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Abstract 

This paper introduces a new higher-order typed 
constructive predicate logic for fixpoint compu- 
tations, which exploits the categorical semantics 
of computations introduced by Moggi [8] and 
contains a strong version of Martin-Lof’s ‘iter- 
ation type’ [ll]. The type system enforces a sep- 
aration of computations from values. The logic 
contains a novel form of fixpoint induction and 
can express partial and total correctness state- 
ments about evaluation of computations to  val- 
ues. The constructive nature of the logic is wit- 
nessed by strong metalogical properties which 
are proved using a category-theoretic version of 
the ‘logical relations’ method. 

1 Computation types 

It is well known that primitive recursion at  
higher types can be given a categorical character- 
isation in terms of Lawvere’s concept of natural 
number object [6]. We show that a similar char- 
acterisation can be given for general recursion via 
fixpoint operators of higher types, in terms of a 
new concept-that of a fixpoint object in a suit- 
ably structured category. This notion was partly 
inspired by contemplation of Martin-Lof’s non- 
standard ‘iteration type’ in his domain theoretic 
interpretation of type theory [ll]. However, the 
key ingredient which allows the formulation of 
the concept of fixpoint object is the treatment of 
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computations using monads introduced by Moggi 
[SI, where there is a distinction between the ele- 
ments of a type a and computations of elements 
of that type-the latter being grouped into a 
new type T ( a ) .  Moggi’s computational meta- 
language XMLT [lo], contains the following for- 
mation rules: 

a type 

M E a  
Val (M)  E T ( a )  

Let x+-E.F(x) E T(P)  

Note These rules, and the others which appear 
in this paper, are presented in natural deduc- 
tion style, with discharged hypotheses enclosed 
in square brackets. Since there are several unfa- 
miliar variable binding operations in the syntax, 
we will also adopt Martin-Lof’s theory of expres- 
sions and arities-a Pq-lambda calculus over a 
single ground type of expressions with abstrac- 
tion denoted ( x ) e ,  application denoted f ( e )  and 
a multiple application such as ( f ( e ) ) ( e ’ )  abbre- 
viated to  f (e ,e ’ ) ;  see [la], for example. Finally, 
it should be noted that our syntax is a slight 
variant of Moggi’s. 

Intuitively, Val (M)  is the value M regarded as 
a trivial computation which immediately eval- 
uates to  itself; and Let x e E . F ( x )  denotes the 
computation which firstly tries to  evaluate E to 
some value x E a and then proceeds to  evaluate 
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F ( x ) .  These intended meanings are captured by 
three equational axioms: 

Let x+Val(M).F(x) = F ( M )  
Letx+E.Val(x) = E 

Let y+(Let x+E.F(x)).G(y) = 
Let x-e E .  Let y e F (  z).G( y) 

In addition, XMLT extends the simply typed 
lambda calculus: there are function types a-+@ 
with lambda abstractions Xz E a.F(x) and ap- 
plications ( M N )  satisfying the usual ,8 and 77 
equalities. The system also contains product 
types a x /? with (surjective) pairing ( M ,  N )  and 
projections Fst(M), Snd(M); and it contains a 
type unit with unique element () E unit. 

The categorical counterpart of this basic meta- 
language is the notion of a ‘Cartesian closed cat- 
egory equipped with a strong monad T’ [8, sec- 
tion 21. We shall refer to such structures as let 
Cartesian closed categories, or just let-ccc ’s. Such 
categories can be presented very simply using a 
language of categorical combinators for XMLT, 
extending Curien’s ccc combinators for the sim- 
ply typed lambda calculus [2]. 

Definit ion 1.1 The let-categorical combinators 
are defined by the following grammar: 

A typing statement for these combinators takes 
the form F : a + P ;  an equality statement takes 
the form F = F‘ : a + P.  The rules for deduc- 
ing these statements are those for ccc’s (see [6]) 
augmented by the following rules (where F x G 
abbreviates (Fst; F, Snd; G)): 

0 q : a  + T ( a ) .  

0 If F : a x P -+ T(y),  then 
Lift(F) : a x T(P)  + T(y)  (and 
Lift(F) = Lift($’’) if F = F’). 

( F  x Id); Lift(G) = Lift((F x Id); G) : 
0 If F : a i P and G : /3 x y -+ T(S) ,  then 

a x T ( 7 )  -i T(S).  
0 If F : a x p 3 T(y),  then 

(Id x 7); Lift(F) = F : a x /3 + T(y) .  

0 Lift(Snd; 77)  = Snd : a x T(P) -i T(P).  
0 If F : a x ,B -+ T(y) and G : a x y --+ T(S) ,  

then Lift((Fst,F); Lift(G)) = 
(Fst, Lift(F)); Lift(G) : a x T(P)  -+ T(S). 

Propos i t i on  1.1 There are mutually inverse 
translations between the above combinators, F : 
a ---t P,  and XMLpterms, G, satisfying G(z) E 
P [x E al. 

Combining this proposition with the fact that 
equational XMLT theories correspond to let-ccc’s 
[lo], one concludes that the categorical combina- 
tors give a simple presentation of this variety of 
category; in particular, the action of T on mor- 
phisms, the monad multiplication and the monad 
strength are all definable from the combinators. 
In terms of the XMLT language, the action of T 
on a morphism F : a -+ /3 yields 

T(F) %f Xe E T(a).Letz-ee.Val(Fz) 
: T ( a )  -+ T(P) .  

Similarly, the monad multiplication is defined by 

pff - Xe’ E T(Ta).Let e+e’.e dzf 

: T y a )  + T ( a )  

and the monad strength is defined by 

dzf 
tff$ - 

Xz E a x TP.Let ycSnd(z).Val((Fst(z),y)) 

: cr x T(P) -+ T ( a  x P) .  

A concept which is intimately bound up with 
the correspondence between the metalanguage 
XMLT and let-ccc’s is functional completeness, 
as used by Lambek and Scott [6] in the con- 
text of ordinary Cartesian closed categories. Here 
one must consider polynomial categories over let- 
ccc’s and show that they are functionally com- 
plete in a suitable sense. 

Definit ion 1.2 Let C be a let-ccc and let a be 
an object of C. The polynomial category C [ X ]  is 
specified by the following data: 

0 The objects of C [ X ]  are just the objects of 
C. 
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0 The morphisms of C[X] are equivalence 
classes of the let-categorical combinators 
generated by the morphisms of C ,  together 
with an indeterminate global element X : 
unit + a.  The equivalence relation is that 
generated by the equality rules in defini- 
tion 1.1 and the existing identities in C- 
so that there is a canonical inclusion of let- 
categories i : C - C [ X ] .  

Theorem 1.1 (Functional Completeness) 
Let C[X] be as above. For every morphism 
U : ,8 + y in C[X] there is a unique mor- 
phism A ( U )  : a x ,B --+ y in C such that 
((();X),ld);A(U) = U .  ( In  particular, each 
global element of y i n  C[X] is of the form X ;  F 
for some unique morphism F : a ---f y in C . )  

It is possible to  prove the functional complete- 
ness result simply by calculation with the cat- 
egorical combinators. Then one may derive 
the correspondence between the metalanguage 
and the category theory using the recipe de- 
scribed for Cartesian closed categories by Lam- 
bek and Scott [6]. We make the comment that 
when specifying the metalanguage terms gener- 
ated by a given category, terms Letx+E.U in 
the metalanguage are instances of morphisms 
(Id, E ) ;  Lift((Snd, Fst); A ( U ) ) .  When construct- 
ing the category from the metalanguage, all mor- 
phisms in the category are formed in the way one 
would expect. 

2 The fixpoint type 

Definition 2.1 In a let-ccc, a fixpoint object is 
specified by the following data: 

An initial algebra 0 : T( f ix )  + f i x  for the 
functor T(- ) .  Thus for any F : T ( a )  + 

Q there is a unique It,(F) : fix + a with 

A global element w : unit -+ T( f i x )  which 
is the equalizer of a ;  7 and the identity on 
T(f iz) .  In other words w is the unique fixed 
point of 0 ; ~  : T( f i x )  -+ T( f ix ) :  for any F : 
a + T ( f i x ) ,  F = F ;  ( a ;  71) if and only if F = 

(0; It@)) = ( T ( l t a ( F ) ) ;  F )  : T(fi2) -+ a. 

0 ; w .  

The usual category-theoretic considerations 
imply that the structure fix, U ,  w is determined 
uniquely up to  isomorphism, within the given 
let-ccc, by the above properties. One should 
also note that U ,  being the structure morphism 
for the intial algebra of an endofunctor, is it- 
self an isomorphism. (This fact will be used 
later in Proposition 3.1.) Using the relation be- 
tween syntax and category theory discussed in 
section 1, one can translate the definition of a 
fixpoint object into a corresponding extension of 
the metalanguage XMLT. This entails adding a 
new type fix, together with the term-forming and 
equality rules shown in Figure 1. The last rule 
in this figure, which expresses the uniqueness of 
It,(F), will be redundant in the full FIX logic of 
section 3: it is derivable from the induction rule 
for fix introduced in that section. 

Fixpoint objects are so called because they en- 
able one to define fixpoint combinators at all 
types of the form a+T(P).' 

Proposition 2.1 (Definability of fixpoint 
combinators) I n  the presence of a fixpoint ob- 
ject, one may define a combinator 

which satisfies (Ya,p F )  = ( F  (Y,,p F ) )  for all 
F E (a+TP)+a+TP. Indeed, defining 

ya,p = (F)lta+Tp(F, u ( w ) )  

where F is ( e ) ( X x  E cr.Let f -+e .F(s , f ) ) ,  then 

[f E a+TP,x E a] 
F(f ,z)  E TP 

and 

'In Moggi's computational semantics, a program of 
type p with a parameter of type (Y has a term of type 
a+T(,B) for its denotation; thus t o  interpret recursively 
defined programs, fixpoint combinators are only needed 
at  such types. 
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[x E T(Q:>l 
E = V a l ( a ( E ) )  F(z) E Q: E E T( f i~ )  

w = Val(a(w))  E = w  It,(F, .(E)) = F(Let neE.Val(l t ,(F, n ) ) )  

[x E T(4I  [. E fix1 [e E T(fifiz)l 
F ( x )  E a G(n)  E cr G ( a ( e ) )  = F(Let n e e . V a l ( G ( n ) ) )  N E fix 

G ( N )  = It,(F, N )  

Figure 1: Rules for fix. 

In order t o  extend the correspondence between 
category theory and metalanguage, discussed in 
the previous section, to  include fixpoint objects 
and types, one needs the following result about 
fixpoint objects in polynomial categories. 

Proposition 2.2 Let C be a let-ccc with a fix- 
point object. Then C [ X ]  also has a fixpoint ob- 
ject, given b y  i @ ~ ) ,  where i : C - C [ X ]  is the 
canonical inclusion functor. 

Proof The main idea for the proof is sketched. 
Suppose that F : T(P)  + /3 is a morphism in 
the polynomial category. By the functional com- 
pleteness result, the theorem will be true if we 
can find a unique morphism I t (F ) ,  which sat- 
isfies R(a;  It($‘)) = A(Lift(lt(F); q ) ; F ) ,  which 
on expansion of the definitions yields (Id x 
U ) ;  A ( l t ( F ) )  = (Fst, J ;  Lift(1; A(lt(F)); 7)); A ( F ) ,  
where 1 and J are certain canonical isomor- 
phisms. This equality holds in C; using Cartesian 
closedness and the fixpoint object, we obtain the 
result. 

0 

Adding a fixpoint type, coproduct types Q: + p 
and a natural number type nut to the metalang- 
uage XMLT, we arrive at  a system which extends 
Godel’s system T [4, Chapter 71 but which also 
admits sound translations of Plotliin’s PCF [14] 

(with either a call-by-value or a call-by-name op- 
erational semantics [9, section 51). A domain- 
theoretic model of this system is provided by the 
following category. 

Definition 2.2 Let Cpo denote the ccc whose 
objects are posets possessing joins of countably 
infinite chains, and whose morphisms are Scott- 
continuous functions, i.e. monotonic functions 
preserving joins of countably infinite chains. The 
objects of Cpo are not required to  possess a least 
element; we will refer t o  them as bottomless cpos 
in this paper. 

The operation of adjoining a least element to 
D E Cpo to give the lifted cpo DI = { [ d ]  I d E 
D} U {I} gives a strong monad on Cpo. In this 
case Cpo possesses a fixpoint object, namely the 
CPO 

with a : R l  -+ R the continuous function send- 
ing I to 0, [n] to n + 1 and [TI t o  T; and with 
w = [TI E RI. In this case, the combinators Y,,p 
defined above are indeed the usual least fixed 
point operators. 

R = (0 C 1 C . . .  T}, 

3 The FIX logical system 

The definition of an initial algebra a : T(R) -+ R 
for a functor T (  -) contains both an existence and 
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a uniqueness part. The uniqueness part amounts 
to  a form of induction principle, namely: 

Initial 7’-algebra Induction Principle. 
(Plotkin, Lehmann-Smyth [7, section 5.21.) To 
show that a subobject i : S 4 R is the whole 
of R,  it suffices to  show that the composition 
T( i ) ;  U : T ( S )  + R factors through i : S 4 0. 

When the functor is (-) + 1 on the category 
of sets, the initial algebra is the natural num- 
bers and the above statement is equivalent to 
the usual principle of mathematical induction. 
What about when the functor is lifting on Cpo? 
Restricting attention to  subobjects of domains 
which are specified by inclusive subsets (those 
subsets of a cpo which are closed under taking 
joins of countable chains), we can use the fact 
that whenever i : S 4 R is an inclusive subset 
of the cpo R = (0 C 1 C . . . C T}, then ( i ) ~  : 
SI + RI is just the inclusive subset of R I  given 
by {e E RI 1 Vd E R.[d] = e 3 d E S } .  Then the 
initiality property of R yields the following form 
of the induction principle, with S R inclusive: 

Ve E Rl.(Vn E R.[n] = e 3 d E S )  3 .(e) E S 
Vn E R.n E S 

Just as least fixed points are definable using the 
universal property of the initial (-)*-algebra R,  
so is Scott’s induction principle for least fixed 
points [16] derivable from the above rule. 

In order to  formulate this induction principle 
for a fixpoint object within the metalanguage, 
we introduce a constructive logic, called FIX, of 
properties of terms over the metalanguage. Thus 
there are strong connections between FIX and 
the traditional ‘axiomatic domain theory’ of LCF 
[13] and to Plotkin’s approach to denotational se- 
mantics using partial continuous functions [15]. 
However, our logic is inherently more construc- 
tive, since it is based on the notion of evaluation 
of a (possibly non-terminating) computation to 
a value, rather than on non-termination and on 
information ordering between (possibly partial) 
computations. 

Definition of the FIX logic: The FIX propo- 
sitions form a fragment of first-order intuition- 

istic predicate calculus [3] with equality, con- 
junction and universal quantification (over ele- 
ments of a given type), together with the follow- 
ing predicate constructors which implicitly con- 
tain forms of implication, disjunction and exis- 
tential quantification.2 

Given a proposition @(z) about z E a 
and a term E E T ( a ) ,  there is a proposi- 
tion Vx-+E.@(x) whose intended meaning 
is ‘Vz E o.(Val(x) = E 3 @(x))’, together 
with natural deduction rules which capture 
this intended meaning. 

Given a proposition @(z) about z E Q 

and a term E E T ( a ) ,  there is a proposi- 
tion 3z+E.@(2) whose intended meaning 
is ‘3% E a.(Val(z) = E & @(z))’, together 
with natural deduction rules which capture 
this intended meaning. 

Given propositions @(z) and Q(y) about 
x E a and y E 0, and a term E E a+p, there 
is a proposition (@ + @ ) ( E )  whose intended 
meaning is ‘32 E a.(lnl(z) = E & a(.)) v 
3y E P.(lnr(y) = E & @(y))’, together with 
natural deduction rules which capture this 
intended meaning. (In1 and Inr are the co- 
product insertions.) 

There are two further rules for the ‘bounded’ 
quantifiers which make them (first-order) exam- 
ples of Moggi’s concept of a T-modal operator 
[lo,  Definition 4.81: 

@(MI  
Vz +Val( M )  .@( z) 

vz -+ E .Vy+F(z). Q [ y) 
and 

Vy+ ( Let z +E .F( 2 )) .@ ( y ) * 

In fact, modulo the other rules, the first of the 
above rules is equivalent to imposing Moggi’s 
‘mono condition’ on the monad, i.e. 

Val(M) = Val(M’) 
M = M‘ 7 

’The necessity of restricting implication, disjunction 
and existential quantification is discussed in Remark 3.1. 
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[n E nut, @(.)I [e E T(f ix) ,Vn+e.@(n)]  
@(O) @(Suc(n ) )  N E nut @(a(e>> N E f i x  

@ ( N I  @ ( N I  

Figure 2: Rules for nut and fix induction. 

and the second rule is equivalent to  

(Let x e E . F ( x ) )  = V a l ( N )  

The definition of the FIX logic is completed 
by induction rules for the natural number type 
nut and for the fixpoint type fix, as shown in 
Figure 2. 

Theorem 3.1 (Consistency) 
Bottomless cpos, Scott-continuous functions and 
inclusive predicates form a model of the FIX log- 
ical system. 

Remark 3.1 The induction rule for nut is just 
the usual principle of mathematical induction. 
The induction rule for fix can be rendered in- 
formally as: to prove that a property @(.) holds 
of all elements n in fix, it is suficient to prove 
for all computations e of an element of fix that 
@ ( o ( e ) )  holds i f  whenever e evaluates to a vahe,  
that value satisfies @. This principle is consis- 
tent (by Theorem 3.1), but only because the 
FIX propositions have limited forms. In fact, ex- 
tending the FIX logic with unrestricted intuition- 
istic negation, implication or existential quantifi- 
cation renders it inconsistent. A proof of this can 
be obtained by mimicking within our framework 
the proof that inclusive subsets of cpos are not 
in general closed under these operations. Here is 
the proof for the case of intuitionistic implication 
(and negation): 

Proposition 3.1 Extending the FIX logic with 
intuitionistic implication renders the system in- 
consistent. 

Proof Since FIX contains falsity (false), adding 
implication (a 3 q) means that one also has 

negation (l@ G (@ 2 false)). So consider the 
proposition @ ( n )  ~ ( a ( w )  = n)  about n E fix. 
(In the cpo model, the denotation of this propo- 
sition would have to  be the largest inclusive sub- 
set of R not containing T-but no such subset 
exists. ) 

Now this @ ( n )  satisfies the hypotheses of the 
induction principle for fiz in Figure 2. For if 
Vn+e. l (a(w)  = n)  holds then l ( w  = e ) ,  since 
otherwise we could deduce Vn+.w.i(a(w) = n),  
which is false because Val(n)  = w holds for n = 
a(w) .  However, as was noted after Definition 2.1, 
(T is provably a bijection: so from i ( w  = e )  we 
deduce l ( a ( w )  = a ( e ) ) ,  i.e. @ ( a ( e ) ) ,  as required. 

So the induction principle for fix entails that 
@(n)  holds of all n E fix, and in particular of 
( ~ ( w ) ,  which is a contradiction. 

0 

The above proof gives weight t o  the feel- 
ing that the FIX logic resembles a calculus of 
‘formally inclusive’ predicates. We next state 
metatheorems about our logic of fixpoint com- 
putations which witness its constructive nature 
and suggest its potential as a programming logic. 

Theorem 3.2 (‘Existence Property’) If E 
is a closed term of type T(cy), then 3 x e E . @ ( x )  
is provable in FIX if and only if there is a 
closed term M of type cy for which @ ( M )  and 
E = Val( M )  are provable. ( In  other words, a for- 
mal proof that E evaluates to a value satisfying 
@ necessitates the existence of a term denoting 
that value.) 

Theorem 3.3 (‘Disjunction Property’) If 
E is a closed term of coproduct type cy + p, @ 
and @ are properties of cy and ,D and (@ + Q ) ( E )  
is provable in FIX, then either E = I n l ( M )  and 
@ ( M )  are provable for some closed term M of 
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type a ,  or E = Inr(N)  and @ ( N )  are provable 
for  some closed term N of type p. 
The Existence Property enables one to  produce 
closed terms of type nut from a computation of 
a number (i.e. a closed term of type T (  nut))  to- 
gether with a proof that the computation con- 
verges. There remains the possibility that a 
closed term of type nut is not a value, i.e. a stan- 
dard numeral. In other words, the strong univer- 
sal property of f i x  looks as though it might create 
‘non-standard’ natural numbers and hence mix 
the ‘total’ world of primitive recursive functions 
with the ‘partial’ world of unrestricted fixpoint 
computations at  T-types. However, this is not 
so: 

Theorem 3.4 (Standardness of nut) 
Every closed term of type nat in the logic FIX is 
provably equal to a standard numeral Sucn(0).  

The method of proving these theorems is de- 
scribed in the next section. 

4 Glueizg and Logical Rela- 
t ions 

Before further discussion of the main issues of 
this section, we shall describe briefly two results 
which form a bridge between previous work and 
new ideas involving logical relations. 

Lemma 4.1 Let r : 2) 4 C be a functor pre- 
serving finite products from a let-ccc to a ccc with 
finite limits. Then the arrow category ( C  1 r), 
which is called the glued category and denoted 
Gl(I’) ,  is also a let-ccc. Additionally, the second 
projection functor Pz : G l ( r )  --+ D preserves the 
let-ccc structure. 

The objects of G l ( r )  are morphisms in C of the 
form F : CY i I’(6); the strong monad struc- 
ture on G l ( r )  is given on objects by sending 
F : CY + I’(6) to F ;  r(7) : CY -+ T(6) .  Indeed, the 
strong monad acts on the ‘second object coordi- 
nate’ throughout the proof; details of the calcu- 
lation are omitted. Using this lemma a.nd a suit- 
able version of Freyd’s glueing argument (see [6, 
p 2501 and [ 5 ] ) ,  one obtains the following corol- 
lary: 

Corollary 4.1 Let C be a category, and FC the 
freely generated let-ccc. Then the canonical func- 
tor C --+ FC is full and faithful. Thus a closed 
term of ground type in the XMLT metalanguage 
(over some ground signature) always converts to 
a ground term. 

Our original aim was to consider proofs of Theo- 
rems 3.2, 3.3 and 3.4 in the manner that, for ex- 
ample, glueing may be used to  prove disjunction 
and explicit definability for intuitionistic pred- 
icate logic. It soon became clear that such a 
naive approach will not work in the presence of 
a fixpoint type, and so the following method was 
developed. We exploit the fact that FIX theories 
correspond to the following categorical structure: 

a A Cartesian closed category C,  which has fi- 
nite coproducts and a natural number ob- 
ject. (The objects and morphisms of C are 
used to  model the FIX types and terms.) 

0 A strong monad T on C whose unit com- 
ponents 7, : CY --f T ( a )  are all monomor- 
phisms, and for which a fixpoint object ex- 
ists. 

0 A C-indexed poset, ’Pc, which is used to 
model the FIX propositions, and hence 
which is closed under a certain number 
of completeness and adjointness conditions 
corresponding t o  the FIX logical rules for 
the propositional connectives and quantifier 
forms. (For lack of space, these conditions 
will not be given here; however, they are 
fairly standard ones from categorical logic, 
adapted to the particular forms of proposi- 
tion occurring in the FIX logic.) 

Call such a structure a FIX-hyperdoctrine; a mor- 
phism of FIX-hyperdoctrines is specified by a 
functor and an indexed monotone function, pre- 
serving the structure mentioned above. The 
pure FIX logic (regarded as the empty the- 
ory, with no extra-logical axioms) corresponds 
to such a FIX-hyperdoctrine (.F,’PF), which is 
initial amongst all such. The category Cpo to- 
gether with the Cpo-indexed poset assigning to 
each cpo its poset of inclusive subsets, forms 
a FIX-hyperdoctrine (Cpo ,  PT). Hence there is 
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a (unique) FIX-hyperdoctrine morphism 1-1 : 
(F,P7) + ( C p o ’ P z ) ,  which assigns cpo mean- 
ings to  the FIX types, cpo morphisms to  the 
FIX terms and inclusive predicate meanings to 
the FIX propositions. 

Let I’ : F + C p o  denote the functor which as- 
signs to each object a E F its set r ( a )  of global 
elements equipped with the discrete partial or- 
der. We construct a new category L r ( r ) ,  by the 
following ‘logical relations’ construction: 

0 An object of Lr(I‘) is a triple ( D , d , a ) ,  
where D E Cpo,  a E 3 and _a is an inclusive 
subset of D x r ( a ) .  

e A morphism (D,g ,cx)  -+ (D’,g’,a‘) in 
Lcr(I’) is a pair ( 4 , F ) ,  where 4 : D --f D’ 
in Cpo,  F : Q +. a’ in 3) satisfying the fol- 
lowing condition: 

Vd E D, M E rcu.(d a M 3 4 ( d )  a ’ ( M ;  F ) ) .  

There is a strong monad on L r ( r )  which sends 
an object ( D , g , a )  to the object (Dl,g’,Tcu), 
where for all e E Dl and E E r(Tcr), e _a’ E if 
and only if Vd E D.[d] = e 3 3M E I‘(a).(d I? 
M & M ;  qa = E).The rest of the strong monad 
structure is specified ‘componentwise’ from F 
and Cpo. There is also a Lr(I’)-indexed poset 
whose fibre over an object (D, a , a )  consists of 
triples ( S ,  a‘, Q!) ,  with S an inclusive subset of 
D, Q! E P F ( ~ )  and _a‘ an inclusive subset of 
S x { M  E r ( a )  1 @ ( M )  is provable}. These 
triples are ordered componentwise. 

The above construction produces a new 
FIX-hyperdoctrine (Lr(I’), P,r-(r)). It is 
easy to see that there are FIX-hyperdoctrine 
morphisms PI : ( L r ( I ’ ) , P q r ) )  -+ (Cpo,Pz) and 
PZ : (Lr(I’) ,  P L ~ ( ~ ) )  -+ (3, PF) given by first and 
second projections. Then the initiality of 
(F, PF) implies there is a FIX-hyperdoctrine 
morphism 1 : ( 3 , p ~ )  ---f (Lr(I’),PLr(rl) whose 
composition with P2 is the identity and whose 
composition with Pl is the morphism [-I : 
( F , P F )  + (Cpo,Pz) mentioned above. Theo- 
rems 3.2, 3.3 and 3.4 follow by examining the 
particular form of the relations obtained when 
I is applied to  the natural number object, to 

coproducts and to predicates formed using the 
bounded existential quantifier. 

Note that the functor I’ preserves almost 
none of the structure of a FIX-hyperdoctrine 
and yet magically (,Cr(I’))PL-(r)) is a FIX- 
hyperdoctrine, allowing us to  exploit the initial- 
ity property of (F,P,).  This is similar magic 
to Freyd’s categorical glueing argument. Our 
category-theoretic method is related to logical 
relations in the same way that Freyd’s glueing 
construction is related to  realizability. 

5 Concluding remarks and fur- 
ther directions 

(i) The Existence Property expresses a formal 
adequacy of the FIX logic for the metalang- 
uage. A corollary of the above proof is 
the model-theoretic adequacy of C p o  for the 
metalanguage: given a closed term E of type 
T ( a ) ,  it is provably equal to  a value Val(M) 
( M  a closed term of type a )  if and only if 
its C p o  interpretation [ E ]  E [T(a)]  = [al l  
is not 1. 

(ii) The predicate z e e  [z E a , e  E T(a)]  of 
evaluation is implicit in FIX, but is treated 
in a very ‘extensional’ way as equivalent to 
Val(z) = e. It is possible to  envisage a 
weaker logic than FIX (and a correspond- 
ing kind of categorical structure) in which 
z+e [x E a , e  E T(a)]  is an atomic predi- 
cate satisfying 

M e E  N - + F ( M )  
M-+Val(M) N-+(Let z-+E.F(z))  

and in which there are modified rules for the 
bounded quantifiers. 

(iii) FIX is not an ‘integrated’ logic-proofs of 
propositions are external to the system. Un- 
doubtedly something to aim for is a sys- 
tem combining features of FIX with those 
of the Calculus of Constructions [l], obtain- 
ing both the ‘terms-as-computations’ and 
‘terms-as-proofs’ paradigms in a single (con- 
sistent!) system. 
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(iv) FIX establishes a novel approach to fixed 
point equations at the level of functions. 
We plan to  investigate whether this ap- 
proach extends to  the practically important 
level (for the semantics of programming lan- 
guages) of fixed point equations for types. 
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