INTERPOLATION AND CONCEPTUAL COMPLETENESS
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Absract. An interpolation property of cocomma squares of pre-
toposes is demonstrated and used to give a constructive ver-
sion of the Makkai-Reyes Conceptual Completeness Theorem.
These results are achieved by using category theory and in
particular a certain functorial construction from pretoposes
to Grothendieck toposes. ;

} Introduction

One of the many interesting results in Makkai and Reyes' book on
first order:categorical logic [8] is the conceptual completeness of

pretoposes for coherent logic. To explain the meaning of this result,

let us first recall the connection that exists between coherent logic
and pretoposes. For unexplained terminology and further background, the
reader is referred to [8] or to the recent account contained in Makkai
E31l.

By the term coherent logic is meant the =,A,Vv,3 fragment of first

order logic. The properties a category must possess to enable this
fragment to be soundly interpreted in it are precisely the existence of
finite limits, pullback stable extremal-epi/mono factorizations and
pullback stable finite sups of subobjects; such categories are now
commonly called coherent (but were termed "logical" in [8]). Two further
cétegorical concepts, namely that of a finite disjoint coproduct and
 that of an effective coequalizer of an equivalence relation, are defin-
itely within the realm of coherent logic: that a diagram in a coherent
- category is either of these things, can be expressed by coherent state-
ments in the internal language of the category. A coherent category
which has finite disjoint coproducts and effective coequalizers of

equivalence relations is a pretopos. (Although one can take this as a
definition of pretopos, the one given at the beginning of Section 1 is
more fundamental.) The subcollection of coherent categories which are
pretoposes is reflective: that is, letting COH denote the 2-category of
 coherent categories, morphisms of such and natural transformations,
then for every T eCOH there is I:T——>P(T) in COH with P(T) a pretopos
and such that for any pretopos P, the induced functor
1*:COH(P(T),P)—>COH(T,P)



is an equivalence. In particular, since the category Set of sets is a
pretopos, the functor I induces an equivalence 1*:Mod(P(T)) = Mod(T)
between the categories of (Set-valued)models of T and P(T). (Mod(T) is
by definition COH(T,Set).) To summarise:
P(T) is the completion of T in COH with respect to two particular
concepts definable in coherent logic;and in transferring from T to
P(T) along I:T——>P(T) we do not change the category of models up
to equivalence. ]
Thus I:T—>P(T) is an example of what Makkai and Reyes call a strongly
conservative morphism in COH, viz a morphism I:T—>S for which
1*:Mod(s)—>Mod(T) is an equivalence of categories.
Following [8], say that a small coherent category T is conceptually
complete if every strongly conservative extension I:T——>S to another

small coherent category is actually an equivalence. (Thus T is concept-
ually complete if it has no proper small strongly conservative extens-
ions.) Makkai and Reyes prove that the conceptually complete coherent
categories are precisely the pretoposes. One part of this is immediate:
since I:T——>P(T) is strongly conservative, every conceptually complete
coherent category has to be a pretopos. What does require work to prove
is the eonverse assertion that small pretoposes are conceptually complete:
this is Theorem 7.1.8 of [8]. Following Kock and Reyes ([7],4.8) and
Makkai ([11],Theorem 3.1.l1), by "pretopos conceptual completeness" we
shall mean an equivalent statement mentioning only pretoposes, viz:

Pretopos Conceptual Completeness Theorem. For a morphism I:S——>T of

small pretoposes to be an equivalence, it is sufficient that the induced
functor I*:Mod(T%—~f—>Mod(S) between the categories of models be an
equivalence. '

Since for a small pretopos T, Mod(T) is just the category of pre-
topos morphisms from T to Set, it is evident that the above theorem is
a phrely category-theoretic statement. But since I:S—>T can also be

regarded as an interpretation between coherent theories, the theorem
can be couched in more traditional language (from a logician's point of
view) as a statement about coherent logic. It is from this latter stand-
point that the proof of the theorem in [8] proceeds, using standard
techniques of model theory (compactness and the method of diagrams)
along the way. Since categorical versions of such techniques have been
developed (for example by Freyd and by Barr and Makkai[2]), one could
envisage translating the model-theoretic proof of Makkai and Reyes into
a categorical proof of a certain sort. This is not our aim here. Whilst
a categorical proof of conceptual completeness will be given, it is
different in spirit from the original proof. Rather, we shall draw upon



the techniques of category theory to prove versions of the theorem which
are constructive in the sense that they are valid in category theory
over an arbitrary elementary topos with natural number object. Each such
topos 8 gives rise to a model of (a constructive version of ) category
theory in which the usual small/large dichotomy becomes that of internal
to® /fibred over 8.(The details of this for "small" category theory are
well documented, but not for the theory "in the large"; cf. the comments
in the Introduction of [14] and the references cited there.) The argu-
ments we give in this paper are (except where noted) all valid over an

arbirary base topos with natural number object. However, since we are
concerned throughout with one fixed such topos (i.e. no "change of base"
techniques are needed), we make the following

CONVENTION:The results and arguments in the body of this paper refer
to category theory over a fixed elementary topos 8§ with natural number

object. However we shall generally supress mention of 8§ and present the
material in the usual informal language of category theory. In particular
note that when we assert that a functor F:C———>D is an equivalence of
categories we shall mean that it is full, faithful and essentially
surjective (¥YeD TXeC F(X)2Y). (The constructively stronger concept

that there exist G:D——>C with FG¥ Idjand I ¥GF is not needed here.)

Letting PT denote the 2-category of large pretoposes in S and Pt
denote the full sub-2-catgory of small ones, conceptual completeness
becomes the statement:"for I:S—>T in Pt to be an equivalence, it is
sufficient that I’:PT(T,S)-—-)PT(S,s) be one". We can not expect this
to be true for arbitrary 8, since in general the categories PT(S,S) and
PT(T,8) may contain few objects. When 5= Set, the Deligne-Joyal Complete-
ness Theorem (which is essentially the same as the usual Completeness
Theorem for first order logic) says that PT(T,S) contains sufficiently
many objects to faithfully embed T in a power of B. For an arbitrary S,
let us say that a collection ¥ of large pretoposes. in 8 is sufficient
for the small pretoposes if for each TePt, there is a jointly faithful
family of morphisms T——>V in PT with Ve%. (Thus when S = Set, we can
take ¥ = {Set}.) Isolating the completeness theorem from conceptual com-
pleteness by making the existence of such a collection ¥ a hypothesis,

we shall prove (Theorem 2.13):

Pretopos Conceptual Completeness Theorem (Constructive Version). Let
5 be an arbitrary topos with natural number object and letY=PTbe a

" collection of large pretoposes which is sufficient for small pretoposes.
For a morphism I:S—>T of small pretoposes to be an equivalence, - 4 )
is sufficient that I*:PT(T,V)—>PT(S,V) be an equivalence for each VeY.



This theorem is an easy consequence of a result about quotient mor-
phisms in Pt (Theorem 2.12), the classical version of which is implicit
in [8] and is called by Makkai [11, Theorem3.1.2] "strong conceptual
completeness for pretoposes":

Strong Pretopos Conceptual Completeness Theorem (Constructive Version).
With 8 and V as above, for a morphism I:S—>T in Pt to be a quotient,
it is sufficient that I*:PT(T,V)-———>P'I‘(S,V) be full and faithful for
each Vef. :

(Roughly speaking, I is a guotient if, identifying Sand T with coherent
theories, T is equivalent to a théory obtained from S by adding some
new axioms in such a way that I becomes the canonical interpretation of
S in the new theory. An equivalent, categorical definition is given in
section 2.)

Proceeding as Makkai and Reyes do in the classical case, we derive
this strong conceptual completeness result by breaking it into two pieces.
Considering separately the hypotheses "I* is full" and "1* is faithful",
one shows that each implies a condition on I that together are equival-
ent to I being a quotient.

The case "I* is full" is Proposition 2.4 below. It should be compared
with Theorem 7.1.4 of [8]: both there and here the result is obtained by
applying versions of "Beth definability". In our case this takes the
form of a special case of a general interpolation theorem for pretoposes:
(Theorem 1.3):

Pretopos Interpolation Theorem. Let
M

S >p
I s N
R J > T

be a cocomma square in Pt. Given an object X of R and subobjects
B>—>I(X) in S and C>—>J(X) in T, suppose that the image of the sub-
object MB along hy,:MI(X)—>NJ(X) is contained in the subobject NC of
NJ (X). Then there exists a subobject A>—>X in R with gsIA in SubS(IX)
and JA<C in SubT(Jx).

Section 1 is devoted to proving this theorem. The method of proof
is functorial: the "topos of filters" functor (deireloped in [13] ®o
prove an interpolation result for Heyting pretoposes) is used to deduce
the result from certain properties of Grothendieck toposes, which are
developed in [16] as an application of enriched category theory.




Returning to the strong conceptual completeness theorem, the case
"* is faithful" is Proposition 2.9 below and should be compared with
Theorem 7.1.6 of [8]. It is here that our approach, apart from being
constructive, is essentially different from that in [8]. For we show
that the proposition is in fact a consequence of the previous case (Pro-
position 2.4) applied to a codiagonal morphism; hence it too is a con-

sequence of the interpolation theorem. Although it takes some work to
see it, we can thus say that for pretoposes conceptual completeness is

a corollary of the general interpolation theorem.

This insight is certainly one of the pleasing aspects of the approach
developed in this paper. In avoiding non-constructive methods, one of
course pays a price. A deep analysis of the classical properties of pre-
toposes must surely appeal to classical methods: we have in mind here
the recent very interesting work involving ultraproducts and pretoposes
by Makkai (cf. [9],[10] and [11]). However the methods developed here
can be extended very easily to prove a conceptual completeness result
for Heyting pretoposes from the interpolation theorem given in [l3j:
this is in other words a result about first order intuitionistic logic,
where one can expect little help from classical model theory. The details
will appear in [15].

I am indebted to G.E.Reyes, F.W.Lawvere, A.Joyal and especially to
M.Makkai for many helpful conversations on the subject matter of this
paper. The research for it was partly carried out whilst a visitor at
the Centre Interuniversitaire en Etudes Catégoriques in McGill Univer-
sity and partly whilst a visitor at SUNY at Buffalo; the hospitality
of all concerned is gratefully acknowledged.

l.Interpolation

Recall that a pretopos is a category with finite limits, finite co-
products that are disjoint and stable under pullback (so in particular,
a strict initial object) and effective coequalizers of egivalence rel-
ations that are stable under pullback. (The original definition in SGA4
[1, v 3.11] also required that all epimorphisms be (stable) effective;
but as Makkai and Reyes observe in [8], this is implied by the other
conditions.) A morphism of pretoposes is a fuactor preserving finite
limits, finite coproducts and coequalizers of equivalence relations.

Notation. We will denote by PT the 2-category of pretoposes,morphisms



and natural transformations; Pt will denote the full sub-2-category of
small pretoposes.

A coherent theory (also called "finitary geometric" or "positive
existential") is a first order theory (written in a possibly many-sorted
language with equality,relation and function symbols) which can be

~ axiomatized by sentences of the form

vx(a->B)
with a and B coherent formulas, i.e. built up from atomic formulas using
only finite conjunction, finite disjunction and existential quantific-

ation.

We refer the reader to [ll] (or of course to [8]) for an account of
the relationship between coherent theories, pretoposes and coherent
categories (of which pretoposes are the completion with respect to dis-
joint finite coproducts and effective coequalizers of equivalence rel-
ations). A key ingredient of this relationship is the association to
each coherent theory T of its "classifying pretopos" P(T): lettingMod(T,P)
denote the category of T-models and homomorphisms in a pretopos P, then
P(T) is defined up to equivalence by requiring it to be a pretopos in
which there is a generic T-model M; thus for any pretopos P, the functor

PT(P(T),P)—> Mod(T,P) | (1)
Fb >F(M)

is to be an equivalence of categories. This might be called the "sem-
.antic" definition of P(T). But a "syntactic" construction of P(T) can

be given: its objects are quotients by T-definable partial equival-
ence relations of finite disjoint unions of finite products of the basic
sorts; and its morphisms are T-provably functional relations (or rather,
equivalence classes of such under T-provability). In this sense P(T) is
is the category of concepts of the theory T. There is some discussion in[11]
of the rdle that P(T) might play in the study of certain parts of first
order logic. Here we wish to emphasise that just as in general, category
theory is the study of morphisms, so here in particular the association
of the pretopos P(T) to a theory T allows us to handle very elegantiy

an important notion of "morphism of theories":

Definition. Given two coherent theories S and T, an interpretation of
S in T will mean an S-model in the category of concepts P(T) of T.
Using the equivalence (1), such interpretations can also be regarded

as pretopos morphisms from P(S) to P(T).

Coupling the first sentence of the above definition with the explicit
description of P(T) mentioned above, one sees both that this notion of



interpretation can be given a purely syntactic (albeit rather involved)
definition and that as such it coincides with or includes notions of
interprétation or translation that various logicians have considered.
However it is the second sentence of the definition that allows a very
smooth development of the properties of this notion of interpretation.
Thus in this paper, whilst the results proven are about morph-
isms of pretoposes, they are equally results about interpretations
between coherent theories.

The passage from coherent theory T to pretopos P(T) is only one
half of the connection between such theories and- such categories. Each
pretopos P is equivalent to P(T) for some coherent theory T. For example
the underlying graph of P provides a many-sorted language (with no rel-
ation symbols) in which we can write down coherent statements that re-
capture P on taking the category of concepts. This in a precise sense
is to present P in terms of generators (the language) and relations
(the axioms); and such presentations guarantee the existence of small
pseudo-colimits in Pt. The particular pseudo-colimit with which we will
be concerned here is the so-called "cocomma" square.

1.1 Definition. Given three categories A,Bl,B2 and two functors
'Fy:B,—>A (i=1,2), the comma category (F1,F,) has as objects

triples (b,,£f,b,), where b, is an object of B; and f:Fl(bl)——>F2(b21
is a morphism in A;

and has as morphisms from (bl'f'bl) to (b',f',bé)

‘ pairs (gl,gz), where g;:b;—>b; in B, and

> 4
Fl(bl) 44>F2(b2)
F,(gy) F,(g,)
' £’ '
Fl(bl) i Bs (b-z)

commutes in A.
Composition and identity morphisms are defined from those in_Bl ande
in the obvious way.

For such a comma category, there are projection functors

TfiS (Flle)"_éFi (1=112)
T PR ML . AP i L
ot Sl b Weat e o it i

and a natural transformation
Qa :ﬂlFl———> 1'r2F2



whose component at an object (bl,f,bz) is f£. These provide the universal
solution to the problem of completing the diagram

"
*3
Bl Fl > A
to a square of functors that commutes up to a natural transformation:
C G2 3>B2
Gy 2 F, B
Bl Fl > A.

1.2 Definition. A diagram of the above form in a bicategory ® will be
called a comma square if for all objects D of @, the canonical functor
H r—-}(GlH,aH,GzH)

is an equivalence. (As usual, (Fi )*:B(D, Bi)—>B(D,A) denotes composition
‘with Fi’) Thus in such a square, G,.G, and a provide the universal sol-
ution (in the sense appropriate to bicategories) to the problem of
completing the diagram given by Fy and F2 to a square commuting up to
a 2=-cell in a specified direction.

Dually, the above diagram is a cocomma square in 8 if it is a comma

square in 8°F.

Starting with
s

R g > T

in Pt, the remarks above indicate how one can form a cocomma square
containing them: taking T to be a coherent theory in the language of
the underlying graph of T with P(T)=T (and taking a theory S for S sim-
ilarly), then the cocomma square '

S . SRR




is constructed by taking P to be P(P) for P the (evidently coherent)
theory comprising disjoint copies of S and T together with function
symbols for the components of h, plus axioms saying that it is natural.

Our principal tool for proving the pretopos conceptual completeness
results in this paper will be the following interpolation property of
cocomma squares in Pt. As usual, for a small pretopos P and object X
of P, SubP(X) denotes the set of subobjects of X and < denotes the par-
tial order on it; similarly, given f:X——>Y in P, the operation of
pulling back subobjects along £ is denoted by f'1 and its left adjoint
(taking images along £) by Zf.

1.3 Theorem (Pretopos Interpolation). Let
M

S > P
2 ¥ h= N
R g > T

be a cocomma square in Pt. Given an object X of R and subobjects
B>——>I/(§::) in S and C>—>J(X) in T, suppose that

&hy (MB) < NC '
in Sub,(NJX). Then there is a subobject A>—>X in R such that B< IA
in sub (IX) and JA< C in Sub,, (IX) .

In fact we need only a special case of Theoreml.3, that when I=J:

1.4 Corollary. Given I:S—>T in Pt, form the cocomma square
M

T i P
1 > N
S el

For any object X of S and subobject B>—>I(X) in T, if
@h, (MB) < NB
in SubP(NIX). then B IA in SubT(Ix) for some A>—>X in S.

O

To give Corollary 1.4 a more "model-theoretic" flavour, let us as-
sume that we are given a collection *V of pretoposes that is sufficient
for Pt in the sense that for any small pretopos T, the collection of
pretopos morphisms T ——>V with VeV is jointly faithful.(Cf. Definition -
2.3 below.) (For example, if we are working over the topos of classical




sets, where one has the usual completeness theorem for first order logic,
then we can take YV to contain just the category of sets.) Let us temp-
orarily call any morphism of a small pretopos T into a member of ¥V, a
"model" of T. Then Corollary l.4 is equivalent to the statement:"given
B>—>I(X) (i.e. given a coherent formula of T whose free variables are
of sorts in the image of I), if for any pair M,N of models of T and for
any S-model homomorphism h between the restrictions of M andN along I,
h preserves B, then B is already in the image of I". Compare this form
of the corollary to Theorem 7.1.4' of [8].

Although the proof of Theorem 1.3 which we shall give is somewhat
indirect, it is constructive in the sense that it can be carried out
in category theory over an arbitrary base topos with natural number
. object. Moreover it utilises the functorial techniques that are at
the heart of category theory. In fact, using a functor Pt ——>Pt with
suitable properties, the proof can be reduced to the special case: I
has the property that the operation of applying it to the subobjects
of a given object X, has a left adjoint. Now a careful analysis of the
cocomma pretopos P enables one to characterise the (finite)sup-preserv-
ing maps out of the lattices Sub,(NZ) (Z an object of T); this charac-
terisation shows that N inherits the property of I just mentioned. But
in these circumstances, the interpolation property of a cocomma square

is equivalent to a certain equation involving the left adjoints (a kind
of Beck-Chevalley condition: cf. the Remark in the introduction of [12])
and this equation is easily verified from the characterisation of the
lattices Suby (NZ) mentioned above.

" The analysis of cocomma pretopqses needed to.realize the above proof
is just the finitary version of the characterisation ,given in [16], of
comma squares in GTOP, the bicategory of Grothendieck toposes, geometric
morphisms and natural transformations. Rather than give that finitary
vefsion, we shall utilise the results for toposes directly (sketching
their pfoof and referring the reader to [16] for complete details). We
can do this by using the contravariant pseudofunctor which sends a pre-
topos P to its associated coherent topos of sheaves on the site consis-
ting of P with the subcanonical topology (cf.[4],section 7.3). Thus the
functorial part of our proof of Theoreml.3 will use the composition
of this with the functor Pt——>Pt alluded to above. The resulting contra-
variant pseudofunctor pPt°P ——>GTOP is none other than the "topos of
filters" construction of [13]; there it was used to prove an interpol-
ation property of pushout squares of Heyting pretoposes (which are rel-
ated to intuitionistic first order predicate logic in the same way pre-
toposes are related to coherent logic).

Let us now give the version of Theoreml1l.3 for infinitary geometric




logic that the topos of filters construction allows us to use:

1.5 Theorem. Let

H 9 —>a
Q

P =D g

F £ -> E

be a comma square in the bicategory GTOP of Grothendieck toposes, geo-
metric morphisms and natural transformations. Suppose further that £*
preserves all intersections of subobjects. Then given an object X of E
and subobjects B>~—>f*(X) in F and C>—»g*(X) in G, if

aa, (p*B) < g*c
in H, then there is A>—>X in E with B< £*A and g*As C.

Proof. Since the operation of applying f* to subobjects of a given ob-
ject X of E preserves intersections, this operation has a left adjoint
which we shall denote by

<
| fX:SubF(f X)—> SubE(X) .
The thedrem follows by showing:

q*also preserves intersections (so tﬁat in
particular g*:sub,(g*X)——>sub, (q*g*X) has (2)
a left adjoint, Agrx?

and: z fx
Suby, (£7X) > sub (X)
o
SubH(g*f*x) g* commutes. (3)
aax

SubH(g*g*x) Ig*x > Sub; (g*x)
For then :
: aa, (p*B) < g*c
is equivalent to
qgax(aax(p*la)) & 0
so that by (3)
g*(£,B) < C.
Then since one always has B< f*(fxB), we can take A=f (B).
The proof of (2) and (3) is very much inspired by the work of Joyal
and Tierney [6] and follows from a particular way of describing the bi-
category of relations of the comma topos H in terms of those of the




toposes E,F,G (and the bifunctors induced by £* and g*). This descrip-
tion will be given in [16] as a corollary of observations about internal
sup-lattices in Grothendieck toposes and sup-lattice enriched category
theory. Here we content ourselves with giving some motivation for
the description, stating it precisely and applying it to prove (2) and
(3).

First some notation. For a topos E, we will denote the associated
bicatgory of relations by RelE: this has the same objects as E, but a
morphism from X to X' in RelE is a relation from X toX' in E, i.e. a
subobject of X xX'. We will use the notation

A X —+—> X!
to denote that A is such a relation.
Returning to the comma square in the statement of Theorem 1.5, given
objects Y of F and Z of G, we will give a description of RelH(p*Y,q*Z)
as an object in the category S1 of complete posets and sup preserving

maps. What relations from p*Y to q*Z can there be in H? Certainly given
an object X of E and relations B:Y—+>f"X in F and C:g*X—+>2Z in G,
we get by composition a relation qu°ax-p*B:p*Y——+—>q*Z in H. In general
an elemeqt of RelH(p*Y,q*Z) is a sup of such relations: M.Makkai (pri-
vate communication) has pointed out a straightforward way of seeing
this in terms of theories. Thinking of E,F and G in terms of the geo-
metric theories they classify, then (just as for the finitary case dis-
cussed after Definition 1.2) H is given by the (geometric) theory of an
E-model homomorphism from the restriction along £* of an F-model to the
restriction along g* of a G-model. Then an argument by induction on
the complexity of a geometric formula in the language of H of sort¥Yx3Z,
shows that it is provably equivalent to one of the form

f!sziexi[Bi(y,xi)/\Ci(axi(xi),z)],

whigﬁ gives rise to the relation '¥ q*C,-a -p*B in H. (In fact, taking
iéI i Xy i

the coproduct of the Xy such a sup is equal to a single relation of
the form g*Ceay°p *B, but we do not need this refinement here.)

Thus as an object of the category Sl1, RelH(p Y,q*z) is generated
by elements of the form q*C'ax-p B. What relations exist between such
elements? Since pX, q* and composition preserve sups, we have that

: q*(VCi)o q_xop*B = \/(q*cioaxop*g)
* *
and q C°ax‘p*(VBi) = V(q C-ax-p*Bi).
Also, since Ay is natural for maps in E, it is lax-natural for relations,

so that given A:X—+—>X' in E, B:Y-—+—>f*x in F and c':g*x'——+—>z in G,
we have



q*c 'Od.x,Op*(f*A‘B) 5 q*(c .‘g*A).ax°p*B-

It is shown in [16] that the above three kinds of relation are sufficient
to generate all the others. Precisely, we mean that given any V in Sl
and any collection of elements

£(C,X,B) eV (XeE, BeRelF(Y,f*x), CeRel, (g"X,2) )
satisfying

Z(VCi,X,B) = VZ(Ci,X,B), (4)

£(C,X,VB,) = VE(C,X,B;) (5)
and T(c',x',£¥A*B) < £(C'*g™A,X,B), (6)

then there is a unique morphism féRe]T_l(p*Y, q*Z)——>Vin Sl with
Z(q*c-ax-p*B) = £(C,X,B).

Here we are interested in the case ¥Y=1l, the terminal object of F.
Identifying RelF(l,f*X) with SubF(f*X) and RelH(p*l,q*Z) with SubH(q*Z),
the assignment

£(C,X,B) = C*g"(£,B) e Suby(2)

satisfies the conditions (4),(5) and (6) and so induces a sup preserv-

ing map
3 = *

Z.SubH(q Z2)——> SubG(z). .
since £q*c =E(q*Cea;+p*(T)) =2(C,1,T) =Cog*(£,(T)) <C
and q*C-axop*B < q*C-ax- *f*(fXB)

< g*Ceq*g*(£,B)
= g*Z(C,X,B)
= q*z(q*c"ax'p*B),

it follows that T is left adjoint to q*:SubG(z)——> suby, (q*2) . This
proves (2); and taking 2 =g*x, we also have

(%0, (p*B)) = E(q*(1d)*a,*p*B)
£(id,X,B)
1deg*(£,B)

x*
g (fxa),

qg*x

which is (3). With these results, Theorem 1.5 follows as indicated above.

[Cr.s

1.6 Remarks.

(1) Theorem7.3.50f [8] is evidently related to the special case of
Theorem 1.5 when f =g.

(11) We can say more than (2): it is the case that q is an open geometric
morphism. Moreover, if £ is surjective then so is q and if g* reflects

0 (i.e. if g*x; 0 implies X% 0) then so does p’f For proofs, see [16].




As mentioned above, to deduce Theorem 1.3 from Theorem 1.5 we shall
use the "topos of filters" ¥(T) of a pretopos T, which was defined in
[13]. & is pseudofunctorial in T e Pt and there is a pretopos morphism
IT-T——> 3 (T) which is pseudonatural in T. Examining the construction
~of #(T) and I given in section 2 of [13], one can easily deduce the

following properties :

1.7 %(T) is generated by the collection of those objects which are
subobjects of objects in the image of Ip.

1.8 Given an object X of T, let ?(SubT(X)) denote the (complete, dis-
tributive) lattice of filters of Sub,(X) partially ordered by re-
verse inclusion; and let ﬁ(SubT(X)) denote the lattice of ideals

of ?‘(SubT(X)) partially ordered by inclusion. (Cf. section 2 of [12].)

Then the map
#(Subg, (X)) ——> Subg, (I X)

A - a\e/a A/e\a Ip(a)

is a lattice isomorphism (and is natural in X).
Thus in particular every subobject of IT(X) in #(T) is expressible as
a join of meets of subobjects in the image of Ins and it is possible to
give an explicit (but rather intricate) formula for when one arbitrary
join of meets of subobjects in the image of T is less than or equal to

another such.

1.9 Given I:S——>T in Pt and X an object of S, then the map
¢(Sub X)) — ¢ (sub,, (IX))

corresponding under the isomorphisms ¢(Sub (X)) ..Sub (ISX) and

#(Sub,,(IX)) = Subg,, (I IX) = Subg L ((ED)*1 gX), to the map

(!I)*=Sub §(IgK) ——> suby, ((21)*1.x),

_is that induced by I: viz it sends A (an ideal of filters of Subg (X))
to the ideal {Be¥(Sub,(IX))| Faex vAea I(A)eBl.

The nature of meets in ?F(Subs(x)) and d(SubS(X)) implies that the map
described in 1.9 preserves all meets. Thus

*x X
(31) :SubiS(ISX)———) Subn.((n) st)

preserves all intersections. Now for any geometric morphism f:F——>E
between Grothendieck toposes, the collection of objects X in E for
which f*:SubE(X)——-> SubF(f*x) preserves intersections, is closed under
coproducts, subobjects and images. In view of 1.7, we thus have:

1.10 For any I:S—> T in Pt, (!I)*:is—-> 8T preserves all inter-
sections of subobjects of any given object.



 We can now give the

Proof of Theoreml.3. We are given a cocomma square in Pt:

s—H8 —>p

I e N (7)

N WY

Applying & to iand J, let

PRI
© o PR 37 (8)
4 3(s)—2L 5 3(r)

be a ~comma square in GTOP. Using the pseudonaturality of Tyt (=)—2(-),

we get T o
Bl Pt O
X -
b q
I i 3(T)
; A
Ip
R J > T

in PT, the bicategory of large toposes; here B is
ol
- o X R * X *
P I Iap” (8I) I ———>q" (8J) I uq 1.7,
Since (7) is acocomma square in Pt, evidently it is one in PT as well.
So by its universal property, there areK:P——>H in PT and isomorphisms

KM g p*IS , KNz q*IT
making
KME ey KT
Ul 8 U
p¥I T il *1T
commute.

In the hypothesis of 1.3 we are given an object X of R and subobjects
B>—>I.(X) andC>—>J (X). Write X = IR(X) and B>—> (21)" (X),
5>——>(§J)* (X) for the subobjects

Ig(B)>—>II(x) % (31)* (X) in 1(s)

and I,(C)>—>IJ(X) % (83)*(X) in I(T).



We are given that
&h,(MB) < NC
in sub, (NJX). By definition of B and K, this inequality gives
Zaz (P*B) < ¢*CT

in SubH(q*(iJ)*X). In view of 1.10, we can apply Theorem 1.5 to the

comma square (8) to conclude that there is a subobject A>—>X in #(R)

with B< (21)* (%) and (83)* (8) <T. Now under the isomorphism of 1.8

Ae Subg (I X) corresponds to some ideal of filters ole g(Subg(X)).
Using 1.8 again, plus the definition of X, we have

A
ub§s((§I) X) ¢(Subs(1x)).

By definition of B and by 1.8, B is identified under this isomorphism
with the principal ideal {B|BeB}; on the other hand, by definition of
A and by 1.9, (21)*(Z) is identified with the ideal {B| aeAVAea I(A)eB}.
So 35 (§I)*(X) implies that the principal ideal is contained in this
latter ideal and hence that: :

there is some aeA such that for all Aea B<I(A). (9)

similarly (87)*(®)<T implies that the ideal {Y|ZaeAvAea J(A)e Y}
is contained in the principal ideal {Y¥ICey}. So taking y= {c|aaca J(AXxC}
where o is the filter mentioned in (9), we have that CeYy, i.e. J(A) <C
for some Aea; and since Aca, by (9) we also have B<I(A).

3.3

1.11 Remark. The interpolation property of cocomma squares in Pt given

in Theorem 1.3 can be shown (using simple properties of quotients in
Pt) to be equivalent to the following statement:

If in the cocomma square (7), J reflects the initial object (i.e.
if JXz 0 implies X 0), then so does M.

Thus an alternative proof of 1.3 is to deduce this statement from that
given in Remark 1.6(ii) and the fact that Ig:s —>3(s) reflects the
initial object. (IS is in fact always full and faithful.) An analogous
method was used in [13] to prove an interpolation property of pushout
squares of Heyting pretoposes.

Let us also remark that Theorem 1.3 can be used to deduce a similar
interpolation property for cocomma squares of coherent categories (using
the fact that the embedding of such a category into its pretopos com-

pletion is powerful in the sense of section 2 below).



2.Conceptual Completeness

Let I:S——> T be a morphism of pretoposes.

2.1 Definition.
(1) I is conservative if it reflects isomorphisms, i.e. if whenever

f:X—>X"' in S has I(f) an isomorphism, then f is already an isomor-

phism.

(11) I is full on subobjects if given an object X of S and a subobject

B>—>I(X) in T, there is A>—>X in S with I(A) 2B in Sub,(IX).

(iii)Given objects X of S and Y of T, say that X subcovers Y via I if

Y is the codomain of an epimorphism whose domain is a subobject of I(X):
o ——D Y

sE2REE:

I(X)
( —— will denote an epimorphism in a pretopos and as usual >——>

will denote a monomorphism.)

Then I is called subcovering if each object of T is subcoveredvia
I by some object of S.
(iv) I is a guotient morphism if it is both full on subobjects and sub-

. covering.

Note that I is conservative iff it is faithful. Note also that it is °

conservative iff whenever a subobject of an object X of S is sent by I
-to the top subobject of I(X), then it was already the top subobject of
X. " This last observation shows that a conservative morphism of pretop-
oses exactly captures the usual notion of conservative interpretation
of theories.

A similar remark applies to the notion of quotient morphism: it is
the case that a pretopos morphism between the categories of concepts of
two' theories, P(S)—>P(T), is a quotient iff T is equivalent (in the
sense of having equivalent categories of concepts) to a theory obtained
from S by adding some new axioms. A categorical reformulation of this

statement is:

2.2 Remark. I:S——>T is a quotient iff it is the universal solution
in PT to the problem of inverting some collection I of monomorphisms in

S, i.e. for all pretoposes P,
1*:pT(T, P) ——> PT (S, P)

is full and faithful with essential image comprising those F:S——>P

for which F(o) is an isomorphism, all ceZ.



An elegant proof of this characterisation of quotients in PT can be
given using "polyadic distributive lattices" as an intermediate step:
cf. section 3 of [13]. A detailed discussion of quotients for lex and
coherent categorieé as well as for pretoposes, can be found in section
2:3 of [11].

The_.collections of conservative and quotient morphisms form a fac-
torization system on the bicategory PT. (See [5] for a precise definition

of this concept.) Thus each morphism factors as a quotient followed by
a conservative morphism and the two classes are orthogonal. Another
factorization system on PT that is perhaps less familiar from thepoint
of view of coherent theories (but is nonetheless very important to the
study of global properties of such theories) is that given by the class
of subcovering morphisms and the class of morphisms which are both con-
servative and full on subobjects. Barr and Makkai [2] coin the term
powerful embedding for the latter kind of morphism. (Such a morphismis
in particular full and faithful.) In fact this faétorization is the
restriction to pretoposes of the localic-hyperconnected factorization
for toposes (cf. [5]): a morphism I:S——>T in Pt is subcovering (res-
pectively a powerful embedding) iff the corresponding geometric morphism

between -coherent toposes is localic (respectively hyperconnected). (Sim-
.ilarly, I is a quotient (repectively conservative) iff the correspond-
ing geometric morphism is an inclusion (respectively surjective).)

2.3 Definition. A collection VY of large pretoposes will be called
.sufficient for Pt (the bicategory of small pretoposes) if it has the
property that for each T e Pt, the collection of pretopos morphisms
T—>V with V€%, is jointly conservative. Thus f£:X—>X' in T is an
isomorphism iff for all Ve and all MePT(T,V), M(f) is an isomorph-
ism.

‘Privially V=Pt is always sufficient for Pt; less trivially, the
collection of categories of sheaves on complete Heyting algebras (i.e.
localic toposes) is an example of such a VY no matter what base topos
we are over (cf. [4], Theorem 7.51). If we are working over the topos
of classical sets, then the usual completeness theorem for first order
logic implies that we can take ‘V={set}(cf. [11], Theorem1l.2.1).

2.4 Proposition. Suppose that ‘VEPT is sufficient for Pt. GivenI:S ——>T
in Pt, if for all VeV

1*:pT(T, V) — > PT(S,V)

is full, then I is full on subobjects.



Proof. Let

M >P
1 N N
S SR

~ be a cocomma square in Pt. Given an object X of S and B>—>I(X) in T,
we can apply Corollary 1.4 to find A>—>X with I(A) 2B in SubT(IX)'
provided &hy, (MB) <NB in Suby(NIX). Since V is sufficient for Pt, this
holds iff for all Ve and all K ¢ PT(P,V), K(Zh,MB) <KNB.

" But Kh:I¥(KM)——>I*(KN); so by the hypothesis on I, Kh =k, for
some k:KM—>KN in PT(T,V). Then since

KMB>————>»KMIX

kg krx =Khy

KNB>———> KNIX

commutes, we have K(Zh MB) = 3Kh, (KMB) <KNB, as required.

Next we consider the analogue of Proposition 2.4 when the hypothesis
becomes: 1* is faithful. It is easy to see that for any pretopos Vv, a
sufficient condition for I*:PT(T,V)——)PT(S,V) to be faithful is that

"I be subcovering (see Proposition 2.10 below). We shall show that this
condition is also necessary.

2.5 Lemma. In a pretopos T, an object X subcovers another object Y iff
Y is a retract of X in RelT,the bicategory of relations of T.

Proof. Suppose we have

zZ 2 >Y

X

in T. Letting R®:Y——>X denote the opposite of a relation R:X——>Y,
define

B = m-eozY—+—>x
and C = em®:X——> Y.

Since m is a monomorphism we have m°m=idzz and since e is an epimorph-



ism we have ee°= idy. Hence
CB = em’°me°’= ee®= i%
and thus Y is a retract of X in RelT.
.Conyersely, given relations B:Y——>X and C:X—+—>Y with CB = :Ldy,
then
T |=3x[B(yl,x) A C(x,yz)] “V,=Y,.
So letting A =B°I\C, in T we have . :
A(x,y1) AA(x,y,) + [B(yy.x) AC(x,¥;)]A [B(y,,x) A C(x,y,)]
- 73 " ¥q

L
so that A>—>X xY——1—>Y is a monomorphism. Similarly

y=v ¢ ax[B(y,x) AC(x,y)]

EXA(XIY)I
n
so that A>——>X xY——2—>Y is an epimorphism. Thus Y is subcovered by X.

&

2.6 Lemma. Suppose that

S

Rt B
I Y [N
J > T

R

is a cocomma square in Pt. Given objects Y of S and 2 of T, every rel-
ation from MY to NZ in P is of the form

NC'h.x'MB
for some object X of R and relations B:Y—>IX in S and C:JX—+>Z inT.

Proof. This lemma is the finitary version of the remarks after (3) in
the proof of Theorem 1.5. We sketch a proof in terms of theories sug-
gested to us by M.Makkai: ‘
Let S be a coherent theory in the language of the underlying graph
of S whose category of concepts P(S) is equivalent to S; let T be simi-
larly chosen for T. Then as remarked in section 1, P=x=P(P) where P is
the theory comprising disjoint copies MS of S and NT of T, together
with function symbols for the components of h plus axioms saying that it
is natural. Thus an element of RelP (MY,NZ) is represented by a coherent
formula in the language of P of sort MY xNZ. An argument by induction
on the complexity of such a formula and using the rules of the coherent



fragment of first order logic, shows that this formula is P-provably
equivalent to one of the form

V ax.[MB, (y,x;) ANy, (h, (x,),2)]

o T L AT .
where Bi (respectively N&).is a coherent formula from S (respectively
T) of sort Y xIX (respectively JXx2Z).

Thus every relation MY—+—>NZ in P is of the form

V NC,eh_°MB '

P . 4 Xy i
for finitely many objects Xy of R and relations By :Y—+—>IX, in S and
Ci:in—ﬁ—>Z in T. But letting

& ) Xy
: i<n
be the coproduct of the Xy in R, with coproduct injections my 1 X, >—>X
and defining

B= V Im, B and C =
P &

since the coproduct is disjoint one has

Vc 'Imo

M i i’

~ V NC,°h_*MB, = NC*h,°MB
Pologs e i Px

in RelP (MY,NZ).

—

*

Given I:S—>T in Pt and an object Y of T, consider the property:
"y is subcovered via I by some object X of S". Evidently it involves
quantifying over the objects of S. The next lemma shows that this prop-
erty is equivalent to a "bounded " one, only involving quantification
over the set of subobjects of a particular object in a cocomma pretopos.

2.7 Lemma. Given I:S—>T in Pt, form the cocomma square

r—H _5p

. = N

S ! > T

and let V:P——>T be the codiagonal morphism, i.e. a morphism (defined

uniquely up to unique isomorphism) for which there are isomorphisms

m:VM = Id‘l‘ and n:VUN Id‘]‘.‘
making
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s my i dnr (10)
I > I :

- ia

%
~ commute in Pt(S,T). .
"Then an object Y of T is subcovéred via I by some X in S iff there
is a relation D:MY—4—>NY in P making

MY — %2 S UNY
my ) oy
. 4 >Y :

oo
commute in RelT.
-~ proof. Suppose that I(X) subcovers Y; then by Lemma 2.5 there are rel-

ations B:Y—+—>IX and C: IX—+—>Y in T with CB =idy. Put D =NC-hX~MB.
Then by (10) (and using the fact that m and n being natural isomorphisms,

they are also natural for relations) we have

nYVD = nYVNC thVMB
=C nIxthVMB

g, SRR = Cmyy VMB

= CB!T\!
= mY
as required.
Conversely suppose we have D:MY—+—>NY with nYVD =M. By Lemma 2.6
D=NC¢hx-MB for some X in S, B:Y—+—>IX and C:IX—+>Y. Then as above,
we ‘have

nYVD = nYVNC thVMB = CB my,
so that CB =nYVDm;l. But nYVD=mY and hence CB =idy. Thus Y is a retract
of IX in RelT and therefore by Lemma 2.5, is subcovered by IX in T.

bl

O

The following lemma is an elementary consequence of the definition

(1.1) of comma categories:

2.8 Lemma. Given a functor F:B——>A between categories, consider the
diagonal functor A:B——>(F,F) defined by g

atb —I—>b') = (b,idp,b)— LD 5 (bt 1a,,,b").
Then F is faithful iff A is full. -

R Pt oy e



We can now prove:

2.9 Proposition. Suppose VePT is sufficient for Pt. Then I:S—>T
in Pt is subcovering iff for all V €%, I’:PT(T,V)——)PT(S,V) is faith-
ful.

Proof. One direction is easy. For éuppose I is subcovering and we are

given £,q:J ; K in PT(T,V) with 1X(£) =I*(g). i.e. with f; =g;. Then

for any object Y of T, we can find an object X of S and

I.

A—n= oy

: I(X)
in T. Hence

Km-fA = fIx-Jm = ng°Jm = Km°gA,

so that £, =g, (since Km is a monomorphism); and then

fY°Je = Ke-fA = Ke-gA = gYoJe,

SO that’f,’Y=gY (since Je is an epimorphism). Thus £ =g as required.

Conversely, suppose that I*:PT(T,V)———>PT(S,V) is faithful for all
V eV. Form the cocomma square

T ™

B wreinbsassniy I

in Pt and let V:P——>T, m:VM = IdT and n:VN x Id, be as in Lemma 2.7. By

Lemma 2.8, the diagonal functor :
PT(T, V) —> (1%, 1%)

is full. But under the equivalence of Definition 1.2, viz
PT(P,V) = (1*%,1%),

this diagonal functor is identified with V*:PT(T,V)——>PT(P,V), which
is therefore also full. Since this holds for all V€'V, by Proposition 2.4
V is full on subobjects. Hence for any Y in T, the diagonal subobject

<id,id>:y>—>Y xY 2 V(MY x NY)

is in the image of V; i.e. there is D>—>MY xXxNY in P and a commutative
square.



VD

E

YxY z V(MY xNY)

| 14

in T. Hence
VMY——VIR—-> VNY
e Iy
5 >Y
idy

commutes in RelT and so by Lemma 2.7, Y is subcovered via I. Since Y

was arbitrary, I is subcovering.

O

2.10 Remark. It is possible to use the pretopos interpolation theorem

directly to prove an "object-by-object" version of Proposition 2.9, viz:
-An object Y of T is subcovered via I iff for all VeV and all
f,g:J:K in PT(T,V) with fI =1, it is also the case that
fY =gy
The "only if" half is as in the first part of the proof of 2.9. For the
v e haIf, form the cocomma square
J

T > R
v Lo K - (11)
P X T
in Pt. Then the pair kM kN

f:J 2 IJVM——>KVMZ K, g:J 2JVN———>KVNZ N

ié' universal with the property fI =g;. So the hypothesis implies that
fY'_'-gY (since YV is sufficient for Pt); and from this it follows that in
R, the image of J(Y>—>Y xY =z V(MY xNY)) along Kvy x Ny 1S contained in
K(Y>—>Y xY=2 V(MY XxNY)). Then Corollary l.4 applied to (ll) gives us
that Y>—>Y xY= V(MY xNY) is in the image of V, which as in the proof
of 2.9 implies that Y is subcovered via I.

2.11 Example. In Proposition 2.9 take V= {set} and S to be the initial
pretopos, viz the category of finite sets. Then the hypothesis
"I*:PT(T,Set)———>PT(S,Set)(z.ﬂ.)is faithful" becomes "Mod(T) is pre-
ordered". The conclusion that I is subcovering, in this case is equi-
valent to saying that the classifying topos E(T) of T is localic (cf.
the comments before Definition 2.3); and since E(T) has enough points,




it is localic iff it is equivalent to the category of sheaves on a top-
ological space. Thus a particular case of Proposition 2.9 is the fact
that a coherent topos is spatial iff its category of points is pre-
ordered. (M.-F.Coste-Roy and M.Coste [ 3] derived this result from the
Makkai-Reyes conceptual completene'ss theorem and used it to prove that
the real étale spectrum of a ring is spatial.) This property of coherent
toposes does not extend to Grothendieck toposes in general, in as much
as the analogue of Proposition 2.9 for infinitary geometric logic fails.

We produce here a simple example, due to M.Makkai, of a non-localic
topos E with the property that for all F e GTOP, GTOP(F,E) is pre-ordered.
E is the classifying topos of -a geometric theory T whose models in
Set are subsets X of P(N), the powerset of the set of natural numbers.

Specifically T has one sort X; countably many unary relations En(x)

("nex") and Cn(x) ("ngx"); and for each n elN, geometric axioms of the
following two kinds: '

"Cn is the complement of E " (12)
and geometric axioms equivalent to
Vxl,xz[xl =X, > n/e\N(En(xl) «> E_(x,)) g (13)

(It is possible to achieve (13) in the presence of (12).)

Note that since T is countably presented, if E is locali¢ it can
have at most 25 mutually non-isomorphic points. But T has 2* mutually
non-isomorphic models in Set. So E is not localic. But on the other
hand, for any F € GTOP GTOP(F,E) xMod(T,F) is pre-ordered: for given
homomorphisms of T-models in F, £,g:MT__3N, by (12) ME  has a comple-
ment preserved by f and g, so that

F E NEn(fX(x)) oMEn(x) »NEn(gx(x))

and hence by (13)

F E fx(x) =gx(x),
i.es £=g.

Combining Propositions 2.4 and 2.9 we obtain a constructive version
of what in [11] is termed strong conceptual completeness for pretoposes:

2.12 Theorem. Let S be an elementary topos with natural number object
and let PT (respectively Pt) denote the 2-category of large (respectively
small) pretoposes in 8. Suppose that VEPT is sufficient for Pt (in the
sense of Definition 2.3). Then for a morphism I:S—>T in Pt to be a
quotient, it is sufficient that I*:PT(T,V)—>PT(S,V) be full and faith-
ful for each V€Y.

O




An immediate corollary is a constructive version of the usual pre-
topos conceptual completeness theorem:

2.13 Theorem. Let 8,PT,Pt and“V be as in Theorem 2.12. For I:S—>T
in Pt to be an equivalence, it is sufficient that I*:PT(T,V)————>PT(S,V)
be an equivalence for each V e%.

Proof. I is an equivalence iff it is both a quotient and conservative.
Theorem 2.12 gives the former. For the latter, if f:X—>X' is in S
and I(f) is an isomorphism, then for each V €% and each M e PT(S,V),
since 1¥ is essentially surjective Mz NI for some N € PT(T,V) and hence
M(f) is also an isomorphism. Then since %V is sufficient for Pt, £ must
itself be an isomorphism.

O
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