
Towards Veri�ed Systems

OVERVIEW

Jonathan Bowen �Ed��

June �� ����

DRAFT OVERVIEW OF HOL BY MJCG � AP



Contents

� The HOL logic and system �

��� The HOL logic � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Types � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Terms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Standard notions � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Sequents � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Deductive systems � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Theories � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����	 Built
in theories and notations � � � � � � � � � � � � � � � � � � � � � ��
����� Consistency � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
������ Extensions of theories � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The HOL system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� The history of HOL � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Overview of the theorem
proving infrastructure � � � � � � � � � � � ��
����� Getting and using HOL � � � � � � � � � � � � � � � � � � � � � � � � ��

Bibliography ��

�





Chapter �

The HOL logic and system

Higher order logic is a version of predicate calculus that allows quanti�ed variables to
range over functions and predicates� The power of this logic is similar to set theory� It
is su
cient for expressing most ordinary mathematical theories� The HOL system is a
theorem
proving environment for higher order logic� It provides tools for proving theorems
directly in the logic as well as system building facilities that enable users to implement
�in a guaranteed secure fashion� their own application speci�c proof environments� HOL
is not a generic theorem prover like Isabelle ����� it is �hardwired� to higher order logic�
However� this logic is powerful and other formalisms can be represented inside it via
their semantics� Many applications of HOL are such semantic embeddings� these are
implemented with tools like parser and pretty
printer generators that are provided by
HOL� Examples include support for the speci�cation language Z� subsets of the hardware
description languages Ella� VHDL and Silage� the programming logics TLA and UNITY�
several re�nement calculi and the process algebras CSP� CCS and the �
calculus�
The result of a session with the HOL system is a theory� This consists of types� con


stants� de�nitions� axioms and an explicit list of theorems that have been proved from
the axioms and de�nitions� The HOL system provides tools for extending and combining
theories� A typical interaction with HOL consists in combining some existing theories�
making some de�nitions� proving some theorems and then saving the resulting new theo

ries� The HOL system ensures that only well
formed theories can be constructed by only
allowing theorems to be created by formal proof � All the theorems of such theories are
logical consequences of the de�nitions and axioms of the theory�
In this chapter� which is condensed from the book Introduction to HOL ���� the version

of higher order logic supported by HOL � the HOL logic � is described in detail� but the
theorem proving infrastructure is only outlined �see �������

���� The HOL logic

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote� respectively� sets and elements of sets� The formal semantics of the
HOL logic is only sketched here �see �������
The HOL logic is typed� each theory speci�es a signature of type constants and term

constants� these then determine sets of types and terms�

�



������ Types

The types of the HOL logic denote sets� Following tradition� �� possibly decorated with
subscripts or primes� is used to range over arbitrary types�
There are four kinds of types in the HOL logic� These can be described informally by

the following BNF grammar� in which � ranges over type variables� c ranges over atomic
types and op ranges over type operators�

� ��� �

type variables

�

j c

atomic types
�

j ���� � � � � �n�op
� �z �

compound types
�

j �����
� �z �

function types
�domain ��� range ���

�

In more detail� the four kinds of types are as follows�

�� Type variables� these range over arbitrary sets�

�� Atomic types� these denote �xed sets�

�� Compound types� these are expressions ���� � � � � �n�op� where ��� � � � ��n are the
argument types and op is a type operator of arity n� Type operators denote opera

tions for constructing sets� The type ���� � � � � �n�op denotes the set resulting from
applying the operation denoted by op to the sets denoted by ��� � � � � �n �

�� Function types� If �� and �� are types� then ����� is the function type with
domain �� and range ��� It denotes the set of all �total� functions from the set
denoted by its domain to the set denoted by its range�

It turns out to be convenient to identify atomic types with compound types constructed
with �
ary type operators� For example� the atomic type bool of truth
values can be
regarded as being an abbreviation for ��bool� This identi�cation will be made in the
technical details that follow� but in the informal presentation atomic types will continue
to be distinguished from compound types� and ��c will still be written as c�

Type structures

The term �type constant� is used to cover both atomic types and type operators� It is
assumed that an in�nite set TyNames of the names of type constants is given� The greek
letter � is used to range over arbitrary members of TyNames� c will continue to be used to
range over the names of atomic types �i�e� �
ary type constants�� and op is used to range
over the names of type operators �i�e� n
ary type constants� where n � ���
It is assumed that an in�nite set TyVars of type variables is given� Greek letters �� �� � � ��

possibly with subscripts or primes� are used to range over Tyvars� The sets TyNames and
TyVars are assumed disjoint�
A type structure is a set � of type constants� A type constant is a pair ���n� where

� � TyNames is the name of the constant and n is its arity� Thus � � TyNames � N

�where N is the set of natural numbers�� It is assumed that no two distinct type constants
have the same name� i�e� whenever ���n�� � � and ���n�� � �� then n� � n��
The set Types� of types over a structure � can now be de�ned as the smallest set such

that�



� TyVars � Types��

� If ��� �� � � then ��� � Types��

� If ���n� � � and �i � Types� for � � i � n� then ���� � � � � �n�� � Types��

� If �� � Types� and �� � Types� then ����� � Types��

The operator � is assumed to associate to the right� so that ������ � � ���n�� ab�
breviates ������� � � ����n��� � � ��� The notation tyvars��� is used to denote the set
of type variables occurring in ��

������ Terms
The terms of the HOL logic are expressions that denote elements of the sets denoted

by types� The meta�variable t is used to range over arbitrary terms� possibly decorated
with subscripts or primes�

There are four kinds of terms in the HOL logic� These can be described approximately by
the following BNF grammar� in which x ranges over variables and c ranges over constants�

t 		
 x

variables

�

j c

constants
�

j t t ���z�
function applications

�function t � argument t ��

�

j � x � t� �z �
��abstractions

�

A ��term � x � t denotes a function v �� t �v�x �� where t �v�x � denotes the result of
substituting v for x in t � An application t t � denotes the result of applying the function
denoted by t to the value denoted by t ��

The BNF grammar just given omits mention of types� In fact� each term in the HOL
logic is associated with a unique type� The notation t� is traditionally used to range over
terms of type �� A more accurate grammar of terms is the following	

t� 		
 x� j c� j �t���� t ����� j �� x�� � t��������

Just as the de
nition of types was relative to a particular type structure �� the de
nition
of terms is relative to a given collection of typed constants over �� Assume that an in
nite
set Names of names is given� A constant over � is a pair �c� ��� where c � Names and
� � Types�� A signature over � is just a set �� of such constants�

The set Terms�� of terms over �� is de
ned to be the smallest set closed under the
following rules of formation	

�� Constants�
If �c� �� � �� and �� � Types� is obtained from � by substituting types for type
variables� then �c� ��� � Terms��� Terms formed in this way are called constants
and are written c���

�� Variables�
If x � Names and � � Types�� then var x� � Terms�� � Terms formed in this way
are called variables� The marker var is purely a device to distinguish variables from



constants with the same name� A variable var x� will usually be written as x�� if it
is clear from the context that x is a variable rather than a constant�

�� Function applications�
If t���� � Terms�� and t ��� � Terms��� then �t���� t ����� � Terms���

�� ��Abstractions�
If var x�� � Terms�� and t�� � Terms�� � then �� x�� � t�������� � Terms���

Note that it is possible for constants and variables to have the same name� It is also
possible for di�erent variables to have the same name� if they have di�erent types�

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be�

Function application is assumed to associate to the left� so that t t� t� � � � tn abbreviates
� � � � ��t t�� t�� � � � tn��

The notation � x� x� � � � xn � t abbreviates � x�� �� x�� � � � �� xn � t� � � � ��
A term is called polymorphic if it contains a type variable� Otherwise it is called

monomorphic� Note that a term t� may be polymorphic even though � is monomorphic�
for example� �f��b x��b� where b is an atomic type� The expression tyvars�t�� denotes
the set of type variables occurring in t��

An occurrence of a variable x� is called bound if it occurs within the scope of a textually
enclosing � x�� otherwise the occurrence is called free� Note that � x� does not bind x�� if
� �
 ��� A term in which all occurrences of variables are bound is called closed �

������ Standard notions
Up to now the syntax of types and terms has been very general� To represent the

standard formulae of logic it is necessary to impose some speci
c structure� In particu�
lar� every type structure must contain an atomic type bool which is intended to denote
the distinguished two�element set of truth�values� Logical formulae are then identi
ed
with terms of type bool� In addition� various logical constants are assumed to be in
all signatures� These requirements are formalized by de
ning the notion of a standard
signature�

Standard type structures
A type structure � is standard if it contains the atomic types bool �of booleans or truth�

values� and ind �of individuals�� In the literature� the symbol o is often used instead of
bool and � instead of ind� It will be assumed from now on that type structures are
standard�

Standard signatures
A signature �� is standard if it contains�bool�bool�bool� 
����bool and ����bool����

The 
rst of these is intended to denote logical implication and the second is intended
to denote equality� The third is Hilbert�s epsilon operator and builds the Axiom of
Choice into the HOL logic� A term ����bool��� p��bool denotes some value for which
the predicate p��bool is true �if no such value exists� then an arbitrary value of type � is
chosen�� See the de
nition of the conditional Cond in ����� for an example of the use of ��



Remark This particular choice of primitive constants is arbitrary� The standard collec�
tion of logical constants includes T ��true��� F ��false��� � ��implies��� 	 ��not��� 
 ��and���
� ��or��� � ��for all��� 
 ��there exists��� 
 ��equals��� and � ��a��� This set is redundant�
since it can be de
ned �in a sense explained in ������� from various subsets� In practice�
it is necessary to work with the full set of logical constants� and the particular subset
taken as primitive is not important� The interested reader can explore this topic further
by reading Andrews� book ��� and the references it contains�

Terms of type bool are called formulae� The following notational abbreviations are
used	

Notation Meaning
t� 
 t �� 
����bool t� t ��
t � t � �bool�bool�bool tbool t

�

bool
�x�� t ����bool����� x�� t�

These notations are special cases of general abbreviatory conventions supported by the
HOL system� The 
rst two are in
xes and the third is a binder�

������ Sequents
The HOL logic is based on sequents� Fixing a �standard� signature ��� a sequent is

a pair ��� t� where � is a 
nite set of formulae over �� and t is a single formula over
���� The set of formulae � forming the 
rst component of a sequent is called its set of
assumptions and the term t forming the second component is called its conclusion� When
it is not ambiguous to do so� a sequent �fg� t� is written as just t �

������ Semantics
Part III of Introduction to HOL ��� contains a set�theoretic semantics of the HOL logic

due to Andy Pitts� This is only brie�y outlined here �the exposition uses material from
a paper by Tom Melham ������

The semantics of HOL is de
ned in terms of a particular set U called the universe�
the elements of which are the sets denoted by the �monomorphic� type expressions� The
universe is assumed to have the following properties�

Inhab Each element of U is a non�empty set�

Sub If X � U and fg �
 Y � X � then Y � U �

Prod If X � U and Y � U � then X � Y � U � The set X � Y is the cartesian product�
consisting of ordered pairs �x � y� with x � X and y � Y � and with the usual set�
theoretic coding of ordered pairs� that is �x � y� 
 ffxg� fx � ygg�

Pow If X � U � then the powerset P�X � 
 fY 	 Y � X g is also an element of U �

Infty U contains a distinguished in
nite set I�

Choice There is a distinguished element ch �
Q

X�U X � The elements of the productQ
X�U X are �dependently typed� functions	 thus for all X � U � X is non�empty by

Inhab and ch�X � � X witnesses this�

�Note that the type subscript is omitted from terms when it is clear from the context that they are
formulae� i�e� have type bool�



In set theory� functions are identi
ed with their graphs� which are certain sets of ordered
pairs� Thus the set X�Y of all functions from a set X to a set Y is a subset of P�X �Y ��
and it is a non�empty set when Y is non�empty� So Sub� Prod and Pow together imply
that U also satis
es

Fun If X � U and Y � U � then X�Y � U �

By iterating Prod� one has that the cartesian product of any 
nite� non�zero number
of sets in U is again in U � U also contains the cartesian product of no sets� which is to
say that it contains a one�element set �by virtue of Sub applied to any set in U�Infty
guarantees there is one�� for de
niteness� a particular one�element set will be singled out�

Unit U contains a distinguished one�element set � 
 f�g�

Similarly� because of Sub and Infty� U contains two�element sets� one of which will be
singled out�

Bool U contains a distinguished two�element set � 
 f�� �g�

The semantics of types is given relative to a model M which assigns to each type
constant an element of U and to each n�ary type operator a function Un � U � A model
M of � is standard if M �bool� and M �ind� are respectively the distinguished sets � and
I in the universe U �

The notion of a type�in�context is used in de
ning the semantics of types� A type context
�s is just a 
nite list of distinct type variables� and a type�in�context �s�� is a type �
together with a type context �s which contains �at least� all the type variables in �� The
meaning of a type in context �s��� where the context �s is of length n� is then given by
a function

���s����M 	 Un � U

which is de
ned so that for any assignment of sets Xs 
 �X�� � � � �Xn� � Un to the type
variables in �s �and hence to the type variables in ��� the element ���s����M�Xs� of U is
the corresponding set denoted by �� The formal de
nition of �� ��M is by induction on the
structure of types ����

The notion of a context is also employed in de
ning the meaning of terms� A term�in�
context is written ��s�xs�t � and consists of a term t together with a type context �s and
a 
nite list of variables xs called a variable context� The variable context xs of a term�
in�context �s�xs�t contains all the variables that occur free in t � and the type context �s
contains all the type variables that occur in xs and t �

For the semantics of terms� a model consists of a type model �as described above�
together with a function that assigns to each constant c with generic type � an element
of the set of functions

Q
Xs�Un ���s����M�Xs�

where n is the length of the type context �s� For a given model M � the meaning of a
term�in�context �s�xs�t � where �s has length n� xs has length m� and t has type 	 � is given
by a function �� ��M de
ned by induction on terms such that	



���s�xs�t ��M �
Q

Xs�Un

�Qm
j�����s��j ��M �Xs�

�
� ���s�	 ��M�Xs�

where xs 
 x�� � � � � xm and �i is the type of the corresponding variable xi � The idea is that
given an assignment of sets

Xs 
 �X�� � � � �Xn� � U
n

to the type variables in �s �and hence to the free type variables in t� and given an
assignment of elements

ys 
 �y�� � � � � ym� � ���s�����M �Xs�� � � � � ���s��m��M �Xs�

to the variables in xs �and hence to the variables that occur free in the term t�� the result
of ���s�xs�t ��M�Xs��ys� will be an appropriate element of the set ���s�	 ��M�Xs� denoted by
the type of t �

A model M of �� will be called standard if

� M ���bool�bool�bool� � ������� is the standard implication function� sending
b� b� � � to

�b � b�� 


�
� if b 
 � and b� 
 �
� otherwise

� M �
� ����bool� �
Q

X�U �X�X�� is the function assigning to each X � U the
equality test function� sending x � x � � X to

�x 
X x �� 


�
� if x 
 x �

� otherwise

� M ��� ���bool���� �
Q

X�U ��X����X is the function assigning to each X � U
the choice function sending f � �X��� to

chX �f � 


�
ch�f ��f�g� if f ��f�g �
 fg
ch�X � otherwise

where f ��f�g 
 fx � X 	 f �x � 
 �g� �Note that f ��f�g is in U when it is non�
empty� by the property Sub of the universe U � The function ch is given by property
Choice��

A sequent with hypotheses � 
 ft�� � � � � tpg and conclusion t is satis�ed by a model M
if any assignment of values to free variables that makes all the hypotheses true in M also
makes the conclusion true in M � In particular� M satis
es the sequent if for all Xs � Un

and all ys � ���s�����M �Xs�� � � � � ���s��m��M�Xs��

���s�xs�t���M �Xs��ys� 
 �� � � � � ���s�xs�tp��M�Xs��ys� 
 �

imply that

���s�xs�t ��M�Xs��ys� 
 ��

where �s� xs is any valid context for each of t � t�� � � � � tp with �s of length n� xs 
 x�� � � � � xm �
and �i the type of the corresponding variable xi � � j
M t is written to mean that M
satis
es the sequent with hypotheses � and conclusion t �



������ Deductive systems
A deductive system D is a set of pairs �L� S� where L is a �possibly empty� list of

sequents and S is a sequent�
A sequent S follows from a set of sequents � by a deductive system D if and only if

there exist sequents S�� � � � � Sn such that	

�� S 
 Sn � and

�� for all i such that � � i � n� �a� either Si � �� or �b� �Li� S i� � D for some list Li

such that Li � � � fS�� � � � � Si��g�

The sequence S�� � � � � Sn is called a proof of S from � with respect to D�
The notation t�� � � � � tn �D�� t means that the sequent �ft�� � � � � tng� t� follows from �

by D� If either D or � is clear from the context then it may be omitted� In the case that
there are no hypotheses �i�e� n 
 ��� just � t is written�

In practice� a particular deductive system is usually speci
ed by a number of �schematic�
rules of inference� which take the form

�� � t� � � � �n � tn
� � t

The sequents above the line are called the hypotheses of the rule and the sequent below the
line is called its conclusion� Such a rule is schematic because it may contain metavariables
standing for arbitrary terms of the appropriate types� Instantiating these metavariables
with actual terms� one gets a list of sequents above the line and a single sequent below
the line which together constitute a particular element of the deductive system� The
instantiations allowed for a particular rule may be restricted by imposing a side condition
on the rule�

The HOL deductive system
The deductive system of the HOL logic is speci
ed by eight rules of inference� given

below� The 
rst three rules have no hypotheses� their conclusions can always be deduced�
The identi
ers in square brackets are the names of the ML functions in the HOL system
that implement the corresponding inference rules� Any side conditions restricting the
scope of a rule are given immediately below it�

Assumption introduction 	ASSUME


t � t

Re�exivity 	REFL


� t 
 t

Beta�conversion 	BETA CONV


� �� x � t��t� 
 t��t��x �

� Where t��t��x � is the result of substituting t� for x in t�� with suitable renaming of
variables to prevent free variables in t� becoming bound after substitution�



Substitution 	SUBST


�� � t� 
 t �� � � � �n � tn 
 t �n � � t �t�� � � � � tn �
�� � � � � � �n � � � t �t ��� � � � � t

�
n�

� Where t �t�� � � � � tn � denotes a term t with some free occurrences of subterms t�� � � � � tn
singled out and t �t ��� � � � � t

�
n � denotes the result of replacing each selected occurrence

of ti by t �i �for ��i�n�� with suitable renaming of variables to prevent free variables
in t �i becoming bound after substitution�

Abstraction 	ABS


� � t� 
 t�
� � �� x � t�� 
 �� x � t��

� Provided x is not free in ��

Type instantiation 	INST TYPE


� � t
� � t ���� � � � � �n���� � � � � �n �

� Where t ���� � � � � �n���� � � � � �n � is the result of substituting� in parallel� the types
��� � � � � �n for type variables ��� � � � � �n in t � with the two restrictions	 �i� none of
the type variables ��� � � � � �n occur in �� and �ii� no distinct variables in t become
identi
ed after the instantiation�

Discharging an assumption 	DISCH


� � t�
� � ft�g � t� � t�

� Where � � ft�g is the set subtraction of ft�g from ��

Modus Ponens 	MP


�� � t� � t� �� � t�
�� � �� � t�

In addition to these eight rules� there are also 
ve axioms which could have been
regarded as rules of inference without hypotheses� This is not done� however� since it is
most natural to state the axioms using some de
ned logical constants and the principle
of constant de
nition has not yet been described� The axioms and the de
nitions of the
extra logical constants they involve are given shortly�

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary� It is partly based on the rules that were used in the LCF logic PP�� since HOL
was implemented by modifying the LCF system�

Soundness theorem
The rules of the the HOL deductive system are sound for the notion of satisfaction

de�ned in ������ for any instance of the rules of inference� if a �standard� model satis�es
the hypotheses of the rule it also satis�es the conclusion�



������ Theories
A HOL theory T is a ��tuple hStrucT �SigT �AxiomsT �TheoremsT i� where	

�i� StrucT is a type structure called the type structure of T �

�ii� SigT is a signature over StrucT called the signature of T �

�iii� AxiomsT is a set of sequents over SigT called the axioms of T �

�iv� TheoremsT is a set of sequents over SigT called the theorems of T � with the property
that every member follows from AxiomsT by the HOL deductive system�

The sets TypesT and TermsT of types and terms of a theory T are� respectively� the
sets of types and terms constructable from the type structure and signature of T 	

TypesT 
 TypesStrucT and TermsT 
 TermsSig
T
�

A model of a theory T is speci
ed by giving a �standard� model M of the underlying
signature of the theory with the property that M satis
es all the sequents which are
axioms of T � Because of the Soundness Theorem� it follows that M also satis
es any
sequents in the set of given theorems� TheoremsT �

The theory MIN

The minimal theory MIN is de
ned by	

MIN 
 hf�bool� ��� �ind� ��g� f�bool�bool�bool�
����bool� ����bool���g� fg� fgi

Although the theory MIN contains only the minimal standard syntax� by exploiting the
higher order constructs of HOL one can construct a rich collection of terms over it� The
following theory introduces names for some of those terms that denote useful logical
operations�

The theory LOG

The theory LOG has the same type structure as MIN� Its signature contains the constants
in MIN and the following constants	

Tbool Fbool

	bool�bool 
bool�bool�bool �bool�bool�bool

����bool��bool 
���bool��bool

One One������bool Onto������bool Type De�nition���bool��������bool

The following special notation is used in connection with these constants	

Notation Meaning
t� 
 t� 
 t� t�
t� � t� � t� t�
� x�� t ��� x�� t�
� x� x� � � � xn � t � x�� �� x�� � � � �� xn � t� � � � �

 x�� t 
�� x�� t�

 x� x� � � � xn � t 
 x�� �
 x�� � � � �
 xn � t� � � � �



The axioms of the theory LOG consist of the following sequents	

� T 
 ��� xbool� x � 
 �� xbool� x ��
� � 
 �P��bool� P 
 �� x � T�
� 
 
 �P��bool� P�� P�
� F 
 � bbool� b
� 	 
 � b� b � F

� 
 
 � b� b�� � b� �b� � �b� � b�� � b
� � 
 � b� b�� � b� �b� � b� � ��b� � b� � b�
� One One 
 � f���� � x� x�� �f x� 
 f x��� �x� 
 x��
� Onto 
 � f���� �y� 
 x � y 
 f x
� Type De�nition 
 �P��bool rep����One One rep 


�� x � P x 
 �
 y� x 
 rep y��

Finally� as for the theory MIN� the set TheoremsLOG is taken to be empty�
Note that the axioms of the theory LOG are essentially de�nitions of the new constants

of LOG as terms in the original theory MIN� The mechanism for making such extensions
of theories by de
nitions of new constants is described in ������� The 
rst seven axioms
de
ne the logical constants for truth� universal quanti
cation� existential quanti
cation�
falsity� negation� conjunction and disjunction� The next two axioms de
ne the properties
of a function being one�one and onto� they will be used to express the axiom of in
nity �see
������� amongst other things� The last axiom de
nes a constant used for type de
nitions
�see ��������

The theory INIT

The theory INIT is obtained by adding the following 
ve axioms to the theory LOG�

BOOL CASES AX � � b� �b 
 T� � �b 
 F�

IMP ANTISYM AX � � b� b�� �b� � b�� � �b� � b�� � �b� 
 b��

ETA AX � � f���� �� x � f x � 
 f

SELECT AX � �P��bool x � P x � P�� P�

INFINITY AX � 
 find�ind� One One f 
 	�Onto f �

The theory INIT is the initial theory of the HOL logic� A theory which extends INIT will
be called a standard theory� It can be shown ��� that there is a unique standard model of
INIT that satis
es the 
ve axioms and interprets the constants de
ned in LOG as follows	

� ��Tbool�� 
 � � �

� ������bool��bool�� �
Q

X�U�X����� sends X � U and f � X�� to

������X ��f � 


�
� if f ��f�g 
 X
� otherwise



� ��
���bool��bool�� �
Q

X�U �X����� sends X � U and f � X�� to

��
���X ��f � 


�
� if f ��f�g �
 fg
� otherwise

� ��Fbool�� 
 � � �

� ��	bool�bool�� � ��� sends b � � to

��	���b� 


�
� if b 
 �
� otherwise

� ��
bool�bool�bool�� � ����� sends b� b� � � to

��
���b��b�� 


�
� if b 
 � 
 b�

� otherwise

� ���bool�bool�bool�� � ����� sends b� b� � � to

������b��b�� 


�
� if b 
 � 
 b�

� otherwise

� ��One One������bool�� �
Q
�X �Y ��U��X�Y ��� sends �X �Y � � U� and f � �X�Y �

to

��One One���X �Y ��f � 


�
� if f �x � 
 f �x �� for some x �
 x � in X
� otherwise

� ��Onto������bool�� �
Q
�X �Y ��U��X�Y ��� sends �X �Y � � U� and f � �X�Y � to

��Onto���X �Y ��f � 


�
� if ff �x � 	 x � X g 
 Y
� otherwise

� ��Type De�nition���bool��������bool�� �
Q
�X �Y ��U��X�����Y�X ���

sends �X �Y � � U�� f � �X��� and g � �Y�X � to

��Type De�nition���X �Y ��f ��g� 


���
�	

� if ��One One���Y �X ��g� 
 �
and f ��f�g 
 fg�y�	y � Y g

� otherwise�

����
� Built�in theories and notations
The logical core of the HOL system is the theory INIT� however a number of useful

theories are prede
ned or available as libraries �see ����� Some of these are associated with
special notations that are supported by the parser and pretty�printer� These notations
parse into standard terms and are thus only �syntactic sugar�� Their informal meaning will
be given here� full details� including the underlying logical representation and associated
theories� can be found in Introduction to HOL ����



Pairs and tuples
Pairs are written as �t�� t��� tuples �t�� t�� � � � � tn� parse to iterated pairs �t�� �t�� � � � � tn���

If t� has type �� and t� has type �� then �t�� t�� has type ���� ���prod� which may be
writen as �� � ���

Pairs may also be used as part of �variable structures� in quanti
cations and ��binding�
For example� ��m�n�� m � n and ��m�n�� m � n � n 
 m�

Conditionals
The conditional �t � t� j t�� intuitively means �if t then t� else t�� and abbreviates

Cond t t� t�� where Cond has type bool������ and is de
ned by	

Cond b x� x� 
 �x � ��b 
 T� � �x 
 x��� 
 ��b 
 F�� �x 
 x���

Numerals and strings
Among the prede
ned types supplied with the HOL system are num �natural numbers�

and string �strings�� With each of these types there are in
nite families of constants� In
the case of num these are �� �� �� etc�� in the case of string these have the form �c�c� � � � cn ��
where each ci is a letter or numeral� The HOL parser recognises such numbers and strings
as constants of the appropriate theory�

Restricted quanti�cation
The terms � x 		t�� t� and 
 x 		t�� t� abbreviate � x � t� � t� and 
 x � t� 
 t�� respectively�

The restriction t� acts like a type in dependently typed systems and allows terms like
�m n� � i 		 from�m�n�� m � i 
 i � n to be written �where from is a predicate on pairs
of numbers�� Combinations of variable structures and restriction are allowed�

Less useful� but also supported� are restricted ��terms and ��terms	 �x 		t�� t� abbreviates
�x � t� 
 t� and � x 		t�� t� abbreviates � x � �t� � t� j �v �T�� As with the restricted
quanti
ers� the bound variable can also be a variable structure�

let�terms
A basic let�term has the form let x 
 t� in t� and abbreviates �� x � t��t�� A local

function binding like let f x 
 t� in t� abbreviates �� f � t���� x � t��� The parameters of
such function de
nitions can be paired� for example let add�m�n� 
 m � n in add��� ��
abbreviates �� add � add��� ������m�n�� m � n��

Multiple local bindings are allowed� Two equivalent forms are supported	

let �x�� x�� � � � � xn� 
 �t�� t�� � � � � tn� in t
let x� 
 t� and x� 
 t� � � � xn 
 tn in t

The second of these allows function de
nitions� for example	

let x 
 � and add�m�n� 
 m � n in add��� x �

Lists and sets
Theories of lists and sets are prede
ned� lists are built�in to HOL� but sets are a library�

A list is a term of type � list� individual lists may be input with the notation �t�� � � � � tn ��
The empty list is � �� A set is a term of type � set� 
nite sets may be input with the notation
ft�� � � � � tng� The empty set is fg� The set abstraction notation ft� j t�g is also allowed
and denotes the set of t�s such that t�� For example fx � y j x 
 �� 
 y 
 ��g denotes
the set of sums of pairs of numbers less than ���



������ Consistency
A �standard� theory is consistent if it is not the case that every sequent over its signature

can be derived from the theory�s axioms using the HOL logic� or equivalently� if the
particular sequent � F cannot be so derived�

The existence of a �standard� model of a theory is su�cient to establish its consistency�
For by the Soundness Theorem� any sequent that can be derived from the theory�s axioms
will be satis
ed by the model� whereas the sequent � F is never satis
ed in any standard
model� So in particular� the initial theory INIT is consistent�

However� it is possible for a theory to be consistent but not to possess a standard model�
This is because the notion of a standard model is quite restrictive�in particular there is
no choice how to interpret the integers and their arithmetic in such a model� The famous
incompleteness theorem of G odel ensures that there are sequents which are satis
ed in all
standard models �i�e� which are �true��� but which are not provable in the HOL logic�

������� Extensions of theories
A theory T � is said to be an extension of a theory T if and only if StrucT � StrucT ��

SigT � SigT �� AxiomsT � AxiomsT � and TheoremsT � TheoremsT � �
The mechanisms for making extensions of theories in HOL are	 �i� extension by a

constant de
nition� �ii� extension by a constant speci
cation and �iii� extension by a
type de
nition� These all produce de�nitional extensions in the sense that they extend
a theory by adding new constants and types which are de
ned in terms of properties of
existing ones� Their key property is that the extended theory possesses a standard model
if the original theory does� So a series of these extensions starting from the theory INIT is
guaranteed to result in a theory with a standard model� and hence in a consistent theory�
It is also possible to extend theories simply by adding new uninterpreted constants and
types� This preserves consistency� but is unlikely to be useful without additional axioms�
However� when adding arbitrary new axioms� there is no guarantee that consistency is
preserved�

Extension by constant de�nition
A constant de�nition over a signature �� is a formula of the form c� 
 t�� such that	

�i� c is not the name of any constant in ���

�ii� t� a closed term in Terms���

�iii� all the type variables occurring in t� also occur in ��

Given a theory T and such a constant de
nition over SigT � then the de�nitional exten�
sion of T by c� 
 t� is the theory T �def hc� 
 t�i de
ned by	

T �def hc� 
 t�i 
 hStrucT � SigT � f�c� ��g� AxiomsT � fc� 
 t�g� TheoremsT i

Note that the mechanism of extension by constant de
nition has already been used
implicitly in forming the theory LOG from the theory MIN in ������ Thus with the notation



of this section one has

LOG 
 MIN �def hT 
 ��� xbool� x � 
 �� xbool� x ��i
�def h� 
 �P��bool� P 
 �� x � T�i
�def h
 
 �P��bool� P�� P�i
�def hF 
 � bbool� bi
�def h	 
 � b� b � Fi
�def h
 
 � b� b�� � b� �b� � �b� � b�� � bi
�def h� 
 � b� b�� � b� �b� � b� � ��b� � b� � b�i
�def hOne One 
 � f���� � x� x�� �f x� 
 f x�� � �x�
x��i
�def hOnto 
 � f���� �y� 
 x � y 
 f x i
�def hType De�nition 
 �P��bool rep����

One One rep 

�� x � P x 
 �
 y� x 
 rep y��i

Remark Condition �iii� in the de
nition of what constitutes a correct constant de
nition
is an important restriction without which consistency could not be guaranteed� To see
this� consider the term 
 f���� One One f 
 	�Onto f �� which expresses the proposition
that �the set of elements denoted by the� type � is in
nite� The term contains the type
variable �� whereas the type of the term� bool� does not� Thus by �iii�

cbool 
 
 f���� One One f 
 	�Onto f �

is not allowed as a constant de
nition� The problem is that the meaning of the right
hand side of the de
nition varies with �� whereas the meaning of the constant on the
left hand side is 
xed� since it does not contain �� Indeed� if we were allowed to extend
the consistent theory INIT by this de
nition� the result would be an inconsistent theory�
For instantiating � to ind in the right hand side results in a term that is provable from
the axioms of INIT� and hence cbool 
 T is provable in the extended theory� But equally�
instantiating � to bool makes the negation of the right hand side provable from the axioms
of INIT� and hence cbool 
 F is also provable in the extended theory� Combining these
theorems� one has that T 
 F� i�e� F is provable in the extended theory�

Extension by constant speci�cation
Constant speci
cations introduce constants �or sets of constants� that satisfy arbitrary

given �consistent� properties� For example� a theory could be extended by a constant
speci
cation to have two new constants b� and b� of type bool such that 	�b� 
 b��� This
speci
cation does not uniquely de
ne b� and b�� since it is satis
ed by either b� 
 T and
b� 
 F� or b� 
 F and b� 
 T� To ensure that such speci
cations are consistent� they can
only be made if it has already been proved that the properties which the new constants are
to have are consistent� This rules out� for example� introducing three boolean constants
b�� b� and b� such that b� �
 b�� b� �
 b� and b� �
 b��

Suppose 
 x� � � � xn � t is a formula� with x�� � � � � xn distinct variables� If � 
 x� � � � xn � t �
then a constant speci
cation allows new constants c�� � � � � cn to be introduced satisfying	

� t �c�� � � � � cn�x�� � � � � xn �



where t �c�� � � � � cn�x�� � � � � xn � denotes the result of simultaneously substituting c�� � � � � cn
for free occurrences of x�� � � � � xn � respectively� Of course� the type of each constant ci
must be the same as the type of the corresponding variable xi � To ensure that this ex�
tension mechanism preserves the property of possessing a model� a further more technical
requirement is imposed on these types	 they must each contain all the type variables
occurring in t �

Formally� a constant speci�cation for a theory T is given by	

Data h�c�� � � � � cn�� � x��� � � � xn�n � tbooli

Conditions

�i� c�� � � � � cn are distinct names that are not the names of any constants in SigT �

�ii� � x��� � � � xn�n � tbool � TermsT �

�iii� tyvars�tbool� 
 tyvars��i� for � � i � n�

�iv� 
 x��� � � � xn�n � t � TheoremsT �

The extension of a standard theory T by such a constant speci
cation is denoted by	

T �spech�c�� � � � � cn�� � x��� � � � xn�n � tbooli

and is de
ned to be the theory	

hStrucT � SigT � fc��� � � � � � cn�ng� AxiomsT � ft �c�� � � � � cn�x�� � � � � xn �g� TheoremsT i

Extension by a constant de
nition� c� 
 t�� is a special case of extension by constant
speci
cation� For let t � be the formula x� 
 t�� where x� is a variable not occurring in
t�� Then clearly � 
 x�� t � and one can apply the method of constant speci
cation to
obtain the theory T �spechc� � x�� t �i� But since t ��c��x�� is just c� 
 t�� this extension
yields exactly the theory T �def hc� 
 t�i�

Extension by type de�nition
It is useful to have a mechanism for introducing new types which are subtypes of existing

ones� Such types are de
ned in HOL by introducing a new type constant and asserting
an axiom that characterizes it as denoting a set in bijection with a non�empty subset of
an existing type �called the representing type�� For example� the type num is de
ned to be
equal to a countable subset of the type ind� which is guaranteed to exist by INFINITY AX�

As well as de
ning types� it is also convenient to be able to de
ne type operators� An
example would be a type operator inj which maps a set to the set of one�to�one �i�e�
injective� functions on it� The subset of ��� representing ���inj would be de
ned by the
predicate One One� Another example would be a binary cartesian product type operator
prod� This is de
ned by choosing a representing type containing two type variables� say
����� ���� such that for any types �� and ��� a subset of ����� ��� represents the cartesian
product of �� and ���

Types in HOL must denote non�empty sets� Thus it is only consistent to de
ne a new
type isomorphic to a subset speci
ed by a predicate p� if there is at least one thing for



which p holds� i�e� � 
 x � p x � For example� it would be inconsistent to de
ne a binary
type operator iso such that ���� ���iso denoted the set of one�to�one functions from �� onto
�� because for some values of �� and �� the set would be empty� for example �ind�bool�iso
would denote the empty set� To avoid this� a precondition of de
ning a new type is that
the representing subset is non�empty�

To summarize� a new type is de
ned by specifying an existing type� then specifying
a subset of this type� then proving that this subset is non�empty and 
nally specifying
that the new type is isomorphic to this subset� In more detail� de
ning a new type
���� � � � � �n�op consists in	

�� Specifying a type� � say� whose type variables are included in ��� � � �� �n � The
type � is called the representing type� and the type ���� � � � � �n�op is intended to be
isomorphic to a subset of ��

�� Specifying a closed term� p say� of type ��bool and whose type variables are in�
cluded in ��� � � �� �n � The term p is called the characteristic function� This de
nes
the subset of � to which ���� � � � � �n�op is to be isomorphic��

�� Proving � 
 x�� p x��

�� Asserting an axiom saying that ���� � � � � �n�op is isomorphic to the subset of �
selected by p�

To make this formal� the theory LOG provides the polymorphic constant Type De�nition

de
ned in ������ The formula 
 f���������n �op��� Type De�nition p f asserts that there exists
a one�to�one map f from ���� � � � � �n�op onto the subset of elements of � for which p is
true� Hence� the axiom that characterizes ���� � � � � �n�op is	

� 
 f���������n �op��� Type De�nition p f

De
ning a new type ���� � � � � �n�op in a theory T thus consists of introducing op as a
new n�ary type operator and the above axiom as a new axiom� Formally� a type de�nition
for a theory T is given by	

Data h���� � � � � �n�op� �� p��booli

Conditions

�i� �op�n� is not the name of a type constant in StrucT �

�ii� � is a type containing the type variables ��� � � �� �n with � � TypesT �

�iii� p��bool is a closed term in TermsT whose type variables occur in ��� � � � � �n �

�iv� 
 x�� p x � TheoremsT �

�The reason for restricting p to be closed� i�e� to have no free variables� is that otherwise for consistency
the de�ned type operator would have to depend upon �i�e� be a function of� those variables�



The extension of a standard theory T by a such a type de
nition is written

T �tydef h���� � � � � �n�op� �� pi

and de
ned to be the theory

hStrucT � f�op�n�g�
SigT �
AxiomsT � f
 f���������n �op��� Type De�nition p f g�
TheoremsT i

This method of type de
nition was suggested by Mike Fourman�
There is also a notion of type speci
cation ��� for making �loose speci
cations� of types�

This is analogous to constant speci
cation� but is not yet implemented and so is not
described here�

The primitive de
ning mechanisms of the HOL logic are tedious to use� so a variety of
derived mechanisms have been implemented to generate primitive de
nitions automati�
cally from higher level inputs�

Primitive recursive de�nitions
It follows from the de
nition of numbers in HOL that every primitive recursion speci
es

a function� A tool is provided to convert such recursive speci
cations into proper �non�
recursive� de
nitions�

Concrete types
Types similar to programmining language records can be introduced by supplying an

equation of the form	

op � C� ty
�
� � � � tyk�� � � � � � Cm ty�m � � � tykmm

where each ty ji is either a type expression already de
ned as a type in the current theory
�this type expression must not contain op� or is the name op itself� A speci
cation of
this form describes an n�ary type operator op� where n is the number of distinct type
variables in the types ty ji on the right hand side of the equation� If n 
 � then op is a
type constant� otherwise op is an n�ary type operator� The concrete type described has m
distinct constructors C�� � � � �Cm where m � �� Each constructor Ci takes ki arguments�
where ki � �� and the types of these arguments are given by the type expressions ty ji
for � � j � ki � If one or more of the type expressions ty ji is the type op itself� then the
equation speci
es a recursive type� In any speci
cation of a recursive type� at least one
constructor must be non�recursive�i�e� all its arguments must have types which already
exist in the current theory�

The logical type described by an input of the form shown above is intended to denote
the set of all values which can be 
nitely generated using the constructors C�� � � � �Cm�
where each constructor is one�to�one and any two di�erent constructors yield di�erent
values� Every value of this type will be denoted by some term of the form	

Ci t�i � � � t kii



where t ji is a term of type ty ji for � � j � ki � In addition� any two terms	

Ci t�i � � � t kii and Cj t�j � � � t
kj
j

denote equal values exactly when their constructors are the same �i�e� i 
 j � and these
constructors are applied to equal arguments �i�e� tni 
 tnj for � � n � ki ��

The type de
nition package in HOL �which is due to T�F� Melham ���� converts a type
speci
cation into a primitive type de
nition and automatically derives tools for making
recursive de
nitions over the new type and performing proofs by structural induction�

���� The HOL system

The primary interface to HOL is the functional programming language ML �the name
�ML� is an acronym for �Meta Language��� There is also a graphics interface implemented
in Centaur ���� that can be mounted on top of theML interface� Theorem proving tools are
functions in ML� It is intended that users of HOL will build their own application�speci
c
theorem�proving infrastructure by writing programs in ML�
HOL can be used for directly proving theorems but more often its role is as a theorem

proving environment for implementing special purpose formal veri
cation systems�
HOL provides considerable built�in theorem�proving infrastructure� including a powerful

rewriting subsystem based on Paulson�s higher�order rewriting combinators �����
There is a library facility containing useful theories and tools that have been packaged

for general use� So far about thirty libraries have been contributed by users from both
universities and industry� Syntax processing libraries are provided to enable application�
speci
c languages to be embedded in higher order logic� A decision procedure for tau�
tologies and a semi�decision procedure for linear arithmetic are also provided as libraries
�these procedures� which were written by Richard Boulton� work by performing sequences
of primitive inferences and are thus guaranteed to be logically sound��

The HOL library grows with each new release of the system� In addition to the library
facility� HOL also maintains a repository of contributed material that is not required to
meet the same quality control standards as the library� This provides a vehicle for users
to distribute prototypes� documents� etc�

The HOL system comes with comprehensive documentation� There is a detailed de�
scription of the system� which includes the formal semantics of the version of higher order
logic used� a manual for the ML programming language and a description of the theorem
proving infrastructure� The HOL reference manual documents every ML function in the
system� The text of this manual can be accessed by a help system and an X�windows
browsing tool� There is also a tutorial introduction and a training course �including ex�
ercises and solutions�� All the documentation is public domain and the LaTEX sources
are distributed with the system� Some of the libraries are public domain� but others are
copyrighted by their authors�

������ The history of HOL
The approach to mechanizing formal proof used in HOL is due to Robin Milner ���� He

designed a system called LCF �Logic for Computable Functions�� which was intended for
interactive automated reasoning about higher order recursively de
ned functions�



The original LCF was implemented at Edinburgh in the early ����s� and is now referred
to as �Edinburgh LCF�� Its code was ported from Stanford Lisp to Franz Lisp by G!erard
Huet at INRIA� and was used in a French research project called �Formel�� Huet�s Franz
Lisp version of LCF was further developed at Cambridge by Larry Paulson� and became
known as �Cambridge LCF� �����

The HOL system is implemented on top of an early version of Cambridge LCF� and
consequently many features of both Edinburgh and Cambridge LCF were inherited by
HOL� For example� the formulation of higher order logic used is not the classical one due
to Church ���� but incorporates LCF�style type variables� This provides� within the logic�
some of the meta�theoretic notations used informally by Church� A second in�uence
of LCF is the explicit management of logical theories� These support the splitting of
complicated speci
cations into a coherent structure� A feature of HOL not found in LCF
is the separation of consistency�preserving de
nitional principles from arbitrary axioms�
Most developments using HOL are purely de
nitional and are thus guaranteed to be
consistent�

The original version of HOL is called HOL�� and is in the public domain� It can be
obtained by ftp from sites in the UK and USA �see below�� HOL�� is implemented
in Lisp and runs on any platform that supports Franz Lisp or Common Lisp �e�g� IBM
PC� Sun� MIPS� HP workstation� Apple Macintosh�� HOL�� uses an early version of ML
derived from LCF� A new language� derived from this early ML� called �Standard ML��
was designed and implemented by a team lead by Robin Milner during the ����s �����

Two new versions of HOL implemented in Standard ML are available	 HOL�� from the
University of Calgary is a public domain system intended to be used with Standard ML

of New Jersey� ICL HOL is a commercial system intended to support applications in the
security critical area and particularly with speci
cations written in Z� it is implemented in
Poly"ML� HOL�� provides� within Standard ML� essentially the same facilities as HOL��
and is intended to eventually replace it� ICL HOL is somewhat di�erent �although the
underlying concepts are the same�� All three systems support the same logic� they only
di�er in the theorem proving infrastructure provided�

������ Overview of the theorem�proving infrastructure
ML is an interactive typed functional programming language� It has a type system that

forms the basis of the security of theorem�proving in HOL �����
Note that there is a potential for confusing the type system of the logic �see ������ and

the completely separate type system of the metalanguage ML�
There are three ML types that form the interface to the logic	 type� term and thm�

Values of these types are data�structures that represent types� terms and theorems of
the HOL logic in ML� Functions are provided in ML to manipulate types and terms� for
example there is a function dest comb that splits a function application t� t� into the
component terms t� and t�� The inverse of this destructor is an ML function mk comb�

Values ofML type thm represent theorems of the HOL logic� There are 
ve prede
nedML
identi
ers of type thm	 BOOL CASES AX� IMP ANTISYM� ETA AX� SELECT AX and INFINITY AX�
these correspond to the 
ve axioms in the theory INIT �see �������

The ML type system ensures that the only way to generate more theorems is to apply
ML functions that return values of type thm� In the core of the system there are only



eight such functions	 ASSUME� REFL� BETA CONV� SUBST� ABS� INST TYPE� DISCH and MP� these
correspond to the eight rules of inference of the HOL deductive system �see �������

The only way of creating values of ML type thm is to apply a sequence of these functions�
i�e� a sequence of applications of inference rules� Thus all values of ML type thm are
theorems of the HOL deductive system� It is possible to generate a trace of the applications
of the primitive rules and so obtain a formal proof in the sense of ������ this is useful for
independent proof auditing� The explicit proof facility is available in HOL�� Version �����

In practice� it would be very tedious if one started with only the 
ve axioms and eight
rules of inference� When the HOL system is built hundreds of theorems are pre�proved�
Theorems are stored in theories on disc in theory �les� Many useful theories are generated
automatically and saved when the system is build� For example� theories of lists� sets�
bags� trees� strings� various kinds of numbers �including real numbers constructed via a
type de
nition based on Dedekind cuts�� n�bit words� group theory� 
xedpoints� order
structures etc� Some of these theories are in the main system and some in libraries�

Many theorem proving tools are prede
ned� when invoked these can cause thousands
of primitive inference steps to be performed automatically� Some of these tools are in the
main system and some are in libraries� For example� there is a semi decision procedure for
a fragment of arithmetic� This takes a term t of ML type term as an argument and then
computes # by a sequence of primitive inferences # the theorem � t of type thm� This
is unlike other systems in which programs implementing complex inference mechanisms�
like decision procedures� are simply trusted�

In LCF�style systems like HOL� one only needs to trust the programs implementing the
core of the system �e�g� the eight primitive inference rules�� derived rules are guaranteed
to be sound because when they are invoked they expand to a sequence of calls of the
primitives� Even the need to trust the core can be eliminated by explicitly generating a
formal proof and having it independently checked�

The LCF methodology o�ers very high security� but does incur a performance penalty
due to the expansion of every derived rule into sequences of primitive inference steps�
However� specialized programming techniques and heavy optimization have made this
penalty surprisingly small ����

Rewriting
A particularly important collection of proof tools concern rewriting� i�e� the repeated

application of equational theorems � t� 
 t� to replace instances of t� by the correspond�
ing instance of t�� Such equations arise in many ways� e�g� as de
nitions of constants or as
laws like associativity and commutativity� HOL provides a number of �brute force� tools
for repeatedly rewriting with lists of equations�

The rewriting strategy may be adjusted to scan in various orders through terms� such
as bottom up or top�down� HOL also provides tools for the 
ne grain control of rewriting�
For example� the unrestricted use of commutativity laws leads to in
nite loops� so one may
only want to apply such laws in restricted ways� The mechanismof conversions� developed
by Paulson ����� is available for such cases� Knuth Bendix completion is available as a
derived rule �it was contributed by Konrad Slind��



Goal directed proof� tactics and tacticals
Theorems are not normally proved in HOL by applying inference rules directly �although

sometimes powerful derived ones like decision procedures are used this way�� It is more
usual to use the built�in subgoal package to manage the search for a proof in a goal
directed fashion� This is based around the notion of tactics originally developed by
Milner for LCF� The idea is that one starts with a sequent� called a goal � and then uses
subgoaling functions �called tactics� to split it into subgoals� subsubgoals etc� Eventually
all the subgoals will be instances of already proved theorems and can be trivially solved�
The subgoal package then automatically generates a theorem corresponding to the original
goal� This subgoaling process can either be driven by executing ML commands explicitly�
or it can by driven by pointing and clicking on parts of goals displayed on the screen via
the Centaur interface �����

Just as ML functions representing rules of inference can be combined to obtain com�
plex derived rules� so tactics can be combined �using operators called tacticals� to obtain
more complex tactics� HOL comes equipped with prede
ned tactics for rewriting and
for applying decision procedures �e�g� for tautolgies and subsets of arithmetic�� Applica�
tion speci
c veri
cation systems can be implemented by de
ning special purpose tactics�
e�g� for veri
cation condition generation ����

������ Getting and using HOL
The HOL system can be obtained from ted�cs�uidaho�edu ���������������� by anony�

mous ftp� it is in the directory �ftp�pub�hol� It is also available from ftp�cl�cam�ac�uk

�������������� in the directory hol�
There is an electronic mailing list for discussing HOL and disseminating news about it�

This list is joined by sending email to	 info�hol�request�ted�cs�uidaho�edu�
There is an annual HOL users meeting� The tradition is that this alternates between

Europe and North America� In ���� the meeting was at the University of California at
Davis ���� In ���� the meeting was at IMEC in Leuven� Belgium ���� in ���� it was in
Canada at the University of British Columbia and in ���� it will be at the University of
Malta�



Bibliography

REFERENCES

� P� D� Andrews� An Introduction to Mathematical Logic and Type Theory� to Truth

through Proof� Computer Science and Applied Mathematics Series� Academic Press�
�����

� M� Archer� J� J� Joyce� K� N� Levitt� and P� J� Windley� editors� The ���� Interna�

tional Workshop on the HOL Theorem Proving System and its Applications� University
of California at Davis� August ����� IEEE Computer Society Press�

� R� J� Boulton� On e�ciency in theorem provers which fully expand proofs into primi	
tive inferences� Technical Report �
�� University of Cambridge Computer Laboratory�
February �����


 A� Church� A formulation of the simple theory of types� The Journal of Symbolic

Logic� ����
��� ��
��
� L� J� M� Claesen and M� J� C� Gordon� editors� Higher Order Logic Theorem Proving

and its Applications� Leuven� Belgium� ��
�
 September ����� IFIP transactions A	
��� Elseview North	Holland�

� M� J� C� Gordon� Mechanizing programming logics in higher order logic� In
G� Birtwistle and P� A� Subrahmanyam� editors� Current Trends in Hardware Veri��

cation and Automated Theorem Proving� pages ���

��� Springer	Verlag� �����
� M� J� C� Gordon and T� F� Melham� Introduction to HOL� a theorem�proving envi�

ronment for higher�order logic� Cambridge University Press� �����
� M� J� C� Gordon� R� Milner� and C� P� Wadsworth� Edinburgh LCF� A Mechanised

Logic of Computation� volume �� of Lecture Notes in Computer Science� Springer	
Verlag� �����

� T� F� Melham� Automating recursive type de�nitions in higher order logic� In
G� Birtwistle and P� A� Subrahmanyam� editors� Current Trends in Hardware Veri��

cation and Automated Theorem Proving� pages �
�
���� Springer	Verlag� �����
�� T� F� Melham� The HOL logic extended with quanti�cation over type variables�

In Higher Order Logic Theorem Proving and its Applications� pages �
��� Leuven�
Belgium� ��
�
 September ����� IFIP transactions A	��� Elsevier North	Holland�

�� R� Milner� A theory of type polymorphism in programming� Journal of Computer

and System Sciences� �������
�
���� December �����
�� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� The MIT Press�

�����
�� L� C� Paulson� A higher	order implementation of rewriting� Science of Computer

Programming� �����
�
�� �����

��



�
 L� C� Paulson� Logic and Computation� Interactive Proof with Cambridge LCF� vol	
ume � of Cambridge Tracts in Theoretical Computer Science� Cambridge University
Press� �����

�� L� C� Paulson� Isabelle� The next ��� theorem provers� In P� Odifreddi� editor� Logic
and Computer Science� pages ���
���� Academic Press� �����

�� L� Th�ery� Y� Bertot� and G� Kahn� Real theorem provers deserve real user	interfaces�
In Proceedings of the Fifth ACM SIGSOFT Symposium on Software Development

Environments� volume ����� of Software Engineering Notes� Tyson�s Corner� Va� USA�
����� ACM Press�


