
Theoretical Computer Science 124 (1994) 195-219 195
Elsevier

Fundamental Study

A co-induction principle for
recursively defined domains

Andrew M. Pitts
University of Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge
CB2 3QG, UK

Communicated by S. Abramsky
Received May 1992
Revised October 1992

Abstract

Pitts, A.M., A co-induction principle for recursively defined domains, Theoretical Computer Science
124 (1994) 195-219.

This paper establishes a new property of predomains recursively defined using the cartesian product,
disjoint union, partial function space and convex powerdomain constructors. We prove that the
partial order on such a recursive predomain D is the greatest fixed point of a certain monotone
operator associated to D. This provides a structurally defined family of proof principles for these
recursive predomains: to show that one element of D approximates another, it suffices to find
a binary relation containing the two elements that is a post-fixed point for the associated monotone
operator. The statement of the proof principles is independent of any of the various methods
available for explicit construction of recursive predomains. Following Milner and Tofte (1991), the
method of proof is called co-induction. It closely resembles the way bisimulations are used in
concurrent process calculi (Milner 1989).

Two specific instances of the co-induction principle already occur in the work of Abramsky (1990,
1991) in the form of "internal full abstraction" theorems for denotational semantics of SCCS and
lazy lambda calculus. In the first case post-fixed binary relations are precisely Abramsky's partial
bisimulations, whereas in the second case they are his applicative bisimulations. The co-induction
principle also provides an apparently useful tool for reasoning about equality of elements of
recursively defined datatypes in (strict or lazy) higher-order functional programming languages.

Contents

1. Introduction . 196
2. Simulations . 197

Correspondence to: A.M. Pitts, University of Cambridge Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge CB2 3QG, UK. Email: andrew.pitts@cl.cam.ac.uk.

0304-3975/94/$07.00 © 1994--Elsevier Science B.V. All rights reserved
SSD1 0304-3975(93)E0081-E

196 A.M. Pitts

3. Embeddings . 203
4. Simultaneous domain equations . 208
5. Co-induction with powerdomains . 210
6. ML polymorphism . 213
7. Conclusion . 217
References . 218

1. Introduction

Recursively defined domains play a key role in giving denotational semantics for
many programming language features. In particular, such domains arise naturally in
connection with the recursive datatypes of higher-order functional programming
languages such as Standard ML E11] or Haskell [7]. Elegant methods for construct-
ing recursive domains have been devised - such as via Scott's "information systems"
(see [21]). Nevertheless, the structure of recursive domains can be very complicated,
especially for domain equations involving the (partial) function space constructor.
Ideally one would like to have proof principles which permit reasoning about
recursive domains without recourse to an explicit description of their structure.

This paper introduces such a proof principle, which applies uniformly to all
predomains recursively defined using the cartesian product, disjoint union, partial
function space and convex powerdomain constructors. We show that the partial order
on such a recursive predomain D is the greatest fixed point of a certain monotone
operator associated to D. This provides a structurally defined family of proof prin-
ciples for these recursive predomains: to show that one element of D approximates
another, it suffices to find a binary relation containing the two elements that is
a post-fixed point for the associated monotone operator. The statement of the proof
principles is independent of any of the various methods available for explicit construc-
tion of recursive predomains (using colimits of embedding-projection pairs [20] or
information systems [21], for example). Following Milner and Tofte [10], the method
of proof is called co-induction. It closely resembles the way bisimulations are used in
concurrent process calculi [9].

Two specific instances of the co-induction principle already occur in the work of
Abramsky El, 2], in the form of "internal full abstraction" theorems for denotational
semantics of SCCS and lazy lambda calculus, In the first case post-fixed binary relations
are precisely Abramsky's partial bisimulations, whereas in the second case they are his
applicative bisimulations (see also [6]). The co-induction principle also provides an
apparently useful tool for reasoning about equality of elements of recursively defined
datatypes in (strict or lazy) higher-order functional programming languages.

In the first part of the paper we restrict our attention to the simple case of a single
domain equation involving products, disjoint unions, lifting and partial function
spaces. Simultaneous and parametrized domain equations are considered in Section 4.
The co-induction property for recursive domains involving the convex (or Plotkin)
powerdomain is established in Section 5. Finally, in Section 6 we show how to extend

Co-induction principle for recursively defined domains 197

the co-induction principle to cope with the combination of polymorphism
and recursive datatype declarations to be found in (the functional fragment of)
Standard ML.

Throughout, we will work with predomains rather than with domains. In other
words, the existence of a least element in a semantic domain is not assumed. Plotkin
[19] uses partial continuous functions between predomains. Here we will use total
continuous functions to lifted predomains. This necessarily places an emphasis upon
the role of the lifting construct (adjoining a least element to a predomain). Although
this has some drawbacks from the point of notational complexity, it emphasizes an
important conceptual distinction in the semantics of datatypes, namely that between
values (or canonical expressions) and computations of those values. Consider, for
example, the Standard ML datatype declaration:

datatype nat = Zero] Sue of nat

and nat l is t = Nil [Cons of nat • nat l is t

Since Standard ML is a strict language, the values of type nat l is t are intended to
comprise the set N* of lists of natural numbers. A denotational semantics for
datatypes using predomains can respect this intention, since sets are particular kinds
of predomain, i.e. the discrete ones, in which the partial order coincides with equality.
General expressions of type nat l is t (in a pure functional subset of ML, say) do not
denote values, but rather computations of values in natlist, and are assigned denota-
tions in the lifted predomain (N*)±. (A similar separation of values from computa-
tions can be made for the denotational semantics of lazy functional languages using
predomains and lifting, although of course the predomain for nat l is t would no longer
be discrete.)

As [19] shows, for languages involving higher-order functions this distinction
between computations and values in their denotational semantics is important to
achieve a good fit between operational and denotational semantics at higher types. It
is also a key conceptual aspect of Moggi's [12, 13] modular approach to denotational
semantics using categorical monads. An interesting question that we leave for future
work is to what extent the lifting monad can be replaced by other "computational"
monads in order to extend the co-induction principle described here to cope with
datatypes in "impure" languages such as Standard ML which mix imperative
constructs with higher-order functional programming.

2. Simulations

We begin by fixing the notation for predomains that will be used here. When we
consider convex powerdomains in Section 5 we will need to be more restrictive, but
for the present, by a predomain we just mean a set D equipped with a partial order E_
and possessing least upper bounds of all countable ___D-chains. Let ~ denote the
collection of all predomains. We consider the following constructions on D, E ~ .

198 A.M. Pitts

Cartesian product of D and E is the set of ordered pairs D x E = { (x, y) lx~D A y~E },

partially ordered componentwise: (x, y) _ o × ~ (x', y') if and only if x E D x' and y E E Y'.
Disjoint union of D and E has underlying set D + E = {inl (x) lx~D}u{inr(y)ly~E},

where x~--~inl(x) and y ~ i n r (y) are injective functions with disjoint images. The
partial order on D+E is: z ED+gz' if and only if either z=inl(x) and z '=inl(x ') for
some x,x'~D with x EoX', or z=inr (y) and z '=inl (y ') for some y,y'~E with y EEY'.

Lift of D has underlying set D± = { [x]lx~D}u{±}, where x~--,[x] is an injective
function whose image does not contain the element I . The partial order on DI is:
u E ol u' if and only if for all x ~D, if u = Ix] then u '= [x '] for some x'~D with x E D x'.

Exponential of E by D has underlying set D~E containing all functions from D to
E that preserve least upper bounds of countable chains. These functions are partially

ordered Pointwise from E: f E D - ~ f ' if and only if for all x~D, f(x) EEf'(x) .
Partial exponential of E by D is defined to be the exponential of E± by D, and is

denoted by D ~ E.

Definition 2.1. By a predomain constructor we mean a formal expression cr given by the
following grammar:

tr ::= K constant

let variable

I tr x a product

I t r + a disjoint union

l a i lift

I tr ~ a partial exponential

where K ranges over ~ and ~ stands for a variable member of 9 . For the moment we
only consider domain constructors involving a single variable. Given such a a and
D6@, then a(D) will denote the predomain resulting from replacing a by D in a and

interpreting the constructors ×, +, ~,---~ as above.

The process by which E DI is obtained from ___ o is a particular case of the following
operation sending binary relations <3 on a predomain D to binary relations <~± on the
lifted predomain D±. We define <~ ± by requiring u <~ ± u' to hold if and only if for all
x~D, if u = I-x] then u '= [x '] for some x'~D with x <~ x'.

Using this operation of lifting binary relations, we can give a similar operation for

each predomain constructor.

Definition 2.2. Given D ~ and a binary relation <3 on D~, for each predomain
constructor a define a binary relation a(<~) on tr(D)± by induction on the structure of

tr as follows:
(1) ~r is K: tr(<l) is E K±.
(2) tr is c~: tr(<~) is <~.

Co-induction principle for recursively defined domains 199

(3) a is al xaz : ua(<3) u' if and only if
for all (xi, x2)Eai(D)xff2(D), if U=[(X1,X2)] then u'=[(X'l, xh)] for some
(x'l, x'2)~al(D)x a2(D) with [x i] al(<]) [x'i] and [x2]a2(<])[xh].

(4) a is a i +az: Ua(<~) U' if and only if
(i) for all Xl ea i (D), if u = [inl(xi)] then u' = [inl (x'l)] for some (x'i s ai (D) with

[xl]a i (<~) [x]] and
(ii) for all X2Gff2(D), if u=[inr (x2)] then u '= [inr(xh)] for some x'2sa2(D) with

IX2] a2(<~) IX2].
(5) a is (al)±: a(<]) is the lifted relation (a i (~))±.

(6) a is ai ---'az: ua(<l) u' if and only if
for all f e a l (D) --- a2 (D), if u = [f] then u' = [f '] for s o m e f ' e a i (D) --'- a2 (D) with

f (x i)a2(<l) f ' (x l) for all xleal(D).

Recall that an isomorphism between predomains can be specified by a bijection
between the underlying sets that both preserves and reflects the partial orders. We
write D~-E when D and E are isomorphic, and write k: D ~ E if k is a particular

isomorphism witnessing this fact.
A predomain D ~ is an invariant for a predomain constructor if D _-__ a(D). Since

isomorphisms map least elements to least elements when they exist, clearly D is an
invariant if and only if D± ~a(D)±. Since in what follows we need only deal with the
isomorphism between the lifted predomains, we will say that an invariant for a pre-
domain constructor a is a pair (D, k) with De@ and k: DI ~ a(D)±. Standard results of
domain theory (which we review in the next section) guarantee that all the predomain
constructors of Definition 2.1 possess invariants. For those more familiar with solving
domain equations rather than predomain equations, it is perhaps worth pointing out
why Definition 2.1 does not contain a clause for exponentials, a ~ a ' : with unrestricted
use of exponentials, invariants may fail to exist. For example, there is no predomain
D satisfying D ~ D ~ 2 , where 2 is a two-element set regarded as a discrete predomain.
(Such a D must be discrete, since it is isomorphic to D ~ 2 which is always discrete for
any D; so D is a set, D - , 2 is its powerset, and they are in bijection - an impossibility by
the usual Cantor diagonal argument.)

The following is the key notion of this paper.

Definition 2.3. Let (D, k) be an invariant for a. A o-simulation, <l, is a binary relation
on D± such that for all u, u'~D., if u<lu' then k(u)a(<])k(u').

Lemma 2.4. For any D e ~ , the binary relation a(E_D±) is equal to E_,(D)I. Hence the
partial order relation E_ o~ is always a a-simulation for any invariant (D, k).

Proof. The first sentence follows from Definition 2.2 by induction on the structure of
a. The second sentence follows from the first, because k is order-preserving. []

Let N d (D) denote the set of binary relations on the underlying set of D ~ ,
partially ordered by set-theoretic inclusion. The mapping <l ~ a(<~) of Definition 2.2

200 A.M. Pitts

defines a monotone function from ~ d (D _) to ~d(a(D)±). Monotonicity can be
proved by induction on the structure of a. The interesting case is when a is a partial
exponential, al--~a2 say: since the relevant clause of Definition 2.2 has a positive
occurrence of a2(<3) and no occurrence of al(<]), monotonicity of the operation on
binary relations is preserved. Thus, given an invariant (D, k) for a, the function

<3 ~ {(u, u')lk(u)a(<3)k(u')} (1)

determines a monotone operator on ~eE(D±). Let us write < for the greatest fixed
point of this operator. Since a-simulations for (D, k) are precisely the post-fixed points
for this monotone operator, Lemma 2.4 implies that _ D. is contained in N. We will
call the invariant (D, k) extensional if the reverse inclusion holds, so that ~ o± is the
greatest fixed point for (1).

The main technical result of this paper is that recursively defined predomains are
extensional in the above sense. We will write recct.a for the predomain recursively
defined by the equation e = o-. This predomain comes equipped with an isomorphism
k that not only makes (recct. ~r, k) an invariant for o-, but which is the minimal such
invariant in a suitable sense (such as being initial for embedding-projection pairs). In
Section 3 we will recall enough of the construction and characteristic properties of
such recursive predomains to prove:

Theorem 2.5 (Co-induction property). Let a be a predomain constructor as in Defini-
tion 2.1, and let D =recc~. a be the predomain recursively defined by the equation ~=a.
For any u, u' ~D±, u EDlu' holds if and only if there is some a-simulation <3 with u<3 u'.

The force of the theorem is to provide a method for proving that one element in (the
lift of) a recursively defined predomain approximates another: one just has to find
a simulation relating the two elements. It is clear from the definition of simulation that
this property of recursive domains could be formalized in a second-order logic such as
the/~-calculus of Scott, de Bakker and Park [14]. Thus, the method can be used
independently of any particular explicit description of recursive domains within
higher-order logic (such as that used in the next section to prove the theorem). Note
that in contrast to domain-theoretic induction principles (such as Scott's fixed point
induction), the co-induction principle does not require us to restrict our attention to
chain-complete relations on a domain. In practice, we may not need to construct
a very large simulation in order to establish an instance of the partial order relation.
Here is an example involving lazy lists.

Example 2.6 (Lazy lists). The Standard ML [11] datatype of (head-strict) lazy integer
lists (or "sequences" [15, 5.12]) is

da ta type seq=Ni l I Cons of i n t , (uni t -*seq)

Co-induction principle for recursively defined domains 201

Consider the following ML declarations defining expressions sucq, f r o m and n a t q
of types s e q~ se q , int-- ,seq and u n i t ~ s e q , respectively:

fun sucq Nil = Nil

[sucq (C o n s (n , s)) = C o n s (n + l , fn () ~ s u c q (s ())) ;

fun f r o m n = C o n s (n, fn () ~ f r o m (n + 1));

fun natq() = C o n s (0, fn () ~ s u c q (n a t q ())) ;

We will use Theorem 2.5 to prove that n a t q () and f ro m (0) have equal denota-
tions.

The datatype seq can be given a denotational semantics using the initial solution
I of the predomain equation e = 1 + 7/x c~±, with 1--{0} a one-element set and
7/= {..., - 1, 0, 1,...} the set of integers (both sets being regarded as predomains via
the discrete partial ordering). Closed ML expressions of type seq receive denotations
in the domain I±.

Let us introduce the following notation in connection with the predomain I. Write
nil and n::u for the elements of I corresponding under the canonical isomorphism
i: I ~ 1 + 7/ x I± to inl (0) and inr(n, u), respectively. Let k: I± ~ (1 + Z x I±)± denote the
lifted isomorphism, i±. For ueI± and x~I, write u ~ x if u = I-x].

Then from Definition 2.2 we have that a (1 + 7 / x e±)-simulation for the invariant
(I, k) is a binary relation <] on I± such that for all u, u', veI± and all neT/,

(a) if u <] u' and u 1~ nil, then u' 1) nil, and

(b) i fu <~ u' and ulln::v then u'l~n::v' for some v' with v <~ v'.
The denotation of sucq is of the form [s]e(I ~ I) ± , where s is a (continuous)

function I ~ I ± satisfying

s(nil) = [nil],

s(n :: u)= [(n+ 1):: s* (u)],

with s* the strict function from I± to I± corresponding to s, i.e.

s . (u)=Ss(x) if u = [x] , some x~I,
if u = L .

The denotation of f r o m is of the form [f] e (7 / - - ' I) l , where f is a (continuous)
function 7/~I± satisfying

f(n) = In :: f (n + 1)]. (2)

Then the denotation of f r o m (O) is f(O)EI±, whereas the denotation of n a t q () is
some element u~I± satisfying

u=[O::s*(u)].

So we have to prove that u =f(O).

202 A.M. Pitts

By Theorem 2.5, it suffices to exhibit binary relations <l, <~' on I1 satisfying
conditions (a) and (b), and such that u <~ f(0) and f(0) <Y u. But it is not hard to see
that these requirements are met by

<~ = {((s*)"(u), f(n)) I n/> 0},

<Y= {(f(n), (s*)"(u))ln ~>0},

where (s*)" denotes the function s* applied n times. Since (s*)°(u)=u, we certainly
have u <] f(0) and f(0)<~' u. To verify conditions (a) and (b), first note that by
induction on n/> 0

(s*)"(u) = [n :: (s*)" + 1 (u)]. (3)

By (2) and (3), for no n/> 0 do we have (s*)" (u) ~ nil or f(n) V nil. So <] and <]' trivially
satisfy (a). For (b), given the instance ((s*)" (u), f(n)) of <l, if (s*)" (u) 1) m :: v, then by (3)
m = n and v = (s*)" + 1 (u). So taking v' =f(n + 1), by (2) we have f(n) U m :: v' with v <J v',
as required. Similarly, (b) for <1' follows from (2) and (3) by a symmetric argument.

Examining the above argument, it seems that we have proved u = f(0) for an
arbitrary extensional invariant for 1 + 72 x e l and not just for the initial one I. In fact,
for this predomain constructor it is the case that the co-induction property of
Theorem 2.5 suffices to characterize the initial solution uniquely up to isomorphism
amongst all invariants. We will return to this point in Section 7.

It is instructive to compare the proof in Example 2.6 with proofs exploiting specific
properties of the datatype seq. For example, Bird and Wadler [-4, p. 184] use the
so-called "take-lemma" to form finite approximations to lazy lists, and hence reduce
the proof to a suitable induction over the natural numbers. As we recall in the next
section, a general recursively defined domain comes with the notion of finite approx-
imation, by virtue of its construction as a colimit of a chain of embeddings. We exploit
this to reduce the proof of the co-induction property to an application of mathemat-
ical induction (see Proposition 3.3). So the co-induction principle is in a sense just
a repackaging of an inductive argument on finite approximations. However, the
induction is done once and for all in establishing the general principle, allowing us to
avoid consideration of such finite approximations in any particular application of the
principle. This is a distinct advantage when the particular notion of finite approxima-
tion is complicated - as is generally the case for datatypes involving the function type
constructor. Here is such an example.

Example 2.7 (Lazy lambda calculus). Consider the recursive predomain D = r e c , . a
with a = ~±--~ ~. If k denotes the lift of the canonical isomorphism D - D±---~ D, then
k is an isomorphism between the domain L = D I and the domain (L~L)I . L is the
canonical model of the lazy untyped lambda calculus studied by Abramsky [-13 and
Abramsky and Ong [33.

Co-induction principle for recurs±rely defined domains 203

For u~L and f e L ~ L , write u l lf if k(u)= [f] . Then from Definition 2.2 we have
that a a-simulation for (D, k) is a binary relation <~ on L satisfying

if u<lu' and ul~f then u' l I f ' for some f 'eL--*L with f(v)<~f'(v) for all v~L.

This is the notion of applicative bisimulation used in [1]. The co-induction property for
this a is Abramsky's "internal full abstraction" result [1, Theorem 4.1] for the

canonical model of lazy lambda calculus.

Remark 2.8 (a-bisimulations). Clearly Theorem 2.5 can be applied to prove that an
equality holds by splitting the goal of proving u = u' into the two subgoals u E u' and
u' E u. However, it is also possible to give a version of the theorem which directly
characterizes the equality relation on (rec e. a)± as the largest binary relation

satisfying

u~u' implies k(u)a (~) k(u'),

where ~ w-~ a (~) is obtained from Definition 2.2 by "symmetrizing" each clause of
the definition. For example, the symmetric version of the lift operation on relations
sends ~ to the relation "~"£O(('~°P)±) °p, i.e. the relation containing all pairs (u,u')
satisfying

for all x, if u = [x] then u '= [x '] for some x' with x ~ x', and
for all x', if u' = [x'] then u = [x] for some x with x ,-~ x'.

3. Embeddings

In this section we will recall from [20] enough of the theory of solving domain
equations using colimits of embedding-projection pairs to prove Theorem 2.5. Al-
though loc. eit. uses domains rather than predomains, the theory is easily adapted.

As usual, we call a function i: D ~ E between predomains continuous if it preserves
the least upper bound of any o)-chain. Such a continuous function is an embedding if
there is a continuous function i ° :E~D± satisfying

for all x~D, [x]=i°(i(x)), and
for all xeD and yEE, if [x] E i°(Y) then i(x) E_ y.

It is not hard to see that such an i ° is uniquely determined by i. We call i ° the partial
projection associated to the embedding i. We will use the following notation to
indicate that i is an embedding:

i:D=-~ E.

Embeddings compose: given i:D =--*E and j :E =--~F, the function composition
j o i: D ~ F is an embedding with associated partial projection given by

i°(y) if j°(z)=[y], some yeE,
(j o i) o= / if j°(z)=A_.

204 A.M. Pigts

Clearly the identity function on a predomain D is an embedding, with associated
partial projection the insertion x ~ [x] of D into D±. Thus, predomains and embed-
dings form a category, which we denote by N e.

The operations on the predomain considered in Section 2 extend to ones on
embeddings between predomains as follows.

Definition 3.1. Given an embedding i:D =--,E, for each predomain constructor a
as in Definition 2.1, define an embedding o.(i):a(D)=--~a(E) by induction on the
structure of o. as follows:

(1) o. is K: a(i) is the identity function on K. The associated partial projection is
[-] :K-*K±.

(2) o. is ~: o.(i) is i itself.
(3) o. is o1 x a2: given (xl,x2)eo.l(D)x a2(D), define

O.(/)(X1, X2) = (O.1 (XI), 0-2 (X2))"

The associated partial projection sends (yt,y2)eo.i(E)x o.2(E) to

a(i)o(yl,ya)=S[(xl,x2)] if aj(i)°(yj)=[xj] for some xj (j= l ,2) ,
otherwise.

(4) o. is al +o.2: given zeo.l(D)+a2(D), define

{inl(o.l(xl)) if z=inl(Xl) for some xl,
a(i)(z)= inr(o.2(x2)) if z=inr(x2) for some x2.

The associated partial projection sends we o., (E) + o2 (E) to

I [inl(xl)] if w=inl(y,) for some Yl, and
o.l(i)°(yl)=[xl] for some xl,

a(i)°(w)= J[inr(x2)] if w=inr(y2) for some Y2, and
aa(i)°(ya)=[x2] for some Xa,
otherwise.

(5) tr is (al)±: given ueal(D)±, define

a(i)(u)={ [J_ a~(i)(x)] ifif u=d_.u=[x] for some x,

The associated partial projection sends veo.l(E)± to

G(i)°(v)={ [J_ al(i)°(y)] ifif v= [Y] for some y,

Co-induction principle for recurs±rely defined domains 205

(6) o is al--a'(72: given f~al(D)---~a2(D), define a(i)(f) to be the function al(E)~
az(E)± sending yleal(E) to

a(i)(f)(yl)= ([a2(i)(x2)]2_
if al(i)°(yl)=[Xl] for some xl, and

f (x i)=[x2] for some x2,
otherwise.

The associated partial projection sends g~al(E)--~a2(E) to [f] where
f~ a l (D)~ a z(D) is the function sending x l ~ a l (D) to

f(xl)={ L 2(i)°(y2) ifotherwise.g(a,(i)(xl))=[y2] for some Y2,

The above action of a predomain constructor on embeddings preserves identities
and composition. So each a determines a functor F = a(-): ~ ¢ ~ ¢. By definition, the
predomain rec a. a recurs±rely defined by the equation ~ = tr is the initial algebra lv in 9 ¢
for this functor. Thus, Iv comes equipped with an embedding iF:F(IF) ~ Iv such that
for any other embedding of the form j:F(D)=-+D there is a unique embedding
j : 11: ~ D making the square of embeddings

iF F(Iv) '- , Ip

F(D) '- , D
j

commute. As is well known, this property of iF forces it to be an isomorphism.
The existence of such an iv:FUr) ~ le follows from the fact that N¢ has, and each

F = a(-) preserves, colimits of co-chains, together with the fact that ~¢ possesses an
initial object (the empty predomain 0). These properties can be deduced from the
corresponding facts about domains in [20] by observing that ~¢ is isomorphic to the
category of "embedding-projection pairs" [20, Definition 6] between co-complete
posets with least elements. Indeed, when the lift functor (-)± is applied to an embed-
ding i:D ~ E it yields the embedding half of an embedding-projection pair, the
projection part of which is the continuous function i*:E±~D± given by

i ,(v)={i)(y) if v= [y] ,
if v = _1_, (4)

and every embedding-projection pair between lifted predomains arises uniquely in
this way.

206 A.M. Pitts

We say that a functor F:N°-- . D e is co-continuous if it preserves colimits of co-chains.
Its initial algebra IF can be constructed as the colimit in Ne of the chain of embeddings

0 io ix i.-1 in in+l
~- , F (0) r , , F " (0) ~- , r "+ 1(0) , . . . , (5)

where io is uniquely determined and, inductively, i ,+l=F(in). The structure
morphism for the initial algebra, i v : F (I v) ~ Iv, is constructed as follows. Let

(k, : V"(0) ~ Iv] n6 [~)

denote the colimiting cone for (5). Since F is co-continuous,

(V(k,): e" + 1(0) =--~F(Iv) l n~ ~) (6)

is a colimiting cone for the co-chain

e(0) F(i°) 'e2(0) F (i l) . . . F(in-1))r,+l(O) F(i.))fn+2(0) F(i .+l)) . . .

Clearly (k, + 1 : F" + ~ (0) =-~ I r] nc co) is a cone for this co-chain. Then iv : F(Iv) =-+ I~ is
the unique factorization of this cone through the colimiting cone (6). Thus, for each
n ~ , the following square commutes:

F" + 1 (0) F(k.) ~- ' F(IF)

f"+l(O) ~ ' Iv
kn+ 1

(7)

The only other fact we will need to use about colimits of co-chains in @ ~ is that they
can be constructed by forming the limit in the category of posets and monotone
functions of the corresponding co°P-chain of projections (see 1-20, Theorem 2]). Hence,
in particular, with notation as in (4), we have the following lemma.

Lemma 3.2. The family of monotone functions (k*:(IF)±~(F"(O))±]neN) is jointly
order-reflecting: i.e. u E_ u' holds in (Ie)± iffor all neN, k*(u) E_k*(u') holds in (F"(0))±.

As well as determining co-continuous functors @e__.~o, we saw in Section 2 that
predomain constructors come equipped with an action on binary relations. So let us
now suppose that we are given an co-continuous functor F : ~ ° ~ e equipped with
a function <IEJId(D±)v--+F(<~)6~ed((FD)±) for each D ~ . Writing k: (Iv)±~
(F(Iv))± for the lift of the inverse of the initial algebra structure morphism
iF:FUr) ~---,IF (which as we noted above is necessarily an isomorphism), let us call
a relation < l c~d((IF)±) an F-simulation if u <] u' implies k(u) F(<l) k(u') for all
u, u' ~(Iv)±. The following proposition gives sufficient criteria for the initial algebra Iv
to satisfy a co-induction property like that in Theorem 2.5.

Co-induction principle for recursively defined domains 207

Proposition 3.3. With F as above, suppose that
(i) For each D e ~ , F(___DI) = _ (FD)~.

(ii) Given i : D =-* E in ~e and <5 6 ~ d (E .), suppose that u <3 u' implies i*(u) E_ i* (u')
for all u,u'eE±. Then vF(<3)v' implies F(i)*(v)E_F(i)*(v') for all v ,v 'eF(E) , . (The
notation i* is defined in (4).)

Then for all u ,u 'e(Ir) , , u ~_ u' if and only if there is some F-simulation <3
with u <3 u'.

Proof. Since (i) implies that __ (IF)± is an F-simulation, the "only if" direction is

immediate.
For the converse, suppose that <] is an F-simulation. We have to show for all

U,U'G(IF) , that u <3 u' implies u _ u'. By Lemma 3.2 it suffices to prove for all neN

that

for all u,u'~(Ip)z, if u ~ u' then k*(u) E_ k*(u'), (8)

and we do this by induction on n. The base case n = 0 is trivial, since k* has codomain
(F°(O))z = {_1_} and so is a constant function.

So suppose, inductively, that (8) holds. If u <3 u' in (IF). then k(u)F(<3)k(u'), since
<3 is an F-simulation. Then applying property (ii) with i=k , , we have that
F(k,)*(k(u)) E_ F(k,)*(k(u')). But this is exactly k*+l(U)_ k*+t(u'), since k is by
definition (i f a). and hence from (7) we have that F(k,)* o k = k*+ 1. Thus, (8) implies
the same statement for n + 1, as required. []

Lemma 3.4. Any functor F = ~(-) arising from a predomain constructor G satisfies the
hypotheses of Proposition 3.3.

Proof. Condition (i) of the proposition holds by Lemma 2.4. For condition (ii),
suppose that <~ e N d (E ,) and that i: D ~ E is an embedding such that u <3 u' implies
i*(u) E_ i*(u') for all u, u 'eE , . We have to prove that

for all v, v 'ea(E) , , if vtr(<3)v' then a(i)*(v) ~_ tr(i)*(v'), (9)

and we do so by induction on the structure of o-. We give the cases for lifting and
partial exponential, and omit the others. Note that in proving a(i)*(v) E_ cr(i)*(v') from
w(<3) v' it suffices to consider the case v # d_, since o-(i)* (_L)= _L.

(1) ~ is (o1),: Suppose that vt~(<3)v' in a(E)±, and that v#J_ - say v=[u-]. Then
since tr(<~) is by definition the lifted relation (at(<~)),, v = [u '] for some u'ea(E)
satisfying utrl(<3)u'. By induction hypothesis, o-z satisfies (9), so crl(i)*(u) ~ al(i)*(u').
From the definition of a(i) ° in terms of o-~(i) ° given in Definition 3.1, it follows that
a(i)°(u) E_ ~(i)°(u'). But since v=[u] , a(i)*(v)=cr(i)°(u), and similarly for v' and u'.
Thus ~(i)*(v) E a(i)*(v'), as required.

(2) g is o - x ~ r 2 : Suppose that va(<~)v' in a(E) , , and that re_l_ - say v = [9]
with gs~rl(E)---~ez(E). Then by definition of cr(<3), v = [9 '] for some 9' satisfying
g(yz)t72(<~)g'(y2) for all y2et72(E). By induction hypothesis, o-2 satisfies (9), so

2 0 8 A.M. Pitts

o.2(i)*(9(Y2))~o.2(i)*(9'(y2)) for all y2eo2(E). So for any xieo.l(D), taking
Y2 = o.1 (i)(xi) we have

o.2(i)*(9(o.1 (i)(xl))) E o-2(i)*(g'(o-i (i)(xl))).

Therefore, from the definition of o.(i) ° in terms of o.~(i) ° and O-2(i) ° given in Defini-
tion 3.1, it follows that o.(i)°(9)E_ o.(i)°(9'). Hence o.(i)*(v)=o.(i)°(O)E_ o.(i)°(9')=
o.(i)*(v'), as required. []

With the above lemma, we obtain Theorem 2.5 as a direct corollary of Proposi-
tion 3.3. Indeed, we can derive the following generalization of the theorem which
characterizes the partial order on a predomain built from a recursive one using the
predomain constructors.

Corollary 3.5. Suppose that o. and z are predomain constructors as in Definition 2.1.
Then v E_ v' in z(recct.o.)± i f and only if there is some a-simulation <1 with vz(<~)v'.

Proof. Ifv ___ v', we can take <3 to be E (.)±. We know that it is a o.-simulation, and
z(<~) is the partial order on z(recct.o-)± because by Lemma 3.4, property (i) in the
statement of Proposition 3.3 holds for z(-).

For the converse, we apply property (ii) in the statement of Proposition 3.3 to z(-),
taking i: D ~ E to be id: recct .o. ~rec~. o.. The hypothesis in (ii) holds in this case by
Theorem 2.5, and the conclusion is the result required. []

4. Simultaneous domain equations

Let o] , . . . , o-, be predomain constructors built up using x , + , . , -% constants
ranging over @, and variables drawn from the set {ai , , ,} . Given an n-tuple of
predomains D = (D1,. . . , Dn)E~ n, let o . i (D) ~ denote the result of interpreting each ~j
(j = 1,. . . , n) as D~ and o-i, and let o-(D)e~" denote the n-tuple (o.~(D),..., o.,(D)). Then
D constitutes a solution to the simultaneous equations

O~ 1 ~-O.I,

: (lO)

if there are isomorphisms Di_~O.~(D) for each i= 1,.. . ,n. As before, to state the co-
induction property we need only consider the lift of such isomorphisms: so call (D, k)
an invariant for the n-tuple of predomain constructors o. = (o-1 , o'n) if k = (kl k,),
with k~: (D~). = o.i(D), for each i= 1 n.

A o.-simulation for such an invariant is an n-tuple of binary relations
<1 =(<~ 1 <~,) with <] ~ d ((D i) ±) and such that for all u, u ' ~ (D I L x . . . x (Dn)±, if
Vi(u~ <~u~) then Vi(k~(uO)ai(<~)k~(u~)). Here we are using the natural extension of

Co-induction principle for recursively defined domains 209

Definition2.2 to predomain constructors ~ involving several variables e~,. . . ,e, :
in defining ~(<~) by induction on the structure of ~ , one proceeds just as in
Definition 2.2, but using the appropriate component <]~ of <3 in case ~, is a vari-

able ej.
Let (~°)" denote the n-fold product of the category of predomains and embeddings.

(N¢)" inherits a terminal object and colimits of co-chains componentwise from ~*. The
action of a predomain constructor ~ of n variables on a morphism i: D ~ E in (9°)" to
produce an embedding ~(i): O(D) ~ O(E) can be defined by induction on the struc-
ture of ~ just as in Definition 3.1. In this way the assignment D ~ O(D) extends to an
co-continuous functor ~(-) : (~ ¢) " ~ e . And given an n-tuple ~1 , o-, of such predo-
main constructors, we get an co-continuous functor (crl(-),..., cr,(-) > :
(~e),~(N~),. By definition, the n-tuple of predomains recursively defined by (10) is the
initial algebra for this functor.

Theorem 4.1. Let (D1,...,D,) be the n-tuple of predomains recursively defined by (10).
Let/)=(D1) ± × ... × (O,)±. For any u, u'eD, u E_ b u' holds if and only if there is some
~-simulation <3 with ui <3iu'ifor each i= 1,...,n.

Proofi Let Fi be the functor a i (-) : (@ e) " ~ e and let F=(F1, . . . ,F ,) : (~e)"~(~)" .
Then each D~ can be calculated as the colimit in N~ of the m-chain

FI°)(0) ~ vl l ' (0) =--~FI2)(0) ~ ...,
where

Flm+ 1)(~) = Fi(F]m)(~)),..., F(m)(~)).

In particular, to prove u _ ~ u' it suffices to prove that for each i and m the partial
order relation holds between the projections of ui and u~ to FI"+I)(0)±. Thus, the
technique used in the proof of Proposition 3.3 can be applied to deduce the theorem
from the following properties of the action of a predomain constructor ~ of n
variables on n-tuples of binary relations:

(i) For each D =(D1,. . . , D,)e~" , ~9(___ (D1)l , ' " , - (O,)l)= --~ qt(D)3 _"

(ii) Given i : D ~ E in (~e), and <~ =(<]1,. . . , <~,) with <3je~d((Ej)±) (j = 1,...,n),
suppose that for all u, u' e(E1)± x ... × (E,)±, if Vj(uj <]iu~) then Vj(i*(ui) E_(Dj)~ i*(u~)).
Then for all v, v'e~(D)±, if v ~(<~)v' then O(i)*(v) E ~(i)*(v').

Properties (i) and (ii) can be proved by induction on the structure of ~, just as in
Lemma 3.4. []

Remark 4.2 (Parametrized recursion). What if in Theorem 4.l we were only interested
in proving instances of the partial order in one of the Di? To avoid constructing
simulation relations for all the other components, we would have to express the
simultaneous recursion of (10) in terms of single recursive domains rec ft. o-(fl, e,...),
where ~,... are free parameters. A co-induction principle can be developed for such

210 A.M. Pitts

parametrized recursive types. The main step is to extend Definition 2.2 with a clause
for the case that a is rec// , cr 1 (/3, e): one defines cr(<l) to be the greatest fixed point of
the monotone operator on Nd((rec / / . a l (/ / , D)).) given by

<~'~--, {(u, u') l ko(u)al (<~ ', <~) ko(u') },

where k~: (reclL¢l(]/,e))l~al(rec/Lrh(/~,c0,c~)_ is the (lift of the) canonical iso-
morphism.

The proof that the co-induction principle does hold for parametrized recursive
types is best accomplished by interpreting them not in N~ but in an associated co-chain
complete category 9 ' . The objects of 9 ' are pairs (D, <~), where D is a predomain and
<~ e n d (D.). A morphism (D, <3)~(D', <l ') is defined to be an embedding i: D ~ D'
satisfying v <l'v' implies i*(v)<~ i*(v') for all v,v'eD', . Colimits of co-chains in N '
involve forming colimits of co-chains of embeddings in N~ and taking the greatest fixed
point of a certain monotone operator on relations to get the second component of the
colimit. There is an co-continuous retraction from N' to N~, and the predomain
constructors ±, x , +, ~ can be lifted along it to ~,.1 These properties enable one to
extract the co-induction property for parametrized recursive predomains in ~ e from
an analysis of initial algebras for co-continuous functors on N'. We leave the fleshing
out of the details of this to another occasion. (The category ~ ' should be contrasted
with the one involving co-chain complete relations mentioned in [20, Section 4,
Example 6]: for co-induction (as opposed to induction) we are in the pleasant position
of not needing to impose chain completeness conditions.)

5. Co-induction with powerdomains

We saw in Example 2.7 that the notion of "applicative bisimulation" used by
Abramsky in his study of the lazy lambda calculus [1] is a particular case of the notion
of simulation for a predomain constructor. The same is true for the notion of "partial
bisimulation" in Abramsky's denotational semantics of SCCS [2]. To see this we must
enrich our collection of predomain constructors to include the convex, or Plotkin,
powerdomain (or rather, the predomain version of it). In order to prove that the
co-induction property continues to hold for predomains recursively defined using this
larger set of constructors, we will need to restrict our attention to the bifinite
predomains, for which there is a sufficiently concrete description of the convex
powerdomain construction.

We say that D e N is bifinite if it is the colimit in 9 ° of an m-chain of finite
predomains. Let N denote the collection of bifinite predomains, and let M e denote the
full subcategory of ~e whose objects are in N. In Section 3 we remarked that ~* is
isomorphic, via the lifting functor, to the category of "embedding-projection pairs"

1 The author does not know whether the power-predomain constructor P considered in Section 5 can be
so lifted.

Co-induction principle for recursively defined domains 211

between co-complete posets with least elements. This isomorphism restricts to one
between ~ and the usual category of bifinite (or "SFP" [17]) domains and embed-
ding-projection pairs. So, given DeN, Dl is a bifinite domain and we have from [18,
Ch. 8] the following explicit description of the convex powerdomain of D±, P ~(D±):
• The underlying set of Pn(D±) consists of all nonempty, convex, Lawson-closed

subsets of D±. Recall that X _c D± is convex if whenever x l __. x E x2 with xl , x2 EX,
then xeX. A subset X of bifinite D± is Lawson-closed if X contains the limit of any
convergent sequence (x,[neN) contained in X. (By definition, the sequence
(x, [n~ N) converges to a limit x if for all compact elements c, if c E x (respectively
c if-x) then c _ x, (respectively c g-x,) for all but finitely many n.)

• The partial order on P~(D±) is the Egli-Milner order, EEl: given X,X'eP~(D±),
X E EU X' is defined to hold if and only if

for all x e X there is some x ' eX ' with x ~D± x', and
for all x ' s X ' there is some x s X with x ___D~ x'.

The convex powerdomain construction extends to a (locally continuous) functor on
the category of bifinite domains and continuous functions, and hence to an o)-
continuous functor on the category of bifinite domains and embedding-projection
pairs. The action of P~ on a continuous function p:B--+A between bifinite domains
produces the continuous function P~(p):P~(B)~P ~(A) mapping a nonempty, convex,
Lawson-closed subset Y_ B to the convex hull of the Lawson closure of the image of
Y along p (see [2, Section 3]). We record the following facts that we need below and
which can be obtained from [18, Ch. 8].

Lemma 5.1. (i) Let Con(X) denote the convex hull of a subset X of a predomain D: thus,
by definition Con(X)= {x~D [xl E X ~ x z f o r some xl, XE~X}. I f Y~_D is convex, then
Con(X) EEU r if and only if X EEu Y.

(ii) For a bifinite domain B, the least element of P~(B) is {Z}.
(iii) Let p : B --* A be the projection half of an embedding-projection pair between

bifinite domains. (In other words, p possesses a right-inverse-left-adjoint.) Then the image
of a Lawson-closed subset of B along p is again Lawson-closed. Hence, P~(p) sends
YEP~(B) to

P~(p)(Y) = Con({p(y) l y~ Y}).

Turning now to a predomain version of the convex powerdomain, we can restrict
P~ along the isomorphism (given by lifting) o f ~ e with the category of bifinite domains
and embedding-projection pairs to obtain an co-continuous functor P:~e~9~e. Thus,
the object part of this functor sends D ~ to the bifinite predomain P(D) with the
property that P(D)±=P~(DI). Given an embedding i:D ~--.E in ~e, then using
Lemma 5.1 (iii) the embedding P (i): P (D) ~ P (E) has an associated partial projection
P(i) ° such that for all V~ P(E)±

e (i) * (v) = Con({i*(v) l v~ v})
(where P(i)* is defined from P(i) ° as in (4)).

212 A.M. Pitts

We also have to give an action of this power-predomain constructor on binary
relations. Given D ~ and < ~ d (D ±) , define P(<])e~d(P(D)±) as follows: for
U, U'~P(D)±=P~(D±), we define UP(<~)U' to hold if and only if
• for all u~U there is some u'~U' with u <] u', and
• for all u~U' there is some u~U with u<~u'.

Lemma 5.2. (i) For each D ~ , P (_ o i) = - ewl) "
(ii) Given i: D ~ E in ~ and <~ e ~ d (E ±) , suppose that v <3 v' implies i*(v) E_ i*(v')

for all v, v' eg±. Then for all V, V' eP(E)±, if VP(<]) V' then P(i)*(V) =_ P(i)*(V').

Proof. For (i), just note that in the definition of P(<~) if <~ is the partial order
_ D± then P(<]) is the Egli-Milner ordering, which we noted above is the partial order
for P(D)± =P~(D±) when DE~.

For (ii), suppose that VP(<~) V'. We have to show that P(i)*(V) = P(i)*(V'), i.e. that
Con({i*(v)[ve V}) ___EM Con({i*(v')[v'~ V'}). By Lemma 5.1 (i), it is sufficient to show
that {i*(v)]v~ V} =--EM Con({i*(v')[v'~ V'}). By definition of the Egli-Milner order,
this requires us to prove that

(a) for all w V, there is u~Con({i*(v')[v'~ V'}) with i*(v) =_ u, and
(b) for all u~Dj_ and v'i,v'2~V', if i*(v'i) r- u r- i*(v'2), then there is w V with

i*(v) =_ u.

For (a), recalling the definition of P(<]), if v~ V and VP(<l)V ' then there is some
v '~V' with v<~v' and hence, by hypothesis on i, i*(v) E_i*(v'). Since i*(v')~
Con({i*(v')lv'~ V'}) we are done.

For (b), suppose i*(v ' l)v-u v- i*(vl) with v'l,V'E~V'. Then since VP(<])V' and
v] ~ V', there is some v~ V with v <Iv], and hence i* (v) _ i* (v ' i)_ u as required. []

Let us extend the notion of a predomain constructor given in Definition 2.1 by

permitting P to be used:

a :: I P(a).

Interpreting the constants K that occur in such a a as ranging over ~, each such
predomain constructor determines an co-continuous functor a (-) : ~ e ~ e and an
initial algebra r e c a . a ~ . Using the definition of <3 ~-.P(<~) given above, we can
extend Definition 2.2 to give an action of such a predomain constructor a on binary
relations on predomains in ~. In particular, we have the notion of a a-simulation on
reca.a, just as in Definition 2.3. By Lemma 5.2, the action on binary relations satisfies
the hypotheses of Proposition 3.3, so that the proposition yields the following exten-

sion of Theorem 2.5.

Theorem 5.3 (Co-induction with powerdomains). Let a be a predomain constructor of
a single variable ~ built up using x , +, ±, -% P and constants ranging over bifinite
predomains. Let D = rec ~. a be the bifinite predomain recursively defined by the equation
a=a. For any u,u' ~D±, u E_D±U' holds if and only if there is some a-simulation <~ with
U <l U '.

Co-induction principle for recursively defined domains 213

Example 5.4. Abramsky's domain for bisimulation in [2] can be expressed with
predomain constructors as B=(rec~ .a) . with a = l + P (N x ~ ±) . Let k:B~-
(1 + P (N × B)). be the associated lifted isomorphism. Then from the definitions, we
have that a binary relation <~ on B is a a-simulation if and only if
• if u<lu' and k(u)= [inl (0)], then k(u')= [inl(0)], and
• if u <~ u' and k(u)= [inr(x)] for some xeP((N x B) (so that [x]~P~((N x B)±)), then

k(u')= [inr(x')] for some x ' eP(N x B) satisfying
for all r e [x] there is v'~[x'] with v <]'v', and
for all v'~[x'] there is ve[x] with v<]'v',

where <3 ' eNd((N x B)±) is constructed from <~ by defining v <~' v' to hold if and

only if
for all nsN and ueB, if v=[(n,u)] then v'=[(n,u')] for some u'eB with u<]u'.

The notion of a-simulation in this case can be simplified. Following [2], let us
introduce the following notation, where u, u'eB and neN:
• Write u ~ u ' to mean that k(u)= [inr(x)] for some x~P(N x B) with [(n, u ')]~[x] .
• Write uT to mean that either k(u)= ±, or k(u)= [inr (x)] for some xeP(N x B) with

±~[x].
• Write u + to mean that u 1" does not hold.

Then it is straightforward (if somewhat tedious) to prove the following proposition.

Proposition 5.5. With a and B as above, a binary relation <~ on B is a a-simulation if and
only if it is a partial bisimulation in the sense of Abramsky [2], i.e. if and only if it satisfies:

(i) for all u,u' ,veB and heN, if u<~v and u--%u', then v--%v' for some v'eB with
u' <~ v' ; and

(ii) for all u, veB, if u <~ v and u+ then

v $, and

for all v 'eB and heN, if v ~ v' then u ~, u' for some u' with u' <~ v'.

Since partial bisimulations are exactly (I + P (~ ×ai))-simulations, Abramsky's
"internal full abstraction" result [2, Proposition 3.11] for B is a special case of the
co-induction property established in Theorem 5.3.

6. ML polymorphism

In this section we show how the co-induction property can be extended to recur-
sively defined domain constructors. We will revert to using just x , +, ±, ---~, although
the convex powerdomain could be included without difficulty.

A well-known feature of Standard ML is the ability it gives the programmer to
declare datatypes parametrized by type variables. The datatype of polymorphic lists

da ta type ~list = Nil I Cons of ~ • ~list

214 A.M. Pitts

is the prototypical example in practice. However, the presence of ML-style polymor-
phism permits not only the declaration of such type-indexed families of recursively
defined types but also recursively defined functions from types to types, such as

da ta type a t y = N i l [Cons of @ , ~ t y) t y (11)

If one is using predomains to denote types, then the denotation of t y should be
a function F : N - - , ~ satisfying

F = 2 D ~ . 1 + F(D × F(D)). (12)

The mathematical framework of [20] provides sufficient tools for establishing the
existence of (initial) solutions to functional equations such as (12). Recall from
Section 3 that ~e denotes the category of predomains and embeddings. Let ~t s (~ e)
denote the category whose objects are co-continuous functors ~e....}~e and whose
morphisms are natural transformations between such functors. ¢~ts(~ e) has colimits
of m-chains, created pointwise from ~e: the colimit of

q~o ~ ~Pl ~ " " (13)

in ~tS(~ e) is calculated by evaluating (13) at each De~ ,

@o(D) ~ @I(D) ~ ... , (14)

taking the colimit @D of this chain of embeddings, and using the universal property of
these colimits to extend D ~-~ (bD to a functor, which is necessarily co-continuous. Note,
in particular, that the evaluation functor

(~ts(~@ e) × ~@ e----}~@ e ,

(15)
(F, D) ~-~ F (n)

is jointly co-continuous.
As well as possessing colimits of co-chains, C~ts(D e) has an initial object, namely

the constant functor with value O. It follows that an co-continuous functor
¢1): ~tS(c~@e)"*~ts(~ e) possesses initial algebra Ie. The right-hand side of (12) is the
object part of such a functor cp, and by definition the predomain constructor recur-
sively defined by (12) is (the underlying object part of) the initial algebra I e in Cgts (D e).

Turning from this specific example to the general case, let us extend the syntax of
predomain constructors given in Definition 2.1:

a ::] to(a), (16)

where t¢ is a (unary) constructor symbol. For simplicity, we will consider such pre-
domain constructors involving at most one such constructor symbol ~ and at most
one variable e. Given a function F: N ~ @ mapping predomains to predomains, and
a predomain D e ~ , let a(F, D) s ~ denote the result of replacing ~c by F and e by D in
a (and interpreting , , x , + , --- and constants as usual).

Co-induction principle for recursively defined domains 215

In order to develop a notion of simulation for this kind of predomain constructor,
we must give a suitable version of Definition 2.2.

Definition 6.1. Given F : ~ @ and a @-indexed family of binary relations
<3 = (<3 D ~ ~ e ((F(D)±)ID ~) , for each a as in (16) define a family of binary relations

a (<) = (a(<) o e ~ d (a (F , D)I) t D ~)

by induction on the structure of a as follows:
(1) a is ~:(al):a(<~)D is <]~w,o)"
(2) a is a: a(<3)o is _ED. (Note that this is different from the corresponding clause in

Definition 2.2: in Section 2 the va r i ab le , stood for a predomain to be given a recur-
sire definition; here that role is played by x(~), whereas ~ itself just acts as a para-
meter.)

(3) a is K, (al)± or ax *a2 (* = x , + , --~): these cases are dealt with exactly as in
Definition 2.2.

By an invariant for a we mean a pair (F, k), where F : ~ N and k is a family of
isomorphisms, k=(kD: F(D)± ~-a(F, D)± I DEN).

Definition 6.2. A a-simulation for the invariant (F, k) is a family of binary relations

<~ =(<IDsNd(F(D)±)tD~@) such that for all D E ~ and all u,u'eF(D)±, if u <3ou'
then k3(u) a(<l)D k*(u').

Example 6.3. The predomain constructor corresponding to the ML datatype declara-
tion (11)is a = 1 +~c(a x x(a)). Suppose (F,k) is an invariant for this a. For De@ and

ueF(D)±, write u l~ nil if kD(u)= [inl(0)], and write u 11 x if kD(u)= [inr(x)] for some
xsF(D x F(D)). Then a o-simulation for (F,k) is a family of binary relations
('~DeNd(F(D)±)I D s N) satisfying:
• if u <30u' and ullniI then u'l)nil; and
• if u <30 u' and u ll x then u'l)x' for some x' with [x] <lvw × FW))Ix'].

Given a as in (16), say that an invariant (F, k) is extensional if it has the following
co-induction property: for all D e ~ and all u,u'eF(D)±, u E u' holds if and only if
there is some a-simulation <3 with u <3Du'. We aim to show that the predomain
constructor recursively defined by the equation ~c(e)= a is extensional. To do so we
must extend the material on embeddings in Section 3.

Definition 6.4. Let i : F ~ G be a natural transformation between co-continuous
functors Ne ~ Ne , and let j :D ~ E be an embedding between predomains. For each
a as in (16), define an embedding

a(i,j)'a(F, D) ~-*a(G,E)

216 A.M. Pitts

by induction on the structure of o- as follows:
(i) a is tc(a~): a(i,j) is the composition

F(tr~ (F, D)) ~_i,~,r,D, G(tr~ (F, D)) ~_G(~r~(i,j)) G(tra (G, E)).

(By naturality of i, this is equal to the composition i,,~a,E) ° F (O ' l (i , j)) .)

(2) a is K, ~, (al)± or a~ * (7" 2 (* = X, "-~-, - - -~) : these cases are dealt with exactly as in
Definition 3.1.

Lemma 6.5. Suppose that ~r is a predomain constructor as in (16), G: ~ is an
co-continuous functor, and <3 = (<] D ~ e f (G (D) ±) I D ~) is a ~-indexed family of
binary relations.

(i) I f <~ =(_ ~(o)~ [De~) then for each D e ~ , a(<])D is the partial order on tr(G, D)±.
(ii) Suppose i : F ~ G is a morphism in C~ts(~¢) such that for all D e ~ and all

u,u'eG(D)±, if U<lDU' then i*(u)E_ i*(u') in F(D)±. Then for all D e ~ and all
v, v' etr(G,D)±, if v tr(<l)DV' then a(i, idD)*(v) E_ tr(i, ido)*(V') in ~r(F,D)±.

Proof. These properties can be proved by induction on the structure of o- using
Definitions 6.1 and 6.4 together with the corresponding properties of ±, x , + and

established for the monomorphic case in Lemma 3.4. []

We noted above that the evaluation functor (15) is co-continuous. From this and the
co-continuity of the c o n s t r u c t o r s . , x , +,---~, it follows that the assignment
(F,D)~--~a(F,D) is the object part of an co-continuous functor c g g o (~) x ~
whose action on morphisms is given by Definition 6.4. Currying this functor, we
obtain an co-continuous functor ~ : (g t s (@ °) ~ t s (~ e) . By definition, the predomain
constructor recursively defined by the equation x(~) = a is the (underlying object part of
the) initial algebra ! in Cgts(@°) for this functor. Thus, I : @ ~ N e is an co-continuous
functor that comes equipped with a natural transformation ~ (I) ~ I making (I, i)
initial amongst such data. As usual, initiality entails that i is actually a natural
isomorphism. Putting ko=(iBl)±, we get an invariant (I,k) for a which is indeed
extensional in the sense defined above.

Theorem 6.6 (Co-induction for recursively defined constructors). Let tr be a predomain
constructor possibly involvin9 ±, x, +, -% constants from ~, a sinole (unary) con-
structor symbol t¢ and a single variable ~. Let I : ~ be the predomain constructor
recursively defined by the equation tc(ct)=a. Then for any D E ~ and any u,u~I(D)l ,
u ~ D) ± U' holds if and only if there is some tr-simulation <3 with u <3DU'.

Proof. The "only if" direction follows from Lemma 6.5(i) since that result implies that
the family (---I~o)l I D ~) is a a-simulation.

For the converse, first note that since I is the initial algebra for the functor
cb : ~ t s (~ e) ~ g t s (~ e) described above, it can be constructed as the colimit in Cgts(~e)

Co-induction principle for recurs±rely defined domains 217

of the co-chain

¢(o) io ¢(1) il
)) . . . ,

where

¢(°)(-)=0,
¢(.+ 1) (_) = ~(¢(.), _).

Let (k, : ¢(')-~ I I n E N) be the colimit cone for this chain. Since such colimits in ~dts(N e)
can be calculated pointwise from ~, for each D s ~ (k, , , : ¢ (') (D) ~ - ~ I (D) l n e N) is
a colimit cone in ~ e for the chain

¢(O)(D) ~io, o i1.~ , ¢ (1) (D) ~ , ...

In particular, u ___ u' holds in I(D)± if and only if for each n, k*D(u) E_ k*,D(U') holds in
¢(')(D)±. So to prove the required result it suffices to show for each ne N that

for all D e N and all u, u' eI(D)±, if u <~Du' then k* , (u) E k*,,(u').
Just as for the monomorphic case in the proof of Proposition 3.4, this can be proved

by induction on n using Lemma 6.5(ii). []

Remark 6.7. Theorem 6.6 readily extends to give a co-induction property for simul-
taneously defined recurs±re predomain constructors (along the lines of Section 4).
Similarly, using the material in Section 5, the property continues to hold when

(r involves the convex power-predomain construction.

7. Conclusion

Recurs±rely defined domains, in their full generality, have a deserved reputation for
being difficult to analyse. The co-induction property given in this paper appears to be
a useful tool for working with them. It is particularly pleasing that the property can be
stated and used without recourse to any of the explicit constructions of these domains
that are available in the literature. However, to confirm this promising appearance more
experience with applying the principle is needed - especially in the area of lazy datatypes.

Although it may not be apparent, the .results presented here arose from studying
Freyd's work on algebraically compact categories [5]. An important aspect of that
work is the emphasis it puts on the fact that recursive datatypes arising fromfunctorial
constructors should be modelled by objects that are simultaneously initial algebras
and final coalgebras. A predomain constructor o- is functorial if, for example, it
contains no negative occurrences of e. For such a o- our co-induction property is in
fact equivalent to the uniqueness part of the final coalgebra property. 2 In particular, in

2The existence part of the coalgebra property follows from the existence of (least) fixed points for
continuous functions between domains.

218 A.M. Pitts

this restricted case the co-induction property is sufficient to characterize rec~.a
uniquely up to isomorphism.

When a does contain negative occurrences of ~ the situation is not so nice. For
example, consider a = ~ ~ ~/. It is not hard to see that for this cr the monotone
operator ~ d (D±)~d(D±) associated with an invariant (D, k) as in Section 2 is
constant with value ___o.. Consequently, any invariant is extensional in the sense
defined in that section. In particular, the co-induction property does not serve to
characterize rec ~.a amongst invariants in this case.

This weakness stems from the way Definition 2.2 treats the partial function con-
structor, by throwing away the relation in the negative part of o1 ~ a2. To obtain
a more refined action on relations, whilst still producing monotone operators, one can
adapt another important idea from I-5]. Type constructors containing both positive
and negative occurrences of type variables are neither co- nor contra-variant functors
on a suitable category cg of types and functions; however, they can be viewed as
diagonalized versions of functors on cg op x cg. Adapting this idea to the concerns of
this paper leads to an interesting proof principle for recursive domains that contains
both induction and co-induction principles simultaneously; this is described in [16].

Acknowledgment

The research described in this paper was supported by the ESPRIT "CLICS-II"
Basic Research Project and UK SERC grant GR/G53279. It benefited from the
comments of Samson Abramsky, Mike Fourman, Wesley Phoa, Gordon Plotkin,
Steve Vickers (who suggested Example 2.6), the comments of an anonymous referee,
and members of the CLICS club in Cambridge.

References

[1] S. Abramsky, The lazy lambda calculus, in: D. Turner, ed., Research Topics in Functional Program-
ming (Addison-Wesley, Reading, MA, 1990) 65-116.

I-2] S. Abramsky, A domain equation for bisimulation, Inform. and Comput. 92 (1991) 161-218.
[3] S. Abramsky and C.-H.L. Ong, Full abstraction in the lazy lambda calculus, Inform. and Comput., to

appear.
[4] R. Bird and P. Wadler, Introduction to Functional Programming (Prentice-Hall, Englewood Cliffs, NJ,

1988).
[5] P.J. Freyd, Algebraically complete categories, in: A. Carboni et al., eds., Proc. 1990 Como Category

Theory Conf., Lecture Notes in Mathematics, Vol. 1488 (Springer, Berlin, 1991) 95-104.
[6] D. Howe, Equality in lazy computation systems, pp. 198-203 in [8].
1-7] P. Hudak, S. Peyton Jones and P. Wadler, eds., Report on the Programming Language Haskell:

Version 1.1, Tech. Report, Yale University and Glasgow University, 1991.
[8] Proc. 4th IEEE Ann. Symp. on Logic in Computer Science, Asilomar, CA, 1989.
1-9] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).

[10] R. Milner and M. Tofte, Co-induction in relational semantics, Theoret. Comput. Sci. 87 (1991)
209-220.

Co-induction principle for recursively defined domains 219

[11] R. Milner, M. Tofte and R. Harper, The Definition of Standard ML (MIT Press, Cambridge, MA,
1990).

[12] E. Moggi, Computational lambda-calculus and monads, pp. 14-23 in [8].
[13] E. Moggi, An Abstract View of Programming Languages, Lecture Notes, Stanford University, 1989.
[14] D. Park, Fixpoint induction and proofs of program properties, Mach. InteU. 5 (1970) 59-78.
[15] L.C. Paulson, MLfor the Working Programmer (Cambridge Univ. Press, Cambrdige, 1991).
[t6] A.M. Pitts, Relational properties of recursively defined datatypes, in: Proc. 8th IEEE Ann. Symp. on

Logic in Computer Science, Montr6al, 1993, 86-97.
[17] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (1976) 452-487.
[18] G.D. Plotkin, Lecture Notes for Postgraduate Course on Domain Theory, Dept. of Computer

Science, University of Edinburgh, 1981/82.
[19] G.D. Plotkin, Lectures on Predomains and Partial Functions, Notes for a course at CSLI, Stanford

University, 1985.
[20] M.B. Smyth and G.D. Plotkin, The category-theoretic solution of recursive domain equations, SIAM

J. Comput. 11 (1982) 761-783.
[21] G. Winskel and K.G. Larsen, Using information systems to solve recursive domain equations

effectively, in: G. Kahn et al., eds., Semantics of Data Types, Lecture Notes in Computer Science,
Vol. 173 (Springer, Berlin, 1984) 109-130.

