
Chapter 1

A metalanguage for structural
operational semantics
Matthew Lakin1, Andrew Pitts1

Abstract: This paper introduces MLSOS, a functional metalanguage for declar-
ing and animating definitions of structural operational semantics. The language
provides a general mechanism for resolution-based search that respects the α-
equivalence of object-language binding structures, based on nominal unification.
It combines that with a FreshML-style generative treatment of bound names. We
claim that MLSOS allows animation of operational semantics definitions to be
prototyped in a natural way, starting from semi-formal specifications. We outline
the main design choices behind the language and illustrate its use.

1.1 INTRODUCTION

There is currently a great deal of interest in (partially) automating various tasks
in the field of programming language metatheory. While there are many aspects
to this research effort (see [1] for a survey), the work reported here focuses on
animating definitions of type systems and operational semantics. This typically
involves generating a reference or prototype implementation from a high-level de-
scription of the desired semantics. General-purpose functional programming lan-
guages such as Objective Caml and Haskell are usually the first choice for such
an implementation. However, such languages do not provide built-in support for
representing object-language binders up to α-equivalence or for “proof-search”
style computations of the validity of some judgement (such as the type inference
problem) given a rule-based inductive definition of that judgment. Hence, the
programmer must “reinvent the wheel” and re-implement this basic functionality
every time they want to implement a language. This takes up time and increases

1University of Cambridge Computer Laboratory, William Gates Building, 15 JJ
Thomson Avenue, Cambridge, CB3 0FD, UK. Email addresses:
Matthew.Lakin@cl.cam.ac.uk, Andrew.Pitts@cl.cam.ac.uk.

1

the potential for bugs to appear. Furthermore, in the early stages of language de-
sign, the ability to play with a toy implementation of the language can be invalu-
able. It can provide useful feedback on test cases and guide the evolution of the
language, with only a fraction of the effort required for a full formal verification
of the language metatheory.

Our long-term aim is to automatically generate correct, efficient, executable
code from a high-level specification of the intended behaviour, such as the infer-
ence rules for inductively defined relations. The first thing that we need, how-
ever, is a programmable metalanguage that allows the user to succinctly spec-
ify that behaviour. An important issue that must be faced in programming lan-
guage support for computing instances of inductively defined relations is how to
implement bound names in the object-language in a way that deals with issues
of α-equivalence automatically. To that end we make use of nominal unifica-
tion [23]—a generalisation of first-order unification that solves equations mod-
ulo α-equivalence by taking into account freshness of names for object-language
terms.

We propose an eager functional programming language for resolution-based
computations on abstract syntax up to α-equivalence of object-language bound
names, based on a mild generalisation of nominal unification. We call this lan-
guage MLSOS (MetaLanguage for Structural Operational Semantics). One of the
main contributions of the design is to show how to combine, in a well-behaved
way, nominal unification’s logical treatment of freshness with a dynamic approach
to freshness derived from the FreshML programming language [19]. The “Baren-
dregt variable convention” [3] expresses (informally) that bound names should
be mutually distinct and distinct from other names appearing in the mathematical
context. Hence, when it attempts to unify against a pattern containing binders,
MLSOS automatically enforces the user’s expectation that the Barendregt vari-
able convention holds by replacing bound names with freshly generated names as
the pattern is analysed. This “generative unbinding” of binders is the characteris-
tic feature of FreshML. On the other hand, when it encounters names in a pattern
that are not bound, MLSOS uses unification variables, since it would be prema-
ture to commit to any particular name in this case. Hence our motto is “implement
bound names generatively, and free names with unification variables”. We claim
that this leads to a style of programming which, compared to the logic program-
ming language αProlog [5] that also makes use of nominal unification, relieves
the user of the need to specify much information about the freshness of names in
operational semantics specifications. (See §1.3.1 and §1.5 for evidence of this.)

The rest of this paper is organised as follows. §1.2 provides a brief overview
of nominal unification. §1.3 gives an extended informal example of the use of
MLSOS. §1.4 goes into the formalities, defining the grammar and operational
semantics of the core MLSOS language. §1.5 discusses related work; we describe
future work and conclude in §1.6.

2

1.2 BACKGROUND: NOMINAL UNIFICATION

Our method of specifying binding is the nominal signature of [23], which consists
of a finite set of atom sorts α (types of object-language names) and a finite set of
data sorts δ (types of α-equivalence classes of object-language terms). We build
up a set of arities σ by the grammar

σ ::= α | δ | 1 | σ1* · · · *σn | 〈〈α〉〉σ.

The arity σ1* · · · *σn is for n-tuples of terms, (t1, . . . , tn). The arity 〈〈α〉〉σ is
where binding is specified—it is inhabited by terms 〈〈a〉〉t representing the object-
language binding of a single name a of atom sort α in a term t of arity σ. Given
this grammar of arities, the specification of a nominal signature is completed by
giving a finite set of typed constructors, K:σ → δ, which allows us to construct
terms K t of data sort δ from terms t of arity σ. By way of an example, here is a
nominal signature for untyped λ-terms, as it is declared in MLSOS:

nametype var ; ;
datatype lam = Var of var

| Lam of 〈〈var〉〉lam
| App of lam * lam ; ;

Atom sorts (such as var) are declared using the nametype keyword; whereas data
sorts (such as lam) and constructors (such as Var, Lam and App) are declared with
an ML-like datatype declaration.

The nominal terms of the various arities over a given nominal signature are
built up using the term-forming operations mentioned above, starting from a unit
value () of arity 1, from countably many atoms a of each atom sort, and from
countably many suspensions πX for each arity; the latter consist of a unification
variable X and a finite permutation π of atoms waiting to be applied to whatever
will be substituted for X . (See §1.4.1 and [23] for the need for such suspended
permutations.)

Nominal unification is an algorithm for unifying nominal terms up to α-equi-
valence. As shown in [23], to make sense of α-equivalence for nominal terms, one
needs to consider freshness conditions of the form a # X (read “a fresh for X”)
whose intended meaning is that a should not occur free in any term substituted
for X . Thus given a unification problem t =:= t ′ (where t and t ′ are nominal
terms of the same arity over a given nominal signature), the nominal unification
algorithm computes both a solving substitution of nominal terms for unification
variables and a set of freshness conditions under which the required α-equivalence
is valid (or fails finitely if no such solution exists). For example, it solves the
problem 〈〈a〉〉X =:= 〈〈b〉〉Y with the substitution [Y 7→ (ab)X] and the freshness
condition b # X . This means that the unification variable Y should be instantiated
to the result of swapping all occurrences of a and b throughout the term eventually
substituted for X . The freshness constraint that b may not occur free in X prevents
name capture. We refer the reader to [23] for more details.

3

(beta1)
beta (t, t)

(beta2)
beta (t1, t ′1) beta (t2, t ′2)

beta (t1 t2, t ′1 t ′2)

(beta3)
beta (t, t ′)

beta (λx. t, λx. t ′)
(beta4)

beta (t1, t ′1) beta (t2, t ′2)
beta ((λx. t1) t2, t ′1[t

′
2/x])

FIGURE 1.1. Parallel Reduction Relation

1 let rec sub x t t ′ = narrow t ′ as
2 Var y → ((x =:= y); t) or ((x =/= y); t ′)
3 | Lam 〈〈a〉〉t ′′ → Lam 〈〈a〉〉(sub x t t ′′)
4 | App (t1, t2) → App ((sub x t t1), (sub x t t2)) ; ;

5 let rec beta (t1, t2)= narrow (t1, t2) as
6 (t, t) → yes
7 | (Lam 〈〈a〉〉t1, Lam 〈〈a〉〉t ′1) → beta (t1, t ′1)
8 | (App (t1, t2), App (t ′1, t ′2)) → beta (t1, t ′1); beta (t2, t ′2)
9 | (App ((Lam 〈〈a〉〉t1), t2), t ′) → some t ′1, t ′2 : lam in

10 beta (t1, t ′1); beta (t2, t ′2); ((sub a t ′2 t ′1) =:= t ′) ; ;

FIGURE 1.2. MLSOS Parallel Reduction Program

Nominal unification has polynomial complexity [4] and produces most general
unifiers [23]. That the latter exist depends upon the fact that nominal terms only
allow abstractions over concrete atoms, 〈〈a〉〉t, but not abstractions over unification
variables, 〈〈X〉〉t. As we shall see, this restriction greatly simplifies constraint
solving. Without it, we would need to use a more powerful but NP-complete
equivariant unification algorithm due to Cheney [8, 6].

1.3 PROGRAMMING EXAMPLE: PARALLEL REDUCTION

Figure 1.1 gives inference rules defining the beta relation of “parallel reduction”
(that is, reducing several β-redexes within a λ-term in one go). This relation is
used in the Tait/Martin-Löf proof of the Church-Rosser property of β-reduction
in the untyped λ-calculus [3, Definition 3.2.3].

Using the nominal signature from the previous section, Figure 1.2 gives ML-
SOS functions sub:var→ lam→ lam→ lam and beta: lam * lam→ ans, where
ans is the MLSOS built-in type for proof-search computations—it is a copy of the
unit type whose only value, yes, indicates success. The first implements capture-
avoiding substitution for λ-terms and the second implements the parallel reduction

4

relation. This section provides a brief explanation of how the code from Figure 1.2
would evaluate. This code uses various syntactic sugars which are implemented
by translation into a small core language described later in this paper (§1.4).

1.3.1 Capture-avoiding substitution

Evaluating sub x t t ′ (Figure 1.2, lines 1–4) computes the capture avoiding sub-
stitution of (the α-equivalence class of) t for all free occurrences of the name x in
(the α-equivalence class of) t ′.

The narrow syntax is syntactic sugar for a non-deterministic branch, which
here generates three branches of computation. The patterns in the individual
clauses are expanded out into expressions which generate fresh atoms and unifica-
tion variables as required: as discussed in the Introduction, we use fresh atoms to
implement bound names and unification variables to stand for all other unknowns.

Each branch generates a constraint that t ′ should unify with the patterns on
the left-hand sides of lines 2–4 to decide whether to proceed, instantiating unifi-
cation variables in t ′ if necessary. The variable clause (line 2) also has an explicit
branch (using the or keyword) which is used to encode the standard name equal-
ity test. We use a definable syntactic sugar (e; e′) for sequencing, to simulate a
conjunction.

The nominal unification algorithm [23] is used to decide satisfiability of equal-
ity constraints, along with some extra rules to cope with name inequality con-
straints. These are largely straightforward, except for the case when two unknown
names are constrained to be distinct (discussed in §1.4).

The clause for λ-abstractions (Figure 1.2, line 3) highlights the different be-
haviour of value identifiers and atom identifiers in patterns in MLSOS: in line
2, y becomes a new unification variable, whereas in line 3, a is replaced with a
fresh atom, because it appears in binding position. This means that the informal
“Barendregt variable convention” [3] is handled implicitly at the language level,
and hence we do not need to decorate the code with assertions that a must not
appear free in t (or be equal to x).

1.3.2 Parallel reduction

The beta function declared in lines 5–10 of Figure 1.2 implements the relation
inductively defined in Figure 1.1. Line 6 expresses the base case (beta1) of the
definition, line 7 the rule (beta3), line 8 the rule (beta2) and lines 9–10 the rule
(beta4). Again, the atom identifier a in the pattern (App ((Lam 〈〈a〉〉t1), t2), t ′) in
line 9 refers to a fresh atom—this, along with the behaviour of the sub function,
ensures that the substitution involved in the MLSOS version of rule (beta4) is
not capturing. Note the use of the some syntax in line 9 to generate unification
variables standing for unknown intermediate terms, and the use of sequencing to
model a conjunction.

5

? fresh a: var ; ;
− : var = var0

? fresh b: var ; ;
− : var = var1

? let t1 = App ((Lam 〈〈a〉〉Lam 〈〈b〉〉Var a), Var b) ; ;
− : lam = App (Lam 〈〈var0〉〉Lam 〈〈var1〉〉Var var0, Var var1)

? let t2 = Lam 〈〈a〉〉Var b ; ;
− : lam = Lam 〈〈var0〉〉Var var1

? beta (t1, t2) ; ;
− :ans = yes

? let t = App ((Lam 〈〈a〉〉Var a), Var b) ; ;
− : lam = App (Lam 〈〈var0〉〉Var var0, Var var1) ; ;

? some x: lam ; ;
− : lam = unknown

? beta (t, x) ; ;
− :ans = yes [x = Var var1]
− :ans = yes [x = App (Lam 〈〈var2〉〉Var var2, Var var1)]
− : . . .

FIGURE 1.3. Command-Line Example

1.3.3 Command-line example

Figure 1.3 illustrates a typical interaction with the MLSOS interpreter. We as-
sume here that the nominal signature for λ-terms from §1.1 and the functions
from Figure 1.2 have already been declared earlier in the session.

The first two interactions generate (distinct) fresh atoms a and b, to stand
for variables in the λ-calculus. In all cases, the responses from the interpreter
include tags such as var0, to allow the user to identify the atoms generated in-
ternally during expression evaluation. We then construct two λ-terms t1 and t2,
corresponding to (λa.λb.a) b and λa.b respectively, and ask the system whether
beta (((λa.λb.a) b), λa.b) is derivable using the rules from Figure 1.2. This is
clearly the case (using the final rule (beta4) of the definition of beta), and indeed
the interpreter responds yes, as we would expect.

We then define a term t corresponding to (λa.a) b, and generate a new uni-
fication variable (which we bind to the value identifier x). The final command
instructs the interpreter to find all instantiations of x for which beta ((λa.a) b, x)
holds. This produces numerous answers: the standard β-reduction to Var b, the
trivial case arising from the clause allowing any term to β-reduce to itself, and
duplicate results caused by redundancies in the rules defining the beta relation.
The var2 tags appearing in the results of this computation are due to the dynamic
generation of atoms during proof-search.

6

These examples give a flavour of how MLSOS might be used. In particular,
the final example illustrates the use of unification variables to search for terms (up
to α-equivalence) for which some judgement can be derived.

1.4 MLSOS CORE LANGUAGE AND OPERATIONAL SEMANTICS

This section defines the MLSOS “core” language and its operational semantics.
We restrict ourselves to the core language since it is small and elegant and the
various syntactic sugars employed in Figure 1.2 may be defined in it.

We fix countably infinite sets V of value identifiers (ranged over by x,y etc.), A
of atoms (ranged over by a,b etc.) and U of unification variables (ranged over by
X). These stand for metalanguage values, object-language names and unknown
object-language terms respectively. The grammar of MLSOS types τ is

τ ::= σ | ans | τ → τ

where σ ranges over nominal arities as defined in §1.1. The type ans is a version of
ML’s unit type that we use for proof-search computations when only the success of
the search rather than some final value is important. For example, semi-decidable
relations of arity σ are typically implemented in MLSOS as functions of type
σ → ans.

1.4.1 Permutations

Nominal logic [14] is based on the fundamental operation of permuting atoms.
One only needs to consider finite permutations, that is, bijections on the set of
atoms that only move finitely many atoms. We use a concrete representation for
such permutations as finite lists of atom-swappings, which are written (aa′). Such
a finite list represents the composition of the individual swappings, and it can be
shown that every finite permutation can be represented in this way. We write Perm
for the set of all well-formed atom-permutations, ranged over by π. A permutation
is well-formed if, for every swapping (aa′) in π, the atoms a and a′ are of the same
atom-sort.

Unknown object-language terms are represented by suspensions, written πX .
These represent a permutation π waiting to be applied to all atoms appearing in
whatever term gets grafted in place of the unification variable X . These suspended
permutations are used to ensure that α-conversion behaves correctly in the pres-
ence of unification variables: see [23].

1.4.2 Values and expressions

Figure 1.4 gives grammars for the values and expressions of the MLSOS core
language. The values are as one would expect from a functional language, with
the addition of suspensions (to stand for unknown object-language terms), atoms
and atom abstractions, and the yes value (which reports success in a proof-search
computation).

7

v ::= x value identifier,
| πX suspension,
| () unit,
| (v1, . . . , vn) n-tuple,
| fun f (x: τ): τ′ = e recursive function,
| yes success,
| K v data construction,
| a atom,
| 〈〈a〉〉v atom abstraction.

e ::= v value,
| let x= e in e′ let-binding,
| v v′ function application,
| fresh a:α in e fresh atom,
| some x:σ in e new unification variable,
| c constraint,
| e or e′ binary branch.

FIGURE 1.4. MLSOS Values And Expressions

The expression grammar is structured so that MLSOS core programs must be
in A-normal form [10]—that is, evaluation is driven by let-bindings and all re-
sults of intermediate computations must be named. Programs written in a more
liberal language can be translated into this format by the insertion of additional
let-bindings. This restriction further simplifies the presentation of the operational
semantics (see §1.4.4). The expression grammar includes constructs for generat-
ing fresh atoms (fresh a:α in e) and new unification variables (some x:σ in e),
branching (e or e′) and testing constraints for satisfiability (c). Note that the pro-
grammer has no direct access to unification variables and atoms: like the treatment
of mutable reference cells in traditional functional programming languages, unifi-
cation variables and atoms are created dynamically by evaluating some and fresh
expressions respectively (and may dynamically escape their lexical scopes).

As well as the usual let-binding and recursive function constructs which bind
value identifiers, the some construct, some x:σ in e, binds free occurrences of
the value identifier x in the expression e. The fresh atom generation construct
fresh a:α in e binds all free occurrences of the atom a in e. As usual, substitution
of MLSOS values for value identifiers is capture-avoiding: we identify MLSOS
expressions up to α-conversion of bound value identifiers and atoms and write
e[v/x] for the capture-avoiding substitution of v for all free occurrences of x in
e. These meta-level notions of α-equivalence and substitution for MLSOS should
not be confused with the object-level notions that can be implemented in MLSOS.
Object-level binding is represented with the 〈〈a〉〉(−) construct, but the latter is not
itself a meta-level binding construct; for example, 〈〈a〉〉a and 〈〈b〉〉b are distinct
MLSOS values when a and b are distinct atoms. The object-level substitution of

8

nominal terms for unification variables that is part of the MLSOS dynamics may
involve capture of free atoms within the scope of the 〈〈a〉〉(−) construct. The only
form of substitution needed for atoms is renaming via a permutation (see §1.4.1).

1.4.3 Constraints

We use a slightly richer language of constraints c than [23] to guide execution of
MLSOS programs. They may be of the following forms:

c ::= v =:= v′ equality constraint,
| a # v freshness constraint,
| v =/= v′ name inequality constraint.

where v stands for a value (of some nominal arity σ). Equality constraints really
mean equality of the appropriate α-equivalence classes, and a freshness constraint
a # v expresses that a may not occur free in v. Note that, as emphasised by the
typing rule for inequality constraints in Figure 1.6, these are only permitted be-
tween names, that is, atoms or suspensions of the same atom sort α. (Our name
inequality constraints are similar to, but less general than, those described in [7,
Chapter 7], since we place more restrictions on where suspensions may appear
in the term syntax.) The only non-trivial cases are for inequalities between two
suspensions: either

1. πX =/= π′X ′, where X and X ′ are distinct unification variables—this con-
straint is left untouched as part of the “solution”; or

2. πX =/= π′X— this causes a finitely-wide branch, which tries to instantiate X
with every atom a for which π(a) 6= π′(a).

We can give a simple semantics to this constraint language in terms of instan-
tiations of the unification variables contained in the constraints by ground values,
that is, by ones not containing unification variables. Then, it can be shown that
satisfiability of a finite set c of such constraints (which we write |= c) is decid-
able, using an algorithm that extends nominal unification [23] to deal with name
inequality constraints. This allows us, to a large extent, to factor constraint solving
out of the operational semantics of the metalanguage, leading to a rather elegant
presentation (see §1.4.4). In particular, the presentation does not need to use the
meta-operation of substitution for unification variables, which is left implicit as
part of constraint solving.

1.4.4 Operational semantics

Conceptually, evaluation of an MLSOS program consists of finitely many compu-
tation branches. During evaluation of a program, new branches may be spawned,
each of which may return a result, or may fail finitely (which corresponds to where
one would backtrack in Prolog), or may diverge. The operational semantics pre-
sented here is abstract in the sense that it does not specify any particular search
strategy or treatment of failed computations. This is a succinct and elegant means

9

1. Na ∃X (c;(S◦ (x.e))(v)) −→M Na ∃X (c;S(e[v/x]))

2. Na ∃X (c;S(let x= e in e′)) −→M Na ∃X (c;(S◦ (x.e′))(e))

3. Na ∃X (c;S(v v′)) −→M Na ∃X (c;S(e[v,v′/ f ,x]))
if v = (fun f (x: τ): τ′ = e)

4. Na ∃X (c;S(c)) −→M Na ∃X ((c∪{c});S(yes))
if |= c∪{c}

5. Na ∃X (c;S(fresh a:α in e)) −→M Na,a:α ∃X (c′;S(e))
if a /∈ dom(a) and c′ , {a # X | X ∈ dom(X)}∪ c

6. Na ∃X (c;S(some x:σ in e)) −→M Na ∃X ,X :σ (c;S(e[ιX/x]))
if X /∈ dom(X)

7. Na ∃X (c;S(e1 or e2)) −→M Na ∃X (c;S(ei))
where i ∈ {1,2}

FIGURE 1.5. −→M Transition Rules

of developing the theory of the language, but is obviously not intended as the basis
of an implementation.

The operational semantics takes the form of a non-deterministic single-step
transition relation −→M between abstract machine configurations C, defined in
Figure 1.5. Our configurations make use of frame-stacks, S, which are either
empty (Id) or of the form S ◦ (x.e), in which any free occurrences of the value
identifier x in the expression e (which is on top of the stack) become bound. The
frame-stack S ◦ (x.e) encodes an evaluation context where the value (if any) re-
sulting from evaluation in the current evaluation position will be substituted for
all free occurrences of x in e and the result evaluated in the context S. Non-empty
frame-stacks are built up by let-bindings appearing in the program (see rule 2 in
Figure 1.5, which reflects the fact that MLSOS is an eager language). Configura-
tions are of the form Na ∃X (c;S(e)), where S is a frame-stack, e is the expression
currently being evaluated, and c is a finite set of constraints which serve to guide
proof-search. Here a and X are finite environments of sorting information about
the atoms and unification variables appearing in the configuration. (The quantifier
symbols Nand ∃ appearing in a configuration are merely punctuation, but suggest
expected logical behaviour.)

Rule 5 in Figure 1.5 implements fresh atom generation. As we identify ex-
pressions up to α-renaming of atoms, the “freshness” side-condition of this rule
(a /∈ dom(a)) can always be satisfied. In this rule, the constraint set is updated
with new freshness constraints between the freshly-generated atom and all uni-
fication variables that have been generated so far. Similarly, rule 6 generates a
new unification variable and binds it to a value identifier. (In the suspension ιX , ι

10

a ∈ dom(Γ) Γ ` v:σ

Γ ` a # v:ans

Γ ` v1 :σ Γ ` v2 :σ

Γ ` v1 =:= v2 :ans

Γ ` v1 :α Γ ` v2 :α

Γ ` v1 =/= v2 :ans

Γ(x) = τ

Γ ` x: τ

Γ(X) = σ

Γ ` πX :σ

Γ(a) = α

Γ ` a:α

Γ(a) = α Γ ` v:σ

Γ ` 〈〈a〉〉v: 〈〈α〉〉σ Γ ` ():1 Γ ` yes:ans

Γ ` v1 :σ1 · · · Γ ` vn :σn

Γ ` (v1, . . . , vn):σ1* · · · *σn

(K:σ → δ) ∈ Σ Γ ` v:σ

Γ ` K v:δ

Γ, f : τ → τ
′,x: τ ` e: τ

′ f ,x /∈ dom(Γ)
Γ ` fun f (x: τ): τ

′ = e: τ → τ
′

Γ ` v1 : τ → τ
′

Γ ` v2 : τ

Γ ` v1 v2 : τ
′

Γ ` e: τ Γ,x: τ ` e′ : τ
′ x /∈ dom(Γ)

Γ ` let x= e in e′ : τ
′

Γ,a:α ` e: τ a /∈ dom(Γ)
Γ ` fresh a:α in e: τ

Γ,x:σ ` e: τ x /∈ dom(Γ)
Γ ` some x:σ in e: τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 or e2 : τ

FIGURE 1.6. Typing Rules For Core MLSOS: Constraints, Values And Expres-
sions

denotes the identity permutation.) Rule 7 is a non-deterministic branch.
The rules defining the MLSOS type system are quite standard and are pre-

sented in Figure 1.6. Constraint expressions (§1.4.3) are assigned type ans. We
say that a configuration C = Na ∃X (c;S(e)) is well-typed at type τ and write
`C: τ iff the sorting information contained in a and X is sufficient to infer that c
is a finite set of well-formed constraints of type ans, and to assign types τ′→ τ and
τ′ to the frame-stack S and expression e respectively (for some τ′). We also say
that C is satisfiable if its constituent set of constraints is satisfiable, that is, if |= c
holds (see §1.4.3). The following results (whose proofs are omitted) show that
the MLSOS type system ensures for well-typed configurations that the only pos-
sibility for a computation branch to get stuck is when an unsatisfiable constraint
is encountered.

Theorem 1.1 (Type preservation). For all configurations C,C′ and for all types

11

τ, if `C:τ and C −→M C′ then `C′ :τ. Furthermore, C is satisfiable if and only
if C′ is.

Theorem 1.2 (Progress). For all configurations C and for all types τ, if `C: τ,
then either

1. C is of the form Na ∃X (c; Id(v)), i.e. this branch has terminated, or

2. there exists a configuration C′ such that C −→M C′ holds, or

3. C is not satisfiable (i.e. C is of the form Na ∃X (c;S(c)), where i.e. |= c∪{c}
does not hold).

Proof. These proofs are both by case analysis on C. ut

1.5 RELATED WORK

FreshML [19, 21] is the immediate ancestor of MLSOS. It provides support for
functional programming with binders up to α-equivalence, but without the proof-
search facilities of MLSOS. Object-language names are represented by atoms,
which are generated freshly when required (and never named directly). An ab-
straction 〈〈x〉〉e is deconstructed using generative unbinding [16]—a fresh name y
is generated and swapped for x throughout e.

In FreshML, names may be represented using normal value identifiers such as
x because everything is ground, i.e. there are no unknown names present. Shin-
well and Pitts [20, 16] prove that this approach leads to correct representation of
object-language syntax up to α-equivalence (in the sense that terms representing
objects in the same α-equivalence class are contextually equivalent). FreshML
can be thought of as a ground subset of MLSOS, in that FreshML does not in-
clude unification variables or proof-search facilities at the language level. In
FreshML, the first clause in the definition of the capture-avoiding substitution
function from Figure 1.2 can be implemented using a name equality test (syntax
if x = y then t else t ′), since x and y are always concrete atoms. Our work aims
to discover whether the FreshML-style treatment of binders can be successfully
extended to a language with unification variables representing unknown terms.

FreshML is an impure functional language, in that the generation of atoms is
an observable side-effect. The earlier FreshML-2000 language [15] had a fresh-
ness inference system for statically rejecting programs where freshly generated
names were returned unabstracted (and hence were observable as a side-effect).
This was dropped from the version of FreshML in [21], because it rejected too
many reasonable-looking programs. However, recent work by Pottier [17] de-
scribes a tractable and practical decision procedure for rejecting impure programs
in a FreshML-like language with user-supplied freshness assertions. That paper
employs a system of binding specifications which is richer than our nominal sig-
natures. These originate from work on Cαml [18], a tool which auto-generates
Objective Caml code from such a binding specification.

12

1 func subst (var, lam, lam) = lam.
2 subst (X , E, (Var X)) = E.
3 subst (X , E, (Var Y)) = (Var Y) :− X # Y.
4 subst (X , E, App (E1, E2)) = App (subst (X , E, E1), subst (X , E, E2)).
5 subst (X , E, (Lam 〈〈a〉〉E ′)) = Lam 〈〈a〉〉(subst (X , E, E ′)) :− a # (X , E).

6 pred beta (lam, lam).
7 beta (E, E).
8 beta ((Lam 〈〈a〉〉E), (Lam 〈〈a〉〉E ′)) :− beta (E, E ′).
9 beta (App (E1, E2), App (E ′

1, E ′
2)) :− beta (E1, E ′

1), beta (E2, E ′
2).

10 beta (App ((Lam 〈〈a〉〉E1), E2), E3) :−
beta (E1, E ′

1), beta (E2, E ′
2), E3 = subst (a, E ′

2, E ′
1).

FIGURE 1.7. αProlog Parallel Reduction Program

The language most closely related to MLSOS in terms of functionality is Ch-
eney and Urban’s αProlog [5, 7]. This is a logic programming language based on
nominal logic [14], which uses nominal unification to perform back-chaining.

Figure 1.7 presents a parallel reduction program in αProlog that mirrors the
MLSOS code from Figure 1.2. For consistency we have adopted the MLSOS
syntax for abstractions (〈〈a〉〉E as opposed to a\E from [5]), and re-ordered the
arguments to agree with the MLSOS program from Figure 1.2. In the base case of
capture-avoiding substitution (Figure 1.7, lines 2-3) the αProlog program uses two
clauses to implement the name equality test, and the freshness constraint X # Y
corresponds to our name inequality constraint. In the λ case of capture-avoiding
substitution (Figure 1.7, line 5) note that a freshness side-condition (a # (X , E))
is necessary. This is because the atom a has not been generated freshly in the
pattern, and hence the system cannot guarantee that a does not occur free in X or E
unless the user makes this explicit. This highlights a difference between αProlog
and MLSOS concerning the interpretation of the syntax a for an object-language
name. Although both programming languages make use of nominal unification, in
MLSOS the metavariable a stands for an atom to be generated freshly at runtime,
whereas in αProlog it stands for one particular atom from the countably infinite
set of atoms.

We would like to abstract away from the internal implementation of object-
language names and binding as much as possible. In MLSOS we cannot write
programs whose meaning depends upon particular atoms and the behaviour of
MLSOS programs does not depend on which concrete atom is chosen to imple-
ment a particular object-language bound name. This relates to the equivariance
property of nominal logic [14]—Cheney notes that “because of equivariance, res-
olution based on nominal unification is incomplete for nominal logic” [5]. That
paper proposes replacing nominal unification by equivariant unification, in or-
der to achieve completeness with respect to nominal logic, at the cost of NP-

13

completeness [6]. An alternative is to impose a syntactic criterion on αProlog
programs which restricts to a subset of nominal logic formulae for which nominal
unification is complete [8]. This is related to the problem discussed in §1.6.1.

Of course, there are alternative techniques for encoding binders, such as higher-
order abstract syntax, which uses metalanguage binders to model object-language
binders, and nameless de-Bruijn representations. The relative merits of the “nom-
inal” techniques used in MLSOS and αProlog compared to such representations
have been discussed elsewhere (see [23] for a survey). Broadly speaking, im-
plementations using nameless representations are not very readable and can be
inefficient, whereas higher-order abstract syntax systems such as Twelf [13] and
Bedwyr [2] make it hard to use what is often the natural style of “nominal” pro-
gramming in which concrete bound names are manipulated. They also suffer from
a kind of incompleteness (due to their restriction to higher order pattern unifica-
tion) similar to that discussed in §1.6.1.

Systems such as PLT Redex [12], which were designed specifically for the pur-
pose of producing step-by-step reduction tools from a description of a language
semantics, clearly bear comparison to MLSOS. A downside of PLT Redex is that
it does not seem to provide automated support for α-equivalence of object-level
binders, in the same way as MLSOS. Furthermore, in PLT Redex one is restricted
to the operation of reducing a subterm in place, whereas in MLSOS one can write
more liberal programs, for example to find all inhabitants of a particular type.
However, PLT Redex does have a graphical visualisation toolkit.

There also exist mature, high-performance, general-purpose functional logic
programming languages such as Curry [11] and Mercury [22]. However, these
also lack built-in support for binders and α-equivalence and hence they are not
such an attractive choice for the kind of applications we are targeting.

1.6 FUTURE WORK AND CONCLUSIONS

We have outlined some of the design decisions and motivations behind the de-
velopment of MLSOS, a metalanguage designed for prototyping structural opera-
tional semantics definitions. In this section we mention some directions for future
work.

1.6.1 Badly-behaved inductive definitions

MLSOS takes a “nominal” approach to expressing object-language binding syn-
tax. As we have seen, it adopts a hybrid approach to implementing names in an
object-language—they are represented by unification variables wherever possible,
and by fresh atoms wherever essential (that is, whenever they appear in binding
position). One might hope that any rule-based inductive definition could be im-
plemented in MLSOS (along the lines of the example in §1.3) in a way that is
complete—in the sense that MLSOS computes all and only correct solutions to
user queries about the definition. (We hope that this notion of completeness is
intuitively clear—we defer a formalisation to a future paper for reasons of space.)

14

However, there exist certain inductive definitions whose natural encoding in
MLSOS is not complete. The same phenomenon occurs in αProlog (§1.5) and
we can adapt to MLSOS an example from [9, Example 5.3]. Consider the set S
defined by the single inference rule

R (x, t,λx. t)

which gives the graph of λ-abstraction on (α-equivalence classes) of untyped λ-
terms. For example, the term (a,a,λb.b) is manifestly in S , since λa.a and λb.b
are α-equivalent. However, the natural MLSOS encoding of S as a function of
type var * lam * lam → ans (using the nominal signature from §1.3), which we
omit here for reasons of space, will fail to compute this solution. This is be-
cause the bound name x in the pattern λx. t in the conclusion of the rule must be
modelled by a freshly-generated atom; however this name also appears free in
the conclusion and hence its identity matters to the semantics of the rule. Thus,
it seems that generating fresh atoms for bound names during pattern-matching
prevents us from computing all members of S .

The problem with this and similar definitions is that it allows us to inspect
the identity of a name that appears in binding position by unbinding without any
freshening. We would ideally like to rule out such badly-behaved definitions, as
they violate the assumption that we can represent a bound name with any freshly-
chosen atom. We aim to find some restricted class of inductively defined sets of
α-equivalence classes of nominal terms for which MLSOS is powerful enough to
give natural, yet complete encodings. Cheney and Urban [9, §5.2] consider such
a restriction for the language αProlog which is discussed in §1.5, but it does not
seem immediately applicable to MLSOS.

1.6.2 Correctness properties

We conjecture that the dynamics of the language (§1.4.4) is such that MLSOS
representations of α-equivalent object-language terms are contextually equivalent.
This form of correctness has been proved for FreshML [20, 16], but has yet to be
established for MLSOS.

1.6.3 Conclusion

MLSOS provides a simple yet expressive medium for computing with abstract
syntax trees identified up to α-conversion. A prototype implementation of the
language exists, and a more efficient implementation is in the pipeline. This could
be useful not only to programming language designers, but also as an educational
tool for teaching operational semantics to students. The syntax and programming
style should be familiar to people who are comfortable with functional, as opposed
to logic, programming languages. MLSOS has the benefit of the full expressive
power of functional programming—we have only scratched the surface of what
can be done in terms of optimising the code that one would naı̈vely write. It is

15

possible that further refinements to the system, such as mode and determinism an-
notations, could allow us to automatically generate reasonable implementations of
systems with minimal input from the user, and provide some degree of verification
of certain metatheoretic properties of their definitions.

ACKNOWLEDGEMENTS

This work was supported by UK EPSRC grant EP/D000459/1.

REFERENCES

[1] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanised metatheory
for the masses: The POPLmark challenge. In J. Hurd and T. Melham, editors, 18th
International Conference on Theorem Proving in Higher Order Logics: TPHOLs
2005, volume 3603 of Lecture Notes in Computer Science, pages 50–65. Springer-
Verlag, 2005.

[2] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for
model checking over syntactic expressions. Submitted to CADE 2007.

[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
revised edition, 1984.

[4] Christophe Calvès and Maribel Fernández. Implementing nominal unification. In
3rd Int. Workshop on Term Graph Rewriting (TERMGRAPH’06), Vienna, Electronic
Notes in Theoretical Computer Science, 2006.

[5] J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names,
binding and alpha-equivalence. In Proc. 20th Int. Conf. on Logic Programming (ICLP
2004), number 3132 in LNCS, pages 269–283, 2004.

[6] James Cheney. The complexity of equivariant unification. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP 2004),
volume 3142 of LNCS, pages 332–344. Springer-Verlag, 2004.

[7] James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca,
NY, August 2004.

[8] James Cheney. Equivariant unification. In Proceedings of the 2005 Conference on
Rewriting Techniques and Applications (RTA 2005), number 3467 in LNCS, pages
74–89, 2005.

[9] James Cheney and Christian Urban. Nominal logic programming. Preprint available
from http://arxiv.org/abs/cs.PL/0609062, 2006.

[10] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. SIGPLAN Not., 39(4):502–514, 2004.

[11] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional logic lan-
guage. In Proc. ILPS’95 Workshop on Visions for the Future of Logic Programming,
pages 95–107, 1995.

[12] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual environment for
developing context-sensitive term rewriting systems. In Proceedings of the Interna-
tional Conference on Rewriting Techniques and Applications (RTA) 2004, 2004.

16

[13] F. Pfenning and C. Schürmann. System description: Twelf—a meta-logical frame-
work for deductive systems. In Proceedings of the 16th Conference on Automated
Deduction (CADE 1999), volume 1632 of Lecture Notes in Artificial Intelligence,
Trento, Italy, July 1999.

[14] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186:165–193, 2003.

[15] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names
modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Pro-
gram Construction. 5th International Conference, MPC2000, Ponte de Lima, Por-
tugal, July 2000. Proceedings, volume 1837 of Lecture Notes in Computer Science,
pages 230–255. Springer-Verlag, Heidelberg, 2000.

[16] A. M. Pitts and M. R. Shinwell. Generative unbinding of names. In 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2007), Nice, France, pages 85–95. ACM Press, January 2007.

[17] F. Pottier. Static name control for FreshML. In Twenty-Second Annual IEEE Sym-
posium on Logic In Computer Science (LICS’07), Wroclaw, Poland, July 2007. To
appear.

[18] François Pottier. An overview of Cαml. In ACM Workshop on ML, volume 148 of
Electronic Notes in Theoretical Computer Science, pages 27–52, March 2006.

[19] M. R. Shinwell. The Fresh Approach: functional programming with names and
binders. PhD thesis, Cambridge University, 2006.

[20] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical
Computer Science, 342:28–55, 2005.

[21] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders
made simple. In Eighth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Uppsala, Sweden, pages 263–274. ACM Press, August
2003.

[22] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming language. J. Log. Pro-
gram., 29(1-3):17–64, 1996.

[23] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer
Science, 323:473–497, 2004.

17

