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Abstract

This paper formalises within first-order logic some common practices in computer science to do with rep-
resenting and reasoning about syntactical structures involving lexically scoped binding constructs. It introduces
Nominal Logi¢ a version of first-order many-sorted logic with equality containing primitives for renaming via
name-swapping, for freshness of names, and for name-binding. Its axioms express properties of these constructs
satisfied by theé=M-setsmodel of syntax involving binding, which was recently introduced by the author and
M.J. Gabbay and makes use of the Fraenkel-Mostowski permutation model of set theory. Nominal Logic serves
as a vehicle for making two general points. First, name-swapping has much nicer logical properties than more
general, non-bijective forms of renaming while at the same time providing a sufficient foundation for a theory of
structural induction/recursion for syntax modut@quivalence. Secondly, it is useful for the practice of operational
semantics to make explicit thequivariance propertyf assertions about syntax — namely that their validity is
invariant under name-swapping.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is commonplace, when using formal languages in computer science or mathematical logic, to ab-
stract away from details of concrete syntax in terms of strings of symbols and instead work solely with
parse trees — the ‘abstract syntax’ of a language. Doing so gives one access to two extremely useful and
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inter-related tools: definition by recursion on the structure of parse trees and proof by induction on that
structure. However, conventional abstract syntax is not abstract enough if the formal language involves
variable-binding constructs. In this situation the common practice of human (as opposed to computer)
provers is to say one thing and do another. We say that we will quotient the collection of parse trees
by a suitable equivalence relationa@iconversion, identifying trees up to renaming of bound variables;

but then we try to make the use @fequivalence classes as implicit as possible by dealing with them
via suitably chosen representatives. How to make good choices of representatives is well understood,
so much so that it has a name — the ‘Barendregt Variable Convention’: choose a representative parse
tree whose bound variables dresh i.e., mutually distinct and distinct from any (free) variables in the
current context. This informal practice of confusingeequivalence class with a member of the class

that has sufficiently fresh bound variables has to be accompanied by a certain amount of hygiene on the
part of human provers: our constructions and proofs have to be independent of which particular fresh
names we choose for bound variables. Nearly always, the verification of such independence properties
is omitted, because it is tedious and detracts from more interesting business at hand. Of course this
introduces a certain amount of informality into ‘pencil-and-paper’ proofs that cannot be ignored if one

is in the business of producing fully formalised, machine-checked proofs. But even if you are not in
that business and are content with your pencil and paper, | think there is a good reason to examine this
informal use of ‘sufficiently fresh names’ and put it on a more precise, mathematical footing.

The reason | have in mind has to do with those intuitive and useful tools mentioned above: structural
recursion for defining functions on parse trees and structural induction for proving properties of them.
Although it is often said that the Barendregt Variable Convention allows one to workwétifuivalence
classes of parse trees as though they were just parse trees, this is not literally the case when it comes to
structural recursion/induction. For example, when dealing with an induction step for a variable-binding
construct, it often happens that the step can be proved for a sufficiently fresh bound variable, but not for
an arbitrary one, as the induction principle demands. The Barendregt Variable Convention papers over
the crack in the proof at this point by preventing one considering the case of an arbitrary bound variable
rather than a fresh one, but the crack is still there. Although one can sometimes side-step the problem by
using a suitable size function on parse trees and replacing structural induction with mathematical induc-
tion, this is not a very satisfying solution. The size function will be defined by structural recursion and
the crucial fact that-equivalent parse trees have the same size will be proved by structural induction; so
we are using structural recursion/induction anyway, but somehow not in the direct way we would like.
We can do better than this.

Indeed, the work reported in [16,17,35] does do better, by providing a mathematical notion of ‘suf-
ficiently fresh name’ that remains very close to the informal practice described above while enabling
a-equivalence classes of parse trees to gain useful inductive/recursive properties. The theory stems from
the somewhat surprising observation that all of the concepts we aesglfvalence, freshness, variable-
binding, ...) can be defined purely in terms of theiion ofswappingpairs of names. In particular,
the freshness of a name for an object is expressed by saying that the name is not in some finite set
of names thasupportsthe object, which means that the finite set has the property that swapping any
pair of names not in it leaves the object unchanged. This notion of support is weak second order, since
it involves an existential quantification over finite sets of names. However, much of the development
in [17] only makes use of certain first-order properties of the freshness (i.e., ‘not-in-the-support-of’)
predicate in combination with the swapping operation. This paper presents this first-order theory of
names, swapping and freshness, caledninal Logic
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1.1. Outline of the paper

Section 2 presents some motivations for basing a theory of syntax and binders upon the notions of
atoms(names)swappingatoms, andreshnessf atoms. Section 3 introduces the syntax we use for these
concepts, together with some typical examples of what can be expressed with them. As explained in [17],
the Nominal Logic notions of atom, swapping and freshness can be given a meaning independent of any
particular object-level syntax usirkéM-sets- the Fraenkel-Mostowski permutation model of set theory;
in Section 4 we describe the categorynoiminal setswhich provides a simplified presentation of FM-
sets emphasising swapping over more general permutations of atoms. Then in Section 5 we axiomatise
the key first-order properties of the nominal sets model of atoms, swapping and freshness. Section 6
makes a definitional extension of this theory with a quantifier expressing a characteristic ‘some/any’
property of fresh atoms. In Section 7 we make another definitional extension to deal with variable-
binding operations in a more uniform way. This completes the definition of Nominal Logic, which is
summarised in Appendix A. Section 7 illustrates its use by presenting a first-order thebtemwhs
modulox-equivalence containing a convenient structural induction axiom. Section 8 discusses the fact
that Nominal Logic is incompatible with the use of choice functions to select a ‘next’ fresh atom in any
particular context. Finally, Sections 9 and 10 describe some related approaches to fully formal treatments
of names and binding and draw some conclusions.

2. Equivariant predicates

The fundamental assumption underlying Nominal Logic is thatonly predicates we ever deal with
(when describing properties of syntaae equivariant ones, in the sense that their validity is invariant
under swappindi.e., transposing, or interchangingames

Names of what? Names of entities that may be subject to binding by some of the syntactical con-
structions under consideration. In Nominal Logic these sorts of names, the ones that may be bound and
hence that may be subjected to swapping without changing the validity of predicates involving them,
will be calledatoms The terminology refers back to the origins of the theory in the Fraenkel-Mostowski
permutation model of set theory. Atoms turn out to have quite different logical propertiesmostants
(in the usual sense of first-order logic) which, being constant, are not subjected to swapping. Note that
this distinction between atom and constant has to do with the issue of binding, rather than substitution:
a syntactic category ofariables by which is usually meant entities that may be subject to substitu-
tion, might be represented in Nominal Logic by atoms or by constants, depending upon circumstances:
constants will do if we are in a situation where variables are never bound, but can be substituted for;
otherwise we should use atoms. The interesting point is that we can make this (useful!) distinction
between ‘bindable’ names and names of constants entirely in terms of properties of swapping names,
prior to any discussion of substitution and its properties.

Why the emphasis on the operation ssfappingtwo names, rather than on the apparently more
primitive notion ofrenamingone name by another? The answer to this question lies in the combination
of the following two facts.

e First, even though swapping seems less general than renaming (since after all, the act of swvapping
andb can be expressed as the simultaneous renamihdgfz anda by b), it is possible to found a
theory of syntax modula-equivalence, free and bound variables, substitution, etc., upon this notion
— this is the import of the work in [17].
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e Secondly, swapping is an involutive operation: a swap followed by the same swap is equivalent to
doing nothing. This means that the class of equivariant predicates, i.e., those whose validity is invariant
under atom-swapping, has excellent logical properties. It contains the equality predicate and is closed
under negation, conjunction, disjunction, existential and universal quantification, formation of least
and greatest fixed points of monotone operators, etc. The same is not true for renaming. For example,
the validity of a negated equality between atoms is not necessarily preserved under renaming.

In other words we can found a theory of variable-binding upon swapping, and it is convenient to do so

because of its good logical properties. Here are a couple of examples to illustrate these points, taken

from A-calculus and type theory.

Example 1 (e-equivalence of-termg. Consider the terms of the untypgetalculus, which we can take
to bea-equivalence classégs], of parse trees given by the grammar

t=aliat|tt Q)

wherea ranges over an infinite set of variables. The relatioa-@quivalence between such parse trees,

t ~4 t’, is usually defined to be the congruence generated by relatimg@ndib.{b/a}t if there are no
occurrences db in ¢ (be they free, bound or binding occurrences). Héye }z is the parse tree obtained
from ¢ by replacing all free occurrences @fwith ». The properties of this form of renaming are rather
inconvenient for our aim of developing a theory of variable-binding in which logical equality subsumes
a-equivalence. This is because the operafidfu}(—), as a total function on all parse trees, does not
necessarily respeat-equivalence when applied to trees that do contain occurrendes- tlecause of

the possible ‘capture’ ob by bindersib.(—) occurring int. (For examplexb.a ~, Ac.a holds, but
{b/a}(Ab.a) = Ab.bxyhic.b = {b/a}(rc.a).) In the development of the theory afcalculus [1], this
inconvenient fact immediately leads to the formulation of more complicated, ‘capture-avoiding’ notions
of renaming and substitution. However, it is possible to go in the other direction and répla¢e—)

with another, equally simple form of renaming which does respeetjuivalence whatever term it is
applied to. For as pointed out in [17, Section 2]pitloes not occur in, then{b/a}t is a-equivalent

to the parse tree obtained franiby swapping all occurrences af and b (be they free, bound, or even
binding occurrences): we denote this parse tre@ildy-r. The total function(a b)-(—) on parse trees is

in a sense more fundamental thi@a}(—), because its definition does not depend upon knowing what
is a free variable, i.e., upon knowing which of the syntax-constructors is supposed to be a binder: for the
definition of (a b)-(—) on ar-abstraction term takes just the same form as for an application term — one
just applies the swap to all immediate subtrees:

(ab)-(Ac.t)=A((ab)-c).((ab)1)
(ab)-(11)=((ab)-1)((ab)1)
a ifec=b

where(ab)-c=3{b ifc=a
¢ otherwise

Proposition 2.2 of [17] proves that the relatiog can be inductively generated by syntax-directed rules
of the following three kinds:

a~qa (2)
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n~aty h~qt

7 ()
1112 ~q tl t2

(ab)t ~y (a' b)-t
ra.t ~q Aa'.t’

It is immediate from this characterisation-ef, that it is equivariant, in the sense that

b # a,a’ andb does not occur imor ¢/ 4)

/

forallr andt’, t~4t implies (ab)-t ~4 (ab)t’

(a property that we have noted does not hold for the renaming opefatiof(—)). The reason why the
equivariance property holds is quite genegaly relation inductively defined by aquivariantset of

rules(in the sense that swapping a pair of names throughout the hypotheses and conclusion of any rule
yields another element of the set of rulespasily seen to be an equivariant relation, i.e., closed under
applying the swapping operatioAnd as we mentioned above, once we know thatis equivariant, so

will be predicates built up from it using the usual logical operations. To illustrate the usefulness of this
observation, consider proving from the above inductive characterisatio dfiat it is transitive. We

can proceed by ‘rule induction’ and show that the relation

o(t, 1) VYt~ t =t~y ! (5)

is closed under the rules (2)—(4) inductively defining. We will just consider the case of the third rule,
since it illustrates the usefulness of equivariance.
So suppose we have

@((ab)t, (a b)t) (6)

whereb # a, a’ andb does not occur im or t'. We have to show that(La.z, Aa’.t) holds, i.e., that for
anyt”, ra’.t' ~4 t” impliesia.t ~, t”. Now the syntax-directed nature of the rules comes to our aid: if
Ara’ .t ~4 t” holds, it must have been deduced by an application of rule (4} sora”.t"” say, and

(al C)'[/ Na (a// C)'[/N (7)
holds for some # a’, a” with ¢ not occurring in’ or’”. Letd be afreshvariable, i.e., one not occurring
inz, ', ort” and notin{a, a’, a”, b, c}. Now we use the equivariance propertygofsince (6) holds, so

does the predicate with andd swapped throughout; and sineeandd do not occur irv or ¢ and are
not equal taz or a’, the result of this swapping is provably equivalent to

L

p((ad)t, (@' d)t) (8)
Similarly, the equivariance property of, itself means that by swappirgandd in (7), we also have
(d' d)t' ~q (@ d)-t" ()]

Remembering the definition @f, (8) and (9) combine to yield
(ad)t ~y (@" d)-t”

and sinced # a,a” andd does not occur in or t”, we can apply rule (4) to this to deduge.r ~,
ra” 1" i.e,ha.t ~4 t”, as required. O

Example 2 (Weakening in type theoryMcKinna and Pollack [28] note that in the naive approach to
named bound variables referred to in Section 1, there is a difficulty with proving the weakening property
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of type systems by rule induction. For example, consider the usual typing relation assigning simple types
to terms of the untyped-calculus. As in the previous example, we take the latter to meanuivalence
classegt], of parse trees given by the grammar (1). The typing relation takes the forina [z], : T,
where types are given by the grammar::= X | t — t (with X ranging over an infinite collection of
type variables); and where the typing contExis a finite partial function from variables to types. The
typing relation is inductively generated by rules following the structure of the parse {{iethe reader
is not familiar with these rules, see [19, Chapter 2], for example; but note that as mentioned in Section
1, the literature usually does not bother to make a notational distinction betveeetir ], .)

When trying to prove the weakening property of the typing relation, namely

VDYVHNYD) T H[tle i T = VT)(Va' ¢domI) Ia' : v/ Ftle i T (10)
it is natural to try to proceed by rule induction and show that the predigdte|z], 7) given by
VThY(Va' ¢ domT) I, a' : v/ [t]e i T

defines a relation that is closed under the rules inductively defining the typing relation and hence contains
that relation. But the induction step for the rule for typingbstractions

Fa:t1bF [ty : 12
I'k[ha.t]ly:11— 12 a ¢ dom(T’) (11)

is problematic: we have to prove
¢(F,a : Tl7 [t]on TZ) /\Cl ¢ dorT(F) :> (P(F, [)\a-t]a, Tl — T2)5

i.e., given

eI a 11, [t]a, T2) (12)
and

a ¢ domT") (13)
we have to prove that

Ia:t'Fhatly: 11— (14)

holds forall «’ ¢ dom(T") (and allz’) — and there is a problem with doing this for the case- a.

But this difficulty with the induction step is easily circumvented if we take equivariance into account.
The axioms and rules defining typing are closed under the operations of swapping pairs of variables
(and also under swapping pairs of type variables, but we do not need to use that here). For example, if
we have an instance of rule (11) and we swap any pair of variables throughout both the hypotheses and
the conclusion, we get another valid instance of this tutes we mentioned in the previous example,
it follows from this swapping property of the axioms and rules that the typing relation, being the least
relation closed under the axioms and rules, is also closed under the swapping operations. Therefore
any assertion about typing that we make by combining the typing relation with other such equivariant
predicates (such as ‘= dom(T")") using the usual logical connectives and quantifiers will be equivariant.

In particular the predicate defined above is equivariant. Thus if we know that (12) holds, then so does

170 see this, strictly speaking we have to make use of the fact, noted in Example (&, Ait-) preserves-, and hence
that the result of swappingandb throughout the sdt], is the equivalence clag&: b) 1]y .
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o, b : 11, [(ab) 1]y, T2) for anyfreshvariableb (i.e., one not occurring ift, ¢, or {a, a’}). So by defi-
nition of ¢, sincea’ ¢ dom(TI", b : t1), we havel', b : 11),a’ : ' + [(a b)-t]y : T2. Since(T", b : 11),ad’ :

v =(T,a : '), b: 1 (we are using partial functions for typing contexts) angd dom(T, a’ : t’) (by

choice ofb), we can apply typing rule (11) to conclude thata’ : " - [Ab.((a b)-1)]y : T1 — 2. But

Ab.((a b)-t) andra.t area-equivalent parse trees, $9a’ : ¢/ - [Aa.t], : T1 — 12 holds. Thus if (12)
and (13) hold, so does(T", [ra.t]y, T1 — T2) and we have completed the induction stefl

From the considerations of this section we abstract the following ingredients for a language to de-
scribe syntax involving names and binding: the language should contain a notion of atom together with
operations for swapping atoms in expressions (in general we may need several different sorts of atoms
— for example, atoms for variables and atoms for type variables in Example 2); and the formulas of the
language should all be equivariant with respect to these swapping operations. Atoms and swapping are
two of the three novelties of Nominal Logic. The third has to do with the crucial step in the proofs in
Examples 1 and 2 when we chosé&eshvariable ¢ in the first example and in the second one): we
need to give a freshness relation between atoms and expressions with sufficient properties to make such
arguments go through.

3. Syntax of swapping and freshness

The syntax of Nominal Logic is that of many-sorted first-order logic with equality, augmented by the
following extra features.
e The collection of sorts (typical symb€) is partitioned into two kindssorts of atomgtypical symbol

A) andsorts of data
e For each sort of atoms and each soif there is a distinguished function symbol of arty A, § —>

S whose effectontermsg : A, 2 : A andzz : S we write as the ternir, £2)-13 and pronounceswapty

andrpin 3.
e For each sort of atomd and each sorf there is a distinguished relation symbol of arity S whose

effect on terms; : A andr, : S we write as the formula # ro and pronounceri is fresh forz,’.
Later on we will add extra syntax féreshness quantificatiofsection 6) anédtom-abstraction sorts and
terms(Section 7). These extra concepts are first-order definable in terms of the basic ones given above,
so we stick with these for the moment for simplicity’s sake.

Just as for ordinary first-order logic,theoryin Nominal Logic is specified by aignatureof sort,
function and relation symbols, together with a collection of (non-logiaalpms which are first-or-
der formulas built up in the usual way from variables and the symbols of the signature, but now of
course possibly using the swapping functions and the freshness relation. Here is an example of how
this language of Nominal Logic can be used; we formalise some familiar concepts.foahculus in
it. Exploring the logical properties of these formalisations has to wait until we introduce the axioms of
Nominal Logic in Section 5.

Example 3 («, B8, andn equivalencg Consider the following signature far-calculus, with a sort of
atoms for variables and a sort of data feterms over those variables.

Sort of atomsVar

Sort of dataTerm
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Function symbolsvar : Var — Term
app: Term Term— Term
lam: Var, Term— Term
As discussed in Example 1, we can use swapping and freshness to exqo@sgersion:

(Ya,a’ : Var)(Vt : Term) a’ #t = lam(a, t) = lam(a’, (a a’)-t) (15)

Instead of axiomatising.-conversion on a theory-by-theory basis, in Section 7 we move it into the
logical infrastructure via a notion of atom-abstraction. In particular, we can thetataie be a function
symbol of arity[Var]Term— Term where[Var]Termis a sort of atom-abstractions (see Definition 4),
whose logical properties ensure that extra axiomsfoonversion like (15) are no longer necessary.

Another typical use of the freshness relation # is to internalise the usual side-conditiecooner-
sion, as in the following axiom:

(Va : Van)(Vt : Term) a #t = t = lam(a, app(z, var(a))) (16)

How may we expresg-conversion in this language? One way is to augment the signature with a
function symbol for capture-avoiding substitution

subst: Term Var, Term—> Term
and then expres8-conversion by

(Ya : Var)(Vt, t' : Term) applam(a, t), t) = substt, a, t') a7)
together with axioms for substitution:

(Vt : Term(Va : Var) substz, a, var(a)) =t (18)

(Vt : Term(Va,a’ : Var) —ma = a’ = substt, a, var(a’)) = var(a’) (19)

(Vt,t',t" : Term(VYa : Var) substt, a, app(t’, t”))
= app(substr, a, 1), substt, a, t”)) (20)

(Vt,t' : Term(Va,d' : Var) =d' =a nd #t =
substt, a, lam(a’, t')) = lam(a’, substt, a, t)) (21)

Since the last axiom only specifies how to substitute undetbader when the bound variabig is
sufficiently fresh, i.e., whema’ = a andd’ #1, it might seem that the axioms feubstdo not specify

it uniquely. However, in view of axiom (15), adgm(a’, ¢') is equal to soméam(a”, ") for which the
freshness condition is satisfied. In Section 7, we give a theory in Nominal Logic-temrms modulo
a-equivalence (Example 6) that includes a structural induction principle codifying this familiar practice
of only dealing withi-abstractions whose bound variables are sufficiently fresh.

4. Nominal sets

As explained in [17], the Nominal Logic notions of atom, swapping and freshness can be given a
meaning independent of any particular object-level syntax uBMegsets— the Fraenkel-Mostowski
permutation model of set theory. Here we give a simplified, but essentially equivalent, presentation of
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FM-sets that emphasises swapping over more general permutations of atoms. At the same time we use
a mild generalisation of [17] (mentioned in [16, Section 7]) in which the set of atoms is partitioned into
countably many different kinds (and we only swap atoms of the same kind).

Fix a countably infinite family(A,, | n € N) of pairwise disjoint, countably infinite sets. We write
for the union of all thed,, and call its elementatoms

Definition 1 (Nominal sets A nominal setX is a set|X| equipped with a well-behaved notion of

swapping atoms in elements of the set. By definition this means that for each elerméRt and each

pair of atomsz, a’ of the same kind (i.eq, a’ € A, for somen € N), we are given an elemefita’)-x x

of X, calledthe result of swapping anda’ in x. These swapping operations are required to have the

following properties:

(i) Equational properties of swappinfpr eachx € |X| and all pairs of atoms of equal sadt,a’ € A,
andb, b’ € A, (anym, n € N)

(aa) xx=x (22)
(ad')x(aa) xx=x (23)
(aa")x(bb)xx=((aa)b (aa )b )x(aa)xx (24)
where
a ifb=d
(@aa b2 3a ifb=a (25)

b otherwise

and similarly for(a a’)b’.

(ii) Finite support propertywe require that each € | X| only involve finitely many atoms, in the sense
that givenx, there exists a finite subset C A with the property thata a’)-xx = x holds for all
a,a’ € A, —w (anyn € N). Then it can be shown that

suppy ()2 | Jla € Ay | {a’ € Ay | (ad)-xx # x} is not finitg (26)
neN
is a finite set of atoms (see the proof of [17, Proposition 3.4]), which we cadiupportof x in X.
A morphism of nominal setg : X — Y, is by definition a function from the s¢X| to the sefY|
that respects the swapping operations in the sense that

f(aa)-xx) = (ad)yf(x) (27)
holds for allx € |X| and all atoms, a’ (of the same kind). Clearly the composition of two such functions
is another such; and identity functions are morphisms. Therefore nominal sets and morphisms form a
category, which we denote byom

Remark 1 (From swapping to permutatiohdt is a standard result of the mathematical theory of groups

and group actions that the group of all permutations ofitledement setl, . . ., n} is isomorphic to the
group freely generated by— 1 symbolsg; (i = 1, ..., n — 1), subject to the identities
(g% =id i <n)

(g gi+®=id (i <n-1

(gigp?=id  (j<i-1
with the generatop; corresponding to the permutation transposirandi + 1. (See for example [24,
Beispiel 19.7].) From this fact one can easily deduce that the group of all (kind-respecting) finite
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permutations of the set of atondsis freely generated by the transpositiaas:’) (with a anda’ of
the same kind, i.eq, a’ € A, for somen € N), subject to the identities

(aa) = id
(aad)(aa) = id
(aa)bb) = (ad)b (aad)b' )(aa)

where the atoméa a’)b and (a a’)b’ are defined as in Eq. (25). It follows that|iX| is a set equipped

with swapping operations satisfying Egs. (22)—(24), then these operations extend uniquely to an action
of all finite permutations on elements [&f|. If | X| also satisfies property (ii) of Definition 1, then this
action extends uniquely to all (kind-respecting) permutations, finite or not; and the elemgxthafe

the finite support property for this action in the sense of [17, Definition 3.3]. These observations form the
basis of a proof thahe categoryVom of Definition 1 is equivalent to the Schanuel tofddg Section 7],

which underlies the universe of FM-sets used in [17].

It is not hard to see that produck x Y in the categoryVomare given simply by taking the cartesian
product{(x, y) | x € |X| Ay € |Y]|} of underlying sets and defining the swapping operations compo-
nentwise:

(ad)xxy(x,y)2((aad)xx,(@a’)yy)

(Clearly (x, y) has the finiteness property Xi x Y required by Definition 1(ii), because has it in
X andy has it inY.) Similarly, the terminal object 1 iWom has a one-element underlying set and
(necessarily) trivial swapping operations.

So we can interpret many-sorted first-order signatures in the catédgmory sortsS are interpreted
as objectq[ST; function symbolsf, of arity S1, ..., S, — S say, as morphismg/f 1 : [S1] x --- x
[S.1 — [ST; and relation symbols, of arity S1, ..., S, say, as subobjects ¢fS1]] x - -- x [ S, 1.
Indeed Nombhas sufficient properties to soundly interpret classical first-order logic with eqdalityg
the usual techniques of categorical logic — see [26] or [33, Section 5] for a brief overview. In fact, readers
unfamiliar with such technigues need not become so just to understand the interpretation of first-order
logic in the category of nominal sets, since it is just like the usual Tarskian semantics of first-order logic
in the category of sets (at the same time remaining within the world of equivariant properties). For it is
not hard to see that the subobjects of an objeat the categoryVomare in bijection with the subsets
A C |X| of the underlying set that are equivariant, in the sense(tha)-xx € A whenever € A, for
any atoms, a’ (of the same kind). As we mentioned in Section 2, the collection of equivariant subsets
is closed under all the usual operations of first-order logic and contains equality. So it just remains to
explain the interpretation iwom of the distinctive syntax of Nominal Logic — atoms, swapping and
freshness.

Definition 2. Here is the intended interpretation of atoms, swapping and freshness in the category of
nominal sets of Definition 1.
Atoms A sort of atoms in a Nominal Logic signature is interpreted moainal set of atomd,, (for
somen € N), which by definition has underlying set, | = A, and is equipped with the swapping
operations given by

2 And much more besides, since it is equivalent to the Schanuel topos, but that will not concern us here.
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a ifb=d
(aa)b2{a ifb=a
b otherwise

(whereb € A,, anda, da’ € A, for anym € N). We always assume that distinct sorts of atoms are
interpreted by distinct kinds of atoms. (So we are implicitly assuming that signatures contain at
most countably many such sorts.)

Swapping Note that by virtue of Eq. (24), the functian a’, x — (a a’)-xx determines a morphism
A, x A, x X —> X in the categoryNVom This morphism is used to interpret the distinguished
function symbolA, A, S — S for swapping, assuming the nominal set of atofpsis the inter-
pretation of the sort of atom$ and thatX is the interpretation of. Thus

[@a)-s = (lal la’'])-x[s] whens : S and[S] = X.

Freshness The distinguished relation symbol # of arity, S for freshness is interpreted as the ‘not in
the support of’ relatiorf—) ¢ supp,(—) between atoms and elements of nominal sets. Thus if the
nominal set of atomg,, is the interpretation of the sort of atomsand X is the interpretation of
the sortS, then for terms: : A, s : S, the formulaa # s is satisfied by the interpretation if and only
if [all ¢ supp,([s]), wheresupp is as in Eq. (26). (It is not hard to see that this is an equivariant
subset ofd,, x |X| and hence determines a subobjecf af] x [S] in Aom)

We turn next to an axiomatisation within first-order logic of properties of this nominal sets interpre-
tation of atoms, swapping and freshness.

5. Nominal logic axioms

For simplicity, we will use a Hilbert-style presentation of Nominal Logic: a single rule of Modus
Ponens, the usual axiom schemes of first-order logic with equality, plus axiom schemes for swapping
and freshness. These latter are listed in Appendix /ASa5(S3), (E1)—(E4) and F1)—(F4). (Appendix
A also gives axioms for the freshness quantifier and atom-abstraction constructs that we consider in later
sections.) Axiom schemé&§) expresses within our first-order language the very important principle that
there is a sufficient supply of fresh atgnmsthe sense that it is not finitely exhaustible. The other axioms
express rather anodyne properties of swapping and freshness. Indeed, the following results show that
these axioms validate the properties of swapping given in Section 4 and the fundamental assumption
mentioned at the start of Section 2, namely that all properties expressible in Nominal Logic are invariant
under swapping atoms.

Proposition 1 (Equational properties of swapping)he equations in parti) of Definition 1 are all
provable in Nominal Logic

Proof. Egs. (22), (23) and (24) are just axion®&l), (S2) and E1) respectively. Eqg. (25) corresponds
to four properties (taking into account the fact that we allow more than one sort of atoms):

(Va,a’ : A) (aa’)-a =d (28)

(Va,a’ : A) (aa’)d =a (29)
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Va,a',b: A)—b=aA—-b=d = (ad)b=0>b (30)

(Va,a’ : A)(Vb: A") (ad’)-b=b (32)

whereA and A’ are different sorts of atoms. Property (28) is just axi@8){ applying (a a’)-(—) to
both sides of Eq. in (28) and using axio®2§, we obtain (29). Property (30) follows from axiontslj
and F2); and property (31) fromK1) and ¢3). [

Proposition 2 (Equivariance)For each termr and formulagp, with free variables amongst: S say, we
have

Va,d : AY(VX : S) (ad)t(F) =t((aad)-%) (32)
Va,d' : A(Vx : S) 9(X) < ¢((@d’)-%) (33)

wheret ((a a’)-X) denotes the result of simultaneously substituting’)-x; for x; in ¢ (asx; ranges over
x) and similarly forg((a a’)-x).

Proof. Property (32) follows from axiomd1) and E3), by induction on the structure of the temm
For (33) we proceed by induction on the structure of the forngulasing standard properties of first-
order logic for the induction steps for connectives and quantifiers. Note that by virtue of a8®)m (
Eq. (33) holds if and only if

(Va,a’ : A)(VX : S’) (X)) = ¢((aad)-X) (34)

does. So the base case wheis equality follows from the usual axioms for equality, the base case
for the freshness predicate # follows from axioBR), and that for relation symbols from axiori4)
(using (32) in each case).]

Theorem 1 (SoundnegsThe axioms of Nominal Logisee Appendix fare all satisfied by the nominal
sets interpretation of atomswapping and freshness given in Definitian

(Atthe moment we are only considering the axiol®)}(S3), (E1)—(E4) and F1)—(F4) of Appendix
A, but the proposition remains true for the nominal sets interpretation of the freshness quantifier and
atom-abstraction given below.)

Proof. Satisfaction of axioms31)—(S3) and E1) is guaranteed by part (i) of Definition 1 (since the
swapping action for a nominal set of atoms is given by Eq. (25)). Satisfaction of axifparid F1)—

(F3) is a simple consequence of the definition of support in Eq. (26). Axi&Bs4nd E4) are satisfied
because function and relation symbols are interpreted by morphisms and subobjects in the category
of nominal sets, which have these equivariance properties. Finally, a¥xiémg(satisfied because the
support of an element of a nominal set idirste subset of the fixed, countably infinite s&tof all

atoms. [

Did we forget any axioms? In other words are the axiom schemes in Appendix A complete for the
intended interpretation in the category of nominal sets? AxiB#) ays that there is an inexhaustible
supply of atoms that are fresh, i.e., not in the support of elements in the current context. This is certainly
a consequence of property (ii) of Definition 1, which guarantees that elements of nominal sets have finite
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support. However, that property is ostensibly a statement of weak second order logic, since it quantifies
over finite sets of atoms. So we should not expect Nominal Logitstorder theory, to completely
axiomatise the notion of finite support. Example 4 confirms this expectation. Before giving it we state a
useful property of freshness in Nominal Logic that we need below.

Proposition 3. For any termt, with variables amongst the list of distinct variablés S say, we have
(Va: A)(VX: S) a#X = a#t(¥) (35)
where we write: # x for the finite conjunction of the formulas# x; asx; ranges over.

Proof. Given anya : A andx : S, by axiom E4) there is some’’ : A with a’ #% anda’ #¢(¥). So if
a #x, then by axiomF1) (aa’)-x; = x; holds for eachy;. So since:’ #1(x) by choice ofa’, we have
a=(aa)d by axioms(S2) and(S3)
#aa')t(x)  byaxiom(E2)
=t((ad’)-X) by (32
=t(X) by axiom(F1)
as required. [J

Corollary 1. If a Nominal Logic theory contains @osedterm: : A (i.e. one with no variable¥ with
A a sort of atomsthen it is an inconsistent theary

Proof. Suppose thatt is a sort of atoms and that: A is a term with no variables. By the above
proposition we havéva : A) a #t. Thusr #r and by axiom F2) this means-r = r, contradiction. [J

Example 4 (IncompletenegsConsider the following Nominal Logic theory.
Sort of atomsA
Sorts of dataD, N
Function symbolso : N

s : N—N

f : D,N— A
AXxioms: Vx:N)—o=sx)

Vx,x' :N)s(x) =s(x') =>x=x

Claim. Any model of this theory in the category of nominal sets satisfies the formula
¥y : D)Ex,x" : N) mx =x" A f(y, %) = f(y,x) (36)
but that formula cannot be proved in Nominal Logic from the axioms of the theory.

Proof of claim. Note that in any model of this theory in the categdvpm, the interpretation of the
closed termsy : N (k € N) defined by

A
no =0
A
{”k+1 =s(ng)

3 Since the syntax of Nominal Logic does not contain any binding constructs at the level of terms, all occurrences of variables
in terms are free ones.
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are distinct elementfn,] € |[N]] of the nominal seff N]. Therefore, to see that (36) is satisfied by
the model it suffices to show for eadhe [[D]]| that[[ fTI([nk, I, d) = [f ([, 1, d) € [[A]ll holds for
someky # ko € N. Note that[A] is a nominal set of atoms}, say. Suppose to the contrary that all
the [ f1([n«1, d) are distinct atoms id,,. Then since the suppastipg pq(d) of d € [[D]] is a finite
subset ofA, we can findk; # ko2 € N so that

a2 f Il @) and a2 f1([nk, 1. d)
satisfya, az ¢ supg py(d). We also have, az ¢ supgyy(nx) for all k (using (35) and the fact that

the termsn; are closed). Hences, az ¢ supp,, (If1([7«]), d) and thus(ai az)-a, [ f1([nkll, d) =
[ /170, d), for all k € N. Takingk = k1 and recalling the definition af; anda», we conclude that

Lf1([ni, 1, d) = a2 = (a1a2)-a,a1 = (a1a2)- 4, [Lf Mnk, 1, &) = [f 1nk, 1, d)
with k1 #£ ko, contradicting our assumption that all th¢T([n. 1, d) are distinct.

To see that (36) is not provable in Nominal Logic it suffices to find a model, in the usual sense of first-
order logic, for the general axioms of Nominal Logic and the particular axioms of this theory which does
not satisfy (36). We can get such a model by modifying Definition 1 and usingnaountableset of
atoms and sets equipped with swapping actions all of whose elementsthantablesupport. More con-
cretely, we get a mod@alf by taking[ AJ s, to be an uncountable set, the Betf real numbers say; taking
[N to be a countable subset of this set, thelsef natural numbers say; and takifi@1,, to be the
setRY of all functions fromN to R (all such functions are countably supported). Define the interpretation
of the function symbol®, s and f to be respectively zero, successer{ n + 1) and the evaluation
functionRY x N — R (d, n — d(n)). The interpretation of the swapping operation for sbis as in
Eq. (25) (i.e.(rr")-rr” = (r r')r" forallr,r’, r’” € R); for sortN, swapping is trivial (i.e.(r r')-yn = n
for all r, 7 € R andn € N); and for sortD, it is given by (r r')-gnd = An € N.(r r')-rd(n). The inter-
pretation of the freshness predicate for sbiis #; for sort N, it is trivial (i.e.,» #n holds for allr € R
andn € N); and for sortD, r #d holds if and only ifr # d(n) for all n € N. With these definitions one
can check that all the axioms are satisfied. However (36) is not satisfied, because the incINsiaio of
R gives an element € RY = [ D]y for whichn — [ fTx(d, n) is injective. O

Even though there is this incompleteness, it appears that the axioms of Nominal Logic are sufficient
for a useful theory of names and name-binding along the lines of [17,13]. Sections 6 and 7 give some
evidence for this claim. We leave to another occasion the investigation of whether the notion of ‘nominal
set’ can be generalised to provide a completeness result for Nominal Logic.

6. The freshness quantifier

In this section we extend the Nominal Logic we have considered so far with a quantifier for fresh
atoms. We begin by proving, within the version of Nominal Logic considered so far, the characteristic
‘some/any’ property of fresh atoms noted in [17, Proposition 4.10].

Proposition 4. Suppose is a formula with free variables among the list of distinct variablesa, ¥ : S
(with A a sort of atomg Then

Fa:A)a#xiAnpa,X) & Va:A) a#xi= ¢a,X) (37)
is provable in Nominal Logic
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Proof. If ¢(a, x) holds, then by Proposition 2 and axio®8] we also havey(a’, (aa’)-x); soifa #x
anda’ # x, then axiom F1) givese(a’, X). Thus we have the left-to-right implication in (37).

Conversely suppose/a : A) a #X = ¢(a, x) holds. For anyx : S, using axiom F4) we can find
a : A such thatz # x and hence by the assumption, also satisfyitg, x). [

This property of freshness crops up frequently in proofs about syntax with named bound variables
(see [28] for example): we choosemefresh name with a certain property and later on, in a wider
context, we have to revise the choice to accommodate finitely many more constraints and so need to
know that we could have chosamy fresh name with that property. For this reason it is convenient to
introduce a notation that tells us we have this ‘some/any’ property without mentioning the context of
free variables: explicitly. (Note that (37) holds for any list of distinct variables, so long as it contains
the free variables ap other than the atorma being quantified over.)

Definition 3 (M-quantifie]). We extend the syntax of formulas with a new variable-binding operation
which takes a formula, a sort of atomgt and a variable of that sort and produces a formyléa : A)g
whose free variables are thosegéxcepta. We add the following axiom scheme that defines this new
quantifier within first-order logic in terms of the freshness relation #:

(Ma : A)p(a, X)) < Fa: A)a#x A gla, x) Q)
wherea, X is a list of distinct variables containing the free variableg ofn view of Proposition 4 we
also have

(Ma : Ap(a, X)) & (Va: A) a#tx = ¢(a, x)
and could have used this as the axiom defiMng

Remark 2. Because of the form of axion@)), it is easy to see that the equivariance property (33) of
Proposition 2 continues to hold for formulas involving theuantifier.

Evidence for the naturalness of tirequantifier is provided by the fact that, in the nominal sets
semantics given in Section 3, it coincides with a cofiniteness quantifier. For, using the right-hand side of
axiom @) to give the semantics @fla : A) ¢ in the category of nominal sets, we find that it holds if and
only if ¢(a) holds for all but finitely many atoms See [13] for the proof of this and the development
of the properties and applications of theguantifier within the setting of FM-set theory.

Example 5 («, B and n equivalence, version)2We can re-express some of the axioms considered in
Example 3 using th&-quantifier. For thex-conversion axiom (15), note that modulo the axioms of
Nominal Logic it is equivalent to

(Va : Van(Vt : Term(Va' : Var) a’ #a ~nd' #t = lam(a, t) = lam(d’, (aa’)-t).
So by Proposition 4, we can instead use the axiom

(Ya : Var)(Vt : Term(Wa’ : Var) lam(a, t) = lam(a’, (aa’)-t) (38)
Similarly, usingh we can re-express theconversion axiom (16) as

(Vt : Termy(Wa : Var) t = lam(a, app(z, var(a))) (39)
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Finally, note that the last clause in the axiomatisation of capture-avoiding substitution, axiom (21), could
be expressed as

(Vt, ¢ : Term(VYa : Var)(Ua' : Var) substz, a, lam(a’, t'))
= lam(d’, substt, a, t')) (40)

Remark 3 (Alternative axiomatisations of). It follows immediately from Definition 3 and Proposition 4
that theM-quantifier satisfies

(Va: A)a#x = ¢(a,x)) = MNa: A)p(a, X) (41)
and
(Ma : A)p(a, X)) = Fa: A) a#X Ap(a,x) (42)

whena, x is a list of distinct variables containing the free variables ofn fact these formulas provide
an alternative axiomatisation of tiequantifier which subsumes the crucial axioR¥) asserting a
sufficient supply of fresh atoms. For modulo the other axioms, one can grdye (Q) < (41) A (42).
We chose the presentation in terms of axiofé) (@and Q) because the former is a principle one uses
continually when reasoning with freshness in this setting and the latter makes it clear that we remain
within the realm of first order logic when we use thequantifier in Nominal Logic.

Properties (41) and (42) suggest how to formulate introduction and elimination rules foiofinen-
tifier within a natural deduction formulation of Nominal Logic:

D, a#tx - .
arnxTe (M-Intro)
OF WNa: A
OdF WNa:Ag Da#x,o-y .
n-el
Y (N-elim)

wherefv(®) C x andfv(p) C a, x. Similarly, they suggest how to formulate right and left rules for the
quantifier in a sequent calculus formulation:

D, a#tx o, V¥ .
amx" ¢ (N-right)
OF WNa: A, ¥
O,aftx, oW (W-left)

S, (Na : A)p =W

wherefv(®, ¥) C x andfv(¢) C a, X. The proof theoretical properties of these formulations have yet
to be explored. (However, see [4] for a sequent calculus admitting cut-elimination for a modal process
logic involving the-quantifier, in which freshness predicates lik# x appear as side-conditions rather
than as formulas in sequents.)

7. Binding

In this section we extend the Nominal Logic we have considered so far to deal with variable-binding
operations in a more uniform way. To motivate this, consider Example 3 once again, where the fact that
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lam is a variable-binding operation is captured by axiom (15). Instead of axiomatising the properties
of such binders on a theory-by-theory basis, we endow the underlying logic, Nominal Logic, with sort-
and term-forming operations fatom-abstractiontogether with appropriate axioms. This is analogous

to enriching our term language with lambda-abstraction and application in order to use functionals to
represent binding operatio@sla higher-order abstract syntax [32]. However, an interesting difference
here is that we are able to keep within first-order logic: atom-abstractions are merely a definitional
extension within first-order logic of what we have considered so far (see Remark 4 below).

Definition 4 (Atom-abstractioh Extend the syntax of sorts by adding a sort-forming operation that takes
a sort of atomsA and a sortS and produces a new sdr 1S, called thesort of A-atom-abstractionsf
elements of sorf. Extend the syntax of terms with a new operation that takes terma, > : S and
produces a termy.ro : [A]S. The properties of these new terms are described by the following axiom
schemes.

(Vb,b' : AY(Ya : A)(Vx : S) (bb)-(a.x) = ((bb)-a).(bb)-x) (E5)
Va,a' : AY(Vx,x' : SYax=d x' o @=ad rx=x)Yv (' #x AN x' =(ad)x) (A1)
Vy : [A]1S)(Fa : A)@Ax : S) y =a.x (A2)

Axiom (E5) ensures that the equivariance properties of Proposition 2 (and hence also the freshness
property of Proposition 3) continue to hold for the extended syntax. AxiB2) (ust tells us that
everything of atom-abstraction sort is an atom-abstraction. The crucial axiohi)jswhich captures
an essence af-equivalence in terms of Nominal Logic’s primitives of atom-swapping and freshness.
Should not we have added axioms that explain when an atom is fresh for an atom-abstraction, to
complement axiomsH1)—(F4)? In fact the following proposition shows that the freshness properties
of atom-abstractions we expect from [17, Section 5] turn out to be derivable without further axioms.
Thuswith these additions we have completed the definition of Nominal Logic, which is summarised in
Appendix A.

Proposition 5. The following formulas are provable in Nominal Logic
(Va,a’ : A)(Vx : S)a' #ax & (@' =a Vv a' #x) (43)
(YVa : A)(Va' : AH(Vx : S)a' #ax & d #x (44)

where in the second formul& and A’ are distinct sorts of atoms

Proof. Inview of axioms F2) and F3), it suffices to prove

(Va : A)(Vx : S) a#a.x (45)
(Va : A)Y(Va' : AY(Vx : S) d' #x = a' #ax (46)
(Va : AY(Va' : AY(Vx : S)a' #a AN a #ax = da #x (47)

for all sorts of atomsA and A’ (possibly equal).
For (45), giveru : A andx : S, by axiom E4) we can finde’ : A with @’ #a.x and hence
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a = (aa)ad by axioms(S2) and(S3)
#aa')(a.x) by axiom(E2) ona’ #a.x
=ad'.((aa’)-x) by axioms(E5) and(S3)
=a.x by axiom(Al).

For (46), giveru : A,a’ : A’ andx : S with a’ #x, we argue by cases according to whetAeand A’
are the same and wheth€r= a or not. If the sorts are the same a#ld= a, then we have’’ #a.x by
(45); in the other three cases we always ha#a (using axioms £2) and 3)); so sincea’ #a and
a’ # x, we haver’ #a.x by Proposition 3 (which holds for the extended syntax by virtue of axiei))(

For (47), givera : A, d' : A" andx : S with @’ #a anda’ #a.x, by axiom E4) we can finda” : A’
with a” #a, a’ #x anda” #a.x. Then

ax = (d'd")ax by axiom(F1)
= ((d'a")-a).(a’a”)-x) by axiom(E5)
=a.((a' a")-x) by axiom(F1)

and hencex = (a’a”)-x by axiom @A1l). Sincea” #x, we geta’ = (a’a”’)-a”" #(a'a"’)-x = x, as re-
quired. O

The intended interpretation of atom-abstraction is given by the following construction on nominal
sets.

Definition 5 (Nominal set of atom-abstractiongsiven a nominal seX and a nominal set of atom,

(cf. Definition 2), thenominal set of atom-abstractiofid,; 1X is defined as follows.

Underlying set[A,]1X| is the set of equivalence classes for the equivalence relatiak,on|X| that
relates(a, x) and(a’, x’) if and only if (a a”’)-xx = (a’ a”)-xx’ for some (or indeed any)’ € A,
such thata” ¢ suppy (x) U suppy (x') U {a, a’}. We writea.x for the equivalence class of the pair
(a, x).

Swapping actiolis inherited from that for the produet, x X:

(bb')(ax(a.x) £ ad x', whered" = (bb')a andx’ = (bb')-xx.

With these definitions one can check that the requirements of Definition 1 are satisfied; in particular the
support ofa.x turns out to be the finite sstpp, (x) — {a} (cf. Proposition 5).

Thus if a sort of atomg\ gets interpreted as a nominal set of atdiig] and a sortS gets interpreted
as a nominal sdiST, then the sorfA]S is interpreted as the nominal set of atom-abstractipAg1[S].
Similarly if 11 : A and, : S, then[#1.12] = [#11].[221 € [TATILST. With these definitions, the sound-
ness result of Theorem 1 continues to hold. To prove this one needs the following, more symmetric
characterisation in Nominal Logic of equality of atom-abstractions; it matches the definition of the
equivalence relation used to defifid 1 X | from A, x |X| in Definition 5 (see also the definition of,
in Example 1).

Proposition 6. If A is a sort of atoms and is any sort then the following formula is provable in
Nominal Logic

Va,a' : A(Vx,x' : S)ax=dx' & WNa": A) (ad’)x =@ a")x' (48)
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Proof. First suppose:.x = a’.x’ holds. By axiom Q), to prove(Wa” : A) (aa”)-x = (a’a”)-x’ we
have to find some” #a, d’, x, x’ such thata a”)-x = (a’ a”’)-x’. By axiom (F4), we can certainly find
a satisfyinga” #a, d’, x, x'. If in addition we have: = a’, then by axiom A1) we also haver = x’
and we are done. So suppaesé a’, in which case by axiomA1) we also have’ # x andx’ = (aa’)-x.
Hence
(a/a//).x/ — (a/a//).(a a/)‘x

= ((d a")a (d'ad")a")(a' a")-x byaxiom(EL)

=(aa")(a a")x by Proposition 1

=(aad")x by axiom(F1)
as required.

Conversely, if(a” : A) (aa”)-x = (a’ a”)-x' does hold, then by axionQ) there is some” with

a’#a,a, x,x and

(@aa’yx =@ a"yx' (49)
If a = a’, then applyinga a”)-(—) to both sides of (49), by axion8R) we get

x=(ad)@a")x =@a")(@aad")x" =x
and hence.x = a’.x’. So suppose # a’. Applying (a’ a”)-(—) toa” # x’, by axioms E2) and S3) we
geta’ # (a’ a”’)-x" and hence by (49) that # (a a”’)-x. Hence

a = (ad")d by Proposition 1
#aa')-(aa”)-x by axiom(E2)
=x by axiom(S2).

and then also

x' = (@ ad")(a a")x by axiom(S2)
= (a'a")(aa")x by (49
= ((d'ad")-a (a'd")-a")-(a’a”)-x byaxiom(EL)
= (aa')(a' a’)x by Proposition 1
= (aad)x by axiom(F1).

Thusa.x = d’.x" by axiom Q). [

The construction in Definition 5 is used in [13,17] to treat, within the Fraenkel-Mostowski permuta-
tion model of set theory, sets of parse trees moduémuivalence as inductively defined sets with useful
associated structural induction/recursion principles. For example, [17, Theorem 6.2] shows that the set
of a-equivalence classes afterms (Example 1) has an inductive characterisation as the least nominal
set satisfying

X=A4+XxX)+[AlX (50)
(whereA is a nominal set of atoms;; indicates disjoint union ane cartesian product). From this we
can derive a theory in Nominal Logic farterms modulax-equivalence, in much the same way as the

inductive description of the natural numbers (hamely, the least setch thatX = 1 + X) can lead to
Peano’s axioms for arithmetic.

Example 6 (Nominal theory ofi-terms modulax-equivalence The signature of this theory has a sort
of atomsVar, a sort of datderm function symbols
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var : Var — Term
app: Term Term— Term
lam: [Var]Term— Term

and the following axioms.

(Ya : Var)(Vt, t' : Term) —var(a) = app(t, t') (51)
(Va : Var) (Vs : [Var]Term) —var(a) = lam(s) (52)
(Vs : [Var]Term)(Vz, t' : Term) —lam(s) = app(z, t') (53)

(Vt : Term) (3a : Var) t = var(a)
v @, " Term t = appt’, t”) (54)
Vv (3s : [Var]Term ¢ = lam(s)

(Ya,a’ : Var) var(a) =var(a) =a =ad (55)
Ve, ' " 1" Term appt, t') = app(t”, i)y =t =t" At =1 (56)
Vs, s" : [Var]Term lam(s) = lam(s") = s = s’ (57)
(V% : S)(Ya : Var) g(var(a), X)

A Ve, ' Term) o(t, X) A o(t', X) = p(app(t, t'), X) (58)

A (Wa : Var) (vt : Term) ¢(t, X) = g(lam(a.t), X)
= (Vt : Term) o(t, X)

Axioms (51)—(57) just state that there is a bijection (induced/dny app andlam) betweenTermand
the disjoint union ofVar, Termx Termand[Var]Term The interesting axiom is the last one, (58). It is
an induction principle reflecting the initiality of (50) (cf. [17, Theorem 6.8]), much as Peano’s induction
axiom reflects the initiality of the set of natural numbers.

To illustrate the use of axiom (58) consider adding to the theory a relation sy&stor arity
Term Var, Term Termand the following axiom.

Substt, a,t', ") <
' =var(a@) At =t
Vv (3d :Vant =var(@) A—a =ant” =var(a')
Vo @, 15 Term) ' = appty, t;) At = app(ty, (59)
A Substr, a, 1, 1) A Substt, a, t5, 1)
V. (3a’ :Van(3rg, 1y : Term ¢’ = lam(a’.t)) A 1" = lam(a’.t])
Aa' #t ASubstt,a, 1), 1))

The intention is thaBubstis the graph of the capture-avoiding substitution function. The reason for
formulating this with a relation symbol rather than a function symbol (as we did in Example 3) is to
allow us to state thaBubstis indeed the graph oftatal function

(Vt,t' : Term(Va : Var)(3!t” : Term) Substz, a,t’,t”) (60)

even though axiom (59) only specifies the result of substitution untidriader when the bound variable
a’ is sufficiently fresh (i.e., whea' #¢ holds). Indeed, in the presence of the other axioms, (60) follows
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by applying the structural induction principle (58) to prov&’ : Terme(¢’, t, a) wherep(t', t, a) is
3" : Term) Substz, a, t’, t”). We omit the details.

Remark 4 (Definability of atom-abstractignAtom-abstraction sorts are convenient for expressing prop-
erties of binding operations, but they do not represent an essential extension of the version of Nominal
Logic we presented in Section 5. The situation is analogous to the one for cartesian products, which are
definable within ordinary first-order logic: given softg S» andS, there is a first-order theory in all of
whose models the interpretation $fis isomorphic to the cartesian product of the interpretation$; of
andS». Indeed there are several such theories; for example, take a function syanboky, S, —> §

and axioms

(Vx1, x7 : S1)(Vx2, x5 @ S) pair(x1, x2) = pair(xy, x5) = (x1 = x7) A (x2 = x5) (61)

(Vx : §)(Ax1 : S1)(3x2 : S2) x = pair(x1, x2) (62)

Within Nominal Logic there is a similar definability result for atom-abstraction sorts. Given 4p8s
andsS’ (with A a sort of atoms), and a function symladis: A, S — §’, the axioms

(YVa,a’ : A) (Vx,x' : S) abga, x) = abgd’, x') &

WNa" : A) (aa”)x = (@’ a"”)-x’ (63)

Vx' :8)3a : A)@x : S) x' = abga, x) (64)

ensure that in the semantics of Section 3, the interpretatishisfisomorphic td A, 1X, whereA, and
X are the nominal sets interpretingandS respectively.

The following result shows that atom-abstraction spA$X have a dual nature: their elements
embody not only the notion of abstraction as a ‘(bound variable, body)-pair modulo renaming the bound
variable’, but also the notion of abstraction as a function (albeit a partial one) from atoms to individuals
(cf. Section 9).

Proposition 7. The following formula is provable in Nominal Logic
Vy :[AIS)Va: A)a#ty=3x:S)y=ax (65)
(whered! meansthere exists a unique . and has the usual encoding in first-order logic

Proof. The uniqueness part of (65) follows from
Va : AY(Vx,x S ax=ax' = x=x

which is a corollary of axiomsA1) and S1). For the existence part of (65), note that by Proposition 4
Vy:[AlS)Va:A)a#ty= Tx:S) y=ax

holds if and only if
Vy:[AlS)Fa:A)a#yAn(@x:S)y=ax

and the latter follows from axiomA@2) and Proposition 5 (specifically, property (45))J
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8. Choice

In informal arguments about syntax one often says things ttkedsea fresh name such that. .
Axiom (F4) ensures that we can comply with such directives for Nominal Logic’s formalisation of
freshness. But it is important to note thatnominal Logic such choices cannot be made uniformly in
the parametersit is in general inconsistent with the other axioms to skolemizg by adding function
symbolsfresh: § — A satisfying(vx : S) fresh(x) #x. Here is the simplest possible example of this
phenomenon.

Proposition 8. Supposét is a sort of atomsThe formula
YVa: A)3d : A) —a=d (66)
is a theorem of Nominal Logi¢tlowever it is inconsistent to assume there is a function tHat each

atom picks out an atom different from. itn other words the Nominal Logic theory with a function
symbolf : A — A and the axiom

(Va : A) —a = f(a) (67)
is inconsistent

Proof. The formula (66) is an immediate consequence of axidA2} &nd 4). For the second part
we show that(3a : A) a = f(a) is a theorem. First note that by axiom4) (with the empty list of
parameters), there is an atora of sort A.* We show that: = f(a). For anya’ : A, by Proposition 3
we haved' #a = a' # f(a), i.e., (by axiom F2)) =ad' =a = —a’' = f(a),i.€.,da’ = f(a) = d’ = a.
Takinga’ to be f(a), we getf(a) =a. O

This phenomenon is a reflection of the fact that the categdmn of nominal sets fails to satisfy
the Axiom of Choice (see [12] for a categorical treatment of choice), which in turn reflects the fact
that, by design, the Axiom of Choice fails to hold in the Fraenkel-Mostowski permutation model of set
theory [25]. However, there is no problem with principlesuoiquechoice (in contrast to the situation
for the Theory of Contexts [23], a close cousin of Nominal Logic). For example, if a Nominal Logic
theory has a model iVomsatisfying the sentence

V% : A : ) o, x') (68)
then the theory extended by a function symy50I§ — §’ and axiom
(VX 1 8) o(x, f(¥)) (69)

can also be modelled iWom (simply because in a cartesian category any subobject satisfying the prop-
erties of a single-valued and total relation is the graph of some morphism). Unfortunately a far more
common situation than (68) is to have ‘conditional unique existence’:

(Vx:9)8(F) = A’ : §) oX, x') (70)
so thatp(x, x’) is the graph of gartial function with domain of definition containing thosesuch that

8(x). We have already seen an example of this in Proposition 7. If the formula (70) is a theorem of a
Nominal Logic theory, adding a function symbgl: § — S’ and axiom

4The reader can deduce at this point that the author, being of a category-theoretic bent, is not assuming a formulation of
first-order logic that entails that all sorts are non-empty. Possibly empty sorts, like the empty set, have their uses!
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(VX :5) (%) = o(X, f(X)) (71)

to the theory can result in inconsistency. This is becafisepresents #otal function fromS to S'.
Given terms : S, even if§(7) does not hold and so (71) cannot be used to deduce properties of the
term £ (7) : §’, nevertheless one may be able to use results such as Proposition 3 to deduce properties of
f(©) : S’ that lead to inconsistency, especiallysithappens to be a sort of atoms. The simplest possible
example of this phenomenon is whg&ims the empty list of sorts andlis false In this case formula (70)
is trivially a theorem; the skolemizing functighis a constant of solf’, so if that is a sort of atoms we
get inconsistency by Corollary 1.

This difficulty with introducing notations for possibly partially defined expressions is masked in [16]
by the untyped nature of FM-set thedrhat work introduces, among other things, a term-former for
concretionof atom-abstractions at atoms, skolemizing the conditional unique existence formula (65) of
Proposition 7. Terms involving concretion only have a definite meaning when certain preconditions are
met. Nevertheless they can be given a semantics as total elements of the universe of FM-sets simply by
taking their meaning when the preconditions are not met to be some default element with empty support
(the empty set, say). Such a ‘hack’ is available to us in classical logic when there are enough terms of
empty support. One such term is enough in an untyped setting such as FM-set theory. In a many-sorted
Nominal Logic theory there is nothing to guarantee that a$@assesses a term S of empty support
(i.e., satisfying(Va : A) a #1 for all sorts of atomsA); indeed Corollary 1 shows that sorts of atoms do
not possess such terms in a consistent theory. To provide Nominal Logic with a richer term language,
incorporating such things as concretions of atom-abstractions at atoms and maybe more besides (such
aslocally fresh atoms- see [17, Lemma 6.3] et seq), one may be able to adapt the work of Miller [30,
Section 6] on a sound treatment of skolemization in higher order logic without choice (see also [10,
Section 7]). One might also consider merging Nominal Logic’s novel treatment of atoms and freshness
with some conventional treatment of the logic of partial expressions (such as [2, Section VI.1] or [37]).
We leave such considerations to the future and turn instead to a brief survey of existing work more
directly related to the concerns of this paper.

9. Related work

One can classify work on fully formal treatments of names and binding according to the mathematical
construct used to model the notion of abstraction:
e Abstractions as (name, term)-paitdere one tries to work directly with parse trees and the relation
of a-equivalence between them; [28,38] are examples of work in this spirit. The drawback of this
approach is not so much that many tedious details left implicit by informal practice become explicit,
but rather that many of these details have to be revisited on a case-by-case basis for each object
language. The use of parse trees containing de Bruijn indices [7] is more elegant; but this has its own
complications and also side-steps the issue of formalising informal practice to do with named bound
variables.

51t is also masked in the programming language FreshML sketched in [35], which has a richer term language than does
Nominal Logic; this is because FreshML features unrestricted fixed point recursion in order to be Turing powerful, and hence
naturally contains partially defined expressions.
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e Abstractions as functions from terms to terifilse desire to take care of the tedious detailg-@quiv-
alence and substitution once and for all at the meta-level leads naturally to encodings of object-level
syntax in a typed.-calculus modulay, 8 (andn) equivalence. This is the approachtogher-order
abstract syntaHOAS) [32], an idea dating back to Church and then Martin-Lof. It is well-supported
by existing systems for machine-assisted reasoning based onixygadulus. It does not lend itself
very easily to principles of structural recursion and induction for the encoded object-language, but
nevertheless such principles have been developed. For example, McDowell and Miller have developed
a way of using Hallnas’ notion of partial inductive definitions [20] to enable inductive reasoning
about HOAS specifications in an intuitionistic higher-order logic [27]; and Despeyroux, Pfenning and
Schirmann have developed a modal typecalculus that allows primitive recursive functions on
HOAS-encoded object-language syntax without destroying the adequacy of the encoding [8,36].

e Abstractions as functions from names to teriiiige Theory of Contextf23] reconciles the elegance of
higher-order abstract syntax with the desire to deal with names at the object-level and have relatively
simple forms of structural recursion/induction. It does so by axiomatising a suitable type of hames
within classical higher order logic. The Theory of Contexts involves a ‘non-occurrence’ predicate and
axioms quite similar to those for freshness in FM-set theory [17] and in the Nominal Logic presented
here. However, ‘non-occurrence’ in [23] is dependent upon the object language, whereas our notion
of freshness is a purely logical property, independent of any particular object syntax with binders.
(The same remark applies to the axiomatisatiom@fquivalence ofi-terms in higher order logic
in [18]; and to the extension of first-order logic with binders studied in [9].) Furthermore, the use
of total functions on names to model abstraction means that the Theory of Contexts is incompatible
with the Axiom of Unique Choice (cf. Section 8), forcing the theory to have a relational rather than
functional feel: see [29]. On the other hand, the Theory of Contexts is able to take advantage of
existing machine-assisted infrastructure (namely Coq [6]) quite easily, whereas Gabbay had to work
hard to adapt the Isabelle [31] set theory package to produce his Isabelle/FM-sets package: see [13,
Chapter 111 and [15].

The notion of abstraction that is definable within Nominal Logic (see Section 7) captures something

of the first and third approaches mentioned above: atom-abstractions are defined to be pairs in which

the name-component has been made anonymous via swapping; but we saw in Proposition 7 that atom-
abstractions also behave like functions, albeit partial ones. Whatever the pros and cons of the various
views of name abstraction, at least one can say that, being first-order, Nominal Logic gives a more
elementary explanation of names and binding than much the work mentioned above; and a more funda-
mental one, | would claim, because of the independence of the notions of atoms, swapping, freshness
and atom-abstraction from any particular object-level syntax involving binders.

10. Conclusion

Nominal Logic gives a first-order axiomatisation of some of the key concepts of FM-set theory —
atoms, swapping and freshness —which were used in [17] to model syntax meeaglovalence with in-
ductively defined sets whose structural induction/recursion properties remain close to informal practice.
We have seen that, being first-order, Nominal Logic does not give a complete axiomatisation of the
notion of finite supporithat underlies the notion of freshness in FM-sets. Nevertheless, the first-order
properties of a notion dfreshness of namgwesented in this paper seem sufficient to develop a use-
ful theory, independent of any particular object-level language involving binders. Indeed, many of the
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axioms listed in Appendix A arose naturally in Gabbay’s implementation of FM-set theory in the Isabelle
system [13,15] as the practically useful properties of finite support. Nominal Logic and the theories
we can formulate in it, are a vehicle for exhibiting those properties clearly. They are also a necessary
precursor for the study of the computational properties of the logic of freshness: work is in progress on
a version of first-order logic programming extended with Nominal Logic’s primitives of swapping and
freshness of atoms (cf. Hamana's logic programming language [21] based on the presheaf semantics of
binding in [11]).

However, if one wants a single, expressive foundational theory in which to develop the mathematics
of syntax in the style of this paper, one can use FM-set theory (and its automated support within Isa-
belle); or, as Gabbay argues in [14], a version of higher-order logic incorporating atoms, swapping and
freshness.

Finally, even if one does not care about the details of Nominal Logic, | think that two simple, but
important ideas underlying it are worth taking on board for the practice of operational semantics (be it
with pencil-and-paper, or with machine assistance):

e Name-swappinga b)-(—) has much more convenient logical properties than renarfbrig}(—).

e The only assertions about syntax we should deal with are ones whose validity is invariant under
swapping bindable names.

Even if one only takes the naive view of abstractions as (hame, term)-pairs, it seems useful to define

a-equivalence and capture-avoiding substitution in terms of name-swapping and to take account of equi-

variance in inductive arguments. We gave some illustrations of this in Section 2. A further example is

provided by the work of Caires and Cardelli on modal logic for the spatial structure of concurrent sys-

tems [3,4]; this and the related work [5] make use of the freshness quantifier of Section 6. See also [22]

for the use of permutative renaming to treat naming aspects of process calculi.
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Appendix A: Syntax and axioms of nhominal logic
A.1 Signatures and sorts

A nominal logicsignatureis specified by the following data.

e A collection of ground sort symbols, partitioned into two kinderts of atom&ndsorts of data

e A collection offunction symbolseach equipped with aarity consisting of a list of argument sorts and
a result sort (where the sorts over the signature are defined below); wefwrfe— S to indicate
that function symbolf has argument sorts given by the lisand result sorf.
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e A collection ofrelation symbolseach equipped with aarity consisting of a list of argument sorts;

we write R < : S to indicate that relation symb@ has argument sorts given by the Iist

The sorts over a signature are built up by forming atom-abstraction sorts from the ground sort
symbols:

SortsS ::= A sorts of atoms
D sorts of data
[A]S sorts of atom-abstractions

A.2 Terms and formulas

Given a nominal logic signature, we fix mutually disjoint, countably infinite sets of variable symbols
of each sort over the signature.
Thetermsover the signature are inductively defined as follows. Each well-formed term has a unique
sort; we writer : S to indicate that is a term of sorfS.
e x : S, if x is a variable symbol of sof.
o f(t1,....ty) : S,if f:81,...,8, — Sandry : S1,....,t, : S,.
(t112)-13: S,if 11 : A, 12 : A andrz : S, with A a sort of atoms and any sort.
o 11.12 : [A]S,if 11 : Aandr : S, with A a sort of atoms.
Theformulasover the signature are inductively defined as follows.
R(t1,...,t;) isaformula, ifR <:8S1,...,S,andry : S1,...,1 : S,.
11 = tpis aformula, ifry : S andr, : S for some sortS.
11 #1ois a formula, ift1 : A for some sort of atomd andz, : S for some sorfS.
-0, 0 ANV, ¢V Y, ¢ = ¢ andg < ¢ are formulas, ifp andy are.
(Vx : S)p and(3x : S)e are formulas, ifp is a formula, where is any sort and is a variable symbol
of sortS.
e (Nx : A)gp is a formula, ify is a formula, where is any sort of atoms and is a variable symbol of
SOrtA.
Like V and3, the freshness quantifien is a binder — the free variables @fix : A)gp are all the free
variables ofp exceptx.

A.3 Axioms

A nominal logictheoryconsists of a signature and a collection of formulas over the signature, called
the (non-logical) axioms of the theory. Thieeoremf the theory are all the formulas derivable using
the rule of Modus Ponens from the usual axioms of first-order logic with equality augmented by the
following axioms specific to nominal logic. In what follows, and A" range over sorts of atoms,
ranges over arbitrary sorts, a§aver lists of sorts.

Properties of swapping
(Va : A)(Vx : S) (aa)-x = x (S

(Va,a’ : A)(Vx : S) (aa)-(aa’)x =x (S2)
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(Va,a' : A) (aad')-a=d (S3)

Equivariance

(Va,a’ : A)(Vb,b' : AY(Yx : S) (aad’)-(bb)-x = ((aad')-b (aa’)-b)-(ad)x (ED)
(Va,a’ : AY(Vb: AY(Vx : S) b#x = (ad)-b# (aa)x (E2)
(Va,a’ : A)(VX : 3‘) (aa)-f(x) = f((aa')-X) (E3)

where f is a function symbol of arity —> S and(a a’)-% indicates the finite list of arguments given
by (a a’)-x; asx; ranges ovek.

(Va,a’ : A)(¥x : S) R(X) = R((ad')-¥) (E4)
whereR is a relation symbol of arity.
(Vb,b' : AY(Va : A)(Vx : S) (bb')-(a.x) = ((bb)-a).(bb)-x) (E5)

Properties of freshness

Va,a’ : AY(Vx : S)a#x nad' #x = (ad)x =x (F1)
(Va,a : A)a#ad & —a=ad (F2)
(Ya : AYVa' : A) a#d (F3)

whereA and A’ are different sorts of atoms.

(VZ:8)3a: A) a#i (F4)
wherea # X indicates the finite conjunction of the formula# x; asx; ranges over the list.
Definition of

(Ma : A)p) < Fa : A)a#i Ao Q)

wherea, x is a list of distinct variables containing the free variables of

Properties of atom-abstraction

Va,a’ : AY(Vx,x' : SYax=d x ex(a=d rx=x)v(@#x A x' = (aad)x) (A1)
Vy : [A]lS)(Fa: A)@x : S) y=ax (A2)
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