over by n, as a finite
(partial) map Id»V. Given such a n we define dom(n) to be the subset of Id on which it
is defined. It is then standard that we define a semantic function
£: ‘Exp.= Env 2%
in the obvious manner (see /Mi/).

We now follow /MPS/ and give closed type schemes a semantics in a similar manner.
The meanings of types will naturally be (left) ideals, that is downward elosed and
directed complete [Mi,MPS/ subsets of V which do not contain wrong. The set of all such
ideals is called IV‘ The semantics of a closed type scheme o is T(o) where T:TScheme*IV

is given by
T boot] = ir:B(B)
T[int] fagl Z)
T =] in {f e V-V £(T[x]) € T[]}
THo] = OV]: o=y, u monotype}
“Lemma /MS/:
P oo = T[] € T[o']

FolTowing normal practice we define the space of type assumptions TA, ranged over by
A, to be the set of finite maps Id = TScheme. A is closed if Ax is closed for all x in
dom(A). We will write A{x:c} on type assumptions to stand for the usual A{o/x} which
denotes the function agreeing with A except at x where its value is o. By (helpful)
“abuse of notation we will define T on TA » [(Env) by
TIAT = {n e Env: dom(n)=dom(A), ¥x e dom(n). n{x) e TTAQ},

]

The atomic proposition A F e : o is now defined. Intuitively it means that
whenever e is evaluated with its free variables having values in types indicated by A
Tthen its result will have type o. Formally it is defined by

Akec < vneTA]EJeln e T[o]
provided A and o are closed. Otherwise we define A e:o to be true iff all its closed
instances are,

5. Type Inference

In this section we define a relation _F : € {TA x Exp x TScheme) which will
enable us to deduce some true things about | : . It is defined to be the least

9

relation satisfying the following axioms. In this we follow /DM/, but the fiz rule i$
new and discussed afterwards.

TAUT: A} x:0 (if Ax=0)

SPEC: A | e:o (if oEc’') GEN: A |- e:o (if @ not free in A)
Al ewd' Al e: Ya.o
COMP: A} e: '+t A} e':T' ABS: Afx:t'} | e:t
AFee': 1 AF Ax.e: T'sT
FIX: A{x:o} | e:o LET: A} e:o Alx:o} | e':T
A} fix x.e: o Al let x=e in e': T

In /Mi/ the FIX rule is given as (modulo change of notation)
FIX": A{x:t} } e:t
A} fix x.e: 1
and /DM/ implicitly give the same .rule by treating fiz x.e as FIX()x.e) where FIX is

an identifier of type Y a-(ora)+a. The proper generalisation (of FIX over FIX") is
the basis of this work and enables the examples of the introduction to be typed in a
natural way, since the type o given to x in fiz x.e can now be instantiated (with SPEC)
at different occurrences of x within e. This extension is justified since it still
results in on]&_ true things about k being b inferrable. Formally this is:

Theorem (semantic soundness)

- For all A,e,c we have A} e:o0 = AFE e:g

Proof |

/DM/ claim a proof by induction on e, to which we add the case for fiz X.e.
'"_Assume, therefore, A{x:c} } e:c, its implicant Ai{x:o} | e:o. By the FIX rule we can
deduce A | fixzx.e:o .and hence we must show A F fixzx.e:o.
Let A' = A{x:o} and n be an arbitrary member of T A] .
We have E[[fix x.e][n = Y(Av.E [[e]] n{v/x}) = Uvi

i
where vy = | and v, , = ELell nlvy/x3

By assumption A' k e:o that is yn' e T[AT] .Efelln' ¢ T[o] ,
= but we also have v € T[o]] = niv/x} e T[I A'T] by definition of T
hence ve T[[o] = Efeln{v/x} e T[o] . :
Sovg=]eT[d andby the above v, e T[o]] = v, 4 ¢ T[] .
Hence E[l fiz x.en = ||v. e T[[c] by directed completeness of ideals.
Since n was arbitrary the last line holds for all n, which is just the definition of
A [fiz x.e:c as required.
Note: To emphasise the point, if we are to have a computable set of types there can be
no corresponding semantic completeness. When we come to discuss completeness it will
be the syntactic completenecss of an algorithm to infer instances of Al e:o.

=8

As mentioned in section 3, we adjoin err to TScheme so it becomes a cpo with
[1{} = err. We still require o & TScheme-{err} for A | e:c to hold’

/DM/ show that the type inference rules (excepting our new FIX rule) are principal,

i.e. for a given A and e, letting o = [|{c': A} e:c'}, we have

o =err = Af e:o. (o0 is a principal type scheme for e in A.)
0f course, by the INST rule we also have

{cg': Al e:g'} = {o': o=c¢'}, which is a principal (right) ideal of TScheme-{err}
We now show that this result extends to the FIX rule, and derive a monotonic operator
on TScheme used later. We prove the result by induction, assuming the e below contains
at most nz0 nested fix expressions and show it holds for n+l.

For a given AcTA and fZx x.e € Exp, define the function
Fg'e: TScheme + TScheme: o + []{o': A{x:0} |} e:c'}
erye» -+ err

We will often omit the sub- and super-script of F if the context is clear.
Lemma :

(i) F is monotonic and (ii) F(o)=err = A{x:c} |- e:F(c).
Proof': .

(i) By lemma 1 of /DM/ we have that o,%50, & A{x:0,} | e:g' = Alx:0;} | e:o'

by transforming derivations. The result follows from X212 %= [1Xa=[]X2.

(ii) By the principality of types for A{x:c}and e (inductive hypothesis).
Now, by the FIX inference rule, possibly followed by an INST rule we have:
Proposition 5.1: ' ‘

Al fiz x.e:0 & oﬁFz’e(o) & owerr

In other words the derivable types of fiz x.e are just the non-err pre-fixpoints of F.
Moreovef the least fixpoint is the most general (= smallest) such o and is expressible
as || F'(Va.a) if this is non-err. If the Vimit is err then fizx.e has no deducible
~type under A. The former case gives a principal type scheme to fiz x.e thus completing
the inductive step. (In the latter case there is nothing to prove.)

Remark:

The induction over e could have been carried out without reference to the result
of /DM/ and this would give us a characterisation of principality without reference
to an algorithm for calculating principal types. (Principality is like confluence.)

The following proposition illustrates how the fixpoint iteration on types progresses
and also shows that our approach treats the type of a recursive definition as the limit
of types gained by expanding out the definition a finite number of times.

Proposition 5.2:

Proof: n times

Straightforward induction on n using pricipality.

(t): Adding A | e:err as an axiom simplifies the formalism in some places.

6. Type Assignment

Following /DM/ we define an algorithm (here semi-algorithm since we do not guarantee
termination but see section 7) which given a type assignment A and a term e produces a
substitution S and a type T such that SA - e:t. The produced S and 1 are in some
sense the most general such pair. If there is no such S and 7 the program fails or
loops.

Recall the definition of X(s) from section 3. If A is a type assignment we will
write A(ag) to mean X(o) where X is the set of free type variables of A. Recall also
the existence of a unification algorithm:

Proposition /Ro/:

There is an algorithm U: Type x Type =+ Subst + {fzZl} such that
(i) If U(tyi,t2) £ fail then there is no substitution S with Sty = St,.

(ii) If U(ty,t2) = S then St, = St, and any other S' with this property can be factored

S'" = RS for some substitution R.

.

I

Moreover the produced S is idempotent and only acts on varijables of 7, and t,.

We can now define algorithm W, which copies that of /DM/ exactly except for the
fix case and typographical corrections.
Algorithm W(A,e}:

case e of

X: if AX = ¥ ayeera .1 then (1, {81/a1,---,8n/ankd-where the 8: are new

else fail : and 1 the identity function
e, e, let (SI’T) = N(A,ei)

let (2, T) H(S1A, ez)

let ¥ = (2Ty 12+B) where B is new

in (V52 , Va) —
AX. e let (S 11Ty) = W(A{x:B}, e1) where B is new

in (31, S 8+r1)
let x=eq in e,: -

Tet (51,T1) = W(A’Eil

let A, = (5,A){x: S,A(7,))

Tet (Sz,tz) = W(2)

in (5,8, T,)

fiz X.ey:

let gp = VB.8 where B is any type variable (1)

let Ay = A{xigy} (2)

repeat let (S1+1,r1+1) N(Ai,e1) for i20 (3)
let o, = S1+1A1(“-) (4)
lTet A1 | (5, i1 1){x g1+1} (5)

until $i51%9 = %4 (6)

in (Sy 4425554 Typq) (7)

Notes:
1. This definition assumes a language like ML /GMW/ in which there are separate fail
values which cause (failure) termination of the whole algorithm. We could simulate

such values by using explicit injections and tests into a sum type but this complic-
ates the definition for no gain in clarity.

2. The HOPE language /BMS/ requires a type scheme ¢ to be specified for each top-level
definition and hence the fix case could be replaced by the code

let A0 = A{x:o}
let (S;,7y) = W(A,.e)
if Sy0 = §?ﬁ6(r1) then (51,11) else' fail
which merely checks that the user did supply a fixpoint.

3. If W is implemented in a side-effecting style and the effect of line 4 achieved by
side-effecting Tyt then we must arrange for this to be undone on 1loop exit (or to
use a new generic instance of Cig in the result). Similar comments apply to note 2.

4. The definition of the fiz x.e case is taken from that of the ez case in that, for
any n, W(A, fix x.e) defines Si (ign) and Tn so that
W(A, Let x=| in let x=e in .,.,in X) = (S 1, T,) or both faijl to exist.

n times

This is apparent from the code.

Proposition (Syntactic) soundness and completeness of W for |-; Given A,e we have

(1) If W(A,e) succeeds with (S,t) then SA |- e:t
(i) If for some S',o we have S'A |- e:g then
(a) W({A,e) succeeds with (S,t) and -
(b) S'A = RSA and R(SA(T)) = ¢ for some substitution R.
Proof:
A fairly convincing proof can be constructed from the equivalence of approximants
such as given in note 4 above and fix expressions together with proposition 5.2 giving

“a principal type for such approximants. However, we prefer to give a separate proof of

© _correctness based on the suggested proof by induction on e in /DM/. We accordingly give

the fix x.e case inductively assuming (i) for e:
Suppose that the fix iteration terminates after n steps (otherwise there is nothingx
to prove. For 0=isn we have
- S5 hy Foe: T1+1 by the induction hypothesis and line (3) of W.
SPIPLY Foe: I, by 1ine (4) and GEN steps.
We hence have

1+1

05,4 € {0 (51.+1A1.) F e:wo'} = {o': (S 1+1){x S04 - e:o'}
o =¥ ! vt = X.e
so %+t 2 [T{o': (S;,4A) (x5, 40:} F e:0'} = FS.+1A1.(S1'+‘IG1')°
By using Tasy = Sn+1 n we have L
X.e X.e ; . s X.e
o 2 F {a_ .} = F {o_ ,) since the two subscripts to F
n+t SpetPn Nl Spe1ee905qA T+l

only differ at x.

By proposition 5.1 characterising pre-fixpoints we thus have

Sn+1-..S?A I_ ff:::: X.,€: On+1
and we can derive a corresponding formula with S replaced with (Y by INST.
Therefore the inductive case is proved with (line 7) § = Sn+1...51 and 1 = Toa g

J. Termination Properties

The above arguments about soundness and completeness were only concerned with W succeed-
ing if and only if there is a certain |- derivation. They were not concerned with what
behaviour W exhibited in failing to give a successful answer. As in the case without
fZz W may fail because unification fails or because a variable does not have a type

in the type assumption. But now a new behaviour can occur - one of the type fixpoint
iterations may fail to converge. This new case can actually happen: consider the
expression fiz f.Ax.f. It gives a 9, given by Vau---an.a0+u]+---+an. 0Of course,
completeness means that the associated F has no non-err fixpoint either. As mentioned

in the introduction, the work of /MPS/ is concerned with giving such expressions intin-
ite or circular types.

We now turn to the problem of deriving effective termination criteria with which
we can predict beforehand whether a given fixpoint iteration will converge. This section
is of a much more tentative nature than the previous sections but is included because
it illustrates the problems and because it does give an effective termination criterion
~ which however is a little too strong - it faults some programs which have a convergent
7-type iteration. (Perhaps this provides a good reason for adopting a type system 1ike
HOPE in which the user has to give the types of all recursive functions thereby avoiding
the problems of this section.)

We can see the problem of determining whether an iteration will converge is very
like that of the "occur check" in unification which forbids the unification of a with
a term containing a. Taking the above example, we see that a type which 1imits the
o; would need to satisfy the equations: s
c €1 and 0=V(11-°-an.r‘+T —=
which is impossible on symbol counting grounds. The problem appears to pose difficulties
for unification due to the € inequality since unification 1s based on equality re]atidﬁs.
The problem does not appear to have the flavour of undecidability but an exact charact-

erisation of convergence does not seem very close at hand either.

The partial solution proposed here is to add the following lines of:code to W just
before the 1ine numbered (1) -

Tet (S,7') = W(A, ax'eeoxx".el) (0.1)
" ‘-)-.o--)v I—)' ¥ = . i

let (f1 Tn TO) [(0.2)

let v, = U(T%,Té) (0.3)

where ei is the expression derived from ey by replacing its n free occurrences of x
1 n

with the new identifiers x ...x . The effect is still to allow X to take on differedt'

10

types at different occurrences in e1 (but in a slightly more restricted manner as we
demonstrate in the example below). Basically, the idea is that the type t' of
Ax1---kxn.ei is then checked (0.3) to ensure that there is a unifier of T% and Té.
This serves to fail the call to W (by the side-effect of U) if t' has a form like

o + (B+a) produced by Af.ix.f from our example fiz f.ix.f. Note that the unification
of t! and Tb is solely performed to check this and any side effect must be undone.

i
Theorem:

W is now (i) sound (ii) not complete and Provided A is closed (iii) total.

Proof sketches:

(i) Since the modification does not enable W to give any answer it did not give before.
(ii) An example is

fiz f, let g=f ¢n ... g(true) ... g(3) ...
This is failed by the modification to W because g is given a type (not a type scheme)
due to line (0.1) and so cannot be differently instantiated at its two occurrences.
Programs of this form can however be well typed according to |- (and hence the old
version of W). Note that if completeness is thought to be a vital requirement it could
be restored by restricting |- by giving a weaker fix rule along the Tines of

L] 1-.. n 1. - e e b i i L= = i - ww
FIX': A } Xx AXTiepr Ty Tt Ty (if T, 0= Yo, ak.TO)

) Al fiz x.e,:0 (and o,...a) are not free in A)

which corresponds to our derived rule for the expression

fix x.(Axl---xn.ei) X o= X

used below. FIX' is of intermediate power between our FIX and Milner's FIX".defined in
section 5,

(iii) We first show that the iteration By = FE'E
number of steps (to a type scheme or err) subject to the given condition.

We start by noting that fixr x.e and fiz x.(Ax1--Axn.e’) X =++ X bhave the same sem-

antics and the former can be well typed in type assumption A whenever the latter can

(on) always converges in a finite

(by transforming derivations). Here e' is derived from e as indicated above.

“Now let A be an arbitrary type assumption. Associated with the former expression is =~
X.

A € given in section 5. We can similarly define one

the type scheme transformation F

for the latter. We define
Gz'e(c) = [Jlo': Alx:o} F (Ax1---xn.e')x---x: o'}

By the above remark on type derivations we have that Fz'e(o) £ Gﬁ'e(c)_and hence if

an iteration (G)"(Ya-a) converges to a non-zrr value then so does (F)"(Va-a).

In the following we will assume that the freé type variables of A are contained in

{Y],YZ,...} and that {&i} and {Si} are two further disgoint subsets of TVar.

Now, letting VE1---8m.r1+---+Tn+TO = []{o': A} Xx ««oxx".e': o'} be the most

general type for the \-expression and o = Va1---uk,T with Ti = {a(s18jsk}t,

i-1)k+5/%
we can write (by the COMP rule)
X.€p v _ T S - Mt Sl i
GA ("") e VU.1 Llnk81 Sm-U(nlys) U(LnsT)(LO)
if this exists and where the unifiers can only instantiate {ai;Bj}
= grr Otherwise.

Finally, we show that the existence of V with V. (v) = Vi(TO) and the Vi not
instantiating the {,J} gives a convergence cr1ter10n for(i(Ya-x) and hence for
F'(Vaea). It suffices to show that there is a o # err such that o 2 G(o) since
by monotonicity G1(Vaea) € G1(o) € g and all bounded increasing sequences are eventual
constant.

We start with the case n=1. If'V(r1) = V(ro) then we may assume that on]y-ﬁ are free
in V(TO) by using V' = RV if necessary to instantiate any Bie

Now G(V(t()) = VB, eweg .U(V(1y),7y) (1)
€ VBB, V(TO) "~ since V unifies V(r1) and 7 and is hence
: less general than U(V(T1),T1).
= V(1y) as nog is free in V(t4) = V().

For the case n>! we consider

G-(o) = ULJVa eemy BeoveR Ult,T)(T g.
Each G is monotonic and the mutua] pre- f1xp01nts of the G are the pre-fixpoints of G.
Moreover 6'(yara) = (G G Y vaea) = 6 (Ya-a). Hence the result.

To apply the result to W in the absence of free variables of A (i.e. no enclosing
A-expressions)we merely note that‘F1(Yuea) is exactly o of the iteration.

8. ML example

The following example which I actually encountered in my rdle of programmer (it
occurred in the ML compiler) shows that not all typing problems can be resolved by
sorting recursive definitions into 'really' mutually recursive cliques.

= _In it ZZst and diZst are isomorphic data structures having operations hd,tl,null, dhd,
dtl,dnull giving respective list processing primitives. The code skeleton was:
let.rec f(x: structure) = case x of
12 (basecase(y):
| Tistcase(y): gly, (hd,t1,null));
| dlistcase(y): g(y, (dhd,dtl,dnull)})
and g{x:a, (xhd:a>8, xtl:o=>a, xnull:a+bool)) =
if xnul1{x) then ()} else (f(xhd x); g(xtl x, (xhd,xtl,xnull)))
~—which was {over the larger body of code) a natural programming solution involving
parameterising common code, The fix rule we suggest can successfully typecheck this.

9. Conclusions

We have extended Milner's polymorphic type scheme to allow more general typing of
recursive definitions as required for languages with mutually recursive top level envir-
onments as well as some examples in ML itself, We did this for a minimal language, Exp,

“but the technique should readily extend to a larger set of type constructors.
We have given an algorithm 1ike Milner's, but with a type iteration to determine the
type of recursive definitions, A natural guestion is whether there is an algorithm

to do this without iteration or how to find an exact termination criterion. Pragmatic-
ally, there may be grounds for restricting the use of this extended algorithm (as it
stands) to the top level of definitions only, due the the exponential cost of anal-
ysing nested fix definitions.

Acknowledgments

Thanks to Soren Holmstrom for helpful comments and to Chris Wadsworth for the
fiz f.Ax.f example. Financial support was provided by Chalmers and the Swedish STU.

References

/BMS/ Burstall, R., MacQueen, D,.B. and Sannella, D.T,
HOPE: an experimental applicative language.
Internal report, Dept. of Computer Science, Edinburgh University, 1980.
JoM/ Damas, L. and Milner, R.
Principal type schemes for functional programs.
Proc. 9th ACM Symp. on Principles of programming languages, 1982.
/GMW/ Gordon, M., Milner, R. and Wadsworth, C.
Edinburgh LCF.
Springer-Yerlag LNCS 78, 1979.
/Ho/ Holmstrom, S.
Polymorphic type schemes and concurrent computation in functional languages.
PhD thesis, Dept. of Computer Science, Chalmers TH, S-412 96 Goteborg, 1983.
/Mi/ Milner, R.
A theory of type polymorphism in programming.
Journal of computer and system sciences, 17(3), 1978.
/M0/ Mycroft, A. and 0'Keefe. R,A.
A polymorphic type system for Prolog.
To appear in Artificial Intelligence. Preliminary version in DAI research
report. Dept. of Artificial Intelligence, Edinburgh University.
/MPS/ MacQueen, D.B.. Plotkin, G.D. and Sethi. R.
An ideal model for recursive polymorphic types.
Proc. 11th ACM Symp. on Principles of programming languages. 1984,
/MS/ MacQueen, D.B. and Sethi, R,
A semantic model of types for applicative languages.
Proc, Aspends workshop 1982.
/Ro/ Robinson, J.A,
A machine oriented logic based on the resolution principle,
JACM 12(1), 1965.

