R. Backhouse and J. N. Oliveira (Eds.): MPC 2000, LNCS 1837, pp. 230-255, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Metalanguage for Programming with
Bound Names Modulo Renaming

Andrew M. Pitts' and Murdoch J. Gabbay?

! Cambridge University Computer Laboratory, Cambridge CB2 3QG, UK
Andrew.Pitts@cl.cam.ac.uk
2 Department of Pure Mathematics and Mathematical Statistics,
Cambridge University, Cambridge CB2 1SB, UK
M.J.Gabbay@dpmms.cam.ac.uk

Abstract. This paper describes work in progress on the design of an
ML-style metalanguage FreshML for programming with recursively de-
fined functions on user-defined, concrete data types whose construc-
tors may involve variable binding. Up to operational equivalence, val-
ues of such FreshML data types can faithfully encode terms modulo
a-conversion for a wide range of object languages in a straightforward
fashion. The design of FreshML is ‘semantically driven’, in that it arises
from the model of variable binding in set theory with atoms given by the
authors in [7]. The language has a type constructor for abstractions over
names (= atoms) and facilities for declaring locally fresh names. More-
over, recursive definitions can use a form of pattern-matching on bound
names in abstractions. The crucial point is that the FreshML type sys-
tem ensures that these features can only be used in well-typed programs
in ways that are insensitive to renaming of bound names.

1 Introduction

This paper concerns the design of functional programming languages for meta-
programming, by which we mean the activity of creating software systems—
interpreters, compilers, proof checkers, proof assistants, and so on—that manip-
ulate syntactical structures. An important part of such activity is the design
of data structures to represent the terms of formal languages. The nature of
such an object language will of course depend upon the particular application.
It might be a language for programming, or one for reasoning, for example. But
one thing is certain: in all but the most trivial cases, the object language will
involve variable binding, with associated notions of free and bound variables,
renaming of bound variables, substitution of terms for free variables, and so on.
It is this aspect of representing object languages in metaprogramming languages
upon which we focus here.

Modern functional programming languages permit user-defined data types,
with pattern matching in definitions of functions on these data types.! For object

1 As far as we know, this feature was introduced into functional programming by Rod
Burstall: see [2, 1].

A Metalanguage for Programming with Bound Names 231

languages without variable binding, this reduces the work involved in designing
representations to a mere act of declaration: a specification of the abstract syntax
of the object language gives rise more or less directly to the declaration of some
algebraic data types (mutually recursive ones in general). Consider the familiar
example of the language of terms of the untyped lambda calculus

tu=z|tt| Azt (1)
and a corresponding ML data type

datatype ltree = Vr of string (2)
| Ap of 1tree * ltree
| Lm of string* ltree

where x ranges over some fixed countably infinite set of variable symbols which
we have chosen to represent by values of the ML type string of character strings.
This gives a one-one representation of the abstract syntax trees of all (open or
closed) untyped lambda terms as closed ML values of type 1tree. However, the
ML declaration takes no account of the fact that the term former Az.(—) involves
variable binding. Thus, if one wishes to identify terms of the object language up
to renaming of bound variables (as one often does), such representations are too
concrete. It is entirely up to programmers to ensure that their term manipulating
programs respect the renaming discipline—an obligation which becomes irksome
and error prone for complex object languages, or large programs.

A common way round this problem is to introduce a new version of the
object language that eliminates variable binding constructs through the use of
de Bruijn indices [4]. For example, ‘nameless’ lambda terms are given by

t'u=n|t't | A (3)
and a corresponding ML data type by

datatype ltree’ = Vr’ of nat 4)
| Ap’ of ltree’ * ltree’
| Lm’> of 1ltree’

where the indices n are natural numbers, represented by the values of a suitable
ML data type nat. Closed ML values of type 1tree’ correspond to nameless
terms ', which in turn correspond to a-equivalence classes of ordinary lambda
terms ¢ (open or closed). Hence functions manipulating lambda terms modulo
a-conversion can be defined, and their properties proved, using structural recur-
sion and induction for the algebraic data type 1tree’. This approach has been
adopted for a number of large systems written in ML involving syntax manip-
ulation (such as HOL [8] and Isabelle [14], for example). However, it does have
some drawbacks. Firstly, nameless terms are hard for humans to understand and
they need translation and display functions relating them to the usual syntax
with named bound variables. Secondly, some definitions (such as substitution
and weakening the context of free variables) are non-intuitive and error-prone

232 Andrew Pitts and Murdoch Gabbay

when cast in terms of de Bruijn indices. Lastly, and most importantly, the ML
language does not have any built-in support that might alleviate these problems:
one usually starts with a specification of an object language in terms of context
free grammars and some indication of the binding constructs and has to craft its
‘name free’ representation by hand. Perhaps more can be done automatically?
In this paper we describe an ML-like language with features that address these
difficulties and provide improved automatic support for metaprogramming with
variable binding constructs. The key innovation is to deduce at compile-time not
only traditional type information, but also information about the ‘freshness’ of
object-level variables. This information is used to guarantee that at run-time
the observable behaviour of well-typed meta-level expressions is insensitive to
renaming bound object-level variables. Thus, users are notified at compile-time
if their syntax-manipulating code descends below the level of abstraction which
identifies a-equivalent object-level expressions.

Our language design is guided by the mathematical model of binding oper-
ations introduced in [7] using a Fraenkel-Mostowski permutation model of sets
with atoms. A key feature of this model is that it provides a syntax-independent
notion of a name (i.e. an atom) being fresh for a given object. For this rea-
son the resulting programming language is called FreshML. Figure 1 gives some
sample FreshML declarations which continue the running example of the un-
typed lambda calculus.2 They will be used in the rest of this paper to illustrate
the features of the new language. We attempt to explain FreshML without as-
suming knowledge of the mathematics underlying our model of binding; for the
interested reader, the intended model of FreshML is sketched in an Appendix
to this paper. Sections 2-5 describe the novel features of FreshML compared
with ML, namely atoms, freshness, atom abstraction/concretion and pattern
matching with abstraction patterns. Sections 6-8 discuss the interaction of these
features with standard ones for equality, recursive functions and types not in-
volving atoms. It should be stressed that the design of FreshML is still evolving:
section 9 discusses some of the possibilities and reviews related work.

Note (Meta-level versus object-level binding). The metalanguage Fresh-
ML provides a novel treatment of binding operations in object languages. How-
ever, in describing FreshML syntax we treat its various binding constructs in a
conventional way—by first giving their abstract syntax and then defining what
the free, bound and binding identifiers are in such expressions. This in turn gives
rise to a conventional definition of the capture-avoiding substitution [exzp/x]ezp’
of a FreshML expression ezxp for all free occurrences of an identifier x in an
expression exp’. We write fv(ezp) for the finite set of free identifiers in ezp.

2 Tt will be seen from these declarations that the syntax of function declarations (and
case expressions) in FreshML is more like that of CAML [3] than that of Standard
ML [12].

A Metalanguage for Programming with Bound Names 233

(¥ Lambda terms, modulo alpha conversion. *)
datatype lam = Var of atm

| App of lam * lam

| Lam of [atm]lam;

(* Encoding of a couple of familiar combinators. *)
val I = new a in Lam a.(Var a) end;
val K = new a in new b in Lam a.(Lam b.(Var a)) end end;

(¥ A function sub:lam * [atm]lam -> lam
implementing capture avoiding substitution. *)
fun sub =
{ (t, a.(Var b)) where b=a => t
| (t, a.(Var b)) where b#a => Var b
| (t, a.(App(u,v))) => App(sub(t, a.u), sub(t, a.v))
| (¢, a.(Lam b.u)) => Lam b.(sub(t, a.u)) };

(¥ A function cbv: lam -> lam
implementing call-by-value evaluation. *)
fun cbv =
{ App(t,u) => case (cbv t) of {Lam e => cbv(sub(cbv u, e))}
| v =>v1};

(* A function rem: [atm] (atm list) -> (atm list)
taking a list of atoms with one atom abstracted and removing it. *)
fun rem =
{ a.nil => nil
| a.(x::xs) where x=a => rem a.xs
| a.(x::xs) where x#a => x::(rem a.xs) };

(* A function fv: lam -> (atm list)
which lists the free variables of a lambda term,
possibly with repeats. *)
fun fv =
{ Var a => a::nil
| App(t,u) => append(fv t)(fv u)
| Lam a.t => rem a.(fv t) };

(* Unlike the previous function, the following function, which tries
to list the bound variables of a lambda term, does not type check
-—-good! *)

fun bv =

{ Var a => nil

| App(t,u) => append(bv t)(bv u)
| Lam a.t => a::(bv t) };

Fig. 1. Sample FreshML declarations

234 Andrew Pitts and Murdoch Gabbay

2 Freshness

Variables of object languages are represented in FreshML by value identifiers
of a special built-in type atm of atoms.® Operationally speaking, atm behaves
somewhat like the ML type unit ref, but the way in which dynamically created
values of type atm (which are drawn from a fixed, countably infinite set A =
{a,d',...} of semantic atoms) can be used is tightly constrained by the Fresh-
ML type system, as described below. Just as addresses of references do not occur
explicitly in ML programs, semantic atoms do not occur explicitly in the syntax
of FreshML. Rather, they can be referred to via a local declaration of the form

new a in ezp end (5)

where a is an identifier implicitly of type atm. This is a binding operation:
free occurrences of a in the expression exp are bound in new a in erp end.
Its behaviour is analogous to the Standard ML declaration

let val a=ref() in ezp end (6)

in that the expression in (5) is evaluated by associating a with the first semantic
atom unused by the current value environment and then evaluating exp in that
augmented value environment. (We formulate this more precisely at the end of
this section.) As in ML, evaluation in FreshML is done after type checking, and it
is there that an important difference between the expressions in (5) and (6) shows
up. Compared with ML’s type-checking of the expression in (6), the FreshML
type system imposes a restriction on the expression in (5) which always seems to
be present in uses of ‘fresh names’ in informal syntax-manipulating algorithms,
namely that

expressions in the scope of a fresh name a only use it in ways that are
insensitive to renaming.

For example, although let val a =ref () in a end has type unit ref in ML, the
expression new a in a end is not typeable in FreshML—the meaning of a is clearly
sensitive to renaming a. On the other hand, in the next section we introduce
atom-abstraction expressions such as a.a, whose meaning (either operationally
or denotationally) is insensitive to renaming a even though they contain free
occurrences of a, giving rise to well typed expressions such as new a in a.a end.
(Some other examples of well typed new-expressions are given in Fig. 1.)

Type System. To achieve the restrictions mentioned above, the FreshML type
system deduces for an expression exp judgments not only about its type, I' F
exp : ty, but also about which atoms a are fresh with respect to it,

't exp # a. (7)

3 In the current experimental version of FreshML, there is only one such type. Future
versions will allow the programmer to declare as many distinct copies of this type as
needed, for example, for the distinct sorts of names there are in a particular object
language.

A Metalanguage for Programming with Bound Names 235

Here a is some value identifier assigned type atm by the typing context I'. Fresh-
ML typing contexts may contain both typing assumptions about value identifiers,
x : ty, and freshness assumptions about them, x # a (if I" contains such an
assumption it must also contain a : atm and x : ty for some type ty). The
intended meaning of statements such as ‘x # a’ is that, in the given value
environment, the denotation of x (an element of an FM-set) does not contain
the semantic atom associated to a in its support—the mathematical notions of
‘FM-set’ and ‘support’ are explained in the Appendix (see Definitions A.1 and
A.2). Here we just give rules for inductively generating typing and freshness
judgements that are sound for this notion. In fact it is convenient to give an
expression’s typing and freshness properties simultaneously, using assertions of
the form ezp : ty # {ai1,...,an} standing for the conjunction

exp:ty & exp#Ha; & --- & exp#a, .
Thus the FreshML type system can be specified using judgments of the form

I'berp:ty#a (8)
where
=1ty #31),.-., (Xn : ty, #3n) 9)
and
— Xy,...,%Xy, are distinct value identifiers which include all the free identifiers

of the FreshML expression ezp;

— tyy,...,ty, and ty are FreshML types?;

— 3y,...,3, and 7 are finite sets of value identifiers with the property that
each a € a; U...U=, Uz is assigned type atm by the typing context, i.e. is
equal to one of the x; with ty, = atm.

We write I' - exp : ty as an abbreviation for I' - exp : ty # 0. When discussing
just the freshness properties of an expression, we write I' - exp # a to mean
that I' - exp : ty # {a} holds for some type ty.

The rule for generating type and freshness information for new-expressions
is (11) in Fig. 2. The notation a:atm ® I" used there indicates the context
obtained from I' by adding the assumptions a : atm and x # a for each value
identifier x declared in I" (where we assume a does not occur in I"). For example,
if I' = (x: atm), (y : ty # {x}), then

aratm® ' = (a:atm),(x:atm# {a}),(y: ty # {a,x}) .

The side condition a ¢ dom(I") U7 in rule (11) is comparable to ones for more
familiar binding constructs, such as function abstraction; given I' and a, within
the a-equivalence class of the expression new a in exp end we have room to
choose the bound identifier a so that the side condition is satisfied.

“ In the current experimental version of FreshML, we just consider monomorphic types
built up from basic ones like atm and string using products, functions, recursively
defined data type constructions and the atom-abstraction type constructor described
in the next section. Introducing type schemes and ML-style polymorphism seems
unproblematic in principle, but remains a topic for future work.

236 Andrew Pitts and Murdoch Gabbay

(x:ty#a)el aCa
I'ktx:ty#a

a:atm@®@I'Fezp:ty # ({a}Ua) a¢dom(I)Ua
I't (new a in ezp end) : ty # 2@

I'ktep:ty# (a~{a}) I'(a)=atm
I'ta.erp: [atmlty # a

I'tezp: [atmlty # ({a}Ud) I'ha:atm#3a
I'-erpQa:ty#a

'tk exp: [atmlty # 3 a,x ¢ dom(I")Ua
(a:atm®), (x:ty #a)Fexp : ty' # ({a}u?)
I't case exp of {a.x=>exp'}:ty’ # 7

I'Q)=I'(b)=atm I'htezp:ty#a Ifa#bllFexp’ :ty#a

I' ifeq(a,b) then ezp else exp’ : ty # a

I'(a) =atm foralla€a
I'H () :unit #3a

I'Fexp,:ty, #a I'kexpy:ty, #2a
I'F (expy,expy) : ty, xty, #3a

I'tkoexp:ty, xty, #3a x,y ¢ dom(I")
I(x:ty, #3),(y:ty, #a) Fexp' : ty #72
't case exp of {(x,y) => exp'} : ty’ # 73

Itep:ty#a Nx:ty#a)kerp :ty #3 x¢ dom(I)

I'let val x=exp in ezxp’end : ty' # @

Lf:ty>ty),(x:ty)Fexp:ty £,x¢dom(I)

I'(a) =atm, for alla€ a I'tx;: ty, # 3, for all x; € fv(ezp) \ {£f,x}

I'Hfunf={x=>emp}: (ty>ty) #3a

I'kerp,:(ty>ty')#3a I'kexp,:ty#3a
't exp, exp,:ty' #13a

ty pure I'kexp:ty I'(a)=atm foralla€a
I'kerp:ty#a

Fig. 2. Excerpt from the type system of FreshML

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

A Metalanguage for Programming with Bound Names 237

To understand rule (11) better, consider the special case when I' and 7 are
empty. This tells us that a closed expression of the form new a in erp end has
type ty if not only a : atm - exp : ty, but also a : atm F exp # a. This second
property guarantees that although ezp may involve the atom a, its meaning is
unchanged if we rename a—and hence it is meaningful to ‘anonymise’ a in ezp
by forming the expression new a in ezrp end.

But how do we generate the freshness assertions needed in the hypothesis of
rule (11) in the first place? One rather trivial source arises from the fact that if
a is fresh for all the free identifiers in an expression ezp, then it is fresh for exp
itself (this is a derivable property of the FreshML type system); so in particular
a is always fresh for closed expressions. However, it can indeed be the case that
I' + exp # a holds with a occurring freely in exp. Section 3 introduces the
principal source of such non-trivial instances of freshness.

Operational Semantics. At the beginning of this section we said that the opera-
tional behaviour of the FreshML expression new a in exp end is like that of the
ML expression let val a = ref () in exp end. In order to be more precise, we
need to describe the operational semantics of FreshML. The current experimen-
tal version of FreshML is a pure functional programming language, in the sense
that the only effects of expression evaluation are either to produce a value or to
not terminate. We describe evaluation of expressions ezxp using a judgement of
the form
EtFexp=v

where E is a value environment (whose domain contains the free value identifiers
of exp) and v is a semantic value. These are mutually recursively defined as
follows: E is a finite mapping from value identifiers to semantic values; and,
for the fragment of FreshML typed in Fig. 2, we can take v to be given by the
grammar

v = a | abs(a,v) | unit | pr(v,v) | fun(x, x, ezp, E)

where a ranges over semantic atoms, x over value identifiers, and exp over ex-
pressions. The rule for evaluating new-expressions is (24) in Fig. 3. The notation
fa(E) used in that rule stands for the finite set of ‘synthetically’ free semantic
atoms of a value environment E; this is defined by

fa(B) = Usedom(r Jo(E))

where fa(a) = {a}, fa(abs(a,v)) = fa(v) \ {a}, fa(pr(vy,v2)) = fa(v1) U fa(vs),
fa(unit) = 0 and fa(fun(f,x, exp, E)) = U;ete(eap)~ 2.2 JEE())-

It should be emphasised that the rules in Fig. 3 are only applied to well-
typed expressions. Evaluation preserves typing and freshness information in the
following sense.

Theorem 2.1 (Soundness of the type system with respect to evalu-
ation). If ' - exp : ty # 3, E+ exp = v and E : I', then v : ty and
faw)N{E(@)| a€a} = 0. (The definitions of ‘E : I'’ and v : ty’ for the
fragment of FreshML typed in Fig. 2 are given in Fig. 4)

238 Andrew Pitts and Murdoch Gabbay

E(x)=v
Erx=vw

Elar alFezp=>v a ¢ fa(E)
E b new a in ezp end = v

Etexp=>v E(a)=ua
EtF a.ezp = abs(a,v)

Et exp = abs(a’,v') E(@)=a v=(da a) v
EtFezp@a=v

E F exp = abs(a,v) a' ¢ fa(E) U fa(abs(a,v))

v'=(d a) v Elarm a',x— 0" Fezp’ =0

E+ case erp of {a.x => exp'} = v/

E(a) =E(b) EtF exp=>v
E - ifeq(a,b) then ezp else exp’ = v

E(a) # E(b) EF exp =
E | ifeq(a,b) then ezp else exp’ = v

/

EF O = unit

Elexpy =>v1 EF expy, = v

EtF (ezp,,ezp,) = pr(vi,vs)

Et* exp = pr(vi,v2) E[x— vi,y— v2] F exp’ =0/

E I case ezp of {(x,y) => exp’'} =o'

Erexp=v E[x—v]temp =

E let x = ezxp in exp’ end = o'

EF fun f = {x => exp} = fun(f,x, ezp, E)

Etl exp, = un Et“ exp, = vo
v1 = fun(f,x, ezp, E1) Ei[f » v, x> v2] Fexp = v

E V& exp, expy, = v

Fig. 3. Excerpt from the operational semantics of FreshML

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

A Metalanguage for Programming with Bound Names 239

a €A a€EA v:ty unit : unit vy i ty; w2 ty,
a:atm abs(a,v) : [atm]ty pr(vi,va) @ ty, * ty,

Lf:ty>ty),(x:ty)Femp:ty>ty’ f,x¢dom() E:I
fun(f,x, exp, E) : ty -> ty’

dom(E) = dom(I")
E(x;):ty; and fa(E(x;))N{ E(a) | a€a; } =0, for all (x;:ty, #a;) €T
E:T

Fig. 4. Typing semantics values and value environments

3 Atom Abstraction

FreshML user-declared data types can have value constructors involving bind-
ing, via a type constructor [atm](—) for atom abstractions. The data type
lam declared in Fig. 1 provides an example of this, with its constructor Lam :
[atm] lam -> lam. Expressions of an atom abstraction type [atm]ty are intro-
duced with a syntactic form which is written a. exp, where a is a value identifier
of type atm and ezp an expression of type ty. Such atom abstraction expressions
behave like pairs in which the first component is hidden, in a way comparable
to hiding in abstract data types [13]. The operations for accessing the second
component are discussed in Sects 4 and 5. We claim that two such expressions,
a.erp and a'.exrp’, are contextually equivalent (i.e. are interchangeable in any
complete FreshML program without affecting the observable results of evaluating
it) if and only if

for some (any) fresh a", (a"a) - exp and (2" ') - exp’ are contextually
equivalent expressions of type ty

where (2" a) - ezp indicates the expression obtained by interchanging all occur-
rences of a” and a in exp. It is for this reason that values of type lam correspond
to a-equivalence classes of lambda terms: see [7, Theorem 2.1].

Atom abstraction expressions a. ezp are evaluated using rule (25) in Fig. 3;
and their typing and freshness properties are given by rule (12) in Fig. 2. In that
rule, the notation & \ {a} means the finite set { a’ € a| a' # a}; and the side-
condition I'(a) = atm means that, with I" as in equation (9), a = x; for some i
with ty, = atm. To understand rule (12) better, consider the special case when
a = {a}: then the rule tells us that provided I'(a) = atm and ezp is typeable in
context I', then a is always fresh for a.exp,ie. I' - (a.exp) # a. This is the
principal source of freshness assertions in FreshML. For example:

Example 3.1. Given the declarations in Fig. 1 and some straightforward rules
for typing data type constructors (which we omit, but which are analogous to
the rules (16) and (17) for unit and pairs in Fig. 2), from rule (12) we have

a:atmb (a.(Var a)): [atm]lam # {a}

240 Andrew Pitts and Murdoch Gabbay

and then
a:atmt (Lama.(Var a)):lam # {a}.

Applying rule (11) to this yields
F (new a in Lama.(Var a) end) : lam.

This closed expression of type lam is a FreshML representation of the lambda
term Aa.a.

Note that atom abstraction is not a binder in FreshML: the free identifiers of
a.ezp are a and all those of ezp. The syntactic restriction that the expression to
the left of the ‘abstraction dot’ be an identifier is needed because we only consider
freshness assertions ‘exp # a’ with a an identifier rather than a compound
expression (in order to keep the type system as simple as possible). This does
not really restrict the expressiveness of FreshML, since a more general form of
atom abstraction ‘atexp.ezrp’ (with aterp of type atm) can be simulated with
the let-expression let val a = atexp in a.ezp end. (The typing rule for let-
expressions is (19) in Fig. 2.)

Remark 3.2 (binding = renameability + name hiding). Example 3.1
illustrates the fact that, unlike metalanguages that represent object-level binding
via lambda abstraction, FreshML separates the renaming and the hiding aspects
of variable binding. On the one hand a is still a free identifier in a. ezp, but on the
other hand the fact that new a in — end is a statically scoped binder can be used
to hide the name of an atom (subject to the freshness conditions discussed in
Sect. 2). We illustrate why this separation of the renaming and the hiding aspects
of variable binding can be convenient in Example 4.1 below. To give the example
we first have to discuss mechanisms for computing with expressions of atom
abstraction type [atm]ty. FreshML offers two related alternatives: concretion
expressions, exp @ a, and case-expressions using abstraction patterns, such as
case exp of {a.x => exp'}. We discuss each in turn.

4 Concretion

Values of atom abstraction type have a double nature. So far we have seen their
pair-like aspect; but as noted in [7, Lemma 4.1], they also have a function-like
aspect: we can choose the name a of the first component in an atom abstraction
erp : [atm]lty as we like, subject to a certain freshness restriction, and then
the second component turns out to be a function of that choice, which we write
as a — ezp @ a. We call ezp @ a the concretion® of the atom abstraction ezp
at the atom a. The typing and freshness properties of concretions are given by
rule (13) in Fig. 2. Note in particular (taking @ = () in the rule) that given
I'+ exp : [atm] ty, in order to deduce I' I exp @a : ty we need to know not only
that I'(a) = atm, but also that I' - exp # a. The denotational justification for

® The terminology is adopted from [11, Sect. 12.1].

A Metalanguage for Programming with Bound Names 241

this is given by Proposition A.2 of the Appendix. Operationally, the behaviour
of concretion is given by rule (26) in Fig. 3. Thus evaluation of exp @ a proceeds
by first evaluating exp; if a semantic value of the form abs(a’,v') is returned
and the semantic atom associated with a in the current value environment is a,
then the result of evaluating ezp @ a is the semantic value (a' a) - v’ obtained
from v' by interchanging all occurrences of ¢’ and a in v'. By analogy with 3-
conversion for A-abstraction and application, it is tempting to replace the use of
transposition (a' a)-(—) by substitution [a/a'](—), but this would not be correct.
The reason for this has to do with the fact that while a.(—) is used to represent
binding in object languages, it is not itself a binding operation in FreshML; so
the substitution [a/a'](—) can give rise to capture at the object-level in a way
which (o' a) - (=) cannot. Here is an example to illustrate this: the result of
evaluating
(@'.(a.(Var a')))ea

in the value environment F = {a — a,a’ — a'} is abs(a’, Var a). Using [a/a'](-)
instead of (a' a) - (=) one would obtain the wrong value, namely abs(a,Var a),
which is semantically distinct from abs(a’, Var a) (in as much as the two semantic
values have different denotations in the FM-sets model—see Sect. A.4).

Here is an example combining atom abstraction, concretion and local fresh-
ness expressions (together with standard case-expressions and function decla-
ration).

Example 4.1. One of the semantic properties of the atom abstraction set-
former in the model in [7] (and the related models in [5]) which distinguish it
from function abstraction is that it commutes with disjoint unions up to natural
bijection. We can easily code this bijection in FreshML as follows.

(* A type constructor for disjoint unions. *)
datatype (’a,’b)sum = Inl of ’a | Inr of ’b;
(x A bijection i:[atm]((’a,’b)sum) -> ([atm]’a,[atm]’b)sum. *)
fun i = { e => new a in
case e@a of
{ Inl x => Inl(a.x)
| Inr y => Inr(a.y) }
end }

This illustrates the use of the fact mentioned in Remark 3.2 that name abstrac-
tion and name hiding are separated in FreshML: note that in the definition of
i, the locally fresh atom a is not used in an abstraction immediately, but rather
at two places nested within its scope (a.x and a.y).

The bijection in this example can be coded even more perspicuously using
pattern matching;:

fun i’ = { a.(Inl x) => Inl(a.x)
| a.(Inr y) => Inr(a.y) }
Expressions like ‘a. (Inl x)’ are abstraction patterns. The fact that there is a

useful matching mechanism for them is one of the major innovations of FreshML
and we discuss it next.

242 Andrew Pitts and Murdoch Gabbay

5 Matching with Atom Abstraction Patterns

Tt is not possible to split semantic values of type [atm] ty into (atom,value)-pairs
uniquely, because given abs(a,v) then for any o’ ¢ fa(v), abs(a,v) has the same
denotation as abs(a’, (a' a) - v). However, if we only use the second component
(@' a)-v in a way that is insensitive to which particular fresh o’ is chosen, we get
a well-defined means of specifying a function on atom abstractions via matching
against an abstraction pattern. The simplest example of such a pattern takes the
form a.x, where a and x are distinct identifiers. Rule (14) in Fig. 2 gives the
typing and freshness properties and rule (27) in Fig. 3 the evaluation properties
for a case-expression with a single match using such a pattern. (In the expression
case exp of {a.x => exp'}, the distinct identifiers a and x are binders with exp’
as their scope.)

Figure 1 gives some examples of declarations involving more complicated,
nested abstraction patterns. We omit the formal definition of matching against
such patterns, but the general idea is that atom identifiers to the left of an
‘abstraction dot’ in a pattern represent semantic atoms that are fresh in the
appropriate sense; and by checking freshness assertions, the type system ensures
that the expression to the right of ‘=>’ in a match uses such identifiers in a way
that is insensitive to renaming. For example, this implicit freshness in matching
is what ensures that sub in Fig. 1 implements capture-avoiding substitution—in
the last match clause, b is automatically fresh for t and so it makes sense to
apply the substitution function sub(t, a.—) under Lam b.—. Another example
is the declaration bv in Fig. 1, which does not type check because in the last
match clause a is not fresh for a:: (bv t).

In the current experimental version of FreshML, all uses of abstraction pat-
terns are eliminated by macro-expanding them using concretion and local fresh-
ness. For example, as rules (14) and (27) may suggest, case exp of {a.x => exp'}
can be regarded as an abbreviation for

new a' in case erp @a’ of {x=> [a'/a] exp'} end

(where a' ¢ fv(ezp)). However, to accommodate the more general notions of
abstraction mentioned at the end of Sect. 9, we expect that matching with
abstraction patterns will have to be a language primitive.

Remark 5.1 (Comparison with Standard ML). According to its Defini-
tion [12], in Standard ML during type checking a pattern pat elaborates in the
presence of a typing context I" to a piece of typing context I (giving the types
of the identifiers in the pattern) and a type ty (the overall type of the pattern);
then a match pat => exp’ elaborates in the context I' to a function type ty —> ty’
if exp’ has type ty’ in the augmented context I' @ I'". Pattern elaboration is a
little more complicated in FreshML. For abstraction patterns generate not only a
piece of typing context I, but also two kinds of freshness assumptions: ones that
modify I" (cf. the use of a : atm® I" in rule (14)); and ones that impose freshness
restrictions on ezp’ in a match pat => exp’ (cf. the use of exp’ : ty’ # ({2} UT)
in rule (14)).

A Metalanguage for Programming with Bound Names 243

Example 5.2. In Example 4.1 we gave an example where the use of abstraction
patterns allows a simplification compared with code written just using the com-
bination of new-expressions and concretion. Sometimes the reverse is the case.
For example, in informal practice when specifying a function of finitely many
abstractions, it is convenient to use the same name for the abstracted variable
(and there is no loss of generality in doing this, up to a-conversion). This is
not possible using FreshML patterns because, as in ML, we insist that they be
linear: an identifier must occur at most once in a pattern. However, it is possible
through explicit use of a locally fresh atom. Here is a specific example.

In the FM-sets model (see the Appendix), the atom abstraction set-former
commutes with cartesian products up to natural bijection. We can code this
bijection in FreshML using pattern-matching as follows.

(* A bijection ([atm]’a)*([atm]’b) -> [atm](’a * ’b) *)
fun pl = { (a.x, b.y) => b.((a.x)@b, y) }

Better would be
fun p2 = { (e, b.y) => b.(eCb, y) }

but an arguably clearer declaration (certainly a more symmetric one) uses local
freshness explicitly:

fun p3 = { (e, f) => new a in a.(e@a, f@a) end }
Simplest of all would be the declaration
fun p4 = { (a.x, a.y) => a.(x, y) }

but this is not legal, because (a.x, a.y) is not a linear pattern. As we dis-
cuss in the next section, atm is an equality type; so matching patterns with
repeated occurrences of identifiers of that type is meaningful (although patterns
like (a.x, a.y) involve a further complication, in that the repeated identifier is
in a ‘negative position’, i.e. to the left of the ‘abstraction dot’). We have insisted
on linear patterns in the current version of FreshML in order not to further com-
plicate a notion of matching which, as we have seen, is already more complicated
than in ML.

6 Atom Equality

Algorithms for manipulating syntax frequently make use of the decidability of
equality of names (of object level variables, for example). Accordingly, the type
atm of atoms in FreshML admits equality. In particular if aterp and atezp’ are
two expressions of type atm, then eq(atexp, atexp’) is a boolean expression which
evaluates to true if atezp and atezp’ evaluate to the same semantic atom and
evaluates to false if they evaluate to different ones. What more need one say? In
fact, when it comes to type checking there is more to say. To see why, consider
the following declaration of a function taking a list of atoms with one atom
abstracted and removing it.

244 Andrew Pitts and Murdoch Gabbay

fun rem2 = { e => new a in
case e@a of
{ nil => nil
| b::bs => ifeq(b,a) then (rem2 a.bs)
else b::(rem2 a.bs) }
end }

This makes use of a form of conditional
ifeq(a,b) then ezp else exp’

which branches on the equality of a and b—see rules (28) and (29) in Fig. 3. For
the above declaration of rem2 to type-check as a function [atm] (atm list) ->
(atm list), one has to apply rule (11) to the subphrase new a in ...end.
Amongst other things, this requires one to prove

(ifeq(b,a) then (rem2 a.bs) else b::(rem2 a.bs)) # a

in a typing context whose only freshness assumptions are rem2 # a and e # a.
For this to be possible we have to give a typing rule for ifeq(a,b) then — else —
which, while checking the second branch of the conditional, adds the semantically
correct information a # b to the typing context. Such a typing rule is (15) in
Fig. 2. (This uses the notation I'[a # b] to indicate the typing context obtained
from I' by adding the assumption a # b; we omit the straightforward formal
definition of this for the typing contexts defined as in equation (9).) Although
we take account of the fact that a and b denote distinct atoms when checking
the second branch of the conditional, we have not found a need in practice to
take account of the fact that they denote the same atom when checking the first
branch (by strengthening the second hypothesis of this rule to [a/b](I" - ezp :
ty # 3), for example.)

To get information about atom equality to where it is needed for type check-
ing, FreshML also permits the use of guarded patterns

pat wherea=b and pat wherea#b

where a and b are value identifiers of type atm. Such guards are inter-definable
with the ifeq(— , —) then — else — construct, but often more convenient.
Figure 1 gives several examples of their use. We omit the precise definition of
matching such guarded patterns. Note also that the atom equality test expression
eq (atezp, atexp’) can be regarded as a macro for

let val a = atexp in
let val b = atexp’ in
ifeq(a,b) then true else false
end
end .

A Metalanguage for Programming with Bound Names 245
7 Functions

Recall from Sect. 2 that the intended meaning of freshness assertions in Fresh-
ML has to do with the notion of the ‘support’ of an element of an FM-set
(see Definition A.1 in the Appendix). The nature of this notion is such that in
any reasonable (recursively presented) type system for FreshML, the provable
freshness assertions will always be a proper subset of those which are satisfied
by the FM-sets model. This is because of the logical complexity of the statement

‘the semantic atom associated with the identifier a is not in the support
of the denotation of the function expression fn{x => ezp}’

which involves extensional equality of mathematical functions. So if ‘provable
freshness’ only gives an approximation to ‘not in the support of’, we should
expect that not every denotationally sensible expression will receive a type. (Of
course, such a situation is not uncommon for static analyses of properties of
functional languages.)

What approximation of the support of a function should be used to infer
sound freshness information for function expressions in FreshML? We certainly
want type-checking to be decidable. In the current experimental version of Fresh-
ML, we take a simple approach (which does ensure decidability) making use of
the following general property of freshness

if a is fresh for all the free identifiers in an expression exp, then it is
fresh for exp itself

which is certainly sound for the denotational semantics in FM-Set. Applying
this in the case when exp is a recursive function expression

fun f = {x => exp} (36)

we arrive the typing rule (20) given in Fig. 2. As usual, free occurrences of £
and x in ezp become bound in the expression (36). We can regard non-recursive
function expressions fn{x => ezp} as the special case of expression (36) in which

f ¢ tv(exp).

Example 7.1. Consider the following FreshML declaration of a function fv2
for computing the list (possibly with repetitions) of free variables of a lambda
term encoded as a value of the data type lam in Fig. 1.

fun fv2 =

{ Var a => a::nil

| App(t,u) => append(fv2 t) (fv2 u)
| Lam a.t => remove a (fv2 t) }

This uses auxiliary functions append for joining two lists, and remove : atm ->
(atm list)->(atm list) for removing an atom from a list of atoms (using the
fact that atm is an equality type), whose standard definitions we omit.

246 Andrew Pitts and Murdoch Gabbay

One might hope that £v2 is assigned type lam->(atm list), but the current
FreshML type system rejects it as untypeable. The problem is the last match
clause, Lam a.t => remove a (fv2 t). Asexplained in Sect. 5, for this to type
check we have to prove

(a:atm), (fv2: (lam-> (atm list)) # {a}), (e : [atm]lam # {a})
F removea (fv2(e@a)) : atm list # {a} (37)

This is denotationally correct, because the denotation of remove maps a semantic
atom ¢ and a list of semantic atoms as to the list as \ {a}; and the support of
the latter consists of all the semantic atoms in the list as that are not equal to
a. However, the typing rules in Fig. 2 are not sufficiently strong to deduce (37).

It seems that this problem, and others like it, can be solved by using a
richer notion of type in which expressions like ‘ty # &’ become first-class types
which can be mixed with the other type constructors (in particular, with function
types). We have made some initial investigations into the properties of such richer
type systems (and associated notions of subtyping induced by making ty # a
a subtype of ty), but much remains to be done. However, for this particular
example there is a simple work-around which involves making better use of atom-
abstractions and the basic fact (12) about their support. Thus the declaration
of fv in Fig. 1 makes use of the auxiliary function rem : [atm](atmlist) ->
(atmlist) for which

(a:atm),(fv: (lam-> (atm list)) # {a}), (e : [atm]lam # {a})
F (rema.(fv(e@a))) : atm list # {a}

can be deduced using (12). It follows that fv does yield a function of type
lam -> (atm list) (and its denotation is indeed the function returning the list
of free variables of a lambda term).

Remark 7.2. Note that freshness is not a ‘logical relation’: just because a func-
tion maps all arguments not having a given atom in their support to results not
having that atom in their support, it does not follow that the atom is fresh for
the function itself. Thus the following rule is unsound.

If:(ty—>ty)#a),(x:ty#a)exp:ty #32
f,x ¢ dom(I)

(wrong!)
I'bfunf={x=>exp}: (ty—>ty)#a

To see this, consider the following example. From rule (12) we have
a:atmx:atm# {a} F a.x: [atm]latm # {a}
and so using the above rule (wrong!) we would be able to deduce
a:atmk fn{x =>a.x} : (atm-> [atmlatm) # {a}.

This is denotationally incorrect, because the denotation of fn{x => a.x} does
contain the denotation of a in its support. Correspondingly, the operational be-
haviour of this function expression depends on which semantic atom is associated

A Metalanguage for Programming with Bound Names 247

with a: if we replace a by a' in fn{x => a.x}, then under the assumption a # a’
we get a contextually inequivalent function expression, fn{x => a’.x}. For ap-
plying these function expressions to the same argument a yields contextually
inequivalent results (in the first case an expression equivalent to a.a and in the
second case one equivalent to a’.a).

8 Purity

Consider the following declaration of a function count for computing the number
of lambda abstractions in a lambda term encoded as a value of the data type
lam in Fig. 1.

fun count =

{ Var a => 0

| App(t,u) => (count t)+(count u)
| Lam a.t => (count a)+1 }

For this to type check as a function lam-> int, the last match clause requires

(a: atm), (count : (lam-> int) # {a}), (t : lam)
F ((count t)+1): int # {a}

to be proved. The interpretation of this judgement holds in the FM-sets model
because the denotation of int is a ‘pure’ FM-set, i.e. one whose elements all
have empty support. Accordingly, we add rule (22) in Fig. 2 to the FreshML
type system; using it, we do indeed get that count has type lam -> int. The
condition ‘ty pure’ in the hypothesis of this rule is defined by induction on the
structure of the type ty and amounts to saying that ty does not involve atm or
->% in its construction.

The current experimental version of FreshML is a pure functional program-
ming language, in the sense that the only effects of expression evaluation are
either to produce a value or to not terminate. This has an influence on the
soundness of rule (22). For example, if we add to the language an exception
mechanism in which exception packets contain values involving atoms, then it
may no longer be the case that an integer expression ezp : int satisfies exp # a
for any atom a. To restore the soundness of rule (22) in the presence of such
computational effects with non-trivial support, one might consider imposing a
‘value restriction’, by insisting that the rule only applies to expressions ezp
that are non-expansive in the sense of [12, Sect. 4.7]. However, note that the
rule (19) for let-expressions rather undoes such a value-restriction. For using
rule (19), the freshness properties of ezp which we could have deduced from the
unrestricted rule (22) can be deduced for the semantically equivalent expres-
sion let val x = exp in x end from the value-restricted version. This highlights

5 For Theorem 2.1 to hold, in rule (22) we need that ty pure implies fa(v) = 0 for any
semantic value v of type ty; excluding the use of function types (as well as atm) in
pure types is a simple way of ensuring this.

248 Andrew Pitts and Murdoch Gabbay

the fact that the soundness of rule (19), and also rules (14) and (18) in Fig. 2,
depends upon the evaluation of exp not producing an effect with non-empty
support. Should one try to restrict these rules as well? Probably it is better to
curtail the computational effects. For example, although it is certainly desirable
to add an exception-handling mechanism to the current version of the language,
it may be sufficient to have one which only raises packets containing values with
empty support (character strings, integers, etc). Investigation of this is a matter
for future work—which brings us to our final section.

9 Related and Future Work

Related work

The model presented in [7] was one of three works on the metamathematics of
syntax with binders using categories of (pre)sheaves which appeared simulta-
neously in 1999—the other two being [5] and [9]. The starting point for these
works is a discovery, made independently by several of the authors, which can
be stated roughly as follows.

The quotient by a-equivalence of an inductively defined set of abstract
syntaz trees (for some signature involving binders) can be given an initial
algebra semantics provided one works with initial algebras of functors
not on sets, but on categories of ‘variable’ sets, i.e. certain categories of
sheaves or presheaves.

There is a strong connection between initial algebras for functors and recursive
data types, so this observation should have some consequences for programming
language design, and more specifically, for new forms of user declared data type.
That is what we have investigated here. For us, the notion of (finite) support,
which is a key feature of the model in [7], was crucial—giving rise as it does to
FreshML’s idiom of computing with freshness. While the presheaf models con-
sidered in [5] have weaker notions of support (or ‘stage’) than does the FM-sets
model, it seems that they too can model languages with notions of abstraction
similar to the one in FreshML (Plotkin, private communication).

Miller [10] proposed tackling the problems motivating the work in this paper
by incorporating the techniques of higher order abstract syntax, HOAS [16],
into an ML-like programming language, MLy, with intentional function types
ty => ty'. Compared with HOAS, the approach in [7] and [5] is less ambitious
in what it seeks to lift to the metalevel: like HOAS we promote object-level
renaming to the metalevel, but unlike HOAS we leave object-level substitution to
be defined case-by-case using structural recursion. The advantage is that Fresh-
ML data types using [atm] ¢y retain the pleasant recursion/induction properties
of classical first order algebraic data types: see Sect. 5 of [7]. It is also the case
that names of bound variables are inaccessible to the MLy programmer, whereas
they are accessible to a FreshML programmer in a controlled way.

A Metalanguage for Programming with Bound Names 249

Formal properties of FreshML

In this paper we have mostly concentrated on explaining the ideas behind our
approach and giving examples, rather than on presenting the formal properties
of the language. Such properties include:

1. Decidability of type/freshness inference.

2. Correspondence results connecting the operational and denotational seman-
tics.

3. The correctness of the encoding of the set of terms over a ‘binding signa-
ture’ [5, Sect. 2], modulo renaming of bound variables, as a suitable Fresh-
ML data type. For example, values of type lam in Fig. 1 modulo contextual
equivalence (or equality of denotations) correspond to a-equivalence classes
of untyped lambda terms, with free identifiers of type atm corresponding to
free variables.

4. Transfer of principles of structural induction for inductively defined FM-sets
involving atom abstraction (cf. [7, Sect. 5]) to induction principles for Fresh-
ML data types. More generally, the ‘U-quantifier’ introduced in [7] should
feature in an LCF-style program logic for FreshML.

Some of the details will appear in the second author’s forthcoming PhD the-
sis [6]. At this stage, just as important as proving such properties is accumulat-
ing experience with programming in FreshML, to see if the idiom it provides for
metaprogramming with bound names modulo renaming is a useful one.

Future work

To improve the usefulness of FreshML for programming with bound names, it
is already clear that we must investigate richer syntactic forms of abstraction.
At the moment we permit abstraction over a single type of atoms. We already
noted in Sect. 2 that it would be a good idea to allow the declaration of distinct
sorts of atoms (for example, to more easily encode distinct sorts of names in an
object language). Indeed, it might be a good idea to allow atom polymorphism
via Haskell-style type classes [15], with a type class for ‘types of atoms’. But
even with a single sort of atoms, there is good reason to consider notions of
abstraction in which the data to the left of the ‘abstraction dot’ is structurally
more complicated than just single atoms. For example, some object languages
use operators that bind varying numbers of variables rather than having a fixed
‘arity’ (for example, the free identifiers in an ML match m, however many there
may be, become bound in the function expression fn{m}). To encode such
operators we can make use of the following FreshML data type construction

datatype ’a abs = Val of ’a | Abs of [atm](’a abs)

whose values Abs al.(Abs a2.---Val wal) are some finite number of atom-
abstractions of a value wal of type ’a. When specifying a function on ’a abs by
structural recursion, one has to recurse on the list of binders in such a value,

250 Andrew Pitts and Murdoch Gabbay

whereas in practice one usually wants to recurse directly on the structure of the
inner most value wal. Therefore it would be useful to have ‘atom-list abstrac-
tion types’ [atm list]ty (denotationally isomorphic to ty abs) and abstraction
expressions of the form as. exp, where as is a value of type atm 1list and ezp
is an expression of type ty. But if one abstracts over atom-lists, why not over
other concrete types built up from atoms? Indeed, in addition to such concrete
types, it appears to be useful to abstract with respect to certain abstract types,
such as finite sets of atoms, or finite mappings defined on atoms. So it may be
appropriate to consider a general form of abstraction type, [ty]ty', for arbitrary
types ty and ty'. To do so would require some changes to the nature of the
freshness judgement (7), whose details have yet to be worked out. In fact, the
FM-sets model contains a set-former for such a general notion of abstraction, so
there is a firm semantic base from which to explore this extension of FreshML.
Emphasising this firm semantic base is a good note on which to finish. Hav-
ing reached this far, we hope the reader agrees that FreshML has some novel
and potentially useful features for metaprogramming modulo renaming of bound
variables. But whatever the particularities of FreshML, we believe the real source
of this potential is the FM-sets model, which appears to provide a simple, elegant
and useful mathematical foundation for computing and reasoning about name
binding modulo renaming. It is certainly the case that without it, we would not
have reached the language design described in this paper. (So please read the
Appendix!)

A Appendix: FM-Sets

Naively speaking, ML types and expressions denote sets and functions. By con-
trast, FreshML types and expressions are intended to denote FM-sets and equiv-
ariant functions. This appendix gives a brief review these notions; more details
can be found in [7]. Of course, the presence of recursive features and computa-
tional effects in ML means that a denotational semantics for it really involves
much more complicated mathematical structures than mere sets. Similarly, to
account for the recursive features of the present version of FreshML, we should
really give it a denotational semantics using domains and continuous functions in
the category of FM-sets. For simplicity’s sake we suppress these domain-theoretic
details here.

Notation. Let A = {a,d/,...} be a fixed countably infinite set, whose elements
we call semantic atoms. Let Sp denote the group of all permutations of A. Thus
the elements 7 of Sy are bijections from A to itself. The group multiplication
takes two such bijections 7 and n’ and composes them—we write the composition
of 7 followed by 7' as 7'w. The group identity is the identity function on A,
denoted by id4.

Recall that an action of the group Ss on a set X is a function (=) -x (—)
mapping pairs (m,z) € Sa X X to elements 7 -x ¢ € X and satisfying

7 x(m-xz)=(n'm)-xr and idy-xT=2

A Metalanguage for Programming with Bound Names 251

for all 7,7" € Sy and z € X. For example, if A is the set of syntax trees of
lambda terms with variable symbols from A

A={t==a|tt|Xat(a €A} (38)

then there is a natural action of Sy on A: for each m € Sy and t € A, w-4 t is the
tree which results from permuting all the atoms occurring in ¢ according to =.

In general, an action of Sy on a set X gives us an abstract way of regarding the
elements x of X as somehow ‘involving atoms from A in their construction’, in as
much as the action tells us how permuting atoms changes z—which turns out to
be all we need for an abstract theory of renaming and binding. An important part
of this theory is the notion of finite support. This generalises the property of an
abstract syntax tree that it only involves finitely many atoms in its construction
to the abstract level of an element of any set equipped with an Sy-action.

Definition A.1 (Finite support). Given a set X equipped with an action of
Sa, a set of semantic atoms w C A is said to support an element z € X if all
permutations m € Sy which fix every element of w also fix z:

Mo€ew.m(a) =a)=>7m-x=1 . (39)

We say that z is finitely supported if there is some finite subset w C A supporting
it. It is not too hard to show that if z is finitely supported, then there is a smallest
finite subset of A supporting it: we call this the support of x, and denote it by

supp x ().

Definition A.2 (The category FM-Set). An FM-set is a set X equipped
with an action of the permutation group Su in which every element z € X is
finitely supported. These are the objects of a category, FM-Set, whose mor-
phisms f : X — Y are equivariant functions, i.e. functions from X to Y
satisfying

f(mr-xz)=my f(z)

for all m € Sy and z € X.

Example A.3. The set A of untyped lambda terms, defined as in (38) and with
the Sj-action mentioned there, is an FM-set. The support of ¢ € A is just the
finite set of all variable symbols occurring in the tree ¢ (whether free, bound, or
binding). Note that if two lambda terms are a-equivalent, ¢t =, ', then for any
permutation 7 one also has -4t =, w-4t'. It follows that (—) -4 (—) induces an
action on the quotient set A/=,. It is not hard to see that this is also an FM-set,
with the support of an a-equivalence class of lambda terms being the finite set
of free variable symbols in any representative of the class (it does not matter
which). This turns out to be the denotation of the data type lam declared in
Fig. 1 (using [7, Theorem 5.1]).

It should be emphasised that the above definitions are not novel, although
the use to which we put them is. They are part of the rich mathematical theory

252 Andrew Pitts and Murdoch Gabbay

of continuous actions of topological groups. Sy has a natural topology as a
subspace of the countably infinite product of the discrete space A, which makes
it a topological group. Given an action of Sa on a set X, all the elements of X
have finite support if and only if the action is a continuous function Sy x X — X
when X is given the discrete topology. Thus FM-Set is an example of a category
of ‘continuous G-sets’ and as such, much is known about its properties: see [7,
Sect. 6] for references. Here we just recall its cartesian closed structure.

A.1 Products in FM-Set

These are given by taking the cartesian product of underlying sets
XxY={(z,y)|]ze XandyeY}.
The permutation action is given componentwise by that of X and Y:
Toxxy (T,y) 2 (1 -x ,7 vy y) (m € Sa).

Each pair (z,y) € X x Y does indeed have finite support, namely supp x(z) U
suppy (y)-

A.2 Exponentials in FM-Set

Given any function (not necessarily an equivariant one) f : X — Y between
FM-sets X and Y, we can make permutations of A act on f by defining

7'(")(_>Yfé Az € X.(m-y f(ﬂ'_l x T)) - (40)

By applying the property (39) with -x_,y in place of -x , it makes sense to ask
whether f has finite support. The subset of all functions from X to Y which do
have finite support in this sense, together with the action -x_,y given by (40),
forms an FM-set which is the exponential X — Y in FM-Set. Note that (40)
implies that for all m € Sp, f € (X =2 Y) and z € X

my f(z) = (7 xov f)(7x @)

and hence evaluation (f,z) — f(z) determines an equivariant function ev :
(X >2Y)xX —Y.Given any f : Z x X — Y in FM-Set, its exponential
transpose cur(f) : Z — (X — Y) is given by the usual ‘curried’ version of f,
for the following reason: given any z € Z, if m € S, fixes each semantic atom
in supp ,(z), then it is not hard to see from definition (40) and the equivariance
of f that 7 fixes the function Az € X.f(z,z) as well; so this function has finite
support and hence is in X — Y. So defining cur(f)(z) to be Az € X.f(z,z),
we get a function cur(f) : Z — (X — Y); it is equivariant because f is and
clearly has the property required for it to be the exponential transpose of f.

In the rest of this appendix we indicate the structures in the category FM-Set

used to model the key novelties of FreshML: locally fresh atoms, atom abstraction
and concretion of atom abstractions.

A Metalanguage for Programming with Bound Names 253

A.3 Locally fresh atoms

The set A of atoms becomes an object of FM-Set once we endow it with the
action:

m-aa=7(a) (7€ Sy ac€h).

(The support of a € A is just {a}.) This FM-set is the denotation of the type
atm of atoms in FreshML.

The meaning of new a in ezp end in FM-Set is given by the following
proposition (whose straightforward proof we omit). It makes use of the following
construction in the category FM-Set: given an FM-set G, define

A®G2{(a,9) €AxG|a¢suppglg)} -

This becomes an FM-set if we define a permutation action by
™ w6 (a,9) £ (7(a), 7 G g) -
Proposition A.1. Given a morphism e : A ® G — T in FM-Set satisfying
a ¢ suppr(e(a,g)) forall (a,9) ARG (41)
then there is a unique morphism new(e) : G — T such that
new(e)(g) = e(a,g) for all g € G and a ¢ supp:(9) (42)

is satisfied. O

If a typing context I" has denotation G and if a ¢ dom(I"), then the denota-
tion of the typing context (a: atm) ® I" used in rule (11) of Fig. 2 is the FM-set
A ® G. Suppose the denotation of (a : atm) ® I' I exp : ty is the equivariant
function e : A ® G — T. We can use Proposition A.1 to give a denotation
to I' - (new a in exp end) : ty as new(e) : G — T, using the fact that the
freshness part of the hypothesis of (11) means that e satisfies condition (41).
The soundness of rule (11) follows from the defining property (42) of new(e).

A.4 Abstraction and Concretion

If the denotation of the FreshML type ty is the FM-set T', the denotation of the
atom abstraction type [atm] ¢y is the FM-set [A]T introduced in Sect. 4 of [7]. Its
underlying set is the quotient of the cartesian product A x T by the equivalence
relation ~p defined as follows: (a,t) ~a (a',t') holds if and only if

(" a) 7t=(a"d") Tt

holds for some (or equivalently, any) a” not in the support of a, @', t, or t’ (where
(a" a) € Sa denotes the permutation interchanging " and a). We write a.t for

254 Andrew Pitts and Murdoch Gabbay

the ~j-equivalence class determined by (a,t).” The action of a permutation
m € Sa on elements of [A]T is given by:

7w (at) 2 (m(a).(r -1 1) .

This does indeed determine a well-defined FM-set, with the support of a.t being
the finite set suppy(t) \ {a}.

If a is associated with the semantic atom a € A (in some given value envi-
ronment) and the denotation of exp : ty is t € T, then the denotation of the
atom abstraction expression a.exzp is a.t € [A]T.

On the other hand, the meaning of concretion expressions (Sect. 4) uses the
following property of FM-sets.

Proposition A.2. Given an FM-set T, for each atom-abstraction e € [A]T and
semantic atom a € A, if a ¢ suppyy (€) then there is a unigue element eQa of
T such that e = a.(e@a).

When e = a'.t then a ¢ suppiyr(e) if and only if a = o' or a ¢ suppy(t);
and in this case (a',t) ~a (a,(aa’) -7 t). So when a = a' or o ¢ suppr(t), it
follows from the uniqueness part of the defining property of eQa that

(a'.t)@Qa = (aa') 1t (43)
holds. O

The partial function e, a — eQa is used to give the denotational semantics of
concretion expressions, exp @a. The soundness of rule (13) follows from the easily
verified fact that supp;(e@a) C suppyr(e) U {a}.

Acknowledgements

The authors thank members of the Cambridge University Logic and Semantics
group, Mark Shinwell (who is carrying out an implementation of FreshML),
Simon Peyton Jones and the anonymous referees for constructive comments on
the work presented here. This research was partially supported by the ESPRIT
Working Group Nr 26142 on Applied Semantics (APPSEM).

References

[1] R. Burstall, D. MacQueen, and D. Sannella. HOPE: An experimental applicative
language. In Proc. LISP Conference, Stanford CA, 1980, pages 136-143. Stanford
University, 1980.

[2] R. M. Burstall. Design considerations for a functional programming language. In
Proc. of the Infotech State of the Art Conference, Copenhagen, 1977.

[3] G. Cousineau and M. Mauny. The Functional Approach to Programming. Cam-
bridge University Press, 1998.

" The notation [a]t was used for this in [7].

[4]

[5]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

A Metalanguage for Programming with Bound Names 255

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math., 34:381-392, 1972.

M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding.
In 14th Annual Symposium on Logic in Computer Science, pages 193-202. IEEE
Computer Society Press, Washington, 1999.

M. J. Gabbay. A Theory of Inductive Definitions with a-Conversion: Seman-
tics, Implementation, and Meta-Language. PhD thesis, Cambridge University, in
preparation.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. In 14th Annual Symposium on Logic in Computer Science, pages 214—
224. IEEE Computer Society Press, Washington, 1999.

M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

M. Hofmann. Semantical analysis of higher-order abstract syntax. In 1/th An-
nual Symposium on Logic in Computer Science, pages 204-213. IEEE Computer
Society Press, Washington, 1999.

D. Miller. An extension to ML to handle bound variables in data structures:
Preliminary report. In Proceedings of the Logical Frameworks BRA Workshop,
1990.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, 1999.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM
Transactions on Programming Languages and Systems, 10:470-502, 1988.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1994.

S. Peyton Jones and J. Hughes, editors. Report on the Programming Language
Haskell 98. A Non-strict Purely Functional Language. February 1999. Available
from <http:www.haskell.org>.

F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc. ACM-
SIGPLAN Conference on Programming Language Design and Implementation,
pages 199-208. ACM Press, 1988.

