Towards Verified Systems

OVERVIEW

Jonathan Bowen (Ed.)

June 4, 1993
IDRAFT OVERVIEW OF HOL BY MJCG & AP|

Contents

1 The HOL logic and system 3
1.1 The HOL logic o o 3
LLI.T Types . . o o o e e 4

112 Terms . . . o o 0 0 5

1.1.3 Standard notions Lo 6

1.1.4 Sequents L 7

1.1.5 Semantics 7

1.1.6 Deductive systems Lo 10

1.1.7 Theories 12

1.1.8 Built-in theories and notations 14

1.1.9 Consistency 16

1.1.10 Extensions of theories L. 16

1.2 The HOL system 21
1.2.1 The history of HOLo .o 21

1.2.2 Overview of the theorem-proving infrastructure 22

1.2.3 Getting and using HOLo 0oL 24
Bibliography 25

Chapter 1

The HOL logic and system

Higher order logic is a version of predicate calculus that allows quantified variables to
range over functions and predicates. The power of this logic is similar to set theory. It
is sufficient for expressing most ordinary mathematical theories. The HOL system is a
theorem-proving environment for higher order logic. It provides tools for proving theorems
directly in the logic as well as system building facilities that enable users to implement
(in a guaranteed secure fashion) their own application specific proof environments. HOL
is not a generic theorem prover like Isabelle [15]; it is ‘hardwired’ to higher order logic.
However, this logic is powerful and other formalisms can be represented inside it via
their semantics. Many applications of HOL are such semantic embeddings; these are
implemented with tools like parser and pretty-printer generators that are provided by
HOL. Examples include support for the specification language Z, subsets of the hardware
description languages Ella, VHDL and Silage, the programming logics TLA and UNITY,
several refinement calculi and the process algebras CSP, CCS and the m-calculus.

The result of a session with the HOL system is a theory. This consists of types, con-
stants, definitions, axioms and an explicit list of theorems that have been proved from
the axioms and definitions. The HOL system provides tools for extending and combining
theories. A typical interaction with HOL consists in combining some existing theories,
making some definitions, proving some theorems and then saving the resulting new theo-
ries. The HOL system ensures that only well-formed theories can be constructed by only
allowing theorems to be created by formal proof. All the theorems of such theories are
logical consequences of the definitions and axioms of the theory.

In this chapter, which is condensed from the book Introduction to HOL [7], the version
of higher order logic supported by HOL — the HOL logic — is described in detail, but the
theorem proving infrastructure is only outlined (see 1.2.2).

1.1. The HOL logic

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote, respectively, sets and elements of sets. The formal semantics of the
HOL logic is only sketched here (see 1.1.5).

The HOL logic is typed: each theory specifies a signature of type constants and term
constants; these then determine sets of types and terms.

1.1.1. Types

The types of the HOL logic denote sets. Following tradition, o, possibly decorated with
subscripts or primes, is used to range over arbitrary types.

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which « ranges over type variables, ¢ ranges over atomic
types and op ranges over type operators.

o = o | ¢ | (o1,...,05)0op | o1—0y

‘ atomic types compound types

type variables function types
(domain o1, range o2)

In more detail, the four kinds of types are as follows:
1. Type variables: these range over arbitrary sets.
2. Atomic types: these denote fixed sets.

3. Compound types: these are expressions (oy,...,0,)op, where oy, ...,0, are the
argument types and op is a type operator of arity n. Type operators denote opera-
tions for constructing sets. The type (oy,...,0,)op denotes the set resulting from
applying the operation denoted by op to the sets denoted by oy, ..., o,.

4. Function types: If o; and o, are types, then o;—0y is the function type with
domain oy and range o,. It denotes the set of all (total) functions from the set
denoted by its domain to the set denoted by its range.

It turns out to be convenient to identify atomic types with compound types constructed
with O-ary type operators. For example, the atomic type bool of truth-values can be
regarded as being an abbreviation for ()bool. This identification will be made in the
technical details that follow, but in the informal presentation atomic types will continue
to be distinguished from compound types, and ()¢ will still be written as c.

Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter v is used to range over arbitrary members of TyNames, ¢ will continue to be used to
range over the names of atomic types (i.e. 0-ary type constants), and op is used to range
over the names of type operators (i.e. n-ary type constants, where n > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters o, 3, .. .,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set Q of type constants. A type constant is a pair (v, n) where
v € TyNames is the name of the constant and n is its arity. Thus @ C TyNames x N
(where N is the set of natural numbers). It is assumed that no two distinct type constants
have the same name, i.e. whenever (v, ny) € Q and (v, ny) € Q, then ny = ny.

The set Typesq of types over a structure {2 can now be defined as the smallest set such
that:

TyVars C Typesg.

If (1,0) € Q then ()r € Typesg.

If (v,n) € Q@ and o; € Typesg, for 1 < i < n, then (o4, ... ,0,)v € Typesg.

If oy € Types,, and oy € Typesg, then oy—03 € Types,.

The operator — is assumed to associate to the right, so that oy—oy— ... —0,—0c ab-
breviates 01— (03— ... —=(0,—0)...). The notation tyvars(c) is used to denote the set
of type variables occurring in o.

1.1.2. Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted
by types. The meta-variable ¢ is used to range over arbitrary terms, possibly decorated
with subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately by
the following BNF grammar, in which z ranges over variables and ¢ ranges over constants.

tou= x| o | tt] A t,
‘ T S~
constants A-abstractions

variables function applications
(function ¢, argument ¢)

A Aterm Az. ¢ denotes a function v +— t[v/z], where t[v/z] denotes the result of
substituting v for « in ¢. An application ¢ ¢’ denotes the result of applying the function
denoted by t to the value denoted by ¢’

The BNF grammar just given omits mention of types. In fact, each term in the HOL
logic is associated with a unique type. The notation ¢, is traditionally used to range over
terms of type o. A more accurate grammar of terms is the following:

tcr = Lo | Co | (tcr’—nr tclr/)cr | ()\ Loy - t02)01—>02

Just as the definition of types was relative to a particular type structure), the definition
of terms is relative to a given collection of typed constants over). Assume that an infinite
set Names of names is given. A constant over § is a pair (c,o), where ¢ € Names and
o € Typesg. A signature over {1 is just a set g of such constants.

The set Termsy, of terms over Ygq is defined to be the smallest set closed under the
following rules of formation:

1. Constants:
If (c,0) € ¥g and o’ € Typesg, is obtained from o by substituting types for type
variables, then (c,0’) € Termsy,. Terms formed in this way are called constants
and are written c,.

2. Variables:
If + € Names and o € Typesg, then var z, € Termsy,. Terms formed in this way
are called variables. The marker var is purely a device to distinguish variables from

constants with the same name. A variable var x, will usually be written as z,, if it
is clear from the context that x is a variable rather than a constant.

3. Function applications:
If t,, € Termsy, and t/, € Termsy,,, then ({,—, ¢!

CT/

)o € Termsg,,.

4. XA-Abstractions:
If var 2,, € Termsy, and t,, € Termsg,, then (A2,,. t5,)s, 0, € Termsy,.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that ¢t ¢, ¢, ... t, abbreviates
(... ((tt) ta) ... ta).
The notation Aay @3 -+ x,. t abbreviates Aay. (Az. -+ (A, t) ---).

A term is called polymorphic if it contains a type variable. Otherwise it is called
monomorphic. Note that a term ¢, may be polymorphic even though ¢ is monomorphic—
for example, (f,_}, #.)p, where b is an atomic type. The expression tyvars(t,) denotes
the set of type variables occurring in ¢,.

An occurrence of a variable z, is called bound if it occurs within the scope of a textually
enclosing A z,, otherwise the occurrence is called free. Note that Az, does not bind z, if
o # o'. A term in which all occurrences of variables are bound is called closed.

1.1.3. Standard notions

Up to now the syntax of types and terms has been very general. To represent the
standard formulae of logic it is necessary to impose some specific structure. In particu-
lar, every type structure must contain an atomic type bool which is intended to denote
the distinguished two-element set of truth-values. Logical formulae are then identified
with terms of type bool. In addition, various logical constants are assumed to be in
all signatures. These requirements are formalized by defining the notion of a standard
signature.

Standard type structures

A type structure Q is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). In the literature, the symbol o is often used instead of
bool and ¢ instead of ind. It will be assumed from now on that type structures are
standard.

Standard signatures

A signature Ygq is standard if it contains = 501 bool—s bools =a—sa—bool 214 € (4 bool)—a-
The first of these is intended to denote logical implication and the second is intended
to denote equality. The third is Hilbert’s epsilon operator and builds the Axiom of
Choice into the HOL logic. A term £, poolj—a Pamsbool denotes some value for which
the predicate p,_ poo is true (if no such value exists, then an arbitrary value of type « is
chosen). See the definition of the conditional Cond in 1.1.8 for an example of the use of .

Remark This particular choice of primitive constants is arbitrary. The standard collec-
tion of logical constants includes T (‘true’), F (‘false’), = (‘implies’), = (‘not’), A (‘and’),
V (‘or’), ¥ (“for all’), 3 (‘there exists’), = (‘equals’), and ¢ (‘a’). This set is redundant,
since it can be defined (in a sense explained in 1.1.10) from various subsets. In practice,
it is necessary to work with the full set of logical constants, and the particular subset
taken as primitive is not important. The interested reader can explore this topic further
by reading Andrews’ book [1] and the references it contains.

Terms of type bool are called formulae. The following notational abbreviations are
used:

Notation | Meaning

le = tc/r =os0—=bool lo tc/r

t =1 = bool—bool—bool _thool ti)oo]
€. 1 5(a—>bool)—>cr()‘ Z. 1)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder.

1.1.4. Sequents

The HOL logic is based on sequents. Fixing a (standard) signature g, a sequent is
a pair (I',¢) where I' is a finite set of formulae over ¥q and t is a single formula over
Yo.! The set of formulae I' forming the first component of a sequent is called its set of
assumptions and the term ¢ forming the second component is called its conclusion. When
it is not ambiguous to do so, a sequent ({ },¢) is written as just ¢.

1.1.5. Semantics

Part 11 of Introduction to HOL [7] contains a set-theoretic semantics of the HOL logic
due to Andy Pitts. This is only briefly outlined here (the exposition uses material from
a paper by Tom Melham [10]).

The semantics of HOL is defined in terms of a particular set U called the universe,
the elements of which are the sets denoted by the (monomorphic) type expressions. The
universe is assumed to have the following properties.

Inhab Each element of i/ is a non-empty set.

Sub f X ed and {} # V C X, then YV € U.

Prod If X e i/ and Y € U, then X x Y € U. The set X x Y is the cartesian product,
consisting of ordered pairs (z,y) with 2 € X and y € Y, and with the usual set-
theoretic coding of ordered pairs, that is (z,y) = {{z}, {2, y}}.

Pow If X € U, then the powerset P(X)={Y : Y C X} is also an element of U.
Infty U contains a distinguished infinite set I.

Choice There is a distinguished element ch € [[yg, X. The elements of the product
[Txcy X are (dependently typed) functions: thus for all X € ¢, X is non-empty by
Inhab and ch(X) € X witnesses this.

INote that the type subscript is omitted from terms when it is clear from the context that they are
formulae, i.e. have type bool.

In set theory, functions are identified with their graphs, which are certain sets of ordered
pairs. Thus the set X— Y of all functions from a set X to aset Y is a subset of P(X x Y);
and it is a non-empty set when Y is non-empty. So Sub, Prod and Pow together imply
that U also satisfies

Fun If X ¢ f and Y € U, then X—=Y € U.

By iterating Prod, one has that the cartesian product of any finite, non-zero number
of sets in U is again in U. U also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in «U—Infty
guarantees there is one); for definiteness, a particular one-element set will be singled out.

Unit U contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty, ¢/ contains two-element sets, one of which will be
singled out.

Bool U contains a distinguished two-element set 2 = {0, 1}.

The semantics of types is given relative to a model M which assigns to each type
constant an element of U/ and to each n-ary type operator a function U™ — U. A model
M of Q is standard if M(bool) and M (ind) are respectively the distinguished sets 2 and
[in the universe U.

The notion of a type-in-context is used in defining the semantics of types. A type context
as is just a finite list of distinct type variables, and a type-in-context as.c is a type o
together with a type context as which contains (at least) all the type variables in o. The
meaning of a type in context as.o, where the context as is of length n, is then given by
a function

los.o]p:U" = U

which is defined so that for any assignment of sets Xs = (Xi,..., X)) € U" to the type
variables in as (and hence to the type variables in o), the element [as.c]y(Xs) of U is
the corresponding set denoted by o. The formal definition of [_]as is by induction on the
structure of types [7].

The notion of a context is also employed in defining the meaning of terms. A term-in-
context is written ‘as,zs.t” and consists of a term ¢ together with a type context as and
a finite list of variables xs called a variable context. The variable context zs of a term-
in-context as,rs.t contains all the variables that occur free in ¢, and the type context as
contains all the type variables that occur in xs and ¢.

For the semantics of terms, a model consists of a type model (as described above)
together with a function that assigns to each constant ¢ with generic type o an element
of the set of functions

[Txseun [os.o]m(Xs)

where n is the length of the type context as. For a given model M, the meaning of a
term-in-context as,xs.t, where as has length n, xs has length m, and ¢ has type 7, is given
by a function [_]a defined by induction on terms such that:

los,zs.t]n € [xsewn \Ilj=i[0s.0;]m(Xs)) — [os.T]a(Xs)

where zs = x1,..., %, and o; is the type of the corresponding variable z;. The idea is that
given an assignment of sets

Xs:(Xl,...,Xn)EUn

to the type variables in as (and hence to the free type variables in t) and given an
assignment of elements

¥ = (U, Ym) € [os.on]u(Xs) x - x [as.o,] (Xs)

to the variables in zs (and hence to the variables that occur free in the term ¢), the result
of Jas,xs.t]pm(Xs)(ys) will be an appropriate element of the set [as.7](Xs) denoted by
the type of t.

A model M of ¥q will be called standard if

e M (=, bool—bool—bool) € (2—2—2) is the standard implication function, sending
b,b" € 2 to

o ,
(bjb,):{o ifb=1and b’ =0

1 otherwise

o M(=,a—a—bool) € [Tycy -X—X—2 is the function assigning to each X € U the
equality test function, sending z, 2" € X to

. o
(x:Xx,):{l ifer=ux

0 otherwise

o M(e,(a—bool)—a) € [Ixey - (X—2)—X is the function assigning to each X € U
the choice function sending f € (X —2) to

_Joeh(fTHLy) i Iy £ {
chx(f) = { ch(X) otherwise

where f7'{1} = {2 € X : f(2) = 1}. (Note that f~*{1} is in &/ when it is non-
empty, by the property Sub of the universe ¢. The function ch is given by property
Choice.)

A sequent with hypotheses I' = {#,...,¢,} and conclusion t is satisfied by a model M
if any assignment of values to free variables that makes all the hypotheses true in M also
makes the conclusion true in M. In particular, M satisfies the sequent if for all Xs € U"
and all ys € [as.o1]m(Xs) x -+ X [as.o,]m(Xs),

los,zs. i (Xs)(ys) =1, ..., [as,as.t,]m(Xs)(ys) =1
imply that
fos,25.Dar(Xs)(38) = 1,
where os, zs 1s any valid context for each of ¢, &, ..., {, with as of length n, as = ay,..., 2,

and o; the type of the corresponding variable z;. ' |=j; ¢ is written to mean that M
satisfies the sequent with hypotheses I' and conclusion t.

1.1.6. Deductive systems

A deductive system D is a set of pairs (L,S) where L is a (possibly empty) list of
sequents and S is a sequent.

A sequent S follows from a set of sequents A by a deductive system D if and only if
there exist sequents Sy, ..., 8, such that:

1. §=8,, and

2. for all ¢ such that 1 < i < n, (a) either S; € A, or (b) (L;,S;) € D for some list L,
such that L; C AU{Sy,...,8i-1}-

The sequence Sy, ...,8, is called a proof of S from A with respect to D.

The notation t,...,t, Fpa t means that the sequent ({#1,...,¢,}, t) follows from A
by D. If either D or A is clear from the context then it may be omitted. In the case that
there are no hypotheses (i.e. n = 0), just - ¢ is written.

In practice, a particular deductive system is usually specified by a number of (schematic)
rules of inference, which take the form

Ikt o Tu kot
T - ¢

The sequents above the line are called the hypotheses of the rule and the sequent below the
line is called its conclusion. Such a rule is schematic because it may contain metavariables
standing for arbitrary terms of the appropriate types. Instantiating these metavariables
with actual terms, one gets a list of sequents above the line and a single sequent below
the line which together constitute a particular element of the deductive system. The
instantiations allowed for a particular rule may be restricted by imposing a side condition
on the rule.

The HOL deductive system

The deductive system of the HOL logic is specified by eight rules of inference, given
below. The first three rules have no hypotheses; their conclusions can always be deduced.
The identifiers in square brackets are the names of the ML functions in the HOL system
that implement the corresponding inference rules. Any side conditions restricting the
scope of a rule are given immediately below it.

Assumption introduction [ASSUME|
TRt

Reflexivity [REFL]
Fi=t

Beta-conversion [BETA_CONV]

F (e,)ty = [t/]

o Where t;[ty/x] is the result of substituting &, for in ¢, with suitable renaming of
variables to prevent free variables in ¢y becoming bound after substitution.

Substitution [SUBST]|

Lyu---ul,ul F ¢t 1]

o Where t[ty,...,1,] denotes a term ¢ with some free occurrences of subterms ¢, ..., ¢,
singled out and t[t[,...,t"] denotes the result of replacing each selected occurrence
of t; by t! (for 1<i<n), with suitable renaming of variables to prevent free variables
in ¢/ becoming bound after substitution.

Abstraction [ABS]

F |_ tlztz

e Provided z is not free in I
Type instantiation [INST_TYPE]

| R
I' F tloy,...,onfar, ..., a,]

o Where t[oy,...,0,/a1,...,a,] is the result of substituting, in parallel, the types
o1, ..., o for type variables aq, ..., a, in t, with the two restrictions: (i) none of
the type variables ay, ..., a, occur in I'; and (ii) no distinct variables in ¢ become
identified after the instantiation.

Discharging an assumption [DISCH]

I' F &
F—{tl} F =1t

o Where I' — {{;} is the set subtraction of {#} from I'.
Modus Ponens [MP]

F1|_t1:>t2 F2|_t1
F1UF2 F tz

In addition to these eight rules, there are also five azioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms and the definitions of the
extra logical constants they involve are given shortly.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PPA, since HOL
was implemented by modifying the LCF system.

Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction
defined in 1.1.5: for any instance of the rules of inference, if a (standard) model satisfies
the hypotheses of the rule it also satisfies the conclusion.

1.1.7. Theories
A HOL theory T is a 4-tuple (Strucy, Sigs, Axiomsy, Theoremsy), where:

(i) Strucy is a type structure called the type structure of T;

(ii) Sigs is a signature over Strucy called the signature of T

(iii) Axiomsy is a set of sequents over Sig, called the axioms of T;
)

(iv) Theoremsy is a set of sequents over Sig called the theorems of 7, with the property
that every member follows from Axiomss by the HOL deductive system.

The sets Typess and Termsy of types and terms of a theory T are, respectively, the
sets of types and terms constructable from the type structure and signature of 7T

Types = Typessyyyc, and Termsy = Termsg;g .

A model of a theory T is specified by giving a (standard) model M of the underlying
signature of the theory with the property that M satisfies all the sequents which are
axioms of 7. Because of the Soundness Theorem, it follows that M also satisfies any
sequents in the set of given theorems, Theoremsr.

The theory MIN
The minimal theory MIN is defined by:

MIN = <{(b00170)7 (ind,())}, {:>bool—>bool—>boolv :a—>a—>b0017€(a—>b001)—>a}7 {}7 {}>

Although the theory MIN contains only the minimal standard syntax, by exploiting the
higher order constructs of HOL one can construct a rich collection of terms over it. The
following theory introduces names for some of those terms that denote useful logical
operations.

The theory L0OG
The theory LOG has the same type structure as MIN. Its signature contains the constants
in MIN and the following constants:

T bool F bool
“'bool—bool Nbool=sbool=bool Y bool—bool—bool
v(oz—) booly— bool 3 (a—bool)—bool

One—one(a—w)abool Onto(a—>ﬁ)—>boo] Type_Definition (e—bool)—(8—a)—bool

The following special notation is used in connection with these constants:

Notation Meaning

b N 1y ANt oty

ti V 1y V it by

Va, t V(A a,. t)

Vayg ay -+ ap. t | Vg (Vg - (Y. t))
Ja,. t (A, 1)

day 2y -zt | Fzy. (Fag. -0 (Fae. t) -0)

The axioms of the theory L0OG consist of the following sequents:

F T = ((A ool #) = (A 2boor-)

V= AP, pool P=(2. T)
E|:)‘Poz—>bool' P(5 P)
F=Vbpu. b

- =Xb. b=F

AN=Xby by. Yb. (by = (by=10))=b

V=Ab by. Vb. (by =b)= ((bp=b)=10)

OneOne=Xfop. Vaor oo (f o = f 1) = (11 = 2)

Onto=Af,p. Vy. Jz.y=f=

Type_Definition = X P, _ p 0] T€Pg—a-One_One rep A
(Vae. Pax = (y. a2 =rep y))

T T T T T T T T T

Finally, as for the theory MIN, the set Theoremsygg is taken to be empty.

Note that the axioms of the theory LOG are essentially definitions of the new constants
of LOG as terms in the original theory MIN. The mechanism for making such extensions
of theories by definitions of new constants is described in 1.1.10. The first seven axioms
define the logical constants for truth, universal quantification, existential quantification,
falsity, negation, conjunction and disjunction. The next two axioms define the properties
of a function being one-one and onto; they will be used to express the axiom of infinity (see
1.1.7), amongst other things. The last axiom defines a constant used for type definitions

(see 1.1.10).

The theory INIT
The theory INIT is obtained by adding the following five axioms to the theory LOG.

BOOL_CASES_AX FYb. (b=T)V(b=F)

IMP_ANTISYM_AX FY b by (by = by) = (b= b1) = (b = by)

ETA_AX FVfasg Ao fa)=f
SELECT_AX FY P, _bool - P &= Pl P)
INFINITY_AX F 3 find—ind- One_One f A —(Onto f)

The theory INIT is the initial theory of the HOL logic. A theory which extends INIT will
be called a standard theory. It can be shown [7] that there is a unique standard model of
INIT that satisfies the five axioms and interprets the constants defined in LOG as follows:

o [[Tbool]] =le2

o [[v(a—>bool)—>bool]] € xeu(X—=2)—=2sends X € U and f € X—=2 to

L1 = X

0 otherwise

M0 - {

[[El(a—>boo])—>bool]] €llxeu(X—=2)=2sends X € f and f € X =2 to

(X)) = { Lt/ #

0 otherwise

[[Fbool]] =0€2

[[_‘boojﬁbooj]] € 2—-32sends b €2 to

[H](b)z{l if =0

0 otherwise

[Abool—s bool—bool] € 2—+2—2 sends b, b’ € 2 to

1 ifb=1=1%

0 otherwise

IAJB)(H) = {

[V bool—sbool—bool] € 2—+2—2 sends b, b’ € 2 to

0 ifo=0=1"%

1 otherwise

[VI(B)(¥) = {

[One_One (.5 boolll € ITx,vyere(X—Y)=2 sends (X, Y) € U* and f € (X=Y)
to
0 if f(x) = f(a') for some & # 2" in X

1 otherwise

[One_One] (X, Y)(f) = {

[Onto, 55 booll € [(x,vyeze(X =Y) =2 sends (X, V) € U? and f € (X—=Y) to

L if{f(z):2eX}=Y

0 otherwise

[Onto] (X, Y)(f) = {

[Type_Definition , _, hool) s (3-a)—boolll € [(x,v)erer (X —=2)= (Y =X) =2
sends (X, Y)elU? fe(X—2)and g € (Y—=X) to

1 if [OneOne](Y,X)(g)=1
[Type_Definition] (X, Y)(f)(g) = { and f~H1} = {g(y)y € Y}

(0 otherwise.

1.1.8. Built-in theories and notations

The logical core of the HOL system is the theory INIT, however a number of useful
theories are predefined or available as libraries (see 1.2). Some of these are associated with
special notations that are supported by the parser and pretty-printer. These notations
parse into standard terms and are thus only ‘syntactic sugar’. Their informal meaning will
be given here; full details, including the underlying logical representation and associated
theories, can be found in Introduction to HOL [7].

Pairs and tuples

Pairs are written as (1, &3); tuples (41, t2, ..., 1) parse to iterated pairs (1, (t3, ...,).
If t; has type o1 and t, has type oy then (#, %) has type (oy,02)prod, which may be
writen as o; X o,.

Pairs may also be used as part of ‘variable structures’ in quantifications and A-binding.
For example, A(m,n). m 4+ n and Y(m,n). m <n V n < m.

Conditionals
The conditional (¢t — # | &) intuitively means ‘if ¢ then ¢; else &’ and abbreviates
Cond ¢ t; 1y, where Cond has type bool—sa—a—«a and is defined by:

Condbaay = ca. (b=T)=(z=2)) AN (b=F) = (2 =)

Numerals and strings

Among the predefined types supplied with the HOL system are num (natural numbers)
and string (strings). With each of these types there are infinite families of constants. In
the case of num these are 0, 1, 2, etc.; in the case of string these have the form ¢y -+ ¢,
where each ¢; is a letter or numeral. The HOL parser recognises such numbers and strings
as constants of the appropriate theory.

Restricted quantification

The terms V a::ty. & and dx::;. {; abbreviate V. t; = t, and dz. 1 A ¢y, respectively.
The restriction ¢ acts like a type in dependently typed systems and allows terms like
Vm n. Vizfrom(m,n). m <i A i < n to be written (where from is a predicate on pairs
of numbers). Combinations of variable structures and restriction are allowed.

Less useful, but also supported, are restricted e-terms and A-terms: cz::¢;. ¢y abbreviates
ex. i AN ty and Aaity. ty abbreviates Ax. (& — & | ev.T). As with the restricted
quantifiers, the bound variable can also be a variable structure.

let-terms

A basic let-term has the form let « = # in t; and abbreviates (Az. &)t;. A local
function binding like let f # = #; in ¢, abbreviates (A f. &)(A x. t;). The parameters of
such function definitions can be paired; for example let add(m,n) = m + n in add(0,1)
abbreviates (A add. add(0,1))(A(m,n). m + n).

Multiple local bindings are allowed. Two equivalent forms are supported:

let (wy, 2, -+ ,2,) = (b, by, -+ ,1,) int
let;y=tHando=1% --- 2, =1, in ¢

The second of these allows function definitions, for example:
let # =1 and add(m,n) = m+ n in add(0,z)

Lists and sets

Theories of lists and sets are predefined; lists are built-in to HOL, but sets are a library.
A list is a term of type o list; individual lists may be input with the notation [¢;; ... ; t,].
The empty list is []. A set is a term of type o set; finite sets may be input with the notation
{t;, ... ,t,}. The empty set is { }. The set abstraction notation {¢; | &} is also allowed
and denotes the set of {;s such that #,. For example { + y | 2 <10 A y < 10} denotes
the set of sums of pairs of numbers less than 10.

1.1.9. Consistency

A (standard) theory is consistent if it is not the case that every sequent over its signature
can be derived from the theory’s axioms using the HOL logic, or equivalently, if the
particular sequent F F cannot be so derived.

The existence of a (standard) model of a theory is sufficient to establish its consistency.
For by the Soundness Theorem, any sequent that can be derived from the theory’s axioms
will be satisfied by the model, whereas the sequent F F is never satisfied in any standard
model. So in particular, the initial theory INIT is consistent.

However, it is possible for a theory to be consistent but not to possess a standard model.
This is because the notion of a standard model is quite restrictive—in particular there is
no choice how to interpret the integers and their arithmetic in such a model. The famous
incompleteness theorem of Godel ensures that there are sequents which are satisfied in all
standard models (i.e. which are ‘true’), but which are not provable in the HOL logic.

1.1.10. Extensions of theories

A theory T is said to be an extension of a theory 7 if and only if Strucy C Strucy,
Sig+ C Sig s, Axioms7 C Axiomss and Theoremsr C Theoremsy.

The mechanisms for making extensions of theories in HOL are: (i) extension by a
constant definition, (ii) extension by a constant specification and (iii) extension by a
type definition. These all produce definitional extensions in the sense that they extend
a theory by adding new constants and types which are defined in terms of properties of
existing ones. Their key property is that the extended theory possesses a standard model
if the original theory does. So a series of these extensions starting from the theory INIT is
guaranteed to result in a theory with a standard model, and hence in a consistent theory.
It is also possible to extend theories simply by adding new uninterpreted constants and
types. This preserves consistency, but is unlikely to be useful without additional axiom:s.
However, when adding arbitrary new axioms, there is no guarantee that consistency is
preserved.

Extension by constant definition
A constant definition over a signature g is a formula of the form ¢, = {,, such that:

(i) cis not the name of any constant in Yg;
(ii) ¢, a closed term in Termsy,;
(iii) all the type variables occurring in ¢, also occur in o.

Given a theory T and such a constant definition over Sig+, then the definitional exten-
sion of T by ¢, = {, is the theory T +4.(c, = {,) defined by:

T +aes{co = t,) = (Strucy, SigrU{(c,0)}, Axiomssr U {c, = t,}, Theoremsy)

Note that the mechanism of extension by constant definition has already been used
implicitly in forming the theory LOG from the theory MIN in 1.1.7. Thus with the notation

of this section one has

= Aby by. Vb. (b = (b = b)) = b)

LOG = MIN +uef (T = ((A2pool-) = (A 2hool- 7))
taer(V = AP, pool- P = (2. T))
tdef 3=)‘Poz—>b001‘ P(5 P)>
Faer (F = Vbpoo- b)
Faef{™ = Ab. b:>F>
+def
Faef(V = Aby by Vb (b = b) = ((by=b) = b))
+4e,(One_One = A foop. Var . (f o = f 1) = (11=12))
+4es(Onto = Afonp. Vy. Ja.y=f 2)

s s s P

+aer (Type_Definition = AP, _ pool T€Ps—a-
One_One rep A

(Vae. Pax = (Fy. 2 =rep y)))

Remark Condition (iii) in the definition of what constitutes a correct constant definition
is an important restriction without which consistency could not be guaranteed. To see
this, consider the term 3 f,,. One_One f A —(Onto f), which expresses the proposition
that (the set of elements denoted by the) type « is infinite. The term contains the type
variable a, whereas the type of the term, bool, does not. Thus by (iii)

Chool = I fosa- One_One f A —(Onto f)

is not allowed as a constant definition. The problem is that the meaning of the right
hand side of the definition varies with «, whereas the meaning of the constant on the
left hand side is fixed, since it does not contain «a. Indeed, if we were allowed to extend
the consistent theory INIT by this definition, the result would be an inconsistent theory.
For instantiating « to ind in the right hand side results in a term that is provable from
the axioms of INIT, and hence cp,,; = T is provable in the extended theory. But equally,
instantiating « to bool makes the negation of the right hand side provable from the axioms
of INIT, and hence cp,o; = F is also provable in the extended theory. Combining these
theorems, one has that T = F, i.e. F is provable in the extended theory.

Extension by constant specification

Constant specifications introduce constants (or sets of constants) that satisfy arbitrary
given (consistent) properties. For example, a theory could be extended by a constant
specification to have two new constants by and by of type bool such that —(b; = by). This
specification does not uniquely define by and b,, since it is satisfied by either by = T and
by, =F, or by = F and b, = T. To ensure that such specifications are consistent, they can
only be made if it has already been proved that the properties which the new constants are
to have are consistent. This rules out, for example, introducing three boolean constants
by, by and by such that by # by, by # bs and by # bs.

Suppose ;... x,. t is a formula, with zy,..., 2, distinct variables. If = day...2,. t,
then a constant specification allows new constants ¢y, ..., ¢, to be introduced satisfying:

F t[Cl,...,Cn/$1,...,$n]

where t|cq,...,¢c /21, ...,2,] denotes the result of simultaneously substituting ¢4,...,c,
for free occurrences of zy,...,z,, respectively. Of course, the type of each constant c;
must be the same as the type of the corresponding variable z;. To ensure that this ex-
tension mechanism preserves the property of possessing a model, a further more technical
requirement is imposed on these types: they must each contain all the type variables
occurring in {.

Formally, a constant specification for a theory T is given by:

Data ((c1,...,¢,), A1y, -+ Tno, - thool)

Conditions

The extension of a standard theory 7 by such a constant specification is denoted by:

T+opee{(Cty- o3 Ca)s A1y, - - Tag, - thool)

and is defined to be the theory:
(Strucy, SigrU{ciy,,...,Cnp, }, Axiomsyr U {t[cy,...,c /2, ..., 2,]}, Theoremsy)

Extension by a constant definition, ¢, = {,, is a special case of extension by constant
specification. For let ¢’ be the formula 2, = {,, where , is a variable not occurring in
ly. Then clearly F duz,. " and one can apply the method of constant specification to
obtain the theory T +g,e.(c, A ,. t'). But since t'[c,/x,] is just ¢, = ¢,, this extension
vields exactly the theory T+ 41 (c, = ;).

Extension by type definition

It is useful to have a mechanism for introducing new types which are subtypes of existing
ones. Such types are defined in HOL by introducing a new type constant and asserting
an axiom that characterizes it as denoting a set in bijection with a non-empty subset of
an existing type (called the representing type). For example, the type num is defined to be
equal to a countable subset of the type ind, which is guaranteed to exist by INFINITY_AX.

As well as defining types, it is also convenient to be able to define type operators. An
example would be a type operator inj which maps a set to the set of one-to-one (i.e.
injective) functions on it. The subset of c—0 representing (o)inj would be defined by the
predicate One_One. Another example would be a binary cartesian product type operator
prod. This is defined by choosing a representing type containing two type variables, say
olaq, az], such that for any types oy and oy, a subset of o[oy, 03] represents the cartesian
product of oy and o,.

Types in HOL must denote non-empty sets. Thus it is only consistent to define a new
type isomorphic to a subset specified by a predicate p, if there is at least one thing for

which p holds, i.e. = dx. p x. For example, it would be inconsistent to define a binary
type operator iso such that (o1, 02)iso denoted the set of one-to-one functions from oy onto
o4 because for some values of oy and o the set would be empty; for example (ind, bool)iso
would denote the empty set. To avoid this, a precondition of defining a new type is that
the representing subset is non-empty.

To summarize, a new type is defined by specifying an existing type, then specifying
a subset of this type, then proving that this subset is non-empty and finally specifying
that the new type is isomorphic to this subset. In more detail, defining a new type
(a1,...,0,)op consists in:

1. Specifying a type, o say, whose type variables are included in oy, ..., «,. The
type o is called the representing type, and the type (aq,...,a,)op is intended to be
isomorphic to a subset of o.

2. Specifying a closed term, p say, of type oc—bool and whose type variables are in-
cluded in aq, ..., a,. The term p is called the characteristic function. This defines
the subset of o to which (ay,...,a,)op is to be isomorphic.?

3. Proving F Jdz,.p .

4. Asserting an axiom saying that (ai,...,a,)op is isomorphic to the subset of o
selected by p.

To make this formal, the theory L0G provides the polymorphic constant Type_Definition
defined in 1.1.7. The formula 3 fi,, ... an)op—o- Type_Definition p f asserts that there exists
a one-to-one map f from (oq,...,a,)op onto the subset of elements of o for which p is
true. Hence, the axiom that characterizes (a1, ..., a,)op is:

F 3 fiar,an)op—a- Type_Definition p f

Defining a new type (oq,...,a,)op in a theory T thus consists of introducing op as a
new n-ary type operator and the above axiom as a new axiom. Formally, a type definition
for a theory 7 is given by:

Data <(0517---705n)0p7 a, pcr—)bOO]>

Conditions

(i) (op,n) is not the name of a type constant in Strucy.
(ii) o is a type containing the type variables oy, ..., o, with o € Types.
(iil) P, pool 18 @ closed term in Termsy whose type variables occur in ay, ..., a,.

(iv) dz,. p * € Theoremsy.

?The reason for restricting p to be closed, i.e. to have no free variables, is that otherwise for consistency
the defined type operator would have to depend upon (i.e. be a function of) those variables.

The extension of a standard theory 7 by a such a type definition is written

T+tydef<(a17 ceey an)opv g, p>

and defined to be the theory

(Strucy U {(op, n)},

SigT?

Axiomss U {3 fia,,...an)op—so- Type_Definition p f},
Theoremsy)

This method of type definition was suggested by Mike Fourman.

There is also a notion of type specification [7] for making ‘loose specifications’ of types.
This is analogous to constant specification, but is not yet implemented and so is not
described here.

The primitive defining mechanisms of the HOL logic are tedious to use, so a variety of
derived mechanisms have been implemented to generate primitive definitions automati-
cally from higher level inputs.

Primitive recursive definitions

It follows from the definition of numbers in HOL that every primitive recursion specifies
a function. A tool is provided to convert such recursive specifications into proper (non-
recursive) definitions.

Concrete types
Types similar to programmining language records can be introduced by supplying an
equation of the form:

op=Cytyl ...otyft | | Cptyl Lty

where each tyf is either a type expression already defined as a type in the current theory
(this type expression must not contain op) or is the name op itself. A specification of
this form describes an n-ary type operator op, where n is the number of distinct type
variables in the types ty! on the right hand side of the equation. If n = 0 then op is a
type constant; otherwise op is an n-ary type operator. The concrete type described has m
distinct constructors Ci,..., C,, where m > 1. Each constructor C; takes k; arguments,
where k; > 0; and the types of these arguments are given by the type expressions ty’
for 1 <5 < k;. If one or more of the type expressions tyf is the type op itself, then the
equation specifies a recursive type. In any specification of a recursive type, at least one
constructor must be non-recursive—i.e. all its arguments must have types which already
exist in the current theory.

The logical type described by an input of the form shown above is intended to denote
the set of all values which can be finitely generated using the constructors Ci,..., C,,,
where each constructor is one-to-one and any two different constructors yield different
values. Every value of this type will be denoted by some term of the form:

where ¢; is a term of type ty; for 1 < j < k;. In addition, any two terms:

. .
it} ...t and Citl .t
denote equal values exactly when their constructors are the same (i.e. i = j) and these
constructors are applied to equal arguments (i.e. ¢/ = ¢ for 1 <n < k;).
The type definition package in HOL (which is due to T.F. Melham [9]) converts a type
specification into a primitive type definition and automatically derives tools for making
recursive definitions over the new type and performing proofs by structural induction.

1.2. The HOL system

The primary interface to HOL is the functional programming language ML (the name
‘ML’ is an acronym for ‘Meta Language’). There is also a graphics interface implemented
in Centaur [16] that can be mounted on top of the ML interface. Theorem proving tools are
functions in ML. It is intended that users of HOL will build their own application-specific
theorem-proving infrastructure by writing programs in ML.

HOL can be used for directly proving theorems but more often its role is as a theorem
proving environment for implementing special purpose formal verification systems.

HOL provides considerable built-in theorem-proving infrastructure, including a powerful
rewriting subsystem based on Paulson’s higher-order rewriting combinators [13].

There is a library facility containing useful theories and tools that have been packaged
for general use. So far about thirty libraries have been contributed by users from both
universities and industry. Syntax processing libraries are provided to enable application-
specific languages to be embedded in higher order logic. A decision procedure for tau-
tologies and a semi-decision procedure for linear arithmetic are also provided as libraries
(these procedures, which were written by Richard Boulton, work by performing sequences
of primitive inferences and are thus guaranteed to be logically sound).

The HOL library grows with each new release of the system. In addition to the library
facility, HOL also maintains a repository of contributed material that is not required to
meet the same quality control standards as the library. This provides a vehicle for users
to distribute prototypes, documents, etc.

The HOL system comes with comprehensive documentation. There is a detailed de-
scription of the system, which includes the formal semantics of the version of higher order
logic used, a manual for the ML, programming language and a description of the theorem
proving infrastructure. The HOL reference manual documents every ML function in the
system. The text of this manual can be accessed by a help system and an X-windows
browsing tool. There is also a tutorial introduction and a training course (including ex-
ercises and solutions). All the documentation is public domain and the IANTEX sources
are distributed with the system. Some of the libraries are public domain, but others are
copyrighted by their authors.

1.2.1. The history of HOL

The approach to mechanizing formal proof used in HOL is due to Robin Milner [§8]. He
designed a system called LCF (Logic for Computable Functions), which was intended for
interactive automated reasoning about higher order recursively defined functions.

The original LCF was implemented at Edinburgh in the early 1970s, and is now referred
to as ‘Edinburgh LCF’. Its code was ported from Stanford Lisp to Franz Lisp by Gérard
Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s Franz
Lisp version of LCF was further developed at Cambridge by Larry Paulson, and became
known as ‘Cambridge LCF’ [14].

The HOL system is implemented on top of an early version of Cambridge LCF, and
consequently many features of both Edinburgh and Cambridge LCF were inherited by
HOL. For example, the formulation of higher order logic used is not the classical one due
to Church [4], but incorporates LCF-style type variables. This provides, within the logic,
some of the meta-theoretic notations used informally by Church. A second influence
of LCF is the explicit management of logical theories. These support the splitting of
complicated specifications into a coherent structure. A feature of HOL not found in LCF
is the separation of consistency-preserving definitional principles from arbitrary axioms.
Most developments using HOL are purely definitional and are thus guaranteed to be
consistent.

The original version of HOL is called HOL88 and is in the public domain. It can be
obtained by ftp from sites in the UK and USA (see below). HOLSS is implemented
in Lisp and runs on any platform that supports Franz Lisp or Common Lisp (e.g. IBM
PC, Sun, MIPS, HP workstation, Apple Macintosh). HOL8S uses an early version of ML
derived from LCF. A new language, derived from this early ML, called ‘Standard ML’,
was designed and implemented by a team lead by Robin Milner during the 1980s [12].

Two new versions of HOL implemented in Standard ML are available: HOL90 from the
University of Calgary is a public domain system intended to be used with Standard ML
of New Jersey; ICL HOL is a commercial system intended to support applications in the
security critical area and particularly with specifications written in Z; it is implemented in
Poly/ML. HOL90 provides, within Standard ML, essentially the same facilities as HOLS8
and is intended to eventually replace it. ICL HOL is somewhat different (although the
underlying concepts are the same). All three systems support the same logic; they only
differ in the theorem proving infrastructure provided.

1.2.2. Overview of the theorem-proving infrastructure

ML is an interactive typed functional programming language. It has a type system that
forms the basis of the security of theorem-proving in HOL [11].

Note that there is a potential for confusing the type system of the logic (see 1.1.1) and
the completely separate type system of the metalanguage ML.

There are three ML types that form the interface to the logic: type, term and thm.
Values of these types are data-structures that represent types, terms and theorems of
the HOL logic in ML. Functions are provided in ML to manipulate types and terms, for
example there is a function dest_comb that splits a function application ¢ ¢, into the
component terms #; and #;. The inverse of this destructor is an ML function mk_comb.

Values of ML type thm represent theorems of the HOL logic. There are five predefined ML
identifiers of type thm: BOOL_CASES_AX, IMP_ANTISYM, ETA_AX, SELECT_AX and INFINITY_AX;
these correspond to the five axioms in the theory INIT (see 1.1.7).

The ML type system ensures that the only way to generate more theorems is to apply
ML functions that return values of type thm. In the core of the system there are only

eight such functions: ASSUME, REFL, BETA_CONV, SUBST, ABS, INST_TYPE, DISCH and MP; these
correspond to the eight rules of inference of the HOL deductive system (see 1.1.6).

The only way of creating values of ML type thm is to apply a sequence of these functions,
i.e. a sequence of applications of inference rules. Thus all values of ML type thm are
theorems of the HOL deductive system. It is possible to generate a trace of the applications
of the primitive rules and so obtain a formal proof in the sense of 1.1.6; this is useful for
independent proof auditing. The explicit proof facility is available in HOL88 Version 2.02.

In practice, it would be very tedious if one started with only the five axioms and eight
rules of inference. When the HOL system is built hundreds of theorems are pre-proved.
Theorems are stored in theories on disc in theory files. Many useful theories are generated
automatically and saved when the system is build. For example, theories of lists, sets,
bags, trees, strings, various kinds of numbers (including real numbers constructed via a
type definition based on Dedekind cuts), n-bit words, group theory, fixedpoints, order
structures etc. Some of these theories are in the main system and some in libraries.

Many theorem proving tools are predefined; when invoked these can cause thousands
of primitive inference steps to be performed automatically. Some of these tools are in the
main system and some are in libraries. For example, there is a semi decision procedure for
a fragment of arithmetic. This takes a term ¢ of ML type term as an argument and then
computes — by a sequence of primitive inferences — the theorem F ¢ of type thm. This
is unlike other systems in which programs implementing complex inference mechanisms,
like decision procedures, are simply trusted.

In LCF-style systems like HOL, one only needs to trust the programs implementing the
core of the system (e.g. the eight primitive inference rules); derived rules are guaranteed
to be sound because when they are invoked they expand to a sequence of calls of the
primitives. Even the need to trust the core can be eliminated by explicitly generating a
formal proof and having it independently checked.

The LCF methodology offers very high security, but does incur a performance penalty
due to the expansion of every derived rule into sequences of primitive inference steps.
However, specialized programming techniques and heavy optimization have made this
penalty surprisingly small [3].

Rewriting

A particularly important collection of proof tools concern rewriting, i.e. the repeated
application of equational theorems F ¢ = f; to replace instances of #; by the correspond-
ing instance of t;. Such equations arise in many ways, e.g. as definitions of constants or as
laws like associativity and commutativity. HOL provides a number of ‘brute force’ tools
for repeatedly rewriting with lists of equations.

The rewriting strategy may be adjusted to scan in various orders through terms, such
as bottom up or top-down. HOL also provides tools for the fine grain control of rewriting.
For example, the unrestricted use of commutativity laws leads to infinite loops, so one may
only want to apply such laws in restricted ways. The mechanism of conversions, developed
by Paulson [13], is available for such cases. Knuth Bendix completion is available as a
derived rule (it was contributed by Konrad Slind).

Goal directed proof: tactics and tacticals

Theorems are not normally proved in HOL by applying inference rules directly (although
sometimes powerful derived ones like decision procedures are used this way). It is more
usual to use the built-in subgoal package to manage the search for a proof in a goal
directed fashion. This is based around the notion of tactics originally developed by
Milner for LCF. The idea is that one starts with a sequent, called a goal, and then uses
subgoaling functions (called tactics) to split it into subgoals, subsubgoals etc. Eventually
all the subgoals will be instances of already proved theorems and can be trivially solved.
The subgoal package then automatically generates a theorem corresponding to the original
goal. This subgoaling process can either be driven by executing ML commands explicitly,
or it can by driven by pointing and clicking on parts of goals displayed on the screen via
the Centaur interface [16].

Just as ML functions representing rules of inference can be combined to obtain com-
plex derived rules, so tactics can be combined (using operators called tacticals) to obtain
more complex tactics. HOL comes equipped with predefined tactics for rewriting and
for applying decision procedures (e.g. for tautolgies and subsets of arithmetic). Applica-
tion specific verification systems can be implemented by defining special purpose tactics,
e.g. for verification condition generation [6].

1.2.3. Getting and using HOL

The HOL system can be obtained from ted.cs.uidaho.edu (129.101.100.20) by anony-
mous £tp; it isin the directory “ftp/pub/hol. It is also available from ftp.cl.cam.ac.uk
(128.232.0.56) in the directory hol.

There is an electronic mailing list for discussing HOL and disseminating news about it.
This list is joined by sending email to: info-hol-request@ted.cs.uidaho.edu.

There is an annual HOL users meeting. The tradition is that this alternates between
Europe and North America. In 1991 the meeting was at the University of California at
Davis [2]. In 1992 the meeting was at IMEC in Leuven, Belgium [5], in 1993 it was in
Canada at the University of British Columbia and in 1994 it will be at the University of
Malta.

Bibliography

REFERENCES

1

10

11

12

13

P. D. Andrews. An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof. Computer Science and Applied Mathematics Series. Academic Press,
1986.

M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors. The 1991 Interna-
tional Workshop on the HOL Theorem Proving System and its Applications, University
of California at Davis, August 1991. IEEE Computer Society Press.

R. J. Boulton. On efficiency in theorem provers which fully expand proofs into primi-
tive inferences. Technical Report 248, University of Cambridge Computer Laboratory,
February 1992.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:56-68, 1940.

L. J. M. Claesen and M. J. C. Gordon, editors. Higher Order Logic Theorem Proving
and its Applications, Leuven, Belgium, 21-24 September 1992. IFIP transactions A-
20, Elseview North-Holland.

M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Verifi-
cation and Automated Theorem Proving, pages 387-439. Springer-Verlag, 1989.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem-proving enuvi-
ronment for higher-order logic. Cambridge University Press, 1993.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth. FEdinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

T. F. Melham. Automating recursive type definitions in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Verifi-
cation and Automated Theorem Proving, pages 341-386. Springer-Verlag, 1989.

T. F. Melham. The HOL logic extended with quantification over type variables.
In Higher Order Logic Theorem Proving and its Applications, pages 3-17, Leuven,
Belgium, 21-24 September 1992. IFIP transactions A-20, Elsevier North-Holland.

R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348-375, December 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
1990.

L. C. Paulson. A higher-order implementation of rewriting. Science of Computer
Programmaing, 3:119-149, 1983.

25

14 L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF, vol-

15

16

ume 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1987.

L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361-386. Academic Press, 1990.

L. Théry, Y. Bertot, and G. Kahn. Real theorem provers deserve real user-interfaces.
In Proceedings of the Fifth ACM SIGSOFT Symposium on Software Development
Environments, volume 17(5) of Software Engineering Notes, Tyson’s Corner, Va, USA,
1992. ACM Press.

