
[For HOL Trindemossen-1] April 24, 2024

The HOL System
LOGIC

Preface

This volume contains the description of the HOL system’s logic. It is one of four volumes
making up the documentation for HOL:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL

system;

(ii) TUTORIAL: a tutorial introduction to HOL, with case studies;

(iii) DESCRIPTION: a detailed user’s guide for the HOL system;

(iv) REFERENCE: the reference manual for HOL.

These four documents will be referred to by the short names (in small slanted capitals)
given above.

This document, LOGIC, serves as a formal definition of higher order logic in terms of a
set-theoretic semantics. This material was written by Andrew Pitts in 1991, and was
originally part of DESCRIPTION. Because this logic is shared with other theorem-proving
systems (HOL Light, ProofPower), and is similar to that implemented in Isabelle, where
it is called Isabelle/HOL, it is now presented in its own manual.

The HOL system is designed to support interactive theorem proving in higher order
logic (hence the acronym ‘HOL’). To this end, the formal logic is interfaced to a general
purpose programming language (ML, for meta-language) in which terms and theorems
of the logic can be denoted, proof strategies expressed and applied, and logical theories
developed. The version of higher order logic used in HOL is predicate calculus with terms
from the typed lambda calculus (i.e. simple type theory). This was originally developed
as a foundation for mathematics [2]. The primary application area of HOL was initially
intended to be the specification and verification of hardware designs. (The use of higher
order logic for this purpose was first advocated by Keith Hanna [4].) However, the logic
does not restrict applications to hardware; HOL has been applied to many other areas.

Thus, this document describes the theoretical underpinnings of the HOL system, and
presents it abstractly.

3

4 Preface

The approach to mechanizing formal proof used in HOL is due to Robin Milner [3],
who also headed the team that designed and implemented the language ML. That work
centred on a system called LCF (logic for computable functions), which was intended for
interactive automated reasoning about higher order recursively defined functions. The
interface of the logic to the meta-language was made explicit, using the type structure of
ML, with the intention that other logics eventually be tried in place of the original logic.
The HOL system is a direct descendant of LCF; this is reflected in everything from its
structure and outlook to its incorporation of ML, and even to parts of its implementation.
Thus HOL satisfies the early plan to apply the LCF methodology to other logics.

The original LCF was implemented at Edinburgh in the early 1970’s, and is now referred
to as ‘Edinburgh LCF’. Its code was ported from Stanford Lisp to Franz Lisp by Gérard
Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s Franz
Lisp version of LCF was further developed at Cambridge by Larry Paulson, and became
known as ‘Cambridge LCF’. The HOL system is implemented on top of an early version of
Cambridge LCF and consequently many features of both Edinburgh and Cambridge LCF
were inherited by HOL. For example, the axiomatization of higher order logic used is not
the classical one due to Church, but an equivalent formulation influenced by LCF.

An enhanced and rationalized version of HOL, called HOL88, was released (in 1988),
after the original HOL system had been in use for several years. HOL90 (released in
1990) was a port of HOL88 to SML [5] by Konrad Slind at the University of Calgary. It
has been further developed through the 1990’s. HOL 4 is the latest version of HOL, and is
also implemented in SML; it features a number of novelties compared to its predecessors.
HOL 4 is also the supported version of the system for the international HOL community.

We have retroactively decided to number HOL implementations in the following way

1. HOL88 and earlier: implementations based on a Lisp substrate, with Classic ML.

2. HOL90: implementations in Standard ML, principally using the SML/NJ implemen-
tation.

3. HOL98 (Athabasca and Taupo releases): implementations using Moscow ML, and
with a new library and theory mechanism.

4. HOL (Kananaskis releases)

Therefore, with HOL 4, we do away with the habit of associating implementations with
year numbers. Individual releases within HOL 4 will retain the lake-number naming
scheme.

In this document, the acronym ‘HOL’ refers to both the interactive theorem proving
system and to the version of higher order logic that the system supports; where there is
serious ambiguity, the former is called ‘the HOL system’ and the latter ‘the HOL logic’.

Acknowledgements

The bulk of HOL is based on code written by—in alphabetical order—Hasan Amjad,
Richard Boulton, Anthony Fox, Mike Gordon, Elsa Gunter, John Harrison, Peter Homeier,
Gérard Huet (and others at INRIA), Joe Hurd, Ramana Kumar, Ken Friis Larsen, Tom
Melham, Robin Milner, Lockwood Morris, Magnus Myreen, Malcolm Newey, Michael
Norrish, Larry Paulson, Konrad Slind, Don Syme, Chun Tian, Thomas Türk, Chris
Wadsworth, and Tjark Weber. Many others have supplied parts of the system, bug fixes,
etc.

Current edition

The current edition of all four volumes (LOGIC, TUTORIAL, DESCRIPTION and REFERENCE)
has been prepared by Michael Norrish and Konrad Slind. Further contributions to these
volumes came from: Hasan Amjad, who developed a model checking library and wrote
sections describing its use; Jens Brandt, who developed and documented a library for
the rational numbers; Anthony Fox, who formalized and documented new word theories
and the associated libraries; Mike Gordon, who documented the libraries for BDDs and
SAT; Peter Homeier, who implemented and documented the quotient library; Joe Hurd,
who added material on first order proof search; Chun Tian, who documented the HOL
theories for probability and measure theory; and Tjark Weber, who wrote libraries for
Satisfiability Modulo Theories (SMT) and Quantified Boolean Formulae (QBF).

The material in the third edition constitutes a thorough re-working and extension of
previous editions. The only essentially unaltered piece is the semantics by Andy Pitts
(in LOGIC), reflecting the fact that, although the HOL system has undergone continual
development and improvement, the HOL logic is unchanged since the first edition (1988).

5

6 Acknowledgements

Second edition

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching lantern’
taken by Avra Cohn (in whose garden the original object resides). John Van Tassel
composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documentation
effort, either by providing material, or by sending lists of errors in the first edition.
Thanks to everyone who helped, and thanks to DSTO and SRI for their generous support.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

Acknowledgements 7

In Memory of Mike Gordon

As documented in the academic literature, in material available from his archived web-
pages at the University of Cambridge Computer Laboratory, and in these manuals, Mike
Gordon was HOL’s primary creator and developer. Mike not only created a significant
piece of software, inspiring this and many other projects since, but also built a world-
leading research group in the Computer Laboratory. This research environment was
wonderfully productive for many of the system’s authors, and we all owe Mike an
enormous debt for both the original work on HOL, and for the way he and his group
supported our own development as researchers and HOL hackers.

Mike Gordon, 1948–2017

8 Acknowledgements

Contents

1 Syntax and Semantics 11

1.1 Introduction . 11

1.2 Types . 12

1.2.1 Type structures . 14

1.2.2 Semantics of types . 15

1.2.3 Instances and substitution . 16

1.3 Terms . 17

1.3.1 Terms-in-context . 19

1.3.2 Semantics of terms . 19

1.3.3 Substitution . 22

1.4 Standard notions . 23

1.4.1 Standard type structures . 23

1.4.2 Standard signatures . 24

2 Theories 27

2.1 Introduction . 27

2.2 Sequents . 28

2.3 Logic . 29

2.3.1 The HOL deductive system . 29

2.3.2 Soundness theorem . 31

2.4 HOL Theories . 32

2.4.1 The theory MIN . 32

2.4.2 The theory LOG . 33

2.4.3 The theory INIT . 35

9

10 CONTENTS

2.4.4 Implementing theories LOG and INIT 36

2.4.5 Consistency . 36

2.5 Extensions of theories . 36

2.5.1 Extension by constant definition 38

2.5.2 Extension by constant specification 39

2.5.3 Remarks about constants in HOL 42

2.5.4 Extension by type definition . 43

2.5.5 Extension by type specification 45

Chapter 1

Syntax and Semantics

1.1 Introduction

This chapter describes the syntax and set-theoretic semantics of the logic supported
by the HOL system, which is a variant of Church’s simple theory of types [2] and will
henceforth be called the HOL logic, or just HOL. The meta-language for this description
will be English, enhanced with various mathematical notations and conventions. The
object language of this description is the HOL logic. Note that there is a ‘meta-language’,
in a different sense, associated with the HOL logic, namely the programming language
ML. This is the language used to manipulate the HOL logic by users of the system. It is
hoped that because of context, no confusion results from these two uses of the word
‘meta-language’. When ML is the object of study (as in [5]), ML is the object language
under consideration—and English is again the meta-language!

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote respectively certain sets and elements of sets. This set theoretic
interpretation will be developed alongside the description of the HOL syntax, and in
the next chapter the HOL proof system will be shown to be sound for reasoning about
properties of the set theoretic model.1 This model is given in terms of a fixed set of
sets  , which will be called the universe and which is assumed to have the following
properties.

Inhab Each element of  is a non-empty set.

Sub If 𝑋 ∈  and ∅ ≠ 𝑌 ⊆ 𝑋, then 𝑌 ∈  .

Prod If 𝑋 ∈  and 𝑌 ∈  , then 𝑋 × 𝑌 ∈  . The set 𝑋 × 𝑌 is the cartesian product,
consisting of ordered pairs (𝑥, 𝑦) with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , with the usual set-theoretic
coding of ordered pairs, viz. (𝑥, 𝑦) = {{𝑥}, {𝑥, 𝑦}}.

Pow If 𝑋 ∈  , then the powerset 𝑃 (𝑋) = {𝑌 ∶ 𝑌 ⊆ 𝑋} is also an element of  .

Infty  contains a distinguished infinite set I.

1There are other, ‘non-standard’ models of HOL, which will not concern us here.

11

12 CHAPTER 1. SYNTAX AND SEMANTICS

Choice There is a distinguished element ch ∈
∏

𝑋∈ 𝑋. The elements of the product
∏

𝑋∈ 𝑋 are (dependently typed) functions: thus for all 𝑋 ∈  , 𝑋 is non-empty
by Inhab and ch(𝑋) ∈ 𝑋 witnesses this.

There are some consequences of these assumptions which will be needed. In set theory
functions are identified with their graphs, which are certain sets of ordered pairs. Thus
the set 𝑋→𝑌 of all functions from a set 𝑋 to a set 𝑌 is a subset of 𝑃 (𝑋 × 𝑌); and it is a
non-empty set when 𝑌 is non-empty. So Sub, Prod and Pow together imply that  also
satisfies

Fun If 𝑋 ∈  and 𝑌 ∈  , then 𝑋→𝑌 ∈  .

By iterating Prod, one has that the cartesian product of any finite, non-zero number of
sets in  is again in  .  also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in —Infty
guarantees there is one); for definiteness, a particular one-element set will be singled
out.

Unit  contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty,  contains two-element sets, one of which will be
singled out.

Bool  contains a distinguished two-element set 2 = {0, 1}.

The above assumptions on  are weaker than those imposed on a universe of sets by
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), principally
because  is not required to satisfy any form of the Axiom of Replacement. Indeed, it is
possible to prove the existence of a set  with the above properties from the axioms of
ZFC. (For example one could take  to consist of all non-empty sets in the von Neumann
cumulative hierarchy formed before stage 𝜔 + 𝜔.) Thus, as with many other pieces of
mathematics, it is possible in principal to give a completely formal version within ZFC set
theory of the semantics of the HOL logic to be given below.

1.2 Types

The types of the HOL logic are expressions that denote sets (in the universe ). Following
tradition, 𝜎, possibly decorated with subscripts or primes, is used to range over arbitrary
types.

1.2. TYPES 13

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which 𝛼 ranges over type variables, c ranges over atomic
types and op ranges over type operators.

𝜎 ∶∶= 𝛼

type variables

6
∣ 𝑐

atomic types
6

∣ (𝜎1,… , 𝜎𝑛)𝑜𝑝
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

compound types6

∣ 𝜎1→𝜎2
⏟⏟⏟

function types
(domain 𝜎1, codomain 𝜎2)

6

In more detail, the four kinds of types are as follows.

1. Type variables: these stand for arbitrary sets in the universe. In Church’s original
formulation of simple type theory, type variables are part of the meta-language
and are used to range over object language types. Proofs containing type variables
were understood as proof schemes (i.e. families of proofs). To support such
proof schemes within the HOL logic, type variables have been added to the object
language type system.2

2. Atomic types: these denote fixed sets in the universe. Each theory determines
a particular collection of atomic types. For example, the standard atomic types
bool and ind denote, respectively, the distinguished two-element set 2 and the
distinguished infinite set I.

3. Compound types: These have the form (𝜎1,… , 𝜎𝑛)op, where 𝜎1, … , 𝜎𝑛 are the
argument types and 𝑜𝑝 is a type operator of arity 𝑛. Type operators denote operations
for constructing sets. The type (𝜎1,… , 𝜎𝑛)op denotes the set resulting from applying
the operation denoted by 𝑜𝑝 to the sets denoted by 𝜎1, … , 𝜎𝑛. For example, list is
a type operator with arity 1. It denotes the operation of forming all finite lists of
elements from a given set. Another example is the type operator prod of arity 2
which denotes the cartesian product operation. The type (𝜎1, 𝜎2)prod is written as
𝜎1 × 𝜎2.

4. Function types: If 𝜎1 and 𝜎2 are types, then 𝜎1→𝜎2 is the function type with domain
𝜎1 and codomain 𝜎2. It denotes the set of all (total) functions from the set denoted
by its domain to the set denoted by its codomain. (In the literature 𝜎1→𝜎2 is written
without the arrow and backwards—i.e. as 𝜎2𝜎1.) Note that syntactically → is simply
a distinguished type operator of arity 2 written with infix notation. It is singled out
in the definition of HOL types because it will always denote the same operation in
any model of a HOL theory—in contrast to the other type operators which may be
interpreted differently in different models. (See Section 1.2.2.)

2This technique was invented by Robin Milner for the object logic PP𝜆 of his LCF system.

14 CHAPTER 1. SYNTAX AND SEMANTICS

It turns out to be convenient to identify atomic types with compound types constructed
with 0-ary type operators. For example, the atomic type bool of truth-values can be
regarded as being an abbreviation for ()bool. This identification will be made in the
technical details that follow, but in the informal presentation atomic types will continue
to be distinguished from compound types, and ()𝑐 will still be written as 𝑐.

1.2.1 Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter 𝜈 is used to range over arbitrary members of TyNames, c will continue to be used
to range over the names of atomic types (i.e. 0-ary type constants), and op is used to
range over the names of type operators (i.e. 𝑛-ary type constants, where 𝑛 > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters 𝛼, 𝛽,…,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set Ω of type constants. A type constant is a pair (𝜈, 𝑛) where
𝜈 ∈ 𝖳𝗒𝖭𝖺𝗆𝖾𝗌 is the name of the constant and 𝑛 is its arity. Thus Ω ⊆ 𝖳𝗒𝖭𝖺𝗆𝖾𝗌×𝖭𝖭 (where
𝖭𝖭 is the set of natural numbers). It is assumed that no two distinct type constants have
the same name, i.e. whenever (𝜈, 𝑛1) ∈ Ω and (𝜈, 𝑛2) ∈ Ω, then 𝑛1 = 𝑛2.

The set TypesΩ of types over a structure Ω can now be defined as the smallest set such
that:

• TyVars ⊆ TypesΩ.

• If (𝜈, 0) ∈ Ω then ()𝜈 ∈ 𝖳𝗒𝗉𝖾𝗌Ω.

• If (𝜈, 𝑛) ∈ Ω and 𝜎𝑖 ∈ 𝖳𝗒𝗉𝖾𝗌Ω for 1 ≤ 𝑖 ≤ 𝑛, then (𝜎1, … , 𝜎𝑛)𝜈 ∈ 𝖳𝗒𝗉𝖾𝗌Ω.

• If 𝜎1 ∈ 𝖳𝗒𝗉𝖾𝗌Ω and 𝜎2 ∈ 𝖳𝗒𝗉𝖾𝗌Ω then 𝜎1→𝜎2 ∈ 𝖳𝗒𝗉𝖾𝗌Ω.

The type operator → is assumed to associate to the right, so that

𝜎1→𝜎2→…→𝜎𝑛→𝜎

abbreviates

𝜎1→(𝜎2→…→(𝜎𝑛→𝜎)…)

The notation 𝑡𝑦𝑣𝑎𝑟𝑠(𝜎) is used to denote the set of type variables occurring in 𝜎.

1.2. TYPES 15

1.2.2 Semantics of types

A model 𝑀 of a type structure Ω is specified by giving for each type constant (𝜈, 𝑛) an
𝑛-ary function

𝑀(𝜈) ∶  𝑛 ⟶ 

Thus given sets 𝑋1,… , 𝑋𝑛 in the universe  , 𝑀(𝜈)(𝑋1,… , 𝑋𝑛) is also a set in the universe.
In case 𝑛 = 0, this amounts to specifying an element 𝑀(𝜈) ∈  for the atomic type 𝜈.

Types containing no type variables are called monomorphic, whereas those that do
contain type variables are called polymorphic. What is the meaning of a polymorphic
type? One can only say what set a polymorphic type denotes once one has instantiated
its type variables to particular sets. So its overall meaning is not a single set, but is rather
a set-valued function,  𝑛 ⟶  , assigning a set for each particular assignment of sets
to the relevant type variables. The arity 𝑛 corresponds to the number of type variables
involved. It is convenient in this connection to be able to consider a type variable to be
involved in the semantics of a type 𝜎 whether or not it actually occurs in 𝜎, leading to
the notion of a type-in-context.

A type context, 𝛼𝑠, is simply a finite (possibly empty) list of distinct type variables 𝛼1,… , 𝛼𝑛.
A type-in-context is a pair, written 𝛼𝑠.𝜎, where 𝛼𝑠 is a type context, 𝜎 is a type (over some
given type structure) and all the type variables occurring in 𝜎 appear somewhere in the
list 𝛼𝑠. The list 𝛼𝑠 may also contain type variables which do not occur in 𝜎.

For each 𝜎 there are minimal contexts 𝛼𝑠 for which 𝛼𝑠.𝜎 is a type-in-context, which only
differ by the order in which the type variables of 𝜎 are listed in 𝛼𝑠. In order to select one
such context, let us assume that TyVars comes with a fixed total order and define the
canonical context of the type 𝜎 to consist of exactly the type variables it contains, listed
in order.3

Let 𝑀 be a model of a type structure Ω. For each type-in-context 𝛼𝑠.𝜎 over Ω, define a
function

[[𝛼𝑠.𝜎]]𝑀 ∶  𝑛 ⟶ 

(where 𝑛 is the length of the context) by induction on the structure of 𝜎 as follows.

• If 𝜎 is a type variable, it must be 𝛼𝑖 for some unique 𝑖 = 1,… , 𝑛 and then [[𝛼𝑠.𝜎]]𝑀
is the 𝑖th projection function, which sends (𝑋1,… , 𝑋𝑛) ∈  𝑛 to 𝑋𝑖 ∈  .

• If 𝜎 is a function type 𝜎1→𝜎2, then [[𝛼𝑠.𝜎]]𝑀 sends 𝑋𝑠 ∈  𝑛 to the set of all functions
from [[𝛼𝑠.𝜎1]]𝑀 (𝑋𝑠) to [[𝛼𝑠.𝜎2]]𝑀 (𝑋𝑠). (This makes use of the property Fun of  .)

3It is possible to work with unordered contexts, specified by finite sets rather than lists, but we choose
not to do that since it mildly complicates the definition of the semantics to be given below.

16 CHAPTER 1. SYNTAX AND SEMANTICS

• If 𝜎 is a compound type (𝜎1,… , 𝜎𝑚)𝜈, then [[𝛼𝑠.𝜎]]𝑀 sends 𝑋𝑠 to 𝑀(𝜈)(𝑆1,… , 𝑆𝑚)
where each 𝑆𝑗 is [[𝛼𝑠.𝜎𝑗]]𝑀 (𝑋𝑠).

One can now define the meaning of a type 𝜎 in a model 𝑀 to be the function

[[𝜎]]𝑀 ∶  𝑛 ⟶ 

given by [[𝛼𝑠.𝜎]]𝑀 , where 𝛼𝑠 is the canonical context of 𝜎. If 𝜎 is monomorphic, then 𝑛 = 0
and [[𝜎]]𝑀 can be identified with the element [[𝜎]]𝑀 () of  . When the particular model
𝑀 is clear from the context, [[_]]𝑀 will be written [[_]].

To summarize, given a model in  of a type structure Ω, the semantics interprets
monomorphic types over Ω as sets in  and more generally, interprets polymorphic
types involving 𝑛 type variables as 𝑛-ary functions  𝑛 ⟶  on the universe. Function
types are interpreted by full function sets.

Examples Suppose that Ω contains a type constant (b, 0) and that the model 𝑀 assigns
the set 2 to b. Then:

1. [[b→b→b]] = 2→2→2 ∈  .

2. [[(𝛼→b)→𝛼]] ∶  ⟶  is the function sending 𝑋 ∈  to (𝑋→2)→𝑋 ∈  .

3. [[𝛼, 𝛽.(𝛼→b)→𝛼]] ∶  2 ⟶  is the function sending (𝑋, 𝑌) ∈  2 to (𝑋→2)→𝑋 ∈
 .

Remark A more traditional approach to the semantics would involve giving meanings
to types in the presence of ‘environments’ assigning sets in  to all type variables. The
use of types-in-contexts is almost the same as using partial environments with finite
domains—it is just that the context ties down the admissible domain to a particular finite
(ordered) set of type variables. At the level of types there is not much to choose between
the two approaches. However for the syntax and semantics of terms to be given below,
where there is a dependency both on type variables and on individual variables, the
approach used here seems best.

1.2.3 Instances and substitution

If 𝜎 and 𝜏1,… , 𝜏𝑛 are types over a type structure Ω,

𝜎[𝜏1,… , 𝜏𝑝∕𝛽1,… , 𝛽𝑝]

will denote the type resulting from the simultaneous substitution for each 𝑖 = 1,… , 𝑝 of
𝜏𝑖 for the type variable 𝛽𝑖 in 𝜎. The resulting type is called an instance of 𝜎. The following

1.3. TERMS 17

lemma about instances will be useful later; it is proved by induction on the structure of
𝜎.

Lemma 1 Suppose that 𝜎 is a type containing distinct type variables 𝛽1,… , 𝛽𝑝 and that
𝜎′ = 𝜎[𝜏1,… , 𝜏𝑛∕𝛽1,… , 𝛽𝑝] is an instance of 𝜎. Then the types 𝜏1,… , 𝜏𝑝 are uniquely
determined by 𝜎 and 𝜎′.

We also need to know how the semantics of types behaves with respect to substitution:

Lemma 2 Given types-in-context 𝛽𝑠.𝜎 and 𝛼𝑠.𝜏𝑖 (𝑖 = 1,… , 𝑝, where 𝑝 is the length of 𝛽𝑠),
let 𝜎′ be the instance 𝜎[𝜏𝑠∕𝛽𝑠]. Then 𝛼𝑠.𝜎′ is also a type-in-context and its meaning in any
model 𝑀 is related to that of 𝛽𝑠.𝜎 as follows. For all 𝑋𝑠 ∈  𝑛 (where 𝑛 is the length of 𝛼𝑠)

[[𝛼𝑠.𝜎′]](𝑋𝑠) = [[𝛽𝑠.𝜎]]([[𝛼𝑠.𝜏1]](𝑋𝑠),… , [[𝛼𝑠.𝜏𝑝]](𝑋𝑠))

Once again, the lemma can be proved by induction on the structure of 𝜎.

1.3 Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted by
types. The meta-variable 𝑡 is used to range over arbitrary terms, possibly decorated with
subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately by
the following BNF grammar, in which 𝑥 ranges over variables and 𝑐 ranges over constants.

𝑡 ∶∶= 𝑥

variables

6
∣ 𝖼

constants
6

∣ 𝑡 𝑡′
⏟⏟⏟

function applications
(function 𝑡, argument 𝑡′)

6

∣ 𝜆𝑥. 𝑡
⏟⏟⏟

𝜆-abstractions
6

Informally, a 𝜆-term 𝜆𝑥. 𝑡 denotes a function 𝑣 ↦ 𝑡[𝑣∕𝑥], where 𝑡[𝑣∕𝑥] denotes the result
of substituting 𝑣 for 𝑥 in 𝑡. An application 𝑡 𝑡′ denotes the result of applying the function
denoted by 𝑡 to the value denoted by 𝑡′. This will be made more precise below.

The BNF grammar just given omits mention of types. In fact, each term in the HOL logic
is associated with a unique type. The notation 𝑡𝜎 is traditionally used to range over terms
of type 𝜎. A more accurate grammar of terms is:

𝑡𝜎 ∶∶= 𝑥𝜎 ∣ 𝖼𝜎 ∣ (𝑡𝜎′→𝜎 𝑡′𝜎′)𝜎 ∣ (𝜆𝑥𝜎1 . 𝑡𝜎2)𝜎1→𝜎2

18 CHAPTER 1. SYNTAX AND SEMANTICS

In fact, just as the definition of types was relative to a particular type structure Ω, the
formal definition of terms is relative to a given collection of typed constants over Ω.
Assume that an infinite set Names of names is given. A constant over Ω is a pair (𝖼, 𝜎),
where 𝖼 ∈ 𝖭𝖺𝗆𝖾𝗌 and 𝜎 ∈ 𝖳𝗒𝗉𝖾𝗌Ω. A signature over Ω is just a set ΣΩ of such constants.

The set TermsΣΩ
of terms over ΣΩ is defined to be the smallest set closed under the

following rules of formation:

1. Constants: If (𝖼, 𝜎) ∈ ΣΩ and 𝜎′ ∈ 𝖳𝗒𝗉𝖾𝗌Ω is an instance of 𝜎, then (𝖼, 𝜎′) ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ
.

Terms formed in this way are called constants and are written 𝖼𝜎′.

2. Variables: If 𝑥 ∈ 𝖭𝖺𝗆𝖾𝗌 and 𝜎 ∈ 𝖳𝗒𝗉𝖾𝗌Ω, then 𝚟𝚊𝚛 𝑥𝜎 ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ
. Terms formed

in this way are called variables. The marker var is purely a device to distinguish
variables from constants with the same name. A variable 𝚟𝚊𝚛 𝑥𝜎 will usually be
written as 𝑥𝜎, if it is clear from the context that 𝑥 is a variable rather than a
constant.

3. Function applications: If 𝑡𝜎′→𝜎 ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ
and 𝑡′𝜎′ ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ

, then (𝑡𝜎′→𝜎 𝑡′𝜎′)𝜎 ∈
𝖳𝖾𝗋𝗆𝗌ΣΩ

. (Terms formed in this way are sometimes called combinations.)

4. 𝜆-Abstractions: If 𝚟𝚊𝚛 𝑥𝜎1 ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ
and 𝑡𝜎2 ∈ 𝖳𝖾𝗋𝗆𝗌ΣΩ

, then (𝜆𝑥𝜎1 . 𝑡𝜎2)𝜎1→𝜎2 ∈
𝖳𝖾𝗋𝗆𝗌ΣΩ

.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the term
or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that 𝑡 𝑡1 𝑡2 … 𝑡𝑛 abbreviates
(… ((𝑡 𝑡1) 𝑡2) … 𝑡𝑛).

The notation 𝜆𝑥1 𝑥2 ⋯ 𝑥𝑛. 𝑡 abbreviates 𝜆𝑥1. (𝜆𝑥2. ⋯ (𝜆𝑥𝑛. 𝑡) ⋯).

A term is called polymorphic if it contains a type variable. Otherwise it is called
monomorphic. Note that a term 𝑡𝜎 may be polymorphic even though 𝜎 is monomorphic
— for example, (𝑓𝛼→b 𝑥𝛼)b, where b is an atomic type. The expression 𝑡𝑦𝑣𝑎𝑟𝑠(𝑡𝜎) denotes
the set of type variables occurring in 𝑡𝜎.

An occurrence of a variable 𝑥𝜎 is called bound if it occurs within the scope of a textually
enclosing 𝜆𝑥𝜎, otherwise the occurrence is called free. Note that 𝜆𝑥𝜎 does not bind 𝑥𝜎′ if
𝜎 ≠ 𝜎′. A term in which all occurrences of variables are bound is called closed.

1.3. TERMS 19

1.3.1 Terms-in-context

A context 𝛼𝑠,𝑥𝑠 consists of a type context 𝛼𝑠 together with a list 𝑥𝑠 = 𝑥1,… , 𝑥𝑚 of distinct
variables whose types only contain type variables from the list 𝛼𝑠.

The condition that 𝑥𝑠 contains distinct variables needs some comment. Since a variable is
specified by both a name and a type, it is permitted for 𝑥𝑠 to contain repeated names, so
long as different types are attached to the names. This aspect of the syntax means that
one has to proceed with caution when defining the meaning of type variable instantiation,
since instantiation may cause variables to become equal ‘accidentally’: see Section 1.3.3.

A term-in-context 𝛼𝑠,𝑥𝑠.𝑡 consists of a context together with a term 𝑡 satisfying the following
conditions.

• 𝛼𝑠 contains any type variable that occurs in 𝑥𝑠 and 𝑡.

• 𝑥𝑠 contains any variable that occurs freely in 𝑡.

• 𝑥𝑠 does not contain any variable that occurs bound in 𝑡.

The context 𝛼𝑠,𝑥𝑠 may contain (type) variables which do not appear in 𝑡. Note that the
combination of the second and third conditions implies that a variable cannot have
both free and bound occurrences in 𝑡. For an arbitrary term, there is always an 𝛼-
equivalent term which satisfies this condition, obtained by renaming the bound variables
as necessary.4 In the semantics of terms to be given below we will restrict attention
to such terms. Then the meaning of an arbitrary term is taken to be the meaning of
some 𝛼-variant of it having no variable both free and bound. (The semantics will equate
𝛼-variants, so it does not matter which is chosen.) Evidently for such a term there is a
minimal context 𝛼𝑠,𝑥𝑠, unique up to the order in which variables are listed, for which
𝛼𝑠,𝑥𝑠.𝑡 is a term-in-context. As for type variables, we will assume given a fixed total order
on variables. Then the unique minimal context with variables listed in order will be
called the canonical context of the term 𝑡.

1.3.2 Semantics of terms

Let ΣΩ be a signature over a type structure Ω (see Section 1.3). A model 𝑀 of ΣΩ is
specified by a model of the type structure plus for each constant (𝖼, 𝜎) ∈ ΣΩ an element

𝑀(𝖼, 𝜎) ∈
∏

𝑋𝑠∈ 𝑛

[[𝜎]]𝑀 (𝑋𝑠)

4Recall that two terms are said to be 𝛼-equivalent if they differ only in the names of their bound
variables.

20 CHAPTER 1. SYNTAX AND SEMANTICS

of the indicated cartesian product, where 𝑛 is the number of type variables occurring in
𝜎. In other words 𝑀(𝖼, 𝜎) is a (dependently typed) function assigning to each 𝑋𝑠 ∈  𝑛

an element of [[𝜎]]𝑀 (𝑋𝑠). In the case that 𝑛 = 0 (so that 𝜎 is monomorphic), [[𝜎]]𝑀 was
identified with a set in  and then 𝑀(𝑐, 𝜎) can be identified with an element of that set.

The meaning of HOL terms in such a model will now be described. The semantics
interprets closed terms involving no type variables as elements of sets in  (the particular
set involved being derived from the type of the term as in Section 1.2.2). More generally,
if the closed term involves 𝑛 type variables then it is interpreted as an element of a
product

∏

𝑋𝑠∈ 𝑛 𝑌 (𝑋𝑠), where the function 𝑌 ∶  𝑛 ⟶  is derived from the type of
the term (in a type context derived from the term). Thus the meaning of the term is
a (dependently typed) function which, when applied to any meanings chosen for the
type variables in the term, yields a meaning for the term as an element of a set in  .
On the other hand, if the term involves 𝑚 free variables but no type variables, then
it is interpreted as a function 𝑌1 × ⋯ × 𝑌𝑚→𝑌 where the sets 𝑌1,… , 𝑌𝑚 in  are the
interpretations of the types of the free variables in the term and the set 𝑌 ∈  is the
interpretation of the type of the term; thus the meaning of the term is a function which,
when applied to any meanings chosen for the free variables in the term, yields a meaning
for the term. Finally, the most general case is of a term involving 𝑛 type variables and 𝑚
free variables: it is interpreted as an element of a product

∏

𝑋𝑠∈ 𝑛

𝑌1(𝑋𝑠) ×⋯ × 𝑌𝑚(𝑋𝑠) → 𝑌 (𝑋𝑠)

where the functions 𝑌1,… , 𝑌𝑚, 𝑌 ∶  𝑛 ⟶  are determined by the types of the free
variables and the type of the term (in a type context derived from the term).

More precisely, given a term-in-context 𝛼𝑠,𝑥𝑠.𝑡 over ΣΩ suppose

• 𝑡 has type 𝜏

• 𝑥𝑠 = 𝑥1,… , 𝑥𝑚 and each 𝑥𝑗 has type 𝜎𝑗

• 𝛼𝑠 = 𝛼1,… , 𝛼𝑛.

Then since 𝛼𝑠,𝑥𝑠.𝑡 is a term-in-context, 𝛼𝑠.𝜏 and 𝛼𝑠.𝜎𝑗 are types-in-context, and hence give
rise to functions [[𝛼𝑠.𝜏]]𝑀 and [[𝛼𝑠.𝜎𝑗]]𝑀 from  𝑛 to  as in section 1.2.2. The meaning
of 𝛼𝑠,𝑥𝑠.𝑡 in the model 𝑀 will be given by an element

[[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 ∈
∏

𝑋𝑠∈ 𝑛

(

𝑚
∏

𝑗=1
[[𝛼𝑠.𝜎𝑗]]𝑀 (𝑋𝑠)

)

→[[𝛼𝑠.𝜏]]𝑀 (𝑋𝑠).

In other words, given

𝑋𝑠 = (𝑋1,… , 𝑋𝑛) ∈  𝑛

𝑦𝑠 = (𝑦1,… , 𝑦𝑚) ∈ [[𝛼𝑠.𝜎1]]𝑀 (𝑋𝑠) ×⋯ × [[𝛼𝑠.𝜎𝑚]]𝑀 (𝑋𝑠)

1.3. TERMS 21

one gets an element [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 (𝑋𝑠)(𝑦𝑠) of [[𝛼𝑠.𝜏]]𝑀 (𝑋𝑠). The definition of [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 pro-
ceeds by induction on the structure of the term 𝑡, as follows. (As before, the subscript 𝑀
will be dropped from the semantic brackets [[_]] when the particular model involved is
clear from the context.)

• If 𝑡 is a variable, it must be 𝑥𝑗 for some unique 𝑗 = 1,… , 𝑚, so 𝜏 = 𝜎𝑗 and then
[[𝛼𝑠,𝑥𝑠.𝑡]](𝑋𝑠)(𝑦𝑠) is defined to be 𝑦𝑗.

• Suppose 𝑡 is a constant 𝖼𝜎′, where (𝖼, 𝜎) ∈ ΣΩ and 𝜎′ is an instance of 𝜎. Then
by Lemma 1 of 1.2.3, 𝜎′ = 𝜎[𝜏1,… , 𝜏𝑝∕𝛽1,… , 𝛽𝑝] for uniquely determined types
𝜏1,… , 𝜏𝑝 (where 𝛽1,… , 𝛽𝑝 are the type variables occurring in 𝜎). Then define
[[𝛼𝑠,𝑥𝑠.𝑡]](𝑋𝑠)(𝑦𝑠) to be 𝑀(𝖼, 𝜎)([[𝛼𝑠.𝜏1]](𝑋𝑠),… , [[𝛼𝑠.𝜏𝑝]](𝑋𝑠)), which is an element of
[[𝛼𝑠.𝜏]](𝑋𝑠) by Lemma 2 of 1.2.3 (since 𝜏 is 𝜎′).

• Suppose 𝑡 is a function application term (𝑡1 𝑡2) where 𝑡1 is of type 𝜏 ′→𝜏 and 𝑡2 is
of type 𝜏 ′. Then 𝑓 = [[𝛼𝑠,𝑥𝑠.𝑡1]](𝑋𝑠)(𝑦𝑠), being an element of [[𝛼𝑠.𝜏 ′→𝜏]](𝑋𝑠), is a
function from the set [[𝛼𝑠.𝜏 ′]](𝑋𝑠) to the set [[𝛼𝑠.𝜏]](𝑋𝑠) which one can apply to the
element 𝑦 = [[𝛼𝑠,𝑥𝑠.𝑡2]](𝑋𝑠)(𝑦𝑠). Define [[𝛼𝑠,𝑥𝑠.𝑡]](𝑋𝑠)(𝑦𝑠) to be 𝑓 (𝑦).

• Suppose 𝑡 is the abstraction term 𝜆𝑥.𝑡2where 𝑥 is of type 𝜏1 and 𝑡2 of type 𝜏2.
Thus 𝜏 = 𝜏1→𝜏2 and [[𝛼𝑠.𝜏]](𝑋𝑠) is the function set [[𝛼𝑠.𝜏1]](𝑋𝑠)→[[𝛼𝑠.𝜏2]](𝑋𝑠). Define
[[𝛼𝑠,𝑥𝑠.𝑡]](𝑋𝑠)(𝑦𝑠) to be the element of this set which is the function sending 𝑦 ∈
[[𝛼𝑠.𝜏1]](𝑋𝑠) to [[𝛼𝑠,𝑥𝑠,𝑥.𝑡2]](𝑋𝑠)(𝑦𝑠, 𝑦). (Note that since 𝛼𝑠,𝑥𝑠.𝑡 is a term-in-context, by
convention the bound variable 𝑥 does not occur in 𝑥𝑠 and thus 𝛼𝑠,𝑥𝑠,𝑥.𝑡2 is also a
term-in-context.)

Now define the meaning of a term 𝑡𝜏 in a model 𝑀 to be the dependently typed function

[[𝑡𝜏]] ∈
∏

𝑋𝑠∈ 𝑛

(

𝑚
∏

𝑗=1
[[𝛼𝑠.𝜎𝑗]](𝑋𝑠)

)

→[[𝛼𝑠.𝜏]](𝑋𝑠)

given by [[𝛼𝑠,𝑥𝑠.𝑡𝜏]], where 𝛼𝑠,𝑥𝑠 is the canonical context of 𝑡𝜏 . So 𝑛 is the number of type
variables in 𝑡𝜏 , 𝛼𝑠 is a list of those type variables, 𝑚 is the number of ordinary variables
occurring freely in 𝑡𝜏 (assumed to be distinct from the bound variables of 𝑡𝜏) and the 𝜎𝑗
are the types of those variables. (It is important to note that the list 𝛼𝑠, which is part of
the canonical context of 𝑡, may be strictly bigger than the canonical type contexts of 𝜎𝑗
or 𝜏. So it would not make sense to write just [[𝜎𝑗]] or [[𝜏]] in the above definition.)

If 𝑡𝜏 is a closed term, then 𝑚 = 0 and for each 𝑋𝑠 ∈  𝑛 one can identify [[𝑡𝜏]] with the
element [[𝑡𝜏]](𝑋𝑠)() ∈ [[𝛼𝑠.𝜏]](𝑋𝑠). So for closed terms one gets

[[𝑡𝜏]] ∈
∏

𝑋𝑠∈ 𝑛

[[𝛼𝑠.𝜏]](𝑋𝑠)

22 CHAPTER 1. SYNTAX AND SEMANTICS

where 𝛼𝑠 is the list of type variables occurring in 𝑡𝜏 and 𝑛 is the length of that list. If
moreover, no type variables occur in 𝑡𝜏 , then 𝑛 = 0 and [[𝑡𝜏]] can be identified with the
element [[𝑡𝜏]]() of the set [[𝜏]] ∈  .

The semantics of terms appears somewhat complicated because of the possible depen-
dency of a term upon both type variables and ordinary variables. Examples of how the
definition of the semantics works in practice can be found in Section 2.4.2, where the
meaning of several terms denoting logical constants is given.

1.3.3 Substitution

Since terms may involve both type variables and ordinary variables, there are two
different operations of substitution on terms which have to be considered—substitution
of types for type variables and substitution of terms for variables.

Substituting types for type variables in terms

Suppose 𝑡 is a term, with canonical context 𝛼𝑠,𝑥𝑠 say, where 𝛼𝑠 = 𝛼1,… , 𝛼𝑛, 𝑥𝑠 = 𝑥1,… , 𝑥𝑚

and where for 𝑗 = 1,… , 𝑚 the type of the variable 𝑥𝑗 is 𝜎𝑗. If 𝛼𝑠′.𝜏𝑖 (𝑖 = 1,… , 𝑛) are
types-in-context, then substituting the types 𝜏𝑖 for the type variables 𝛼𝑖 in the list 𝑥𝑠, one
obtains a new list of variables 𝑥𝑠′. Thus the 𝑗th entry of 𝑥𝑠′ has type 𝜎′

𝑗 = 𝜎𝑗[𝜏𝑠∕𝛼𝑠]. Only
substitutions with the following property will be considered.

In instantiating the type variables 𝛼𝑠 with the types 𝜏𝑠, no two distinct variables
in the list 𝑥𝑠 become equal in the list 𝑥𝑠′.5

This condition ensures that 𝛼𝑠′, 𝑥𝑠′ really is a context. Then one obtains a new term-in-
context 𝛼𝑠′,𝑥𝑠′.𝑡′ by substituting the types 𝜏𝑠 = 𝜏1,… , 𝜏𝑛 for the type variables 𝛼𝑠 in 𝑡 (with
suitable renaming of bound occurrences of variables to make them distinct from the
variables in 𝑥𝑠′). The notation

𝑡[𝜏𝑠∕𝛼𝑠]

is used for the term 𝑡′.

Lemma 3 The meaning of 𝛼𝑠′,𝑥𝑠′.𝑡′ in a model is related to that of 𝑡 as follows. For all
𝑋𝑠′ ∈  𝑛′ (where 𝑛′ is the length of 𝛼𝑠′)

[[𝛼𝑠′,𝑥𝑠′.𝑡′]](𝑋𝑠′) = [[𝑡]]([[𝛼𝑠′.𝜏1]](𝑋𝑠′),… , [[𝛼𝑠′.𝜏𝑛]](𝑋𝑠′)).

5Such an identification of variables could occur if the variables had the same name component and
their types became equal on instantiation.

1.4. STANDARD NOTIONS 23

Lemma 2 in 1.2.3 is needed to see that both sides of the above equation are elements
of the same set of functions. The validity of the equation is proved by induction on the
structure of the term 𝑡.

Substituting terms for variables in terms

Suppose 𝑡 is a term, with canonical context 𝛼𝑠,𝑥𝑠 say, where 𝛼𝑠 = 𝛼1,… , 𝛼𝑛, 𝑥𝑠 = 𝑥1,… , 𝑥𝑚

and where for 𝑗 = 1,… , 𝑚 the type of the variable 𝑥𝑗 is 𝜎𝑗. If one has terms-in-context
𝛼𝑠,𝑥𝑠′.𝑡𝑗 for 𝑗 = 1,… , 𝑚 with 𝑡𝑗 of the same type as 𝑥𝑗, say 𝜎𝑗, then one obtains a new
term-in-context 𝛼𝑠,𝑥𝑠′.𝑡′′ by substituting the terms 𝑡𝑠 = 𝑡1,… , 𝑡𝑚 for the variables 𝑥𝑠 in 𝑡
(with suitable renaming of bound occurrences of variables to prevent the free variables
of the 𝑡𝑗 becoming bound after substitution). The notation

𝑡[𝑡𝑠∕𝑥𝑠]

is used for the term 𝑡′′.

Lemma 4 The meaning of 𝛼𝑠,𝑥𝑠′.𝑡′′ in a model is related to that of 𝑡 as follows. For all
𝑋𝑠 ∈  𝑛 and all 𝑦𝑠′ ∈ [[𝛼𝑠.𝜎′

1]] ×⋯ × [[𝛼𝑠.𝜎′
𝑚′]] (where 𝜎′

𝑗 is the type of 𝑥′
𝑗)

[[𝛼𝑠,𝑥𝑠′.𝑡′′]](𝑋𝑠)(𝑦𝑠′) = [[𝑡]](𝑋𝑠)([[𝛼𝑠,𝑥𝑠′.𝑡1]](𝑋𝑠)(𝑦𝑠′),… , [[𝛼𝑠,𝑥𝑠′.𝑡𝑚]](𝑋𝑠)(𝑦𝑠′))

Once again, this result is proved by induction on the structure of the term 𝑡.

1.4 Standard notions

Up to now the syntax of types and terms has been very general. To represent the
standard formulas of logic it is necessary to impose some specific structure. In particular,
every type structure must contain an atomic type bool which is intended to denote the
distinguished two-element set 2 ∈  , regarded as a set of truth-values. Logical formulas
are then identified with terms of type bool. In addition, various logical constants are
assumed to be in all signatures. These requirements are formalized by defining the
notion of a standard signature.

1.4.1 Standard type structures

A type structure Ω is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). (In the literature, the symbol 𝑜 is often used instead of
bool and 𝜄 instead of ind.)

24 CHAPTER 1. SYNTAX AND SEMANTICS

A model 𝑀 of Ω is standard if 𝑀(bool) and 𝑀(ind) are respectively the distinguished
sets 2 and I in the universe  .

It will be assumed from now on that type structures and their models are standard.

1.4.2 Standard signatures

A signature ΣΩ is standard if it contains the following three primitive constants:

⇒bool→bool→bool

=𝛼→𝛼→bool

𝜀(𝛼→bool)→𝛼

The intended interpretation of these constants is that ⇒ denotes implication, =𝜎→𝜎→bool

denotes equality on the set denoted by 𝜎, and 𝜀(𝜎→bool)→𝜎 denotes a choice function on
the set denoted by 𝜎. More precisely, a model 𝑀 of ΣΩ will be called standard if

• 𝑀(⇒, bool→bool→bool) ∈ (2→2→2) is the standard implication function, sending
𝑏, 𝑏′ ∈ 2 to

(𝑏 ⇒ 𝑏′) =
{

0 if 𝑏 = 1 and 𝑏′ = 0
1 otherwise

• 𝑀(=, 𝛼→𝛼→bool) ∈
∏

𝑋∈ .𝑋→𝑋→2 is the function assigning to each 𝑋 ∈  the
equality test function, sending 𝑥, 𝑥′ ∈ 𝑋 to

(𝑥 =𝑋 𝑥′) =
{

1 if 𝑥 = 𝑥′

0 otherwise

• 𝑀(𝜀, (𝛼→bool)→𝛼) ∈
∏

𝑋∈ .(𝑋→2)→𝑋 is the function assigning to each 𝑋 ∈ 
the choice function sending 𝑓 ∈ (𝑋→2) to

ch𝑋(𝑓) =
{

ch(𝑓−1{1}) if 𝑓−1{1} ≠ ∅
ch(𝑋) otherwise

where 𝑓−1{1} = {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) = 1}. (Note that 𝑓−1{1} is in  when it is non-
empty, by the property Sub of the universe  given in Section 1.1. The function
ch is given by property Choice.)

It will be assumed from now on that signatures and their models are standard.

Remark This particular choice of primitive constants is arbitrary. The standard collection
of logical constants includes 𝖳 (‘true’), 𝖥 (‘false’), ⇒ (‘implies’), ∧ (‘and’), ∨ (‘or’), ¬ (‘not’),

1.4. STANDARD NOTIONS 25

∀ (‘for all’), ∃ (‘there exists’), = (‘equals’), 𝜄 (‘the’), and 𝜀 (‘a’). This set is redundant,
since it can be defined (in a sense explained in Section 2.5.1) from various subsets. In
practice, it is necessary to work with the full set of logical constants, and the particular
subset taken as primitive is not important. The interested reader can explore this topic
further by reading Andrews’ book [1] and the references it contains.

Terms of type bool are called formulas.

The following notational abbreviations are used:

Notation Meaning
𝑡𝜎 = 𝑡′𝜎 =𝜎→𝜎→bool 𝑡𝜎 𝑡′𝜎
𝑡 ⇒ 𝑡′ ⇒bool→bool→bool 𝑡bool 𝑡′bool
𝜀𝑥𝜎 . 𝑡 𝜀(𝜎→bool)→𝜎(𝜆𝑥𝜎 . 𝑡)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder (see DESCRIPTION’s sections
on parsing and pretty-printing).

26 CHAPTER 1. SYNTAX AND SEMANTICS

Chapter 2

Theories

2.1 Introduction

The result, if any, of a session with the HOL system is an object called a theory. This object
is closely related to what a logician would call a theory, but there are some differences
arising from the needs of mechanical proof. A HOL theory, like a logician’s theory,
contains sets of types, constants, definitions and axioms. In addition, however, a HOL

theory, at any point in time, contains an explicit list of theorems that have already been
proved from the axioms and definitions. Logicians have no need to distinguish theorems
actually proved from those merely provable; hence they do not normally consider sets
of proven theorems as part of a theory; rather, they take the theorems of a theory to
be the (often infinite) set of all consequences of the axioms and definitions. A related
difference between logicians’ theories and HOL theories is that for logicians, theories
are static objects, but in HOL they can be thought of as potentially extendable. For
example, the HOL system provides tools for adding to theories and combining theories. A
typical interaction with HOL consists in combining some existing theories, making some
definitions, proving some theorems and then saving the new results.

The purpose of the HOL system is to provide tools to enable well-formed theories to
be constructed. The HOL logic is typed: each theory specifies a signature of type and
individual constants; these then determine the sets of types and terms as in the previous
chapter. All the theorems of such theories are logical consequences of the definitions
and axioms of the theory. The HOL system ensures that only well-formed theories can
be constructed by allowing theorems to be created only by formal proof . Explicating
this involves defining what it means to be a theorem, which leads to the description
of the proof system of HOL, to be given below. It is shown to be sound for the set
theoretic semantics of HOL described in the previous chapter. This means that a theorem
is satisfied by a model if it has a formal proof from axioms which are themselves satisfied
by the model. Since a logical contradiction is not satisfied by any model, this guarantees
in particular that a theory possessing a model is necessarily consistent, i.e. a logical
contradiction cannot be formally proved from its axioms.

This chapter also describes the various mechanisms by which HOL theories can be ex-
tended to new theories. Each mechanism is shown to preserve the property of possessing

27

28 CHAPTER 2. THEORIES

a model. Thus theories built up from the initial HOL theory (which does possess a model)
using these mechanisms are guaranteed to be consistent.

2.2 Sequents

The HOL logic is phrased in terms of hypothetical assertions called sequents. Fixing a
(standard) signature ΣΩ, a sequent is a pair (Γ, 𝑡) where Γ is a finite set of formulas over
ΣΩ and 𝑡 is a single formula over ΣΩ.1 The set of formulas Γ forming the first component
of a sequent is called its set of assumptions and the term 𝑡 forming the second component
is called its conclusion. When it is not ambiguous to do so, a sequent ({}, 𝑡) is written as
just 𝑡.

Intuitively, a model 𝑀 of ΣΩ satisfies a sequent (Γ, 𝑡) if any interpretation of relevant
free variables as elements of 𝑀 making the formulas in Γ true, also makes the formula
𝑡 true. To make this more precise, suppose Γ = {𝑡1,… , 𝑡𝑝} and let 𝛼𝑠,𝑥𝑠 be a context
containing all the type variables and all the free variables occurring in the formulas
𝑡, 𝑡1,… , 𝑡𝑝. Suppose that 𝛼𝑠 has length 𝑛, that 𝑥𝑠 = 𝑥1,… , 𝑥𝑚 and that the type of 𝑥𝑗 is 𝜎𝑗.
Since formulas are terms of type bool, the semantics of terms defined in the previous
chapter gives rise to elements [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 and [[𝛼𝑠,𝑥𝑠.𝑡𝑘]]𝑀 (𝑘 = 1,… , 𝑝) in

∏

𝑋𝑠∈ 𝑛

(

𝑚
∏

𝑗=1
[[𝛼𝑠.𝜎𝑗]]𝑀 (𝑋𝑠)

)

→ 2

Say that the model 𝑀 satisfies the sequent (Γ, 𝑡) and write

Γ ⊧𝑀 𝑡

if for all 𝑋𝑠 ∈  𝑛 and all 𝑦𝑠 ∈ [[𝛼𝑠.𝜎1]]𝑀 (𝑋𝑠) ×⋯ × [[𝛼𝑠.𝜎𝑚]]𝑀 (𝑋𝑠) with

[[𝛼𝑠,𝑥𝑠.𝑡𝑘]]𝑀 (𝑋𝑠)(𝑦𝑠) = 1

for all 𝑘 = 1,… , 𝑝, it is also the case that

[[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 (𝑋𝑠)(𝑦𝑠) = 1.

(Recall that 2 is the set {0, 1}.)

In the case 𝑝 = 0, the satisfaction of ({}, 𝑡) by 𝑀 will be written ⊧𝑀 𝑡. Thus ⊧𝑀 𝑡 means
that the dependently typed function

[[𝑡]]𝑀 ∈
∏

𝑋𝑠∈ 𝑛

(

𝑚
∏

𝑗=1
[[𝛼𝑠.𝜎𝑗]]𝑀 (𝑋𝑠)

)

→ 2

is constant with value 1 ∈ 2.
1Note that the type subscript is omitted from terms when it is clear from the context that they are

formulas, i.e. have type bool.

2.3. LOGIC 29

2.3 Logic

A deductive system  is a set of pairs (𝐿, (Γ, 𝑡)) where 𝐿 is a (possibly empty) list of
sequents and (Γ, 𝑡) is a sequent.

A sequent (Γ, 𝑡) follows from a set of sequents Δ by a deductive system  if and only if
there exist sequents (Γ1, 𝑡1), … , (Γ𝑛, 𝑡𝑛) such that:

1. (Γ, 𝑡) = (Γ𝑛, 𝑡𝑛), and

2. for all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛

(a) either (Γ𝑖, 𝑡𝑖) ∈ Δ or

(b) (𝐿𝑖, (Γ𝑖, 𝑡𝑖)) ∈  for some list 𝐿𝑖 of members of Δ ∪ {(Γ1, 𝑡1),… , (Γ𝑖−1, 𝑡𝑖−1)}.

The sequence (Γ1, 𝑡1),⋯ , (Γ𝑛, 𝑡𝑛) is called a proof of (Γ, 𝑡) from Δ with respect to .

Note that if (Γ, 𝑡) follows from Δ, then (Γ, 𝑡) also follows from any Δ′ such that Δ ⊆ Δ′.
This property is called monotonicity.

The notation 𝑡1,… , 𝑡𝑛 ⊢,Δ 𝑡 means that the sequent ({𝑡1,… , 𝑡𝑛}, 𝑡) follows from Δ by .
If either  or Δ is clear from the context then it may be omitted. In the case that there
are no hypotheses (i.e. 𝑛 = 0), just ⊢ 𝑡 is written.

In practice, a particular deductive system is usually specified by a number of (schematic)
rules of inference, which take the form

Γ1 ⊢ 𝑡1 ⋯ Γ𝑛 ⊢ 𝑡𝑛
Γ ⊢ 𝑡

The sequents above the line are called the hypotheses of the rule and the sequent
below the line is called its conclusion. Such a rule is schematic because it may contain
metavariables standing for arbitrary terms of the appropriate types. Instantiating these
metavariables with actual terms, one gets a list of sequents above the line and a single
sequent below the line which together constitute a particular element of the deductive
system. The instantiations allowed for a particular rule may be restricted by imposing a
side condition on the rule.

2.3.1 The HOL deductive system

The deductive system of the HOL logic is specified by eight rules of inference, given
below. The first three rules have no hypotheses; their conclusions can always be deduced.
The identifiers in square brackets are the names of the ML functions in the HOL system
that implement the corresponding inference rules (see DESCRIPTION). Any side conditions
restricting the scope of a rule are given immediately below it.

30 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

𝑡 ⊢ 𝑡

Reflexivity [REFL]

⊢ 𝑡 = 𝑡

Beta-conversion [BETA_CONV]

⊢ (𝜆𝑥. 𝑡1)𝑡2 = 𝑡1[𝑡2∕𝑥]

• Where 𝑡1[𝑡2∕𝑥] is the result of substituting 𝑡2 for 𝑥 in 𝑡1, with suitable renaming of
variables to prevent free variables in 𝑡2 becoming bound after substitution.

Substitution [SUBST]

Γ1 ⊢ 𝑡1 = 𝑡′1 ⋯ Γ𝑛 ⊢ 𝑡𝑛 = 𝑡′𝑛 Γ ⊢ 𝑡[𝑡1,… , 𝑡𝑛]
Γ1 ∪⋯ ∪ Γ𝑛 ∪ Γ ⊢ 𝑡[𝑡′1,… , 𝑡′𝑛]

• Where 𝑡[𝑡1,… , 𝑡𝑛] denotes a term 𝑡 with some free occurrences of subterms 𝑡1, … , 𝑡𝑛
singled out and 𝑡[𝑡′1,… , 𝑡′𝑛] denotes the result of replacing each selected occurrence
of 𝑡𝑖 by 𝑡′𝑖 (for 1≤𝑖≤𝑛), with suitable renaming of variables to prevent free variables
in 𝑡′𝑖 becoming bound after substitution.

Abstraction [ABS]

Γ ⊢ 𝑡1 = 𝑡2
Γ ⊢ (𝜆𝑥. 𝑡1) = (𝜆𝑥. 𝑡2)

• Provided 𝑥 is not free in Γ.

Type instantiation [INST_TYPE]

Γ ⊢ 𝑡
Γ[𝜎1,… , 𝜎𝑛∕𝛼1,… , 𝛼𝑛] ⊢ 𝑡[𝜎1,… , 𝜎𝑛∕𝛼1,… , 𝛼𝑛]

• Where 𝑡[𝜎1,… , 𝜎𝑛∕𝛼1,… , 𝛼𝑛] is the result of substituting, in parallel, the types 𝜎1,
… , 𝜎𝑛 for type variables 𝛼1, … , 𝛼𝑛 in 𝑡, and where Γ[𝜎1,… , 𝜎𝑛∕𝛼1,… , 𝛼𝑛] is the
result of performing the same substitution across all of the theorem’s hypotheses.

2.3. LOGIC 31

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

Discharging an assumption [DISCH]

Γ ⊢ 𝑡2
Γ − {𝑡1} ⊢ 𝑡1 ⇒ 𝑡2

• Where Γ − {𝑡1} is the set subtraction of {𝑡1} from Γ.

Modus Ponens [MP]

Γ1 ⊢ 𝑡1 ⇒ 𝑡2 Γ2 ⊢ 𝑡1
Γ1 ∪ Γ2 ⊢ 𝑡2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP𝜆, since HOL

was implemented by modifying the LCF system. In particular, the substitution rule SUBST
is exactly the same as the corresponding rule in LCF; the code implementing this was
written by Robin Milner and is highly optimized. Because substitution is such a pervasive
activity in proof, it was felt to be important that the system primitive be as fast as possible.
From a logical point of view it would be better to have a simpler substitution primitive,
such as ‘Rule R’ of Andrews’ logic 0, and then to derive more complex rules from it.

2.3.2 Soundness theorem

The rules of the HOL deductive system are sound for the notion of satisfaction defined in
Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the
hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and ⇒ are

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

32 CHAPTER 2. THEORIES

interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2.4 HOL Theories

A HOL theory  is a 4-tuple:

 = ⟨𝖲𝗍𝗋𝗎𝖼 , 𝖲𝗂𝗀 ,𝖠𝗑𝗂𝗈𝗆𝗌 ,𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⟩

where

(i) 𝖲𝗍𝗋𝗎𝖼 is a type structure called the type structure of  ;

(ii) 𝖲𝗂𝗀 is a signature over 𝖲𝗍𝗋𝗎𝖼 called the signature of  ;

(iii) 𝖠𝗑𝗂𝗈𝗆𝗌 is a set of sequents over 𝖲𝗂𝗀 called the axioms of  ;

(iv) 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 is a set of sequents over 𝖲𝗂𝗀 called the theorems of  , with the
property that every member follows from 𝖠𝗑𝗂𝗈𝗆𝗌 by the HOL deductive system.

The sets 𝖳𝗒𝗉𝖾𝗌 and 𝖳𝖾𝗋𝗆𝗌 of types and terms of a theory  are, respectively, the sets of
types and terms constructable from the type structure and signature of  , i.e.:

𝖳𝗒𝗉𝖾𝗌 = 𝖳𝗒𝗉𝖾𝗌𝖲𝗍𝗋𝗎𝖼
𝖳𝖾𝗋𝗆𝗌 = 𝖳𝖾𝗋𝗆𝗌𝖲𝗂𝗀

A model of a theory  is specified by giving a (standard) model 𝑀 of the underlying
signature of the theory with the property that 𝑀 satisfies all the sequents which are
axioms of  . Because of the Soundness Theorem 2.3.2, it follows that 𝑀 also satisfies
any sequents in the set of given theorems, 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 .

2.4.1 The theory MIN

The minimal theory MIN is defined by:

MIN = ⟨{(bool, 0), (ind, 0)}, {⇒bool→bool→bool,=𝛼→𝛼→bool, 𝜀(𝛼→bool)→𝛼}, {}, {}⟩

Since the theory MIN has a signature consisting only of standard items and has no axioms,
it possesses a unique standard model, which will be denoted Min.

Although the theory MIN contains only the minimal standard syntax, by exploiting the
higher order constructs of HOL one can construct a rather rich collection of terms over

2.4. HOL THEORIES 33

it. The following theory introduces names for some of these terms that denote useful
logical operations in the model Min.

In the implementation, the theory MIN is given the name min, and also contains the
distinguished binary type operator →, for constructing function spaces.

2.4.2 The theory LOG

The theory LOG has the same type structure as MIN. Its signature contains the constants in
MIN and the following constants:

𝖳bool

∀(𝛼→bool)→bool

∃(𝛼→bool)→bool

𝖥bool

¬bool→bool

∧bool→bool→bool

∨bool→bool→bool

𝖮𝗇𝖾_𝖮𝗇𝖾(𝛼→𝛽)→bool

𝖮𝗇𝗍𝗈(𝛼→𝛽)→bool

𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇(𝛼→bool)→(𝛽→𝛼)→bool

The following special notation is used in connection with these constants:

Notation Meaning
∀𝑥𝜎 . 𝑡 ∀(𝜆𝑥𝜎 . 𝑡)
∀𝑥1 𝑥2 ⋯ 𝑥𝑛. 𝑡 ∀𝑥1. (∀𝑥2. ⋯ (∀𝑥𝑛. 𝑡) ⋯)
∃𝑥𝜎 . 𝑡 ∃(𝜆𝑥𝜎 . 𝑡)
∃𝑥1 𝑥2 ⋯ 𝑥𝑛. 𝑡 ∃𝑥1. (∃𝑥2. ⋯ (∃𝑥𝑛. 𝑡) ⋯)
𝑡1 ∧ 𝑡2 ∧ 𝑡1 𝑡2
𝑡1 ∨ 𝑡2 ∨ 𝑡1 𝑡2

34 CHAPTER 2. THEORIES

The axioms of the theory LOG consist of the following sequents:

⊢ 𝖳 = ((𝜆𝑥bool. 𝑥) = (𝜆𝑥bool. 𝑥))
⊢ ∀ = 𝜆𝑃𝛼→bool. 𝑃 = (𝜆𝑥. 𝖳)
⊢ ∃ = 𝜆𝑃𝛼→bool. 𝑃 (𝜀 𝑃)
⊢ 𝖥 = ∀𝑏bool. 𝑏
⊢ ¬ = 𝜆𝑏. 𝑏 ⇒ 𝖥
⊢ ∧ = 𝜆𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ (𝑏2 ⇒ 𝑏)) ⇒ 𝑏
⊢ ∨ = 𝜆𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ 𝑏) ⇒ ((𝑏2 ⇒ 𝑏) ⇒ 𝑏)
⊢ 𝖮𝗇𝖾_𝖮𝗇𝖾 = 𝜆𝑓𝛼→𝛽 . ∀𝑥1 𝑥2. (𝑓 𝑥1 = 𝑓 𝑥2) ⇒ (𝑥1 = 𝑥2)
⊢ 𝖮𝗇𝗍𝗈 = 𝜆𝑓𝛼→𝛽 . ∀𝑦. ∃𝑥. 𝑦 = 𝑓 𝑥
⊢ 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 = 𝜆𝑃𝛼→bool 𝑟𝑒𝑝𝛽→𝛼.𝖮𝗇𝖾_𝖮𝗇𝖾 𝑟𝑒𝑝 ∧

(∀𝑥. 𝑃 𝑥 = (∃𝑦. 𝑥 = 𝑟𝑒𝑝 𝑦))

Finally, as for the theory MIN, the set 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌LOG is taken to be empty.

Note that the axioms of the theory LOG are essentially definitions of the new constants
of LOG as terms in the original theory MIN. (The mechanism for making such extensions
of theories by definitions of new constants will be set out in general in Section 2.5.1.)
The first seven axioms define the logical constants for truth, universal quantification,
existential quantification, falsity, negation, conjunction and disjunction. Although these
definitions may be obscure to some readers, they are in fact standard definitions of these
logical constants in terms of implication, equality and choice within higher order logic.
The next two axioms define the properties of a function being one-one and onto; they
will be used to express the axiom of infinity (see Section 2.4.3), amongst other things.
The last axiom defines a constant used for type definitions (see Section 2.5.4).

The unique standard model Min of MIN gives rise to a unique standard model of LOG. This
is because, given the semantics of terms set out in Section 1.3.2, to satisfy the above
equations one is forced to interpret the new constants in the following way:

• [[𝖳bool]] = 1 ∈ 2

• [[∀(𝛼→bool)→bool]] ∈
∏

𝑋∈ (𝑋→2)→2 sends 𝑋 ∈  and 𝑓 ∈ 𝑋→2 to

[[∀]](𝑋)(𝑓) =
{

1 if 𝑓−1{1} = 𝑋
0 otherwise

• [[∃(𝛼→bool)→bool]] ∈
∏

𝑋∈ (𝑋→2)→2 sends 𝑋 ∈  and 𝑓 ∈ 𝑋→2 to

[[∃]](𝑋)(𝑓) =
{

1 if 𝑓−1{1} ≠ ∅
0 otherwise

• [[𝖥bool]] = 0 ∈ 2

2.4. HOL THEORIES 35

• [[¬bool→bool]] ∈ 2→2 sends 𝑏 ∈ 2 to

[[¬]](𝑏) =
{

1 if 𝑏 = 0
0 otherwise

• [[∧bool→bool→bool]] ∈ 2→2→2 sends 𝑏, 𝑏′ ∈ 2 to

[[∧]](𝑏)(𝑏′) =
{

1 if 𝑏 = 1 = 𝑏′
0 otherwise

• [[∨bool→bool→bool]] ∈ 2→2→2 sends 𝑏, 𝑏′ ∈ 2 to

[[∨]](𝑏)(𝑏′) =
{

0 if 𝑏 = 0 = 𝑏′
1 otherwise

• [[𝖮𝗇𝖾_𝖮𝗇𝖾(𝛼→𝛽)→bool]] ∈
∏

(𝑋,𝑌)∈ 2(𝑋→𝑌)→2 sends (𝑋, 𝑌) ∈  2 and 𝑓 ∈ (𝑋→𝑌) to

[[𝖮𝗇𝖾_𝖮𝗇𝖾]](𝑋, 𝑌)(𝑓) =
{

0 if 𝑓 (𝑥) = 𝑓 (𝑥′) for some 𝑥 ≠ 𝑥′ in 𝑋
1 otherwise

• [[𝖮𝗇𝗍𝗈(𝛼→𝛽)→bool]] ∈
∏

(𝑋,𝑌)∈ 2(𝑋→𝑌)→2 sends (𝑋, 𝑌) ∈  2 and 𝑓 ∈ (𝑋→𝑌) to

[[𝖮𝗇𝗍𝗈]](𝑋, 𝑌)(𝑓) =
{

1 if {𝑓 (𝑥) ∶ 𝑥 ∈ 𝑋} = 𝑌
0 otherwise

• [[𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇(𝛼→bool)→(𝛽→𝛼)→bool]] ∈
∏

(𝑋,𝑌)∈ 2(𝑋→2)→(𝑌→𝑋)→2
sends (𝑋, 𝑌) ∈  2, 𝑓 ∈ (𝑋→2) and 𝑔 ∈ (𝑌→𝑋) to

[[𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇]](𝑋, 𝑌)(𝑓)(𝑔) =

⎧

⎪

⎨

⎪

⎩

1 if [[𝖮𝗇𝖾_𝖮𝗇𝖾]](𝑌 ,𝑋)(𝑔) = 1
and 𝑓−1{1} = {𝑔(𝑦) ∶ 𝑦 ∈ 𝑌 }

0 otherwise.

Since these definitions were obtained by applying the semantics of terms to the left hand
sides of the equations which form the axioms of LOG, these axioms are satisfied and one
obtains a model of the theory LOG.

2.4.3 The theory INIT

The theory INIT is obtained by adding the following four axioms to the theory LOG.

BOOL_CASES_AX ⊢ ∀𝑏. (𝑏 = 𝖳) ∨ (𝑏 = 𝖥)

ETA_AX ⊢ ∀𝑓𝛼→𝛽 . (𝜆𝑥. 𝑓 𝑥) = 𝑓

SELECT_AX ⊢ ∀𝑃𝛼→bool 𝑥. 𝑃 𝑥 ⇒ 𝑃 (𝜀 𝑃)

INFINITY_AX ⊢ ∃𝑓ind→ind. 𝖮𝗇𝖾_𝖮𝗇𝖾 𝑓 ∧ ¬(𝖮𝗇𝗍𝗈 𝑓)

36 CHAPTER 2. THEORIES

The unique standard model of LOG satisfies these four axioms and hence is the unique
standard model of the theory INIT. (For axiom SELECT_AX one needs to use the definition
of [[𝜀]] given in Section 1.4.2; for axiom INFINITY_AX one needs the fact that [[ind]] = I is
an infinite set.)

The theory INIT is the initial theory of the HOL logic. A theory which extends INIT will
be called a standard theory.

2.4.4 Implementing theories LOG and INIT

The implementation combines the theories LOG and INIT into a theory bool. It includes all
of the constants and axioms from those theories, and includes a number of derived results
about those constants. For more on the implementation’s bool theory, see DESCRIPTION.

2.4.5 Consistency

A (standard) theory is consistent if it is not the case that every sequent over its signature
can be derived from the theory’s axioms using the HOL logic, or equivalently, if the
particular sequent ⊢ 𝖥 cannot be so derived.

The existence of a (standard) model of a theory is sufficient to establish its consistency.
For by the Soundness Theorem 2.3.2, any sequent that can be derived from the theory’s
axioms will be satisfied by the model, whereas the sequent ⊢ 𝖥 is never satisfied in any
standard model. So in particular, the initial theory INIT is consistent.

However, it is possible for a theory to be consistent but not to possess a standard model.
This is because the notion of a standard model is quite restrictive—in particular there is
no choice how to interpret the integers and their arithmetic in such a model. The famous
incompleteness theorem of Gödel ensures that there are sequents which are satisfied in
all standard models (i.e. which are ‘true’), but which are not provable in the HOL logic.

2.5 Extensions of theories

A theory  ′ is said to be an extension of a theory  if:

(i) 𝖲𝗍𝗋𝗎𝖼 ⊆ 𝖲𝗍𝗋𝗎𝖼 ′.

(ii) 𝖲𝗂𝗀 ⊆ 𝖲𝗂𝗀 ′.

(iii) 𝖠𝗑𝗂𝗈𝗆𝗌 ⊆ 𝖠𝗑𝗂𝗈𝗆𝗌 ′.

2.5. EXTENSIONS OF THEORIES 37

(iv) 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⊆ 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ′.

In this case, any model 𝑀 ′ of the larger theory  ′ can be restricted to a model of the
smaller theory  in the following way. First, 𝑀 ′ gives rise to a model of the structure and
signature of  simply by forgetting the values of 𝑀 ′ at constants not in 𝖲𝗍𝗋𝗎𝖼 or 𝖲𝗂𝗀 .
Denoting this model by 𝑀 , one has for all 𝜎 ∈ 𝖳𝗒𝗉𝖾𝗌 , 𝑡 ∈ 𝖳𝖾𝗋𝗆𝗌 and for all suitable
contexts that

[[𝛼𝑠.𝜎]]𝑀 = [[𝛼𝑠.𝜎]]𝑀 ′

[[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 = [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 ′ .

Consequently if (Γ, 𝑡) is a sequent over 𝖲𝗂𝗀 (and hence also over 𝖲𝗂𝗀 ′), then Γ ⊧𝑀 𝑡 if
and only if Γ ⊧𝑀 ′ 𝑡. Since 𝖠𝗑𝗂𝗈𝗆𝗌 ⊆ 𝖠𝗑𝗂𝗈𝗆𝗌 ′ and 𝑀 ′ is a model of  ′, it follows that 𝑀
is a model of  . 𝑀 will be called the restriction of the model 𝑀 ′ of the theory  ′ to the
subtheory  .

There are two main mechanisms for making extensions of theories in HOL:

• Extension by a constant specification (see Section 2.5.2).

• Extension by a type specification (see Section 2.5.5).3

The first mechanism allows ‘loose specification’ of constants (as in the Z notation [6], for
example); the latter allows new types and type-operators to be introduced. As special
cases (when the thing being specified is uniquely determined) one also has:

• Extension by a constant definition (see Section 2.5.1).

• Extension by a type definition (see Section 2.5.4).

These mechanisms are described in the following sections. They all produce definitional
extensions in the sense that they extend a theory by adding new constants and types
which are defined in terms of properties of existing ones. Their key property is that the
extended theory possesses a (standard) model if the original theory does. So a series of
these extensions starting from the theory INIT is guaranteed to result in a theory with a
standard model, and hence in a consistent theory. It is also possible to extend theories
simply by adding new uninterpreted constants and types. This preserves consistency,
but is unlikely to be useful without additional axioms. However, when adding arbitrary
new axioms, there is no guarantee that consistency is preserved. The advantages of
postulation over definition have been likened by Bertrand Russell to the advantages of

3This theory extension mechanism is not implemented in the HOL4 system.

38 CHAPTER 2. THEORIES

theft over honest toil.4 As it is all too easy to introduce inconsistent axiomatizations,
users of the HOL system are strongly advised to resist the temptation to add axioms, but
to toil through definitional theories honestly.

2.5.1 Extension by constant definition

A constant definition over a signature ΣΩ is a formula of the form 𝖼𝜎 = 𝑡𝜎, such that:

(i) 𝖼 is not the name of any constant in ΣΩ;

(ii) 𝑡𝜎 a closed term in 𝖳𝖾𝗋𝗆𝗌ΣΩ
;

(iii) all the type variables occurring in 𝑡𝜎 also occur in 𝜎.

Given a theory  and such a constant definition over 𝖲𝗂𝗀 , then the definitional extension
of  by 𝖼𝜎 = 𝑡𝜎 is the theory  +𝑑𝑒𝑓 ⟨𝖼𝜎 = 𝑡𝜎⟩ defined by:

 +𝑑𝑒𝑓 ⟨𝖼𝜎 = 𝑡𝜎⟩ = ⟨ 𝖲𝗍𝗋𝗎𝖼 , 𝖲𝗂𝗀 ∪ {(𝖼, 𝜎)},
𝖠𝗑𝗂𝗈𝗆𝗌 ∪ {𝖼𝜎 = 𝑡𝜎}, 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⟩

Note that the mechanism of extension by constant definition has already been used
implicitly in forming the theory LOG from the theory MIN in Section 2.4.2. Thus with the
notation of this section one has

LOG = MIN +𝑑𝑒𝑓 ⟨𝖳 = ((𝜆𝑥bool. 𝑥) = (𝜆𝑥bool. 𝑥))⟩
+𝑑𝑒𝑓 ⟨∀ = 𝜆𝑃𝛼→bool. 𝑃 = (𝜆𝑥. 𝖳)⟩
+𝑑𝑒𝑓 ⟨∃ = 𝜆𝑃𝛼→bool. 𝑃 (𝜀 𝑃)⟩
+𝑑𝑒𝑓 ⟨𝖥 = ∀𝑏bool. 𝑏⟩
+𝑑𝑒𝑓 ⟨¬ = 𝜆𝑏. 𝑏 ⇒ 𝖥⟩
+𝑑𝑒𝑓 ⟨∧ = 𝜆𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ (𝑏2 ⇒ 𝑏)) ⇒ 𝑏⟩
+𝑑𝑒𝑓 ⟨∨ = 𝜆𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ 𝑏) ⇒ ((𝑏2 ⇒ 𝑏) ⇒ 𝑏)⟩
+𝑑𝑒𝑓 ⟨𝖮𝗇𝖾_𝖮𝗇𝖾 = 𝜆𝑓𝛼→𝛽 . ∀𝑥1 𝑥2. (𝑓 𝑥1 = 𝑓 𝑥2) ⇒ (𝑥1 = 𝑥2)⟩
+𝑑𝑒𝑓 ⟨𝖮𝗇𝗍𝗈 = 𝜆𝑓𝛼→𝛽 . ∀𝑦. ∃𝑥. 𝑦 = 𝑓 𝑥⟩
+𝑑𝑒𝑓 ⟨𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 = 𝜆𝑃𝛼→bool 𝑟𝑒𝑝𝛽→𝛼.

𝖮𝗇𝖾_𝖮𝗇𝖾 𝑟𝑒𝑝 ∧
(∀𝑥. 𝑃 𝑥 = (∃𝑦. 𝑥 = 𝑟𝑒𝑝 𝑦))⟩

If  possesses a standard model then so does the extension  +𝑑𝑒𝑓 ⟨𝖼𝜎 = 𝑡𝜎⟩. This
will be proved as a corollary of the corresponding result in Section 2.5.2 by showing
that extension by constant definition is in fact a special case of extension by constant
specification. (This reduction requires that one is dealing with standard theories in the

4See page 71 of Russell’s book Introduction to Mathematical Philosophy.

2.5. EXTENSIONS OF THEORIES 39

sense of section 2.4.3, since although existential quantification is not needed for constant
definitions, it is needed to state the mechanism of constant specification.)

Remark Condition (iii) in the definition of what constitutes a correct constant definition
is an important restriction without which consistency could not be guaranteed. To see
this, consider the term ∃𝑓𝛼→𝛼. 𝖮𝗇𝖾_𝖮𝗇𝖾 𝑓 ∧ ¬(𝖮𝗇𝗍𝗈 𝑓), which expresses the proposition
that (the set of elements denoted by the) type 𝛼 is infinite. The term contains the type
variable 𝛼, whereas the type of the term, bool, does not. Thus by (iii)

𝖼bool = ∃𝑓𝛼→𝛼. 𝖮𝗇𝖾_𝖮𝗇𝖾 𝑓 ∧ ¬(𝖮𝗇𝗍𝗈 𝑓)

is not allowed as a constant definition. The problem is that the meaning of the right
hand side of the definition varies with 𝛼, whereas the meaning of the constant on the
left hand side is fixed, since it does not contain 𝛼. Indeed, if we were allowed to extend
the consistent theory INIT by this definition, the result would be an inconsistent theory.
For instantiating 𝛼 to ind in the right hand side results in a term that is provable from
the axioms of INIT, and hence 𝖼bool = 𝖳 is provable in the extended theory. But equally,
instantiating 𝛼 to bool makes the negation of the right hand side provable from the
axioms of INIT, and hence 𝖼bool = 𝖥 is also provable in the extended theory. Combining
these theorems, one has that 𝖳 = 𝖥, i.e. 𝖥 is provable in the extended theory.

2.5.2 Extension by constant specification

Constant specifications introduce constants (or sets of constants) that satisfy arbitrary
given (consistent) properties. For example, a theory could be extended by a constant
specification to have two new constants 𝖻1 and 𝖻2 of type bool such that ¬(𝖻1 = 𝖻2). This
specification does not uniquely define 𝖻1 and 𝖻2, since it is satisfied by either 𝖻1 = 𝖳

and 𝖻2 = 𝖥, or 𝖻1 = 𝖥 and 𝖻2 = 𝖳. To ensure that such specifications are consistent,
they can only be made if it has already been proved that the properties which the new
constants are to have are consistent. This rules out, for example, introducing three
boolean constants 𝖻1, 𝖻2 and 𝖻3 such that 𝖻1 ≠ 𝖻2, 𝖻1 ≠ 𝖻3 and 𝖻2 ≠ 𝖻3.

Suppose ∃𝑥1 ⋯ 𝑥𝑛. 𝑡 is a formula, with 𝑥1,… , 𝑥𝑛 distinct variables. If ⊢ ∃𝑥1 ⋯ 𝑥𝑛. 𝑡, then
a constant specification allows new constants 𝖼1, … , 𝖼𝑛 to be introduced satisfying:

⊢ 𝑡[𝖼1,⋯ , 𝖼𝑛∕𝑥1,⋯ , 𝑥𝑛]

where 𝑡[𝖼1,⋯ , 𝖼𝑛∕𝑥1,⋯ , 𝑥𝑛] denotes the result of simultaneously substituting 𝖼1,… , 𝖼𝑛
for 𝑥1,… , 𝑥𝑛 respectively. Of course the type of each constant 𝖼𝑖 must be the same as the
type of the corresponding variable 𝑥𝑖. To ensure that this extension mechanism preserves
the property of possessing a model, a further more technical requirement is imposed on

40 CHAPTER 2. THEORIES

these types: they must each contain all the type variables occurring in 𝑡. This condition
is discussed further in Section 2.5.3 below.

Formally, a constant specification for a theory  is given by

Data

⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1
,… , 𝑥𝑛𝜎𝑛

. 𝑡bool⟩

Conditions

(i) 𝖼1,… , 𝖼𝑛 are distinct names that are not the names of any constants in 𝖲𝗂𝗀 .

(ii) 𝜆𝑥1𝜎1
⋯ 𝑥𝑛𝜎𝑛

. 𝑡bool ∈ 𝖳𝖾𝗋𝗆𝗌 .

(iii) 𝑡𝑦𝑣𝑎𝑟𝑠(𝑡bool) = 𝑡𝑦𝑣𝑎𝑟𝑠(𝜎𝑖) for 1 ≤ 𝑖 ≤ 𝑛.

(iv) ∃𝑥1𝜎1
⋯ 𝑥𝑛𝜎𝑛

. 𝑡 ∈ 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 .

The extension of a standard theory  by such a constant specification is denoted by

 +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1
,… , 𝑥𝑛𝜎𝑛

. 𝑡bool⟩

and is defined to be the theory:

⟨𝖲𝗍𝗋𝗎𝖼 ,
𝖲𝗂𝗀 ∪ {𝖼1𝜎1 ,… , 𝖼𝑛𝜎𝑛},
𝖠𝗑𝗂𝗈𝗆𝗌 ∪ {𝑡[𝖼1,… , 𝖼𝑛∕𝑥1,… , 𝑥𝑛]},
𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⟩

Proposition The theory  +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1
,… , 𝑥𝑛𝜎𝑛

. 𝑡bool⟩ has a standard model if the
theory  does.

Proof Suppose 𝑀 is a standard model of  . Let 𝛼𝑠 = 𝛼1,… , 𝛼𝑚 be the list of distinct
type variables occurring in the formula 𝑡. Then 𝛼𝑠,𝑥𝑠.𝑡 is a term-in-context, where
𝑥𝑠 = 𝑥1,… , 𝑥𝑛. (Change any bound variables in 𝑡 to make them distinct from 𝑥𝑠 if
necessary.) Interpreting this term-in-context in the model 𝑀 yields

[[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 ∈
∏

𝑋𝑠∈ 𝑚

(

𝑛
∏

𝑖=1
[[𝛼𝑠.𝜎𝑖]]𝑀 (𝑋𝑠)

)

→2

Now ∃𝑥𝑠. 𝑡 is in 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 and hence by the Soundness Theorem 2.3.2 this sequent is
satisfied by 𝑀 . Using the semantics of ∃ given in Section 2.4.2, this means that for all
𝑋𝑠 ∈  𝑚 the set

𝑆(𝑋𝑠) = {𝑦𝑠 ∈ [[𝛼𝑠.𝜎1]]𝑀 (𝑋𝑠) ×⋯ × [[𝛼𝑠.𝜎𝑛]]𝑀 (𝑋𝑠) ∶ [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 (𝑋𝑠)(𝑦𝑠) = 1}

2.5. EXTENSIONS OF THEORIES 41

is non-empty. Since it is also a subset of a finite product of sets in  , it follows that it is
an element of  (using properties Sub and Prod of the universe). So one can apply the
global choice function ch ∈

∏

𝑋∈ 𝑋 to select a specific element

(𝑠1(𝑋𝑠),… , 𝑠𝑛(𝑋𝑠)) = ch(𝑆(𝑋𝑠)) ∈
𝑛

∏

𝑖=1
[[𝛼𝑠.𝜎𝑖]]𝑀 (𝑋𝑠)

at which [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 (𝑋𝑠) takes the value 1. Extend 𝑀 to a model 𝑀 ′ of the signature of
 +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1

,… , 𝑥𝑛𝜎𝑛
. 𝑡bool⟩ by defining its value at each new constant (𝖼𝑖, 𝜎𝑖)

to be

𝑀 ′(𝖼𝑖, 𝜎𝑖) = 𝑠𝑖 ∈
∏

𝑋𝑠∈ 𝑚

[[𝜎𝑖]]𝑀 (𝑋𝑠).

Note that the Condition (iii) in the definition of a constant specification ensures that 𝛼𝑠
is the canonical context of each type 𝜎𝑖, so that [[𝜎𝑖]] = [[𝛼𝑠.𝜎𝑖]] and thus 𝑠𝑖 is indeed an
element of the above product.

Since 𝑡 is a term of the subtheory  of  +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1
,… , 𝑥𝑛𝜎𝑛

. 𝑡bool⟩, as remarked
at the beginning of Section 2.5, one has that [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 ′ = [[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 . Hence by definition
of the 𝑠𝑖, for all 𝑋𝑠 ∈  𝑚

[[𝛼𝑠,𝑥𝑠.𝑡]]𝑀 ′(𝑋𝑠)(𝑠1(𝑋𝑠),… , 𝑠𝑛(𝑋𝑠)) = 1

Then using Lemma 4 in Section 1.3.3 on the semantics of substitution together with the
definition of [[𝖼𝑖]]𝑀 ′, one finally obtains that for all 𝑋𝑠 ∈  𝑚

[[𝑡[𝖼1,… , 𝖼𝑛∕𝑥1,… , 𝑥𝑛]]]𝑀 ′(𝑋𝑠) = 1

or in other words that 𝑀 ′ satisfies 𝑡[𝖼1,… , 𝖼𝑛∕𝑥1,… , 𝑥𝑛]. Hence 𝑀 ′ is a model of
 +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1

,… , 𝑥𝑛𝜎𝑛
. 𝑡bool⟩, as required.

The constants which are asserted to exist in a constant specification are not neces-
sarily uniquely determined. Correspondingly, there may be many different models of
 +𝑠𝑝𝑒𝑐⟨(𝖼1,… , 𝖼𝑛), 𝜆𝑥1𝜎1

,… , 𝑥𝑛𝜎𝑛
. 𝑡bool⟩ whose restriction to  is 𝑀; the above construc-

tion produces such a model in a uniform manner by making use of the global choice
function on the universe.

Extension by a constant definition, 𝖼𝜎 = 𝑡𝜎, is a special case of extension by constant
specification. For let 𝑡′ be the formula 𝑥𝜎 = 𝑡𝜎, where 𝑥𝜎 is a variable not occurring in 𝑡𝜎.
Then clearly ⊢ ∃𝑥𝜎 . 𝑡′ and one can apply the method of constant specification to obtain
the theory

 +𝑠𝑝𝑒𝑐⟨𝖼, 𝜆𝑥𝜎. 𝑡
′
⟩

42 CHAPTER 2. THEORIES

But since 𝑡′[𝖼𝜎∕𝑥𝜎] is just 𝖼𝜎 = 𝑡𝜎, this extension yields exactly  +𝑑𝑒𝑓 ⟨𝖼𝜎 = 𝑡𝜎⟩. So as
a corollary of the Proposition, one has that for each standard model 𝑀 of  , there is
a standard model 𝑀 ′ of  +𝑑𝑒𝑓 ⟨𝖼𝜎 = 𝑡𝜎⟩ whose restriction to  is 𝑀 . In contrast with
the case of constant specifications, 𝑀 ′ is uniquely determined by 𝑀 and the constant
definition.

2.5.3 Remarks about constants in HOL

Note how Condition (iii) in the definition of a constant specification was needed in the
proof that the extension mechanism preserves the property of possessing a standard
model. Its role is to ensure that the introduced constants have, via their types, the
same dependency on type variables as does the formula loosely specifying them. The
situation is the same as that discussed in the Remark in Section 2.5.1. In a sense, what is
causing the problem in the example given in that Remark is not so much the method
of extension by introducing constants, but rather the syntax of HOL which does not
allow constants to depend explicitly on type variables (in the way that type operators
can). Thus in the example one would like to introduce a ‘polymorphic’ constant 𝖼bool(𝛼)
explicitly depending upon 𝛼, and define it to be ∃𝑓𝛼→𝛼. 𝖮𝗇𝖾_𝖮𝗇𝖾 𝑓 ∧ ¬(𝖮𝗇𝗍𝗈 𝑓). Then
in the extended theory one could derive 𝖼bool(ind) = 𝖳 and 𝖼bool(bool) = 𝖥, but now no
contradiction results since 𝖼bool(ind) and 𝖼bool(bool) are different.

In the current version of HOL, constants are (name,type)-pairs. One can envision a slight
extension of the HOL syntax with ‘polymorphic’ constants, specified by pairs (𝖼, 𝛼𝑠.𝜎)
where now 𝛼𝑠.𝜎 is a type-in-context and the list 𝛼𝑠 may well contain extra type variables
not occurring in 𝜎. Such a pair would give rise to the particular constant term 𝖼𝜎(𝛼𝑠),
and more generally to constant terms 𝖼𝜎′(𝜏𝑠) obtained from this one by instantiating
the type variables 𝛼𝑖 with types 𝜏𝑖 (so 𝜎′ is the instance of 𝜎 obtained by substituting
𝜏𝑠 for 𝛼𝑠). This new syntax of polymorphic constants is comparable to the existing
syntax of compound types (see section 1.2): an 𝑛-ary type operator op gives rise to
a compound type (𝛼1,… , 𝛼𝑛)op depending upon 𝑛 type variables. Similarly, the above
syntax of polymorphic constants records how they depend upon type variables (as well
as which generic type the constant has).

However, explicitly recording dependency of constants on type variables makes for a
rather cumbersome syntax which in practice one would like to avoid where possible. It
is possible to avoid it if the type context 𝛼𝑠 in (𝖼, 𝛼𝑠.𝜎) is actually the canonical context
of 𝜎, i.e. contains exactly the type variables of 𝜎. For then one can apply Lemma 1
of Section 1.2.3 to deduce that the polymorphic constant 𝖼𝜎′(𝜏𝑠) can be abbreviated
to the ordinary constant 𝖼𝜎′ without ambiguity—the missing information 𝜏𝑠 can be
reconstructed from 𝜎′ and the information about the constant 𝖼 given in the signature.
From this perspective, the rather technical side Conditions (iii) in Sections 2.5.1 and

2.5. EXTENSIONS OF THEORIES 43

2.5.2 become rather less mysterious: they precisely ensure that in introducing new
constants one is always dealing just with canonical contexts, and so can use ordinary
constants rather than polymorphic ones without ambiguity. In this way one avoids
complicating the existing syntax at the expense of restricting somewhat the applicability
of these theory extension mechanisms.

2.5.4 Extension by type definition

Every (monomorphic) type 𝜎 in the initial theory INIT determines a set [[𝜎]] in the
universe  . However, there are many more sets in  than there are types in INIT. In
particular, whilst  is closed under the operation of taking a non-empty subset of [[𝜎]],
there is no corresponding mechanism for forming a ‘subtype’ of 𝜎. Instead, subsets are
denoted indirectly via characteristic functions, whereby a closed term 𝑝 of type 𝜎→bool
determines the subset {𝑥 ∈ [[𝜎]] ∶ [[𝑝]](𝑥) = 1} (which is a set in the universe provided
it is non-empty). However, it is useful to have a mechanism for introducing new types
which are subtypes of existing ones. Such types are defined in HOL by introducing a
new type constant and asserting an axiom that characterizes it as denoting a set in
bijection (i.e. one-to-one correspondence) with a non-empty subset of an existing type
(called the representing type). For example, the type num is defined to be equal to a
countable subset of the type ind, which is guaranteed to exist by the axiom INFINITY_AX
(see Section 2.4.3).

As well as defining types, it is also convenient to be able to define type operators. An
example would be a type operator inj which mapped a set to the set of one-to-one (i.e.
injective) functions on it. The subset of 𝜎→𝜎 representing (𝜎)inj would be defined by the
predicate One_One. Another example would be a binary cartesian product type operator
prod. This is defined by choosing a representing type containing two type variables, say
𝜎[𝛼1; 𝛼2], such that for any types 𝜎1 and 𝜎2, a subset of 𝜎[𝜎1; 𝜎2] represents the cartesian
product of 𝜎1 and 𝜎2. The details of such a definition are given in DESCRIPTION’s section
on the theory of cartesian products.

Types in HOL must denote non-empty sets. Thus it is only consistent to define a new type
isomorphic to a subset specified by a predicate 𝑝, if there is at least one thing for which
𝑝 holds, i.e. ⊢ ∃𝑥. 𝑝 𝑥. For example, it would be inconsistent to define a binary type
operator iso such that (𝜎1, 𝜎2)iso denoted the set of one-to-one functions from 𝜎1 onto 𝜎2
because for some values of 𝜎1 and 𝜎2 the set would be empty; for example (ind, bool)iso
would denote the empty set. To avoid this, a precondition of defining a new type is that
the representing subset is non-empty.

To summarize, a new type is defined by:

1. Specifying an existing type.

44 CHAPTER 2. THEORIES

2. Specifying a subset of this type.

3. Proving that this subset is non-empty.

4. Specifying that the new type is isomorphic to this subset.

In more detail, defining a new type (𝛼1,… , 𝛼𝑛)op consists in:

1. Specifying a type-in-context, 𝛼1,… , 𝛼𝑛.𝜎 say. The type 𝜎 is called the representing
type, and the type (𝛼1,… , 𝛼𝑛)op is intended to be isomorphic to a subset of 𝜎.

2. Specifying a closed term-in-context, 𝛼1,… , 𝛼𝑛, .𝑝 say, of type 𝜎→bool. The term 𝑝 is
called the characteristic function. This defines the subset of 𝜎 to which (𝛼1,… , 𝛼𝑛)op
is to be isomorphic.5

3. Proving ⊢ ∃𝑥𝜎 . 𝑝 𝑥.

4. Asserting an axiom saying that (𝛼1,… , 𝛼𝑛)op is isomorphic to the subset of 𝜎 selected
by 𝑝.

To make this formal, the theory LOG provides the polymorphic constant Type_Definition
defined in Section 2.4.2. The formula ∃𝑓(𝛼1,…,𝛼𝑛)op→𝜎. 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓 asserts that there
exists a one-to-one map 𝑓 from (𝛼1,… , 𝛼𝑛)op onto the subset of elements of 𝜎 for which
𝑝 is true. Hence, the axiom that characterizes (𝛼1,… , 𝛼𝑛)op is:

⊢ ∃𝑓(𝛼1,…,𝛼𝑛)op→𝜎. 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓

Defining a new type (𝛼1,… , 𝛼𝑛)op in a theory  thus consists of introducing op as a new
𝑛-ary type operator and the above axiom as a new axiom. Formally, a type definition for a
theory  is given by

Data

⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝𝜎→bool⟩

Conditions

(i) (op, 𝑛) is not the name of a type constant in 𝖲𝗍𝗋𝗎𝖼 .

(ii) 𝛼1,… , 𝛼𝑛.𝜎 is a type-in-context with 𝜎 ∈ 𝖳𝗒𝗉𝖾𝗌 .

5The reason for restricting 𝑝 to be closed, i.e. to have no free variables, is that otherwise for consistency
the defined type operator would have to depend upon (i.e. be a function of) those variables. Such dependent
types are not (yet!) a part of the HOL system.

2.5. EXTENSIONS OF THEORIES 45

(iii) 𝑝𝜎→bool is a closed term in 𝖳𝖾𝗋𝗆𝗌 whose type variables occur in 𝛼1,… , 𝛼𝑛.

(iv) ∃𝑥𝜎 . 𝑝 𝑥 ∈ 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 .

The extension of a standard theory  by a such a type definition is denoted by

 +𝑡𝑦𝑑𝑒𝑓 ⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝⟩

and defined to be the theory

⟨𝖲𝗍𝗋𝗎𝖼 ∪ {(op, 𝑛)},
𝖲𝗂𝗀 ,
𝖠𝗑𝗂𝗈𝗆𝗌 ∪ {∃𝑓(𝛼1,…,𝛼𝑛)op→𝜎. 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓},
𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⟩

Proposition The theory  +𝑡𝑦𝑑𝑒𝑓 ⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝⟩ has a standard model if the theory 
does.

Instead of giving a direct proof of this result, it will be deduced as a corollary of the
corresponding proposition in the next section.

2.5.5 Extension by type specification

(Note: This theory extension mechanism is not implemented in the HOL4 system. It was
proposed by T. Melham and refines a suggestion from R. Jones and R. Arthan.)

The type definition mechanism allows one to introduce new types by giving a concrete
representation of the type as a ‘subtype’ of an existing type. One might instead wish
to introduce a new type satisfying some property without having to give an explicit
representation for the type. For example, one might want to extend INIT with an atomic
type one satisfying ⊢ ∀𝑓𝛼→one 𝑔𝛼→one. 𝑓 = 𝑔 without choosing a specific type in INIT and
saying that one is in bijection with a one-element subset of it. (The idea being that the
choice of representing type is irrelevant to the properties of one that can be expressed in
HOL.) The mechanism described in this section provides one way of achieving this while
at the same time preserving the all-important property of possessing a standard model
and hence maintaining consistency.

Each closed formula 𝑞 involving a single type variable 𝛼 can be thought of as specifying
a property 𝑞[𝜏∕𝛼] of types 𝜏. Its interpretation in a model is of the form

[[𝛼, .𝑞]] ∈
∏

𝑋∈
[[𝛼.bool]](𝑋) =

∏

𝑋∈
2 = →2

46 CHAPTER 2. THEORIES

which is a characteristic function on the universe, determining a subset {𝑋 ∈  ∶
[[𝛼, .𝑞]](𝑋) = 1} consisting of those sets in the universe for which the property 𝑞 holds.
The most general way of ensuring the consistency of introducing a new atomic type 𝜈
satisfying 𝑞[𝜈∕𝛼] would be to prove ‘∃𝛼. 𝑞’. However, such a formula with quantification
over types is not6 a part of the HOL logic and one must proceed indirectly—replacing
the formula by (a logically weaker) one that can be expressed formally with HOL syntax.
The formula used is

(∃𝑓𝛼→𝜎 . 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓) ⇒ 𝑞

where 𝜎 is a type, 𝑝𝜎→bool is a closed term and neither involve the type variable 𝛼. This
formula says ‘𝑞 holds of any type which is in bijection with the subtype of 𝜎 determined
by 𝑝’. If this formula is provable and if the subtype is non-empty, i.e. if

∃𝑥𝜎. 𝑝 𝑥

is provable, then it is consistent to introduce an extension with a new atomic type 𝜈
satisfying 𝑞[𝜈∕𝛼].

In giving the formal definition of this extension mechanism, two refinements will be made.
Firstly, 𝜎 is allowed to be polymorphic and hence a new type constant of appropriate arity
is introduced, rather than just an atomic type. Secondly, the above existential formulas
are permitted to be proved (in the theory to be extended) from some hypotheses.7 Thus
a type specification for a theory  is given by

Data

⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝, 𝛼,Γ, 𝑞⟩

Conditions

(i) (op, 𝑛) is a type constant that is not in 𝖲𝗍𝗋𝗎𝖼 .

(ii) 𝛼1,… , 𝛼𝑛.𝜎 is a type-in-context with 𝜎 ∈ 𝖳𝗒𝗉𝖾𝗌 .

(iii) 𝑝𝜎→bool is a closed term in 𝖳𝖾𝗋𝗆𝗌 whose type variables occur in 𝛼𝑠 = 𝛼1,… , 𝛼𝑛.

(iv) 𝛼 is a type variable distinct from those in 𝛼𝑠.

(v) Γ is a list of closed formulas in 𝖳𝖾𝗋𝗆𝗌 not involving the type variable 𝛼.

6yet!
7This refinement increases the applicability of the extension mechanism without increasing its expressive

power. A similar refinement could have be made to the other theory extension mechanisms.

2.5. EXTENSIONS OF THEORIES 47

(vi) 𝑞 is a closed formula in 𝖳𝖾𝗋𝗆𝗌 .

(vii) The sequents

(Γ , ∃𝑥𝜎 . 𝑝 𝑥)
(Γ , (∃𝑓𝛼→𝜎. 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓) ⇒ 𝑞)

are in 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 .

The extension of a standard theory  by such a type specification is denoted

 +𝑡𝑦𝑠𝑝𝑒𝑐⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝, 𝛼,Γ, 𝑞⟩

and is defined to be the theory

⟨𝖲𝗍𝗋𝗎𝖼 ∪ {(op, 𝑛)},
𝖲𝗂𝗀 ,
𝖠𝗑𝗂𝗈𝗆𝗌 ∪ {(Γ, 𝑞[(𝛼1,… , 𝛼𝑛)op∕𝛼])},
𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 ⟩

Example To carry out the extension of INIT mentioned at the start of this section, one
forms

INIT+𝑡𝑦𝑠𝑝𝑒𝑐⟨()one, bool, 𝑝, 𝛼, ∅, 𝑞⟩

where 𝑝 is the term 𝜆𝑏bool. 𝑏 and 𝑞 is the formula ∀𝑓𝛽→𝛼 𝑔𝛽→𝛼. 𝑓 = 𝑔. Thus the re-
sult is a theory extending INIT with a new type constant one satisfying the axiom
∀𝑓𝛽→one 𝑔𝛽→one. 𝑓 = 𝑔.

To verify that this is a correct application of the extension mechanism, one has to check
Conditions (i) to (vii) above. Only the last one is non-trivial: it imposes the obligation
of proving two sequents from the axioms of INIT. The first sequent says that 𝑝 defines
an inhabited subset of bool, which is certainly the case since 𝖳 witnesses this fact. The
second sequent says in effect that any type 𝛼 that is in bijection with the subset of bool
defined by 𝑝 has the property that there is at most one function to it from any given type
𝛽; the proof of this from the axioms of INIT is left as an exercise.

Proposition The theory  +𝑡𝑦𝑠𝑝𝑒𝑐⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝, 𝛼,Γ, 𝑞⟩ has a standard model if the
theory  does.

Proof Write 𝛼𝑠 for 𝛼1,… , 𝛼𝑛, and suppose that 𝛼𝑠′ = 𝛼′
1,… , 𝛼′

𝑚 is the list of type variables
occurring in Γ and 𝑞, but not already in the list 𝛼𝑠, 𝛼.

48 CHAPTER 2. THEORIES

Suppose 𝑀 is a standard model of  . Since 𝛼𝑠, .𝑝 is a term-in-context of type 𝜎→bool,
interpreting it in 𝑀 yields

[[𝛼𝑠, .𝑝]]𝑀 ∈
∏

𝑋𝑠∈ 𝑛

[[𝛼𝑠.𝜎→bool]]𝑀 (𝑋𝑠) =
∏

𝑋𝑠∈ 𝑛

[[𝛼𝑠.𝜎]]𝑀 (𝑋𝑠)→2.

There is no loss of generality in assuming that Γ consists of a single formula 𝛾. (Just
replace Γ by the conjunction of the formulas it contains, with the convention that this
conjunction is 𝖳 if Γ is empty.) By assumption on 𝛼𝑠′ and by Condition (iv), 𝛼𝑠, 𝛼𝑠′, .𝛾 is a
term-in-context.8 Interpreting it in 𝑀 yields

[[𝛼𝑠, 𝛼𝑠′, .𝛾]]𝑀 ∈
∏

(𝑋𝑠,𝑋𝑠′)∈ 𝑛+𝑚

[[𝛼𝑠, 𝛼𝑠′.bool]]𝑀 (𝑋𝑠,𝑋𝑠′) =  𝑛+𝑚→2

Now (𝛾,∃𝑥𝜎 . 𝑝 𝑥) is in 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 and hence by the Soundness Theorem 2.3.2 this sequent
is satisfied by 𝑀 . Using the semantics of ∃ given in Section 2.4.2 and the definition of
satisfaction of a sequent from Section 2.2, this means that for all (𝑋𝑠,𝑋𝑠′) ∈  𝑛+𝑚 if
[[𝛼𝑠, 𝛼𝑠′, .𝛾]]𝑀 (𝑋𝑠,𝑋𝑠′) = 1, then the set

{𝑦 ∈ [[𝛼𝑠.𝜎]]𝑀 ∶ [[𝛼𝑠, .𝑝]](𝑋𝑠)(𝑦) = 1}

is non-empty. (This uses the fact that 𝑝 does not involve the type variables 𝛼𝑠′, so that by
Lemma 4 in Section 1.3.3 [[𝛼𝑠, 𝛼𝑠′, .𝑝]]𝑀 (𝑋𝑠,𝑋𝑠′) = [[𝛼𝑠, .𝑝]]𝑀 (𝑋𝑠).) Since it is also a subset
of a set in  , it follows by property Sub of the universe that this set is an element of  .
So defining

𝑆(𝑋𝑠) =
{

{𝑦 ∈ [[𝛼𝑠.𝜎]]𝑀 ∶ [[𝛼𝑠, .𝑝]](𝑋𝑠)(𝑦) = 1} if [[𝛼𝑠, .𝛾]]𝑀 (𝑋𝑠,𝑋𝑠′) = 1, some 𝑋𝑠′
1 otherwise

one has that 𝑆 is a function  𝑛→ . Extend 𝑀 to a model of the signature of  ′ by
defining its value at the new 𝑛-ary type constant op to be this function 𝑆. Note that the
values of 𝜎, 𝑝, 𝛾 and 𝑞 in 𝑀 ′ are the same as in 𝑀 , since these expressions do not involve
the new type constant op.

For each 𝑋𝑠 ∈  𝑛 define 𝑖𝑋𝑠 to be the inclusion function for the subset 𝑆(𝑋𝑠) ⊆ [[𝛼𝑠.𝜎]]𝑀
if [[𝛼𝑠, 𝛼𝑠′, .𝛾]]𝑀 (𝑋𝑠,𝑋𝑠′) = 1 for some 𝑋𝑠′, and otherwise to be the function 1→[[𝛼𝑠.𝜎]]𝑀
sending 0 ∈ 1 to ch([[𝛼𝑠.𝜎]]𝑀). Then 𝑖𝑋𝑠 ∈ (𝑆(𝑋𝑠)→[[𝛼𝑠.𝜎]]𝑀 ′(𝑋𝑠)) because [[𝛼𝑠.𝜎]]𝑀 ′ =
[[𝛼𝑠.𝜎]]𝑀 . Using the semantics of 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 given in Section 2.4.2, one has that for
any (𝑋𝑠,𝑋𝑠′) ∈  𝑛+𝑚, if [[𝛼𝑠, 𝛼𝑠′, .𝛾]]𝑀 ′(𝑋𝑠,𝑋𝑠′) = 1 then

[[𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇]]𝑀 ′([[𝛼𝑠.𝜎]]𝑀 ′ , 𝑆(𝑋𝑠))([[𝛼𝑠, .𝑝]]𝑀 ′)(𝑖𝑋𝑠) = 1.

8Note the two commas in 𝛼𝑠, 𝛼𝑠′, .𝛾. The first separates the two lists of type variables; the second splits
type variables from term variables.

2.5. EXTENSIONS OF THEORIES 49

Thus 𝑀 ′ satisfies the sequent

(𝛾 , ∃𝑓(𝛼𝑠)op→𝜎 . 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓).

But since the sequent (𝛾, (∃𝑓𝛼→𝜎 . 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓) ⇒ 𝑞) is in 𝖳𝗁𝖾𝗈𝗋𝖾𝗆𝗌 , it is satisfied
by the model 𝑀 and hence also by the model 𝑀 ′ (since the sequent does not involve
the new type constant op). Instantiating 𝛼 to (𝛼𝑠)op in this sequent (which is permissible
since by Condition (iv) 𝛼 does not occur in 𝛾), one thus has that 𝑀 ′ satisfies the sequent

(𝛾 , (∃𝑓(𝛼𝑠)op→𝜎 . 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓) ⇒ 𝑞[(𝛼𝑠)op∕𝛼]).

Applying Modus Ponens, one concludes that 𝑀 ′ satisfies (𝛾 , 𝑞[(𝛼𝑠)op∕𝛼]) and therefore
𝑀 ′ is a model of  ′, as required.

An extension by type definition is in fact a special case of extension by type specifica-
tion. To see this, suppose ⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝𝜎→bool⟩ is a type definition for a theory  .
Choosing a type variable 𝛼 different from 𝛼1,… , 𝛼𝑛, let 𝑞 denote the formula

∃𝑓𝛼→𝜎. 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓

Then ⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝, 𝛼, ∅, 𝑞⟩ satisfies all the conditions necessary to be a type specifi-
cation for  . Since 𝑞[(𝛼1,… , 𝛼𝑛)op∕𝛼] is just ∃𝑓(𝛼1,…,𝛼𝑛)op→𝜎 . 𝖳𝗒𝗉𝖾_𝖣𝖾𝖿𝗂𝗇𝗂𝗍𝗂𝗈𝗇 𝑝 𝑓 , one has
that

 +𝑡𝑦𝑑𝑒𝑓 ⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝⟩ =  +𝑡𝑦𝑠𝑝𝑒𝑐⟨(𝛼1,… , 𝛼𝑛)op, 𝜎, 𝑝, 𝛼, ∅, 𝑞⟩

Thus the Proposition in Section 2.5.4 is a special case of the above Proposition.

In an extension by type specification, the property 𝑞 which is asserted of the newly
introduced type constant need not determine the type constant uniquely (even up
to bijection). Correspondingly there may be many different standard models of the
extended theory whose restriction to  is a given model 𝑀 . By contrast, a type definition
determines the new type constant uniquely up to bijection, and any two models of
the extended theory which restrict to the same model of the original theory will be
isomorphic.

50 CHAPTER 2. THEORIES

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Computer Science and Applied Mathematics Series. Academic Press,
1986.

[2] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[3] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[4] F. K. Hanna and N. Daeche. Specification and verification using higher-order logic:
A case study. In G. Milne and P. A. Subrahmanyam, editors, Formal Aspects of
VLSI Design: Proceedings of the 1985 Edinburgh Workshop on VLSI, pages 179–213.
North-Holland, 1986.

[5] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[6] M. Spivey. The Z Notation. Prentice-Hall, 1989.

51

	Syntax and Semantics
	Introduction
	Types
	Type structures
	Semantics of types
	Instances and substitution

	Terms
	Terms-in-context
	Semantics of terms
	Substitution

	Standard notions
	Standard type structures
	Standard signatures

	Theories
	Introduction
	Sequents
	Logic
	The Hol deductive system
	Soundness theorem

	Hol Theories
	The theory MIN
	The theory LOG
	The theory INIT
	Implementing theories LOG and INIT
	Consistency

	Extensions of theories
	Extension by constant definition
	Extension by constant specification
	Remarks about constants in Hol
	Extension by type definition
	Extension by type specification

