
JFP 23 (6): 658–700, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000245 First published online 13 December 2013
658

Contextual equivalence for inductive definitions
with binders in higher order typed

functional programming

M A T T H E W R. L A K I N� and A N D R E W M. P I T T S
Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

(e-mail:){Matthew.Lakin,Andrew.Pitts}@cl.cam.ac.uk)

Abstract

Correct handling of names and binders is an important issue in meta-programming. This paper
presents an embedding of constraint logic programming into the αML functional programming
language, which provides a provably correct means of implementing proof search computations
over inductive definitions involving names and binders modulo α-equivalence. We show that the
execution of proof search in the αML operational semantics is sound and complete with regard to
the model-theoretic semantics of formulae, and develop a theory of contextual equivalence for the
subclass of αML expressions which correspond to inductive definitions and formulae. In particular,
we prove that αML expressions, which denote inductive definitions, are contextually equivalent
precisely when those inductive definitions have the same model-theoretic semantics. This paper is a
revised and extended version of the conference paper (Lakin, M. R. & Pitts, A. M. (2009) Resolving
inductive definitions with binders in higher-order typed functional programming. In Proceedings of
the 18th European Symposium on Programming (ESOP 2009), Castagna, G. (ed), Lecture Notes in
Computer Science, vol. 5502. Berlin, Germany: Springer-Verlag, pp. 47–61) and draws on material
from the first author’s PhD thesis (Lakin, M. R. (2010) An Executable Meta-Language for Inductive
Definitions with Binders. University of Cambridge, UK).

1 Introduction

Many important meta-programming tasks, such as the implementation of compilers and
theorem provers, may be specified in terms of relations defined inductively using a finite set
of schematic inference rules. Furthermore, it is common that the object-languages involved
will contain some flavour of names and name-binding in their syntax. For example, in the
λ -calculus the variable x is assumed to be bound in the term t in the term λx. t and, by
convention, terms are considered equal up to capture-avoiding renaming of these bound
variables (Barendregt, 1984).

Assuming that such a specification in terms of inductively defined relations has been
given, the next task is to produce an implementation that meets the specification. If the
specification is encoded in a formal meta-language, it may be executed directly or com-
piled into executable code, thereby providing an enhanced degree of confidence in the

� Current address: Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-0001,
USA.

Contextual equivalence for inductive definitions in functional programming 659

correctness of the resulting computations. Ideally, the meta-language and its associated
compiler should also handle the thorny issues of names and binding automatically. As a
practical matter, it is desirable to encode inductively defined relations in a syntax which
is as close as possible to the language of informal mathematics, thereby enabling rapid
prototyping of inductive definitions involving binders.

In this paper, we use the αML meta-programming language as our host language for the
specification and evaluation of inductive definitions over syntax trees involving binders.
The αML meta-language was introduced in Lakin & Pitts (2009) and described in de-
tail in Lakin (2010). It is a higher order functional-logic programming language which
incorporates certain features of constraint logic programming (CLP). This allows proof-
search computations over inductive definitions to be defined in a convenient way, following
the informal practices of structural operational semantics. Crucially, αML uses nominal
techniques to allow topologies of name-binding in object-language terms to be succinctly
described in definitions, and only manipulates them such that the underlying notion of
object-language α-equivalence is respected.

The contributions of this paper are: (1) to define a general encoding of inductive def-
initions over object-language terms involving bindable names, (2) to encode these in the
αML metalanguage, (3) to prove soundness and completeness of formula evaluation, and
(4) to prove contextual equivalence of semantically equivalent formulae and inductive
definitions. These contributions allow inductively defined relations to be specified in a
formal language that corresponds closely to executable code, allowing the behaviour of
certain interesting cases of the definition to be investigated quickly and easily. While αML
includes the standard features of an eager functional programming language, we note that
the class of inductively defined relations considered here are constructed using a well-
defined subset of the αML syntax that manipulates object-language syntax trees directly.

The remainder of this paper is organized as follows. Section 2 presents background
nominal abstract syntax, the αML programming language and a corresponding notion of
contextual equivalence. In Section 3 we introduce our formal model of inductive definitions
over object-language terms with binders. We outline an encoding of inductive definitions
into αML in Section 4, along with soundness and completeness results. In Section 5
we prove that schematic formulae and inductive definitions are contextually equivalent
precisely when they have the same semantics. We outline related work in Section 6 and
conclude with a discussion in Section 7.

2 Background

We begin with some background on data representation using non-permutative nominal
abstract syntax (Lakin, 2011), and on the αML programming language (Lakin & Pitts,
2009) and its associated notion of contextual equivalence (Lakin & Pitts, 2012).

2.1 Background on nominal signatures and equality types

We consider abstract syntax trees specified using nominal signatures (Urban et al., 2004),
which extend first-order algebraic signatures with a term-former that denotes the binding
of a single name in the given scope.

660 M. R. Lakin and A. M. Pitts

Definition 2.1 (Nominal signatures and equality types)

A nominal signature Σ consists of: (1) a finite set �Σ of name sorts, ranged over by N;
(2) a finite set �Σ of nominal data sorts, disjoint from �Σ and ranged over by S and (3) a
finite set �Σ of constructors K : E → S, where the argument type E is an equality type of
Σ, generated by the following grammar,

E ∈ EtyΣ ::=S | N | [N]E | E ∗ · · · ∗E | unit

The non-standard elements here are the the name sorts N, which are inhabited by object-
language names, and name abstraction sorts [N]E, which are inhabited by object-language
terms where a single name of sort N is bound in a term of type E. We refer to these
as abstractions because they are not treated as binders at the meta-level but are simply
used to model object-language binders, as in FreshML (Shinwell et al., 2003). We use
the phrase equality type in the sense of Standard ML (Milner et al., 1997), to mean types
whose values admit a decidable notion of equality. Henceforth, we assume the existence of
a nominal signature Σ. We now begin a running example which will illustrate our approach
throughout the paper.

Example 2.2 (A nominal signature for the untyped λ -calculus)

The grammar for untyped λ -terms t (Barendregt, 1984) consists of variables (x), appli-
cations (t t) and λ -abstractions (λx.e). In our example nominal signature Λ for untyped
λ -terms we have a single name sort var for variables, a single nominal data sort term for
λ -terms and three constructors corresponding to the three clauses in the grammar. Hence,
�Λ ≡ {var}, �Λ ≡ {term} and

�Λ ≡ {Var : var→ term, App : term∗term→ term, Lam : [var]term→ term}.

The crucial constructor is Lam, whose argument type is the abstraction type [var]term,
which we will populate with abstraction terms representing the object-language binding
construct.

2.2 Background on ground trees and ααα-equivalence classes

We let n range permutatively (Gabbay & Mathijssen, 2008) over a countably infinite set
Name of bindable object-language names. We assume the existence of a total function sort
which maps every name n to a name sort N ∈ �Σ such that infinitely many names are
assigned to every name sort. We say that n ∈ Name(N) if sort(n) = N.

Definition 2.3 (Ground trees)

We write TreeΣ for the set of all syntax trees over the nominal signature Σ, which is defined
by the following grammar:

g ∈ TreeΣ ::=n | () | (g, . . . ,g) | K g | <n>g

Contextual equivalence for inductive definitions in functional programming 661

We also define classes TreeΣ(E) of syntax trees of various equality types, as follows:

sort(n) = N

n ∈ TreeΣ(N) () ∈ TreeΣ(unit)

g1 ∈ TreeΣ(E1) · · · gn ∈ TreeΣ(En)

(g1, . . . ,gn) ∈ TreeΣ(E1 ∗ · · · ∗En)

g ∈ TreeΣ(E) (K : E → S) ∈ Σ
K g ∈ TreeΣ(S)

sort(n) = N g ∈ TreeΣ(E)

<n>g ∈ TreeΣ([N]E)

These ground trees correspond precisely to the ground nominal terms of Urban et al.
(2004). The abstraction term-former denotes the object-level binding of a single name, but
is not a binder at the meta-level. Hence, if n �= n′ then <n>n and <n′>n′ are distinct ground
trees. Therefore, we require a separate notion of α-equivalence on ground trees, as these
α-equivalence classes represent the object-language terms quotiented by α-equivalence so
frequently used in informal mathematical parlance.

Definition 2.4 (α-equivalence and α-trees)
We write g =α g′ : E for the congruence relation induced on pairs of ground trees (of the
same equality type) by the standard notion of α-renaming of (<n>−)-bound names in
ground trees, defined formally in Figure 1 of Pitts (2006). Let α-TreeΣ(E) be the set of all
=α -equivalence classes of ground trees of type E, which we call α-trees, and let t range
over these. If g ∈ TreeΣ(E), then write [g]α for the set {g′ | g =α g′ : E} of all ground trees
which are =α -equivalent to g.

If g ∈ TreeΣ(E) then [g]α ∈ α-TreeΣ(E). From the rules in Definition 2.3, it also follows
that if t ∈α-TreeΣ(N) then t = [n]α = {n} for some n∈Name(N). We now present standard
notions of the free names of a ground term and freshness of a name for a ground term.

Definition 2.5 (Free names and freshness)
Suppose that g ∈ TreeΣ(E). Then we write FN(g) for the finite set of names that occur free
in g, which we define recursively as follows:

FN(n) ≡ {n} FN(()) ≡ {} FN((t1, . . . ,tn)) ≡
⋃

i∈{1,...,n}
FN(ti)

FN(K t) ≡ FN(t) FN(<n>t) ≡ FN(t)−{n}

This operation respects α-equivalence, so for an α-tree t ∈ α-TreeΣ(E) we let FN(t)
stand for the free names FN(g) of some/any ground tree g ∈ TreeΣ(E) such that t = [g]α .
Furthermore, if t ∈ α-TreeΣ(N) and t ′ ∈ α-TreeΣ(E) then we know that t = [n]α for some
n ∈ Name(N), and we write t ≈� t ′ and say “t is fresh for t ′” if and only if n /∈ FN(t ′).

Example 2.6 (An α-tree corresponding to a closed λ -term)
Recalling the nominal signature Λ for untyped λ -terms from Example 2.2, we consider the
representation of particular λ -terms as α-trees. Consider the closed λ -term λx.λy.x, also
known as the K combinator. The corresponding α-tree, tK ∈ α-TreeΛ(term), is as follows,
where we assume that n and n′ are distinct names:

tK = [Lam<n>(Lam<n′>(Varn))]α

662 M. R. Lakin and A. M. Pitts

T ∈ TyΣ ::= E (equality type)
| D (data sort)
| prop (type of semi-decidable propositions)
| T → T (function type)
| (T , . . . ,T) (tuple type)
| unit (unit type)

v ∈ ValΣ ::= x, f (variable)
| K v (constructor application)
| () (unit)
| (v, . . . ,v) (tuple)
| fun f (x : T) : T = e (recursive function)
| T (success)
| <x>v (name abstraction)

c ∈ ConstrΣ ::= v= v (equality constraint)
| x # v (freshness constraint)

e ∈ ExpΣ ::= v (value)
| letx= e in e (let binding)
| vv (function application)
| casevofK x−> e | · · · | K x−> e (case expression)
| v. i (projection)
| c (constraint)
| Ex : E.e (existential)
| e || e (non-deterministic branch)

F ∈ StkΣ ::= Id (empty frame stack)
| F ◦ (x.e) (non-empty frame stack).

Fig. 1. αML types, values, constraints, expressions and frame stacks.

This α-tree is the α-equivalence class containing all ground trees with similar structure
and binding topology to the K combinator. Hence, α-trees are an appropriate universe
of discourse for our definitions of inductive definitions involving binders, and for meta-
programming over these.

2.3 Background on the αααML programming language

The αML programming language was described in detail in Lakin (2010). We note that the
language does not include explicit support for representing α-trees or inductive definitions,
and we will demonstrate encodings of these into αML below. We fix a countably infinite set
Var of variables, ranged over by x. For a nominal signature Σ we write TyΣ, ValΣ, ConstrΣ,
ExpΣ and StkΣ for the sets of αML types, values, constraints, expressions and frame stacks
respectively. These are defined in Figure 1. We restrict the class of valid αML expressions
to a form similar to the A-normal form of Flanagan et al. (1993), where evaluation order
is specified using let bindings, and identify expressions up to α-conversion of bound
variables. Much of the αML syntax is standard for functional programming languages: the
novel constructs are the abstraction value for representing object-level binders, equality
and freshness constraints, generation (and binding) of fresh existential variables of equality
types and the non-deterministic branching operator.

Contextual equivalence for inductive definitions in functional programming 663

Γ � x : N Γ � v : E

Γ � <x>v : [N]E Γ � T : prop

Γ � v : E Γ � v′ : E

Γ � v= v′ : prop

Γ � x : N Γ � v : E

Γ � x # v : prop

Γ � e : T Γ � e′ : T

Γ � e || e′ : T

x /∈ dom(Γ) Σ � E inhab Γ,x : E � e : T

Γ � Ex : E.e : T

Fig. 2. Typing rules for the non-standard elements of αML syntax.

Figure 2 presents selected typing αML rules. We let Γ range over finite partial functions
from Var to TyΣ, and write dom(Γ) for the domain of Γ. We will use Δ for the special
case of a type environment which maps all variables in its domain to equality types, that
is, a finite partial function from Var to EtyΣ. The αML type grammar is stratified so that
the equality types defined in Definition 2.1 are included as a delimited subset of all αML
types, and αML datatype declarations extend nominal signatures by adding more general
data sorts whose constructors may take values of arbitrary types, not just equality types. We
write Σ � E inhab to mean that the equality type E is inhabited (i.e. non-empty) under the
datatype declaration Σ: this can be decided by checking for cyclic dependencies between
nominal data sorts with no base case (see Section 3.3.2 of Lakin, 2010). Disallowing empty
equality types is important as it would be unsound to generate existential variables ranging
over an empty type. We note that typechecking and typeability are equivalent (due to the
presence of explicit-type annotations in the syntax) and decidable, and that inferred types
are unique.

Constraint satisfaction is fundamental to the operational semantics of αML. An α-tree
constraint problem has the form ∃Δ(c), where c≡ c1 & · · ·& cn for some finite collection of
atomic constraints as in Figure 1. We write Γ � ∃Δ(c) ok to mean that dom(Γ)∩dom(Δ) =
/0 and that Γ,Δ � c : prop holds for all c ∈ c. Then we say that ∃Δ(c) is satisfiable,
written |= ∃Δ(c), if there exists a mapping from the variables in dom(Δ) to α-trees so
that all constraints in c are simultaneously satisfied – see Section 3 for formal definitions
of constraint satisfaction.

We write NonPermSat for the decision problem {(Δ , c) | |= ∃Δ(c)}, which we can
solve using the algorithm from Lakin (2011). In a previous work (Lakin, 2010, 2011) we
showed that NonPermSat is in fact NP-complete, as is equivariant unification (Cheney,
2010). Intuitively, NonPermSat is NP-complete because the ability to alias variables in
abstraction position produces exponentially many topologies of aliasing as the depth of the
abstractions increases. However, exponential branching in the constraint solver is only an
issue as the number of nested abstractions increases without any constraints between the
bound names. In many systems of interest, for example the λ -calculus, every bound name
is assumed to be fresh, and it was shown in Section 6.4 of Lakin (2010) that this constraint
problems in this subclass can be decided in polynomial time. From a practical perspective,
the advantage of using this constraint problem to drive the operational semantics of αML
is that we retain a conceptually simple constraint problem which is sufficiently powerful to
handle many possible topologies of aliasing between variables in abstraction position.

Definition 2.7 (Value substitutions)
A value substitution σ ∈ SubΣ(Γ,Γ′) is a finite partial function that maps each variable
x ∈ dom(σ) = dom(Γ) to a value σ(x) ∈ ValΣ such that Γ′ � σ(x) : Γ(x). We write (−)[σ]

664 M. R. Lakin and A. M. Pitts

Pure transitions: 〈F,e〉 →P 〈F ′,e′〉

(P1) 〈F ◦ (x.e),v〉 →P 〈F,e[v/x]〉.
(P2) 〈F,(letx= e in e′)〉 →P 〈F ◦ (x.e′),e〉.
(P3) 〈F,vv′〉 →P 〈F,e[v/ f ,v′/x]〉

if v is fun f (x : T) : T ′ = e.
(P4) 〈F,(caseKi vofK1 x1 −> e1 | · · · | Kn xn −> en)〉 →P 〈F,ei[v/xi]〉

if i ∈ {1, . . . ,n}.
(P5) 〈F,(v1, . . . ,vn). i〉 →P 〈F,vi〉

if i ∈ {1, . . . ,n}.

Impure transitions: ∃Δ(c;F ;e) −→ ∃Δ′(c′;F ′;e′)

(I1) ∃Δ(c;F ;e) −→ ∃Δ(c;F ′;e′)
if 〈F,e〉 →P 〈F ′,e′〉.

(I2) ∃Δ(c;F ;c) −→ ∃Δ(c & c;F ;T)
if |= ∃Δ(c & c).

(I3) ∃Δ(c;F ; Ex : E.e) −→ ∃Δ,x : E(c;F ;e)
if x /∈ dom(Δ).

(I4) ∃Δ(c;F ;casexofK1 x1 −> e1 | · · · | Kn xn −> en) −→ ∃Δ,xi : Ei(c & x=Ki xi;F ;ei)
if i ∈ {1, . . . ,n} and datatype S =Σ K1 ofEn | · · · | Kn ofEn,
where Δ(x) = S and |= ∃Δ,xi : Ei(c & x=Ki xi).

(I5) ∃Δ(c;F ;x. i) −→ ∃Δ,x1 : E1, . . . ,xn : En(c & x=(x1, . . . ,xn);F ;xi)
if i ∈ {1, . . . ,n} and Δ(x) = E1 ∗ · · · ∗En.

(I6) ∃Δ(c;F ;e1 || e2) −→ ∃Δ(c;F ;ei)
if i ∈ {1,2}.

Fig. 3. Small-step operational semantics for αML.

for the simultaneous, capture-avoiding substitution of σ(x) for all free occurrences of x
in (−), for all x ∈ dom(σ). It is straightforward to show that αML typing judgements are
preserved by substitution.

Figure 3 presents the operational semantics of αML. We distinguish between pure
configurations 〈F,e〉 which only contain information relevant to the evaluation of standard
pure functional programs, and impure configurations ∃Δ(c;F ;e). The intuitive reading of
∃Δ(c;F ;e) is that the expression e contains the (bound) existentially quantified variables
from Δ, and is to be evaluated subject to the constraints from c with a continuation en-
coded as the frame stack F (Pitts, 2002), which were defined in Figure 1. For a closed
αML expression e, the initial configuration has the form ∃ /0(/0;Id;e). We define a typ-
ing judgement Γ � ∃Δ(c;F ;e) : T for impure configurations by the following inference
rule:

dom(Γ)∩dom(Δ) = /0 Γ,Δ � e : T ′

Γ,Δ � F : T ′ → T ∀c ∈ c. Γ,Δ � c : prop

Γ � ∃Δ(c;F ;e) : T

In the interest of space we focus our discussion on the novel impure reduction rules. Rule
(I2) processes a constraint when it is encountered during the execution of the abstract
machine, testing it for mutual satisfiability with the constraints in c (the current αML
implementation uses the algorithm from Lakin (2011) for this). Rule (I3) generates fresh

Contextual equivalence for inductive definitions in functional programming 665

existential variables, and rules (I4) and (I5) are the impure counterparts of rules (P4)
and (P5), which use constraint-solving to deconstruct unknown data values and tuples by
narrowing, which involves non-determistically “guessing” partial instantiations for such
unknown values. There is considerable literature on narrowing – see Hanus (2007) for
a survey. In rule (I4), each branch represents a single possible narrowing instantiation
with a different head constructor, and it follows that precisely one of these branches will
succeed. In rule (I5), branching and constraint-solving are not required as there is only
one tuple constructor. Finally, rule (I6) explicitly introduces non-determinism at branching
expressions.

Definition 2.8 (Success and failure of αML configurations)
A configuration has succeeded if it is of the form ∃Δ(c;Id;v), where |= ∃Δ(c) holds. A
configuration may succeed, written ∃Δ(c;F ;e)↓, if there exists a finite sequence of −→-
reductions to a configuration that has succeeded. We write ∃Δ(c;F ;c)↓n if there exists such
a sequence of length less than or equal to n.

A configuration has failed if it has the form ∃Δ(c;Id;v), where ∃Δ(c) is not satisfiable,
or ∃Δ(c;F ;c′) where ∃Δ(c & c′) is not satisfiable. A configuration must fail, which we
write as ∃Δ(c;F ;e) fails, if every sequence of impure reductions is finite and leads to a
configuration that has failed. We write ∃Δ(c;F ;e) failsn if all such sequences are of length
less than or equal to n.

It is straightforward to show that for a given well-typed αML, configuration will either
succeed, fail or diverge. See Lakin (2010) for more straightforward safety properties of
the operational semantics: preservation of constraint satisfaction, as well as standard type
preservation and progress results. Finally, we note that this semantics underspecifies certain
aspects of the run-time behaviour of αML expressions, in particular with regard to the
implementation of branching in proof-search computations. In practice the search strategy
would need to be fair for the results proved below to be valid, but this is beyond the scope
of the current paper.

2.4 Background on contextual equivalence in αααML

We begin by defining an operational equivalence relation between two well-typed expres-
sions of the same type, in which successful termination in (well-typed) configurations
∃Δ(c;F ;−) is observed. Note that this definition applies to expressions whose only free
variables are existentially quantified variables of equality types.

Definition 2.9 (Operational equivalence)
The operational equivalence relation Δ � e∼= e′ : T holds iff Δ � e : T and Δ � e′ : T both
hold and ∃Δ′(c;F ;e)↓ ⇐⇒ ∃Δ′(c;F ;e′)↓ holds for all Δ′, c, F and T ′ such that Δ′ ⊇ Δ,
Δ′ � F : T → T ′ and ∀c ∈ c. Δ′ � c : prop.

We extend this definition to a relation ∼=◦ between arbitrary αML expressions, including
those which contain free variables that are not of equality types. This open extension is
defined in terms of ∼= by substituting values which only contain free variables of equality
types for the free variables which are not of an equality type.

666 M. R. Lakin and A. M. Pitts

xC ::= [·] | x
vC ::= [·] | xC | K vC | (vC, . . . ,vC) | fun f (x : T) : T = eC | <xC>vC

cC ::= [·] | vC = vC | xC # vC

eC ::= [·] | vC | letx= eC in eC | vC vC | casevC ofK x−> eC | · · · | K x−> eC |
vC. i | cC | Ex : E.eC | eC || eC

Fig. 4. αML program contexts. The grammar is stratified to match that of Figure 1.

Definition 2.10 (Open extension of ∼=)
Let the typing environment Γ be decomposed into disjoint typing environments Δ and
Γ′, where Γ′(x) is not an equality type for any x ∈ dom(Γ′). Then the open extension of
operational equivalence, Γ � e∼=◦ e′ : T , holds iff Δ′ � e[σ]∼= e′[σ] : T holds for all Δ′ ⊇ Δ
and all σ ∈ SubΣ(Γ′,Δ′).

Many basic properties of the operational equivalence relation defined above have been
explored in Lakin (2010), so we will not discuss them at length. However, it is impor-
tant to relate this notion of operational equivalence to the standard notion of contextual
equivalence, which requires equivalent termination behaviour when the expressions in
question are grafted into a “hole” in a program context. Program contexts for αML can be
defined as in Figure 4, which mirrors the αML grammar from Figure 1, augmenting each
syntactic category to include the option of a hole (except in meta-level binding positions).
We write eC[e] for the expression which results from replacing all occurrences of the hole
in eC with e, noting that care must be taken to ensure that the resulting expression is
syntactically well formed (e.g. that an expression has not been inserted where a value
is required). We will only consider well-formed results of context instantation. We write
Γ �[·] : T ′ eC : T for the typing relation which mirrors the standard αML typing rules for the

program context syntax from Figure 4, with an additional rule that assigns the type T ′ to
[·] whenever it is located, and it is not hard to show that if Γ �[·] : T ′ eC : T and Γ � e : T ′

then Γ � eC[e] : T . Then we can define a contextual equivalence relation ∼=◦
ctx between

well-typed αML expressions in terms of operational equivalence as follows:

Γ � e∼=◦
ctx e′ : T ⇐⇒ Γ � e : T ∧Γ � e′ : T ∧

(∀eC,T ′. Γ �[·] : T eC : T ′ =⇒ Γ � eC[e]∼=◦ eC[e′] : T ′)

However, for reasons that have been discussed elsewhere (Pitts, 2005, 2011), we choose not
to deal directly with contextual equivalence as stated above. In particular, the possibly cap-
turing grafting operation is uncomfortably concrete and may result in different expressions
depending on the choice of bound variables, since different free variables in the grafted
expression may be captured. Instead, we adopt a more abstract, relational approach that
focuses on the key properties of a contextual equivalence relation. Following the techniques
of Gordon (1998) and Lassen (1998), we characterize contextual equivalence as the largest
type-respecting relation on αML expressions which is a congruence and contains the
operational equivalence relation defined in Definition 2.10 above. The following theorem
demonstrates that the ∼=◦ relation satisfies these criteria, following the approach of Mason
& Talcott (1991).

Contextual equivalence for inductive definitions in functional programming 667

x ∈ dom(Γ) Γ(x) = T

Γ � x ∼̂=◦ x : T

(K : T → D) ∈ Σ Γ � v∼=◦ v′ : T

Γ � K v ∼̂=◦ K v′ : D

Γ � v1
∼=◦ v′1 : T1 · · · Γ � vn ∼=◦ v′n : Tn

Γ � (v1, . . . ,vn) ∼̂=◦ (v′1, . . . ,v
′
n) : T1 ∗ · · · ∗Tn Γ � () ∼̂=◦ () : unit

Γ, f : T → T ′,x : T � e∼=◦ e′ : T ′ f ,x /∈ dom(Γ)

Γ � (fun f (x : T) : T ′ = e) ∼̂=◦ (fun f (x : T) : T ′ = e′) : T → T ′ Γ � T ∼̂=◦ T : prop

Γ � x∼=◦ x′ : N Γ � v∼=◦ v′ : E

Γ � <x>v ∼̂=◦ <x′>v′ : [N]E

Γ � v1
∼=◦ v′1 : E Γ � v2

∼=◦ v′2 : E

Γ � (v1 = v2) ∼̂=◦ (v′1 = v′2) : prop

Γ � x∼=◦ x′ : N Γ � v∼=◦ v′ : E

Γ � (x # v) ∼̂=◦ (x′ # v′) : prop

Γ � v1
∼=◦ v′1 : T → T ′ Γ � v2

∼=◦ v′2 : T

Γ � (v1 v2) ∼̂=◦ (v′1 v′2) : T ′

Γ � e1
∼=◦ e′1 : T Γ,x : T � e2

∼=◦ e′2 : T ′ x /∈ dom(Γ)

Γ � (letx= e1 in e2) ∼̂=◦ (letx= e′1 in e′2) : T ′

distinct(x1, . . . ,xn) (x1 , . . . , xn)∩dom(Γ) = /0 D = K1 ofT1 | · · · | Kn ofTn

Γ � v∼=◦ v′ : D Γ,x1 : T1 � e1
∼=◦ e′1 : T · · · Γ,xn : Tn � en ∼=◦ e′n : T

Γ � (casevofK1 x1 −> e1 | · · · | Kn xn −> en) ∼̂=◦

(casev′ ofK1 x1 −> e′1 | · · · | Kn xn −> e′n) : T

Γ � v∼=◦ v′ : T1 ∗ · · · ∗Tn i ∈ {1, . . . ,n}
Γ � (v. i) ∼̂=◦ (v′. i) : Ti

Γ � e1
∼=◦ e′1 : T Γ � e2

∼=◦ e′2 : T

Γ � (e1 || e2) ∼̂=◦ (e′1 || e′2) : T

x /∈ dom(Γ) Σ � E inhab Γ,x : E � e∼=◦ e′ : T

Γ � (Ex : E.e) ∼̂=◦ (Ex : E.e′) : T

Fig. 5. The compatible refinement ∼̂=◦ of the αML operational equivalence relation ∼=◦.

Theorem 2.11 (CIU)
The ∼=◦ relation is the largest equivalence relation between αML expressions of the same
type which has the following properties:

• adequacy: Δ � e∼=◦ e′ : T implies Δ � e∼= e′ : T ,
• substitutivity: Γ,Γ′ � e∼=◦ e′ : T and Γ � σ ∼=◦ σ ′ : Γ′ imply Γ � e[σ]∼=◦ e′[σ ′] : T ,

where Γ�σ ∼=◦σ ′ : Γ′ means that σ ,σ ′ ∈ SubΣ(Γ,Γ′) and ∀x∈ dom(Γ). Γ′ �σ(x)∼=◦

σ ′(x) : Γ(x) both hold.
• compatibility: Γ � e ∼̂=◦ e′ : T implies Γ � e∼=◦ e′ : T , where ∼̂=◦ is the compatible

refinement of ∼=◦, defined in Figure 5.

Proof

It is obvious from the definition that ∼=◦ is an equivalence relation, and that it is adequate.
The main technical challenges are to show substitutivity and compatibility. In particular,
proving compatibility is somewhat involved, and is typically achieved using a transitive
closure-like construction due to Howe (1996), as used by Pitts & Shinwell (2008) and Pitts

668 M. R. Lakin and A. M. Pitts

(2011). Proving that ∼=◦ is the largest such relation is also fairly straightforward, and we
refer the interested reader to Lakin (2010) for a full proof of all of these results. �

The CIU theorem implies that the ∼=◦ relation coincides with the standard notion of
contextual equivalence which we denoted as ∼=◦

ctx above. To see why, the key is the rela-
tionship between compatible refinement and the notion of grafting terms into the holes in
a program context: the structures of the compatible refinement rules from Figure 5 mirror
the grammar of program contexts from Figure 4. The fact that ∼̂=◦ is contained within ∼=◦

means that operational equivalence is preserved by all of the term-formers of the αML
language, and it follows that if Γ � e∼=◦ e′ : T then Γ � eC[e]∼=◦ eC[e′] : T ′ holds for any eC
such that Γ �[·] : T eC : T ′, and hence Γ � e∼=◦

ctx e′ : T holds. The reverse direction follows
immediately by considering the program context which is just an empty hole. Thus, we
conclude that Γ � e∼=◦ e′ : T ⇐⇒ Γ � e∼=◦

ctx e′ : T , and henceforth we will simply refer to
∼=◦ as contextual equivalence.

2.5 Background on encoding ground trees in αααML

An important property of the αML contextual equivalence relation, which we will exploit
below, is the existence of an encoding of ground trees g into αML expressions �g� that is
correct in the following sense.

Property 2.12 (Correct encoding of ground trees into αML)

A translation �−� of ground trees into αML satisfies the fundamental correctness property
of αML if g ∈ α-TreeΣ(E) and g′ ∈ α-TreeΣ(E) imply that g =α g′ : E ⇐⇒ Δ � �g�∼=
�g′� : E, for all type environments Δ which respect the sorts of the translated names.
Formally, we require that Δ � FN(g1, . . . ,gn) holds, which means that Δ(V (n)) = sort(n)
for all names n ∈ ⋃

i∈{1,...,n} FN(gi), where V is a fixed bijection between the sets Name of
object-level names and Var of meta-level variables.

The fixed bijection V is used to systematically translate the free names of the ground
tree into free variables of the corresponding αML expression, and abstracted names in
the ground tree are bound in the αML expression. For the purpose of this paper, we will
assume the existence of a translation function �−� which satisfies Property 2.12. The reader
is referred to Lakin & Pitts (2012) for the full definition of the translation function and for
details of the correctness theorems.

3 ααα-inductive definitions

We now formalise α-inductive definitions, which are inductively defined relations between
α-equivalence classes of terms with binders. These terms correspond to the abstract syntax
trees modulo α-equivalence, and the relations correspond to judgements defined over those
syntax trees. These relations will be defined by schematic rules, which constitute a tem-
plate for creating specific rule instances by instantiating their variables with α-equivalence
classes of ground terms.

Contextual equivalence for inductive definitions in functional programming 669

x ∈ dom(Δ) Δ(x) = E

Δ � x : E

Δ � p : E (K : E → S) ∈ Σ
Δ � K p : S Δ � () : unit

Δ � p1 : E1 · · · Δ � pn : En

Δ � (p1, . . . ,pn) : E1 ∗ · · · ∗En

Δ � x : N Δ � p : E

Δ � <x>p : [N]E

Fig. 6. Typing rules for schematic patterns.

3.1 Syntax of ααα-inductive definitions

We now define the syntax of schematic formulae, inference rules and complete α-inductive
definitions. Our schematic rules will be constructed from patterns, which serve as tem-
plates whose variables may be instantiated with α-equivalence classes of ground terms
according to particular instantiation rules, to produce a (potentially infinite) set of ground
instances. We use the fixed, countably infinite set Var of αML variables as placeholders
for unknown α-equivalence classes of terms (i.e. unknown α-trees), ranged over by var-
ious meta-variables, typically x, y etc. These are the building blocks of our language of
schematic patterns.

Definition 3.1 (Schematic patterns)

The set PatΣ of schematic patterns over a nominal signature Σ is defined by the following
grammar:

p ∈ PatΣ ::= x | () | (p, . . . ,p) | K p | <x>p

As with ground trees, we do not treat the abstraction term-former as a binder in patterns.
In order to assign types to schematic patterns we must first provide types for all the
variables contained therein. Let vars(p) stand for the set of all variables occurring in a
pattern p. We let Δ range over finite partial functions from Var to EtyΣ, which assign
equality types to finitely many variables, and let dom(Δ) stand for the set of all variables
in the domain of definition of Δ. Figure 6 presents rules which define a typing judgement
Δ � p : E. Note that patterns of a name sort are a special case – if Δ � p : N then it follows
that p = x for some variable such that x ∈ dom(Δ) and Δ(x) = N.

We now describe the instantiation of schematic patterns, which produces specific α-trees
by instantiating the variables in the pattern with α-trees.

Definition 3.2 (α-tree valuations)

An α-tree valuation V is a finite partial function which maps variables to α-trees. We
write dom(V) for the domain of the partial function V . Given a type environment Δ, we
write α-TreeΣ(Δ) for the set of all α-tree valuations V such that dom(V) = dom(Δ) and
V (x) ∈ α-TreeΣ(Δ(x)) for all x ∈ dom(V). This stipulates that the valuation respects types.

Using the proof techniques developed in Pitts (2006) we can show that there exists a
pattern instantiation operation �p�V which respects both types and α-equivalence classes.
If Δ � p : E, then for every V ∈ α-TreeΣ(Δ) there exists a function �−�V which maps p to

670 M. R. Lakin and A. M. Pitts

�p�V ∈ α-TreeΣ(E) such that the following all hold:

�x�V = V (x)
�p�V = [g]α =⇒ �K p�V = [K g]α

�()�V = [()]α
�p1�V = [g1]α ∧·· ·∧ �pn�V = [gn]α =⇒ �(p1, . . . ,pn)�V = [(g1, . . . ,gn)]α

V (x) = [n]α ∧ �p�V = [g]α =⇒ �<x>p�V = [<n>g]α

It is worth noting that since the variables in patterns stand for unknown α-trees, not
unknown ground trees, an instantiated pattern p ∈ α-TreeΣ(E) produces an α-tree. This
reflects the common practice of leaving α-equivalence implicit and using representatives
to stand for the whole α-equivalence class, as stated in Convention 2.1.13 from Baren-
dregt (1984). Since only variables x appear in patterns, and not permutative names n,
our approach furthermore reflects the informal practice of using schematic variables to
range over names, as in Barendregt. Since the (<n>−) abstraction term-former is not a
binder in the meta-language, the above operation of applying a valuation to a pattern in
the object-language is a possibly capturing form of substituion with regard to meta-level
names and the (<n>−) abstraction term-former. This also reflects common practice when
instantiating the meta-variables in schematic rules, and is a key reason why we do not
identify patterns up to α-renaming of abstracted variables. For example, given distinct
variables x, y, z we cannot regard the patterns <x>z and <y>z as equivalent because if
n �= n′ then the valuation V = {x �→ [n]α ,y �→ [n′]α ,z �→ [n]α} gives

�<x>z�V = [<n>n]α �= [<n′>n]α = �<y>z�V .

This example highlights a key distinction between names and schematic variables – if we
have two distinct names n1, n2 then these will always be distinct, whereas two distinct
schematic variables x1, x2 could be instantiated with the same name n by a valuation,
which we call aliasing. This approach is more general, but we can also model names
which behave permutatively by imposing additional constraints that the variables must
be mutually distinct. Thus, it makes no sense to define the “free” names (or variables) of a
pattern.

3.2 Schematic formulae and rules

We now use the language of schematic patterns from the previous section to develop a
language of schematic formulae and inductive rules. Suppose that we wish to define n
mutually recursive relations. We will fix relation symbols r1, . . . ,rn with associated equality
types E1, . . . ,En, and write ri ⊆ Ei to mean that Ei is the equality type associated with
ri. Generally speaking, a particular schematic rule from an inductive definition of such
relations might take the form

r j p j · · · rk pk c1 · · · cm

ri pi

where i, j,k ∈ {1, . . . ,n}. The conclusion of this rule is an atomic formula where ri ⊆ Ei,
and where Δ � pi : Ei holds for some Δ. The premises consist of finite (possibly empty) lists
of more atomic formulae (r j p j, . . . ,rk pk) and side-conditions (c1, . . . ,cm). The intended

Contextual equivalence for inductive definitions in functional programming 671

meaning of such a rule is that if all of the formulae and side-conditions in the premises are
satisfied by a given instantiation of their variables, then one may deduce that the conclusion
is satisfied under that same variable instantiation.

It is not immediately obvious what kinds of constraint c would give a useful model
of inductive definitions which occur in practice. It seems that the absolute minimum is
constraints of name inequality x �= x′, with x and x′ being variables of the same name sort
N. The need for name inequality constraints arises from the fundamental asymmetry of
pattern valuation – all occurrences of the same variable are always instantiated in the same
way whereas different variables may also be instantiated the same, unless we explicitly
state otherwise. In fact, name inequality constraints are necessary and sufficient to define
full (α-)disequality for any nominal signature (Cheney & Urban, 2008).

In fact, we generalise from name inequality constraints to freshness constraints x # p
between a variable x of name sort and a pattern p of any equality type. This follows standard
practice from nominal logic (Pitts, 2003) and nominal logic programming (Cheney &
Urban, 2008). The semantics of this freshness constraint is that the name x does not appear
free in the term represented by p, in the sense of Definition 2.5. This will be formalised
in Definition 3.7. In the case where Δ � p : N, the freshness constraint actually reduces
to a name inequality constraint. For convenience we also include equality constraints,
which we interpret as α-equivalence constraints on the underlying set of ground trees or,
equivalently, as simple equality on the corresponding α-trees.

Definition 3.3 (Atomic constraints and schematic formulae)
The set ConstrΣ of atomic constraints is defined by the following grammar:

c ∈ ConstrΣ ::= p= p | x # p

These are used to build up the set of schematic formulae FormΣ, which is defined by the
following grammar:

ϕ ∈ FormΣ ::= ri p | c | T | F | ϕ & ϕ | ϕ v ϕ | Ex : E.ϕ

This grammar contains atomic formulae and constraints, constants denoting true and false,
conjunction, disjunction and existential quantification respectively. Here ri is a member of
the fixed, finite set of relation symbols {r1, . . . ,rn}. The only meta-level binder is in the
existential formula, where x is bound in the formula ϕ .

Figure 7 presents rules defining a well-formedness judgement Δ � ϕ ok for schematic
formulae. The rules are standard – the case for an atomic formula assumes that the relation
symbols r1, . . . ,rn are associated with equality types E1, . . . ,En respectively. The side con-
dition for the existential rule requires α-conversion at the meta-level in order to satisfy the
side-condition that x be a fresh variable, and the rule for freshness constraints requires that
the pattern on the left-hand side of the # be assigned a name sort N – as discussed above,
this can only be satisfied if p is actually a variable x such that Δ(x) = N.

We can now use schematic formulae to define inductive rules, of the form introduced
above, and complete α-inductive definitions composed of these. Since the grammar of
formulae includes atomic constraints and conjunctions, it suffices to consider schematic
rules whose premise is a single formula ϕ . This corresponds to the typical presentation of
inductively defined relations in structural operational semantics.

672 M. R. Lakin and A. M. Pitts

Δ � p : E Δ � p′ : E

Δ � p= p′ ok

Δ � x : N Δ � p : E

Δ � x # p ok

ψ ∈ {T,F}
Δ � ψ ok

ri ⊆ Ei Δ � p : Ei

Δ � ri p ok

Δ � ϕ ok Δ � ϕ ′ ok

Δ � ϕ & ϕ ′ ok

Δ � ϕ ok Δ � ϕ ′ ok

Δ � ϕ v ϕ ′ ok

x /∈ dom(Δ) Δ,x : E � ϕ ok

Δ � Ex : E.ϕ ok

Fig. 7. Typing rules for schematic constraints and formulae.

Definition 3.4 (Schematic rules)
A schematic rule has the form

ϕ
ri p

(1)

where i ∈ {1, . . . ,n}. The rule in Equation (1) is well-formed if there exists a type envi-
ronment Δ such that dom(Δ) = vars(p), for which Δ � p : Ei and Δ � ϕ ok both hold. It is
not hard to see that if such an environment Δ exists then it is unique. Thus, any variables
that appear in the premise but not in the conclusion must be existentially quantified in the
premise.

Definition 3.5 (α-inductive definitions)
An α-inductive definition D is a finite set of well-formed schematic rules.

3.3 Semantics of ααα-inductive definitions

Before we address the semantics of α-inductive definitions, we will present some transfor-
mations on schematic rules and definitions that will greatly simplify the presentation and
the proofs. We have already seen one such simplification in the presentation of α-inductive
definitions – in Definition 3.4 we argued that it suffices to only consider schematic rules
with a single formula ϕ on the top line.

At the expense of extending the nominal signature we will consider only α-inductive
definitions where the rules use just a single relation symbol – we will fix the relation
symbol r for this purpose. Suppose we have a nominal signature Σ and an α-inductive
definition D (as defined in Definition 3.5) concerning relation symbols r1, . . . ,rn, which
represent subsets of the equality types E1, . . . ,En respectively. We extend Σ to produce a
new signature Σ′, which is related to the original signature as follows:

• �Σ′ ≡ �Σ
• �Σ′ ≡ �Σ �{Sr}
• �Σ′ ≡ �Σ �{R1 : E1 → Sr, . . . ,Rn : En → Sr},

where Sr is a new nominal data sort which is used to represent inductively defined relations,
which must not appear either in �Σ or �Σ. We write r ⊆ Sr to indicate this. We then rep-
resent the original relation symbols r1, . . . ,rn using n new, distinct constructors R1, . . . ,Rn,
whose argument types correspond to the types of the original relations. The schematic rules
are altered by replacing every atomic formula ri p by the atomic formula r (Ri p), and the
task of matching against the relation symbol in an atomic formula is now done by solving
equality constraints on schematic patterns. We exploit the fact that subsets of α-TreeΣ′(Sr)
are in bijection with n-tuples of subsets of α-TreeΣ(E1), . . . ,α-TreeΣ(En). The intended

Contextual equivalence for inductive definitions in functional programming 673

meaning of the original α-inductive definition is preserved, although we do not define this
formally. Henceforth, when dealing with α-inductive definitions (or their encodings) we
will assume that this construction has already been applied to the nominal signature Σ.

Our final simplification allows us to reduce all α-inductive definitions (now only in-
volving a single relation symbol) to only use a single inductive rule (Clark, 1978). This
is possible because of the presence of equality constraints, disjunction and existential
quantification in our grammar of formulae. To illustrate this translation, suppose that we
have a definition D (as defined in Definition 3.5) which uses a single relation symbol r but
has n rules:

ϕ1

r p1

ϕ2

r p2

. . .
ϕn−1

r pn−1

ϕn

r pn

The presence of multiple rules is an implicit disjunction, which suggests that we may be
able to combine the premises of the rules using an n-way disjunction, provided that we
can construct a single conclusion for the combined rule. To do this, we fix a new variable
x which does not occur in the rules for D presented above, and use the atomic formula
r x as the conclusion of the combined rule. The variable x stands for the ground predicate
instance for which we are trying to construct a derivation. To construct the corresponding
premise (for the ith rule above) we existentially quantify the variables which occur in pi
and require that x is α-equivalent to pi. We can then process the original premise ϕi as
normal. The rules for D presented above therefore become the single rule,

(Evars(p1).x= p1 & ϕ1)v · · ·v (Evars(pn).x= pn & ϕn)

r x
(2)

where we write Evars(p).ϕ for the iterated E-quantification of all of the variables appear-
ing in p (with the corresponding type annotations for the variables in vars(p)). Rule (2)
constitutes a new α-inductive definition whose semantics is identical to that of D . This is a
straightforward consequence of the semantics of schematic formulae from Definition 3.9,
so we omit the proof. Henceforth, we will only consider α-inductive definitions with a
single inference rule and a single relation symbol, which we say are in standard form.

Definition 3.6 (α-inductive definitions in standard form)
An α-inductive definition D of a set of α-trees of equality type Sr is in standard form if it
consists of a single inference rule

ϕ
r x

(3)

where {x : Sr} � ϕ ok holds (i.e. x is the only free variable in ϕ), r ⊆ Sr and r is the only
relation symbol that appears in ϕ .

We now work towards a semantics for α-inductive definitions in standard form, and the
first step in this direction is to define satisfaction of atomic constraints. It is straightforward
to show that the relation symbol r may not appear in well-formed patterns, and hence will
never appear in well-formed atomic constraints. Hence, the constraint satisfaction relation
has the form V |= c, since we need a valuation V to instatiate any variable occurring in c,
but do not need to consider the semantics of relation r.

674 M. R. Lakin and A. M. Pitts

�p�V ∈ R

(R,V) |= r p

V |= c

(R,V) |= c

(R,V) |= ϕ1 (R,V) |= ϕ2

(R,V) |= ϕ1 & ϕ2

(R,V) |= T

(R,V) |= ϕ1

(R,V) |= ϕ1 v ϕ2

(R,V) |= ϕ2

(R,V) |= ϕ1 v ϕ2

x /∈ dom(V) t ∈ α-TreeΣ(E) (R,V [x �→ t]) |= ϕ
(R,V) |= Ex : E.ϕ

Fig. 8. Formula satisfaction rules.

Definition 3.7 (Satisfaction of atomic constraints)

If Δ � c ok and V ∈ α-TreeΣ(Δ) then we define satisfaction of atomic constraints by cases,
as follows:

V |= p= p′ ⇐⇒ �p�V = �p′�V

V |= x # p ⇐⇒ V (x) ≈� �p�V .

The simplicity of this definition stems from the fact that patterns denote α-equivalence
classes, so α-equivalence is handled implicitly in the semantics. We now consider the
semantics of schematic formulae arising from α-inductive definitions in standard form.
As for atomic constraints, the satisfaction judgement must involve a valuation V with the
appropriate domain. However, because the relation symbol r may appear in formulae, we
need to interpret it using an α-tree relation, which is just the ground term model in α-trees
for the relation.

Definition 3.8 (α-tree relations)

An α-tree relation R over the nominal signature Σ is a subset R ⊆ α-TreeΣ(Sr), where
Sr ∈ �Σ is the nominal data sort such that r ⊆ Sr, i.e. which contains terms of the form r p.

Definition 3.9 (Satisfaction of formulae)

Suppose that r ⊆ Sr, Δ � ϕ ok, V ∈ α-TreeΣ(Δ) and R ⊆ α-TreeΣ(Sr) all hold, with Sr

and R defined as in Definition 3.8. Then satisfaction of formulae is written (R,V) |= ϕ
and is defined by the rules in Figure 8. We write V [x �→ t] for the valuation with domain
dom(V)�{x} (where x /∈ dom(V)) that maps x to t and otherwise behaves like V .

Again, α-equivalence is handled implicitly but formally. By using variables that range
over α-equivalence classes directly we build in α-equivalence from the ground up. Most
of these rules are completely standard, which is one of the advantages of our approach.
Note that the rule for existential formulae Ex : E.ϕ has the hypothesis that there must exist
a ground tree t ∈ α-TreeΣ(E). Therefore, the judgement (R,V) |= Ex : E.ϕ cannot hold if
E is an empty equality type. The satisfaction rule for atomic formulae simply requires that
the α-tree �p�V produced by instantiating the pattern p with the valuation V is a member
of the α-tree relation R. We can now present a semantics for α-inductive definitions in
standard form.

Contextual equivalence for inductive definitions in functional programming 675

T

sub(Varz,z, t ′, t ′)
z # y

sub(Vary,z, t ′,Vary)
T

sub(Lam<z>t,z, t ′,Lam<z>t)

y # (z, t ′) & sub(t,z, t ′, t ′′)
sub(Lam<y>t,z, t ′,Lam<y>t ′′)

sub(t1,z, t
′, t ′1) & sub(t2,z, t

′, t ′2)
sub(App(t1, t2),z, t

′,App(t ′1, t
′
2))

sub(t,z, t ′, t ′′)
beta(App((Lam<z>t), t ′), t ′′)

beta(t, t ′′)
beta(App(t, t ′),App(t ′′, t ′))

T

nf(Varz)
T

nf(Lam<z>t)
T

nf(App(Varz, t))
nf(App(t1, t2))

nf(App(App(t1, t2), t3))

nf(t)
betas(t, t)

beta(t, t ′′) & betas(t ′′, t ′)
betas(t, t ′)

Fig. 9. Schematic rules for β -reduction of untyped λ -terms from Example 3.11.

Definition 3.10 (Semantics of α-inductive definitions in standard form)
The denotation �D� ⊆ α-TreeΣ(Sr) of a standard α-inductive definition D (as in Defini-
tion 3) is the least fixed point of the function ΦD on subsets of α-trees defined by

ΦD (R) ≡ {t ∈ α-TreeΣ(Sr) | (R,{x �→ t}) |= ϕ}. (4)

The notation {x �→ t} represents the valuation V which has dom(V) = {x} and maps x to
the α-tree t. The least fixed point exists by Tarski’s fixed point theorem (Tarski, 1955),
since ΦD is monotone in the sense that if R ⊆ R′ ⊆ α-TreeΣ(Sr) and (R,V) |= ϕ then
(R′,V) |= ϕ .

Furthermore, since ΦD is finitary we can construct �D� as the union of a chain of subsets
of α-TreeΣ(Sr), as illustrated by the following Lemma.

Lemma 3.1 (Compactness of denotations of α-inductive definitions)
For any α-inductive definition D in standard form, we can construct �D� =

⋃
n∈� �D�(n),

where �D�(n) is the n-fold application Φn
D (/0).

Example 3.11 (β -reduction as an α-inductive definition)
Recalling once again the nominal signature Λ for untyped λ -terms from Example 2.2, we
will define β -reduction as a collection of schematic rules of the form presented above.
The rules will carve out relations beta ⊆ term ∗term denoting single-step call-by-name
β -reduction and betas ⊆ term ∗ term denoting maximal sequences of reductions using
beta. These definitions require an auxiliary relation sub ⊆ term ∗ var ∗ term ∗ term
which corresponds to capture-avoiding substitution in the sense that sub(t,z, t ′, t ′′) holds iff
t[t ′/z] =α t ′′, and a predicate nf⊆ term which holds for terms in normal form. Schematic
rules defining these relations are presented in Figure 9. It is not hard to show that nf(t)
holds iff there exists no t ′ such that beta(t, t ′) holds.

Now, in order to convert this definition into standard form in the sense of Definition 3.6,
we extend Λ to Λ′ by adding a new nominal data sort Sr and four new constructors (sub,

676 M. R. Lakin and A. M. Pitts

(Ez : var. Et ′ : term.x=sub(Varz,z, t ′, t ′) & T) v
(Ey,z : var. Et ′ : term.x=sub(Vary,z, t ′,Vary) & z # y) v
(Ez : var. Et, t ′ : term.x=sub(Lam<z>t,z, t ′,Lam<z>t) & T) v
(Ey,z : var. Et, t ′, t ′′ : term.x=sub(Lam<y>t,z, t ′,Lam<y>t ′′) &

y # (z, t ′) & r (sub(t,z, t ′, t ′′))) v
(Ez : var. Et1, t

′
1, t2, t

′
2, t

′ : term.x=sub(App(t1, t2),z, t
′,App(t ′1, t

′
2)) &

r (sub(t1,z, t
′, t ′1)) & r (sub(t2,z, t

′, t ′2))) v
(Ez : var. Et, t ′, t ′′ : term.x=beta(App((Lam<z>t), t ′), t ′′) & r (sub(t,z, t ′, t ′′))) v
(Et, t ′, t ′′ : term.x=beta(App(t, t ′),App(t ′′, t ′)) & r (beta(t, t ′′))) v
(Ez : var.x=nf(Varz) & T) v
(Ez : var. Et : term.x=nf(Lam<z>t) & T) v
(Ez : var. Et : term.x=nf(App(z, t)) & T) v
(Et1, t2, t3 : term.x=nf(App(App(t1, t2), t3)) & r (nf(App(t1, t2)))) v
(Et : term.x=betas(t, t) & r (nf(t))) v
(Et, t ′, t ′′ : term.x=betas(t, t ′) & r (beta(t, t ′′)) & r (betas(t ′′, t ′)))

r x

Fig. 10. β -reduction of untyped λ -terms from Example 3.11 presented as an α-inductive definition
in standard form.

beta, nf and betas) so that �Λ′ ≡ {var}, �Λ′ ≡ {term,Sr} and

�Λ′ ≡ {Var : var→ term, App : term∗term→ term, Lam : [var]term→ term,

sub : term∗var∗term∗term→ Sr, beta : term∗term→ Sr,

nf : term→ Sr, betas : term∗term→ Sr}.

Then the collection of schematic rules over Λ presented above can be translated into
the (somewhat unwieldy) α-inductive definition L over Λ′ presented in Figure 10. That
definition comprises a single rule with a single relation symbol (r) and a single free variable
(x), and is hence in standard form.

3.4 ααα-inductive definitions and equivariance

We end this section with a brief discussion of the relationship between α-inductive def-
initions and the concept of equivariance from nominal logic. Name-permutations are a
staple of most nominal techniques for abstract syntax involving binders (Gabbay & Pitts,
2002; Pitts, 2003; Cheney & Urban, 2008), which we have avoided thus far because α-
equivalence is handled implicitly by the direct use of α-equivalence classes of ground
trees to produce the term-model semantics for α-inductive definitions.

Definition 3.12 (Permutations)
Permutations π ∈ Perm are bijections from Name to Name which are finite (i.e. the set
{n ∈ Name | π(n) �= n} is finite) and sort-respecting (i.e. sort(π(n)) = sort(n) for all n ∈
Name).

We define the action π ·g ∈ TreeΣ(E) of a permutation π on a ground tree g ∈ TreeΣ(E)
as the ground tree that results from permuting all names occurring in g according to π
(including those in abstraction position). Since this process respects α-equivalence, we get

Contextual equivalence for inductive definitions in functional programming 677

a well-defined action on α-trees such that π · [g]α = [π ·g]α . It follows that, equipped with
this permutation action, the set of ground trees TreeΣ is a nominal set (Pitts, 2003).

Definition 3.13 (Equivariant α-tree relations)
An α-tree relation R is equivariant if R ⊆ π ·R for all π , where π ·R ≡ {π · t | t ∈ R}.

Equivariance is a fundamental concept in nominal logic (Pitts, 2003). Informally, an
equivariant α-tree relation is one that is closed under permutation of names, which means
that the membership of α-equivalence class t in the relation is not dependent on the
particular names that occur within the representatives of the α-equivalence class. We view
this as a desirable property because the underlying representation of names and binding is
an implementation detail that should be hidden from the programmer if at all possible.

Definition 3.14 (Action of a permutation on a valuation)
Given an α-tree valuation V ∈ α-TreeΣ(Δ) and a permutation π , we write π ·V for the
α-tree valuation in α-TreeΣ(Δ) which maps x to π · t if V (x) = t.

Given these definitions, it is not hard to show that constraint and formula satisfaction
are equivariant, i.e. that V |= c =⇒ π ·V |= c and (R,V) |= ϕ =⇒ (π ·R,π ·V) |= ϕ hold,
respectively. Furthermore, we obtain the following important result.

Theorem 3.15 (Equivariance of denotations of α-inductive definitions)
The denotation �D�⊆α-TreeΣ(Sr) of any α-inductive definition D is an equivariant α-tree
relation.

This result proves that the abstraction boundary between the user’s view (of names as
meta-variables) and the internal view (where the denotation of an α-inductive definitions
is a set of α-equivalence classes over a term language involving particular ground names)
can never be breached. Intuitively, this is because users cannot write down α-inductive
definitions whose meaning depends on particular ground names.

4 Encoding ααα-inductive definitions in αααML

In this section we embed α-inductive definitions into the αML meta-language in a sim-
ple and convenient way. We then relate the operational semantics of αML to that of a
simple CLP language over the constraint domain of α-trees with equality and freshness
constraints, and prove soundness and completeness results for the operational behaviour of
embedded α-inductive definitions in αML.

As in Section 3.3, we will fix a single relation symbol r, which we will regard as an
αML variable of type Sr → prop, for some fixed nominal data sort Sr. We assume that D

is an α-inductive definition of the form specified in Definition 3.6. We will identify D with
a closed αML recursive function value vD of type Sr → prop, as follows:

vD ≡ (funr(x : Sr) : prop= �ϕ�) where D ≡
ϕ
r x

Hence, we must translate the formula ϕ ∈ FormΣ into an αML expression �ϕ� such that
{r : Sr → prop,x : Sr} � �ϕ� : prop holds. A translation function �−� which satisfies this

678 M. R. Lakin and A. M. Pitts

requirement is defined by the following rules:

�T� ≡ T �r p� ≡ r p �c� ≡ c � Ex : E.ϕ� ≡ Ex : E.�ϕ�

�ϕ1 v ϕ2� ≡ �ϕ1� || �ϕ2� �ϕ1 & ϕ2� ≡ �ϕ1� & �ϕ2�

�F� ≡ Ex : N.x # x (for some N ∈ �Σ)

where e1 & e2 are defined as syntactic sugar in αML for the sequential execution of e1
followed by e2, which can be implemented as letx= e1 in e2, for some x /∈ FV(e2).

Schematic patterns of type E correspond exactly to αML values of the same equality
type, so atomic constraints and atomic formulae are translated unchanged. The intuition is
that the atomic formula r p corresponds to passing the value p into the recursive function
vD corresponding to D , which will be substituted for r. The T formula is also translated
directly, and the existential and disjunction formulae are translated by a simple recursive
step. The only formulae whose translation is non-trivial are the final two: conjunctions are
implemented using let bindings and the eager reduction strategy of αML to get a left-to-
right sequential conjunction, and the translation of a false formula generates a variable x of
some name sort N ∈ �Σ and then fails finitely because no name can be fresh for itself.

Thus, given an inductive definition D (with its associated αML function vD), every
schematic formula ϕ ∈ FormΣ has a straightforward encoding as an αML expression
�ϕ�[vD/r], and it follows that the recursive function value vD corresponding to D satisfies
/0 � vD : Sr → prop. The syntax of schematic formulae and the αML meta-language were
designed so that the translation of schematic formulae into αML expressions would be
largely trivial. Hence, we overload the ϕ meta-variable to refer both to a schematic formula
and its corresponding αML expression �ϕ�, since they are so similar.

Example 4.1 (β -reduction as an αML recursive function)
Continuing the example of λ -calculus β -reduction from Example 3.11, we note that the
α-inductive definition L presented in Figure 10 was in standard form. Hence, we can
translate L into the following αML recursive function vL , for which /0 � vL : Sr → prop

holds.

funr(x : Sr) : prop=((Ez : var. Et ′ : term.x=sub(Varz,z, t ′, t ′) & T)
|| (Ey,z : var. Et ′ : term.x=sub(Vary,z, t ′,Vary) & z # y)
|| (Ez : var. Et, t ′ : term.x=sub(Lam<z>t,z, t ′,Lam<z>t) & T)
|| (Ey,z : var. Et, t ′, t ′′ : term.x=sub(Lam<y>t,z, t ′,Lam<y>t ′′) &

y # (z, t ′) & r (sub(t,z, t ′, t ′′)))
|| (Ez : var. Et1, t

′
1, t2, t

′
2, t

′ : term.x=sub(App(t1, t2),z, t
′,App(t ′1, t

′
2)) &

r (sub(t1,z, t
′, t ′1)) & r (sub(t2,z, t

′, t ′2)))
|| (Ez : var. Et, t ′, t ′′ : term.x=beta(App((Lam<z>t), t ′), t ′′) & r (sub(t,z, t ′, t ′′)))
|| (Et, t ′, t ′′ : term.x=beta(App(t, t ′),App(t ′′, t ′)) & r (beta(t, t ′′)))
|| (Ez : var.x=nf(Varz) & T)
|| (Ez : var. Et : term.x=nf(Lam<z>t) & T)
|| (Ez : var. Et : term.x=nf(App(z, t)) & T)
|| (Et1, t2, t3 : term.x=nf(App(App(t1, t2), t3)) & r (nf(App(t1, t2))))
|| (Et : term.x=betas(t, t) & r (nf(t)))
|| (Et, t ′, t ′′ : term.x=betas(t, t ′) & r (beta(t, t ′′)) & r (betas(t ′′, t ′))))

Contextual equivalence for inductive definitions in functional programming 679

(F1) D � ∃Δ(c;�ϕ;r p)� ∃Δ(c;�ϕ;ϕ [p/x]) if vD = funr(x : Sr) : prop=ϕ .
(F2) D � ∃Δ(c;�ϕ;c)� ∃Δ(c & c;�ϕ;T) if |= ∃Δ(c & c).
(F3) D � ∃Δ(c;�ϕ,ϕ;T)� ∃Δ(c;�ϕ;ϕ)
(F4) D � ∃Δ(c;�ϕ;ϕ & ϕ ′)� ∃Δ(c;�ϕ,ϕ ′;ϕ)
(F5) D � ∃Δ(c;�ϕ;ϕ1 v ϕ2)� ∃Δ(c;�ϕ;ϕi) if i ∈ {1,2}.
(F6) D � ∃Δ(c;�ϕ; Ex : E.ϕ)� ∃Δ,x : E(c;�ϕ;ϕ) if x /∈ dom(Δ).

Fig. 11. Formula reduction.

Note that the use of translated schematic formulae as αML expressions gives rise to the
logical conjunction syntax in the definition of this function, as described above.

4.1 Constraint logic programming in αααML

Figure 11 defines a transition relation D � ∃Δ(c;�ϕ;ϕ)� ∃Δ′(c′;�ϕ ′;ϕ ′) which we call for-
mula reduction. The relation involves a special kind of configuration that contains a queue
�ϕ of formulae instead of a frame stack and where the expression at the top of the stack
always corresponds to some formula ϕ . These are related to impure αML configurations
as outlined below, and may be interpreted as goal states in a CLP language. The judgement
is moderated by an α-inductive definition D because in order to evaluate an atomic formula
r p we must know the interpretation of the relation r. These rules give a largely standard
formulation of the operational semantics of CLP as presented in Section 3 of Jaffar et al.
(1998).

The formula reduction rules bear a striking similarity to certain rules from the oper-
ational semantics of αML presented in Figure 3. Rule (F1) is a specialised version of
the application rule (P3). The constraint rule (F2) is identical to the impure rule (I2), and
rule (F3), which moves on from a true formula to process the next formula in the queue,
corresponds to rule (P1) in the case where the value is of type prop. Rule (F4) deals with
conjunction by emulating the rules that deal with let bindings, as this is how conjunction is
encoded within αML, and rules (P5) and (P6) are identical to the impure rules for handling
branching and existential quantification, respectively. Thus, it is straightforward to relate
formula reduction to the impure αML reduction rules from Figure 3.

Definition 4.2 (CLP goal lists in αML)
We encode a goal list �ϕ as an αML frame stack F�ϕ , which we define by recursion on the
length of the goal list, as follows:

F/0 ≡ Id F�ϕ,ϕ ≡ F�ϕ ◦ (x.ϕ) (for some x /∈ FV(ϕ)).

A frame stack corresponding to a CLP goal list is just a queue of formulae waiting to
be evaluated. By type preservation, any formula that is successfully processed will result
in the value T, and because the bound variable in each stack frame must not be free in the
corresponding formula, this value is discarded at each step. The only information passed
along is the constraints and the environment of generated variables.

The following result shows that formula reduction corresponds to a subset of the αML
reduction rules. Thus, the operational semantics of αML incorporates both a standard
functional programming language and a CLP language over the constraint domain of

680 M. R. Lakin and A. M. Pitts

α-trees. The proof proceeds by cases according to the structure of the formula ϕ , by
matching the formula reduction rules with the corresponding impure reduction rules.

Theorem 4.3 (Embedded CLP language)
Let D be an α-inductive definition, and suppose that /0 � ∃Δ(c;F�ϕ [vD/r];ϕ[vD/r]) : prop

holds. Then an impure reduction ∃Δ(c;F�ϕ [vD/r];ϕ[vD/r]) −→∃Δ′(c′;F ;e) holds iff there

exists a formula reduction D � ∃Δ(c;�ϕ;ϕ) � ∃Δ′(c′;�ϕ ′;ϕ ′) for some �ϕ ′ and ϕ ′, with
F = F�ϕ ′ [vD/r] and e = ϕ ′[vD/r].

Our aim in this section is to relate the evaluation of formulae in the αML operational
semantics (actually, the formula reduction semantics) to the satisfaction of formulae as
defined in Definition 3.9. We will use the following definition of the set of solutions to a
configuration in the� relation.

Definition 4.4 (Solution sets)
Let D be an inductively defined relation which we identify with vD ≡ funr(x : Sr) : prop=
ϕ . Given (Δ,c,�ϕ,ϕ) such that Δ � c ok for all c ∈ c and Δ � ψ ok for all ψ ∈ �ϕ,ϕ , we will
write solnsD (Δ,c,�ϕ,ϕ) for the solution set

solnsD (Δ,c,�ϕ,ϕ) ≡ {∃Δ′(c′) | D � ∃Δ(c;�ϕ;ϕ)� · · ·�∃Δ,Δ′(c′; /0;T)∧ |= ∃Δ,Δ′(c′)}.

4.2 Logical soundness

Our first step towards demonstrating the correctness of formula reduction in αML is to
prove a logical soundness result. This states that if a particular constraint problem is in the
solution set of a configuration under the αML, then any valuation which satisfies the con-
straint problem also satisfies all of the formulae in the original configuration. Intuitively,
this means that the αML operational semantics does not compute any wrong answers.

Definition 4.5 (Formula entailment and equivalence)
Given formulae ϕ and ϕ ′ such that Δ � ϕ ok and Δ � ϕ ′ ok, we write D ,D ′ |= ∀Δ.ϕ =⇒ ϕ ′

to mean that, for all V ∈ α-TreeΣ(Δ), if (�D�,V) |= ϕ then (�D ′�,V) |= ϕ ′. We write
D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′ for the symmetric version of this relation. If D = D ′ we abbreviate
these to D |= ∀Δ.ϕ =⇒ ϕ ′ and D |= ∀Δ.ϕ ≡ ϕ ′ respectively.

This notion of entailment between formulae will be used in our proof of logical sound-
ness. We begin by enumerating some straightforward properties of pattern valuation with
regard to weakening and substitution – see Lakin (2010)) for a proof outline for Lemma 4.2.

Lemma 4.1 (Weakening properties of pattern valuation)
Suppose that Δ ⊆ Δ′ and V ′ ∈ α-TreeΣ(Δ′), and that V ∈ α-TreeΣ(Δ) is the restriction of V ′

to dom(Δ). Then:

1. if Δ � p : E then (Δ′ � p : E and) �p�V = �p�V ′ ∈ α-TreeΣ(E).
2. if Δ � c : prop then (Δ′ � c : prop and) V |= c ⇐⇒V ′ |= c.
3. if Δ,{r : Sr → prop} � ϕ : prop and R ⊆ α-TreeΣ(Sr) then (Δ′,{r : Sr → prop} �

ϕ : prop and) (R,V) |= ϕ ⇐⇒ (R,V ′) |= ϕ .

Contextual equivalence for inductive definitions in functional programming 681

Lemma 4.2 (Substitution properties of pattern valuation)
Suppose that Δ,{r : Sr → prop,x : E} � ϕ : prop and Δ,{x : E} � p′ : E ′ and Δ � p : E
all hold. Then for any α-tree valuation V ∈ α-TreeΣ(Δ) and any α-tree relation R ⊆
α-TreeΣ(Sr):

1. �p′[p/x]�V = �p′�V [x �→�p�V].

2. (R,V) |= ϕ[p/x] ⇐⇒ (R,V [x �→ �p�V]) |= ϕ .

The following is the main intermediate lemma needed to prove the logical soundness
result. We prove that if the configuration ∃Δ(c;�ϕ;ϕ) transitions to ∃Δ′(c′;�ϕ ′;ϕ ′), then any
valuation that satisfies (c′ & �ϕ ′ & ϕ ′) will also satisfy (c & �ϕ & ϕ). This means that the
� transition relation may narrow down the set of valuations that satisfy the configuration
but it may not add extra satisfying valuations – it would be unsound to report satisfying
valuations which do not satisfy the initial configuration. Here, and below, we interpret goal
lists �ϕ as implicit conjunctions of individual formulae so that they may be treated the same
as normal schematic formulae. This is reasonable because the intended meaning of the
goal list is that all formulae ϕ ∈ �ϕ must be simultaneously satisfied. Then we can directly
combine this conjunction with other atomic constraints c (also interpreted as an implicit
conjunction) and formulae ϕ to produce a schematic formula (c & �ϕ & ϕ). Thus, we can
then use our existing mathematical infrastructure to reason about the satisfaction of the
entire configuration.

Lemma 4.3 (Intermediate lemma for logical soundness)
Let D be an α-inductive definition in the sense of Definition 4.4, and treat �ϕ and c as
implicit conjunctions as described above. Then if D � ∃Δ(c;�ϕ;ϕ)� ∃Δ′(c′;�ϕ ′;ϕ ′) holds,
then Δ ⊆ Δ′ and D |= ∀Δ′.(c′ & �ϕ ′ & ϕ ′) =⇒ (c & �ϕ & ϕ).

Proof
We proceed by cases on the rule used to derive D � ∃Δ(c;�ϕ;ϕ)� ∃Δ′(c′;�ϕ ′;ϕ ′).

(F1). In this case we have ϕ = r p, for some p. Using rule (F1) and the definition of
D we get that Δ′ = Δ, c′ = c, �ϕ ′ = �ϕ and ϕ ′ = ψ[p/x]. Given some valuation V ∈
α-TreeΣ(Δ) such that (�D�,V) |= c & �ϕ & ψ[p/x], to prove the result it suffices to show
that (�D�,V) |= r p holds. By Lemma 4.2 we get that (�D�,V [x �→ �p�V]) |= ψ , and using
Lemma 4.1 (and the definition of �D� as the least fixed-point of a monotone operator in
Definition 3.10) we get that (�D�,V) |= r p holds, as required.

(F2). Here we have ϕ = c for some c. Then it follows that Δ′ = Δ, c′ = c & c, �ϕ ′ = �ϕ and
ϕ ′ = T, and also that |= ∃Δ(c & c) holds. Given an arbitrary valuation V ∈ α-TreeΣ(Δ)
such that (�D�,V) |= (c & c) & �ϕ & T, it follows trivially that (�D�,V) |= c & �ϕ & ϕ
holds, as required.

(F3). In this case we know that �ϕ = �ϕ∗,ϕ∗ and ϕ = T, for some �ϕ∗ and ϕ∗. We get that
Δ′ = Δ, c′ = c, �ϕ ′ = �ϕ∗ and ϕ ′ = ϕ∗ all hold. Then it is trivially the case that (�D�,V) |=
c & �ϕ∗ & ϕ∗ implies (�D�,V) |= c & (�ϕ∗,ϕ∗) & T holds for any V ∈ α-TreeΣ(Δ).

(F4). We get that ϕ = ϕ1 & ϕ2, for some ϕ1 and ϕ2. By rule (F4) we have that Δ′ = Δ,
c′ = c, �ϕ ′ =�ϕ ,ϕ2 and ϕ ′ = ϕ1. Then it follows that (�D�,V) |= c & (�ϕ,ϕ2) & ϕ1 implies
(�D�,V) |= c & �ϕ & (ϕ1 & ϕ2), as required.

682 M. R. Lakin and A. M. Pitts

(F5). In this case, ϕ = ϕ1 vϕ2 for some ϕ1 and ϕ2. Then we know that Δ′ = Δ, c′ = c, �ϕ ′ =
�ϕ and either ϕ ′ = ϕ1 or ϕ ′ = ϕ2. In either of these cases we have D |=∀Δ.ϕ j =⇒ ϕ1 v ϕ2,
where j ∈ {1,2}. Thus, (�D�,V) |= c & �ϕ & ϕ j implies (�D�,V) |= c & �ϕ & (ϕ1 v ϕ2),
for any V ∈ α-TreeΣ(Δ), as required.

(F6). We have that ϕ = Ex : E.ϕ∗ for some ϕ∗, and by α-conversion we may assume
that x /∈ dom(Δ). Then by rule (F6) we get that Δ′ = Δ,x : E, c′ = c, �ϕ ′ = ϕ and ϕ ′ =
ϕ∗. Given an arbitrary valuation V ∈ α-TreeΣ(Δ,x : E), we assume that (�D�,V) |= ϕ∗

holds. Writing V ′ for the restriction of V to dom(Δ), we get that (�D�,V ′) |= Ex : E.ϕ∗,
and then by Lemma 4.1 we have (�D�,V) |= Ex : E.ϕ∗. Thus, we may conclude that
D |= ∀Δ,x : E.(c & �ϕ & ϕ∗) =⇒ (c & �ϕ & Ex : E.c∗), as required.

This completes the proof of Lemma 4.3. �

We are now in a position to prove the logical soundness lemma using Lemma 4.3.

Lemma 4.4 (Logical soundness)

With D and (Δ,c,�ϕ,ϕ) as in Definition 4.4, for all V ∈ α-TreeΣ(Δ) it is the case that if
∃Δ′(c′) ∈ solnsD (Δ,c,�ϕ,ϕ) and (�D�,V) |= ∃Δ′(c′) then (�D�,V) |= (c & �ϕ & ϕ).

Proof

Let D be an α-inductive definition as in Definition 4.4. Given (Δ,c,�ϕ,ϕ) such that Δ� c ok
for all c ∈ c and Δ � ψ ok for all ψ ∈ �ϕ,ϕ , and given an arbitrary α-tree valuation V ∈
α-TreeΣ(Δ), we assume that ∃Δ′(c′)∈ solnsD (Δ,c,�ϕ,ϕ) and (�D�,V) |= ∃Δ′(c′) both hold.
It follows that there exist Δ′ and c′ such that D � ∃Δ(c;�ϕ;ϕ)� · · ·�∃Δ,Δ′(c′; /0;T) and
|= ∃Δ,Δ′(c′) both hold. Then by applying Lemma 4.3 to every individual�-transition in
the above sequence, we get D |= ∀Δ,Δ′.c′ =⇒ (c & �ϕ & ϕ), and since (�D�,V) |= ∃Δ′(c′),
it follows that (�D�,V) |= (c & �ϕ & ϕ) holds, as required. �

4.3 Logical completeness

In this section we prove a logical completeness result, which is the converse of the logical
soundness result from Lemma 4.4. This result states that if a configuration ∃Δ(c;�ϕ;ϕ) is
satisfied by a valuation V then there exists a computation path in the αML operational
semantics which terminates at an element ∃Δ′(c′) of the solution set which is satisfied by
V . Hence, αML does not discard any satisfying valuations during execution.

We first present a size metric on certain collections of satisfaction judgements, which
we will use to show that formula reduction of satisfiable formulae eventually terminates.
We begin by defining a size function size(ϕ) on atomic formulae, such that size(ϕ)� 1 for
all ϕ , as follows:

size(r p) = size(T) = 1

size(c) = 2

size(ϕ1 & ϕ2) = size(ϕ1 v ϕ2) = 1+ size(ϕ1)+ size(ϕ2)

size(Ex : E.ϕ) = 1+ size(ϕ)

Contextual equivalence for inductive definitions in functional programming 683

Definition 4.6 (Measure on satisfaction judgements)
Recalling the definition of �D�(n) from Lemma 3.1, we write�J for a finite list of satisfac-
tion judgements of the form (�D�(ni),V) |= ϕi, where the inductive definition D and the
valuation V are the same in each judgement. For each natural number n we define size�J(n)
as follows:

size�J(n) ≡ ∑
((�D�(n),V)|=ϕ)∈�J

size(ϕ)

Now we write μ(�J) for the multiset of natural numbers which includes n with multiplicity
size�J(n), for every n ∈ �.

Intuitively, size�J(n) records the total size of all formulae for which a satisfaction judge-

ment using �D�(n) exists in �J. The measure μ(�J) records a mapping from numbers n to
these total sizes. Note that since �J is finite, it follows that there are only finitely many n
with non-zero multiplicity in μ(�J). Hence, we can use the multiset ordering construction
of Dershowitz & Manna (1979) to derive a well-founded ordering ≺ on μ(�J) in terms
of the < ordering on natural numbers. We now proceed to the main intermediate result
in our proof of logical completeness, where we show that the set of formula reduction
steps possible from a given configuration accounts for all satisfying valuations of that
configuration. Moreover, we show that our well-founded measure on the list of satisfaction
judgements strictly decreases across the formula reduction step.

Lemma 4.5 (Intermediate lemma for logical completeness)
Let D = funr(x : Sr) : prop= ψ be an α-inductive definition as in Definition 4.4, and
suppose that Δ � c & �ϕ & ϕ : prop and V ∈ α-TreeΣ(Δ) both hold. Suppose that �ϕ = ϕ1 &
· · · & ϕk and that V |= c, ∀i ∈ {1, . . . ,k}. (�D�(ni),V) |= ϕi and (�D�(n),V) |= ϕ all hold,
for some n1, . . . ,nk,n. Then, either

1. �ϕ = /0 and ϕ = T; or
2. there exist Δ′, c′, �ϕ ′, ϕ ′, V ′, n′1, . . . ,n

′
j and n′ such that

D � ∃Δ(c;�ϕ;ϕ)� ∃Δ,Δ′(c′;�ϕ ′;ϕ ′) (5)

V ′ |= c′ (6)

∀i ∈ {1, . . . , j}. (�D�(n′i),V) |= ϕ ′
i (7)

(�D�(n′),V ′) |= ϕ ′ (8)

all hold, where �ϕ ′ = ϕ ′
1 & · · · & ϕ ′

j and V ′ is an extension of V to dom(Δ,Δ′).
Furthermore, if�J denotes (�D�(n1),V) |= ϕ1, . . . ,(�D�(nk),V) |= ϕk,(�D�(n),V) |= ϕ
and�J′ stands for (�D�(n′1),V ′) |= ϕ ′

1, . . . ,(�D�(n′j),V ′) |= ϕ ′
j,(�D�(n′),V ′) |= ϕ ′ then

μ(�J′) ≺ μ(�J) holds also.

Proof
The proof is by case analysis on ϕ – the cases are as follows. We note that the case where
ϕ = F cannot arise since (R,V) |= F is not derivable for any R, V .

Case ϕϕϕ === rrr ppp. In this case we use formula reduction rule (F1) to deduce that Equation (5)
holds, where Δ′ = /0, c′ = c, �ϕ ′ = �ϕ (i.e. j = k) and ϕ ′ = ψ[p/x]. If we set V ′ = V and
n′1 = n1, . . . ,n

′
j = n j, it is easy to see that both Equations (6) and (7) hold.

684 M. R. Lakin and A. M. Pitts

Since (�D�(n),V) |= r p, it follows that n = n′ + 1 for some n′ (since �D�(0) = /0 and
(/0,V) |= r p is not derivable). Then from (�D�(n′+1),V) |= r p we get �p�V ∈ �D�(n′+1).
Using the fixed-point definition of denotations from Definition 3.10 and the defini-
tion of �D�(n′+1), we get that (�D�(n′),{x �→ �p�V}) |= ψ . From Lemma 4.1(3) we get
(�D�(n′),V [x �→ �p�V]) |= ψ , and by Lemma 4.2 it follows that (�D�(n′),V) |= ψ[p/x],
i.e. Equation (8) holds.
Finally, note that the multiset μ(�J′) is obtained from the multiset μ(�J) by replacing
size(r p) = 1 occurrence of n = n′+1 with size(ψ[p/x]) occurrences of n′; hence μ(�J′)≺
μ(�J).

Case ϕϕϕ === ccc. In this case our assumption tells us that V |= c & c, i.e. |= ∃Δ(c & c). Then
by (F2) we get that Equation (5) holds, where Δ′ = /0, c′ = c & c, �ϕ ′ = �ϕ (i.e. j = k) and
ϕ ′ = T. If we set V ′ = V , n′ = n, n′1 = n1, . . . ,n

′
j = n j it follows that Equations (6) and

(7) both hold. We get that μ(�J′)≺ μ(�J) holds because the multiplicity of n decreases by
one, since size(T) < size(c).

Case ϕϕϕ === TTT. In this case we perform a case split on the goal list �ϕ . If �ϕ = /0 then we
are immediately done, so we consider the case where �ϕ = �ϕ ′′,ϕ ′′ for some �ϕ ′′ and ϕ ′′,
i.e. k = k′ + 1 for some k′. In this case, by (F3) we get that Equation (5) holds, where
Δ′ = /0, c′ = c, �ϕ ′ = �ϕ ′′ (i.e. j = k′) and ϕ ′ = ϕ ′′. Then if we set V ′ = V , n′ = nk and
n′1 = n1, . . . ,n

′
j = n j we get that Equations (6) and (7) both hold, by assumption. Finally,

since the T formula has been eliminated completely, it follows that μ(�J′) ≺ μ(�J) holds,
as required.

Case ϕϕϕ === ϕ1ϕ1ϕ1 &&& ϕ2ϕ2ϕ2. In this case we get that (�D�(n),V) |= ϕm holds, for all m ∈ {1,2}.
Then by rule (F4) we get that Equation (5) holds, where Δ′ = /0, c′ = c, �ϕ ′ = �ϕ ,ϕ2 (i.e.
j = k + 1) and ϕ ′ = ϕ1. Then Equations (6) and (7) both hold if we set V ′ = V , n′ = n,
n′1 = n1, . . . ,n

′
k = nk and n′j = n. Since size(ϕ1) + size(ϕ2) < size(ϕ1 & ϕ2), it follows

that μ(�J′) ≺ μ(�J) holds, as required.

Case ϕϕϕ === ϕ1ϕ1ϕ1 vvv ϕ2ϕ2ϕ2. Here we get that (�D�(n),V) |= ϕm holds, for some m ∈ {1,2}. Then
by rule (F5) we get that Equation (5) holds when Δ′ = /0, c′ = c, �ϕ ′ = �ϕ (i.e. j = k)
and ϕ ′ = ϕm. If we set V ′ = V , n′ = n and n′1 = n1, . . . ,n

′
k = nk then both Equations (6)

and (7) hold. Finally, since size(ϕ j) < size(ϕ1 v ϕ2), we get that μ(�J′) ≺ μ(�J) holds, as
required.

Case ϕϕϕ === Ex : E.Ex : E.Ex : E.ϕ ′′ϕ ′′ϕ ′′. By α-renaming the bound variable in the formula we can assume
that x /∈ dom(Δ). Then we get that (�D�(n),V [x �→ t]) |= ϕ ′′, for some t ∈ α-TreeΣ(E).
By rule (F6) we get that Equation (5) holds if we let Δ = {x : E}, c′ = c, �ϕ ′ = �ϕ (i.e.
j = k) and ϕ ′ = ϕ ′′. If we also let V ′ = V [x �→ t], n′ = n and n′1 = n1, . . . ,n

′
k = nk, we

can use Lemma 4.1(3) to show that Equations (6) and (7) both hold. Also, it follows that
μ(�J′) ≺ μ(�J) holds, since size(ϕ ′′) < size(Ex : E.ϕ ′′).

This completes the proof of Lemma 4.5. �

Our proof of logical completeness rests on the fact that if (�D�,V) |= ϕ holds then we
can unfold the inductive definition, D , n times (for some n) to produce an α-tree relation
�D�(n) such that (�D�(n),V) |= ϕ holds.

Contextual equivalence for inductive definitions in functional programming 685

Lemma 4.6 (Unfolding α-inductive definitions)
Let D = funr(x : Sr) : prop= ψ be an α-inductive definition as in Definition 4.4, and
suppose that Δ � ϕ : prop and V ∈ α-TreeΣ(Δ) both hold. Then (�D�,V) |= ϕ holds iff
(�D�(n),V) |= ϕ holds for some n.

Proof
We proceed by induction on the structure of ϕ , using the fact that �D� =

⋃
n∈� �D�(n) (by

Lemma 3.1). In the case of an atomic formula r p, we observe that if (D ,V) |= r p then
there exists n such that ψ[p/x]∈ �D�(n), i.e. (�D�(n),V) |= r p. In the case of a conjunction
ϕ1 & ϕ2 we use the fact that �D�(n) ⊆ �D�(n+1) (which follows from the definition of ΦD)
to obtain a value n which is high enough to satisfy both ϕ1 and ϕ2. The other cases are
straightforward. �

We now use Lemma 4.5 and Definition 4.4, along with Lemma 4.6, to present a proof of
logical completeness.

Lemma 4.7 (Logical completeness)
With D and (Δ,c,�ϕ,ϕ) as in Definition 4.4, for all V ∈ α-TreeΣ(Δ) it is the case that
if (�D�,V) |= (c & �ϕ & ϕ) then there exists some ∃Δ′(c′) ∈ solnsD (Δ,c,�ϕ,ϕ) such that
(�D�,V) |= ∃Δ′(c′).

Proof
With the same assumptions as Definition 4.4, given an α-tree valuation V ∈ α-TreeΣ(Δ)
we assume that (�D�,V) |= c & �ϕ & ϕ . It follows from Lemma 4.6 that we can find a list
of satisfaction judgements�J as in the hypothesis of Lemma 4.5. Then by Lemma 4.5 we
can build up a sequence of formula reductions D � ∃Δ(c;�ϕ;ϕ)� · · · with associated lists
of satisfaction judgements �J of the form described in Definition 4.6. From Lemma 4.5
we know that at each step μ(�J) decreases in the well-founded ordering defined above,
therefore the sequence cannot be infinite and must eventually terminate. Furthermore, by
Lemma 4.5 that finite reduction sequence must be of the form D � ∃Δ(c;�ϕ;ϕ)� · · ·�
∃Δ,Δ′(c′; /0;T), where V ′ |= c′ for some V ′, which extends V to dom(Δ,Δ′). Thus, by
Definition 4.4 we have shown that there is some ∃Δ′(c′) ∈ solnsD (Δ,c,�ϕ,ϕ) such that
(�D�,V) |= ∃Δ′(c′) holds, as required. �

4.4 Correctness of formula reduction

We now state the theorem which relates the semantics of schematic formulae and the
operational semantics of αML, which follows immediately from Lemmas 4.4 and 4.7.

Theorem 4.7 (Correctness of formula reduction)
With D and (Δ,c,�ϕ,ϕ) as in Definition 4.4, for all V ∈ α-TreeΣ(Δ) it is the case that
(∃Δ′(c′) ∈ solnsD (Δ,c,�ϕ,ϕ)∧ (�D�,V) |= ∃Δ′(c′)) ⇐⇒ (�D�,V) |= (c & �ϕ & ϕ) holds,
for some Δ′ and c′.

Thus, the operational semantics of αML computes all and only the solutions to an
initial query formula (c & �ϕ & ϕ), expressed as an αML formula reduction configuration
∃Δ(c;�ϕ;ϕ). The relative simplicity of these proofs is a demonstration of the power of
Theorem 4.3 because when doing proofs about embedded formulae we can forget about
the details of the αML operational semantics which are not relevant and just focus on the
subset of formula reduction transitions.

686 M. R. Lakin and A. M. Pitts

5 Contextual equivalence of formulae and ααα-inductive definitions

The logical soundness and completeness results from Theorem 4.7 give us the following
weak result about equivalence of encoded formulae in αML.

Corollary 5.1 (Equivalence for CLP goal states)
If D |= ∀Δ.ϕ ≡ ϕ ′ then ∃Δ′(c;F�ϕ ;ϕ[vD/r])↓⇐⇒∃Δ′(c;F�ϕ ;ϕ ′[vD/r])↓ holds for any Δ′ ⊇
Δ, any c and any frame stack F�ϕ which corresponds to a CLP goal list in the sense of
Definition 4.2.

This holds because if the formulae ϕ and ϕ ′ have the same semantics then c & �ϕ & ϕ
and c &�ϕ & ϕ ′ also have the same semantics. Then Corollary 5.1 follows straightforwardly
from Theorem 4.7.

In the remainder of this section we prove more general results than Corollary 5.1,
concerning the behaviour of encoded schematic formulae and α-inductive definitions (such
as the definition from Example 4.1) in arbitrary αML contexts. We will assume that
both /0 � vD : Sr → prop and /0 � vD ′ : Sr → prop hold, where vD and vD ′ are the αML
encodings of the α-inductive definitions D and D ′, respectively.

5.1 Contextually equivalent formulae have the same semantics

We begin by showing that contextual equivalence implies semantic equivalence for en-
coded formulae. This is one area of the theory where the proofs rely on our underlying
nominal sets model of abstract syntax with binders. Firstly, however, we define a class of
αML expressions which encode α-tree valuations in the following sense.

Definition 5.2 (Characteristic expressions)
Suppose that the α-tree valuation V = {x1 �→ [g1]α , . . . ,xn �→ [gn]α}. Then we write eV to
stand for a characteristic expression of V , which is any expression of the form

letz1 = �g1� in · · · in letzn = �gn� in x1 = z1 & · · · & xn = zn

where the bound variables z1, . . . ,zn are pairwise distinct, are disjoint from x1, . . . ,xn and do
not occur free in any of the tree translations �gi�. These restrictions can always be satisfied
by α-renaming the let-bound variables.

Note that it does not matter which representatives of the α-equivalence class we choose,
because Property 2.12 guarantees that α-equivalent ground trees will be translated into
contexually equivalent αML expressions.

Lemma 5.1 (Typing for characteristic expressions)
Suppose that V ∈ α-TreeΣ(Δ) has the form of Definition 5.2 above, and that eV is a char-
acteristic expression of V . Then Δ′ � eV : prop holds for any Δ′ ⊇ Δ such that Δ′(V (n)) =
sort(n) for all n ∈ FN(g1, . . . ,gn).

We now consider the behaviour of characteristic expressions when they are evaluated.
Recall that the definition of a characteristic expression eV of a valuation V ∈ α-TreeΣ(Δ)
involves translated ground trees �gi�. A free name n of the tree gi is translated using the
fixed bijection V , and corresponds to a free variable V (n) of �gi�, and hence of eV . Since
the bijection V (−) that maps names to variables is fixed, it is possible that one of the

Contextual equivalence for inductive definitions in functional programming 687

free variables V (n) could clash with a variable from the typing environment dom(Δ),
which represents the types of variables generated by the rest of the computation. This
is problematic because the variables which are used to represent the ground trees �gi�

are not related to the variables which appear in dom(Δ). In the following lemmas we
will assume that V ∈ α-TreeΣ(Δ) of the form {x1 �→ [g1]α , . . . ,xn �→ [gn]α} is such that
following property holds:

{V (n) | n ∈ FN(g1, . . . ,gn)}∩{x1, . . . ,xn} = /0 (9)

In the proof of the main theorem in this section (Theorem 5.3) we will use an argument
based on equivariance to show that this problem can be avoided.

Lemma 5.2 (Evaluation of characteristic expressions)

Suppose that V ∈ α-TreeΣ(Δ) as in Definition 5.2 and has the property (9). Pick arbitrary
Δ′, F and T such that Δ′ ⊇ Δ, Δ′ � FN(g1, . . . ,gn) and Δ′ � F : prop→ T all hold. Then
there exist ηV and cV such that

∃Δ′(T;F;eV) −→ ·· · −→ ∃Δ′,ηV (cV ;F ;T) (10)

and |= ∃Δ′,ηV (cV) both hold. Furthermore, for any V ∗ ∈ α-TreeΣ(Δ′,ηV), if V ∗ |= cV then
there exists a permutation π∗ such that V ∗(x) = π∗ ·V (x) for all x ∈ dom(Δ).

Proof

We know the form of the expression eV from Definition 5.2. Since the evaluation of the
ground trees �gi� only produces freshness constraints, it follows that evaluating the ground
trees will succeed: now suppose that evaluating �gi� produces ηi, ci and vi. Therefore, we
get that

∃Δ′(T;F ;eV) −→ ·· · −→ ∃Δ′,η1, . . . ,ηn(c1 & · · · & cn;F ;x1 = v1 & · · · & xn = vn) (11)

Since we have assumed that V has the property (9), it follows that the assignments to the
variables x1, . . . ,xn in the second configuration of Equation (11) cannot conflict with the
freshness constraints c1 & · · · & cn. Therefore, from Equation (11) it follows that Equa-
tion (10) holds, where ηV = η1, . . . ,ηn and cV = c1 & · · · & cn & x1 = v1 & · · · & xn = vn.
Because the constraints in c1, . . . ,cn are all freshnesses and the variables x1, . . . ,xn do not
appear elsewhere, it follows that |= ∃Δ′,ηV (cV).

Now suppose that V ∗ ∈ α-TreeΣ(Δ′,ηV) is such that V ∗ |= cV . By the semantics of
constraints it follows that V ∗(x) = �vi�V ∗ holds for all i ∈ {1, . . . ,n}. Now there exists a
permutation π∗ such that (π∗ ·gi) ∈ �vi�V ∗ for all i ∈ {1, . . . ,n}, and finally, since V (xi) =
[gi]α by its definition from Definition 5.2, it follows that V ∗(xi) = π∗ ·V (xi) for all i ∈
{1, . . . ,n}, as required. �

The previous lemma formalised the sense in which a characteristic expression eV repre-
sents the α-tree valuation V . We now prove the central lemma of this proof, in which we
show that the expression eV thenϕ[vD/r] terminates in the empty context iff (�D�,V) |= ϕ .
Here we write e1 then e2 as syntactic sugar for the sequential evaluation of e1 followed by
e2, which can be implemented in αML as letx= e1 in e2, where x /∈ FV(e2).

688 M. R. Lakin and A. M. Pitts

Lemma 5.3 (Intermediate result concerning termination and satisfaction)
Suppose that V ∈ α-TreeΣ(Δ) has the form of Definition 5.2 above, and satisfies the prop-
erty (9). We pick an arbitrary Δ′ such that Δ′ ⊇ Δ and Δ′ � FN(g1, . . . ,gn) both hold.
Let D be an arbitrary α-inductive definition (in the standard form) and let ϕ be a
schematic formula such that Δ′ � ϕ[vD/r] : prop holds. Then it is the case that
∃Δ′(T;Id;eV thenϕ[vD/r])↓ iff (�D�,V) |= ϕ .

Proof

By Lemma 5.2, ∃Δ′(T;Id;eV thenϕ[vD/r]) −→ ·· · −→ ∃Δ′,ηV (cV ;Id;ϕ[vD/r]) and |=
∃Δ′,ηV (cV) both hold. Furthermore, for any V ∗ ∈ α-TreeΣ(Δ′,ηV), if V ∗ |= cV then there
exists a permutation π∗ such that V ∗(x) = π∗ ·V (x) for all x ∈ dom(Δ). Now we prove the
two directions separately.

∃Δ′(T;Id;eV thenϕ[vD/r])↓ =⇒ (�D�,V) |= ϕ .
From ∃Δ′(T;Id;eV thenϕ[vD/r]) we get that ∃Δ′,ηV (cV ;Id;ϕ[vD/r])↓ holds, from
which it follows that there exist Δϕ and cϕ such that ∃Δϕ(cϕ)∈ solnsD ((Δ′,ηV),cV , /0,ϕ)
and V ∗ |= ∃Δϕ(cϕ) both hold, for some V ∗ ∈ α-TreeΣ(Δ′,ηV). It follows that V ∗ |= cV ,
and hence that V ∗(x) = π∗ ·V (x) holds, for all x ∈ dom(Δ) and for some permutation π∗.
By Logical Soundness (Theorem 4.7) we get that (�D�,V ∗) |= cV & ϕ holds, which we
simplify to (�D�,V ∗) |= ϕ or, equivalently, (�D�,π∗ ·V) |= ϕ . Finally, from equivariance
it follows that (�D�,V) |= ϕ holds, as required.

(�D�,V) |= ϕ =⇒∃Δ′(T;Id;eV thenϕ[vD/r]).
We can deduce that there exists a permutation π∗ and a valuation V ∗ ∈ α-TreeΣ(Δ′,ηV)
such that V ∗ |= cV and V ∗(x) = π∗ ·V (x) hold for all x ∈ dom(Δ). Now, since for-
mula satisfaction and denotations of α-inductive definitions are both equivariant, from
our initial assumption that (�D�,V) |= ϕ we conclude that (�D�,π∗ ·V) |= ϕ . Thus,
we get that V ∗ |= cV & ϕ holds. Using this fact, along with the Logical Complete-
ness result from Theorem 4.7, we get that there exist Δϕ and cϕ such that ∃Δϕ(cϕ) ∈
solnsD ((Δ′,ηV),cV , /0,c) and V ∗ |= ∃Δϕ(cϕ). Hence, ∃Δ′(T;Id;eV thenϕ[vD/r])↓
holds, as required.

This completes the proof of Lemma 5.3. �

The proof of Lemma 5.3 relies on the fact that ground trees can be represented in αML
in a way that respects α-equivalence. Specifically, it relies on details of the underlying
semantics of schematic formulae in terms of α-equivalence classes of ground trees (which
form a nominal set, as shown in Section 3.4). Arguments based on equivariance are typical
in the world of nominal sets and nominal logic (Pitts, 2003, 2006) but are largely absent
from this paper. We consider it advantageous that the details of the underlying mathemati-
cal model are hidden from view to such a degree.

We now prove the main result of this section that if two formulae are contextually equiv-
alent then they have the same semantics, using equivariance to argue that it is sufficient to
consider valuations which have property (9).

Theorem 5.3 (Contextual equivalence implies semantic equivalence)
For all D , D ′, Δ, ϕ and ϕ ′, if Δ � ϕ[vD/r]∼=ϕ ′[vD ′/r] : prop then D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′.

Contextual equivalence for inductive definitions in functional programming 689

Proof
We assume that Δ � ϕ[vD/r]∼= ϕ ′[vD ′/r] : prop and pick any V ∈ α-TreeΣ(Δ): we must
show that (�D�,V) |= ϕ ⇐⇒ (�D ′�,V) |= ϕ ′. By the equivariance property this is equiva-
lent to (�D�,π ·V) |= ϕ ⇐⇒ (�D ′�,π ·V) |= ϕ ′ for any permutation π . Now if V does not
have the disjointness property (9) then we can always find a suitable permutation π to pro-
duce a valuation π ·V , which does have that property. Therefore, it is sufficient to consider
valuations which satisfy property (9). Now we pick an arbitrary type environment Δ′ such
that Δ′ ⊇ Δ and Δ′ � FN(g1, . . . ,gn) both hold. Then, since Δ � ϕ[vD/r]∼=ϕ ′[vD ′/r] : prop
we know in particular that

∃Δ,η(T;Id;eV thenϕ[vD/r])↓⇐⇒ ∃Δ,η(T;Id;eV thenϕ ′[vD ′/r])↓.

Then by Lemma 5.3 it follows that (�D�,V) |= ϕ ⇐⇒ (�D ′�,V) |= ϕ ′. Thus, we have
shown that D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′ holds, as required. �

5.2 Formulae with the same semantics are contextually equivalent

We now show that if two formulae have the same semantics then they have identical
termination behaviour in any αML evaluation context. This direction of the proof is some-
what delicate, and relies on certain properties of the αML reduction relation. We first
prove a preparatory lemma, which states that two configurations which differ only in
their constraints, but share satisfying valuations for their shared existential variables, have
similar termination behaviour. This is a general property of all expressions, not just of the
expressions corresponding to formulae which concern us in this section.

Below we write V |= ∃Δ′(c) to mean that V ∈ α-TreeΣ(Δ), dom(Δ)∩ dom(Δ′) = /0 and
Δ � ∃Δ′(c) : prop all hold, and that there exists V ′ ∈ α-TreeΣ(Δ′) such that (V,V ′) |= c.
Therefore, V comprises part of a satisfying instantiation for c.

Lemma 5.4 (Preparatory lemma)
Suppose that Δ′, Δ1 and Δ2 have pairwise disjoint domains, i.e. dom(Δ′) contains precisely
those variables shared between Δ′,Δ1 and Δ′,Δ2. Assume that /0 � ∃Δ′,Δ1(c1;F ;e) : T and
/0 � ∃Δ′,Δ2(c2;F ;e) : T both hold, and that, for all V ′ ∈ α-TreeΣ(Δ′), if V ′ |= ∃Δ1(c1) then
V ′ |= ∃Δ2(c2). Then ∃Δ′,Δ1(c1;F ;e)↓ implies ∃Δ′,Δ2(c2;F ;e)↓.

Proof
We assume that ∃Δ′,Δ1(c1;F ;e)↓ holds and proceed by well-founded induction on the
number of steps in this derivation. The assumption that V ′ |= ∃Δ1(c1) implies V ′ |= ∃Δ2(c2)
for any V ′ ∈α-TreeΣ(Δ′) is necessary for those cases where the constraint set is augmented.
In cases where additional existential variables are generated, by α-renaming we may as-
sume that these are distinct from all the variables in dom(Δ′), dom(Δ1) and
dom(Δ3). �

We can now present a proof of the main result in this section, which is that semantically
equivalent formulae are always contextually equivalent in the meta-language.

Theorem 5.4 (Formulae with same semantics are contextually equivalent)
For all D , D ′, Δ, ϕ , ϕ ′, if D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′ then Δ � ϕ[vD/r]∼=ϕ ′[vD ′/r] : prop.

690 M. R. Lakin and A. M. Pitts

Proof
We assume that D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′, and pick arbitrary Δ′, c, F and T such that Δ′ ⊇ Δ,
Δ′ � c : prop and Δ′ � F : prop→ T . We deduce that D ,D ′ |= ∀Δ′.c & ϕ ≡ c & ϕ ′ also
holds. Now, we assume that ∃Δ′(c;F ;ϕ[vD/r])↓. It follows that

∃Δ′(c;F ;ϕ[vD/r]) −→ ·· · −→ ∃Δ′,Δ1(c & c1;F ;T)

and also that |= ∃Δ′,Δ1(c & c1) and ∃Δ′,Δ1(c & c1;F ;T)↓, for some Δ1,Δ2,c1,c2. We get
that ∃Δ′(c;Id;ϕ[vD/r])−→ ·· · −→∃Δ′,Δ1(c & c1;Id;T), i.e. ∃Δ′(c;Id;ϕ[vD/r])↓. Thus,
we get that ∃Δ′(c & c1) ∈ solnsD (Δ1,c, /0,ϕ).

Since |= ∃Δ′,Δ1(c & c1), there exist V ′ ∈ α-TreeΣ(Δ′) and V1 ∈ α-TreeΣ(Δ1) such that
(V ′,V1) |= c & c1 holds, i.e. V ′ |= ∃Δ1(c & c1). By Logical Soundness (Theorem 4.7) it
follows that (�D�,V ′) |= c & ϕ . Thus, we get (�D ′�,V ′) |= c & ϕ ′, and by Logical Com-
pleteness (Theorem 4.7) there exists ∃Δ2(c

′
2)∈ solnsD ′(Δ′,c, /0,ϕ ′) such that V ′ |= ∃Δ2(c

′
2).

Since the variables in Δ2 are introduced by existential quantification, by α-renaming we
may assume, without loss of generality, that dom(Δ2) is disjoint from dom(Δ) and dom(Δ1).
We know that c′2 ≡ c & c2 for some c2, and that

∃Δ′(c;Id;ϕ ′[vD ′/r]) −→ ·· · −→ ∃Δ′,Δ2(c & c2;Id;T)

and |= ∃Δ′,Δ2(c & c2) both hold. It follows that

∃Δ′(c;F ;ϕ ′[vD ′/r]) −→ ·· · −→ ∃Δ′,Δ2(c & c2;F ;T).

Note that Δ1 and Δ2 can be assumed to have disjoint domains, and that these can be
assumed to be disjoint from dom(Δ′). Furthermore, the above argument shows that V ∗ |=
∃Δ1(c & c1) implies V ∗ |= ∃Δ2(c & c2) for an arbitrary V ∗ ∈ α-TreeΣ(Δ′). Therefore, by
Lemma 5.4 we get that ∃Δ′,Δ2(c & c2;F ;T)↓, and hence that ∃Δ′(c;F ;ϕ ′[vD ′/r])↓.

By a similar argument we get that ∃Δ′(c;F ;ϕ ′[vD ′/r])↓ implies ∃Δ′(c;F ;ϕ[vD/r])↓.
Therefore, we have ∃Δ′(c;F ;ϕ[vD/r])↓ ⇐⇒ ∃Δ′(c;F ;ϕ ′[vD ′/r])↓, and hence it follows
that Δ � ϕ[vD/r]∼=ϕ ′[vD ′/r] : prop holds, as required. �

5.3 Contextual equivalence and semantic equivalence for schematic formulae

We can now state a key result about contextual equivalence of encoded schematic formulae
in arbitrary αML contexts, which follows from Theorems 5.3 and 5.4.

Theorem 5.5 (Contextual equivalence for schematic formulae)
For all D , D ′, Δ, ϕ and ϕ ′ it is the case that Δ � ϕ[vD/r]∼= ϕ ′[vD ′/r] : prop holds iff
D ,D ′ |= ∀Δ.ϕ ≡ ϕ ′ holds.

This result is interesting because the full range of contexts in αML are richer than
just CLP goal states – in particular, the presence of higher order functions means that
formulae may be packaged up inside a function and passed around before eventually being
evaluated. In this setting it is by no means obvious that semantically equivalent formulae
always have the same behaviour with regard to termination. Furthermore, this result relates
the behaviour of formulae which are equivalent but with regard to different α-inductive
definitions.

Contextual equivalence for inductive definitions in functional programming 691

5.4 Contextual equivalence of encoded ααα-inductive definitions

In this section we deduce a final result, which concerns contextual equivalence of the
recursive function values which denote α-inductive definitions. Firstly, however, we must
prove an extensional equality result concerning recursive function values in αML.

Lemma 5.5 (Extensional equality for recursive functions)
For all Δ, v1, v2, T and T ′, Δ � v1

∼= v2 : T → T ′ holds iff ∀v,Δ′. Δ′ ⊇ Δ∧Δ′ � v : T =⇒
Δ′ � v1 v∼= v2 v : T ′.

Proof
The forward direction follows straightforwardly from the reflexivity and substitutivity
properties of the ∼=◦ relation. For the reverse direction, we assume that Δ′ � v1 v∼= v2 v : T ′

holds, for any Δ′ ⊇ Δ and v such that Δ′ � v : T holds. We note that both v1 and v2 must be
recursive function values of type T → T ′, and that it suffices to prove that ∃Δ′(c;F ;v1)↓
implies ∃Δ′(c;F ;v2)↓. We consider the sequence ∃Δ(c;F ;v1) −→ ·· · −→ ∃Δ′(c′;Id;v′),
which, by assumption, is finite and has |= ∃Δ′(c′).

Since both v1 and v2 are recursive function values, by the reduction rules from Figure 3,
any reduction sequence starting from ∃Δ′(c;F ;v1) can be mimicked by a similar reduction
sequence starting from ∃Δ′(c;F ;v2), until a configuration of the form ∃Δ∗(c∗;F∗;v1 v∗) is
reached. Applying the recursive functions to a value is the only way to distinguish them
because the other reduction rules simply pass recursive functions around the program.

Hence, we perform a case split on whether any configuration in that sequence has the
form ∃Δ∗(c∗;F∗;v1 v∗). If not, then the recursive function value v1 is never applied and it
follows that there exists a corresponding finite reduction sequence ∃Δ(c;F ;v2)−→ ·· · −→
∃Δ′(c′;Id;v′), and since |= ∃Δ′(c′), we get that ∃Δ′(c;F ;v2)↓ holds, as required. If so,
let ∃Δ∗(c∗;F∗;v1 v∗) be the first such configuration in the reduction sequence. It follows
that ∃Δ(c;F ;v1) −→ ·· · −→ ∃Δ∗(c∗;F∗;v1 v∗) holds, and since the recursive function v1
has not been applied before that point, we know that there exists a corresponding finite
reduction sequence ∃Δ(c;F ;v2) −→ ·· · −→ ∃Δ∗(c∗;F∗;v2 v∗), and furthermore Δ∗ ⊇ Δ.
By assumption we know that Δ∗ � v1 v∗ ∼=v2 v∗ : T ′ holds, and it follows that ∃Δ′(c;F ;v2)↓
holds, as required. �

We can now show that two recursive function values (of the same type) which denote
α-inductive definitions are contextually equivalent iff the denotations of those definitions
are equal, which is a consequence of Theorem 5.5.

Theorem 5.6 (Contextual equivalence of α-inductive definitions)
Suppose that D and D ′ are α-inductive definitions in standard form such that �D�⊆ Sr and
�D ′� ⊆ Sr both hold, for some fixed Sr. Then �D� = �D ′� iff /0 � vD

∼= vD ′ : Sr → prop.

Proof
Let Δ, p and V stand for an arbitrary-type environment, pattern and valuation such that
Δ � p : Sr and V ∈ α-TreeΣ(Δ) both hold. We assume that �D� = �D ′�. By the compactness
property of the denotations of α-inductive definitions, this is equivalent to �p�V ∈ �D�⇐⇒
�p�V ∈ �D ′�. By the definition of satisfaction, this is equivalent to (�D�,V) |= r p ⇐⇒
(�D ′�,V) |= r p, which is equivalent, by the definition of formula equivalence, to D ,D ′ |=
∀Δ.r p ≡ r p. By Theorem 5.5 this is equivalent to Δ � (r p)[r/vD]∼=(r p)[r/vD ′] : prop,

692 M. R. Lakin and A. M. Pitts

and from the definition of capture-avoiding substitution this is equivalent to Δ � vD p∼=
vD ′ p : prop. Finally, by Lemma 5.5 we may conclude that �D� = �D ′� is equivalent to
/0 � vD

∼= vD ′ : Sr → prop, as required. �

6 Related work

6.1 Nominal meta-programming languages

The αML programming language, and the approach to meta-programming described in
this paper, descend directly from existing nominal meta-programming languages, in par-
ticular FreshML and αProlog.

FreshML (Shinwell et al., 2003; Shinwell, 2005) is a higher order functional program-
ming which supports the declaration of nominal datatypes very similar to those described
in Definition 2.1. Object-level names are represented as permutative “atoms”, which are
generated as a side-effect of evaluation much as existential variables are generated in αML,
with the difference that atoms in FreshML only represent object-level names and are each
assumed to be globally unique. Object-level binders are deconstructed by generative un-
binding, for which various correctness theorems have been proved (Shinwell & Pitts, 2005;
Pitts & Shinwell, 2008). In αML, this form of abstraction elimination is implemented by
generating new existential variables and using an equality constraint to get a handle on
the components of the abstraction. FreshML therefore provides similar features to αML,
but since there is no inbuilt notion of inductive definitions in the language, proof-search
behaviours must be manually programmed whenever they are required. The key differences
between FreshML and αML are that αML dispenses with the permutative convention of
Gabbay & Mathijssen (2008), allowing any variables denoting names to be aliased or held
distinct, and that αML combines functional and logic programming at the language level.

αProlog (Cheney & Urban, 2004) is a logic programming language which uses nominal
abstract syntax to encode object-language binding structures. In principle, name-aliasing
similar to that permissible in αML is possible in αProlog, although in this case backchain-
ing using the efficient nominal unification (Urban et al., 2004) algorithm implemented
in the experimental system is known to give an incomplete search procedure. This in-
completeness can be avoided by restricting oneself to a subset of αProlog composed of
well-formed programs for which nominal unification produces a complete proof search
(Urban & Cheney, 2005) (this property can be verified by nominal matching). This subset
of αProlog suffices for many applications; nonetheless from a theoretical perspective it is
desirable to find a complete proof search procedure. This is possible in αProlog by using
the more complicated equivariant unification algorithm in place of nominal unification
(Cheney & Urban, 2008; Cheney, 2010). However, the constraint problem used in αML is
syntactically simpler than equivariant unification, and yet the two decision problems have
been shown to be equivalent (Lakin, 2011). Hence, the αML language and implementation
retain the power of equivariant unification while providing a simpler interface to the user.

6.2 Higher order abstract syntax and logical frameworks

Higher order abstract syntax (HOAS) is an alternative representation of object languages
involving names and binders. HOAS systems use the typed λ -calculus as their

Contextual equivalence for inductive definitions in functional programming 693

meta-language, and all object-level name-binding is translated into λ -abstractions. HOAS
techniques have been used in practice in a number of logical frameworks such as λProlog
(Nadathur & Miller, 1988), Twelf (Pfenning & Schürmann, 1999), Delphin (Poswolsky
& Schürmann, 2009) and Beluga (Pientka & Dunfield, 2010). Such representations can
be convenient, since capture-avoiding substitution comes “for free” from meta-level ap-
plication using the β -rule of λ -calculus. However, this only provides a single notion of
substitution – others, such as parallel substitution, must still be defined by hand.

In order to find a logic programming system on HOAS, one needs a unification algorithm
to perform resolution. Higher order unification (Huet, 1975) unifies typed λ -terms up to
αβη-conversion, but this is undecidable (Goldfarb, 1981). However, a decidable subprob-
lem exists, called higher order pattern unification (Miller, 1991). A higher order pattern is
just a simply typed λ -term where every free variable z is applied to a sequence of distinct
bound variables. Full β -reduction is not required to compute the normal forms of higher
order patterns: let β0-conversion be the restriction of β -conversion to redexes of the form
(λx. t)x. The restricted form of HOAS over higher order patterns and using higher order
pattern unification to decide equality modulo αβ0η-conversion is known as λ -tree syntax
(Miller, 2000).

Pattern unification has been used in Teyjus (Nadathur & Mitchell, 1999; Qi, 2009), an
implementation of λProlog (Nadathur & Miller, 1988). Nominal and higher order pattern
unification have been shown to be equivalent (Cheney, 2005; Levy & Villaret, 2008), and
proof-search over specifications encoded using the ∇-quantifier and nominal techniques
were related by Gacek (2010). Other tools based on HOAS, such as Abella (Gacek et al.,
2009) and Bedwyr (Baelde et al., 2007), support meta-level reasoning about inductive
definitions. These tools use the ∇-quantifier (Miller & Tiu, 2005) to build generic proofs
about terms with locally scoped binders.

6.3 Other abstract syntax encodings

De Bruijn indices (de Bruijn, 1972) are a well-established, nameless technique for repre-
senting terms with binding: bound variables are replaced by a natural number index which
records the number of λ symbols in scope between the bound variable and its binding
occurrence. For example, the term λ f .λx. f x is written as λ .λ .10. This approach has
the attractive property that two α-equivalent terms have the same representation, making
de Bruijn terms particularly amenable to manipulation by a computer (they are frequently
used to represent binding in compiler intermediate languages). However, de Bruijn indices
are less convenient for reasoning by humans.

Locally nameless representations (McKinna & Pollack, 1999; Aydemir et al., 2008; Sato
& Pollack, 2010; Pollack et al., 2012) exist partway between nominal and nameless encod-
ings of abstract syntax. These approaches employ two flavours of names – one for bound
“local” names and another for free “global” names, and retain some of the advantages
of both names and nameless representations, such as canonical representations of terms
modulo α-equivalence. Indeed, the encoding of ground trees into αML, introduced in
Section 2.5 and studied in depth in Lakin and Pitts (2012), is similar in spirit to locally
nameless representations, relying on a fixed bijection to translate free names of the ground

694 M. R. Lakin and A. M. Pitts

tree into αML variables while hiding the variables which correspond to the abstracted
names under E-binders in the αML meta-language.

6.4 Other functional logic programming languages

The most prominent of these multi-paradigm languages is Curry (Hanus, 1997); another
is Mercury (Somogyi et al., 1996). From our perspective, the major drawback of most
existing functional logic languages is that they lack built-in support for programming
with names and binders. A notable exception is Qu-Prolog (Nickolas & Robinson, 1996)
which extends Prolog with features for quantifying object-language variables and explicit
substitutions. The Qu-Prolog unification algorithm is semi-decidable, and is closer in spirit
to equivariant unification (Cheney, 2010) than to nominal unification (Urban et al., 2004).

The main problem encountered by functional logic languages is how to deal with the
application of a function (which are typically defined by cases) to an unknown term, i.e.
expressions like f(X). There are two common solutions:

1. Residuation (Albert et al., 2002) involves suspending the current computation in the
hope that some other thread may compute an instantiation for X. The language must
include concurrency primitives and the strategy is not guaranteed to succeed: if no
instantiation is found, the computation fails by floundering.

2. Narrowing amounts to trying all possible (outermost) term constructors in the hope
that one or more of these “guesses” may succeed. A strategy for performing narrow-
ing only when absolutely necessary is described in Antoy et al. (2000).

In practice, Curry supports both residuation and narrowing, and the programmer can de-
cide which to use in any given situation. αML only supports narrowing to avoid over-
complicating the language with additional concurrency primitives.

7 Discussion

We have defined a simple yet expressive notion class of α-inductive definitions, which
involve names and binders, and presented a simple encoding of these into the αML meta-
language as recursive functions. Our key technical result (Theorem 5.6) was that con-
textual equivalence between these recursive functions corresponds precisely to semantic
equivalence between α-inductive definitions. This is a strong result which demonstrates
that the αML meta-language correctly encodes proof-search computations over object-
languages involving name-binding, since semantically equivalent terms relating to proof-
search computations over inductively defined relations cannot be distinguished based on
successful termination.

At first glance, the ability to bind a single name within a term seems quite restrictive
compared with more expressive schemes such as those of ott (Sewell et al., 2007) and
Cαml (Pottier, 2006). This design decision was made for simplicity and also because one
can get quite a long way using just single binding, particularly when coupled with the
ability to assert arbitrary freshness constraints, as is the case in αML. To our knowledge,
there are currently no concrete mathematical results on the relative expressive power of

Contextual equivalence for inductive definitions in functional programming 695

sub(t,z,t’,t’’)

------------------------------- [beta_sub where z:var, t,t’,t’’:lam]

beta(App((Lam <z>t),t’), t’’)

beta(t,t’’)

------------------------------ [beta_app where t,t’,t’’:lam]

beta(App(t,t’), App(t’’,t’))

Fig. 12. Example of ASCII syntax for α-inductive definitions in αML, defining the beta relation
from Example 3.11 in terms of the sub relation (rules not shown).

different binding specification languages in the literature, although a number of projects
do offer comparative case studies (Aydemir et al., 2005; Weirich et al., 2011).

A prototype implementation of the αML programming language is available for down-
load from the first author’s webpage. The interpreter implements the operational semantics
from Figure 3, using the constraint-solving algorithm from Lakin (2011) to decide satis-
fiability of constraint problems. The implementation supports syntactic sugar for αML
expressions which encode ground trees, as described in Lakin & Pitts (2012), and for
encoding α-inductive definitions, as described above. Figure 12 gives an example of the
ASCII syntax for defining the beta relation from Example 3.11 in the αML interpreter.
Assuming that the sub relation is also defined, this code is automatically translated into
the corresponding recursive function (which was presented in Example 4.1).

The correctness results proved in this paper open up new possibilities for compile-time
transformations of α-inductive definitions prior to their translation into the corresponding
αML function, which could allow for more efficient execution of user queries. If we can
show that the transformation preserves the semantics of the definition, then the results from
this paper tell us that the resulting αML implementations are contextually equivalent and
hence could not be distinguished based on their successful termination behaviour. As a
simple example, a user-supplied relation which axiomatizes α-equivalence at a particular
type could be replaced with an appropriate instance of the equality constraint primitive of
the αML meta-language.

Since αML incorporates both functional and CLP features, we may consider rewriting
α-inductive definitions to include function evaluations within the proof-search procedure.
For example, in the α-inductive definition from Example 3.11, the sub relation may be
considered “functional” in the sense that if sub(t,z, t ′, t ′′) holds then the “output” t ′′ is
determined by the “inputs” t, z and t ′. The development of a mode system for αML,
similar to those developed for Prolog and Curry (Hanus & Zartmann, 1994), would allow
us to detect and rewrite such expressions at compile-time if we could prove a contextual
equivalence result for the relational and functional versions of the computation. The fact
that both functional and CLP styles of programming are available in αML means that the
programmer is free to choose the style most suited to the problem at hand. While this is
largely a matter of personal taste, inductively defined relations, such as type inference and
reduction relations, are examples of programs that can be expressed very naturally in the
CLP fragment of αML, as shown in Example 3.11. On the other hand, recursively defined
functions, such as normalization by evaluation and closure conversion, may be written

696 M. R. Lakin and A. M. Pitts

more straightforwardly using just the functional features of αML, which are not the focus
of this paper.

A notable omission from the grammar of schematic formulae in Definition 3.3 is a
negation formula ¬ϕ , with the semantics that ¬ϕ is satisfied precisely when ϕ is not
satisfied. If negative occurrences of atomic formulae were permitted, then the monotonicity
property of the semantics of schematic formulae, to which we appealed in Definition 3.10
to deduce the existence of a least fixed point in the semantics of α-inductive definitions,
would no longer hold. From a practical perspective, under the standard “negation as fail-
ure” interpretation of negation, the implementation of a negation formula could not be
complete in general, as if the evaluation of ϕ diverges then the evaluation of ¬ϕ should
terminate successfully. For these reasons if negation-like behaviour is required in an αML
program, the user must currently directly implement a relation with the desired semantics.
We saw this in Example 3.11 with the nf predicate, which was defined to hold for pre-
cisely those terms for which no further reduction steps could be derived using the beta

relation.
Previous work on non-determinism checking and analysis (Hanus & Steiner, 1998;

Hanus & Steiner, 2000; Braßel & Hanus, 2005) for the functional logic language Curry
(Hanus & Zartmann, 1994) could be fruitfully applied to αML. This would be benefi-
cial because the evaluation of a branching expression creates multiple non-deterministic
branches of the configuration, but there is no way to subsequently bring these branches
back together and continue the computation in a deterministic way. Incorporating language-
level features for delimiting the spread of non-determinism through the computation would
enable the abstract machine to control the search process, for example by cancelling un-
wanted branches when enough solutions have already been found. This addition to the
language would make it more convenient to incorporate computations over inductively
defined relations into traditional functional programs.

Finally, we note that the properties of the contextual equivalence relation presented
above depend on the operational behaviours of αML expressions which we permit our-
selves to observe. In particular, if we allow finite failure (Definition 2.8) to be observed as
well as successful termination, we obtain a more fine-grained equivalence relation which
we will call ∼=◦

F . This relation has many of the same advantageous properties as ∼=◦,
however, the theorem corresponding to Theorem 5.5 does not hold if we use ∼=◦

F instead
of ∼=◦. This is because ∼=◦

F allows us to distinguish between formulae which diverge and
those which fail finitely, which are both unsatisfiable in the semantics of schematic for-
mulae presented in Section 3.3. Such formulae cannot be distinguished using ∼=◦ since
only successful termination is observable. We refer the interested reader to Section 5.6
of Lakin (2010) for further discussion of this point, but note that we still consider the
∼=◦ relation studied here to be a reasonable notion of equivalence because observing just
successful termination is standard in program equivalence studies for traditional functional
programming languages.

Acknowledgments

The authors thank Paul Blain Levy and anonymous reviewers for help debugging the
proofs, and anonymous reviewers for suggesting other improvements to the manuscript.

Contextual equivalence for inductive definitions in functional programming 697

References

Albert, E., Hanus, M., Huch, F., Oliver, J. & Vidal, G. (2002) An operational semantics for declarative
multi-paradigm languages. In Proceedings of the 11th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2002), Comini, M. & Falaschi, M. (eds), Electronic
Notes in Theoretical Computer Science, vol. 76. Philadelphia PA: Elsevier, pp. 1–19.

Antoy, S., Echahed, R. & Hanus, M. (2000) A needed narrowing strategy. J. ACM 47(4), 776–822.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R. & Weirich, S. (2008) Engineering formal
metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2008), Necula, G. C. & Wadler, P. (eds). New York, NY: ACM
Press, pp. 3–15.

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell, P., Vytiniotis, D.,
Washburn, G., Weirich, S. & Zdancewic, S. (2005) Mechanized metatheory for the masses: The
POPLmark challenge. In Proceedings of the 18th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2005), Hurd, J. & Melham, T. F. (eds), Lecture Notes in Computer
Science, vol. 3603. Berlin, Germany: Springer-Verlag, pp. 50–65.

Baelde, D., Gacek, A., Miller, D., Nadathur, G. & Tiu, A. (2007) The Bedwyr system for model
checking over syntactic expressions. In Proceedings of the 21st International Conference on
Automated Deduction (CADE 2007), Pfenning, F. (ed), Lecture Notes in Computer Science, vol.
4603. Berlin, Germany: Springer-Verlag, pp. 391–397.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics, Revised edn. Amsterdam,
Netherlands: North-Holland.

Braßel, B. & Hanus, M. (2005) Nondeterminism analysis of functional logic programs. In
Proceedings of the 21st International Conference on Logic Programming (ICLP 2005), Gabbrielli,
M. & Gupta, G. (eds), Lecture Notes in Computer Science, vol. 3668. Berlin, Germany: Springer-
Verlag, pp. 265–279.

Cheney, J. (2005) Relating nominal and higher order pattern unification. In Proceedings of the 19th
International Workshop on Unification (UNIF 2005), Vigneron, L. (ed), LORIA research report
A05-R-022, pp. 104–119.

Cheney, J. (2010) Equivariant unification. J. Autom. Reasoning 45(3), 267–300.

Cheney, J. & Urban, C. (2004) Alpha-Prolog: A logic programming language with names,
binding and alpha-equivalence. In Proceedings of the 20th International Conference on Logic
Programming (ICLP 2004), Demoen, B. & Lifschitz, V. (eds), Lecture Notes in Computer Science,
no. 3132. Berlin, Germany: Springer-Verlag, pp. 269–283.

Cheney, J. & Urban, C. (2008) Nominal logic programming. ACM Trans. Program. Lang. Syst. 30(5),
1–47.

Clark, K. L. (1978) Negation as failure. In Logic and Data Bases, Gallaire, J. & Minker, J. (eds).
New York, NY: Plenum Press, pp. 293–322.

de Bruijn, N. (1972) Lambda calculus notation with nameless dummies: A tool for automatic formula
manipulation, with application to the Church–Rosser Theorem. IIndag. Math. 34, 381–392.

Dershowitz, N. & Manna, Z. (1979) Proving termination with multiset orderings. Commun. ACM
22(8), 465–476.

Flanagan, C., Sabry, A., Duba, B. F. & Felleisen, M. (1993) The essence of compiling with
continuations. Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 1993). ACM SIGPLAN Not. 28(6), 237–247 (New York, NY:
ACM Press).

Gabbay, M. J. & Mathijssen, A. (2008) Capture-avoiding substitution as a nominal algebra. Form.
Asp. Comput. 20(4–5), 451–479.

Gabbay, M. J. & Pitts, A. M. (2002) A new approach to abstract syntax with variable binding. Form.
Asp. Comput., 13(3–5), 341–363.

698 M. R. Lakin and A. M. Pitts

Gacek, A. (2010) Relating nominal and higher order abstract syntax specifications. In PPDP ’10:
Proceedings of the 2010 Symposium on Principles and Practice of Declarative Programming.
New York, NY: ACM, pp. 177–186.

Gacek, A., Miller, D. & Nadathur, G. (2009) Reasoning in Abella about structural operational
semantics specifications. In Proceedings of the 3rd International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice (LFMTP 2008), Abel, A. & Urban, C.
(eds), Electronic Notes in Theoretical Computer Science, vol. 228. Philadelphia PA: Elsevier,
pp. 85–100.

Goldfarb, W. D. (1981) The undecidability of the second-order unification problem. Theor. Comput.
Sci. 13(2), 225–230.

Gordon, A. D. (1998) Operational Equivalences for Untyped and Polymorphic Object Calculi.
Cambridge, UK: Newton Institute, Cambridge University Press.

Hanus, M. (1997) A unified computation model for declarative programming. In Proceedings of the
1997 Joint Conference on Declarative Programming (APPIA-GULP-PRODE 1997), Falaschi, M.,
Navarro, M. & Policriti, A. (eds), pp. 9–24.

Hanus, M. (2007) Multi-paradigm declarative languages. In Proceedings of the 23rd International
Conference on Logic Programming (ICLP 2007), Dahl, V. & Niemelä, I. (eds), Lecture Notes in
Computer Science, vol. 4670. Berlin, Germany: Springer-Verlag, pp. 45–75.

Hanus, M. & Steiner, F. (1998) Controlling search in declarative programs. In Principles of
Declarative Programming (Proceedings of the Joint International Symposium PLILP/ALP 1998),
Goos, G., Hartmanis, J. & van Leeuwen, J. (eds), Lecture Notes in Computer Science, vol. 1490.
Springer-Verlag, pp. 374–390.

Hanus, M. & Steiner, F. (2000) Type-based nondeterminism checking in functional logic programs.
In Proceedings of the 2nd International ACM-SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP 2000), New York, NY: ACM Press, pp. 202–213.

Hanus, M. & Zartmann, F. (1994) Mode analysis of functional logic programs. In Proceedings of
the 1st International Static Analysis Symposium (SAS 1994), le Charlier, B. (ed), Lecture Notes in
Computer Science, vol. 864. Berlin, Germany: Springer-Verlag, pp. 26–42.

Howe, D. J. (1996) Proving congruence of bisimulation in functional programming languages. Inf.
Comput. 124(2), 103–112.

Huet, G. (1975) A unification algorithm for typed λ -calculus. Theor. Comput. Sci. 1(1), 27–57.

Jaffar, J., Maher, M., Marriott, K. & Stuckey, P. (1998) Semantics of constraint logic programming.
J. Log. Program. 37(1–3), 1–46.

Lakin, M. R. (2010) An Executable Meta-language for Inductive Definitions with Binders, PhD
thesis, University of Cambridge, UK.

Lakin, M. R. (2011) Constraint-solving in non-permutative nominal abstract syntax. Logical Methods
Comput. Sci. 7(3:06), 1–31.

Lakin, M. R. & Pitts, A. M. (2009) Resolving inductive definitions with binders in higher-order
typed functional programming. In Proceedings of the 18th European Symposium on Programming
(ESOP 2009), Castagna, G. (ed), Lecture Notes in Computer Science, vol. 5502. Berlin, Germany:
Springer-Verlag, pp. 47–61.

Lakin, M. R. & Pitts, A. M. (2012) Encoding abstract syntax without fresh names. J. Autom.
Reasoning 49(2), 115–140.

Lassen, S. B. (1998) Relational Reasoning about Contexts. Cambridge, UK: Newton Institute,
Cambridge University Press.

Levy, J. & Villaret, M. (2008) Nominal unification from a higher-order perspective. In Proceedings
of the 19th International Conference on Rewriting Techniques and Applications (RTA 2008),
Voronkov, A. (ed), Lecture Notes in Computer Science, vol. 5117. Berlin, Germany: Springer-
Verlag, pp. 246–260.

Contextual equivalence for inductive definitions in functional programming 699

Mason, I. A. & Talcott, C. L. (1991) Equivalence in functional languages with effects. J. Funct.
Program. 1(3), 287–327.

McKinna, J. & Pollack, R. (1999) Some lambda calculus and type theory formalized. J. Autom.
Reason. 23(3), 373–409.

Miller, D. (1991) A logic programming language with lambda-abstraction, function variables and
simple unification. J. Logic Comput. 1(4), 497–536.

Miller, D. (2000) Abstract syntax for variable binders: An overview. In Proceedings of
Computational Logic – CL 2000, First International Conference, London, UK, 24–28 July 2000,
Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C., Pereira, L. Moniz, Sagiv, Y.
& Stuckey, P. J. (eds), Lecture Notes in Computer Science, vol. 1861. Berlin, Germany: Springer-
Verlag, pp. 239–253.

Miller, D. & Tiu, A. (2005) A proof theory for generic judgments. ACM Trans. Comput. Logic 6(4),
749–783.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997) The Definition of Standard ML (revised).
Cambridge, MA: MIT Press.

Nadathur, G. & Miller, D. (1988) An overview of λProlog. In Proceedings of the 5th International
Conference on Logic Programming (ICLP 1988), Kowalski, R. A. & Bowen, K. A. (eds).
Cambridge, MA: MIT Press, pp. 810–827.

Nadathur, G. & Mitchell, D. J. (1999) System description: Teyjus – a compiler and abstract
machine based implementation of λProlog. In Automated Deduction—Cade-16, Ganzinger, H.
(ed), Lecture Notes in Computer Science, vol. 1632. Berlin, Germany: Springer-Verlag, pp. 287–
291.

Nickolas, P. & Robinson, P. J. (1996) The Qu-Prolog unification algorithm: Formalisation and
correctness. Theor. Comput. Sci. 169(1), 81–112.

Pfenning, F. & Schürmann, C. (1999) System description: Twelf – a meta-logical framework for
deductive systems. In Proceedings of the 16th International Conference on Automated Deduction
(CADE 1999), Ganzinger, H. (ed), Lecture Notes in Artifical Intelligence, vol. 1632. Berlin,
Germany: Springer-Verlag, pp. 202–206.

Pientka, B. & Dunfield, J. (2010) Beluga: A framework for programming and reasoning with
deductive systems (System Description). In Proceedings of the 5th International Joint Conference
on Automated Reasoning (IJCAR 2010), Edinburgh, UK, 16–19 July 2010, Giesl, J. & Hähnle,
R. (eds), Lecture Notes in Computer Science, vol. 6173. Berlin, Germany: Springer-Verlag,
pp. 15–21.

Pitts, A. M. (2002) Operational semantics and program equivalence. In Applied Semantics, Advanced
Lectures, Lecture Notes in Computer Science, vol. 2395. Berlin, Germany: Springer-Verlag,
pp. 378–412.

Pitts, A. M. (2003) Nominal logic, a first-order theory of names and binding. Inf. Comput. 186(2),
165–193.

Pitts, A. M. (2005) Typed operational reasoning. In Advanced Topics in Types and Programming
Languages, Pierce, B. C. (ed). Cambridge, MA: MIT Press, Chap. 7, pp. 245–289.

Pitts, A. M. (2006) Alpha-structural recursion and induction. J. ACM 53(3), 459–506.

Pitts, A. M. (2011) Howe’s method for higher-order languages. In Advanced Topics in Bisimulation
and Coinduction, Sangiorgi, D. & Rutten, J. (eds), Cambridge Tracts in Theoretical Computer
Science, vol. 52. Cambridge, UK: Cambridge University Press, Chap. 5, pp. 197–232.

Pitts, A. M. & Shinwell, M. R. (2008) Generative unbinding of names. Logical Methods Comput.
Sci. 4(1:4), 1–33.

Pollack, R., Sato, M. & Ricciotti, W. (2012) A canonical locally named representation of binding.
J. Autom. Reasoning 49(2), 185–207.

700 M. R. Lakin and A. M. Pitts

Poswolsky, A. & Schürmann, C. (2009) System Description: Delphin—a functional programming
language for deductive systems. Proceedings of the International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice (LFMTP 2008). Electron. Notes Theor.
Comput. Science, 228, 113–120.

Pottier, F. (2006) An overview of Cαml. In Proceedings of the 2005 ACM-SIGPLAN Workshop on
ML (ML 2005), Benton, N. & Leroy, X. (eds). Philadelphia PA: Elsevier, pp. 27–52. (Electron.
Notes Theor. Comput. Sci. 148(2)).

Qi, X. (2009) An Implementation of the Language λProlog Organized Around Higher-order Pattern
Unification. PhD thesis, University of Minnesota.

Sato, M. & Pollack, R. (2010) External and internal syntax of the lambda-calculus. J. Symb. Comput.
45, 598–616.

Sewell, P., Nardelli, F. Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S. & Strniša, R. (2007) Ott:
Effective tool support for the working semanticist. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2007), Hinze, R. & Ramsey, N.
(eds). New York, NY: ACM Press, pp. 1–12.

Shinwell, M. R. (2005) The Fresh Approach: Functional Programming with Names and Binders.
PhD thesis, University of Cambridge, UK.

Shinwell, M. R. & Pitts, A. M. (2005) On a monadic semantics for freshness. Theor. Comput. Sci.
342(1), 28–55.

Shinwell, M. R., Pitts, A. M. & Gabbay, M. J. (2003) FreshML: Programming with binders
made simple. In Proceedings of the 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Runciman, C. & Shivers, O. (eds). New York, NY: ACM Press,
pp. 263–274.

Somogyi, Z., Henderson, F. & Conway, T. (1996) The execution algorithm of Mercury, an efficient
purely declarative logic programming language. J. Funct. Program. 29(1–3), 17–64.

Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–
309.

Urban, C. & Cheney, J. (2005) Avoiding equivariance in Alpha-Prolog. In the Proceedings of the 7th
International Conference on Typed Lambda Calculus and Applications (TLCA 2005), Urzyczyn, P.
(ed), Lecture Notes in Computer Science, no. 3461. Berlin, Germany: Springer-Verlag, pp. 74–89.

Urban, C., Pitts, A. M. & Gabbay, M. J. (2004) Nominal unification. Theor. Comput. Sci. 323(1–3),
473–497.

Weirich, S., Yorgey, B. A. & Sheard, T. (2011) Binders unbound. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2011), Tokyo, Japan, 19–
21 September 2011, Chakravarty, M. M. T., Hu, Z. & Danvy, O. (eds), pp. 333–345.

