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Abstract

A standard monad of continuations, when constructed with domains in the world of FM-sets [M.J.
Gabbay, A.M. Pitts, A new approach to abstract syntax with variable binding, Formal Aspects Com-
put. 13 (2002) 341-363], is shown to provide a model of dynamic allocation of fresh names that is
both simple and useful. In particular, it is used to prove that the powerful facilities for manipulating
fresh names and binding operations provided by the “Fresh” series of metalanguages [M.R. Shinwell,
Swapping the atom: Programming with binders in Fresh O'Caml, Proc. AfER2003; M.R.
Shinwell, A.M. Pitts, Fresh O’Caml User Manual, Cambridge University Computer Laboratory,
September 2003, available(attp://www.freshml.org/fo¢l M.R. Shinwell, A.M. Pitts, M.J. Gabbay,
FreshML: Programming with binders made simple, in: Proc. ICFP '03, ACM Press, 2003, pp. 263-274]
respectr-equivalence of object-level languages up to meta-level contextual equivalence.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Moggi's use of category-theoretic monads to structure various notions of computational
effect[7] is by now a standard technique in denotational semantics; and thanks to the work
of Wadler [21] and others, monads are the accepted way of “tackling the awkward squad”
[8] of side-effects within pure functional programming. Of Moggi’s examples of monads,
we are here concerned with those for modellitymamic allocation of fresh resourcés
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Lin this paper the only type of resource we consider is freshly genenateds
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Since these are not so well-knovénlet us recall a simple example of such a mori&d,

It is defined on the category ¢kt-valued functors from the categolyof finite cardinals

(i.e. the finite sete = {0, ...,n — 1} forn =0, 1, 2, ...) and injective functions between
them. Thus an objee of this functor category gives us a family of set&:) of “A-values

in world n”, wheren is the number of names created dynamically so far; and each injection
of ninto a larger “world”»’ gives rise to a coercion from(n) to A(n’). Then the monad

T builds fromA an objecfT A of “computations ofA-values” whose value at eachs the

dependent surii' A(n) def Yot Am +m) = {(m,x) |mel A x € Aln+ m)}; such

“computations” simply create some numbeiof fresh names and then return Asvalue

in the appropriate world; + m. The action ofl on a natural transformation: A — A’
produces the natural transformati@l : TA — T A’ whose component at € [ is

the function(Ta), : TA(n) — TA’(n) mapping(m, x) to (m, oy, (x)). WhenA is

the object of names itself, given by(n) = n = {0, ..., n — 1}, there is a distinguished
global elementew : 1 = [(0, —) — T A corresponding under the Yoneda Lemma to
the element1,0) € >, ., m = T A(0); this represents the computation whose evaluation
creates a name that is fresh with respect to the current world.

Although this is an attractive notion that has had nice applications (see [19], for example),
such dynamic allocation monads on functor categories have proved at best difficult and at
worst impossible to combine with some other important denotational techniques—those for
modelling recursively defined higher-order functions and algebraic identities. The difficulty
with higher-order functions is that while domains in functor categories do have exponentials,
they are quite complicated things to work with in practice because of the indexing over
“possible worlds”. The difficulty with algebraic identities, such as

(let x &< newine) =e¢ if x notfree ine, (1)
(let x < new; x’ < newine) = (letx’ <= new; x < newine) 2

is that quotienting dynamic allocation monads in order to force such identities interacts
badly with the order-theoretic completeness properties used to model recursive definitions.
In this paper we get past these problems with recursively defined higher-order functions
and algebraic identities in two steps, both of which turn out to greatly simplify matters.
First, we replace use of functor categories with the categoRM&ets[4]. 2 Although
this is equivalent to a category of functatsyorking with it is almost entirely like working
in the familiar category of sets: in particular exponentials are straightforward, as is the basic
theory of domains in FM-sets [18,16]. FM-sets are certain sets equipped with an action of
the group of permutations of a fixed, countably infinite &ebf atoms the key property
of FM-sets is that their elements haigite supporta notion which provides a syntax-free
notion of “set of free names”. The existence of finite supports enables the dependence of
semantic objects upon parameterising names to be left implicit—a convenient simplification
compared with the explicit passing of parameterising name sets inherent in the “possible
worlds”/functor category approach.

2 Dynamic allocation monads are not mentionei7ip but do appear if6, Section 4.1.4]
3 Also known asnominal setsn [11].
4The ones fron to Setthat preserve pullbacks.
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Secondly, we feed back into denotational semantics the operational insigdt¥] afat
in the presence of fixpoint recursion, it is easier to validate contextual equivalences like
(1) (and many other more subtle ones that do not concern us here) by forgetting about
evaluation’s properties of intermediate name-creation in favour of its simple termination
properties. This leads to use of a Felleisen-style operational semantics [22], except that we
formulate Felleisen’s “evaluation contexts” as frame-stacks: see [10] for a recent survey. If
D is the domain of denotations of values of some type, then frame-stacks can be modelled
simply by elements of the strict continuous function speel; wherel = {Ll, T} (one
element for non-termination, the other for termination); and since expressions are identified
if they have the same termination behaviour with respect to all frame-stacks, we can take
(D—1;)—1, as the domain for interpreting expressions. Thus we are led to the use of
the following continuation monaéd

(o) T (1)1, 3)

The notion of “finite support” now enters the picture: within the world of FM-sets, the
domain of names is simply a flat domain, on the FM-sefd of atoms. We get an element
new € (Aj—1))—1, that models dynamic allocation by definimgw to send any
o€ Aj—ol, toa(a) € 1,, wherea € A is some atormot in the supporbf the function
a. Not only do standard properties of support make this recipe well defined (the value of
a(a) is independent of which we use), buhew turns out to have good properties, such
as (1) (see Remark 4.5J. We review those parts of “FM-domain theory” that we need in
Section 3.

It might seem that the continuation mon@e-—1,)—1, on FM-domains is too simple
to be useful. We show this is not so by using it to prove some extensionality properties
of contextual equivalence for the “Fresh” series of metalanguages [15,17,18]. In partic-
ular we give the first correct proof of the main technical result of [18khich shows
that FreshML's powerful facilities for manipulating fresh names and binding operations do
indeed respect-equivalence of object-level languages up to meta-level contextual equiva-
lence. Section 2 introduces a small version of FreshML, called Mini-FreshML, and states
the properties of contextual equivalence we wish to prove. Section 3 gives a monadic
denotational semantics for Mini-FreshML using the monad (3) on the category of FM-
cppos. We prove the adequacy of this denotational semantics for Mini-FreshML's opera-
tional semantics by extending some standard methods based on logical relations for relat-
ing semantics to syntax [9]. Section 4 uses the logical relation from the previous section
to prove the desired extensionality and correctness properties for Mini-FreshML's rep-
resentation of object-level syntax involving binders. Finally in Section 5 we draw some
conclusions.

51t is possible to use other continuation monads, by replacing one or other usesro3) by other kinds of
function space, but this simple version is enough for our purposes here.
6 newis closely related to the “freshness quantifigiintroduced inf4].

7 In [18] the authors attempted to use a direct- rather than continuation-based monadic semantics that turns out
to have problematic order-theoretic completeness properties.
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2. Mini-FreshML

We present a small, monomorphic languadiai-FreshML that encapsulates the core
freshness features of FreshNIL8] and Fresh O’Caml [15]; the reader is referred to those
papers for motivation of the novel language features for manipulating bindeines
(expressions of typeame) andname-abstraction@xpressions of type<name>>t). Mini-
FreshML types are given by the following grammar:

Ti=unit | name | 0 | T X T | <<name>>T | T — T.

Here § ranges over a finite set of datatype names and we assume) aaxhes with a
top-level, ML-style type declaration of the form

5 = Cp of a1l---1C, of oy, (4)

where theC; are constructorsand the corresponding constructor typgsare generated
from the same grammar as typeand in particular may involve (simultaneous) recursive
occurrences of the datatype namellini-FreshML expressionsare given by the following
grammar, wherg ranges over a denumerable set VId of value identifierssaatiges over
another denumerable s&t disjoint from VId, whose elements we catioms(these are the
closed values of typsame):

ex=x] 0 ]al|Ct(e)| (e,e) | fresh | <<e>>¢ | swap e,e in e
| if e = ¢ then e else e|funx(x) = e |ee|let x = ¢ in e
|let (x,x) = e in e|let <<x>>x = ¢ in e
|match e with (.- [Cp(x) => el ---).

Note that local declarations of the forbet x = ¢ in ¢’ are included more for conve-
nience than necessity; since we have excluded ML-style polymorphism from Mini-FreshML
(inorderto keep things simple), this expression has the same typing and evaluation behaviour
as the function applicatiofifun f (x) = ¢')e (Wheref is a value identifier that does not
occur ine’).

Thevalues(i.e. expressions in canonical form) of Mini-FreshML, form the subset of
expressions generated by

vi=x|Olal|Cw)| (v,v) |<<a>>v | funx(x) = e.

We identify expressions up to-conversion of bound value identifiers; the binding forms
are as follows (with binding positions underlined):

fun x(x') = [-], let x = e in [—], let (x,x’) = e in [-],
let <<x>>x’ = ¢ in [—], match e with (.- |Cpr(x) => [—]]---).

We writee[v/x] for the capture-avoiding substitution of a valuéor all free occurrences
of the value identifiex in the expressioe. We say that is closedif it has no free value
identifiers. Evenikis closed, it may well have occurrences of at@irsit; we write supe)
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for the finite set of atoms occurringén® Note that there are no expression constructions that
bind atoms; in particular, although abstraction expressiglas>¢’ are used to represent
binders in object-level syntax, they are not binding forms in Mini-FreshML it3elfi
what follows we make heavy use of the operation on expressiossvapping atoms
(a a’) - e indicates the result of interchanging all occurrences of the atoamsla’ in the
expressiore.

We only consider expressions that are well-typed, given a typing cohterinsisting
of a finite map from value identifiers to types. We write- ¢ : 7 to indicate thate is
assigned type in such a typing context’ (and omit mention of " when it is empty). This
relation is inductively generated by rules that are mostly standard and which are given in
Appendix A. Let us just mention here that atomnare assigned typeame; and that ifeis
an expression of typeame ande’ one of typer, then the abstraction expressiore>>e’
has type<<name>>t.

Evaluation of Mini-FreshML expressions can be formalised operationally using a “big-
step” relation|} on 4-tuplesa, e, v, @), writtena, e | v, @’. Hereeis a closed expression,
v is a closed value, and C @’ are finite sets of atoms with the atomseofontained in
a. The intended meaning of this relation is that in the world with “allocated” a@@ntise
expressiore evaluates ta and allocates the fresh atos— a (evaluation offresh and
let <<x>>x’ = e in ¢’ causes dynamic allocation of fresh atoms—see below). Further
details of the relation are given elsewhere [18]. Instead, in this paper we use an equivalent
operational semantics based on the notiofraihe stacksor “evaluation contexts” [22];
see [10] for a recent survey of this technique. This abstracts away from the details of which
particular atoms and values have been allocated and instead concentrates on the single notion
of termination In this formulation, as evaluation proceeds a stackwafluation framess
built up. Each of these frames is a basic evaluation context: inside is &-hpfer which
may be substituted another frame (as when composing frames to form a frame stack) or an
expression, which may or may not be in canonical form. Formally then, a frame Stack
consists of a (possibly empty) list of evaluation frames, thus

S =1[]| SoF,

whereF ranges over frames as follows:

Fu=C([-D | ([-],&) | (v,[]) | <L[=]>>e | <<v>>[—]
| swap [—], e ne|swapv[]ine|swapv,vin[—]
| if [-] = e then e else e¢|if v = [—] then e else ¢
[[-]lelv[-]|let x =[] in e
|let (x,x’) = [—] in e|let <<x>>x’ = [—] in e

| match [—] with (- [Cr(x) => el ---).

8 The reason for this notation is the fact that this set of atoms isithportof ein the technical sense introduced
in Section3.

91t is one of the main results of this paper (Theor2r8) that the properties of Mini-FreshML contextual
equivalence are such that atomioccurring ine’ behave up to contextual equivalence as though they are bound
in <<e>>e¢’; for example for atoma, b then<<a>>a turns out to be contextually equivalent¢gb>>b.
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Then thetermination relation(S, ¢)| (read ‘e terminates when evaluated with sta8}
can be inductively defined by rules that follow the structure ahd then the structure of
S For example:
e (S, fresh)| holds if (S, a)] does for some (or indeed as it turns out, for every}
A — suppfS), i.e. for some atoma not occurring in the frame stack
o (Solet <<x>>x’ = [—] in e, <<a>>v)| holdsif(S, e[a’/x, ((a d’) - v)/x'])] does
for some (or indeed every) € A — supds$, v, e).
The complete definition of the termination relation is given in Apperligince we have
not defined the “big-step” relatiofp here, we state the following relationship between it
and the termination relation without proof; the details can be found in [16].

Fact 2.1. For any closed Mini-FreshML expression €], )| holds iff for any finite set
a C A containing the atoms of, ¢he relationa, e |} v, @’ holds for some value and set
of atomsz’ D a.

Just as we only use well-typed expressions, we only consider well-typed frame stacks:
wewritel’ F §:17—o__to mean thatin typing contekt the frame stacktakes expressions
e of typet (in contextI”) and produces a well-typed result (of some type that we do not
need to name, since we only care about the terminatiewdfen evaluated with stac®).
This judgement is defined by induction on the length of the s&iok

- r[—]:t+F:7 TkS:t—__
I'H[]:t—__ I'tSoF :1—__ ’

where in the hypothesik, [—] : T+ F : 7’ of the second rule, we regafé-] as a special
value identifier and typ& using the typing rules for expressions given in Apperlix

In [18], it is claimed that the features of Mini-FreshML that are novel compared with
ML can be used to represent and to manipulate the terms of languages involving binding
operators in ways that are guaranteed to resp&cfuivalence between those terms. That
paper shows that a wide range of syntax-manipulating functions can be very conveniently
expressed using the new features. Here we wish to give a formal proof of the fagt that
equivalence between the terms of an “object language” is respected by Mini-FreshML when
we represent those terms as expressions of a suitable Mini-FreshML datatype. For simplicity
we use the untypeticalculus as a running example of an object language involving binding
operatorst® Write A for the set ofi-terms t by which we mean abstract syntax trees (not
identified up tox-equivalence) given by

ti=x|Jlx.t|tt,

where for variablegwe are using elements of the set VId of Mini-FreshML value identifiers.
To represent such terms in Mini-FreshML we use a top-level type declaration containing:

0 = Var of name|Lam of <<name>>J|App of J x 0. (5)

10However, our results easily extend to any language with binders specified myminal signature
[20, Definition 2.1]
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For eachi-termt, define a Mini-FreshML expressidn]e by induction on the structure of
t as follows:

[xle & var(x)

[Ax.t]e def let x = fresh in Lam(<<x>>[rle) ( - (6)
def
[ 1'le = App([1le. [1']e)-

Note that under this translation, free variablesliterms are represented by free value
identifiers in Mini-FreshML: the set of free variablesta$ the same as the set of free value
identifiers of{#]e. Note also that in a typing contekithat assigns typeame to each of those
free variables, we havE |- [r]e : 6. We want to relater-equivalence ofi-terms,r =, ¢/,
to the operational behaviour of the Mini-FreshML expressiehsand[t']e of typed. To
do so, we shall use the traditional notioncotextual equivalencgiven by the following
definition.11

Definition 2.2 (Contextual equivalenge The type-respecting relation ebntextual pre-
order, written I' F e <’ : 7, is defined to hold i’ Fe : 7, I'Fe’ : 7, and for all closed,
well-typed expression§[e] containing occurrences ef if ([], C[e])| holds, then so does
{[1, Cl']) | (whereC[e'] is the expression obtained froftfje] by replacing the occurrences
of e with ¢’). The relation ofcontextual equivalenges i is the symmetrisation o& .
For closed typeable expressiaande’ we just writee ~cix ¢/ Whenf e ~¢y €’ : T holds
for some typer (and similarly for <.).

In the next section we show how to formulate a denotational semantics for Mini-FreshML
which we use in Sectiod to prove the following theorem (and other properties of Mini-
FreshML contextual equivalence).

Theorem 2.3(Correctness for expressionsFor any A-terms t and’, with free variables
contained in the sdftxg, ..., x,} say,

t =, t'<{xo 1 name, ..., x, :name} F [t]e Xctx [ ]e @ 6.

If t and’ are a-equivalent, then their translations into Mini-FreshML only differ up
to renaming bound value identifiers; so since we identify Mini-FreshML expressions up
to a-equivalence, in this cade]e and[¢']e are equal Mini-FreshML expressions and in
particular are contextually equivalent. Thus the left-to-right direction of the above theorem
is straightforward and the force of the theorem lies in the right-to-left direction: if the
termination behaviour oft]e and[¢']e in any context is the same, thérmnd:’ must be
a-equivalent.

Remark 2.4 (Representings,). Since a-equivalence is a decidable relation between
A-terms, it makes sense to ask whether, given a type declaration for booleans

bool = True of unit|False of unit

11we have formulated the definition using the termination relaipout note that in view of Fa.1, we could
have used the big-step evaluation relation
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we can strengthen the above theorem and represgity a function expressioneq :

(0 x §) — bool in Mini-FreshML. Such an expressiareg does indeed exist in Mini-
FreshML. Rather than give it explicitly, it is clearer to give the Fresh O’Caml version of it,
since Fresh O’Caml’s richer syntax (in particular it's richer language of patterns and built-in
boolean operations) enables one to expaegsmore clearly?

let rec aeq(t,t’) = match t,t’ with
Var x, Var x’ -> if x=x’ then true else false
| Lam(<<x>>y),Lam(<<x’>>y’) -> aeq(y, swap x and x’ in y’)
| App(x,y), App(x’,y’) -> aeq(x,x’) && aeq(y,y’).

The Mini-FreshML version okeq has to use nestethtch-expressions and simple pat-

terns to express the above more complicated patterns and also to express the boolean con-
junction && The precise sense in whiceq represents=, is described in Section 4

(see Remark 4.11).

3. Denotational semantics with FM-cppos

The FreshML language design was driven by the ability of the Fraenkel-Mostowski
permutation model of set theory with atoms to model bindingguivalence and freshness
of names [4]. So to give a denotational semantics to Mini-FreshML we could develop the
usual notion of pointed, chain-complete poset in the axiomatic FM-set theory of [4]. This
FM-set theory is just classical ZF set theory with urelements and an axiom asserting a “finite
support property” (that is incompatible with the axiom of choice, it should be noted). So the
fundamental constructions of domain theory, such as limit-colimit solutions of recursive
domain equations, can be carried out in that axiomatic theory. Such a change of mathematical
foundations demands a certain meta-logical sophistication from the reader which can render
the results somewhatinaccessible. Soinstead here we take a less sophisticated, but equivalent
approach and work with domains in FM-set theory as ordinary (partially ordered) sets
with extra structure giving the effect on their elements of permuting atbhahichever
approach one takes, the main point is that domains in this new setting admit some relatively
simple, but novel constructions for names and name-binding with which we can give a
meaning to the novel features of Mini-FreshML. We concentrate on describing those new
constructs; a fuller development of FM-cppos is given in [16].

Recall from [11,18] that a~RrM-setis a setX equipped with amction

permA) x X — X, written as(w, x) — 7 x,

of the groupperm A) of permutations of the sét of atoms (thus - x = x, wherez is the
identity permutation; an¢rron’) - x = 7 (7’ - x), whereo is composition of permutations).

12|ndeed, the user has no need to make this declaratiar@in Fresh O’Caml, because the language has a
built-in structural equality functior, which at the typ@ declared in§) already implementseq; so one can just
uset = t’ instead ofaeq(t, t’).

13 Strictly speaking, what we call an FM-cppo below corresponds to an object in the universe of Rvhisbts
has empty suppognd is a cppo in the axiomatic FM-set theory.
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Furthermore, itis required that everye X isfinitely supporteé-meaning that there exists

a finite subseti € A (called a finitesupportfor x) such that(a a’) - x = x holds for
alla,a’ € A —a. (Here(a a’) € perm(A) is the permutation just interchangimgand

a'.) Eachx € X in fact possesseslaastfinite support which we write as supp); thus if

a,a’ € A — supfx), then(a a’) - x = x. A functionf between FM-setX andY is called
equivariantif 7- (f(x)) = f(n-x) holds for allr € perm(A) andx € X. The category of
FM-sets and equivariant functions is rich in properties, being in fact equivalent to a well-
known Grothendieck topos (of continuoGssets, wherG is the topological group given

by perm(A) endowed with the finite information topology). Here we will just describe
finite products, power-objects and exponentials in this topos, since the associated notions
of finitely supported subset and function will be important in what follows.

Definition 3.1 (Finite product3. The product ofX andY in the category of FM-sets and

equivariant functions is given by the usual cartesian product ofXetsY def {(x,y) |

x € X A y € Y} with permutation action given by - (x, y) gef (m-x,m-y). Itis not
hard to see that with this actiqm, y) is finitely supported becauseand y are, and that
Suppx, y) = suppx) U supfy). The projection functionsX «— X x Y — Y are
equivariant and mak& x Y into the categorical product & andY. The terminal object in

this category is just a one-element set 0} endowed with the unique permutation action

0% 0,

Definition 3.2 (Finitely supported subsets and functipné subsetS < X of an FM-set

X is defined to be finitely supported if there is a finite set of atants A such that for
alla,a’ e A—aandallx € S, (a d’)-x € S. The set of all finitely supported subsets
of X becomes an FM-set, denot@lX, once we endow it with the permutation action
given byn-S = {n-x | x € §}. TheequivariantsubsetsS C X are by definition those
finitely supported subsets for which we can také be empty (so that € S implies
(aa’)-x e Sforalla,a’” € A). (Itis not hard to see that the subobjects<ah the topos
of FM-sets and equivariant functions are naturally in bijection with the equivariant subsets
of X, with inclusion of subobjects corresponding to inclusion of subsetspands indeed
the powerobject oK in this topos.) A functiorf between two FM-setX andY is defined
to be finitely supported if its graph is a finitely supported subset of Y; it is not hard

to see that this is equivalent to requiring that there be a finite sabsef\ such that for
alla,a’ e A—aandallx € X, (ad) - (f(x)) = f((ad)-x) (i.e.fis “equivariant

away froma”). The set of all such functions becomes an FM-set, den&tédonce we

endow it with the permutation action given hy f e )x e Xon- (f (1. x)), where
n~1is the inverse of the permutation (This is indeed the exponential ¥fandY in the
topos of FM-sets.) Note that the morphisms frito Y in the category of FM-sets, i.e. the
equivariant functions fronX toY, are precisely the elementsiof that have empty support.

Remark 3.3. The finitely supported subsets of an FM-set are closed under the usual
boolean operations. In particular, if a finite set of atams A witnesses thaf € X

is finitely supported, then it also witnesses that the compler@ént S) € X is finitely
supported.
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We will make use of a version of Tarski’s fixed point theorem in the category of
FM-sets:

Lemma 3.4. AnFM-complete latticés an FM-set L equipped with an equivariant partial
order relationC such that every finitely supported subset has a greatest lower bound. Given
such an Levery elemenf e L’ which is monotone possesses a lépst-)fixed point

Proof. The subsefx € L | f(x) C x} is supported by the same finite set of atoms that
supportsf and therefore has a greatest lower bound. As usual, this is the least (pre-)fixed
point off. [

Definition 3.5 (FM-cpos and FM-cppgds An FM-cpois an FM-setD equipped with an
equivariant partial ordeE that possesses least upper bounds (lubs) fap-ahainsdy C

d1 C dp C --- that are finitely supported, in the sense that there is a finite subsef
such thatva,a’ € A —a.Vn.(a d') - d, = d,. (This is equivalent to requiring that the
subsetd,, | n>0} C D be finitely supported in the sense of Definiti8r2.) AnFM-cppo

is an FM-cpo with a least elemett, note that sincel. = (a ') - L (since.L is least) and
hence(aa’)- L C (ad’)-(aa’)- L = 1, we have supfl) = @. A morphismf of FM-
cpos is an equivariant function which is monotone and preserves lubs of finitely supported
w-chains. A morphism of FM-cppos, writtefi : D — E, has the same properties but
is also strict (L) = 1). FM-cpos (respectively FM-cppos) and their morphisms form a
categoryFM-Cpo (respectivelyFrM-Cpo | ).

Lemma 3.6(Least fixed poin}s Given an FM-cppo Devery function f from D to D that
is finitely supportedDefinition 3.2), monotone and preserves lubs of finitely-supported
w-chains possesses a leggte-)fixed pointfix(f) € D.

Proof. Justnote thatthe classical constructiofixoff) asthe lub ofthe chaih C f(1) C
f2(L) € ---can be used here, because this chain is finitely supported (ythayfinitely
supportd, since as we noted above,always has empty support) ]

To each Mini-FreshML type we assign an FM-cppr |. To do so we make use of the
following constructions on FM-cppos: smash produet® —), coalesced sum~® —),
lifting (— 1), function space-{— —), strict function space{——), and atom-abstraction
([A]-). All but the last three are just as for classical domain theory [2]. The FM-cppo
D— D' is given by the FM-set of finitely supported functionSom D to D’ (Definition
3.2) that preserve the partial order and lubs of finitely suppattethains; as usual, the
partial order onD— D’ is inherited fromD’ argument-wise. The FM-cppb— D’ is the
sub-FM-cppo ofD— D’ consisting of those functions that also presetvélhe FM-cppo
[A]D generalises to domain theory the atom-abstraction construct of [4, Section 5] and is
defined as follows.

Definition 3.7 (Atom-abstraction Given an FM-cpoD, the FM-cpo[A]D consists of
equivalence classda|d of pairs(a,d) € A x D for the equivalence relation induced
by the pre-order{a,d) £ (d’,d") iff (a ") -d = (a’ a") - d’ for some atonu” not
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in {a} U suppd) U {a’} U supd’); the permutation action is - [a]d def [m(a)](m-d)
and the partial order is induced by the above pre-order. The elemepig bfare indeed
finitely supported: one can calculate that s(ipp?) = suppd) — {a}. Finitely supported
w-chains infA]D possess lubs, which can be calculated as follows: given a ghdify =
[a1]d1 C - - - supported by a finite set of atoraspicking anya € A —a one can show that
(ap a) -do C (ag a) -d1 C ---is anw-chain inD supported byi U {a}; taking its lub,d
say, therja]d is a lub for the original chaifugldp C [a1]dy C - - -. If D has a least element
L, then so doefA D, namely[a] L (for anya € A).

As may be expected, all these constructions are functorial. Lifting and atom-abstraction
determine functoréM-Cpo; — FM-Cpo | ; the smash product and sum determine func-
tors FM-Cpo, x FM-Cpo;, — FM-Cpo, and the function and strict function spaces
determine functorM-Cpo’” x FM-Cpo, — FM-Cpo, . In fact the action of these con-
structs on morphisms enriches to locally continuous functors in the following sense. We
say that a functo¥ : FM-Cpo; — FM-Cpo, is locally FM-continuousf its action on
morphisms is induced by equivariant functiofis g : (D—E)— (FD—FE) that are
monotonic and preserve least upper bounds of finitely-supported chains. For example when
F =[A](—), Fp,g sendsf € (D—E) to the elementA] f € ((A]D—[A]E) that maps
[ald to[a']f ((a a’) - d) wherea’ is any atom not in sug’) U {a} U supad) (the result is
independent of which sucli we choose).

For simplicity, we assume there is a single declaratdrof a datatypé (and later take
the declaration to be (5% Following [9,2], the denotation a¥ is the minimally invariant
FM-cppo associated with a locally FM-continuous funckor FM—Cpo‘ip x FM-Cpo;

— FM-Cpo, :

Fe, D EF (e -aF, (- 1), )

where for each typethe functorf; is defined by induction on the structurews follows:

_ def
Fuite(D~, DN E1,,

_ def
Faane(D™, D) E'A |,
Fs(D~, DH) € D+,

_ def _
Fecnanesso(D~, DY)  [A]F(D™, DY),

Feo(D™, DY L' F(D~, DY) @ Fu (D™, D),
_ def _ _
Feoo(D™, DY) € F((DF, D7) —(Fy (D™, D).

Here(—)1 is the continuation mona@®) defined in the Introduction; 1andA ; are flat

FM-cppos on the FM-sets ¢ {T} (trivial action:zz- T def T) andA (canonical action:

na® n(a)). Just as Lemma 3.6 shows that least fixed points can be constructed in the

usual way, so can minimally invariant solutions to such domain equations be constructed in

14 For finitely many datatypes one just has to solve a finite set of simultaneous domain equations rather than a
single one.
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this setting using the normal technique of embedding-projection [@a#fkadapted to FM-
cppos, using finitely supporteo-chains where classically one uses arbitrarghains1®

So letD be an FM-cppo which is a minimal invariant solution to the recursive domain
equationD = F(D, D). ThusD comes equipped with an isomorphism

i:F(D,D)~D (8)

and (D, i) is uniquely determined by the fact that the identity@ris fix (¢), where¢ :
(D—D)—(D—oD) is given by (f) =i o F(f, f)oi L.

We may now define the denotatidn] of a typet as[z] def F.(D, D). Denotations of

typing contexts are given using a finite smash prod{Ef def Q. edomr) [T () ]. The

denotations of values (of type 7 in contextl"), of frame stacksS (of argument typec
in contextl’) and expressions (of type t in contextl”) are given by finitely supported
functions'® of the following kinds:

V[I'tv:1] € [I']—[7],
S[IHS:1—_] € [IT—[]",
E[lve:1] e [I—[]",
' | def " L

where for each FM-cpp® we defineD—- = D--1, . Intuitively, an element of 7]
models a frame stack accepting a value of typnd returningT for termination, orL
for divergence. Just as the behaviour of expressions is determined by any enclosing frame
stack, the denotation of some expression in context is then a funct[[@ﬁﬁﬁ that accepts
the denotation of a frame stack in context and returns either T. Thus, the denotations
of expressions in context make use of tatinuation monad—)+ based on an FM-cppo
of “answers” given by 1. We have the usual two monad operations(fey~, namely the
unitreturn € D— D+ given by

return (d) &' 16 € D*. 8(d) € D (9)
and the Kleisli lifting operationlift e (D—oE+t)—o(Dt+—E+L) that sends
f € (D—E')ande € D to

lift ()(e) & Je € EL.e(Md € D. f(d)(e)) € EXL. (10)

We use the informal notatiolet d < e in ¢'[d] for lift (f)(e) whenf is given by some
expressiore’[d] (involving d strict continuously).

The denotation of recursive function values makes use of the least fixed point operation
fix € (D— D)— D from Lemma3.6. The denotation of theresh expression makes use
of the elemenhew e (A | )+ mentioned in the Introduction:

E[I'tfresh: name] gef p € [I']. new.

15 logically more sophisticated viewpoint is that we are carrying out the usual construction, but in the axiomatic
FM-set theory{4] rather than in usual axiomatic ZFC set theory.

16 Note that these functions do not necessarily have empty support (covi$idler : name || for example, where
a € A) and are thus not necessarily morphisms in the catefghyCpo | .
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Herenewis the element of A | )1+ that sends eache (A | )+ toa(a) € 1, whereais any
element ofA — suppa) (for eachx, there are infinitely many sucnbecauseé\ is infinite

and supp) is finite); this gives a well-defined (strict, continuous) function because for any
othera’ € A — supfo) we have(a a’) - o = « (since neithera nora’ are in the support

of «) and hencew(a) = ((a a’) - ®)(a) = (a d') - (a((d’ a) - a)) = (a a’) - (a(a’)) = a(a’)
(where in the last step we use the fact that ang 1, satisfies(a a’) - x = x). The
denotation oflet <<x>>x = e in ¢’ expressions involves a similar use of choosing
some frestu € A (mirroring the dynamic allocation involved in the evaluation of such
expressions), noting that the result is independent of which féstthosent’” The full
definition of £ — ] by induction on the structure of expressions is given in Appendix C;
the definition of[ — | by induction on the structure of values and making usgfof | is
given in Appendix D; the definition e[ — ] by induction on the length of frame stacks and
making us of bott€[ — | and V[ — ] is given in Appendix E. The “continuation-passing
style” of these definitions is self-evident. Note that since a value is in particular an expres-
sion, it has a denotaticquavalue,V[I't-v : ], andquaexpression[I'+ v : ]. The two
denotations are related via the unit (9) of the continuation monad:

Lemma 3.8. If visavalue satisfying v : t,thenE[ '+ v : 1] =returnoV[I'tv: 1] €
[T

For closed values of typet, we write V[ v] for the elemenV[ +- v : 7](¥) of the FM-
cppo[ ] and use a similar convention for closed frame stacks and expressions.

Remark 3.9 (FM-sets of syntgx Note that the expressions of Mini-FreshML form an FM-

set. The action of a permutation of atoms on an expressiisngiven by applying the
permutation to the atoms occurring in any syntax tree represesfiegall that we identify
expressions up ta-conversion of bound value identifiers); and then the support of an
expression is in fact the finite set of atoms occurring in the expression. Furthermore, it is
easy to prove that the denotational semantics gives equivariant functions on syntax, so that,
forexamplea @’) - E[I'Fe:t](p) = E[T'F(ad) - e: t]((a a’) - p). In particular it is the

case that sugg[I't-e : t](p)) S suppe) U supfp).

We wish to use our denotational semantics to prove operational properties of Mini-
FreshML expressions. An important stepping-stone in this process is the construction of
certain type-indexelbgical relationswhich relate domain elements to values, frame stacks
and expressions respectively:

<¥a| C [z] x Val, <§tk C [IJ}L x Stack, <P c [M]M' x Exp;,

where Val is the set of closed Mini-FreshML values of typeStack is the set of well-
typed frame stacks expecting an argument of typed Exp is the set of closed expres-
sions of typer. These relations are all required to be equivariant subsets in the sense of
Definition 3.2. We also require them to be suitably admissible; for example, for each

T Thisis just a manifestation of the “some/any” property of fresh ngdheBroposition 4.1Q]
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v € Val;, we require tha{d | d<1"a'v} to contain_L and be closed under lubs of finitely
supportedy-chains in[z] (and similarly for<$% and <¢**). Finally, the relations should
satisfy the following properties that follow the structure of types:

d<l. 0 (11)
d<@ 4o d#1=d=a, (12)
d<f'cy (v) & 3dy € [ox].d = (0N (dp) A di<tv, (13)
[a] d<9R) L essr<<a>>v & (ad”) - d<® @ d”) v
for somea € A — supga, d, a’, v), (14)
(d1, d2)<Y, (v1, v2) & d1<9@v1 A da<1¥luy, (15)
d<® ve V<@ .dd )<e,x"v v, (16)
o<¥s & Vd<¥a'v.a(d) =T = (S,0)], (17)
e<Pe & VaaS.e(0) = T = (S, e). (18)

In clause 13),1 is the isomorphism from (8) andjne Dy—D1 & --- & D, is thekth
injection into a coalesced sum. Clause (14) makes use of the support of a tuple; as in
Definition 3.1, supfu, d, a’, v) = {a} U suppd) U {a’} U suppv) (and supgv) is just the
finite set of atoms occurring in the valwe—see Remark 3.9). In clauses (16) and (17),
the notationvd <¥v.(—) stands foivd € [¢], v € Val;.d<¥®v = (—) (and similarly for
<1§tk in (18)). Clauses (17) and (18) define the logical relations for frame stacks and for
expressions in terms of that for values. Clauses (11)—(16) serve to eté{ﬂm compound
typest in terms of <@, and <@ = F (<@, <@) is a fixed point of a certain operator
acting on relations (whose definition we give in detail below). Unfortunately, due to the
negative occurrence 0ﬁ¥a' on the right-hand side of the clause (16) for function types,
this operator is non-monotonic; so it is non-trivial to deduce the existence of a suitable
relation <1‘(§a'. We do so by adapting the techniques of [9] to the world of FM-sets, as
follows.

For each typer, let R, be the set of finitely supported subsétsC [t] x Val, with
the desired admissibility property, namely that for each Val,, the subsetd | (d, v) €
R} containsL and is closed under lubs of finitely supporteechains in[<]. This be-
comes an FM-set if we define the permutation actionrrof permA) on R € R to
berw-R def {(m-d, m-v) | (d,v) € R}. Partially ordering its elements by inclusion, it
is not hard to see th&®, is in fact an FM-complete lattice (cf. Lemma 3.4), the greatest
lower bound of a finitely supported subset®f just being given by intersection. Given
R™,RT € R, define F,(R~, R") € R, by induction on the structure of the type
as follows:
def

Famit(R™, RN ={d, 0) | del},
Faane(R™ R*)“Ef{u a)l aeAyU{(a,a)| a €A},
Fé(R R+) def

d(Ef{([a] d,<<a'>>v) | 3a”"eA—supgR~, R, a,d,d , v).

((@a”)-d, (a"a") -v)eF(R™, R},

Fe<names>t(R™, RY)
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Foxo(R™, RN E(((d. d), 0. 0)) | (d.v) € Fs(R™.RT) A

(d/7 U/) € F’L'/(R_v R+)}7

def

Fry(R™, RN = {(d, fun f(x) = e) |

V(d', V) € F(RT,R™), 0 e [/]", S € Stack..
V(" v") e Fp(R™,RY).a(d") =T = (S,v")])

=dd) (o) =T = (S, (fun f(x) = e) V)| }.
(The notation {d, d’)" in the clause for product types indicates the smash pair such that

(dv, da) def Llalelw] when either of/; € [71] andd; € [2] are bottom). Assuming the
single datatyp@ has a top-level declaration as #)(we defineF (R~, RT) € Rs by

def

F(R™,RT) = {(ink(d), Ck (1)) | 1<k<n A (d,v) € Fp(R™, RT)}.

Then the relation we seek is a fixed poi? = F(<'@, <%@), with the value logical

relation at other types given by'a! 2 FT(<‘(§a', <yal).
The definition ofR~, R* — F(R™,R™) |mpl|es that it is an equivariant function
that is order-reversing in its first argument and order-preserving in its second. Therefore

F8(R™,RT) = def (F(RT,R7), F(R™, R")) determines a monotone equivariant function

from the FM-complete Iatticézgp x R to itself. Therefore we can apply Lemr3a4 to

deduce that it has a least fixed poifd,”, 4™) say. Thusd~, 4™ € R satisfy

e A" =FA , A)yandF (4™, A7) = 4%,

e ForanyR™, Rt € Rs,if R~ € F(RY,R™)andF(R™,R") € R*,thenR™ C 4~
andA™ C RT.

e sup4d™) =@ = supg4™).

From this it follows tha™ € A4~. So to construcmva' it suffices to see that™ € A™, so

that we can takej"a' A~ = A" . To prove that mclusmn holds, we appeal to the minimal

invariance property of the FM-cpd@] = D and the isomorphismin (8). First, one can

prove from the definition of that the subsetf € (D—D) | V(d,v) € A~.(f(d),v) €

AT} is mapped to itself by the functioh = i o F(f, f)oi~1: (D—D)—(D—oD) whose

least fixed point is the identity oD. Since that subset containsand is closed under lubs

of finitely supportedn-chains, it follows from the construction 6k (¢) in Lemma 3.6 that

the subset contains the identity Ba—which means that— < A™, as required.

We next give the “fundamental property” of the logical relations we have just constructed.
To state the property we need to introduce some terminologydhre-substitutionsy,
which are finite partial functions from value identifiers to values. Given sughwee write
e[y] for the result of the capture-avoiding simultaneous substitutiofa(ej for x in e as
x ranges over doifyy); similarly for value-substitutions into valuaegy/], and into frame
stacksS[y/]. Given a typing context’, let Subst be the set of all value-substitutiotiswith
domain doniI") and such that for eache dom(y), y(x) is closed. Giveny € Subst and
p € [I'], write p<iri to mean that for each € dom(p), p(x)<1\1/~a}|x)l//(x).
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Lemma 3.10(Fundamental property of the logical relationgFor all typing contextsl’,
valuesv, frame stacks S and expressionsve have that

T'Fv:z = Vo< V[ Fv: t]p<@uly],
I'kS:t—__ = Yp<ary.S[TFS:1—_]p<Sks[y],
I'ke:t = Vp<ary.E[te: t]p<sPely).

Proof. These properties follow by induction on the derivation of the typing judgements,
using the definitions of’[ — |, S| — [, £[ — ] and the propertiesl()—(18) of the logical
relations. [J

Theorem 3.11(Computational adequayy GivenI'le : 7,y € Subsf and S € Stack,
then

(S,ely)) & E[lte:tJV[YDS[S]) =T,

whereV[y/| € [I'] maps eacht € domy) to V[y(x)]. In particular for all closed
typeable expressions € Exp,, valuesv € Val, and frame stacks < Stack, we have
(S, e)} <E[e](S[ST) = T and(S, v)} &S[STV[v]) = T.

Proof. The first sentence follows from the second one using a substitutivity property of the
denotational semantics

E[rte: VY] = Elely]] (19)

that is proved by induction on the structureeqfind similarly for values and frame stacks).
The computational adequacy property for closed expressions is established by first proving
asoundnesproperty

(S.e) = E[e]S[Sh=T (20)

by induction on the derivation dfS, ¢) . The reverse implication is a corollary of Lemma
3.10: by the fundamental property of the logical relation we [#ed <15 e andS[ S <SKs;
then properties (17) and (18) give the required implicationl

4. Extensionality and correctness results

We now examine how our denotational semantics of Mini-FreshML can be used to prove
the correctness result stated at the end of Section 2 (Theorem 2.3), which we recall centres
around the notion of contextual equivalence. The quantification over all contexts that is part
of the definition of contextual equivalence makes it hard to work with directly. Instead we
make use of an alternative characterisation in terms of Mason and Talcott’s no€d-of
equivalencé5]. 18 We prove that this coincides with Mini-FreshML contextual equivalence
using the logical relation from the previous section.

18U = “Closed Instances of all Uses”.
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Definition 4.1 (ClU-equivalenck We writeI' e ~jy €’ : T to indicate that the typeable
expressiong ande’ of typet (in contextl’) are ClU-equivalent. This equivalence relation
is the symmetrisation of th€lU-pre-order relation, writtenI"te<gye' : t, which by
definition holds if["'Fe : 7, I'+- ¢’ : 7, and for all closing substitutiong € Subs} and all
closed frame stackg (S, e[y/]) | implies(S, ¢'[}/]){. We writee < e’ (respectivelyriy)
whene ande’ are closed expressions afid e <j,e’ : T holds for somer.

To show that ClIU-equivalence coincides with contextual equivalence we need to turn
frame stacks into (evaluation) contexts, as follows. The lemma is proved by a routine
induction on the structure of frame stacks,

Lemma 4.2. Define an operation mapping frame stacks S to contgxt® by induction
on the structure of S

T E -1 TS E (Ts)HIFL

Then for all stacks S and expressiong[& 7 (S)[e])| < (S, e) .

Theorem 4.3(Coincidence ofqix With ~¢j,). For any typing contex!” and expressions
e, ¢ itisthe case thal Fe < e’ : Tiff I'Fe< e’ : t. Thus the relationssc and ~jy
coincide

Proof. We prove that< oty and < jy both coincide with the relatiorg ¢ defined from the
denotational semantics and the logical relation as follows:

Tre<ee i1 B e et A Vo<iry.E[Tte: t](p) <z e Y],

wherel |e, ¢’ : 7 is the obvious conjunction of typing judgements. From the fundamental
property (LemmaB.10) we havd ' +e : T impliesI' ke <ee : 7; and from property (18) of
the logical relation for expressions and the definition<gfi, we have that<, is closed
under composition with< ¢j, on the right. Therefore

Ire<gue :t=>Tte<ee i 1. (21)

The compositional nature of the denotational semantics and the fundamental property of the
logical relation ensure thatlf F e < e’ : 7 holds, then so doa8[e] < C[¢'], for any context

C[—] for which C[e] andC[¢’] are closed well-typed expressions. Then by computational
adequacy (Theore®11) and property (18) of the logical relation we have thatC[e]) |
implies([], C[e'])|. Therefore

TFe<ee :1=>TFe<Lewe 1 1. (22)

To complete a circle of implications we just have to prove that the contextual pre-order is
contained within the CIU-pre-order. To do so, we first have to show that the “instantiation”
part of CIU, i.e. applying a value-substitution to an expression, is contextual. But we now
know from 1) and (22) that every ClU-equivalence is also a contextual equivalence. In
particular we have8-value conversion

IF(Eun £(x) = e)(v) e elv/x] (23)
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since the corresponding ClU-equivalence is immediate from the definitiorg;gfand

the termination relation—, —) . Because of the way they are definedy and~x are
compatible with the various expression-forming constructs of Mini-FreshML, i.e. when-
ever e <ce’, then Cle] < xC[e’] for any contextC (and similarly for~¢). Thus if

I x:the<eye :Tandl Fv:t,thenlF (fun f(x) = e)v<e(fun f(x) = e)v:7;

and so by 23),I' Fe[v/x]<cxe’'[v/x] : 7. From this it follows that we have

I'Fe< e : T = Y € Subst.e[Y] <cewe' [Y]. (24)

SoifI'te< e : 7, then for all closing value-substitutiogse Subsf and frame stacks
S € Stack, using the congruence property €f and 4) we haveT (S)[e[Y]] < o T (S)
[¢'[¥1]; hence([l, T (S)[e[¥11)) implies that{[], T(S)[e'[¥11)} and so by Lemma 4.2,
(S, e[y]) implies (S, ¢'[}])|. Therefore

I'te<cxe ;1= T'Fe<gue i1 (25)

and the circle of implications is complete[]
Combining Theorem8.11 and 4.3, we have:

Corollary 4.4 (Equality of denotatiop If E[I'Fe:t] = E[I'Fe : 1], then'Fe =iy
¢’ : 7. In particular, if e ande’ are closed expressions of the same fypen&e] = £[€']
impliese ~¢x €'

Remark 4.5. This result can be used to verify some algebraic identities sud) asd (2).
Forexample, if " e : T andxis an identifier not occurring free @ then itis straightforward
to prove (by induction on the structure gfthat

E[TFe:t](p) =&, x — ' Fe:t](plx — d])
foranyp e [I'], typet’ andd € [[7']. Hence for any € [I'| andg € [[r]]L

E[I't+1let x = fresh in e:1]po
= E[I't+fresh: name|p(la € [name].
&[T, x :name ke : t](p[x — al)o) by definition of £] — |
= &I, x :name ke : t]|(p[x — al)a for somea € A — supge, p, o)
=¢&[I'te:t]pa from above

Thus by Corollary4.4,e ~cx let x = fresh in e holds whenx is an identifier not
occurring free ire. The identity (2) is similarly straightforward to verify.

Although equality of denotation implies contextual equivalence, we do not believe that
the converse is always true. In other words the denotational semantics is not “fully ab-
stract”, not only for the usual reasons concerning sequentiality [14], but also because of
the subtle examples of contextual equivalence that hold when dynamically allocated names
are combined with higher order functions: see [12,13]. We do not settle this question here,
because to do so would require the development of more subtle techniques for calculating
with our continuation-based denotational semantics. Instead we concentrate on using the



46 M.R. Shinwell, A.M. Pitts / Theoretical Computer Science 342 (2005) 28—-55

denotational semantics as a tool for establishing extensionality and correctness properties
of Mini-FreshML contextual equivalence. We now have all the tools needed to prove these
properties.

Corollary 4.6 (Extensionality.

() Forunitvalues I v ~¢x v/ : unit iff v =0 = ().

(i) For name valuesk a ~x a’ : name iff a = a’ € A.

(iii) Fordata valuest Cy (v) ~eix Cp (V) : S iff F v~k v 2 oy

(iv) Forpairvalues F (v1, v2) ~ctx (v], v5) 111 X 121ff F v1 Retx v i Tr@Nd F v2 Ay
V)t To.

(v) For name-abstraction values- <<a>>v ~¢x <<a’>>v’ : <<name>>7 iff + (a a”) -
v~k (@’ a”) - v’ : © for some(or indeed for every a” € A — suppa, v, a’, v').

(vi) For function valuesF f ~¢x f’: 1 — 7 iff for all closedv of typer, F f v ~cx
vt

Proof. First note that by Theorem.3, it suffices to prove these extensionality properties
hold with respect te=gj,. In each case, the left-to-right implications can be proved directly
from the definition of ClU-equivalence. Using this fact, together with properties (11)—(16)
of the logical relation for values, one can show by induction on the structure of values that
the relation

TF'row' @t E vt A Vp<ary V[IEv = t](p) <V [y]
is closed under composition witd ¢j, on the right. It follows from this and the reflexivity
of <, (Lemma3.10) that

Frogu' 1= ko @t

Properties 17) and (18) together with Lemma 3.8 ensure thgtis contained in<e; and

we know from the proof of Theorem 4.3 that, coincides with<j,. Therefore all in

all, we havel' Fv<\v' : T holds iff I' v <jyv’ : 7. Using this, each of the right-to-left
implications in the extensionality properties then follows from those required of the logical
relation in (11)—(16). (I

We now turn to the issue of relating object language and metalanguage behaviours as
discussed at the end of Section 2, using the exampleéefms for the object language and
the Mini-FreshML datatypé declared in (5).

Lemma 4.7. For each A-term t define a Mini-FreshML valugt], by induction on the
structure of t as follows

[x]v def Var(x),
.1l E Lam(<<x>>[1),
/1y def ’
[t 'l = App(Itly, [ ).
Then for anyi-terms { ¢ and any value-substitutiogr that maps the free variables of t
andt’ to atoms injectively (.e./(x) = ¥(x') = x = x’), we havdr]y[¥/] ~ux [t V[ ]<

t=4t.
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Proof. We make use of the faf4, Proposition 2.2] thak-equivalence foi-termst € A
can be inductively defined by the following rules:

xx") =y X' x")-t

( %

¥ e Vid x” € VId — suppx, 7, x’, ') n=gty =t
X =a X Jx.t =g Ax'.1’ =41t

Then the lemma is proved by induction on the size;, ohaking use of the extensionality
properties of Corollarg.6. [

Now consider translating &termt into an expressioix]e as in (6), then applying an
injective value-substitution of atoms for free identifiers to get a closed expres$ibf]
and finally evaluating it. Bound variablestiget translated into identifiers boundfteesh,
which give rise to fresh atoms in the result of evaluatinig[y/]. So we can expect that
result to be contextually equivalent to the valug [y/] provided the bound variables of
t are distinct from each other and from the free variables—in other words, provided the
“Barendregt variable convention” [3, Section 2.1.13] holdg ftiiis convenient to formalise
that convention via a structurally inductive definition. For disjoint finite subgetsof Vid
we define a subset(x; X') C A inductively by the following rules.

X EX re A(fx}UX,X) x¢Xx
x € A@, ¥) Ax.te AR, {(x}UX)
te AR T) e AFT) TANT=0

1t e A(x, X7 UXY)

If t € A(x, ) then: the free variables bfire contained withii; the occurrences of bound
variables oft are mutually distinct and are contained withih the sets of free and bound
variables oft are disjoint; and the support of—i.e. the set of all variables within—the term
tis contained withirx Ux’. Note that each terme A is a-equivalent to a term ind (x, x’)

for somex, ¥’. One can show by induction on the derivation from the above rules that if
t € A(x,Xx"), then for any injective substitutioyr : Vid— A with dom(y) = x UX itis

the case thaf[[r]e[¥/]] = E[[¢]v[¥]1]. Hence by Corollary 4.4 we have

Lemma 4.8. For t € A(x,x’) and any injective substitutiogi : VId— A with dom(yy) =
X U, itis the case that [t]e[V/] ~cix [tIvIY] : 0.

We are now in a position to prove the correctness theorem.

Proof of Theorem 2.3. As we observed earlier, one can show by induction over the rules
defininga-equivalence ofi-terms (given in the proof of Lemm&7) that ifr =, ¢’ then

[t]e and [t']e are the same Mini-FreshML expression (since we identify Mini-FreshML
expressions up te-equivalence of bound value identifiers). So we just have to show that

{x0 : name, ..., x, : name} F[tle ~cix [t']e : 0 impliest =, t’. By suitably renaming
bound variables we can find a finite s&tand termsy, 1; € A(x, x') such that; =, ¢ and
11 =4 t';and hencérile = [tleand(t]]e = [t'le. SOif{xo:name, ..., x, :name} I [t]e ~cix

[t']e: d,then{xp : name, ..., x, : name}  [r1]e ~ctx [11]e : 6. Then choosing some injective
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substitutiony : VId— A with domainx U X', we can apply Lemma4.8 to conclude that
F [ralv[Y] ~cex [111v[¥] 2 0. Finally, we apply Lemma 4.7 to obtain=s,, 11 =, 11 =, t'.
O

Fix a bijectiony : VId =~ A between the countably infinite sets of value identifiers and
of atoms. Lemma 4.7 tells us that the mapping- [¢]v[i/] induces an injective function
from «-equivalence classes afterms to contextual equivalence classes of closed values
of typed. In fact this function is a bijection: from the typing rules of Mini-FreshML (see
Appendix A) it is not hard to see that every closed value of typaust be of the form
[£]v[y] for someAi-termt. The contextual equivalence classemoh-valueexpressions of
typed are more complicated; but as the final theorem shows, a closed expression &f type
is either divergent or contextually equivalent to the “restriction” of some value. To prove it
we need the following property of divergent terms, which is a corollary of Theorems 3.11
and 4.3.

Lemma 4.9(Divergent terms For a closed expression e of typand the divergent term

Q% (fun () = FGNO,

e e Q = VS.E[e](S[S]) = L VS.(S.e)) .

Theorem 4.10(Form of expressions For a closed Mini-FreshML expression e of the type
0 declared in(5), eithere ~x Q2 or

e Xty let x1 = fresh in --- let x, = fresh in v
for some value of typeo.

Proof. Using Lemmat.9 we see thatif e ~¢x Q2 doesothold, ther([], ¢) | . We can now
apply the forwards direction of Fact 2.1 to deduce that there exists some closed'value
typed and some finite set of atorasuch thag, e || @, v’ withsuppv’) C a. Pickabijection

Y Xx=~a, wherex = {x1, ..., x,} is a set of value identifiers, and replace each occurrence
of an atoma € @ in v" with x//_l(a) to obtain a (possibly open) value Thusv’ = v[/]

and it is not hard to see that~j, 1let x; = fresh in --- let x, = fresh in v.

Now apply Theorem 4.3.

Remark 4.11(Representing=,). In Remark2.4 we mentioned that,, can be represented

in Mini-FreshML, in a certain sense, by the function expressieq : (é x ) — bool
described there. We can now make the nature of the representation precise. One can prove
by induction on the structure dftermst and¢’ for any injective substitutiog/ : Vid— A

whose domain contains the free variables,of and whose image is the finite set of atoms

a say, that

t =4 t'= 3ad Da.a,aeq(tlv[y], [ YD U True(),a’),

t #4t'= 3@ Da.(@, aeq([tlv[Y], [' VY] | False(),a’).
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It follows from Theoren¥.3 and Lemma 4.8 that

t =4 V' = aeq([t]e[¥], [t'1e[¥]) ~cix True() : bool
t #4 t' = aeq([tle[Y], [F'1e[¥]) ~cix False() : bool.

5. Conclusion

Inthis paper we have begun to develop domain theory in the world of FM-sets. Rather than
change foundation and work in FM-set theory, we took a concrete approach and developed
FM-cppos as ordinary sets equipped with extra structure. Really the only change from
classical domain theory is that one must restrict to “finitely supported” functions and subsets.
What one gains is new constructs for fresh names and name-binding that can be combined
with familiar domain-theoretic constructs for modelling recursion both at the level of terms
and of types, to give the kind of refined semantics of fresh names and binders previously
associated with more complicated (we would claim) functor category techniques. We applied
the new approach, using a continuation monad with a very simple domain of “results”
(1.) to prove properties of FreshML. Variations on this theme seem very promising; for
example, replacing 1 by S—1, for a suitable (recursively defined) FM-cppo of “states”
should give a useful denotational semantics of ML-style references with no restriction on
the type of value stored—we plan to explore this elsewhere. Finally we should mention that
game semantics can also make good use of FM-sets to achieve new full abstraction results:
see [1].

Appendix A. Typing relation

The Mini-FreshML typing relation for expressionk/}-e : 7, is inductively defined by
the following axioms and rules.

(x e dom(I") andI'(x) = 1)

I'kx:z I'(Q) :unit
I'ke: o,
_— e A —— " (0 =¢C f - |C f
I'ta :name (a ) I'ECi(e) : 0 ( 1 of a1l 1Ca of o)
I'te:t TFe:7
I'F(e,e):tx7 I'Ffresh : name
I'Fe:name ['té:t I'Fe:name [I'teé’:name T'Fe':zt
I'F<<e>>e’ : <<name>>7 I'tswap e, e’ in ¢’ :1
Ifit—>7td.x:tke: 7 I'te:t—>t TItke:7
I'tfun f(x) = e:1—> 7 I'kee :1

I'te:7 TI',x:7Fe:t

I'Flet x = e in € : 1
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I'ke:v xtv T,x:7,x:7Fe:1

I'Flet (x,x’) = e in € :1

I'le:<<name>>t" [, x:name,x’ :7'Fe 7
I'Flet <<x>>x’ = ¢ in €' : 1

I'Fe:name I'te :name ['Fer:t T'lep:t
I'if e = ¢ then e1 else er: 1

I'ke:o
Vkell,...,n}.I',x:0rker: 1

I'Fmatch e with (C1(x1) -> eyl ---
| C,(xp) —> €,) i1

(0 = C1 of o1l ---1C, of a,)

Appendix B. Termination relation

(S, e)| is inductively defined by the following axiom and rules, wh&eanges over
frame stackse, ¢/, ... over expressionsy, v/, ... over values, and, a’, ... over atoms.
The definition is split into two parts for clarity.

Part 1: (S, v)| wherev is a value

(S, Cr (W) (So(v,[-D,e)d
([, v} (SoCr([=D,v){ (So([=].e),v)|
(S, W, m)H (S o<<v>>[—],e)l (S, <<v>>v')|
(So (W, [=D,v)l (So<L[=]>>e, v)| (So<<v>>[—],v)|
(Soswap a,[—] in €”, )] (Soswap a,d’ in [—],¢")]
(Soswap [—],¢ in €', a)l (Soswap a,[—] in ¢”,d’)|
(S, (aad)-v) (Sov[—] e}l
(Soswap a,a’ in [—],v)} (So[—]e,v)|

v=(fun f(x) = ¢e) (S,e[v/f,v/x]){
(Sov[-],v)]
(S, elv/x{
(Solet x = [—] in e, v)]
(S, elv/x,v'/x'])]
(Solet (x,x") = [-] in e, (v, V))]

a € A —supgs, v, e) (S,ela’/x, ((ad) -v)/x']
(Solet <<x>>x’ = [—] in e, <<Ka>>v)|
(Soif a = [—] then e1 else ep,¢€')|
(Soif [—] = € then e else ez, a)l

(S, e1)d
(Soif a = [—] then e1 else e, a’)l

ifa=d
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(S, e2)|
(Soif a = [—] then ey else ep,a’)|
v =Cr (), forsome Kk<n (S, ex[ve/xi])
(Somatch [—] with C1(x1) -> eyl ---1C,(xy) —> e, v)]

if a #ad

Part 2: (S, e)| where e is non-value expression

(SoCk([=D,e)l aeA—supps) (S,a)l
(S, Cr(ed) (S, fresh)|
(So ([-1.€).e)] (So<<[=]>>¢, e)|
(S, Ce,eN)l (S, <<e>>e')|
(Soswap [—],¢ in €’,e)] (So[—]1¢€,e)l
(S, swap e, ¢ in ¢”)] (S,ee)l
(Solet x = [—] in €, e)] (Solet (x,x’) =[—] in €, e)|
(S,1let x = e in €)] (S,1let (x,x’) = e in €')}

(Solet <<x>>x’ = [—] in €/, e)]
(S,let <<x>>x’ = ¢ in ¢€')}

(Soif [—] = ¢ then e1 else ep,e)l
(S,if e = ¢’ then e; else ey)|

(Somatch [—] with C1(x1) -> e1l---1C,(x;) => ¢4, )]
(S,match e with Ci(x1) -> e1l---1C,(xy) -> e, )]

Appendix C. Denotation of expressions

Notation In this and the following appendices, write.r for the strict function that maps
non-bottom elementsto t. Extend this notation in the obvious way to writ@ly, d>).t for
strict functionsD1 ® Dy— D and [a] d.t for strict functiong A]D—o D’. (Note that this
notation imposes no conditions as to which particular representati¥e| i is chosen: the
semantics below makes this explicit.) We also wtitg, d») to indicate a smash pair (such
that (dy, d») def 1 p,ep, When either otly € D1 andd, € D> are bottom). The notation
if a = a’ thend elsed’ meansd if aanda’ are equal and’ otherwise.

Thefunctior€[I'te: 1] € [[I"]}—o[[r}]lL mapsLl to itself and for non-bottom arguments
p is defined by induction on the structureesds follows:

o &[MFx:tlp E o e [P .0(p(x)
E[TF QO :unit]p ® e e [unit}]L.a(T)
E[T'Fa :name]p % o e [[name]f‘.a(a)
E[rtcile) = d]p def
o e [8] .E[TFe:or]plid € [or].0((ioingd))
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o E[I'F (e, ) 1 x]p def
Jo €[t x r’]}J'.E[[FI—e :1]p(Ad € [[7].
E[Tke :]pGd € [7].0(d,d")))
o &[I'+fresh:name]p L hew &'
Ao € [[name]J‘.O'(a) (anya € A — suppo))
o E[I'F<<e>>e’ : <<name>>7[p ef
Jo € [<<name>>t|".£[I'F e : name]p(Ja € [name].
E[Tkeé :1]p(id € [1].0(al d)))
o E[I'Fswap e, in ¢’ :1]p def
YRS [m]l.é'[[l“l-e :name|p(da € [name].
E[I'+é :namelp(la’ € [name].E[T'Fe” : t]|p(id € [7].
o((aa’)-d))))
o E[I'tfun f(x) = e:r—>‘c/]pd=8f
Jo €t — 'c’]]J‘.a(fix(id € t— v).Ad € [1].
EIr, f:ir—>T,x:the:T](plf = d,x +— d']))
o E[T'tee :1]p oef
Jo e[t E[Tte:1— v]p(d e [t — 7'].
E[r+e :1]p(id’ € [].d d' o))
e &[I'tlet x = ¢ in e’:‘z:]}pd:ef
YRS [[r]]l.é’[[l"ke 2t ]p(Ad’ € [7'].
E[r, x:7+e :t](plx > d'])o).
o £[I'Flet (x,x') = ¢ in e’:r]pdzef
Jo e[t E[TFe: 11 x t2]p(ildy, da) € [11 x 72].
E[r, x :t1,x 112k € : t](plx > d1, x" — d2])o)
o E[I'Flet <<x>>x’ = ¢ in € :1]p oef
la e [[r}]l.(‘,’[[l“l—e : <<name>>7'[p(A[a] d’ € [<<name>>7'].
E[r, x :name, x" : 7' ke’ i t](plx > a', x' — (a d’) - d'])o)
(anya’ € A — supfe, ¢, p,g,a,d"))
o E[I'Fif e = ¢ then e1 else ex:1|p def
/0 € [[r]]l.[Fl—e :name [p(la € [name].[I'Fe’ : name]p(la’ € [name].
if a=a'then€[I'ter:t]poelsel[I'tez:t]poa))
o &[I'tmatch e with -+ [Ce(xx) => el -+ :7]p def
Jo € [[r]]l.é'[[l“l-e :0]p(Ad’ € [0].E[T, xk : ok Fex : t](plxk +> dr))o)
(for the uniquek andd;, such thad’ = (ioing)dy).

Appendix D. Denotation of values (expressions in canonical form)

The functionV[I't-v : 1] € [I']—[t] maps.L to itself and for non-bottom arguments
p is defined by induction on the structure of the canonical foras given below.
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V[I'kx:<]p def p(x)

VII'tO :unit]p e+

V[I'ta :name]p '

VITHC () : 0]p E Going) (V[T Fv : o ]p)
V[IF(,v):txd]p ef V[I'tv:t]p, V[I'HV 7 ]p)
o V[I't<<a>>v : <<name>>1]p def [al] V[T'Fv:t]p)

V[I'tfun f(x) = e:r—>r/]}pd=6f
fix(Ad € [t — '].2d" € [7].
EIr, f:r—>1,x:the:T]plf — d,x +— d'])).

Appendix E. Denotation of frame stacks

The functionS[I'+S:1t—_] € [[F]]w[[v:}]l maps_L to itself and for non-bottom ar-
gumentsp is defined by induction on the structure $s follows. (The notatiofet a =
dind'[a]l meansd'[a] if d € A, is the non-bottom element given lay ¢ A and L
otherwise.)

o S[I'H[]:1—_]p d:efix e[7].T
S[TFSoC(=D : op—o_Jp T v € [o:].S[TFS : 5—_]p((ioine)v)
S[I'tSo([—],e) :1—_]p def

Jd e [[t].E[te:T]p(Ad € [T].S[TFS:1x]p{d,d"))
S[C'tSo u, [-] :T—_]p def

dd e[7].S[I'+S:txt]pV[[Fv:1]p,d)
S[I'+So<<[—]>>¢:name—_ |p def

Ja € [name|.E[I'Fe:t]p(Ad € [t].S[I'F S : <<name>>t[p([a] d))

S[I'+So<<v>>[—]:1—_](p) def
d € [t].S[I'+S : <<name>>t[p([V[I'Fv : name]p]d)

o S[I'tSoswap [—],¢ in ¢’ :name—_ |p oef

4a € [name].E[I'F ¢’ : name|p(la’ € [name[.E[I'Fe” : t]p(id € [1].
S[I+S:1—_Jp((ad)-d)))
o S[I'tSoswap v,[—] in ¢’ :name—_ |p oef
leta = V[I'tv:name]pin la’ € [name[.E[I'Fe” : t]p(id € [1].
S[TFS:1—_Jp(aa’)-d))
o S[I'FSoswap v,v in [—]:1—_]p oef
leta = V[I'tv:namefpinleta’ = V[I'Fv' :name]pin
id e [[t].S[TFS:1—_Jp(@ad)-d)
o S[TFSo[-]e:(t—1)—_]p oef
idet—1]E[te:t]p(Ad € [z].d d(S[T'FS:7—_]p))
o S[[+Sov[—]:1—_Jp&
de[t].V[Itv:t—>]pd)S[TFS:7—_]p)
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o S[I'+Solet x =[] in e:f—o_]}pdzef

e [t].E[ x:tre:T](plx = dD(S[TFS :1—_]p)
S[I'FSolet (x,x) =[] in e:tx7—_]p def
Ady, dp) € [t x 7'].
E[r x:t,x" ke ](plx > d1,x" > d2D)(S[TFS:1"—_]p)
S[I'FSolet <<x>>x’ = [—] in e:<<name>>T1—o_ |p Qe
Alald € [<<name>>t].E[I', x : name, x" : ke : 7]
(plx > d',x' v+ (aad) - d)(S[T'FS:1—_]p)
(anya’ € A — supds, e, p, a, d))

o S[I'+Soif [—] = ¢ then e1 else ex:1—_|p def
Ja € [name].E[I'+ ¢’ : name]p(ia’ € [name].
if a=a'then&[I'te1:t]p(S[T'FS:1—_]p)
else[I'tex: t]p(S[IFS :1—__]p))
def

S[I'FSoif v = [—] then e else ex:1—_|p =
Ad’ € [name|.if V[I'tv :name](p) =d’
then&[I'te1: t[p(S[IFS:1—_]p)
else€[I'tex: t[p(S[I'FS:1—_]p)
S[I'FSomatch [—] with -+ [Cr(xx) > exl--- :0—_Jp def
A € [0].E[ T, xk : o Fex : t](plxk > diD(S[TFS : 1—__]p)
(for the uniquek andd; such thatl = (ioing)dy).
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