
The Case for Abstracting Security Policies

Anil Madhavapeddy
�
, Alan Mycroft

�
, David Scott

�
, Richard Sharp

�
University of Cambridge Computer Laboratory

��� �
, Laboratory for Communication Engineering

�
Intel Research Cambridge

�
William Gates Building, 15 JJ Thompson Avenue, Cambridge CB3 0FD, UK

Tel: � ���
	���
��������������������
Fax: � ����	���
��������������������

 "!$#&%(' � ��) !�' �&)+*�, % ��� �&)+-�. % ��� ��/�0�1�243�1 !�' 3 ! 14365�7

Abstract: As Internet connectivity grows executing un-
trusted code becomes an increasingly serious threat. Pub-
lic Key Infrastructure (PKI) and digital signatures offer
some degree of protection, but are only part of a solution.
In this paper we propose a mechanism of forcing appli-
cations to “declare what they intend to do” by means of
an abstract behavioural model. A monitoring process is
employed to dynamically ensure that programs do not de-
viate from their pre-declared intention. We focus particu-
larly on the usability, transparency and maintainability of
the system, which we believe to have been lacking in sim-
ilar efforts. In particular we concentrate on (i) building
powerful and maintainable policy specification languages
and; (ii) automatic security auditing of policies.

1 Introduction

Consider the following scenario: you are Head of Secu-
rity at the Pentagon and a contractor arrives in order to
carry out a specific and necessary job (e.g. building main-
tenance). There are clearly a number of security precau-
tions that it is your duty to enforce. Firstly you must ver-
ify the contractor’s ID. Secondly, you must assign a min-
der to watch the contractor and ensure that they only per-
form tasks necessary to achieving their stated goal (e.g.
a plumber should not touch the computers or take docu-
ments from filing cabinets).

Now imagine the above scenario as an analogy for ex-
ecuting untrusted code on a modern general purpose op-
erating system. The recent adoption of digital signature
technology may serve as an ID-check, but crucially there
is no equivalent of a “minder”. As a result users are at
the mercy of a plethora of dangerous trojans and subver-
sion attacks. In the future the risks will continue to grow
as increasing connectivity makes it easier both for unwit-
ting users to execute untrusted code and for the applica-
tions themselves to cause damage, either maliciously (e.g.
stealing credit-card numbers) or inadvertently (e.g. mis-
handling of input data leading to a buffer overflow attack).

In an attempt to avert this impending crisis1 we pro-
pose a framework in which programs are supplemented

1In the spirit of the times, the authors reserve the right to incite fear
through rampant sensationalism.

with Security Policies. In the spirit of Schneider [12] and
Hall’s [7] work a Security Policy serves as an abstract
model of an application, documenting its “high-level in-
tention”. A monitoring process (equivalent to the min-
der in our previous discussion) dynamically enforces the
Security Policy, ensuring that the application stays true
to its pre-declared intent. In order that the monitoring
process can easily be retrofitted to existing general pur-
pose operating systems and to keep the Trusted Comput-
ing Base (TCB) small we advocate the tried and tested
technique of observing and restricting applications’ sys-
tem calls (syscalls).

A number of researchers have already implemented
systems which enforce security policies via syscall mon-
itoring [1, 2, 10, 17]. However, for a variety of reasons,
none of these systems are used in practice (see Sections 2
and 4). In this paper we argue in favour of dynamic
policy enforcement and address the issues which we be-
lieve are currently preventing its widespread adoption. In
particular we focus on (i) building more powerful pol-
icy description languages which support parameterisation
and code abstraction; (ii) using automatic model checking
techniques [5] to statically check assertions against down-
loaded security policies; and (iii) automated support to as-
sist developers in the creation and maintenance of security
policies.

2 Stateful Syscall Policy Language

So far, research into dynamic Security Policy monitor-
ing tools has focused on low-level implementation details.
One of the main factors contributing to their lack of adop-
tion is that comparatively little work has been done on
developing high-level Security Policy specification lan-
guages. For example, 8:9$8�;=<�>�?A@ [10] policies essentially
consist of a flat list of >(B=BDCAE / F=@AG(9 rules. Policies in Up-
puluri and Sekar’s Intrusion Detection System [15] offer
greater expressivity than 8:9"8:;=<�>�?H@ policies, but are rep-
resented as a cryptic and unmaintainable list of regular ex-
pressions over system calls. Policies in Cerb [1] and Sub-
terfugue [3] support the validation of individual syscalls
but do not provide an easy way of modeling application
behaviour.



In contrast, our Stateful Syscall Policy Language
(SSPL) facilitates the description of readable, maintain-
able and expressive policies by providing many of the
features one would expect in a general purpose program-
ming language: (i) an imperative programming style al-
lows the ‘state’ of the program to be modeled easily; (ii)
code sharing and policy abstraction are supported through
functions, procedures and a module system; (iii) primi-
tives are provided both to validate and transform individ-
ual system calls; and (iv) policies can be parameterised
over program arguments.

Due to space constraints we cannot formally define
SSPL here; instead we devote the remainder of this sec-
tion to demonstrating some of its features by means of a
simple example. Consider the program ����G�� which sends
ICMP echo packets to measure network round-trip delays
and packet loss. This is an example of a program which
needs “root” privileges, in a traditional Unix system, to
perform a one-off special operation—acquisition of a raw
socket. In such systems we are forced to make the whole
program “setuid” root, trusting that it drops root privi-
leges as soon as possible to mitigate the damage caused by
an application compromise (for example the recent ����G��
root exploit [11]). In our system we write an SSPL pol-
icy which describes exactly what syscalls ����G�� makes and
when it makes them. In the worst case scenario where an
attacker successfully manages to buffer-overrun the pro-
gram, the system prevents the compromised ����G�� binary
from violating the policy.

SSPL policies are equivalent to non-deterministic finite
state automata, specified in a convenient ‘C’-like syntax.
A policy in SSPL looks superficially like a vastly simpli-
fied version of the program’s source code, with the major-
ity of the application logic removed.

For any particular application there is a large set of
possible policies that can be written (ranging from sim-
ple, coarse-grained policies through to more comprehen-
sive models of the program behaviour). Although there
is room for debate about the optimal granularity of Secu-
rity Policies (e.g. how much of the application does one
model?) the key observation is that policies are invariably
several orders of magnitude less complex than the cor-
responding applications. Our intention is that the Secu-
rity Policies are sufficiently simple to facilitate automatic
model-checking against a set of global system security
rules and, in some extreme cases, even manual inspection
(see Section 3).

In the face of incomplete information about appli-
cation state, SSPL allows conditional branches to be
modeled by a non-deterministic choice construct written
“ @���;	��@A<�
 CD< ” (cf. Occam’s ��
	� ). The ���"BH;����"B @ key-
word, similar to the repetition construct in regular lan-
guages, signifies that a block of statements may be re-
peated zero or more times.

At runtime the application’s observed behaviour (i.e.
the sequence of syscalls invoked) is compared with the
SSPL policy. Any attempt by the application to make an
unexpected syscall results in immediate termination. The
core of a (fairly fine-grained) OpenBSD policy for ����G��

is as follows:

�����������������! �"
#�$&%  '�(��� % �!� %&)�*,+ �&-�� $ ��. + �� 0/�1'2

+�3'% -&�(� *4+ �� 5/6.87�.97�.:7�.;7�.:7(1<"
� 3  '= # �(��� *,+ �� 0/6.>7�.97�.:7�.:7�.97�1<"
�'�&����� %�? �@�����! BAC����� % � #�*,+ �&-�� $ �	1<"D

#�$&%  '�(��� % � ? � %E*,+ �&-(� % . + �&-�� $ ��. + ��- 3 �&��.GF(� + �	1IH
? �'J ?�K�+�L&? �&�&�'J * �&� 3�? /6.M�(���(��� 3  '�N1I2
3 �'��F 3 �O2
P&PRQ F���J!� %�) �&�(� ) � ? � $!+�?�)�3
�����! BAC����� % � #�*,+ �&-�� $ �	1<"
�����! BA 3�S �'� * 7(1<"D ����2
P&P ��F!� + ���&�� 0/T� ? / 3�+I$!+�3 � #�?�+'K�%  + � )�%(? �TF ?'% -���� %�)
- $ ��� %&) 2
P&PVU 3 � # ���5� + �0� 3 ��� %�)�+
� 3 �T�!� %�)(W&+ �� 5/XH + �� 5/ 3 � *ZY&[(W�\5]&^�_ . Q&`�a�b W'c�Y�d .e7�1<"
? �'J ?�K�+�L&? �&�&�'J * ���5�! BA )�3 �&����� 3 � # - ?�K 1I2
P&P � #O+�$ �&����� 3 - ? F�� + � %�? � 3 J 3 � $!+ �@� 3(+ �&��= 3 �'�
�'�&����� %�? �@�����! BA )�3 ��F�� + ��� K�%(? � 3�* F�� + �N1�"
P&P ����� % �O� $ �R��F 3 F 3�? - 3 � +
���5�! BAf���(� % � #�*4+ �&-(� $ �	1<"
P&PTQ 3 � $ � ? � $&%  �FO� #O+ � )�%�? �IF ?'% -(� 3 � +
� $ ��������� 3 2 + � )�?  '����� %E* 7�.87�.:7�1<" D
P&P � 3 � # ����� + �0� 3T%&$ ��� 3 �O� # �!� %�)�+
� $ ��������� 3 2I�!� %&)�*,+ �&-�� $ ��.;�!� %&)(W�+ �� 0/�1<" DD F ?'% -(� 3 2
P&P � % � 3  3 �����O� #�?R+ � )�%�? � *g3 A ) A Q \'h�_�^&c&i 1P&P ����� % �@� 3(+�$ �'� +R?'% - 3�S �'�
���5�! BAf���(� % � #�*4+ �&-(� $ �	1<"
���5�! BA 3�S �'� * 7(1�" DD�D&D

As can be seen from the code fragment, policies may
be divided into a number of j!�=G$?:;��HCAG s and factored
into libraries via the ���<��CD<=; keyword. System calls (in
the above example we use 8A@AG�F ;(C , <�@�?�k�j <�C�� , l=<�@=>!m ,
���(<�CD;(@�?:; , 8AC�?&m�@D; , ��@D; ;���� @=C!j=F(>D9 and 8��&��>�?:;B�HCAG ) are
modeled by functions which take the same number of
formal parameters as the real syscalls. In the policy do-
main, function arguments range over constants, variables
or wild-card patterns (e.g. ‘ n ’). At runtime, if the argu-
ments of the syscall do not match the argument patterns
specified in the policy then the application is terminated.

We assume the existence of a library of policies
corresponding to functions contained within the stan-
dard Unix libraries, e.g. in the example above we
assume the existence of functions B���l ?pog�(<���G=;�j and
B���l ?qog��@D;	��C�8:;	l(9 G(>&�$@ for printing output and perform-
ing DNS lookups respectively. Our example highlights
the importance of abstraction in a policy description lan-
guage. By mirroring the Unix library calls in our policies
we significantly enhance the readability and maintainabil-
ity of SSPL specifications.

2



Within a policy variables may be bound to function ar-
guments and the return values of system calls. In the ex-
ample above, the variable ��� G�� 8AC�?�m is bound to the raw
socket file descriptor returned by the call to 8AC�?�m(@D; and
passed to the function ����G�� which allows datagrams to be
sent only to this particular socket.

Transformations (not present in the above example) are
possible using the ;=<(>AG 8(j=CD<(� keyword as in the follow-
ing mini-example:

;=<�>HG 8(j(CD<�� C���@AG���jB�AB @HG�>&� @��9j�B >��$8��;� C F=@����
	
C���@AG�����
�?&�=<�C=CD;�
���
 jB�ABD@AG�>&� @��8j�B >!�"8��;� C F(@��

The special function called � >�� G represents the entry
point of the specification. Through this function, the pol-
icy is instantiated with the same set of arguments as the
application itself. Parameterisation over program argu-
ments facilitates the specialisation of a policy to a par-
ticular invocation of a program at load time. For exam-
ple, consider the program ?&� which copies a file. With-
out knowledge of the arguments being passed the policy
would have to allow the program access to all files on the
system. However, if the policy knows the arguments be-
ing passed then it can restrict ?&� to touch only those files
passed as arguments. At first sight there appears to be a
need for a trusted shell which promises to pass the same
arguments to both policy and program. Happily this is
not the case: by protecting the shell with its own Security
Policy that intercepts @���@�?�k�@ syscalls the responsibility
of passing arguments to both application and policy be-
comes the duty of our trusted monitor process (see Sec-
tion 3). This is an important point as it keeps the TCB
small.

Some application behaviour depends on the exact run-
time environment of the program: for example, the or-
der of signal handling calls depends on the behaviour of
the system scheduler and the IO access patterns of a pro-
gram depend on the disk scheduler. To avoid clutter-
ing the specification we provide two useful constructs:
>(BHE�>D9$8�� >=B=B CAE and F!�(<�� G���
(��>HG�F�B @ . The former takes
a list of system calls which are ignored in the subsequent
statement block. In the above example this feature is used
to allow unrestricted memory management through calls
to l=<�@=>!m and ���(<�CA;�@�?:; for the entire duration of the pro-
gram. The “ F!�(<���G���
(��>AG(F�B @ ” construct specifies that the
policy block marked by “ ��>AG(F�B @ ” may occur at any point
within the block marked “ F!�=<���G�� ”. In the above example
we use this feature to represent syscalls invoked from an
async signal handler in response to the user hitting Con-
trol+C. In general the construct is useful for modeling re-
sumable exceptions.

SSPL encourages the creation of evolveable policies.
A policy can be progressively refined to specify the be-
haviour of the program in increasing levels of detail. One
useful refinement is to attach a network protocol analyser
(such as SPECTRE [13]) to reconstruct messages being
sent on the wire by calls to the E(<���;�@ syscall. In the ��� G��
example this technique would allow us to ensure that all
packets sent by the program are actually valid ICMP echo

Monitor
Process

Untrusted
Process

System Call Interface

Userspace

Kernel

Assertion
Repository

Static Code
Analysis

System
Query Tool

Model 
Checker

Policy
Repository

Figure 1: Dynamically enforcing security policies using a
monitoring process

packets and do not, for example, contain data designed to
attack another machine.

3 System Structure

Figure 1 illustrates the core components of the system: (i)
a monitoring process which dynamically enforces the Se-
curity Policies; (ii) a kernel interface which intercepts sys-
tem calls of interest to the monitoring process; and (iii) a
secure repository which stores both global assertions and
process’ security policies (see below). We use the mon-
itoring process itself to maintain policy integrity through
a global assertion which prohibits any processes from ac-
cessing the repository. Of course, since the monitoring
process is part of the TCB and isn’t itself monitored, it is
able to access the repository.

All processes (except the monitor process) must have
an associated Security Policy. Since it is unrealistic to as-
sume that every application will have its own policy in
the foreseeable future, we provide a set of generic tem-
plate policies which reside on the client machine. These
generic policies can be used to constrain the behaviour of
any application. By default, the system chooses the most
secure template, but gives the user the option of upgrad-
ing the application’s security level if required (for exam-
ple, for external network access). We acknowledge that
the use of generic policies in this way is not ideal, but we
emphasise that it is still better than nothing. Perhaps most
importantly it provides a way in which our system can be
deployed usefully before the number of applications with
associated security policies reaches a critical mass.

We also envisage a number of other components which,
whilst not essential, greatly aid in the manageability of the
system. Following the work of Wagner and Dean [16], we
intend to use Static Code Analysis to assist policy creators
in cases where application source-code is available. How-
ever, whereas Wagner and Dean generate policies repre-
sented as (large) state machines, the policies we generate

3



will be expressed in the more readable SSPL. The difficult
part of automatic policy generation is to choose the right-
level of policy granularity. Whilst it is unrealistic to ex-
pect the quality of automatically generated policies to be
as good as manually constructed policies, our hope is that
they will still be better than nothing. By integrating static
analysis tools into build infrastructure, such as >��=;�C�?ACAG�j
and >��=;�C&� >!m(@ , one could generate policies automatically
at compile-time for a large set of existing applications.

3.1 Auditing Policies

So far we have discussed a mechanism for dynamically
checking applications against their associated security
policies. Let us now consider what happens when a user
downloads a new untrusted application which comes with
its own Security Policy specification. Of course, the pol-
icy itself cannot be trusted: a cracker may simply have
written a policy to accompany their latest piece of mal-
ware!

The one thing that we can be sure of is that an appli-
cation will only perform actions that are allowed by its
associated policy (since this is enforced by our monitor
process which is part of the TCB). Thus, if we can deter-
mine that the policy is safe to run, we can infer that the
application itself is safe to run. The key is that, since we
intend policies to be several orders of magnitude simpler
than applications (see Section 2), we have similarly re-
duced the complexity of the security auditing process by
several orders of magnitude.

Researchers have already investigated the automatic se-
curity auditing of applications using a variety of tech-
niques including code analysis and proof checking [9].
We strongly believe that this work will be far more appli-
cable if one only has to solve the much simpler problem
of auditing abstract policy specifications.

We intend to use model checking to statically prove se-
curity auditing assertions against an application’s Secu-
rity Policy, before it is executed. As shown in Figure 1
our system has an assertion repository which contains the
requirements that a Security Policy must satisfy before its
associated application is deemed acceptable for execution.
In accordance with current work on model checking, these
rules would be specified in one of the existing temporal
logics (e.g. CTL or LTL). There are many ways in which
the assertion repository could be organised. For exam-
ple, some assertions may be global (checked against all
policies) and other assertions may be predicated on the
system’s current security level (e.g. low, medium, high).

We extend this notion of assertion checking via a tool
which allows users to execute high-level queries against
the policy repository (e.g. is there a program which
may write to the network after reading from “My Docu-
ments”?). Although expert users may be able to pose such
queries in formalisms such as Modal Logic [4], we envis-
age a standard set of common queries for novice users.

4 Discussion

There are several ways in which our Security Policy spec-
ification and enforcement framework can be used. Firstly,
as we have already argued, it provides the function of a
“minder”, forcing untrusted code both to declare its inten-
tions and keep to its word. However, another angle is that
the tools can be put to good use in the software develop-
ment process. Research has shown that manually coding
to limit the impact of subversion attacks (e.g. buffer over-
flows) is a time-consuming and complicated process.

One of the major benefits of our policy enforcement
framework is that the Trusted Computing Base (TCB) re-
mains small (consisting only of code to dynamically mon-
itor syscall traces and enforce security policies). Fur-
thermore, the vast majority of the integrity checking oc-
curs in userspace; the only kernel modification necessary
is the addition of a small module to intercept syscalls
(see Figure 1). Previous research has shown that this
design methodology does not impose significant perfor-
mance overhead [10].

An interesting observation is that we can use our Se-
curity Policy specifications to implement a variety of ex-
isting security mechanisms. For example, without in-
creasing the size of the TCB, we can use our syscall
;=<�>AG 8�j(CD<(� >A;��HCAG rules to subsume systems such as
?&�(<�C=CA; and �=>��AB . Also note that if one is prepared to
augment the TCB with a mechanism for storing persistent
data we can subsume more advanced mechanisms using
SSPL such as the Mandatory Access Control system in
TrustedBSD [17] or SE Linux [8].

There are a number of parallels between our approach
and that of Proof Carrying Code (PCC) [9]. One of the
major barriers to adoption of PCC is the difficulties that
developers face in generating proofs of security proper-
ties. Our approach offers a potential solution to this prob-
lem: since we provide much simpler abstract models of
applications, one only has to generate proofs of properties
against these models. Although our primary intention is
to use model-checking to verify properties on the client-
side, we could also choose to explore a more PCC-like ap-
proach. In this case client-side proof checkers verify pre-
generated proofs against applications’ Security Policies.
Since the abstract models are several orders of magnitude
less complex than the applications themselves, the prob-
lem of proof generation is simplified considerably. Our
approach offers a means of smoothly moving the burden
of proof along a static/dynamic verification spectrum.

Capability systems are becoming increasingly inte-
grated into existing general purpose operating systems.
Whilst these provide more fine-grained security than the
traditional Unix model, they suffer from a number of de-
ficiencies that our framework addresses. Capabilities (i)
only protect a fixed set of privileged operations (e.g. the
ability to bind to a low port); (ii) require modification of
application source; and (iii) trust applications to use the
capabilities in a secure manner (i.e. not to hold onto high-
privilege capabilities unnecessarily). In contrast our ap-

4



proach alleviates these problems: since we use a program-
matic framework we can write policies of arbitrary gran-
ularity; application source code does not need to be mod-
ified; and we no longer trust applications (since we force
them adhere to their policies). Additionally, we open the
possibility of auditing security policies automatically.

5 Conclusions and Future Work

The existing “suck it and see” model for dealing with un-
trusted code is clearly inappropriate. Whilst untrusted
code has always been a problem, increasing connectiv-
ity and an increasing reliance on computers for financial
transactions threaten to make the problem an even more
serious threat in the near future. Although a number of re-
searchers have demonstrated that dynamic Security Policy
enforcement through system call monitoring may offer an
effective [15] and low-overhead [10] security layer, there
are a great many problems which must be addressed be-
fore such techniques can be widely deployed. The pur-
pose of this paper is to highlight these problems which as
yet remain largely unsolved, argue for their importance
and outline some of the preliminary research we have
done in this area.

We acknowledge that system-call tracing is insufficient
to guard against certain classes of attacks, for example
“mimicry” attacks [6]. We hope to enhance our system in
a number of ways including (i) validating all I/O by fil-
tering through protocol analysers [15]; and (ii) using dy-
namic software translation techniques [14] to more tightly
integrate the policy with the application binary.

“Untrusted code” is just as much a social problem as it
is a technical problem. Looking for a complete solution
is unrealistic: it is analogous to looking for a solution to
crime in general. With this in mind, we do not claim that
our proposed framework is a panacea. However, although
a number of security problems remain (e.g. covert channel
leakage), we claim that our system offers the potential to
raise the security level of existing general purpose operat-
ing systems significantly.

6 Acknowledgments

This work was supported by Network Appliance, Inc.,
Intel Research, AT&T Laboratories Cambridge and the
Schiff Foundation. The authors wish to thank Steven
Hand, Ian Pratt, Tim Harris, Tim Deegan, Derek Mcauley,
Alastair Beresford and Andrew Moore for their valuable
suggestions.

References

[1] Cerb. �(;=;	��� 
�
�?A@D<!l�@D< o 8:C��(<�?A@!j(CH<���@ o G�@D; .

[2] Janus: Sandboxing untrusted applications. �(; ;	���

�
HE E=E o ?=8pogl�@D<�m(@(B @A9 o @ F!�<
 � F=>HE�
 �D>AG	�$8 .

[3] Subterfugue: Playing with the reality of software.
�(;=;	��� 
�
HE=E E o 8&��l=;�@D<�j����	��@ o CA<	��
 .

[4] L. Cardelli and A. D. Gordon. Anytime, Anywhere
Modal Logics for Mobile Ambients. In Principles of
Programming Languages (POPL), 2000.

[5] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. Cambridge, MA: MIT Press, 1999.

[6] D.Wagner and P.Soto. Mimicry attacks on host
based intrusion detection systems. In Ninth ACM
Conference on Computer and Communications Se-
curity, 2002.

[7] R. Hall. Open modeling in multi-stakeholder dis-
tributed systems: requirements engineering for the
21st century. In Proceedings of the First Workshop
on the State of the Art in Automated Software Engi-
neering, June 2002.

[8] P. Loscocco and S. Smalley. Integrating flexible sup-
port for security policies into the linux operating sys-
tem. In Freenix Track of Usenix Annual Technical
Conference, 2001.

[9] G. C. Necula. Proof-carrying code. In Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, Jan. 1997.

[10] N. Provos. Improving host security with system
call policies. Technical report, Center for Informa-
tion Technology Integration, University of Michi-
gan, November 2002.

[11] Red Hat, Inc. Security Advisory RHSA-2000:087-
02. Ping Buffer Overflows.

[12] F. B. Schneider. Enforceable security policies. In-
formation and System Security, 3(1):30–50, 2000.

[13] D. Scott and R. Sharp. Abstracting Application-
Level Web Security. In The Eleventh International
World Wide Web Conference Proceedings, pages
396–407, May 2002.

[14] K. Scott, J. Davidson, and K. Skadron. Low-
overhead software dynamic translation. Technical
Report CS-2001-18, 2001.

[15] P. Uppuluri and R. Sekar. Experiences with
specification-based intrusion detection. Lecture
Notes in Computer Science, 2212, 2001.

[16] D. Wagner and D. Dean. Intrusion detection via
static analysis. In IEEE Symposium on Security and
Privacy, 2001.

[17] R. Watson. TrustedBSD: Adding trusted operating
system features to FreeBSD. In USENIX Technical
Conference, 2001.

5


