
J Hurd and T. Melham (Eds): TPHOLs 2005, LNCS 3603, pp. 17–34, 2005., pp. 17–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Alpha-Structural Recursion and Induction
(Extended Abstract)

Andrew M. Pitts

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK

Abstract. There is growing evidence for the usefulness of name permutations
when dealing with syntax involving names and name-binding. In particular they
facilitate an attractively simple formalisation of common, but often technically
incorrect uses of structural recursion and induction for abstract syntax trees mod-
ulo α-equivalence. At the heart of this formalisation is the notion of finitely sup-
ported mathematical objects. This paper explains the idea in as concrete a way
as possible and gives a new derivation within higher-order logic of principles of
α-structural recursion and induction for α-equivalence classes from the ordinary
versions of these principles for abstract syntax trees.

1 Introduction

“They [previous approaches to operational semantics] do not in general have
any great claim to being syntax-directed in the sense of defining the semantics
of compound phrases in terms of the semantics of their components.”

—GD Plotkin, A Structural Approach to Operational Semantics, p 21
(Aarhus, 1981; reprinted as [18, p 32])

The above quotation and the title of the work from which it comes indicate the important
role played by structural recursion and structural induction in programming language
semantics. These are the forms of recursion and induction that fit the commonly used
“algebraic” treatment of syntax. In this approach one specifies the syntax of a language
at the level of abstract syntax trees (ASTs) by giving an algebraic signature. This con-
sists of a collection of sorts s (one for each syntactic category of the language), and
a collection of constructors K (also called “operators” or “function symbols”). Each
such K comes with an arity consisting of a finite list (s1, . . . , sn) of sorts and with a
result-sort s. Then the ASTs over the signature can be described by inductively gen-
erated terms t: if K has arity (s1, . . . , sn) and result sort s, and if ti is a term of sort
si for i = 1..n, then K (t1, . . . , tn) is a term of sort s. One gets off the ground in this
inductive definition with the n = 0 instance of the rule for forming terms; this covers
the case of constants, C , and one usually writes the term C () just as C . Recursive def-
initions and inductive proofs about programs following the structure of their ASTs are
both clearer and less prone to error than ones using non-structural methods. However,
this treatment of syntax does not take into account the fact that most languages that one
deals with in programming semantics involve binding constructors. In the presence of
binders many syntax-manipulating operations only make sense, or at least only have

J Hurd and T. Melham (Eds): TPHOLs 2005, LNCS 3603, pp. 17–34, 2005., pp. 17–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 Andrew Pitts

good properties, when we operate on syntax at a level of abstraction represented not by
ASTs themselves, but by α-equivalence classes of ASTs.

It is true that this level of abstraction, which identifies terms differing only in the
names of bound entities, can be reconciled with an algebraic treatment of syntax by
using de Bruijn indexes [4]. The well-known disadvantage of this device is that it ne-
cessitates a calculus of operations on de Bruijn indexes that does not have much to do
with our intuitive view of the structure of syntax. As a result there can be a big “coding
gap” between statements of results involving binding syntax we would like to make and
their de Bruijn versions; and (hence) it is easy to get the latter wrong. For this reason,
de Bruijn-style representations of syntax may be more suitable for language implemen-
tations than for work on language semantics.

In any case, most of the work on semantics which is produced by humans rather
than by computers sticks with ordinary ASTs involving explicit bound names and uses
an informal approach to α-equivalence classes.1 This approach is signalled by a form
of words such as “we identify expressions up to α-equivalence” and means that: (a)
occurrences of “t” now really mean its α-equivalence class “[t]α”; and (b) if the rep-
resentative t for the class [t]α is later used in some context where the particular bound
names of t clash in some way with those in the context, then t will be changed to an
α-variant whose bound names are fresh (i.e. ones not used in the current context). In
other words it is assumed that the “Barendregt variable convention” [1, Appendix C]
is maintained dynamically. In the literature, the ability to change bound names “on
the fly” is usually justified by the assertion that final results of constructions involving
ASTs are independent of choice of bound names. A fully formal treatment has to prove
such independence results and in this paper we examine ways, arising from the results
of [8, 16], to reduce the burden of such proofs.

However, proving that pre-existing functions respect α-equivalence is only part of
the story; in most cases a prior (or simultaneous) problem is to prove the existence
of the required functions in the first place. To see why, consider the familiar exam-
ple of capture-avoiding substitution (x := t)t′ of a λ-term t for all free occurrences of
a variable x in a λ-term t′. In the vernacular of programming semantics, we specify
(x := t)(−) by saying that it has the properties

(x := t)x1 =

{

t if x1 = x

x1 if x1 6= x
(1)

(x := t)(t1 t2) = (x := t)t1 (x := t)t2 (2)
(x := t)λx1. t1 = λx1. (x := t)t1 if x1 6= x and x1 is not free in t (3)

where in the last clause there is no need to say what happens when x1 = x or when
x1 does occur freely in t, since we are working “up to α-equivalence” and can change
λx1. t1 to an α-variant satisfying these conditions. To see what this specification re-
ally amounts to, let us restore the usually-invisible notation for α-equivalence classes.
Writing Λ for the set of λ-terms and Λ/=α for its quotient by α-equivalence =α, then
capture-avoiding substitution of e , [t]α for x is a function ŝx,e ∈ Λ/=α → Λ/=α.

1 This includes the metatheory of “higher-order abstract syntax” [15], where the questions we
are addressing are pushed up one meta-level to a single binding-form, λ-abstraction.

Alpha-Structural Recursion and Induction 19

Every such function corresponds to a function sx,e ∈ Λ → Λ/=α respecting =α,
i.e. satisfying

t1 =α t2 ⇒ sx,e(t1) = sx,e(t2) (4)
(enabling us to define ŝx,e([t

′]α) as [sx,e(t
′)]α). The requirements (1)–(3) mean that we

want sx,e to satisfy:

sx,e(x1) =

{

e if x1 = x

[x1]α if x1 6= x
(5)

sx,e(t1 t2) = [t′1 t′2]α where sx,e(ti) = [t′i]α for i = 1, 2 (6)
sx,e(λx1.t1) = [λx1.t

′
1]α if x1 6= x and x1 is not free in e,

and where sx,e(t1) = [t′1]α.
(7)

The problem is not one of proving that a certain well-defined function sx,e respects
α-equivalence, but rather of proving that a function exists satisfying (4)—(7). Note that
(5)—(7) do not constitute a definition of sx,e(t

′) by recursion on the structure of the
AST t′: even if we patch up the conditions in clauses (6) and (7) by using some enu-
meration of ASTs to make the choices t′i definite functions of sx,e(ti), the fact still
remains that clause (7) only specifies what to do for certain pairs (x1, t1), rather than
for all such pairs. Of course it is possible to complicate the specification of sx,e(λx1.t1)
by saying what to do when x1 does occur freely in e and arrive at a construction for sx,e

(either by giving up structural properties and using a less natural recursion on the height
of trees; or by using structural recursion to define a more general operation of simulta-
neous substitution [21]). An alternative approach, and one that works with the original
simple specification, is to construct functions by giving rule-based inductive definitions
of their graphs (with the rules encoding the required properties of the function); one then
has to prove (using rule-based induction) that the resulting relations are single-valued,
total and respect =α. This is in principle a fully formal and widely applicable approach
to constructing functions like sx,e (using tools that in any case are part and parcel of
structural operational semantics), but one that is extremely tedious to carry out. It would
be highly preferable to establish a recursion principle that goes straight from definitions
like (1)–(3) to the existence of the function (x := t)(−) ∈ Λ/=α → Λ/=α. We provide
such a principle here for a general class of signatures in which binding information can
be declared. We call it α-structural recursion and it comes with a derived induction
principle, α-structural induction.

These recursion and induction principles for α-equivalence classes of ASTs are
simplifications and generalisations of the ones introduced by Gabbay and the author
in [8] as part of a new mathematical model of fresh names and name binding. That
paper expresses its results in terms of a non-standard axiomatic set theory, based on the
classical Fraenkel-Mostowski permutation model of set theory. Experience shows that
this formalism impedes the take up within computer science of the new ideas contained
in [8]. There is an essentially equivalent, but more concrete description of the model as
standard sets equipped with some simple extra structure. These so-called nominal sets
are introduced in [16] and I will use them here to express α-structural recursion and
induction within “ordinary mathematics”, or more precisely, within Church’s higher-
order logic [3].

20 Andrew Pitts

2 Nominal Syntax

The usual principles of structural recursion and induction are parameterised by an alge-
braic signature that specifies the allowed constructors for forming ASTs of each sort. In
order to state principles of recursion and induction for α-equivalence classes of ASTs,
we need to fix a notion of signature that also specifies the forms of binding that occur
in the ASTs. As explained in the Introduction, we stick with the usual “nominal” ap-
proach in which bound entities are explicitly named. Any generalisation of the notion
of algebraic signature to encompass constructors that bind names needs to specify how
bound occurrences of names in an AST are associated with a binding site further up the
syntax tree. There are a number of such mechanisms in the literature of varying degrees
of generality [10, 17, 5, 12, 22]. Here we will use the notion of nominal signature from
[22]. It has the advantage of dealing with binding and α-equivalence independently of
any considerations to do with variables, substitution and β-equivalence; bound names
in a nominal signature may be of several different sorts and not just variables that can
be substituted for. In common with the other cited approaches, nominal signatures only
allow for constructors that bind a fixed number of names (and without loss of much
generality, we can take that number to be one). There are certainly forms of binding
occurring “in the wild” that do not fit comfortably into this framework.2 I believe that
the notion of α-structural recursion given here can be extended to cover more general
forms of statically scoped binding; but for simplicity’s sake I will stick with construc-
tors binding a fixed number of names.

2.1 Atoms, Nominal Signatures and Terms

From a logical point of view3, the names we use for making localised bindings in formal
languages only need to be atomic, in the sense that the structure of names (of the same
kind) is immaterial compared with the distinctions between names. Therefore we will
use the term atom for such names. Throughout this paper we fix two sets: the set A of
all atoms and the set AS of all atom-sorts. We also fix a function sort ∈ A → AS

assigning sorts to atoms and assume that the sets AS and Aa , {a ∈ A | sort(a) = a},
for each a ∈ AS, are all countably infinite.

A nominal signature Σ consists of a subset ΣA ⊆ AS of atom-sorts, a set ΣD of
data-sorts and a set ΣC of constructors. Each constructor K ∈ ΣC comes with an
arity σ and a result sort s ∈ ΣD, and we write K : σ → s to indicate this information.
The arities σ of Σ are given as follows; at the same time we define the terms4 t over Σ
of each arity, writing t : σ to indicate that t has arity σ.

Atoms: every atom-sort a ∈ ΣA is an arity. If a ∈ Aa is an atom of sort a, then a : a.
Constructed terms: every data-sort s ∈ ΣD is an arity. If K : σ → s is in ΣC and

t : σ, then K t : s.
2 The full version of F<: with records and pattern-matching used in Part 2B of the “POPLMARK

challenge” (www.cis.upenn.edu/group/proj/plclub/mmm/) is an example.
3 As opposed to a pragmatic one that also encompasses issues of parsing and pretty-printing.
4 Compared with [22, Definition 2.3] we only define ground terms, since we do not need to

consider variables ranging over terms here.

Alpha-Structural Recursion and Induction 21

Tuples: if σ1, . . . , σn is a finite list of arities, then σ1 ∗ · · · ∗ σn is an arity; the n = 0
case is called the unit arity and written 1. If t1 : σ1, . . . , tn : σn, then 〈t1, . . . , tn〉 :
σ1 ∗ · · · ∗ σn; in particular, when n = 0 we have 〈〉 : 1.

Atom-binding: if a ∈ ΣA and σ is an arity, then 〈〈a〉〉σ is an arity. If a ∈ Aa and t : σ,
then 〈〈a〉〉t : 〈〈a〉〉σ.

We write Ar(Σ) for the set of all arities over a nominal signature Σ, T(Σ) for the set
of all terms over Σ, and ar ∈ T(Σ) → Ar(Σ) for the function assigning to each term
t the unique arity σ such that t : σ holds. For each σ ∈ Ar(Σ), we write T(Σ)σ for the
subset {t ∈ T(Σ) | ar(t) = σ} of terms of arity σ.
Example 1. Here is a nominal signature for the version of the Milner-Parrow-Walker
π-calculus given in [19, Definition 1.1.1]. (The sort gsum is for processes that are
guarded sums, and the sort pre is for prefixed processes.)

atom-sorts data-sorts constructors
chan proc Gsum : gsum → proc

gsum Par : proc ∗ proc → proc

pre Res : 〈〈chan〉〉proc → proc

Rep : proc → proc

Zero : 1 → gsum

Pre : pre → gsum

Plus : gsum ∗ gsum → gsum

Out : chan ∗ chan ∗ proc → pre

In : chan ∗ 〈〈chan〉〉proc → pre

Tau : 1 → pre

Match : chan ∗ chan ∗ pre → pre

This example uses several atom- and data-sorts, but does not illustrate the usefulness of
the inter-mixing of the arity-formers for tupling and atom-binding that is allowed in a
nominal signature. An example that does do this is given in [22, Example 2.2]; see also
the discussion in [10, Sect. 3].

2.2 Ordinary Structural Recursion and Induction
The terms over a nominal signature Σ are just the abstract syntax trees determined
by an ordinary signature associated with Σ whose sorts are the arities of Σ, whose
constructors are those of Σ, plus constructors for tupling and atom-binding, and with
atoms regarded as particular constants. Consequently we can use ordinary structural
recursion to define functions on the set T(Σ) of terms over Σ. We state without proof
a simple, iterative form of the principle that we will be using later.
Theorem 2. Let Σ be a nominal signature. Suppose we are given sets Sσ , for each
σ ∈ Ar(Σ), and functions

ga ∈ Aa → Sa (a ∈ ΣA)

gK ∈ Sσ → Ss ((K : σ → s) ∈ ΣC)

gσ1∗···∗σn
∈ Sσ1

× · · · × Sσn
→ Sσ1∗···∗σn

(σi ∈ Ar(Σ) | i = 1..n)

g〈〈a〉〉σ ∈ Aa × Sσ → S〈〈a〉〉σ (a ∈ ΣA, σ ∈ Ar(Σ)).

22 Andrew Pitts

Then there is a unique family of functions gσ ∈ T(Σ)σ → Sσ (σ ∈ Ar(Σ)) satisfying
the following properties

g a = ga(a) (8)
g(K t) = gK (g t) (9)

g〈t1, . . . , tn〉 = gσ1∗···∗σn
〈g t1, . . . , g tn〉 (10)

g〈〈a〉〉t = g〈〈a〉〉σ(a, g t) (11)

where we have abbreviated gσ(t) to g t (since σ = ar(t) is determined by t). ut

Using the fact that subsets of T(Σ) are in bijection with functions T(Σ) → B

(where B = {T, F} is the two-element set of boolean values), one can derive the fol-
lowing principle of structural induction for terms over Σ as a corollary of the unique-
ness part of Theorem 2.

Corollary 3. Let Σ be a nominal signature and S ⊆ T(Σ) a set of terms over Σ. To
prove that S is the whole of T(Σ) it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S

(∀(K : σ → s) ∈ ΣC, t : σ) t ∈ S ⇒ K t ∈ S

(∀(σi ∈ Ar(Σ), ti : σi | i = 1..n)) t1 ∈ S & · · · & tn ∈ S ⇒ 〈t1, . . . , tn〉 ∈ S

(∀a ∈ ΣA, a ∈ Aa, σ ∈ Ar(Σ), t : σ) t ∈ S ⇒ 〈〈a〉〉t ∈ S . ut

2.3 α-Equivalence and α-Terms

So far we have taken no account of the fact that atom-binder terms 〈〈a〉〉t should be
identified up to renaming the bound atom a. Given a nominal signature Σ, the binary
relation of α-equivalence, t =α t′ : σ (where σ ∈ Ar(Σ) and t, t′ ∈ T(Σ)σ) makes
such identifications. It is inductively defined by the following rules. In rule (=α-4),
atm t indicates the finite set of atoms occurring in t; and t{a′/a} indicates the term
resulting from replacing all occurrences in t of the atom a by the atom a′ (assumed to
be of the same sort).

(=α-1)
a ∈ ΣA a ∈ Aa

a =α a : a
(=α-2)

(K : σ → s) ∈ ΣC t =α t′ : σ

K t =α K t′ : s

(=α-3)
t1 =α t′1 : σ1 · · · tn =α t′n : σn

〈t1, . . . , tn〉 =α 〈t′1, . . . , t
′
n〉 : σ1 ∗ · · · ∗ σn

(=α-4)

a ∈ ΣA a, a′, a′′ ∈ Aa a′′ /∈ atm 〈a, t, a′, t′〉
t{a′′/a} =α t′{a′′/a′} : σ

〈〈a〉〉t =α 〈〈a′〉〉t′ : 〈〈a〉〉σ

Here we have generalised to terms over a nominal signature a version of the definition
of α-equivalence of λ-terms [11, p. 36] that is conveniently syntax-directed compared

Alpha-Structural Recursion and Induction 23

with the classic version [1, Definition 2.1.11]. It is easy to see that =α is reflexive, sym-
metric and respects the various term-forming constructions for nominal syntax. Less
straightforward is the fact that =α is transitive. This can be proved in a number of
ways. My favourite way makes good use of the techniques we will be using in Sect. 3,
based on the action of atom-permutations on terms; see [16, Example 1].

For each σ ∈ Ar(Σ), we write Tα(Σ)σ for the quotient of T(Σ)σ by the equiva-
lence relation (−) =α (−) : σ. Thus the elements of Tα(Σ)σ are α-equivalence classes
of terms of arity σ; we write [t]α for the class of t and refer to [t]α as an α-term of arity
σ over the nominal signature Σ.

3 Finite Support

The crucial ingredient in the formulation of structural recursion and induction for α-
terms over a nominal signature is the notion of finite5 support. It gives a well-behaved
way, phrased in terms of atom-permutations, of expressing the fact that atoms are fresh
for mathematical objects. It turns out to agree with the obvious definition when the
objects are finite data such as abstract syntax trees, but allows us to deal with freshness
for the not so obvious case of infinite sets and functions.

3.1 Nominal Sets

Let Perm denote the set of all (finite, sort-respecting) atom-permutations; by defini-
tion, its elements are bijections π : A ↔ A such that {a ∈ A | π(a) 6= a} is finite
and sort(π(a)) = sort(a) for all a ∈ A. The operation of composing bijections gives
a binary operation π, π′ ∈ Perm 7→ π ◦ π′ ∈ Perm that makes Perm into a group;
we write ι for the identity atom-permutation and π−1 for the inverse of π. Among the
elements of Perm we single out transpositions (a a′) given by a pair of atoms of the
same sort; (a a′) is the atom-permutation mapping a to a′, mapping a′ to a and leaving
all other atoms fixed. It is a basic fact of group theory that every π ∈ Perm is equal to
a finite composition of such transpositions.

An action of Perm on a set X is a function Perm × X → X , whose effect on
(π, x) ∈ Perm × X we write as π · x (with X understood), and which is required
to have the properties: ι · x = x and π · (π′ · x) = (π ◦ π′) · x, for all x ∈ X and
π, π′ ∈ Perm . Given such an action and an element x ∈ X , we say that a set A ⊆ A

of atoms supports x if (a a′) · x = x holds for all atoms a and a′ (of the same sort)
that are not in A. Then a nominal set is by definition a set X equipped with an action
of Perm such that every element x ∈ X is supported by some finite set of atoms. If A1

and A2 are both finite sets of atoms supporting x ∈ X , then one can show that A1 ∩A2

also supports x. It follows that in a nominal set X , each element x ∈ X possesses a
smallest finite support, which we write as suppX(x) (or just supp(x), if X is clear from
the context) and call the support of x in X .

5 Both Gabbay [7] and Cheney [2] develop more general notions of “small” supports. As Ch-
eney’s work shows, such a generalisation is necessary for some techniques of classical model
theory to be applied; but finite supports are sufficient here.

24 Andrew Pitts

Example 4. (i) Each set Aa of atoms of a particular sort a is a nominal set once we
endow it with the atom-permutation action given by π · a = π(a); as one might
expect, supp(a) = {a}. It is not hard to see that the disjoint union of nominal
sets is again a nominal set. So since the set of all atoms is the disjoint union of Aa

as a ranges over atom-sorts, A is a nominal set with atom-permutation action and
support sets as for each individual Aa.

(ii) Let Σ be a nominal signature. Using Theorem 2 we can define an atom-permutation
action on the sets T(Σ)σ of terms over Σ of each arity σ ∈ Ar(Σ):

π · a = π(a) π · 〈t1, . . . , tn〉 = 〈π · t1, . . . , π · tn〉
π · K t = K (π · t) π · 〈〈a〉〉t = 〈〈π · a〉〉(π · t) .

Using Corollary 3 one can prove that this has the properties required of an atom-
permutation action, that a, a′ /∈ atm t ⇒ (a a′) · t = t, and that a ∈ atm t &
(a a′) · t = t ⇒ a = a′. From these facts it follows that each T(Σ)σ is a nominal
set, with supp(t) = atm t, the finite set of atoms occurring in t.

(iii) Turning next to α-terms over Σ (Sect. 2.3), first note that the action of atom-
permutations on terms preserves α-equivalence.6 Therefore we get a well-defined
action on α-terms by defining: π · [t]α = [π · t]α. For this action one finds that
Tα(Σ)σ is a nominal set with supp([t]α) = fa(t), the finite set of free atoms of
any representative t of the class [t]α, defined (using Theorem 2) by:

fa(a) = {a} fa(〈t1, . . . , tn〉) = fa(t1) ∪ · · · ∪ fa(tn)
fa(K t) = fa(t) fa(〈〈a〉〉t) = fa(t) − {a} .

(iv) Each set S becomes a nominal set, called the discrete nominal set on S, if we
endow it with the trivial action of atom-permutations, given by π · s = s for
each π ∈ Perm and s ∈ S; in this case the support of each element is empty. In
particular, we will regard the set of booleans B = {T, F} and the set of natural
numbers N = {0, 1, 2, . . .} as nominal sets in this way.

3.2 Products and Functions

If X1, . . . , Xn are nominal sets, then we get an action of atom-permutations on their
cartesian product X1 × · · · ×Xn by defining π · (x1, . . . , xn) to be (π ·x1, . . . , π ·xn),
for each (x1, . . . , xn) ∈ X1 × · · · × Xn. If Ai supports xi ∈ Xi for i = 1..n, then it is
not hard to see that A1 ∪ · · · ∪An supports (x1, . . . , xn) ∈ X1 ×· · ·×Xn; indeed, one
can prove that supp((x1, . . . , xn)) = supp(x1)∪ · · · ∪ supp(xn). Thus X1 ×· · ·×Xn

is also a nominal set.
If X and Y are nominal sets, then we get an action of atom-permutations on the set

X → Y of all functions from X to Y by defining π · f to be the function mapping each
x ∈ X to π · (f(π−1 · x)) ∈ Y . If you have not seen this definition before, it may look

6 As noted in [16, p 169], this fact has nothing much to do with the particular nature of =α and
everything to do with the fact that it is inductively defined by a collection of schematic rules
with the property that the action of any atom-permutation takes any instance of the rules to
another instance.

Alpha-Structural Recursion and Induction 25

more complicated than expected; however, it is forced by the important requirement
that function application be respected by atom-permutations:7

π · (f(x)) = (π · f)(π · x) . (12)

Unlike the situation for cartesian product, not every element f ∈ X → Y is necessarily
finitely supported with respect to this action (see Example 6 below). However, note that
if f is supported by a finite set of atoms A, then π · f is supported by {π(a) | a ∈ A}.
Therefore

X →fs Y , {f ∈ X → Y | (∃finite A ⊆ A) A supports f}

is closed under the atom-permutation action and is a nominal set.

Example 5. Recall that the elements of Perm are bijections from A to itself that re-
spect sorts and leave fixed all but finitely many atoms. So each π ∈ Perm is in partic-
ular a function A → A. Regarding A as a nominal set as in Example 4(i), the action
of atom-permutations on π qua function turns out to be the operation of conjugation:
π′ · π = π′ ◦ π ◦ (π′)−1. Hence the action of atom-permutations on A → A restricts to
an action on Perm . One can prove that the finite set {a ∈ A | π(a) 6= a} supports π
with respect to this action (and is in fact the smallest such set); so Perm is a nominal
set.

Example 6. Not every function between nominal sets is finitely supported. For exam-
ple, since the set A of atoms is countable, there are surjective functions in N → A; but
it is not hard to see that any f ∈ N →fs A must have a finite image (which is in fact the
support of f). A more subtle example of a non-finitely-supported function is any choice
function for the set A of atoms, i.e. any function choose ∈ (A →fs B) → A (where
B = {T, F}) satisfying f(a) = T ⇒ f(choose(f)) = T , for all f ∈ A →fs B and
a ∈ A.8

3.3 Freshness

Given an element of a nominal set, most of the time we are interested not so much in
its support as in the (infinite) set of atoms that are not in its support. More generally, if
x ∈ X and y ∈ Y are elements of nominal sets, we write x # y when suppX(x) ∩
suppY (y) = ∅ and say that x is fresh for y. Of the many properties of this notion of
“freshness” developed in [8, 16] we single out the following one that we need below;
it provides a very general criterion for when a construction that “picks a fresh atom” is
independent of which fresh atom is chosen. (We omit the proof in this abstract.)

7 More precisely, the definition of the action on functions is forced by the requirement that
X → Y together with the usual application function be the exponential of X and Y in the
cartesian closed category of sets equipped with an atom-permutation action.

8 It was this lack of finite support for choice functions that motivated the original construction
of the permutation model of set theory by Fraenkel and Mostowski.

26 Andrew Pitts

Lemma 7 (Freshness Lemma). Given an atom-sort a ∈ AS and a nominal set X , if a
finitely supported function h ∈ Aa →fs X satisfies

(∃a ∈ Aa) a # h & a # h(a) (13)

then there is a unique element fresh(h) ∈ X satisfying

(∀a ∈ Aa) a # h ⇒ h(a) = fresh(h) . (14)

ut

4 Recursion and Induction for α-Terms

4.1 The Structure of α-Terms

Recall that Tα(Σ)σ denotes the set of α-terms of arity σ over a nominal signature Σ; by
definition these are α-equivalence classes [t]α of terms t : σ. Elementary properties of
the relation =α of α-equivalence yield the following structural properties of α-terms;
at the same time we introduce some concrete syntax for α-terms mirroring the informal
notation for α-equivalence classes mentioned in the Introduction.

Atoms: if a ∈ ΣA and e ∈ Tα(Σ)a, then there is a unique a ∈ Aa such that e = [a]α.
In this case we write e just as a.

Constructed α-terms: if s ∈ ΣD and e ∈ Tα(Σ)s, then there are unique (K : σ →
s) ∈ ΣC and e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and e = [K t′]α.
In this case we write e as K e′.

Tuples: if σ1, . . . , σn ∈ Ar(Σ) and e ∈ Tα(Σ)σ1∗···∗σn
, then there are unique ei ∈

Tα(Σ)σi
for i = 1..n such that there exist ti with ei = [ti]α (i = 1..n) and

e = [〈t1, . . . , tn〉]α. In this case we write e as (e1, . . . , en).
Atom-binding: if a ∈ ΣA, σ ∈ Ar(Σ) and e ∈ Tα(Σ)〈〈a〉〉σ , then for each a ∈ Aa

with a # e (i.e. with a not a free atom of e—cf. Example 4(iii)), there is a unique
e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and e = [〈〈a〉〉t′]α. In this case
we write e as a. e′.

4.2 α-Structural Recursion and Induction

We can now state and prove the main result of this paper, a principle of structural re-
cursion for α-terms over a nominal signature. Compared with Theorem 2, the principle
uses nominal sets rather than ordinary sets, and requires a common finite support for
the collection of functions in its hypothesis. Furthermore, the function supplied for
each binding arity must satisfy a freshness condition for binders (FCB) saying, roughly,
that for some sufficiently fresh choice of the atom being bound, the result of the func-
tion can never contain that atom in its support. These conditions ensure that there is a
unique (finitely supported) arity-indexed family of functions that is well-defined on α-
equivalence classes and satisfies the required recursion equations—for all sufficiently
fresh bound atoms, in the case of the recursion equation for binders. The “some/any”
aspect of the principle is a characteristic of the treatment of fresh names from [8].

Alpha-Structural Recursion and Induction 27

Theorem 8 (α-Structural recursion). Let Σ be a nominal signature. Suppose we are
given an arity-indexed family of nominal sets Xσ (σ ∈ Ar(Σ)) and functions

fa ∈ Aa →fs Xa (a ∈ ΣA)

fK ∈ Xσ →fs Xs ((K : σ →fs s) ∈ ΣC)

fσ1∗···∗σn
∈ Xσ1

× · · · × Xσn
→fs Xσ1∗···∗σn

(σi ∈ Ar(Σ) | i = 1..n)

f〈〈a〉〉σ ∈ Aa × Xσ →fs X〈〈a〉〉σ (a ∈ ΣA, σ ∈ Ar(Σ))

all of which are supported by a finite set of atoms A and satisfy the

Freshness Condition for Binders (FCB): for each atom-binding arity 〈〈a〉〉σ ∈
Ar(Σ), the function f〈〈a〉〉σ satisfies (∃a′ ∈ Aa−A)(∀x ∈ Xσ) a′ # f〈〈a〉〉σ(a′, x).

Then there is a unique family of finitely supported functions fσ ∈ Tα(Σ)σ →fs Xσ

(σ ∈ Ar(Σ)) with supp(fσ) ⊆ A and satisfying the following properties for all
a, e, e1, . . . , en of suitable arity:

fa = fa(a) (15)
f(K e) = fK (fe) (16)

f(e1, . . . , en) = fσ1∗···∗σn
(fe1, . . . , fen) (17)

a /∈ A ⇒ f(a. e) = f〈〈a〉〉σ(a, fe) (18)

where we have abbreviated fσ(e) to fe and used the notation for α-terms from Sect. 4.1.

Proof (sketch). We can reduce the proof of the theorem to an application of Theorem 2,
taking advantage of the fact that we are working (informally) in higher-order logic.9

From the Ar(Σ)-indexed family of nominal sets Xσ we define another such family:
Sσ , Perm →fs Xσ (regarding Perm as a nominal set as in Example 5 and using the
→fs construct from Sect.3.2). Now define functions ga, gK , gσ1∗···∗σn

and g〈〈a〉〉σ (with
domains and codomains as in the statement of Theorem 2) as follows.

ga a , λπ ∈ Perm. fa(π(a))

gK s , λπ ∈ Perm. fK (s(π))

gσ1∗···∗σn
(s1, . . . , sn) , λπ ∈ Perm. fσ1∗···∗σn

(s1(π), . . . , sn(π))

g〈〈a〉〉σ(a, s) , λπ ∈ Perm. fresh(λa′ ∈ Aa. f〈〈a〉〉σ(a′, s(π ◦ (a a′))))

The crucial clause in this definition is the last one, where we are using the fresh func-
tional from Lemma 7 applied to the function h , λa′ ∈ Aa. f〈〈a〉〉σ(a′, s(π ◦ (a a′)));
in this abstract we omit the proof that the condition (13) needed to apply the lemma is
satisfied in this case. Applying Theorem 2 with this data, we get a family of functions
gσ ∈ T(Σ)σ → (Perm →fs Xσ) satisfying the recursion equations (8)–(11) of that
theorem. Next one proves that these functions respect α-equivalence; this is done by
induction over the derivation of t1 =α t2 : σ from the rules in Sect.2.3. So the func-
tions gσ induce functions fσ ∈ Tα(Σ)σ → Xσ given by fσ[t]α , gσ t ι for any t : σ

9 In other words the theorem is reducible to primitive recursion at higher types.

28 Andrew Pitts

(recalling that ι stands for the identity permutation). One proves that these functions
fσ are all supported by A by first proving that the functions gσ are so supported. Then
the fact that the fσ satisfy the required recursion equations (15)–(18) follows from the
recursion equations (8)–(11) satisfied by the gσ . That concludes the existence part of
the proof of Theorem 8.

For the uniqueness part, suppose functions f ′
σ ∈ Tα(Σ)σ →fs Xσ are all supported

by A and satisfy the recursion equations (15)–(18) for fσ . Define g′σ ∈ T(Σ)σ → Sσ

by g′σ t π , f ′
σ[π · t]α (σ ∈ Ar(Σ), t : σ, π ∈ Perm). One can show that the g′

σ satisfy
the same recursion equations (8)–(11) from Theorem 2 as the functions gσ; so by the
uniqueness part of that theorem, g′

σ = gσ . Therefore for all t : σ, f ′
σ[t]α = f ′

σ[ι · t]α ,

g′σ t ι = gσ t ι , fσ[t]α; hence f ′
σ = fσ . ut

Remark 9 (“Some/any” property). In Theorem 8 we gave the FCB as an existential
statement. It is in fact equivalent to the universal statement (∀a′ ∈ Aa − A)(∀x ∈
Xσ) a′ # f〈〈a〉〉σ(a′, x). This is an instance of the characteristic “some/any” property
of fresh names noted in [8, Proposition 4.10] and [16, Proposition 4].

Given a nominal set X , we can use the usual bijection between subsets of X and
functions in X → B (where B = {T, F}) to transfer the action of atom-permutations
on X → B to one on subsets of X . This action sends π ∈ Perm and S ⊆ X to the
subset π · S = {π · x | x ∈ S}. The nominal set Pfs(X) of finitely supported subsets
of the nominal set X consists of all those subsets S ⊆ X that are finitely supported with
respect to this action. Thus Pfs(X) is isomorphic to X →fs B. Using this isomorphism,
as a corollary of the uniqueness part of Theorem 8 we obtain the following principle of
structural induction for α-terms.

Corollary 10 (α-Structural induction). Let Σ be a nominal signature. Suppose we
are given a finitely supported set S ∈ Pfs(Tα(Σ)) of α-terms over Σ. To prove that S
is the whole of Tα(Σ) it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S

(∀(K : σ → s) ∈ ΣC, e ∈ Tα(Σ)σ) e ∈ S ⇒ K e ∈ S

(∀(σi ∈ Ar(Σ), ei ∈ Tα(Σ)σi
| i = 1..n)) e1 ∈ S & · · · & en ∈ S ⇒

(e1, . . . , en) ∈ S

(∀a ∈ ΣA, σ ∈ Ar(Σ))(∃a ∈ Aa − supp(S))(∀e ∈ Tα(Σ)σ) e ∈ S ⇒ a. e ∈ S .

ut

Remark 11 (Primitive recursion). Theorem 8 gives a simple “iterative” form of struc-
tural induction for α-terms, rather than a more complicated “primitive recursive” form
with recursion equations

fa = fa(a) f(e1, . . . , en) = fσ1∗···∗σn
(e1, . . . , en, fe1, . . . , fen)

f(K e) = fK (e, fe) atm /∈ A ⇒ f(a. e) = f〈〈a〉〉σ(a, e, fe).

In fact this more general form can be deduced from the simple one given in the theorem.

Alpha-Structural Recursion and Induction 29

4.3 “Sort-Directed” Recursion Principle

Theorem 8 is an “arity-directed” recursion principle for α-terms: one has to specify
nominal sets Xσ for each arity σ, and give functions f() for tuple and atom-binding
binding arities in addition to ones for atoms and constructors. It is possible to derive
a “sort-directed” version of the principle in which one only has to give Xσ when σ
is a data-sort, and only has to give the functions f() for constructors; the FCB has
to be replaced by a more complicated family of conditions, indexed by the argument
arities of constructors. In this extended abstract I will not formulate this version of the
principle for an arbitrary nominal signature, but instead just give it for the particular
case of untyped λ-calculus, for which the FCB is quite simple to state.

Let Σλ be the nominal signature with a single atom-sort v (for variables), a single
data-sort t (for λ-terms), and constructors Var : v → t, App : t ∗ t → t and Lam :
〈〈v〉〉t → t. Thus T(Σλ)t is the usual set Λ of abstract syntax trees of λ-terms and
Tα(Σλ)t is the quotient Λ/=α of that by the usual notion of α-equivalence—in other
words Tα(Σλ)t is what is normally meant by the set of all (open or closed) untyped
λ-terms. The following “sort-directed” version of α-structural recursion for Σλ can be
deduced by suitably instantiating X() and f() in Theorem 8.

Corollary 12 (α-Structural recursion for λ-terms). Given a nominal set X and func-
tions hVar ∈ Av →fs X , hApp ∈ X × X →fs X and hLam ∈ Av × X →fs X , all
supported by a finite set of atoms A and with hLam satisfying

(∃a′ ∈ Av − A)(∀x ∈ X) a′ # hLam(a′, x) (FCB′)

then there is a unique finitely supported function h ∈ Λ/=α →fs X with supp(h) ⊆ A
and satisfying

h(Var a) = hVar (a) (19)
h(App (e1, e2)) = hApp(h e1, h e2) (20)

a /∈ A ⇒ h(Lam a. e) = hLam(a, h e) . (21)

ut

4.4 Applying the Principles

How do we use Theorem 8 in practice? Suppose that some language of interest has
been specified as the α-terms for a particular nominal signature. Suppose that we wish
to define a function on those α-terms specified by an instance of the recursion scheme
(15)–(18) and we have identified suitable functions fa, fK , fσ1∗···∗σn

and f〈〈a〉〉σ . Then
there are three tasks involved in applying the theorem to this data:

(I) Show that the sets Xσ that we are mapping into have the structure of nominal sets.
(II) Show that the functions fa, fK , fσ1∗···∗σn

and f〈〈a〉〉σ are all supported by a single
finite set of atoms A.

(III) Show that the functions f〈〈a〉〉σ for atom-binding arities satisfy the FCB.

30 Andrew Pitts

It is possible to dispose of tasks (I) and (II) by applying a single metatheorem about
the notion of support, based on the fact that nominal sets form a model of higher-order
logic (without choice functions—see Example 6). In the author’s opinion, the best way
of explaining this model is to use topos theory (see [13], for example). Call a function
f ∈ X → Y between two nominal sets equivariant if it is supported by the empty
set; in view of (12), this means that π · (f(x)) = f(π · x), for all π ∈ Perm and
x ∈ X . Nominal sets and equivariant functions form a category that has the structure
of a boolean topos with natural number object: products and exponentials are given by
the operations (−)× (−) and (−) →fs (−) considered in Sect.3.2; the terminal object,
subobject classifier and the natural number object are just the discrete nominal sets 1,
B and N respectively (cf. Example 4(iv)). As for any such category, there is a sound
interpretation of classical higher-order logic with arithmetic in this category. However,
in this particular case the interpretation is easy to describe concretely: so long as we
interpret function variables as ranging over only finitely supported functions, the usual
set-theoretic interpretation of higher-order logic always yields finitely supported ele-
ments. If we remain within pure higher-order logic over ground types for numbers and
booleans, then we only get elements with empty support. However, if we add a ground
type for the set A of atoms, a constant for the function sort ∈ A → AS (taking AS to be
a copy of N) and constants for each atom, then the terms and formulas of higher-order
logic describe functions and subsets which may have non-empty, finite support; such a
“higher-order logic with atoms” has been developed by Gabbay [7]. Note that nominal
sets of abstract syntax trees T(Σ) and their quotients by α-equivalence Tα(Σ) are con-
structible within such a setting. As far as tasks (I) and (II) are concerned, we can sum
things up thus: if we use nominal sets and finitely supported functions in constructions
definable in classical higher-order logic with arithmetic but without choice, the result
will again be nominal sets and finitely supported functions.

5 Examples
Here are some examples of Theorem 8 and Corollary 12 in action. In view of the above
remarks, in each case we pass quickly over tasks (I) and (II) and concentrate on task
(III).

Example 13 (Capture-avoiding substitution). The example mentioned in the Intro-
duction of capture-avoiding substitution of λ-terms, ŝx,e ∈ Λ/=α → Λ/=α, is ob-
tained from Corollary 12 (using the nominal signature Σλ) by taking X to be the nom-
inal set Λ/=α, i.e. Tα(Σλ)t. Given x ∈ Av and e ∈ X , then ŝx,e is given by h where

hVar , λa ∈ Av. if a = x then e else Var a hLam , λ(a, e) ∈ Av × X. Lam a. e

hApp , λ(e1, e2) ∈ X × X. App(e1, e2) A , supp(x, e).

(FCB′) is satisfied because, as noted in Example 4(iii), for each e ∈ X = Tα(Σ)t,
supp(e) is the finite set of free atoms of e; in particular a # Lam a. e = hLam(a, e),
because a is not free in (any representative of the α-equivalence class) Lam a. e. Note
that the common finite support A of the h() functions consists of x and the finite set
of free variables of e. Therefore the restriction “a /∈ A” in the recursion equation (21)
corresponds precisely to the side-condition “x1 6= x and x1 is not free in e” in (7).

Alpha-Structural Recursion and Induction 31

Example 14 (Length of an α-term). In [9, Sect. 3.3] Gordon and Melham give the
usual recursion scheme for defining the length of a λ-term, remark that it is not a direct
instance of the scheme developed in that paper (their Axiom 4) and embark on a detour
via simultaneous substitutions to define the length function. This difficulty is analysed
by Norrish [14, Sect. 3] on the way to his improved version of Gordon and Melham’s
recursion scheme (discussed further in Sect. 6). Pleasingly, the usual recursive definition
of the length of a λ-term, or more generally of an α-term over any nominal signature,
is a very simple application of α-structural recursion.10 Thus in Theorem 8 we take Xσ

to be the discrete nominal set N of natural numbers and

fa , λa ∈ Aa. 1 fσ1∗···∗σn
, λ(k1, . . . , kn) ∈ N

n. k1 + · · · + kn

fK , λk ∈ N. k + 1 f〈〈a〉〉σ , λ(a, k) ∈ Aa × N. k + 1

These functions are all supported by A = ∅ and the FCB holds trivially, because a # k
holds for any a ∈ A and k ∈ N. So the theorem gives us functions fσ ∈ Tα(Σ)σ →fs N.
Writing length e for fσ e, we have the expected properties of a length function on α-
terms:

length a = 1 length(e1, . . . , en) = length e1 + · · · + length en

length(K e) = length e + 1 length(a. e) = length e + 1 .

Note that the last clause holds for all a, because in (18) the condition “a /∈ A” is
vacuously true (since A = ∅).

Example 15 (Recursion with “varying parameters”). Norrish [14, p 245] consid-
ers a variant sub′ of capture-avoiding substitution whose definition involves recursion
with varying parameters; it motivates the parametrised recursion principle he presents
in that paper. The α-structural recursion principles we have given here do not involve
parameters, let alone varying ones; nevertheless it is possible to derive parameterised
versions from them. One can derive parameterised versions of ordinary structural re-
cursion by currying parameters and defining maps into function sets using Theorem 2.
In the presence of binders, one has to do something slightly more complicated, involv-
ing the Freshness Lemma 7, to derive the parameterised FCB from the unparameterised
version of the condition.

Let us see how this works for Norrish’s example. Using the nominal signature Σλ

from Sect.4.3 (for which Tα(Σ)t coincides with the nominal set Λ/=α of α-equivalence
classes of λ-terms) his sub ′ function can be expressed as follows. Fixing atoms a1, a2 ∈
Av, we seek a function s ∈ (Λ/=α) →fs (Λ/=α) →fs (Λ/=α) satisfying:

s (Var a) e = if a = a1 then e else Var a (22)
s (App(e1, e2)) e = App(s e1 e, s e2 e) (23)

a # (a1, a2, e) ⇒ s (Lam a. e1) e = Lam a. s e1 (App(Var a2, e)) . (24)

10 The same goes for Norrish’s stripc function, used to illustrate the limitations of Gordon and
Melham’s workaround for the length function [14, p. 247].

32 Andrew Pitts

If can be obtained from Corollary 12 as s = h if we take X to be the nominal set
(Λ/=α) →fs (Λ/=α) and use the functions

hVar , λa ∈ Av.λe ∈ (Λ/=α). if a = a1 then e else Var a

hApp , λ(x1, x2) ∈ X × X. λe ∈ (Λ/=α). App(x1 e, x2 e)

hLam , λ(a, x) ∈ Av × X.λe ∈ (Λ/=α). fresh(h(a, x, e))

where the last clause uses Lemma 7 applied to h(a, x, e) , λa′ ∈ Av. Lam a′. ((a a′) ·
x)(App(Var a2, e)) ∈ Av →fs (Λ/=α), which is easily seen to satisfy the property
(13) needed for to apply lemma. Properties (19) and (20) of h give (22) and (23) re-
spectively. When a 6= a1, a2, property (21) gives us h(Lam a. e1) = hLam(a, h e1) =
fresh(h(a, h e1, e)). So if a # (a1, a2, e), picking any a′ # (a1, a2, e, e1, h), then by
Lemma 7 we have fresh(h(a, h e1, e)) = h(a, h e1, e) a′ ,

Lam a′. ((a a′) · (h e1))(App(Var a2, e)) = Lam a′. (a a′) · (h e1 (App(Var a2, e))).
Hence by definition of =α, h(Lam a. e1) = Lam a. h e1 (App(Var a2, e)), as required
for (24).

6 Assessment

Mathematical Perspective. The results of this paper are directly inspired by my joint
work with Gabbay on “FM-set” theory [8] and by his PhD thesis [6]; in particular those
works contain structural recursion and induction principles for an inductively defined
FM-set isomorphic to λ-terms modulo α-equivalence. Here I have taken an approach
that is both a bit more general and more concrete: more general, because the particu-
lar signature for λ-terms has been replaced by an arbitrary nominal signature (a notion
which comes from joint work with Urban and Gabbay [22] and is developed further
in Cheney’s thesis [2]); and more concrete in two respects. First, the key notion of (fi-
nite) support has been developed using nominal sets within the framework of ordinary
higher-order logic, rather than being axiomatised within FM-set theory; see Cheney [2,
Chapter 3] for a more leisurely and generalised account of the theory of nominal sets.
Secondly, rather than using an inductively defined nominal set that is isomorphic to the
set of α-terms, the recursion and induction principles refer directly to α-terms, i.e. stan-
dard α-equivalence classes of abstract syntax trees. This is also the approach taken
by Norrish [14], building on Gordon and Melham’s five axioms for α-equivalence [9];
and also by Urban and Tasson [23]. Norrish’s recursion principle [14, Fig. 1] has side-
conditions requiring that the function being defined be well-behaved with respect to
variable-permutations and with respect to fresh name generation. In effect these side-
conditions build in just enough of the theory of nominal sets to yield a well-defined and
total function, while only having to specify how binders with fresh names are mapped
by the function. Along with Urban and Tasson [23], I prefer to develop the theory of
nominal sets in its own right and then give a simple-looking (compare the statements
of Theorems 2 and 8) recursion principle within that theory. One advantage of such
an approach is that it makes it easier to identify and use properties of name freshness,
such as Lemma 7, independently of the recursion principle. We used Lemma 7 in the
reduction of Theorem 8 to Theorem 2 and in the reduction of “varying parameters” to

Alpha-Structural Recursion and Induction 33

“no parameters” (Example 15); another good example of its use occurs (implicitly) in
the denotational semantics of FreshML’s fresh expression [20, Sect. 3].

Automated Theorem-Proving Perspective. How easy is it to apply these principles of
α-structural recursion and induction? Just as for the work of Gordon-Melham, Norrish
and Urban-Tasson, to use them one does not have to change to an unfamiliar logic (we
remain in higher-order logic), or a new way of representing syntax (we use the familiar
notion of α-equivalence classes of abstract syntax trees). One does have to get used
to thinking in terms of permutations and finite support; and the latter is undoubtedly a
subtle concept at higher types. However, the relativisation from arbitrary mathematical
objects to finitely supported ones called for by this approach is made easier by the fact,
noted in Sect. 4.4, that the finite support property is conserved by all the usual con-
structs of higher-order logic except for uses of the axiom of choice. Based also on my
experience with other formalisms, I claim that the use of permutations and finitely sup-
ported objects is a simple, effective and yet rigorous way of dealing with binders and
α-equivalence in “paper-and-pencil” proofs in programming language semantics. But
how easy is it to provide computer support for reasoning with α-structural recursion and
induction? In Sect.4.4, I mentioned the three types (I–III) of task involved in applying
these principles in any particular case. Task (III) will require human-intervention; but in
view of the meta-theorem mentioned in Sect.4.4, there is the possibility of making tasks
(I) and (II) fully automatic. One way of attempting that is to develop a new higher-order
logic in which types only denote nominal sets and that axiomatises properties of permu-
tations and finite support; this is the route taken by Gabbay with his FM-HOL [7]. The
disadvantage of such a “new logic” approach is that one does not have easy access to
the legacy of already-proved results in systems such as HOL (hol.sourceforge.net)
and Isabelle/HOL (www.cl.cam.ac.uk/Research/HVG/Isabelle/). To what extent
tasks (I) and (II) can be automated within these “legacy” mechanised logics remains to
be seen. The work of Norrish [14] provides a starting point within the HOL system;
and Urban and Tasson [23] have already developed a theory equivalent to nominal sets
within Isabelle/HOL up to and including what I am here calling α-structural induction
for the particular nominal signature for λ-terms (but not yet α-structural recursion for
that signature).11 HOL and Isabelle/HOL feature type variables and predicative poly-
morphism. As a result, in principle it is possible to formulate and prove within such
logics a result like Theorem 8 that makes a statement about all nominal signatures and
all nominal sets. Of more use in practice would be would an augmentation of the HOL
or Isabelle datatype packages, allowing the user to declare a nominal signature and then
have the principles of α-structural recursion and induction for that signature proved and
ready to be applied.12

Acknowledgements. I am grateful to James Cheney, Murdoch Gabbay, Michael Nor-
rish, Mark Shinwell and Christian Urban for their many contributions to the subject of
this paper.
11 Their proof of validity of the induction principle follows a different route from the one used

here to prove Theorem 8 and Corollary 10.
12 How best in such a package to deal with the relativisation to nominal sets is certainly an issue;

Urban and Tasson report that Isabelle’s axiomatic type classes are helpful in this respect.

34 Andrew Pitts

References
[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised

edition, 1984.
[2] J. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, August 2004.
[3] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–

68, 1940.
[4] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-

matic formula manipulation, with application to the Church-Rosser theorem. Indag. Math.,
34:381–392, 1972.

[5] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In
Proc. LICS’99, pages 193–202. IEEE Computer Society Press, 1999.

[6] M. J. Gabbay. A Theory of Inductive Definitions with α-Equivalence: Semantics, Imple-
mentation, Programming Language. PhD thesis, University of Cambridge, 2000.

[7] M. J. Gabbay. FM-HOL, a higher-order theory of names. In F. Kamareddine, editor,
Workshop on Thirty Five years of Automath, Informal Proceedings. Heriot-Watt University,
Edinburgh, Scotland, April 2002.

[8] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2002.

[9] A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In Proc. TPHOLS’96, vol-
ume 1125 of Lecture Notes in Computer Science, pages 173–191. Springer-Verlag, 1996.

[10] T. G. Griffin. Notational definition — a formal account. In Proc. LICS’88, pages 372–383.
IEEE Computer Society Press, 1988.

[11] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT
Press, 1992.

[12] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on nom-
inal algebras in HOAS. In Proc. ICALP 2001, volume 2076 of Lecture Notes in Computer
Science, pages 963–978. Springer-Verlag, 2001.

[13] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986.

[14] M. Norrish. Recursive function definition for types with binders. In Proc. TPHOLS 2004,
volume 3223 of Lecture Notes in Computer Science, pages 241–256. Springer-Verlag,
2004.

[15] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc. PLDI’88, pages 199–208.
ACM Press, 1988.

[16] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186:165–193, 2003.

[17] G. D. Plotkin. An illative theory of relations. In R. Cooper, Mukai, and J. Perry, editors,
Situation Theory and its Applications, Volume 1, volume 22 of CSLI Lecture Notes, pages
133–146. Stanford University, 1990.

[18] G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Alge-
braic Programming, 60–61:17–139, 2004.

[19] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[20] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical Com-
puter Science, 2005. To appear.

[21] A. Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–325, 1988.
[22] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer

Science, 323:473–497, 2004.
[23] C. Urban and C. Tasson. Nominal techniques in Isabelle/HOL. In Proc. CADE-20, Lecture

Notes in Computer Science, Springer-Verlag, 2005.

