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1 Introduction

Very many programming languages and logics feature syntactical constructs for binding various
sorts of name within lexical scopes. When reasoning about the properties of such languages, and
especially when creating fully formalized and machine-checked proofs, it is practically essential
to raise the level of abstraction when representing and computing with such syntax. Obviously
abstract syntax trees are more convenient than strings of symbols when it comes to representing
the structure of expressions. But if those syntax trees feature scoping constructs, it is extremely
desirable to have a representation mechanism that automatically factors out renaming of bound
names (@-equivalence). At the same time, the mechanisms for computing with representations
and moving between such abstract representations and more concrete ones have to be expressive,
machine implementable and humanly understandable. It is not easy to satisfy all these demands at
once.

Over the years several mechanisms for representing binding modulo a-equivalence have been
developed. One of the earliest was by de Bruijn [1972], who used numerical indices to count the
number of binding operations passed through on the way from (or to) a name site. The higher-order
approach of Pfenning and Elliott [1988] delegated the problem to be solved once and for all in a
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typed A-calculus meta-framework, using one of the other approaches. At the other extreme Urban
and Tasson [2005] retain explicit names and develop packages of proved theorems (and associated
automation) for data quotiented by a-equivalence within classical higher-order logic by leveraging
the nominal theory of Gabbay and Pitts [2002]. We refer the reader to the excellent survey of
binding representations as of 2008 in Sect. 2 of the paper by Aydemir et al. [2008]; and to the
blog post of Cockx [2021] for a recent survey with emphasis on dependently-typed functional
programming using Agda [2023]. The various different approaches have different pros and cons
when it comes to ease of use, ease of implementation, efficiency, etc.

After its survey, the paper of Aydemir et al. [2008] goes on to advocate the locally nameless
approach to represent binding structure, combined with the use of cofinite quantification. A locally
nameless representation combines a nominal approach to unbound names with the use of de Bruijn
indices for bound ones. Thus free variables in terms still have names and those names do not
change if we enlarge the context in which we are using the term; so one retains the practically very
useful feature of the nominal approach that weakening (and equations between combinations of
weakenings) is invisible. At the same time, through the use of deBruijn indices one gets canonical
representation of syntax modulo a-equivalence as purely inductively defined sets without any
need for use of quotients (particularly helpful for proof assistants based on type theories where
inductive definition is the main mechanism for constructions). Given that free variables are still
represented by names, there is no need to consider terms with “dangling” indices pointing to levels
of binding higher than the ones that exist in the term. In other words one should cut down to the
(still inductively defined) subset of “locally closed” terms. Doing so avoids one of the main problems
with use of de Bruijn indices: the identity of a dangling index changes according to the context. For
example if we substitute a term under a binding construct we may have to do some shifting on
indices; and that can be error-prone for implementation and tricky for human understanding. The
locally nameless approach avoids this pitfall by insisting that reasoning only takes place (in the end)
for locally closed terms. The use of cofinite quantification over names is crucial for making this a
viable approach. (This quantifier specialises to the distinctive freshness quantifier U of nominal
logic [Pitts 2003] when the properties involved are finitely supported.) The material in Aydemir
et al. [2008] and the follow-up journal paper by Charguéraud [2012] provide a compelling case that
the locally nameless approach does a good job of satisfying the competing engineering demands
involved in mechanisms for representing binding.

Here we address not so much the engineering aspects of the locally nameless approach, but
rather its mathematical foundations. We abstract from existing concrete uses of the locally nameless
representation a so-far unnoticed algebraic structure (the opening/closing algebra of Sect. 2.2) and
show that it can be used to give a purely equational development of many of the key notions
in the locally nameless approach (Sects 2 and 4). Why is this useful? For one thing, equational
logic has proved very useful in computer science and algorithmic techniques for it are highly
developed. Founding the locally nameless method on a relatively simple algebraic theory should
facilitate development of logic and type theory designed to make it easier to deploy the locally
nameless approach in practice (for example, by making invisible to the user some "boilerplate"
aspects of the locally nameless method). However, there is a more immediately useful outcome:
we are able to give an account of the locally nameless version of name binding (in the form of the
shift functor of Sect. 3.4) that applies to arbitrary “locally nameless sets” (Definition 2.9) and not
just ones that are inductively defined sets of finitary syntax; see Example 4.4 concerning semantic
continuations. Before this work we only knew what locally nameless syntax means; now we know
what "locally nameless semantics” means. This should be useful in practice, because it may enable
the pleasant properties of the locally nameless representation to be used for situations where syntax
and semantics get mixed up - for example in proofs of normalization-by-evaluation.
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The paper makes the following contributions:

An equational axiomatization of opening/closing operations that suffices to derive, indepen-
dently of any particular syntax, many of the other key concepts of the locally nameless
representation of syntax with binders: abstraction of a name, concretion by a name and the
“body” predicate; “not-a-free-variable-of” and “locally closed” properties, via a notion of finite
support; and renaming and name swapping operations with expected properties. See Sect. 2.
The algebras for our equational theory all of whose elements have finite support are called
locally nameless sets. Using some existing semigroup theory, we prove that the category of
locally nameless sets is isomorphic to a pre-existing category, namely the topos' of finitely
supported M-sets where M is the full transformation monoid of all endofunctions on the
countably infinite set of indices and names. In other words our equational axiomatization of
opening/closing operations completely characterises the action on finitely supported objects
of all functions mapping indices and names to indices or names. A corollary of the proof is
that various categories for modelling renaming that have been considered in the literature
[Gabbay and Hofmann 2008; Popescu 2022; Staton 2007] are all equivalent to each other and
to this topos. See Sect. 3.

We show that a shift endofunctor on locally nameless sets captures in a syntax-independent
fashion the notion of name abstraction appropriate for binding constructs in the locally
nameless representation. Combining it with sum and product functors, we prove that each of
Plotkin’s binding signatures automatically gives rise to an endofunctor of locally nameless
sets whose initial algebra recovers the locally nameless representation of syntax over the
signature with the correct notions of opening and closing, free variables and local closure.
We also give an example (from denotational semantics) involving the shift functor applied to
a non-syntactic locally nameless set. See Sect. 4.

Agda [2023] was used to develop the theory of locally nameless sets and to check some
of the proofs in the paper. The Agda code [Pitts 2023] mainly targets proofs that involve
equational reasoning combined with the use of atoms and indices that are sufficiently fresh
(via cofinite quantification). Some of these proofs involve a lot of nested case analysis on
elements of sets with decidable equality (atoms and indices); some of our equational axioms
are unfamiliar-looking and combinatorially complicated; and it is easy to forget to check
necessary freshness conditions are satisfied when doing informal proofs. For all these reasons
the use of an interactive theorem prover to produce machine-checked proofs was essential to
gain assurance that the results in the paper are correct. Section 5 gives an overview of the
Agda development.

2 Definition of locally nameless sets

The nominal sets model of syntax with binders begins with the observation that most syntactic
constructions and properties are invariant under permuting names. So it considers abstract sets
equipped with an action of such permutations. Any finite permutation is a composition of swapping
operations and this leads to a presentation of nominal sets founded upon sets equipped with a name
swapping operation satisfying a few simple equations; see [Pitts 2013, Section 6.1]. Here we take a
similar approach, but replace name swapping with the two fundamental operations of the locally
nameless representation: the “opening” operation that replaces a de Bruijn index with an atomic
name and the “closing” operation that abstracts away an atomic name by replacing it with an index.
These operations have some simple equational properties (some of which are not so obvious) and

LA topos is an elegant category theoretic notion that turns out to capture many aspects of (intuitionistic) higher-order logic
and type theory; see for example [Johnstone 1977, 2002].
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{i=a}{i-blx={i—->b}x (
{ica{j<alx={j<a}x (
{ia{i—a}lx ={i<a}x (
{i-a{i<a}x ={i—a}x (
izj={i-a{j-blx={j-bHi—a}lx (ocs)
arb={ical{j<blx={j<bH{i<alx (
izjhazb={i—a}{j«blx={j«<bH{i—a}x (
{imbHia{j-blx={j-bH{j<aHi—a}x (
{jea{i—al{j<blx={j<bHi-bH{ia}x (

Fig. 1. The opening/closing axioms

this leads us to consider algebras for this equational theory, called opening/closing sets, or oc-sets
for short. Omitted proofs can be found in the Agda development [Pitts 2023], as indicated.

2.1 Indices and Atoms [Pitts 2023, Unfinite.agda]

We take De Bruijn indices [de Bruijn 1972] to be elements of the set IN of natural numbers (typical
elements written i, j, k, .. .). Indices are compared using the usual total order relation (i < j) on IN.
Atoms are elements of a fixed set A\ (typical elements written a, b, c, . . .) which we assume is disjoint
from IN. Atoms are compared using equality (a = b) and its negation (a # b); in a constructive
setting we need to assume that these are complementary, that is, A\ has decidable equality. Crucially,
A\ is also assumed to be “unfinite” in the sense that for each n € IN

Ya, €A, ....Va, e ATae A, ata A---ANa#ay (1)

Since the set of natural numbers has these properties, one could take A\ to be a bijective copy of IN.

Definition 2.1 (Cofinite quantification). When discussing properties of atoms it is convenient
to use the “for all but finitely many” quantifier. It is an important tool for reasoning about locally
nameless representations of syntax with binders; see [Aydemir et al. 2008, Sect. 4]. To denote this
quantifier we reuse the freshness quantifier symbol W from nominal logic [Pitts 2003], since that is a
special case of cofinite quantification restricted to predicates that are finitely supported in the sense
of nominal sets. For any set X (with decidable equality, if working constructively) let Fin X denote

the set of finite subsets of X. If ®(x) is a property of elements x € X, we write | Ux € X, ®(x) |for

the statement that ®(x) holds for all but finitely many x € X:
MxeX, &(x) 2 dJA€eFinX,Vx e X, x ¢ A= d(x) (2)

2.2 OC-Sets [Pitts 2023, oc-Sets. agda]

In the locally nameless representation of syntax involving binding operations [Aydemir et al. 2008;
Charguéraud 2012] occurrences of free identifiers in terms retain their names, but occurrences of
bound ones are anonymized using de Bruijn indices. Two fundamental operations on such terms are:
“open” a term by replacing an index with a name; and “close” a term by replacing a name with an
index. Abstracting away from syntactic details, given an arbitrary set X we define opening/closing
operations for X to be given by a pair of functions IN X A X X — X, written

2The terminology is due to André Joyal [private communication].
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(,a,x) e NxA XX + |[{i—>a}x|eX “openindex iwithatom ain x”

(i,a,x) e NXA XX + [{i~a}x|€X “close atom a with index i in x”

and satisfying the axioms in Fig. 1. An oc-set is a set equipped with such operations.

We shall see that sets of locally nameless terms equipped the “variable opening” and “variable
closing” operations from [Charguéraud 2012, Sects 3.1 and 3.2] provide examples of oc-sets. A
simple special case of that is provided by:

Example 2.2 (oc-set of indices and atoms). The following functions IN X A X X — X with
X =IN U A\ satisfy the opening/closing axioms. (Recall that IN and A\ are assumed to be disjoint.)
{i»a}jzif i=jthenaelsej {i—»a}bzb
{ia}ljzj {i—a}b2if a=0bthenielseb

1>

Remark 2.3. The reader may well ask of Fig. 1, why those equations and why just those—are
there some others we forgot? Axioms oc;—oc; express straightforward commutation properties
of “variable opening” and “variable closing” from [Charguéraud 2012], although they are not all
explicitly stated there. In particular, axioms ocs and oc, imply that variable opening and closing are
mutually inverse modulo suitable freshness and local closedness assumptions—the CLOSE_OPEN_VAR
and OPEN_CLOSE_VAR properties on page 369 of loc. cit.; see Corollaries 2.5 and 2.8. The interesting
point is that freshness and local closedness relations expressed in the abstract setting in terms of
the open/closing operations (see Sects 2.3 and 2.4) coincide in concrete syntactic examples with
their more usual definitions by induction on the structure of syntax; see Propositions 4.2 and
4.3. Axioms ocg and ocg are perhaps the least obvious ones. They allow us to express renaming
(atom-to-atom) and re-indexing (index-to-index) functions in terms of opening and closing; see
Sect. 2.7. Are the axioms enough? One pragmatic answer is that they suffice to develop the basic
infrastructure of the locally nameless approach to representing syntax with binders independently
of any particular inductively defined datatype of syntax. A more mathematical answer is provided
by Theorem 3.5, which proves that the axioms in Fig. 1 completely characterise the action of
endofunctions of IN U A on finitely supported objects.?

2.3 Freshness [Pitts 2023, Freshness. agda]
Let X be an oc-set. For each a € A and x € X, the freshness relation (cf. Remark 2.11 in [Pitts 2015])

is defined by
[atx] 2 {0alx=x 3)

Lemma 2.4 below (which is an immediate consequence of axiom oc;) shows that one can replace 0
in the above definition by any index without changing _ # _. We will see that in syntactic examples
this relation coincides with the usual “a is not a free variable of x” relation (see Proposition 4.2).

Lemma 2.4. Let X be an oc-set X. Foralli,j € IN,a € A andx € X
{icalx=x = {j<alx=x (4)

Hence if a # x then for anyi € IN we have {i < a}x = x; and conversely if {i < a}x = x holds for some
i, then a # x. m]

3There is also the question of independence; for example, the author believes that axioms ocg and ocy are not derivable
from the others, but does not have a proof of that.
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Combining the lemma with axiom ocs yields:

Corollary 2.5. In any oc-set we have thata # x = {i < a}{i - a}x = x. O

2.4 Local Closedness [Pitts 2023, LocalClosedness. agda]
Let X be an oc-set. For each i € IN and x € X define

[ix|2 VjzidaeA {j-ax=x (5)

For syntactic examples the relation i > x turns out to coincide with an inductively defined “x is
closed_at_level_i” relation; see Proposition 4.3. In case i = 0 this is the local closure predicate,
which plays a key role in the locally nameless approach to representation of syntax with binders;
cf- Sect. 3.3 in [Charguéraud 2012]. For example, by restricting to locally closed elements one can
avoid the need for error-prone index-shift operations when defining substitution.

The following is an immediate consequence of definition (5):

Lemma 2.6. Let X be an oc-set X. Foralli,j € N, andx € X, if j > i and i > x, then j > x. Hence
ifi > x orj > x, then max{i, j} > x. O

Using oc; we have:
Lemma 2.7. Let X be an oc-set. Foralli € N, a,b € A andx € X
{imalx=x = {i-blx=x (6)
Hence if i > x then for any j > i and any a € A\ we have {j — a}x = x. O
Combining this lemma with ocy yields:

Corollary 2.8. In any oc-set we have thati > x = {i - a}{i < a}x =x. O

2.5 Support [Pitts 2023, Support.agda]

Given an element x € X of an oc-set, say that A € Fin A\ atom-supports x if Va & A, a # x (so that
A witnesses the fact that Ma € A\, a # x holds). Say that i € IN index-supports x if i = x. We are
interested in the case where such atom- and index-supports exist for each element.

Definition 2.9 (Locally nameless set). A locally nameless set is an oc-set X satisfying the
following two properties:

finite atom-support : Vx € X,la € A, a # x 7)
finite index-support: ¥Vx € X,Jie€ N, i > x (8)
Example 2.10 (Locally nameless set of indices and atoms). Write for the union IN U A\ of
the disjoint sets of indices and of atoms. We saw in Example 2.2 how to make it into an oc-set. It is

in fact a locally nameless set, because: each a € A\ is atom-supported by {a} and index-supported
by 0; and each i € IN is atom-supported by @ and index-supported by i + 1.

Example 2.11 (Locally nameless set of A-terms modulo a-equivalence). The locally nameless
representation of all (open or closed) A-terms modulo a-equivalence uses the inductively defined
set A with constructors

bvar:IN - A, fvar: A - A, lam:A—> A, app:AXA—-A 9)
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and with open/close operations recursively defined as follows (cf. sections 3.1 and 3.2 of [Char-
guéraud 2012]):

{i — a}(bvar j) £ if i = j then fvara else bvar j {i < a}(bvar j) = bvar j
{i — a}(fvarb) = fvarb {i < a}(fvarb) = if a = b then bvari else fvarb
{i—a}(lamt) = lam({i + 1 — a}t) {i<a}(lamt) = lam({i + 1 < a}t)

{i— a}(app(t,t) = app({i = a}t. {i > a}t’)  {i<a}(app(t,t') = app({i < a}t, {i < a}t’)

This definition satisfies the axioms in Fig. 1. Indeed it turns out that A is a locally nameless set that
is the free algebra on INA\ for a suitable endofunctor on the category that we introduce in Sect. 3.
Not only this, but also the properties “not a free atom of” and “locally closed” that are defined
inductively on the structure of terms and play a fundamental role in the locally nameless approach,
coincide with the equationally defined notions of freshness and local closedness from sections 2.3
and 2.4; see the Agda development for details. We will see in Sect. 4 that all these properties of A
are special cases of results that hold for the locally nameless representation of the syntax of terms
modulo a-equivalence for any binding signature.

We will need the following two properties of the opening/closing operations with respect to
freshness and local closedness. They follow from Lemma 2.4 together with axioms ocy, oc;, 0Cs,
0Cg and ocy; see the Agda development for the details.

Lemma 2.12. Let X be an oc-set. For alli € IN, a € A\ and x € X, if A € Fin A atom-supports x,
then A U {a} atom-supports {i — a}x and A — {a} atom-supports {i < a}x. O

Lemma 2.13. Let X be an oc-set. Foralli,j € IN,ae€ A andx € X

jrx=j>{i—a}lx (10)
i+1>=x=i>{i—>a}lx (11)
jrx=>max{j,i+1} > {i< a}x (12)

O

2.6 Abstraction and Concretion [Pitts 2023, AbstractionConcretion.agdal]

As mentioned in the Introduction, in the locally nameless approach to representing syntax the
meaningful part of a locally nameless set X is its locally closed part, defined as follows:

Definition 2.14. Given an oc-set X and i € IN, define |Ic;(X) | £ {x € X | i > x}. In case i = 0,
lco (X) is called the locally closed part of X.

The i = 0 case of the opening and closing operations are of special interest. Adopting nominal
terminology but using the notation from [Aydemir et al. 2008; Charguéraud 2012], given a locally
nameless set X, for all x € X and a € A we define

\ay| £ {0« a}x “abstractatom ainx” (13)
x| 2 {0—a}x “concrete x at atom a”
From (11) and (12) we have
x €l (X) = x% €ley(X) (14)
x €leg(X) = Vo € ley(X) (15)
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By Corollaries 2.5 and 2.8 we also have
atx = “(x% =x (16)
x €leg(X) = (V%)% =x (17)
(cf. properties CLOSE_OPEN_VAR and OPEN_CLOSE_VAR from [Charguéraud 2012, p. 369]).
Remark 2.15 (body). Charguéraud [2012] defines a “body t” predicate for asserting that a term ¢

describes the body of a locally closed abstraction: for all but finitely many names g, the concretion
of t at a should be locally closed. For elements x of a locally nameless set X this definition becomes:

A

bodyx £ Wa € A, x% € 1co(X). However, this turns out to be equivalent to x being in lc; (X):
bodyx © 1>x (18)

The right-to-left implication in (18) is immediate from (14). In the other direction, if A € Fin A
witnesses that Ma € A\, x? € lco(X) holds, then since x has finite atom-support we can choose
some a ¢ A with a # x. So x% € lcy(X) (by assumption, since a ¢ A) and hence by (15), we have
\?(x%) € 1c;(X); but since a # x, (16) gives us x € lc;(X), as required.

2.7 Re-naming, Re-indexing and Name Swapping
[Pitts 2023, RenamingReindexingSwapping.agda]

Using the opening/closing operations of a locally nameless set it is possible to define operations for
atom-for-atom substitution and atom swapping. To see this we need the following lemma whose
proof uses axioms ocg and ocy for the first time (together with Lemmas 2.4 and 2.7); the details are
in the Agda development.

Lemma 2.16. Let X be a locally nameless set. For alla,b € A, i,j € IN andx € X
ix ANjrx = {i=bH{i<alx={j—-b}{j«<alx (19)
a#x ANb#x = {jea{i-oalx={j<bH{i-b}x (20)

In view of the this lemma, we get well-defined operations of renaming and re-indexing for a
locally nameless set:

2 {i—-b}{i«< a}x forsome/anyi > x (21)

Proposition 2.17 (Rensets). The renaming operation (21) satisfies the axioms for rensets given by
Popescu [2022]:

{j < a}{i— a}lx for some/any a # x (22)

1>

[a —a]lx=x (23)
a#c=[b—a]l[lc—a]lx=][c—a]x (24)

[c < D][b «—a]lx=[c«ia][c < Db]x (25)

b#ad #a#b = [b—a][b) —d]x=[b «ad][b—a]lx (26)

(Popescu uses a slightly more complicated axiom than (25), namely
b#d= [c—b][b—a]ld —blx=[c—a][ld < b]x (27)

but (27) is implied by (25) modulo the other axioms, and use of the latter gives an equivalent
category of finitely supported rensets.) Thus every oc-set is one of Popescu’s rensets.

Proor. (23) follows from ocy and Lemma 2.7; (24) follows from oc; and Lemma 2.12; (25) follows
from ocg and ocy; and (26) follows from ocs, ocs and oc;. ]
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Lemma 2.18. Given a locally nameless set X, for any x € X and a € A\ we have
a#tx = VbeA[b—alx=x) = MNbeA[b—alx=x) = a#x (28)

Proor. The first implication follows from definition (21), the second is trivial and the third
follows from (21) and ocy. O

Corollary 2.19. Given a locally nameless set X, for any x € X and a,b,c € A\, ifc # x andc # b,
thenc # [b < a]x.

Proor. In case b = a the result follows from (23). If b # a, then it follows from the lemma using
(24) and (26). O

Remark 2.20 (Locally nameless sets as nominal sets). Property (28) implies that x satisfies
Na € A\Mb € A [b « a]x = x, which means that x is finitely supported in the sense of
rensets [Popescu 2022, Sect. 4]. Thus every locally nameless set is naturally a finitely supported
renset. Popescu [2022] already notes that every finitely supported renset is also a nominal set, using
the fact that nominal sets can be presented in terms of a name swapping operation x +— (a b)x [Pitts
2013, Sect. 6.1]. Name swapping can be defined in terms of renaming in the usual way (using
some/any fresh third name as an intermediary):

2 [b«ic][a i b][c < a]x forsome/any c withc¢ # x and ¢ # a,b (29)

That this definition is independent of the choice of ¢ follows from Proposition 2.17, Lemma 2.18
and Corollary 2.19. The definition works for any renset, but for locally nameless sets one can show
that it is equivalent to the following definition in terms of opening and closing

(ab)x = {j-al{i—=b}{j«< b}{i<a}x forsome/anyi,j > x withi# j (30)

As for rensets, the nominal sets notion of support agrees with that of finite atom-support from
Definition 2.9 when we regard a locally nameless set as a nominal set as above. Although not every
nominal set is a locally nameless set, we will see in Sect. 3.5 that it is possible to freely generate a
locally nameless set from a nominal set.

We need the following properties of renaming and swapping for Theorem 3.5:

Lemma 2.21. In any locally nameless set the name-swapping (29) and renaming operations (21)
satisfy:

(aa)x =x (31)

(ab)(ab)x =x=(ab)(ba)x (32)

btc#a#d#b = (ab)(cd)x=(cd)(ab)x (33)
btc#a = (ab)(ca)x=(cb)(ab)x (34)

b#c= [c—b](ab)x =[a—b][c —a]x (35)
btc#a+d#b = (ab)[d —c]x=][d —c](ab)x (36)
btc#a = (ab)la—c]x=[b«c](ab)x (37)
btc#a = (ab)[c —a]x=[c—b](ab)x (38)
(ab)[b < a]x =[a < b](a b)x (39)

Proor. These properties follow from Proposition 2.17 by calculations similar to the ones in the
proof of that proposition. The details can be found in the accompanying Agda development. O
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Remark 2.22 (Duality of opening and closing). Although indices and atoms play different
roles when it comes to the notion of support (Sect. 2.5) and to modelling binding operations (see
Sect. 4), there is a symmetry between them at the level of the equational theory in Fig. 1. Given an
equation derived from the axioms in that figure, suppose the equation involves indices and atoms
from among the distinct lists iy, ..., i, and ay, ..., a, for some n. Consider the transformation that
interchanges each iy with a; at the same time interchanging opening operations {_ — _} with
closing operations {_ « _}. Under this transformation oc; corresponds with oc,, ocs with ocy, ocs
with ocg, oc; with itself, and ocg with ocy. Thus the original equation is transformed into another
valid equation.

3 The category of locally nameless sets

In this section we define a category of locally nameless sets and prove that it is isomorphic to a
pre-existing topos, namely the topos of finitely supported M-sets where M is the full transformation
monoid of all functions INU A — IN U A\ (Theorem 3.5). In particular this shows that the axioms in
Fig. 1 completely characterise the action of endofunctions of IN U A\ on finitely supported objects.
We also define an endofunctor on the category of locally nameless sets that captures in a syntax-
independent fashion the notion of name abstraction appropriate for binding constructs in the
locally nameless representation.

3.1 The Category of OC-Sets [Pitts 2023, Category.agda]

Recall the definition of oc-set from Sect. 2.2. A morphism f : X — Y of oc-sets is by definition a
function from the set X to the set Y that commutes with the opening and closing operations:

f{i=a}x) ={i—a}(fx) fica}x) ={i<a}(fx) (40)
Clearly the collection of such functions is closed under composition and contains identity functions.

So we get a category of oc-sets and morphisms, that we denote by .

Remark 3.1. Up to isomorphism oc-Set is the category Set”C of (left) OC-sets for the monoid
OC freely generated by the symbols 0(; o) and c(; 4) (as (i, a) ranges over IN x A\) quotiented by the
monoid congruence generated by equations corresponding to the axioms in Fig. 1; for example,
axiom oc; corresponds to the equation 0(; 4)0(;») = 0(; ), and similarly for the other axioms.

To see that there is an isomorphism between the categories oc-Set and Set”C, recall that left
actions of any monoid M on a set X correspond to monoid morphisms from M into the full
transformation monoid Tx whose elements are all endofunctions of X with the monoid operation
being function composition and the unit being the identity function on X. So when M is the monoid
OC defined above, actions of it on X correspond to functions mapping the generators o(; o) and c(; )
to functions X — X that satisfy the properties in Fig. 1, in other words, correspond to opening and
closing operations that make X into an oc-set. Furthermore, functions that preserve OC-actions
are the same thing as functions that commute with the opening and closing operations. Thus
oc-Set is isomorphic to the category Set’C. (The notation Set’C is justified by the fact that this is a
presheaf category, namely the category of Set-valued functors and natural transformations from
OC regarded as a category with one object and morphisms given by the elements of OC.)

Lemma 3.2. Let f : X — Y be a morphism of oc-sets. Then foralla € A\, i € IN andx € X
atx=a#fx (41)
i-x=>i>fx (42)

Hence if x is finitely atom-supported (respectively finitely index-supported) in X, then f x is finitely
atom-supported (respectively finitely index-supported) in Y.
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Proor. From (40) we get that {0 « a}x = x implies {0 « a}(fx) = f({0 < a}x) = fx, and
{i = a}x = x implies {i —» a}(f x) = f({i = a}x) = f x. So if A € Fin A\ atom-supports x in X, then
it also atom supports f x in Y; and if i index-supports x in X it also index-supports fxinY. O

As for any category of M-sets, the product X X Y of two objects X and Y in the category
SetVC is given by the cartesian product of their underlying sets equipped with the OC-action:
m- (x,y) = (m-x,m-y). So in particular the opening/closing operations for the product of two
oc-sets are given by openening/closing in each component. From this we immediately have:

Lemma 3.3. Given oc-setsX andY, ifae A, i€ IN,x € X andy € Y, then in X X Y we have:
a# (x,y) ©atxNa#y (43)
i-(xy) &i-xANi>y (44)
In particular, if A € Fin A atom-supports x in X and B € Fin A\ atom-supportsy in Y, then AU B

atom-supports (x,y) in X X Y; and if i € IN index-supports x in X and j index-supportsy in Y, then
max{i, j} index-supports (x,y) in X X Y. O

3.2 The Category Lns

Definition 3.4. Given a set S, let denote the full transformation semigroup on S. This is the set
of all functions S — S equipped with the associative operation of function composition. T is not
just a semigroup, but also a monoid since it has a unit element given by the identity function on S.
As for any monoid, regarding it as a one-object category we can consider the presheaf category

of Set-valued functors and natural transformations on Ts. More concretely its objects are
Ts-sets, that is, sets X equipped with a unitary and associative action _ - _: Ts X X — X; and its
morphisms are functions that preserve the action. Given an object (X, -) in Set™s one says that
x € X is supported by A € Fin S if

Vm,m' € Ts, (Va€ A m(a) =m'(a)) = m-x=m' -x (45)
(X, -) is said to be finitely supported if for all x € X there exists an A € Fin S that supports x. Let
denote the full subcategory of Set™ whose objects are the finitely supported Ts-sets.

It is not hard to see that (Set's)g is closed under taking finite limits in the category Set’s and
that the inclusion (Set™s)g < Set™s has a right adjoint given on objects by sending (X, -) € Set's
to (Xg, -), where is the subset of X consisting of finitely supported elements. It is easy to see
that the inclusion is comonadic and therefore we can apply [Johnstone 1977, Theorem 2.32] to
conclude that (Set™s) is a topos with a geometric surjection to it from the presheaf topos Set’s.

Theorem 3.5. Let denote the full subcategory of oc-Set whose objects are the locally nameless
sets (Sect. 2.5). Then Lns is isomorphic to the topos (Set™s )¢, when S = INA, the union of the set IN of
indices and the set A\ of atoms.

The proof of this theorem occupies the next section. The theorem implies that Lns has rich cate-
gorical properties. For example it is cartesian closed and has a subobject classifier (and can interpret
intuitionistic higher-order logic and dependent type theory). That structure can be described by
transferring across the isomorphism (Set™ )¢ = Lns known descriptions of exponentials and
subobject classifiers in toposes of finitely supported M-sets (cf. [Pitts 2015]). Those descriptions
have a Kripke-like character typical of presheaf toposes that make them more complicated to use
than, for example, the topos structure of nominal sets [Pitts 2013]. However, some aspects of the
category Lns are simple. For example, it is not hard to see that the forgetful functor Lns — Set
creates finite limits and filtered colimits. We will rely on this fact implicitly in Sects 3.5 and 4.
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Taq =1id (Tsy)

Tb,a ° Tha = id = Th,a ° Tab (TSZ)

btc#ta+d#+b = The°Tie =Tdc° Tha (Ts3)
btc#a = Th,a ° Ta,c = Th,c © Th,a (TS4)

€aq =1d (Ts5)

C#ta = €pg°Eca=Eca (Ts6)

Eeb ° €ba = Eca ® Ech (Ts7)

btcta+d = ¢e4c0€pg=¢€pa°edc (Tss)
ctEb = epoTha=¢Eab°tea (Ts9)
b#tctatd#b = Tpaotie =Edc°Tha (TS19)
b#c#a = Tpg°¢€4c=Ebe°Tha (Ts11)
b#c#a = Tha°€ca=¢Eb°Tha (Ts12)

Th,a ° €b,a = €ab © Th,a (Tsl3)

Fig. 2. Axioms for full transformation semigroups

Remark 3.6 (Equivalent categories of renaming sets). A corollary of the proof in Sect. 3.3
is that (Set™ ) is isomorphic to the category of finitely supported rensets introduced by Popescu
[2022]. The proof also shows that cutting down from the full transformation monoid Ty to the
submonoid (Tp gy of finite endofunctions, we also have that (Set™ g is isomorphic to (Set(TA‘)ﬁ“)fs.
The latter is the category of nominal renaming sets studied by Gabbay and Hofmann [2008] and
proved equivalent by them to the category used by Staton [2007]; this confirms a conjecture of
Popescu [2022, p 634]. Assuming A\ is in bijection with IN (so that INA = A\), then (Set™)g is
isomorphic to (Set™ )¢ and so by the theorem, all of these categories are equivalent to Lns.

3.3 Proof of Theorem 3.5

For any set S the full transformation semigroup Ts (Definition 3.4) contains elements ¢, , and 73 4,

where for all a,b,c € S
é if c=athenb elsec (46)
éifczathenbelseifczbthenaelsec (47)

Let denote the submonoid of the full transformation monoid Ts whose elements are the
functions m : S — S that are finite in the sense that Wa € S, m(a) = a holds, or equivalently [m+#id]
is a finite set, where in general we write

[m#m’] | £ {a€ S| m(a) # m'(a)} (mm' :S—25) (48)

Note that each a,b € S we have ¢4, 7., € (Ts)sin, because [ep ,#id] C {a} and [z ,#1d] C {a, b}.
Presentations of full transformation monoids on finite sets are known in the literature on semigroups,
beginning with Iwahori and Iwahori [1974]. Here we use Ganyushkin and Mazorchuk [2009] to
deduce the following result about the monoid (Ts)g, for any, possibly infinite, set S.

Proposition 3.7. The monoid (Ts)gy is freely generated by the elements ¢p, , and 13, , (Where a, b € S)
subject to the equations in Fig. 2.
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Proor. For each A € Fin S consider the monoid generated by symbols ¢ , and 73, , with a,b € A,
subject to the equations in Fig. 2. Equations Ts;—Ts4 are known to present the symmetric group
of finite permutations; see for example [Pitts 2013, Sect. 6.1] (which replaces Ts; and Ts, with the
single equation 744 © Ty © Tha = Tr,,(d).1pa(c)> Which is equivalent to them modulo Ts; and Tsy).
Therefore it follows from Ganyushkin and Mazorchuk [2009, Theorem 9.3.1] that the whole set
of equations Ts;—Ts3 restricted to a, b, ¢, d € A presents the finite full transformation semigroup
T4 with symbol ¢, , (respectively 73 ,) standing for the function A — A given by (46) (respectively
(47)). We can identify T4 with the submonoid of (Ts)g, given by the finite functions m € Ts with
[m#id] C A; and under this identification the generators of T4 become the finite endofunctions on
S defined in (46) and (47). Since every m € (Ts)gy is in some T4 (for example A = [m#id]) it follows
that these functions freely generate the whole of (Ts)g, subject to the equations in Fig. 2. O

Now in Definition 3.4 taking S to be the union INA\ of IN and A\, we show that there is a functor

‘ F : (Set™\ )¢ — Lns|sending each (X, ) € (Set™ )¢ to the locally nameless set with underlying
set X and opening/closing operations given for all i € IN and a € A\ by:

{imalx = ¢4 x {icalx=¢q-x (49)

These operations satisfy the axioms in Fig. 1 because of the oc-set structure of INA (Example 2.2).
That each x € X has finite atom-support (7) and finite index-support (8) follows from the fact that
(X, -) is finitely supported, so that there is some A € Fin INA\ satisfying (45). For then if a € A — A,
we have V¢ € A, g 4(c) = ¢ =1id(c) so that by (45) we have {0 « a}x = ¢y, - x =id - x = x and thus
a # x; similarly if i € IN satisfies i > 1+max(INNA), then for any Va € A,Vc € A, ¢,;(c) = c =1id(c)
so that {i » a}x = ¢,; - x =id - x = x and thus 1 + max(IN N A) > x.

We can take the action of F : (Set™\ )¢ — Lns on morphisms to be the identity, because if
f:(X,) = (Y,-) is a morphism in (Set™™ )¢ then in particular f commutes with the opening and
closing operations defined by (49). Trivially this makes F functorial (a faithful functor, in fact). To
prove the theorem we will show that F : (Set™\ )¢ — Lns is an isomorphism.

Proposition 3.8. For each locally nameless set X there is a unique unitary associative action _ O _ :
(T )fin X X — X satisfying foralla € A andi € IN

cai Ox ={i—a}x g Ox ={i«a}lx (50)
Furthermore if f : X — Y inLns, then for allm € (Tia)fin
VxeX, f(mox)=mo (fx) (51)

ProoF. Recall that unitary associative actions of (Tiya)an on a set X correspond to monoid
morphisms (Tiwa)sn — Tx and hence by Proposition 3.7 to functions mapping the generators
to elements of Ty satisfying the equations in Fig. 2. Since INA\ is divided into two halves, on the
face of it* there are eight different kinds of generator: &4, &; 4, €p.a € i.i> Thia» Tji» Ta,i and 7; 4, Where
i,j € Nand a,b € A If X is a locally nameless set and we map the first two kinds of generator
to the functions in (50), then where to map the other six kinds of generator is forced if we are
to satisfy the equations in Fig. 2. We sketch why this is so and refer the reader to [Pitts 2023,
fsRenset.agda,FullTransformationSemigroup.agda] for the details.

4In fact 7,; and 7; 4 are equal, due to the symmetric nature of swapping.
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First note that given a, b € A and x € X, choosing any i € IN with i > x, we have

€ha OXx =€pq © ({i = b}x) since i > x
= (&pa° €pi) O X by (50)
= (epi°€ig) OX by Ts;
={i—>bH{i«< a}lx by (50)
£ [b «—ialx from (21), since i > x

There is a similar calculation for ¢;; ® x versus [i — j]x from (22). So we are forced to define
eha Ox = [b «alx £i0x = [im jlx (52)

One can check that (50) and (52) do indeed satisfy axioms Ts5—Tss. In other words, X has a unique
renset structure not just with respect to A\ (as in Proposition 2.17), but with respect to the whole of
INA\. Moreover, the fact that elements of X are finitely atom- and indexed-supported implies that
each x € X is finitely supported with respect to the INA-renset structure of X. For if A € Fin A
atom-supports x and n € IN index-supports it, then the finite subsetn UA = {ie IN|i <n} UA
of INA\ has the property that for every a,b € IN\ witha ¢ n U A, ¢,, © x = x. (See [Pitts 2023,
fsRenset.agda].)

We saw in (29) how to define a name-swapping operation (for names from A\) satisfying the
properties in Lemma 2.21, which correspond to Ts;-Tss and TSg—TS13. We can do the same thing
with respect to names from the whole of INA\: given a, b € INA\ and x € X, we can well-define 7, , © x
to be g5 O €45 O &cq © X, where ¢ is any element of INA not in the support of x and not equal
to a or b; and this definition does satisfy the axioms in Fig. 2. Furthermore 7, , © x is uniquely
determined by those axioms: for if we choose ¢ to also not be in the support of 75, , © x, we have
Epe O Tpg © X = 14 O x and hence

Tha OX = €pp O €pe OTpga OX by Tss
=¢€pe QEcp OTpa OX by Ts7
=¢€pe QEqp O Ecqa OX by Tsg

For the last sentence of the corollary, note that (51) holds when m = id; and if it holds for m; and
ms, it also holds for m; o my. Thus it suffices to check (51) as m ranges over the generators; and
from above, we only need check that it holds for generators of the form ¢,; and ¢; ;. But (50) and
the fact that f is a morphism of locally nameless sets together implies this. O

Lemma 3.9. Suppose that X is a locally nameless set and that © is as in Proposition 3.8. If x € X is
atom-supported by A € Fin A\ and index-supported byn € IN, writingnUA for{0,...,n—1}UA C INA\,
we have for allm,m’ € (Tina)gn

(VaenUA m(a)=m'(a)) = mox=m'Ox (53)

ProoF. We proceed by induction on the size of the finite set [m#m’] from (48); it is finite because
it is contained in [m#id] U [m’#id] and we are assuming m and m’ are finite functions. If this
set is empty, then m = m’ and (53) holds trivially. So suppose Ya € n U A, m(a) = m’(a), that
ap € [m#m’] (and hence ay ¢ n U A) and that the result holds for all m"”’,m"”” € (Ta)gn With
[m””#m’"”] of size one less than [m#m’]. We have to show that m © x = m’ © x.

Pick some a; € INA not in the finite subset n U A U {ay} U [m#id] U [m’#id] and consider
m’ £ moeg o and m"” £ m’ o g, o in (Tina)an- Thus m” maps ag to a; and otherwise acts like
m (since a; ¢ [m#id]); and similarly for m””’. Therefore [m”’#m’”’] = [m#m’] — {ao} has strictly
smaller size than [m#m’]; and furthermore Ya € nU A, m” (a) = m(a) = m’(a) = m"”’(a). Hence
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by induction hypothesis we have m”” ©® x = m’”” © x. Since x is index-supported by n and atom-

supported by A, nU A is a support for x regarded as an INA\-renset (as in the proof of Proposition 3.8);
so since ag ¢ nUA we have ¢, 4, ©x = x. Therefore m"” ©x £ (moegy q,) OX = MmO e, 0,0 = MOX;
and similarly m”’ 0 x =m’ ©x.SomOx =m” ©x =m'"” ©x = m’ O x, as required for the
induction step. O

We can now construct an inverse for the functor F : (Set'™ )¢ — Lns. Give a locally nameless
set X, define a function _ - _ : Tjya X X — X as follows: for each m € Tjya, and x € X define

m-xtEm ox (54)

where O is as in Proposition 3.8 and m’ € (T )g, is any finite endofunction satisfying Va €
nUA, m(a) =m’(a) with n € IN an index-support for x and A € Fin A\ an atom-support for it. This
definition makes sense because:

e If n and A are some index- and atom-supports for x, then we can take m’ to be the finite
endofunction

(55)

(a) 2 m(a) ifaenUA
m’(a) =
a ifagnuA

e (54) is independent of the choice of n, A, m’. For suppose x also has index- and atom-supports
n’ and A" and that m” € (T ), satisfies Va € n’ U A’, m(a) = m” (a). It is easy to see
from the definitions in Sect. 2.3 and 2.4 that x is also index-supported by n’” = min{n, n’}
and atom-supported by A” £ A N A’; furthermore by assumption on m’ and m”’ we have

Vaen” UA”, m'(a) = m(a) = m"”(a). Therefore m" © x = m”” © x holds by Lemma 3.9.

So (54) does define a function _ - _ : Tjyy, X X — X. We show that it is an associative and unitary
action of the monoid Ty on X.

If my, my € Tiyy and x € X, letting n and A be index- and atom-supports for x, then by definition
my-x = m]Ox for some m| € (T )an that agrees with m; on nUA. We can choosen’ > nand A’ 2 A
so that n’ index-supports and A” atom-supports m] ©x and furthermore n’ UA 2 {m/(a) | a € nUA}.
Then by definition m; - (m] © x) = m;, © (m] © x) for some m,, € (Tina)sn that agrees with m, on
n’UA’. Thus myom, agrees with mjom] on nUA and hence by definition (mzom;)-x = (mjom]) ©x.
So using the fact that © is associative we have (mz om;) - x = (mjom]) ©x =m, © (m] O x) =
my - (m}] ©x) =my - (my - x).

For the unitary property, if x € X, then since id is finite and agrees with itself on any support of
x we have by definition and the unitary property of © thatid - x =id © x = x.

Thus from X € Lns we have constructed m £ (X,-) in Set™ G(X) is actually in (Set™ )g:
for all x € X, if n € IN index-supports x and A € Fin A atom-supports it, then we claim that
n U A finitely supports x in (X, -) in the sense of Definition 3.4. For if my,m, € Ty satisfy
Va € nU A, my(a) = my(a), then by definition m; - x = m] © x and m;, - x = mj © x for some
m}, m;, € (T )an that agree with m; and m; respectively on nUA. So m] and m;, are also equal when
restricted to n U A and hence by Lemma 3.9 we have m] © x = m;, © x; and therefore my - x = m; - x.

Note that if f : X — Y in Lns, then for all x € X and m € T, we have f(m-x) = f(m’ O x) =
m’ © (fx) =m- (f x) by (54), (51) and the fact that n (respectively A) index-supports (respectively
atom-supports) f x when it does so for x. Therefore G extends to a functor Lns — (Set™™ )z whose
action on morphisms is the identity. We will show that it is a two-sided inverse for the functor F.

If X is a locally nameless set, then for each x € X, i € IN and a € A\, since ¢,; and ¢;, are in
(Tna)fin from (50) and (54) we have ¢, - x = ¢,; Ox ={i »a}xand €;4, - x = €1, O x = {i < a}x.
Therefore F(G(X)) = X in Lns.
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Conversely, if (X,-) € (Set™ ), let us write _ ‘G(F(x)) _ for the T -action on X that gives
G(F(X)). We will show that it is equal to _ - _ and hence that G(F(X)) = X in (Set™ ).

To see this, given m € Ty and x € X, suppose x is finitely supported by S € Fin INA. Choose
some n € INand A € Fin A so that n UA 2 S and let m’ € (Tya )sin be defined as in (55). Note that
n index-supports and A atom-supports x in F(X). For if i > n then i ¢ S so that for any a € A
we have Ve € S, ¢,;(c) = ¢ = id(c) and hence ¢,; - x = id - x in (X, -); thus in F(X) we have
{i > a}x = ¢4, - x =1id - x = x. Similarly, if a € A — A then a ¢ S and we get {0 < a}x = x in F(X).
Since m and m’ agree on n U A it follows from definition (54) that m -g(r(x)) x = m’ © x. By the
uniqueness part of Proposition 3.8, the action _ ® _ constructed from the locally nameless set F(X)
is equal to _ - _. Therefore m -g(p(x)) x = m’ © x = m’ - x; but since m and m’ agree on S which
supports x in (X, -) we also have m’ - x = m - x. Thus altogether we have m -g(r(x)) x = m - x for
all m € Tjyn and x € X and hence G(F(X)) = X.

We have now proved that the functors F : (Set™\ )¢ — Lns and G : Lns — (Set™)s are
mutually inverse on objects. Since they both act on morphisms as the identity, they are in fact
mutually inverse as functors. Thus we have completed the proof that Lns and (Set™™ )¢ are
isomorphic categories. o

Remark 3.10. Note that the single-renaming functions ¢, ; and ¢; , (for a € A and i € IN) mentioned
in the proof of Theorem 3.5 do not generate the whole monoid Ty . For one thing, compositions
of them never take us out of the submonoid consisting of endofunctions m : INA — INA for which
[m#id] is finite. But they do not even generate that submonoid, because any composition of a
non-empty list of such endofunctions is always non-injective. Something more is needed to generate
all the finite endofunctions, for example the single-transposition (swapping) functions (47); see
Proposition 3.7. Nevertheless, the theorem shows that the single-renaming functions ¢,; and ¢; 4
together with the axioms in Fig. 1 completely characterise the action of all endofunctions (finite or
not) of IN U A\ on finitely supported objects.

3.4 Shift Functor [Pitts 2023, Shift.agda]

In the locally nameless representation of syntax, opening and closing operations have their indices
shifted up by one when they pass underneath (unary) binding constructs. Correspondingly, given
an arbitrary locally nameless set X we can form a new one that represents unary binding of

names independently of any particular syntax. The underlying set of T X is just that of X, but its
opening/closing operations are given by

{i=*a}x2{i+1—a}x {icTa}x2 {i+1«<alx (56)

Since _ + 1 preserves #, these operation satisfy the axioms in Fig. 1 and hence T X is an oc-set.
It inherits the finite support properties (Definition 2.9) from X and so is also a locally nameless
set. For given x € X, if A € Fin A\ atom-supports x in X , it also atom-supports x in T X (by virtue
of Lemma 2.4); and if i > x holds in X, then i = 1 > x holds in T X (where = indicates truncated
subtraction).

Note that the mapping X — T X extends to a functor . The action of T on a
morphism f : X — Y is the identity at the level of sets and functions: T f is just the function f,
which does indeed satisfy (40) with respect to {_ —* _} and {_ «<* _}, because of the way they are
defined in terms of {_— _}and {_« _}.

We noted in Sect. 3.2 that the forgetful functor Lns — Set creates certain limits and colimits.
From the way in which the functor T : Lns — Lns is defined, we have the following result, which
will be useful in Sect. 4 when considering initial algebras of endofunctors on Lns.

Proposition 3.11. T :Lns — Lns preserves finite limits and filtered colimits. O
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3.5 Weakening Abstractions

An advantage of the nominal approach to dealing with syntax with binders [Pitts 2013], compared
with the use of de Bruijn indices, is that a name in some context of use does not change when
the context is weakened, whereas an index may have to. Since notations for explicit weakening
and calculations with them can be very burdensome (either to the implementor of a proof tool, or
to a user rolling their own metatheory within a general-purpose interactive theorem-prover) an
approach that enables weakening to be invisible is attractive.” We will show that locally nameless
sets take this one step further, by also making implicit the operations for abstracting extra fresh
names.

For each nominal set X there is a nominal set of name-abstractions [A]X whose elements are
equivalence classes of pairs (a, x) € AxX for a syntax-independent form of a-equivalence; see [Pitts
2013, Chapter 4] where the equivalence class of (a, x) is written (a)x. Iterating this construction,
for each n € IN one gets nominal sets [A\]"X of n-ary abstractions {ay, ..., a,)x (where ay, . .., a,
is an n-tuple of mutually distinct atoms).

Given m < n, each element of [A]™X can be coerced into an element of [A]"X by padding out
the m-ary abstraction with n — m fresh names. However, these coercions are not identity functions.
By contrast the analogous construction for locally nameless sets is just an inclusion: if X is locally
nameless, since m < n we have Ic,;,(X) C lc,(X) (by Lemma 2.6). We sketch how to make precise
the relationship between [A]"X and Ic, (X).

We noted in Remark 2.20 that every locally nameless set supports a notion of name-swapping that
makes it into a nominal set. Morphisms of locally nameless sets preserve the swapping operation
and hence one gets a faithful functor I : Lns — Nom into the category Nom of nominal sets and
equivariant functions. If X € Nom and Y € Lns, from a morphism f : X — I(Y) in Nom we
get a function £V : [A]X — Y well defined by f(V) ({a)x) = \*(f x), using the locally nameless
abstraction operation from (13). Iterating this we have functions £ : [A]"X — Y. One can
show that n +— [A]"X is a diagram over (IN, <) whose (filtered) colimit F(X) = colim,[A]"X
has opening and closing operations making it into a locally nameless set; and the functions £
induce a function f : F(X) — Y which is a morphism in Lns. In this way we get a left adjoint
F : Nom — Lns that glues together the n-ary name abstractions of elements of X € Nom to make
a locally nameless set. It is not hard to see from its definition that F preserves finite limits; therefore
the adjunction F 4 I constitutes a geometric morphism Lns — Nom. (In fact F has a left adjoint,
given by taking the locally closed part of a locally nameless set, so the geometric morphism is
essential [Johnstone 1977, Defn. 1.16]; and it is a surjection [loc. cit., Defn. 4.11] because I is faithful.)

4 Initial algebra semantics with locally nameless sets

In this section we show that the usual inductive definition of syntax using the locally nameless
representation of binders is a special case of the notion of initial algebra for endofunctors on Lns
involving the shift functor.

4.1 Binding Signatures [Pitts 2023, BindingSignature.agda]

For simplicity we make use of the notion of binding signature of Plotkin [1990], rather than the
slightly more flexible® notion of nominal signature from [Pitts 2013; Urban et al. 2004]. Recall from
[Fiore et al. 1999] that a binding signature ¥ = (Op, ar) is given by a set of operations Op and an arity
function ar : Op — ListIN, the idea being that an operation ¢ € Op of arity ar(c) = [ny,..., ni]

>Nominal methods are not the only candidate for avoiding “weakening hell”; a synthetic approach in the sense of Sect. 4.3
could also achieve that.
®because it allows explicit name-sorts and multi-argument name-binding scopes
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takes k arguments and binds n; names in its i argument (for i = 1,...,k). For example, the
binding signature for untyped A-terms has operations, lam and app, with arities ar(lam) = [1] and
ar(app) = [0,0].

Each binding signature 3 = (Op, ar) determines an endofunctor| =T : Lns — Lns |using the shift

functor from Sect. 3.4 to interpret name-binding:

STX 2 Seeop 19 X (57)
In this definition, for each X € Lns and 7i = [ny, ..., ng] € List N, the locally nameless set Tﬁ X is
given by the finite product
™MXE2MMX X xT™X (58)
where for each n € IN, the locally nameless set 1" X is the n'™ iteration of the functor Tat X:
"X =X X 211" X) (59)

For example if . is the binding signature for untyped A-term mentioned above, then =T : Lns — Lns
is the functor whose action on objects sends each X € Lns to TX + (X X X).

4.2 Free X'-Algebras

Recall that for each binding signature X there is a set of equivalence classes of terms over 3 modulo
a-equivalence of bound names (using the concrete syntax for terms from [Fiore et al. 1999, Sect. 2],
for example). This quotient set is in bijection with an inductively defined set using the locally
nameless representation [Charguéraud 2012] (one first defines all locally nameless terms and then
cuts down to the inductively defined subset of locally closed ones). Here we show that one can
obtain the same thing by forming the free X-algebra in Lns on the object INA (Example 2.10) and
then taking its equationally defined locally closed part (Definition 2.14). To see this, we first recall
some standard results about free algebras of endofunctors.

Given a functor F : C — C ona category C and an object V' € C, the free F-algebra onV is given by

an object F[V] € C equipped with morphisms V 5 F [V] EF (F[V]) with the universal property
that for any other such diagram V i) X £ FXin C, there is a unique morphism h : F[V] —» X
making the following diagram commute

L a

V" FIV] < FELV) (60)
al o Fh
Y Y Y
Vv X FX
f g

If C has finite coproducts and colimits of chains of some limit ordinal length A that are preserved
by F, then by the classical theorem of Adamek [1974], the free F-algebra F[V] exists and is
given by iterating the functor V + F(_) starting at the initial object to get chain of length A and
taking its colimit. Here we know that Lns has filtered colimits and 3T preserves them (because of
Proposition 3.11). Therefore the free =T-algebra ZT[INA] € Lns can be constructed as the colimit of
the countable chain

0> NA+=T0 — INA+ZT(INA +3T0) — INA +ZT(INA +=T(INA + 2T 0)) > -+ (61)

There is a more useful description of ST[INA]. Consider the functor ¥4 : Set — Set defined
like (57)-(59) but using the identity functor Id : Set — Set rather than the abstraction functor
T :Lns — Lns. Thus

sex = ZCGOPXW(C)' (where |7i] € IN indicates the length of a list 7i € List IN) (62)
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is the finitary polynomial functor derived from the signature ¥ by ignoring the binding information
of arities. Although the free algebra '4[IN U A\] can be constructed as a countable colimit in Set

0 >INUA+390 5 INUA+Z4INUA +3149) — - .. (63)
a possibly more familiar description of this set is as an inductively defined set A with constructors
var:INUA - A C:AX- - XA A (c € Op) (64)

where the number of arguments of the constructor ¢ € Op is the length of the list ar(c). For example,
writing bvar and fvar for the restriction of var to IN and A\ respectively, in the case that ¥ is the
signature for A terms, we get the inductively defined set A in (9). Writing U : Lns — Set for the
forgetful functor, note that the diagrams

Lns ﬁT- Lns Lns X Lns ——= Lns Lns X Lns — Lns
U j j U UxU l l U UxUl l U
Set —a Set Set X Set —— Set Set x Set —— Set

commute and U maps INA\ to IN U A\. It follows that U sends the colimit of (61) in Lns to the colimit
of (63) in Set. In other words, the underlying set of the free XT-algebra on INA, ZT[INA] € Lns, is
just the set A inductively defined in (64). Furthermore, since the constructor functions in (64) are
the images under U of morphisms of locally named sets, the open/close operations necessarily
satisfy the properties that are used by Charguéraud [2012, sections 3.1 and 3.2] to inductively define
these operations:

{i = a}(bvar j) = if i = j then fvara else bvar j {i « a}(bvar j) = bvar j
{i —» a}(fvarb) =fvarb {i «< a}(fvarb) = if a = b then bvari else fvarb
{i—a}c(ty,...,tpr) =c({i+ny —alty,...{i +np - alty)
{i<a}tc(ty,....tx) =c({i+ny < a}tty,...,{i + np < a}ty) (wherear(c) =[ny,...,nx])
So we have:

Theorem 4.1. For every binding signature 3, the usual locally nameless representation of the syntax of
-terms modulo a-equivalence is given by the locally nameless set ST [INA] that is the free 3" -algebra
on the locally nameless set INA of indices or atoms. O

Not only does XT[INA] agree with the set of terms mod « over a binding signature 3 defined in
locally nameless style, but also the usual inductive notions of “free variable” and “local closure” agree
with the equational notions that can be defined in any locally nameless set using the definitions
from Sects 2.3 and 2.5, as the next two propositions show. Their proofs proceed by induction
on the structure of ¢ in the inductively defined set A (64); see the Agda development [Pitts 2023,
BindingSignature.agda] for details.

Proposition 4.2 (Freshness vs free variables). Given a binding signature 3, for all elements t
of the underlying set A (64) of the free %" -algebra on INA, define the finite set fv(t) € Fin A\ of free
variables as usual for the locally nameless representation of syntax:

fv(bvari) =0 fv(fvara) = {a} tv(c(ty, ..., t)) =fv(t) U--- Utv(tg) (65)
Then foralla € A andt € A we have:a#t & a ¢ {v(t). In particular, the validity of the finite
atom-support property Via, a # t is witnessed by fv(t) € Fin A\. O
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Proposition 4.3 (Index-support vs local closedness). Given a binding signature ., for all elements
t of the underlying set A (64) of the free X1 -algebra on INA, the predicate

Ic_atit (‘t is closed at level i”)
from [Charguéraud 2012, Sect. 3.3] is inductively defined by the rules:
j<i i€lN ae€ A Ic_at(i+ny) by e le_at(i + ng)
lcati(bvarj)  lcati(fvara) le_ati (c(t,...tr))

Then for alli € IN andt € A we have:i >~ t & Ic_atit. In particular, the finite index-support
property Ji € IN, i > t is witnessed by the fact thatlvt > t, wherelvt € N is given by:

Iv(bvari) =i+1 lv(fvara) =0 v(c(ty, ..., t)) = max{lv(t),..., Iv(t)}

]

Example 4.4 (Denotations via initiality). Let Dom denote the category of Scott domains and
Scott continuous functions [Scott 1982] and suppose that D € Dom is a domain with a retraction
onto its own exponential DP, so that there are Scott continuous functions Im : D? — D and
ap : D — DP with ap o Im = id. These can be used to give denotational semantics to the untyped
A-calculus in the following way. Let DNYA denote the product in Dom of (IN U A\)-many copies of
D and define

C(D) £ Dom(D"VA D) (66)
to be the set of Scott continuous functions DNYA — D. We think of the elements p € DNVA a5
environments mapping indices and atoms to their denotations in D; and the elements ¢ € C(D) as
(semantic) continuations mapping such environments to elements of D. Every function m : NUA —
IN U A\ induces a Scott continuous re-indexing function m* : DNVA — DNUA in Dom and hence
by pre-composition, a function m** : C(D) — C(D) in Set. The mapping m +— m** is functorial
and hence C(D) inherits the structure of an oc-set from that of INA\ (Sect. 2.2). For example, the
opening operation produces from a continuation ¢ € C(D) a continuation {i — a}c € C(D) that
maps each p € DNUA to ¢(p o ¢,;), where ,; : INUA — IN U A is as in (46); and similarly for
closing operations.

Since C(D) is an oc-set we can form the subset C(D)¢, of finitely atom- and index-supported
elements of C(D) to obtain a locally nameless set. (Recall from Sect. 3.2 that X +— Xj gives a right
adjoint to the inclusion Lns < oc-Set.) Although C(D)g has nothing per se to do with syntax, it
does have a binding operation, in the sense that there is a morphism in Lns

Im : 1(C(D);) = C(D)gs  Imcp 2 Im(Ad € D. c[p,d]) (c € [(C(D)g),p € D"™)  (67)

where [_, ] : DNVAx D = pNVAUL} & pINUA i Dom is induced by bijection NUAU {#} = INUA
(we assume = ¢ INA\) that that shifts indices up by 1, leaves atoms unchanged and maps the unique
element x of {x} to index 0. (Note that it follows that Ad € D. ¢[p, d] is Scott continuous, hence is
an element of DP to which we can apply Im : D? — D in the definition of Im.) To see that (67) is a
morphism in Lns one just has to check that it commutes with the opening and closing operations
(since the fact that it yields finitely supported elements follows from that); but this is a routine
calculation from the definitions. Similarly, but more simply, there are morphisms in Lns

ap : C(D)gs X C(D)gs = C(D)s  ap(e,¢’) p £ ap(cp)(c'p) (c,¢" € C(D)g,d € DMN)  (68)
V1 : INA > C(D)g Viup £ p(u) (ue INA p e DNUA) (69)
Hence C(D)g, is an 3'-algebra for the binding signature ¥ for A-terms mentioned at the end of

Sect. 4.1; and by Theorem 4.1 there is a unique algebra morphism [_] : ZT[IN\] — C(D)g in
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Lns with [_] o var = V. We noted above that in general the underlying set of ZT[INA] is just the
inductively defined set of terms for the binding signature ¥ defined in locally nameless style; and in
this particular case it is the locally nameless set A from Example 2.11. Furthermore, when restricted
to locally closed elements ¢ € A, for each environment p the element [t]p € D recovers the usual
denotational semantics of the term ¢ in the domain D. This example of denotations-via-initiality
for locally nameless syntax should be compared with Fiore et al. [1999, end of Sect. 2] for the
mathematics of the de Bruijn representation, with Popescu [2022, Sect. 5.3] for his finitely supported
renaming sets, and with Pitts [2006, Sect. 6.3] for the nominal approach (where one has to use some
ingenuity (unfortunately) to get the requisite recursion principle to apply).

Example 4.5 (Capture-avoiding substitution). In the preceding example, the fact that C(D)g is
a locally nameless set does not depend much upon the specific nature of the category Dom—the
same definition (66) will work for an object D in any locally small category where the (IN U A\)-fold
product of D exists. Lns is such a category: the (IN U A\)-fold product of X € Lns is necessarily given
by the locally nameless coreflection (X™VA )y of the product X'NVA in oc-Set, which is itself created
by the forgetful functor to Set, that is, is the set of functions from IN U A to X with opening/closing
operations induced pontwise from those of X. Taking X to be the locally nameless set A of A-terms
(Example 2.11), we have a locally nameless set C(A)g, where now

C(A) 2 Lns((ANA), A) (70)

is the set of morphisms (ANYA)¢ — A in Lns, equipped with the opening/closing operations given
by {i = a}c = co¢}; and {i < a}c = c o ¢ ,. We think of the elements o € (ANVAY as (finite)
substitutions of terms for indices and atoms. The locally nameless set C(A)g carries the structure
of a XT-algebra (when 3 is the signature for A-terms):

lam : T(C(A)gs) — C(A)gs lamco £ lam(co) (71)
app : C(A)gs X C(A)gs — C(A)gs app (¢c,c’) o = app(co,c'o) (72)

(where ¢, ¢’ € T(C(A)g) and o € (ANYA)) and there is a morphism
var : INA — C(A)g Varuo £ o(u) (ueNA o e (AN  (73)
Therefore by Theorem 4.1 there is a unique %'-algebra morphism sub : A — C(A)g in Lns

with sub o var = var. This agrees with the usual, inductively defined notion of capture-avoiding
substitution for the locally nameless representation (cf. [Charguéraud 2012, Sect. 3.5])

sub(bvari)o = oi
sub(fvara)c = oa (79)
sub(lamt)o = lam(subto)

sub (app(t,t')) o app(subt o, subt’ o)

(where t,t" € A, a € A and i € IN). This ignores the usual yoga of shifting dangling de Bruijn indices
within ¢ when passing under binding constructs like lam—a selling point of the locally nameless
approach. However, as a result subt o is only a correct definition of capture-avoiding substitution if
one restricts to locally closed t and o. In practice it is possible to maintain such local closedness
invariants while proving properties of locally nameless syntax, often through the use of cofinite
quantification [Aydemir et al. 2008; Charguéraud 2012; McKinna and Pollack 1999]. However, doing
so means that one has to look outside the category Lns, as we discuss next.
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4.3 Towards Synthetic Locally Nameless

There are several results like Theorem 4.1 in the literature on the mathematics of syntax with
binding constructs. For example, the three influential papers that appeared together in LICS 1999
[Fiore et al. 1999; Gabbay and Pitts 1999; Hofmann 1999] all feature, in various categories, initial
algebra characterizations of syntax modulo a-equivalence using respectively de Bruijn, nominal and
weak higher-order representations. In the first case the category is the Schanuel topos (equivalently,
the topos of nominal sets) and in the second two cases it is toposes of presheaves for categories
of contexts and variable-renamings. Work on various kinds of sets-equipped-with-a-renaming-
action [Gabbay and Hofmann 2008; Popescu 2022] also feature such results. In all cases there is
an emphasis, more or less explicitly, on deriving from the initiality property (60) more useable
recursion and induction principles for reasoning about represented syntax. The utility of such
recursion and induction principles partly depends upon how many constructs of interest can be
expressed within the internal logic of the categories involved. For example, most constructs of
interest are invariant under name permutation and many have finite support; and so nominal
recursion/induction [Pitts 2013, Chapter 8] is widely applicable in principle’. Compared with name
permutation, renaming preserves fewer constructs of interest (particularly not ones involving
logical negation) and this could make an initial algebra result in categories based on renaming less
easy to apply; but see [Popescu 2022] for the surprisingly good state of the art. The situation for
Lns is worse: its internal logic does not support by itself some of the key constructs needed for the
locally nameless approach. For example, taking the locally closed part (Definition 2.14) of a locally
nameless set yields a nominal set, but not a locally nameless one (since it is not usually invariant
under the operation of closing an atom with an index); and yet as mentioned in Examples 4.4 and
4.5, use of the initiality theorem only gives correct notions of denotation and substitution when
restricting attention to locally closed elements.

Nevertheless, a synthetic account of locally nameless representations and computations with them
is a desirable goal (for the general reasons set out by Sterling [2021, Sect. 0.6]). In other words one
would like an expressive type theory or logic featuring axioms directly capturing the key features
of the mathematical analysis that this paper has provided. To be useful, expressiveness has to be
balanced by simplicity of the axiomatic notions and existence of a straightforward mathematical
model of them. For the latter, Lns by itself will not work; but a topos obtained from it may work,
for example by considering Lns relative to the topos of nominal sets as in Sect. 3.5. The internal
logic could then be a two-level type theory of some kind (some types being nominal-set-like, some
being locally-nameless-set-like) with the levels connected by a modality for local closure. To be
practically useful such a type theory will have to feature “Barendregt-enhanced” ® recursion and
induction principles involving the cofinite quantifier (Definition 2.1), analogous to those considered
by Pitts [2006] and Popescu [2022, Theorem 11]. We leave investigation of such a synthetic account
for future work.

5 Agda development

Agda [2023] was used to develop the theory of locally nameless sets and check some of the proofs.
The Agda code [Pitts 2023] mainly targets proofs that involve equational reasoning combined with
the use of atoms and indices that are sufficiently fresh (via cofinite quantification). Agda was chosen
because of the author’s familiarity with it; as [Charguéraud 2012] reports, most developments so
far using the locally nameless representation have employed Coq or Isabelle/HOL. In this section

"But hampered in practice by its need to satisfy various kinds of freshness side-conditions.
8The name points to a relationship with the informal “variable condition” of Barendregt [1984, Appendix Al].
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we discuss some of the features of our Agda development, assuming some familiarity with Agda’s
concrete syntax.

5.1 Atoms and Cofinite Quantification [Pitts 2023, Unfinite.agda]

For the decidable, “unfinite” (1) set A\ one could just take atoms to be in bijection with natural
numbers. We prefer another representation that focuses on the crucial property that given a finite
set of atoms A, there is an atom (call it new A) not equal to any of the atoms in A. We make this the
definition of “atom” and use an inductive type A\ with a single constructor new of type Fset A —
A\, where the elements of the indexed inductive type Fset X are trees representing finite subsets
of X. One can prove that the type A has decidable equality, so that its equality _=_ : A - A —
Set has a Boolean complement _#_ : A — A — Set. The definition of A\ makes it equivalent to a
type of well-founded trees (a W-type [Nordstrom et al. 1990, Chapter 15]); and using well-founded
induction one can prove the unfiniteness property

unfinite : (A: Fset A) - newA¢A

where _¢_ is the non-membership predicate, inductively defined using decidability of equality
in A\ Its definition makes use of Agda’s instance arguments (indicated by double braces {{_}3}),
a special kind of implicit argument searched for by an algorithm separate from the one used for
normal implicit arguments. These instance arguments are the Agda equivalent of Haskell type
class constraints. Here they allow a certain amount of automation for proving non-membership
properties, in particular for the witnesses involved in proving cofinite quantifications (Definition 2.1),
using the following definition:

record M (P : A — Set) : Set where
constructor Ui
field
Ne; : Fset A
Mey, : (a: A){{_:a¢Ve}}—Pa
open U public
syntax (ha—=P)=WNa:A,P

5.2 Locally Nameless Types [Pitts 2023, oc-Sets. agda,Support. agda]

The definition of oc-sets and locally nameless sets is straightforward, using a naive unbundled
approach to type classes (via Agda’s instance arguments, mentioned above). An oc-set structure
for a type X is an element of a record type oc (X : Set) with fields

~>_:IN->A-X->X

<~_:IN->A-X->X

oc;:Viabx— (i~>a)((i~>b)x)=(i~>b)x
and also fields ocy, ...0cy corresponding to the other axioms in Fig. 1. Defining the associated
notions of freshness (3) and local closedness (5)

o {X s Set}H{{_ :0cX}}— A - X Set

a#x=(0<~a)x=x

s {X:SetH{_:0cX}}—IN—-X-Set

is=x=G:INDH{_:j=i3r = Y a:A, ((J~>a)x=x)

then a locally nameless set structure for a type X is an element of the type 1ns(X), where
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record lns (X : Set) : Set where
field
{{ocSet}} : ocX
asupp : (x: X) = Ua:A, (attx)
isupp: (x: X) = X i:IN, (i>x)

5.3 Shift Functor [Pitts 2023, Shift.agda]
The shift functor (Sect. 3.4) changes oc-set structure (and locally nameless structure) without
changing the underlying type

oct : {X:Set}{{_:0cX}}—ocX

_~>_ {{oct}riax=(1i+1~>a)x

_<~_{{oct}riax=(1i+1<~a)x

(the rest of the definition is omitted). This makes the functor conveniently invisible when building
inductive datatypes involving it (such as Trm 3 below). However, it does disrupt automatic inference
of structure, since Agda takes exception if it finds two or more (or no) instances of a structure for
a given type. An alternative would be to make T X have an underlying set that is a record type
isomorphic to X.

5.4 Binding Signatures [Pitts 2023, BindingSignature.agda]

Rather than using lists of numbers as arities as in Sect. 4.1, we found it more convenient to use
functional arrays:

record Array (X : Set) : Set where
field
length : IN
index : Fin length — X

where Fin : IN — Set is the usual parameterised inductive type of finite sets. We define the type
of Plotkin-style binding signatures to be

record Sig : Set; where
field
Op : Set
ar : Op — Array IN

The inductive type of terms over such a signature (64) is then

data Trm (X : Sig) : Set where
var : INA - Trm X
op : (c:0pX)— (Fin(length(ar X c)) - TrmX) - Trm X

where INA\ is the disjoint union of IN and A\. For each signature ¥, the type Trm X has the structure
of a locally nameless set making it the free X-algebra on INA (Theorem 4.1); and an element’s
support as determined by the oc-algebra structure agrees with the usual inductively defined notions
(Propositions 4.2 and 4.3). The downside of using functional arrays rather than lists is that the
proof of these facts uses function extensionality. However, that principle is needed anyway when
proving the uniqueness part of Proposition 3.8 and the initiality property (60). We postulate function
extensionality in our Agda development, but an alternative might be to work in a type theory
in which it is provable, such as Cubical Agda [Vezzosi et al. 2019]. However, the current Agda
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development does make use of Coquand’s original form of dependent pattern matching [Coquand
1992] for which uniqueness of identity proofs (UIP) is provable; in other words the development
uses the Agda option --with-K. It may be possible to eliminate use of UIP and to transfer the
development to Cubical Agda, but we have not investigated this.

5.5 “Mere” Existence

The use of a record type (or equivalently, a X-type) to define cofinite quantification in Sect. 5.1
means that, given a proof of U a: A , P, applying the projection Ve; to it we obtain an explicit
witness for the finite subset of A on which P may not hold. This corresponds to how cofinite
quantification occurs in mechanized metatheory using the locally nameless representation. For
example, a proof of typing in a system like that in [Charguéraud 2012, Fig. 1] contains explicit
occurrences of finite sets witnessing the various cofinite quantifications in the proof (and hence
in particular there can be different proofs of the same typing judgment). Similarly, when defining
locally nameless structure 1ns X we used a X-type for the finite index-support property isupp x of
x:X, instead of an existenial quantifier as in (8). These choices suffice for constructive proofs of
the results presented in Sects 2, 3.1-3.4 and 4; but not for Sect. 3.5, unless one moves to a classical
setting in which witnesses for infinite families of existentially quantified statements can be found
(for example via the Axiom of Choice).

The reason for this has to do with properties of the notion of “finite support”. The theory of
nominal sets in [Pitts 2013] makes the assumption that every element of a nominal set possesses a
smallest finite set of atoms that supports it. Swan [2017] has shown that this assumption implies the
non-constructive weak limited principle of omniscience (WLPO), which says that given a property P
of natural numbers, if we can decide for each x € IN whether or not P x holds, then we can decide
whether or not the set {x € IN | P x} is empty. There is strong (but unpublished) evidence that a
rich constructive theory of nominal sets can be developed if one just requires that for every element
of a constructive nominal set there merely exists some finite set of atoms that supports it (without
assuming that there is a smallest such, or even assuming that there is a function mapping each
element to a support set for it).

The situation for locally nameless sets is likely to be the same. Therefore, where the current
Agda formalization uses the strong form of existential quantification given by 2-types, one should
try instead to work with “mere” existence [Univalent Foundations Program 2013, Sect. 3.6]. For
example, the reflection of nominal sets into locally nameless sets sketched in Sect. 3.5 involves a
countably infinite colimit, which will be constructed by taking a quotient by a suitable equivalence
relation. Given an equivalence class, to see that there merely exists a finite support for it, it suffices
to pick a representative of the class and use its finite support; but without some form of choice
principle one would not have the function assigning a support to each equivalence class that would
be required if one uses the definition of support in the current development.

6 Conclusion

The equational axiomatization of opening and closing in Fig. 1 is quite simple, although it does
have its subtleties (axioms ocg and ocy). It came as a big surprise to the author that it suffices to
derive so many of the key concepts of the locally nameless representation of syntax with binders,
independently of any particular syntax. The results in this paper show how to automatically derive
from a signature specification a large part of the infrastructure described in [Charguéraud 2012,
Sect. 3.9]. At the moment what remains of that infrastructure is the use of recursion and induction
principles for ordinary inductively defined sets (rather than locally nameless sets) to define specific
functions and relations needed for a particular development. It may be that this can be synthesised
into a new “locally nameless logic”, as discussed in Sect. 4.3.
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Less speculatively, the algebraic treatment of opening and closing has allowed us to relate the
mathematics of the locally nameless representation to nominal representations that are based on
the use of renaming functions, by showing that categories that have been used in the literature for
modelling those forms of representation are in fact equivalent to the category of locally nameless
sets introduced here.

For the first time we have a syntax-free account of the locally nameless version of name binding,
via the shift functor on locally nameless sets. Before this work one only knew what locally nameless
syntax means. As Example 4.4 illustrates, now one can make sense of "locally nameless semantics".
This could enable the pleasant properties of the locally nameless representation to be used for
situations where syntax and semantics get mixed up — for example in proofs of normalization-by-
evaluation [Berger and Schwichtenberg 1991] (see Pitts [2006, Sect. 6], for example). The equational
treatment of the locally nameless representation may also help to improve automated support in
theorem provers for this method of developing formal metatheory of programming languages and
logics. For example, it may be possible to combine our Agda development with the work of Escot
and Cockx [2022] to extend their encoding of datatypes to ones involving the shift functor, together
with a generic construction of locally nameless set structure for Agda datatypes that have such an
encoding.
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