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Abstract

This paper formalises within first-order logic some common practices in computer science to do with rep-
resenting and reasoning about syntactical structures involving lexically scoped binding constructs. It introduces
Nominal Logic, a version of first-order many-sorted logic with equality containing primitives for renaming via
name-swapping, for freshness of names, and for name-binding. Its axioms express properties of these constructs
satisfied by theFM-setsmodel of syntax involving binding, which was recently introduced by the author and
M.J. Gabbay and makes use of the Fraenkel–Mostowski permutation model of set theory. Nominal Logic serves
as a vehicle for making two general points. First, name-swapping has much nicer logical properties than more
general, non-bijective forms of renaming while at the same time providing a sufficient foundation for a theory of
structural induction/recursion for syntax moduloα-equivalence. Secondly, it is useful for the practice of operational
semantics to make explicit theequivariance propertyof assertions about syntax – namely that their validity is
invariant under name-swapping.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is commonplace, when using formal languages in computer science or mathematical logic, to ab-
stract away from details of concrete syntax in terms of strings of symbols and instead work solely with
parse trees – the ‘abstract syntax’ of a language. Doing so gives one access to two extremely useful and
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inter-related tools: definition by recursion on the structure of parse trees and proof by induction on that
structure. However, conventional abstract syntax is not abstract enough if the formal language involves
variable-binding constructs. In this situation the common practice of human (as opposed to computer)
provers is to say one thing and do another. We say that we will quotient the collection of parse trees
by a suitable equivalence relation ofα-conversion, identifying trees up to renaming of bound variables;
but then we try to make the use ofα-equivalence classes as implicit as possible by dealing with them
via suitably chosen representatives. How to make good choices of representatives is well understood,
so much so that it has a name – the ‘Barendregt Variable Convention’: choose a representative parse
tree whose bound variables arefresh, i.e., mutually distinct and distinct from any (free) variables in the
current context. This informal practice of confusing anα-equivalence class with a member of the class
that has sufficiently fresh bound variables has to be accompanied by a certain amount of hygiene on the
part of human provers: our constructions and proofs have to be independent of which particular fresh
names we choose for bound variables. Nearly always, the verification of such independence properties
is omitted, because it is tedious and detracts from more interesting business at hand. Of course this
introduces a certain amount of informality into ‘pencil-and-paper’ proofs that cannot be ignored if one
is in the business of producing fully formalised, machine-checked proofs. But even if you are not in
that business and are content with your pencil and paper, I think there is a good reason to examine this
informal use of ‘sufficiently fresh names’ and put it on a more precise, mathematical footing.

The reason I have in mind has to do with those intuitive and useful tools mentioned above: structural
recursion for defining functions on parse trees and structural induction for proving properties of them.
Although it is often said that the Barendregt Variable Convention allows one to work withα-equivalence
classes of parse trees as though they were just parse trees, this is not literally the case when it comes to
structural recursion/induction. For example, when dealing with an induction step for a variable-binding
construct, it often happens that the step can be proved for a sufficiently fresh bound variable, but not for
an arbitrary one, as the induction principle demands. The Barendregt Variable Convention papers over
the crack in the proof at this point by preventing one considering the case of an arbitrary bound variable
rather than a fresh one, but the crack is still there. Although one can sometimes side-step the problem by
using a suitable size function on parse trees and replacing structural induction with mathematical induc-
tion, this is not a very satisfying solution. The size function will be defined by structural recursion and
the crucial fact thatα-equivalent parse trees have the same size will be proved by structural induction; so
we are using structural recursion/induction anyway, but somehow not in the direct way we would like.
We can do better than this.

Indeed, the work reported in [16,17,35] does do better, by providing a mathematical notion of ‘suf-
ficiently fresh name’ that remains very close to the informal practice described above while enabling
α-equivalence classes of parse trees to gain useful inductive/recursive properties. The theory stems from
the somewhat surprising observation that all of the concepts we need (α-equivalence, freshness, variable-
binding, . . . ) can be defined purely in terms of the operation ofswappingpairs of names. In particular,
the freshness of a name for an object is expressed by saying that the name is not in some finite set
of names thatsupportsthe object, which means that the finite set has the property that swapping any
pair of names not in it leaves the object unchanged. This notion of support is weak second order, since
it involves an existential quantification over finite sets of names. However, much of the development
in [17] only makes use of certain first-order properties of the freshness (i.e., ‘not-in-the-support-of’)
predicate in combination with the swapping operation. This paper presents this first-order theory of
names, swapping and freshness, calledNominal Logic.
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1.1. Outline of the paper

Section 2 presents some motivations for basing a theory of syntax and binders upon the notions of
atoms(names),swappingatoms, andfreshnessof atoms. Section 3 introduces the syntax we use for these
concepts, together with some typical examples of what can be expressed with them. As explained in [17],
the Nominal Logic notions of atom, swapping and freshness can be given a meaning independent of any
particular object-level syntax usingFM-sets– the Fraenkel–Mostowski permutation model of set theory;
in Section 4 we describe the category ofnominal sets, which provides a simplified presentation of FM-
sets emphasising swapping over more general permutations of atoms. Then in Section 5 we axiomatise
the key first-order properties of the nominal sets model of atoms, swapping and freshness. Section 6
makes a definitional extension of this theory with a quantifier expressing a characteristic ‘some/any’
property of fresh atoms. In Section 7 we make another definitional extension to deal with variable-
binding operations in a more uniform way. This completes the definition of Nominal Logic, which is
summarised in Appendix A. Section 7 illustrates its use by presenting a first-order theory ofλ-terms
moduloα-equivalence containing a convenient structural induction axiom. Section 8 discusses the fact
that Nominal Logic is incompatible with the use of choice functions to select a ‘next’ fresh atom in any
particular context. Finally, Sections 9 and 10 describe some related approaches to fully formal treatments
of names and binding and draw some conclusions.

2. Equivariant predicates

The fundamental assumption underlying Nominal Logic is thatthe only predicates we ever deal with
(when describing properties of syntax)are equivariant ones, in the sense that their validity is invariant
under swapping(i.e., transposing, or interchanging)names.

Names of what? Names of entities that may be subject to binding by some of the syntactical con-
structions under consideration. In Nominal Logic these sorts of names, the ones that may be bound and
hence that may be subjected to swapping without changing the validity of predicates involving them,
will be calledatoms. The terminology refers back to the origins of the theory in the Fraenkel–Mostowski
permutation model of set theory. Atoms turn out to have quite different logical properties fromconstants
(in the usual sense of first-order logic) which, being constant, are not subjected to swapping. Note that
this distinction between atom and constant has to do with the issue of binding, rather than substitution:
a syntactic category ofvariables, by which is usually meant entities that may be subject to substitu-
tion, might be represented in Nominal Logic by atoms or by constants, depending upon circumstances:
constants will do if we are in a situation where variables are never bound, but can be substituted for;
otherwise we should use atoms. The interesting point is that we can make this (useful!) distinction
between ‘bindable’ names and names of constants entirely in terms of properties of swapping names,
prior to any discussion of substitution and its properties.

Why the emphasis on the operation ofswappingtwo names, rather than on the apparently more
primitive notion ofrenamingone name by another? The answer to this question lies in the combination
of the following two facts.
• First, even though swapping seems less general than renaming (since after all, the act of swappinga

andb can be expressed as the simultaneous renaming ofb by a anda by b), it is possible to found a
theory of syntax moduloα-equivalence, free and bound variables, substitution, etc., upon this notion
– this is the import of the work in [17].
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• Secondly, swapping is an involutive operation: a swap followed by the same swap is equivalent to
doing nothing. This means that the class of equivariant predicates, i.e., those whose validity is invariant
under atom-swapping, has excellent logical properties. It contains the equality predicate and is closed
under negation, conjunction, disjunction, existential and universal quantification, formation of least
and greatest fixed points of monotone operators, etc. The same is not true for renaming. For example,
the validity of a negated equality between atoms is not necessarily preserved under renaming.

In other words we can found a theory of variable-binding upon swapping, and it is convenient to do so
because of its good logical properties. Here are a couple of examples to illustrate these points, taken
from λ-calculus and type theory.

Example 1 (α-equivalence ofλ-terms). Consider the terms of the untypedλ-calculus, which we can take
to beα-equivalence classes[t]α of parse treest given by the grammar

t ::= a | λa.t | t t (1)

wherea ranges over an infinite set of variables. The relation ofα-equivalence between such parse trees,
t ∼α t ′, is usually defined to be the congruence generated by relatingλa.t andλb.{b/a}t if there are no
occurrences ofb in t (be they free, bound or binding occurrences). Here{b/a}t is the parse tree obtained
from t by replacing all free occurrences ofa with b. The properties of this form of renaming are rather
inconvenient for our aim of developing a theory of variable-binding in which logical equality subsumes
α-equivalence. This is because the operation{b/a}(−), as a total function on all parse trees, does not
necessarily respectα-equivalence when applied to trees that do contain occurrences ofb – because of
the possible ‘capture’ ofb by bindersλb.(−) occurring in t . (For exampleλb.a ∼α λc.a holds, but
{b/a}(λb.a) = λb.b�αλc.b = {b/a}(λc.a).) In the development of the theory ofλ-calculus [1], this
inconvenient fact immediately leads to the formulation of more complicated, ‘capture-avoiding’ notions
of renaming and substitution. However, it is possible to go in the other direction and replace{b/a}(−)

with another, equally simple form of renaming which does respectα-equivalence whatever term it is
applied to. For as pointed out in [17, Section 2], ifb does not occur int , then{b/a}t is α-equivalent
to the parse tree obtained fromt by swapping all occurrences ofa andb (be they free, bound, or even
binding occurrences): we denote this parse tree by(a b)·t . The total function(a b)·(−) on parse trees is
in a sense more fundamental than{b/a}(−), because its definition does not depend upon knowing what
is a free variable, i.e., upon knowing which of the syntax-constructors is supposed to be a binder: for the
definition of (a b)·(−) on aλ-abstraction term takes just the same form as for an application term – one
just applies the swap to all immediate subtrees:

(a b)·(λc.t)=λ((a b)·c).((a b)·t)
(a b)·(t t ′)=((a b)·t)((a b)·t ′)

where(a b)·c=



a if c = b

b if c = a

c otherwise

Proposition 2.2 of [17] proves that the relation∼α can be inductively generated by syntax-directed rules
of the following three kinds:

a ∼α a
(2)
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t1 ∼α t ′1 t2 ∼α t ′2
t1 t2 ∼α t ′1 t ′2

(3)

(a b)·t ∼α (a′ b)·t ′
λa.t ∼α λa′.t ′

b �= a, a′ andb does not occur int or t ′ (4)

It is immediate from this characterisation of∼α that it is equivariant, in the sense that

for all t andt ′, t ∼α t ′ implies (a b)·t ∼α (a b)·t ′
(a property that we have noted does not hold for the renaming operation{b/a}(−)). The reason why the
equivariance property holds is quite general:any relation inductively defined by anequivariantset of
rules(in the sense that swapping a pair of names throughout the hypotheses and conclusion of any rule
yields another element of the set of rules)is easily seen to be an equivariant relation, i.e., closed under
applying the swapping operation.And as we mentioned above, once we know that∼α is equivariant, so
will be predicates built up from it using the usual logical operations. To illustrate the usefulness of this
observation, consider proving from the above inductive characterisation of∼α that it is transitive. We
can proceed by ‘rule induction’ and show that the relation

ϕ(t, t ′) � (∀t ′′) t ′ ∼α t ′′ ⇒ t ∼α t ′′ (5)

is closed under the rules (2)–(4) inductively defining∼α. We will just consider the case of the third rule,
since it illustrates the usefulness of equivariance.

So suppose we have

ϕ((a b)·t, (a′ b)·t ′) (6)

whereb �= a, a′ andb does not occur int or t ′. We have to show thatϕ(λa.t, λa′.t ′) holds, i.e., that for
anyt ′′, λa′.t ′ ∼α t ′′ impliesλa.t ∼α t ′′. Now the syntax-directed nature of the rules comes to our aid: if
λa′.t ′ ∼α t ′′ holds, it must have been deduced by an application of rule (4): sot ′′ = λa′′.t ′′′ say, and

(a′ c)·t ′ ∼α (a′′ c)·t ′′′ (7)

holds for somec �= a′, a′′ with c not occurring int ′ or t ′′′. Letd be afreshvariable, i.e., one not occurring
in t , t ′, or t ′′ and not in{a, a′, a′′, b, c}. Now we use the equivariance property ofϕ: since (6) holds, so
does the predicate withb andd swapped throughout; and sinceb andd do not occur int or t ′ and are
not equal toa or a′, the result of this swapping is provably equivalent to

ϕ((a d)·t, (a′ d)·t ′) (8)

Similarly, the equivariance property of∼α itself means that by swappingc andd in (7), we also have

(a′ d)·t ′ ∼α (a′′ d)·t ′′′ (9)

Remembering the definition ofϕ, (8) and (9) combine to yield

(a d)·t ∼α (a′′ d)·t ′′′
and sinced �= a, a′′ andd does not occur int or t ′′, we can apply rule (4) to this to deduceλa.t ∼α

λa′′′.t ′′′, i.e.,λa.t ∼α t ′′, as required. �

Example 2 (Weakening in type theory). McKinna and Pollack [28] note that in the naïve approach to
named bound variables referred to in Section 1, there is a difficulty with proving the weakening property
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of type systems by rule induction. For example, consider the usual typing relation assigning simple types
to terms of the untypedλ-calculus. As in the previous example, we take the latter to meanα-equivalence
classes[t]α of parse treest given by the grammar (1). The typing relation takes the form� � [t]α : τ ,
where typesτ are given by the grammarτ ::= X | τ → τ (with X ranging over an infinite collection of
type variables); and where the typing context� is a finite partial function from variables to types. The
typing relation is inductively generated by rules following the structure of the parse treet . (If the reader
is not familiar with these rules, see [19, Chapter 2], for example; but note that as mentioned in Section
1, the literature usually does not bother to make a notational distinction betweent and[t]α.)

When trying to prove the weakening property of the typing relation, namely

(∀�)(∀t)(∀τ) � � [t]α : τ ⇒ (∀τ ′)(∀a′ /∈ dom(�)) �, a′ : τ ′ � [t]α : τ (10)

it is natural to try to proceed by rule induction and show that the predicateϕ(�, [t]α, τ ) given by

(∀τ ′)(∀a′ /∈ dom(�)) �, a′ : τ ′ � [t]α : τ

defines a relation that is closed under the rules inductively defining the typing relation and hence contains
that relation. But the induction step for the rule for typingλ-abstractions

�, a : τ1 � [t]α : τ2

� � [λa.t]α : τ1 → τ2
a /∈ dom(�) (11)

is problematic: we have to prove

ϕ(�, a : τ1, [t]α, τ2) ∧ a /∈ dom(�) ⇒ ϕ(�, [λa.t]α, τ1 → τ2);
i.e., given

ϕ(�, a : τ1, [t]α, τ2) (12)

and

a /∈ dom(�) (13)

we have to prove that

�, a′ : τ ′ � [λa.t]α : τ1 → τ2 (14)

holds forall a′ /∈ dom(�) (and allτ ′) – and there is a problem with doing this for the casea′ = a.
But this difficulty with the induction step is easily circumvented if we take equivariance into account.

The axioms and rules defining typing are closed under the operations of swapping pairs of variables
(and also under swapping pairs of type variables, but we do not need to use that here). For example, if
we have an instance of rule (11) and we swap any pair of variables throughout both the hypotheses and
the conclusion, we get another valid instance of this rule.1 As we mentioned in the previous example,
it follows from this swapping property of the axioms and rules that the typing relation, being the least
relation closed under the axioms and rules, is also closed under the swapping operations. Therefore
any assertion about typing that we make by combining the typing relation with other such equivariant
predicates (such as ‘a ∈ dom(�)’) using the usual logical connectives and quantifiers will be equivariant.
In particular the predicateϕ defined above is equivariant. Thus if we know that (12) holds, then so does

1 To see this, strictly speaking we have to make use of the fact, noted in Example 1, that(a b)·(−) preserves∼α and hence
that the result of swappinga andb throughout the set[t]α is the equivalence class[(a b)·t]α .
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ϕ(�, b : τ1, [(a b)·t]α, τ2) for anyfreshvariableb (i.e., one not occurring in�, t , or {a, a′}). So by defi-
nition of ϕ, sincea′ /∈ dom(�, b : τ1), we have(�, b : τ1), a

′ : τ ′ � [(a b)·t]α : τ2. Since(�, b : τ1), a
′ :

τ ′ = (�, a′ : τ ′), b : τ1 (we are using partial functions for typing contexts) andb /∈ dom(�, a′ : τ ′) (by
choice ofb), we can apply typing rule (11) to conclude that�, a′ : τ ′ � [λb.((a b)·t)]α : τ1 → τ2. But
λb.((a b)·t) andλa.t areα-equivalent parse trees, so�, a′ : τ ′ � [λa.t]α : τ1 → τ2 holds. Thus if (12)
and (13) hold, so doesϕ(�, [λa.t]α, τ1 → τ2) and we have completed the induction step.�

From the considerations of this section we abstract the following ingredients for a language to de-
scribe syntax involving names and binding: the language should contain a notion of atom together with
operations for swapping atoms in expressions (in general we may need several different sorts of atoms
– for example, atoms for variables and atoms for type variables in Example 2); and the formulas of the
language should all be equivariant with respect to these swapping operations. Atoms and swapping are
two of the three novelties of Nominal Logic. The third has to do with the crucial step in the proofs in
Examples 1 and 2 when we chose afreshvariable (d in the first example andb in the second one): we
need to give a freshness relation between atoms and expressions with sufficient properties to make such
arguments go through.

3. Syntax of swapping and freshness

The syntax of Nominal Logic is that of many-sorted first-order logic with equality, augmented by the
following extra features.
• The collection of sorts (typical symbolS) is partitioned into two kinds:sorts of atoms(typical symbol

A) andsorts of data.
• For each sort of atomsA and each sortS there is a distinguished function symbol of arityA, A, S −→

S whose effect on termst1 : A, t2 : A andt3 : S we write as the term(t1 t2)·t3 and pronounce ‘swapt1
and t2 in t3’.

• For each sort of atomsA and each sortS there is a distinguished relation symbol of arityA, S whose
effect on termst1 : A andt2 : S we write as the formulat1 # t2 and pronounce ‘t1 is fresh fort2’.

Later on we will add extra syntax forfreshness quantification(Section 6) andatom-abstraction sorts and
terms(Section 7). These extra concepts are first-order definable in terms of the basic ones given above,
so we stick with these for the moment for simplicity’s sake.

Just as for ordinary first-order logic, atheory in Nominal Logic is specified by asignatureof sort,
function and relation symbols, together with a collection of (non-logical)axioms, which are first-or-
der formulas built up in the usual way from variables and the symbols of the signature, but now of
course possibly using the swapping functions and the freshness relation. Here is an example of how
this language of Nominal Logic can be used; we formalise some familiar concepts fromλ-calculus in
it. Exploring the logical properties of these formalisations has to wait until we introduce the axioms of
Nominal Logic in Section 5.

Example 3 (α, β, andη equivalence). Consider the following signature forλ-calculus, with a sort of
atoms for variables and a sort of data forλ-terms over those variables.
Sort of atoms:Var
Sort of data:Term
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Function symbols:var : Var −→ Term
app : Term, Term−→ Term
lam : Var, Term−→ Term

As discussed in Example 1, we can use swapping and freshness to expressα-conversion:

(∀a, a′ : Var)(∀t : Term) a′ # t ⇒ lam(a, t) = lam(a′, (a a′)·t) (15)

Instead of axiomatisingα-conversion on a theory-by-theory basis, in Section 7 we move it into the
logical infrastructure via a notion of atom-abstraction. In particular, we can then takelam to be a function
symbol of arity[Var]Term−→ Term, where[Var]Termis a sort of atom-abstractions (see Definition 4),
whose logical properties ensure that extra axioms forα-conversion like (15) are no longer necessary.

Another typical use of the freshness relation # is to internalise the usual side-condition onη-conver-
sion, as in the following axiom:

(∀a : Var)(∀t : Term) a # t ⇒ t = lam(a, app(t, var(a))) (16)

How may we expressβ-conversion in this language? One way is to augment the signature with a
function symbol for capture-avoiding substitution

subst: Term, Var, Term−→ Term

and then expressβ-conversion by

(∀a : Var)(∀t, t ′ : Term) app(lam(a, t ′), t) = subst(t, a, t ′) (17)

together with axioms for substitution:

(∀t : Term)(∀a : Var) subst(t, a, var(a)) = t (18)

(∀t : Term)(∀a, a′ : Var) ¬ a = a′ ⇒ subst(t, a, var(a′)) = var(a′) (19)

(∀t, t ′, t ′′ : Term)(∀a : Var) subst(t, a, app(t ′, t ′′))
= app(subst(t, a, t ′), subst(t, a, t ′′)) (20)

(∀t, t ′ : Term)(∀a, a′ : Var) ¬ a′ = a ∧ a′ # t ⇒
subst(t, a, lam(a′, t ′)) = lam(a′, subst(t, a, t ′)) (21)

Since the last axiom only specifies how to substitute under aλ-binder when the bound variablea′ is
sufficiently fresh, i.e., when¬ a′ = a anda′ # t , it might seem that the axioms forsubstdo not specify
it uniquely. However, in view of axiom (15), anylam(a′, t ′) is equal to somelam(a′′, t ′′) for which the
freshness condition is satisfied. In Section 7, we give a theory in Nominal Logic forλ-terms modulo
α-equivalence (Example 6) that includes a structural induction principle codifying this familiar practice
of only dealing withλ-abstractions whose bound variables are sufficiently fresh.

4. Nominal sets

As explained in [17], the Nominal Logic notions of atom, swapping and freshness can be given a
meaning independent of any particular object-level syntax usingFM-sets– the Fraenkel–Mostowski
permutation model of set theory. Here we give a simplified, but essentially equivalent, presentation of
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FM-sets that emphasises swapping over more general permutations of atoms. At the same time we use
a mild generalisation of [17] (mentioned in [16, Section 7]) in which the set of atoms is partitioned into
countably many different kinds (and we only swap atoms of the same kind).

Fix a countably infinite family(An | n ∈ N) of pairwise disjoint, countably infinite sets. We writeA

for the union of all theAn and call its elementsatoms.

Definition 1 (Nominal sets). A nominal setX is a set|X| equipped with a well-behaved notion of
swapping atoms in elements of the set. By definition this means that for each elementx ∈ |X| and each
pair of atomsa, a′ of the same kind (i.e.,a, a′ ∈ An for somen ∈ N), we are given an element(a a′)·Xx

of X, calledthe result of swappinga and a′ in x. These swapping operations are required to have the
following properties:
(i) Equational properties of swapping: for eachx ∈ |X| and all pairs of atoms of equal sort,a, a′ ∈ Am

andb, b′ ∈ An (anym, n ∈ N)
(a a)·Xx=x (22)

(a a′)·X(a a′)·Xx=x (23)

(a a′)·X(b b′)·Xx=((a a′)b (a a′)b′ )·X(a a′)·Xx (24)
where

(a a′)b�




a if b = a′
a′ if b = a

b otherwise
(25)

and similarly for(a a′)b′.
(ii) Finite support property: we require that eachx ∈ |X| only involve finitely many atoms, in the sense

that givenx, there exists a finite subsetw ⊆ A with the property that(a a′)·Xx = x holds for all
a, a′ ∈ An − w (anyn ∈ N). Then it can be shown that

suppX(x)�
⋃
n∈N

{a ∈ An | {a′ ∈ An | (a a′)·Xx �= x} is not finite} (26)

is a finite set of atoms (see the proof of [17, Proposition 3.4]), which we call thesupportof x in X.
A morphism of nominal sets, f : X −→ Y , is by definition a function from the set|X| to the set|Y |

that respects the swapping operations in the sense that

f ((a a′)·Xx) = (a a′)·Y f (x) (27)

holds for allx ∈ |X| and all atomsa, a′ (of the same kind). Clearly the composition of two such functions
is another such; and identity functions are morphisms. Therefore nominal sets and morphisms form a
category, which we denote byNom.

Remark 1 (From swapping to permutations). It is a standard result of the mathematical theory of groups
and group actions that the group of all permutations of then-element set{1, . . . , n} is isomorphic to the
group freely generated byn − 1 symbolsgi (i = 1, . . . , n − 1), subject to the identities

(gi)
2 = id (i < n)

(gi gi+1)
3 = id (i < n − 1)

(gi gj )
2 = id (j < i − 1)

with the generatorgi corresponding to the permutation transposingi andi + 1. (See for example [24,
Beispiel 19.7].) From this fact one can easily deduce that the group of all (kind-respecting) finite
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permutations of the set of atomsA is freely generated by the transpositions(a a′) (with a anda′ of
the same kind, i.e.,a, a′ ∈ An for somen ∈ N), subject to the identities

(a a) = id
(a a′)(a a′) = id
(a a′)(b b′) = ((a a′)b (a a′)b′ )(a a′)

where the atoms(a a′)b and(a a′)b′ are defined as in Eq. (25). It follows that if|X| is a set equipped
with swapping operations satisfying Eqs. (22)–(24), then these operations extend uniquely to an action
of all finite permutations on elements of|X|. If |X| also satisfies property (ii) of Definition 1, then this
action extends uniquely to all (kind-respecting) permutations, finite or not; and the elements of|X| have
the finite support property for this action in the sense of [17, Definition 3.3]. These observations form the
basis of a proof thatthe categoryNom of Definition 1 is equivalent to the Schanuel topos[17, Section 7],
which underlies the universe of FM-sets used in [17].

It is not hard to see that productsX × Y in the categoryNomare given simply by taking the cartesian
product{(x, y) | x ∈ |X| ∧ y ∈ |Y |} of underlying sets and defining the swapping operations compo-
nentwise:

(a a′)·X×Y (x, y)�((a a′)·Xx, (a a′)·Y y)

(Clearly (x, y) has the finiteness property inX × Y required by Definition 1(ii), becausex has it in
X andy has it inY .) Similarly, the terminal object 1 inNom has a one-element underlying set and
(necessarily) trivial swapping operations.

So we can interpret many-sorted first-order signatures in the categoryNom: sortsS are interpreted
as objects[[S]]; function symbolsf , of arity S1, . . . , Sn −→ S say, as morphisms[[f ]] : [[S1]] × · · · ×
[[Sn]] −→ [[S]]; and relation symbolsR, of arity S1, . . . , Sn say, as subobjects of[[S1]] × · · · × [[Sn]].
Indeed,Nomhas sufficient properties to soundly interpret classical first-order logic with equality2 using
the usual techniques of categorical logic – see [26] or [33, Section 5] for a brief overview. In fact, readers
unfamiliar with such techniques need not become so just to understand the interpretation of first-order
logic in the category of nominal sets, since it is just like the usual Tarskian semantics of first-order logic
in the category of sets (at the same time remaining within the world of equivariant properties). For it is
not hard to see that the subobjects of an objectX in the categoryNomare in bijection with the subsets
A ⊆ |X| of the underlying set that are equivariant, in the sense that(a a′)·Xx ∈ A wheneverx ∈ A, for
any atomsa, a′ (of the same kind). As we mentioned in Section 2, the collection of equivariant subsets
is closed under all the usual operations of first-order logic and contains equality. So it just remains to
explain the interpretation inNom of the distinctive syntax of Nominal Logic – atoms, swapping and
freshness.

Definition 2. Here is the intended interpretation of atoms, swapping and freshness in the category of
nominal sets of Definition 1.
Atoms. A sort of atoms in a Nominal Logic signature is interpreted by anominal set of atomsAn (for

somen ∈ N), which by definition has underlying set|An| = An and is equipped with the swapping
operations given by

2 And much more besides, since it is equivalent to the Schanuel topos, but that will not concern us here.
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(a a′)·b�




a if b = a′
a′ if b = a

b otherwise

(whereb ∈ An anda, a′ ∈ Am for anym ∈ N). We always assume that distinct sorts of atoms are
interpreted by distinct kinds of atoms. (So we are implicitly assuming that signatures contain at
most countably many such sorts.)

Swapping. Note that by virtue of Eq. (24), the functiona, a′, x �→ (a a′)·Xx determines a morphism
An × An × X −→ X in the categoryNom. This morphism is used to interpret the distinguished
function symbolA, A, S −→ S for swapping, assuming the nominal set of atomsAn is the inter-
pretation of the sort of atomsA and thatX is the interpretation ofS. Thus

[[(a a′)·s]] = ([[a]] [[a′]])·X[[s]] whens : S and[[S]] = X.

Freshness. The distinguished relation symbol # of arityA, S for freshness is interpreted as the ‘not in
the support of’ relation(−) /∈ suppX(−) between atoms and elements of nominal sets. Thus if the
nominal set of atomsAn is the interpretation of the sort of atomsA andX is the interpretation of
the sortS, then for termsa : A, s : S, the formulaa # s is satisfied by the interpretation if and only
if [[a]] /∈ suppX([[s]]), wheresuppX is as in Eq. (26). (It is not hard to see that this is an equivariant
subset ofAn × |X| and hence determines a subobject of[[A]] × [[S]] in Nom.)

We turn next to an axiomatisation within first-order logic of properties of this nominal sets interpre-
tation of atoms, swapping and freshness.

5. Nominal logic axioms

For simplicity, we will use a Hilbert-style presentation of Nominal Logic: a single rule of Modus
Ponens, the usual axiom schemes of first-order logic with equality, plus axiom schemes for swapping
and freshness. These latter are listed in Appendix A as (S1)–(S3), (E1)–(E4) and (F1)–(F4). (Appendix
A also gives axioms for the freshness quantifier and atom-abstraction constructs that we consider in later
sections.) Axiom scheme (F4) expresses within our first-order language the very important principle that
there is a sufficient supply of fresh atoms, in the sense that it is not finitely exhaustible. The other axioms
express rather anodyne properties of swapping and freshness. Indeed, the following results show that
these axioms validate the properties of swapping given in Section 4 and the fundamental assumption
mentioned at the start of Section 2, namely that all properties expressible in Nominal Logic are invariant
under swapping atoms.

Proposition 1 (Equational properties of swapping). The equations in part(i) of Definition 1 are all
provable in Nominal Logic.

Proof. Eqs. (22), (23) and (24) are just axioms (S1), (S2) and (E1) respectively. Eq. (25) corresponds
to four properties (taking into account the fact that we allow more than one sort of atoms):

(∀a, a′ : A) (a a′)·a = a′ (28)

(∀a, a′ : A) (a a′)·a′ = a (29)
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(∀a, a′, b : A) ¬b = a ∧ ¬b = a′ ⇒ (a a′)·b = b (30)

(∀a, a′ : A)(∀b : A′) (a a′)·b = b (31)

whereA andA′ are different sorts of atoms. Property (28) is just axiom (S3); applying(a a′)·(−) to
both sides of Eq. in (28) and using axiom (S2), we obtain (29). Property (30) follows from axioms (F1)
and (F2); and property (31) from (F1) and (F3). �

Proposition 2 (Equivariance). For each termt and formulaϕ, with free variables amongst
x : 
S say, we
have

(∀a, a′ : A)(∀
x : 
S) (a a′)·t (
x) = t ((a a′)·
x) (32)

(∀a, a′ : A)(∀
x : 
S) ϕ(
x) ⇔ ϕ((a a′)·
x) (33)

wheret ((a a′)·
x) denotes the result of simultaneously substituting(a a′)·xi for xi in t (asxi ranges over

x) and similarly forϕ((a a′)·
x).

Proof. Property (32) follows from axioms (E1) and (E3), by induction on the structure of the termt .
For (33) we proceed by induction on the structure of the formulaϕ, using standard properties of first-
order logic for the induction steps for connectives and quantifiers. Note that by virtue of axiom (S2),
Eq. (33) holds if and only if

(∀a, a′ : A)(∀
x : 
S) ϕ(
x) ⇒ ϕ((a a′)·
x) (34)

does. So the base case whenϕ is equality follows from the usual axioms for equality, the base case
for the freshness predicate # follows from axiom (E2), and that for relation symbols from axiom (E4)
(using (32) in each case).�

Theorem 1 (Soundness). The axioms of Nominal Logic(see Appendix A) are all satisfied by the nominal
sets interpretation of atoms, swapping and freshness given in Definition2.

(At the moment we are only considering the axioms (S1)–(S3), (E1)–(E4) and (F1)–(F4) of Appendix
A, but the proposition remains true for the nominal sets interpretation of the freshness quantifier and
atom-abstraction given below.)

Proof. Satisfaction of axioms (S1)–(S3) and (E1) is guaranteed by part (i) of Definition 1 (since the
swapping action for a nominal set of atoms is given by Eq. (25)). Satisfaction of axioms (E2) and (F1)–
(F3) is a simple consequence of the definition of support in Eq. (26). Axioms (E3) and (E4) are satisfied
because function and relation symbols are interpreted by morphisms and subobjects in the category
of nominal sets, which have these equivariance properties. Finally, axiom (F4) is satisfied because the
support of an element of a nominal set is afinite subset of the fixed, countably infinite setA of all
atoms. �

Did we forget any axioms? In other words are the axiom schemes in Appendix A complete for the
intended interpretation in the category of nominal sets? Axiom (F4) says that there is an inexhaustible
supply of atoms that are fresh, i.e., not in the support of elements in the current context. This is certainly
a consequence of property (ii) of Definition 1, which guarantees that elements of nominal sets have finite
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support. However, that property is ostensibly a statement of weak second order logic, since it quantifies
over finite sets of atoms. So we should not expect Nominal Logic, afirst-order theory, to completely
axiomatise the notion of finite support. Example 4 confirms this expectation. Before giving it we state a
useful property of freshness in Nominal Logic that we need below.

Proposition 3. For any termt, with variables amongst the list of distinct variables
x : 
S say, we have

(∀a : A)(∀
x : 
S) a # 
x ⇒ a # t (
x) (35)

where we writea # 
x for the finite conjunction of the formulasa # xi asxi ranges over
x.

Proof. Given anya : A and 
x : 
S, by axiom (F4) there is somea′ : A with a′ # 
x anda′ # t (
x). So if
a # 
x, then by axiom (F1) (a a′)·xi = xi holds for eachxi . So sincea′ # t (
x) by choice ofa′, we have

a = (a a′)·a′ by axioms(S2) and(S3)

#(a a′)·t (
x) by axiom(E2)

= t ((a a′)·
x) by (32)
= t (
x) by axiom(F1)

as required. �

Corollary 1. If a Nominal Logic theory contains aclosedterm t : A (i.e. one with no variables3) with
A a sort of atoms, then it is an inconsistent theory.

Proof. Suppose thatA is a sort of atoms and thatt : A is a term with no variables. By the above
proposition we have(∀a : A) a # t . Thust # t and by axiom (F2) this means¬ t = t , contradiction. �

Example 4 (Incompleteness). Consider the following Nominal Logic theory.
Sort of atoms:A
Sorts of data:D, N

Function symbols:o : N

s : N −→ N

f : D, N −→ A

Axioms: (∀x : N) ¬ o = s(x)

(∀x, x′ : N) s(x) = s(x′) ⇒ x = x′

Claim. Any model of this theory in the category of nominal sets satisfies the formula

(∀y : D)(∃x, x′ : N) ¬ x = x′ ∧ f (y, x) = f (y, x′) (36)

but that formula cannot be proved in Nominal Logic from the axioms of the theory.

Proof of claim. Note that in any model of this theory in the categoryNom, the interpretation of the
closed termsnk : N (k ∈ N) defined by{

n0 �o

nk+1 �s(nk)

3 Since the syntax of Nominal Logic does not contain any binding constructs at the level of terms, all occurrences of variables
in terms are free ones.
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are distinct elements[[nk]] ∈ |[[N]]| of the nominal set[[N]]. Therefore, to see that (36) is satisfied by
the model it suffices to show for eachd ∈ |[[D]]| that[[f ]]([[nk1]], d) = [[f ]]([[nk2]], d) ∈ |[[A]]| holds for
somek1 �= k2 ∈ N. Note that[[A]] is a nominal set of atoms,An say. Suppose to the contrary that all
the [[f ]]([[nk]], d) are distinct atoms inAn. Then since the supportsupp[[D]](d) of d ∈ |[[D]]| is a finite
subset ofA, we can findk1 �= k2 ∈ N so that

a1�[[f ]]([[nk1]], d) and a2�[[f ]]([[nk2]], d)

satisfya1, a2 /∈ supp[[D]](d). We also havea1, a2 /∈ supp[[N ]](nk) for all k (using (35) and the fact that
the termsnk are closed). Hencea1, a2 /∈ suppAn

([[f ]]([[nk]]), d) and thus(a1 a2)·An[[f ]]([[nk]], d) =
[[f ]]([[nk]], d), for all k ∈ N. Takingk = k1 and recalling the definition ofa1 anda2, we conclude that

[[f ]]([[nk2]], d) = a2 = (a1 a2)·Ana1 = (a1 a2)·An[[f ]]([[nk1]], d) = [[f ]]([[nk1]], d)

with k1 �= k2, contradicting our assumption that all the[[f ]]([[nk]], d) are distinct.
To see that (36) is not provable in Nominal Logic it suffices to find a model, in the usual sense of first-

order logic, for the general axioms of Nominal Logic and the particular axioms of this theory which does
not satisfy (36). We can get such a model by modifying Definition 1 and using anuncountableset of
atoms and sets equipped with swapping actions all of whose elements havecountablesupport. More con-
cretely, we get a modelM by taking[[A]]M to be an uncountable set, the setR of real numbers say; taking
[[N]]M to be a countable subset of this set, the setN of natural numbers say; and taking[[D]]M to be the
setRN of all functions fromN to R (all such functions are countably supported). Define the interpretation
of the function symbolso, s andf to be respectively zero, successor (n �→ n + 1) and the evaluation
functionR

N × N −→ R (d, n �→ d(n)). The interpretation of the swapping operation for sortA is as in
Eq. (25) (i.e.,(r r ′)·Rr ′′ = (r r ′)r ′′ for all r, r ′, r ′′ ∈ R); for sortN , swapping is trivial (i.e.,(r r ′)·Nn = n

for all r, r ′ ∈ R andn ∈ N); and for sortD, it is given by(r r ′)·
RNd = λn ∈ N.(r r ′)·Rd(n). The inter-

pretation of the freshness predicate for sortA is �=; for sortN , it is trivial (i.e., r # n holds for allr ∈ R

andn ∈ N); and for sortD, r # d holds if and only ifr �= d(n) for all n ∈ N. With these definitions one
can check that all the axioms are satisfied. However (36) is not satisfied, because the inclusion ofN into
R gives an elementd ∈ R

N = [[D]]M for whichn �→ [[f ]]M(d, n) is injective. �

Even though there is this incompleteness, it appears that the axioms of Nominal Logic are sufficient
for a useful theory of names and name-binding along the lines of [17,13]. Sections 6 and 7 give some
evidence for this claim. We leave to another occasion the investigation of whether the notion of ‘nominal
set’ can be generalised to provide a completeness result for Nominal Logic.

6. The freshness quantifier

In this section we extend the Nominal Logic we have considered so far with a quantifier for fresh
atoms. We begin by proving, within the version of Nominal Logic considered so far, the characteristic
‘some/any’ property of fresh atoms noted in [17, Proposition 4.10].

Proposition 4. Supposeϕ is a formula with free variables among the list of distinct variablesa : A, 
x : 
S
(with A a sort of atoms). Then

(∃a : A) a # 
x ∧ ϕ(a, 
x) ⇔ (∀a : A) a # 
x ⇒ ϕ(a, 
x) (37)

is provable in Nominal Logic.
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Proof. If ϕ(a, 
x) holds, then by Proposition 2 and axiom (S3) we also haveϕ(a′, (a a′)·
x); so if a # 
x
anda′ # 
x, then axiom (F1) givesϕ(a′, 
x). Thus we have the left-to-right implication in (37).

Conversely suppose(∀a : A) a # 
x ⇒ ϕ(a, 
x) holds. For any
x : 
S, using axiom (F4) we can find
a : A such thata # 
x and hence by the assumption, also satisfyingϕ(a, 
x). �

This property of freshness crops up frequently in proofs about syntax with named bound variables
(see [28] for example): we choosesomefresh name with a certain property and later on, in a wider
context, we have to revise the choice to accommodate finitely many more constraints and so need to
know that we could have chosenany fresh name with that property. For this reason it is convenient to
introduce a notation that tells us we have this ‘some/any’ property without mentioning the context of
free variables
x explicitly. (Note that (37) holds for any list
x of distinct variables, so long as it contains
the free variables ofϕ other than the atoma being quantified over.)

Definition 3 ( N-quantifier). We extend the syntax of formulas with a new variable-binding operation
which takes a formulaϕ, a sort of atomsA and a variablea of that sort and produces a formula( Na : A)ϕ

whose free variables are those ofϕ excepta. We add the following axiom scheme that defines this new
quantifier within first-order logic in terms of the freshness relation #:

(( Na : A)ϕ(a, 
x)) ⇔ (∃a : A)a # 
x ∧ ϕ(a, 
x) (Q)

wherea, 
x is a list of distinct variables containing the free variables ofϕ. In view of Proposition 4 we
also have

(( Na : A)ϕ(a, 
x)) ⇔ (∀a : A) a # 
x ⇒ ϕ(a, 
x)

and could have used this as the axiom definingN.

Remark 2. Because of the form of axiom (Q), it is easy to see that the equivariance property (33) of
Proposition 2 continues to hold for formulas involving theNquantifier.

Evidence for the naturalness of theN-quantifier is provided by the fact that, in the nominal sets
semantics given in Section 3, it coincides with a cofiniteness quantifier. For, using the right-hand side of
axiom (Q) to give the semantics of( Na : A) ϕ in the category of nominal sets, we find that it holds if and
only if ϕ(a) holds for all but finitely many atomsa. See [13] for the proof of this and the development
of the properties and applications of theN-quantifier within the setting of FM-set theory.

Example 5 (α, β andη equivalence, version 2). We can re-express some of the axioms considered in
Example 3 using the N-quantifier. For theα-conversion axiom (15), note that modulo the axioms of
Nominal Logic it is equivalent to

(∀a : Var)(∀t : Term)(∀a′ : Var) a′ �= a ∧ a′ # t ⇒ lam(a, t) = lam(a′, (a a′)·t).
So by Proposition 4, we can instead use the axiom

(∀a : Var)(∀t : Term)( Na′ : Var) lam(a, t) = lam(a′, (a a′)·t) (38)

Similarly, using Nwe can re-express theη-conversion axiom (16) as

(∀t : Term)( Na : Var) t = lam(a, app(t, var(a))) (39)
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Finally, note that the last clause in the axiomatisation of capture-avoiding substitution, axiom (21), could
be expressed as

(∀t, t ′ : Term)(∀a : Var)( Na′ : Var) subst(t, a, lam(a′, t ′))
= lam(a′, subst(t, a, t ′)) (40)

Remark 3 (Alternative axiomatisations ofN). It follows immediately from Definition 3 and Proposition 4
that the N-quantifier satisfies

((∀a : A) a # 
x ⇒ ϕ(a, 
x)) ⇒ ( Na : A)ϕ(a, 
x) (41)

and

(( Na : A)ϕ(a, 
x)) ⇒ (∃a : A) a # 
x ∧ ϕ(a, 
x) (42)

whena, 
x is a list of distinct variables containing the free variables ofϕ. In fact these formulas provide
an alternative axiomatisation of theN-quantifier which subsumes the crucial axiom (F4) asserting a
sufficient supply of fresh atoms. For modulo the other axioms, one can prove (F4) ∧ (Q) ⇔ (41)∧ (42).
We chose the presentation in terms of axioms (F4) and (Q) because the former is a principle one uses
continually when reasoning with freshness in this setting and the latter makes it clear that we remain
within the realm of first order logic when we use theN-quantifier in Nominal Logic.

Properties (41) and (42) suggest how to formulate introduction and elimination rules for theN-quan-
tifier within a natural deduction formulation of Nominal Logic:

�, a # 
x � ϕ

� � ( Na : A)ϕ
( N-intro)

� � ( Na : A)ϕ �, a # 
x, ϕ � ψ

� � ψ
( N-elim)

wherefv(�) ⊆ 
x andfv(ϕ) ⊆ a, 
x. Similarly, they suggest how to formulate right and left rules for the
quantifier in a sequent calculus formulation:

�, a # 
x � ϕ, 


� � ( Na : A)ϕ, 

( N-right)

�, a # 
x, ϕ � 


�, ( Na : A)ϕ � 

( N-left)

wherefv(�, 
) ⊆ 
x and fv(ϕ) ⊆ a, 
x. The proof theoretical properties of these formulations have yet
to be explored. (However, see [4] for a sequent calculus admitting cut-elimination for a modal process
logic involving the N-quantifier, in which freshness predicates likea # x appear as side-conditions rather
than as formulas in sequents.)

7. Binding

In this section we extend the Nominal Logic we have considered so far to deal with variable-binding
operations in a more uniform way. To motivate this, consider Example 3 once again, where the fact that
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lam is a variable-binding operation is captured by axiom (15). Instead of axiomatising the properties
of such binders on a theory-by-theory basis, we endow the underlying logic, Nominal Logic, with sort-
and term-forming operations foratom-abstraction, together with appropriate axioms. This is analogous
to enriching our term language with lambda-abstraction and application in order to use functionals to
represent binding operationsà la higher-order abstract syntax [32]. However, an interesting difference
here is that we are able to keep within first-order logic: atom-abstractions are merely a definitional
extension within first-order logic of what we have considered so far (see Remark 4 below).

Definition 4 (Atom-abstraction). Extend the syntax of sorts by adding a sort-forming operation that takes
a sort of atomsA and a sortS and produces a new sort[A]S, called thesort of A-atom-abstractionsof
elements of sortS. Extend the syntax of terms with a new operation that takes termst1 : A, t2 : S and
produces a termt1.t2 : [A]S. The properties of these new terms are described by the following axiom
schemes.

(∀b, b′ : A′)(∀a : A)(∀x : S) (b b′)·(a.x) = ((b b′)·a).((b b′)·x) (E5)

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔ (a = a′ ∧ x = x′) ∨ (a′ # x ∧ x′ = (a a′)·x) (A1)

(∀y : [A]S)(∃a : A)(∃x : S) y = a.x (A2)

Axiom (E5) ensures that the equivariance properties of Proposition 2 (and hence also the freshness
property of Proposition 3) continue to hold for the extended syntax. Axiom (A2) just tells us that
everything of atom-abstraction sort is an atom-abstraction. The crucial axiom is (A1), which captures
an essence ofα-equivalence in terms of Nominal Logic’s primitives of atom-swapping and freshness.
Should not we have added axioms that explain when an atom is fresh for an atom-abstraction, to
complement axioms (F1)–(F4)? In fact the following proposition shows that the freshness properties
of atom-abstractions we expect from [17, Section 5] turn out to be derivable without further axioms.
Thuswith these additions we have completed the definition of Nominal Logic, which is summarised in
Appendix A.

Proposition 5. The following formulas are provable in Nominal Logic

(∀a, a′ : A)(∀x : S) a′ # a.x ⇔ (a′ = a ∨ a′ # x) (43)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # a.x ⇔ a′ # x (44)

where in the second formulaA andA′ are distinct sorts of atoms.

Proof. In view of axioms (F2) and (F3), it suffices to prove

(∀a : A)(∀x : S) a # a.x (45)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # x ⇒ a′ # a.x (46)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # a ∧ a′ # a.x ⇒ a′ # x (47)

for all sorts of atomsA andA′ (possibly equal).
For (45), givena : A andx : S, by axiom (F4) we can finda′ : A with a′ # a.x and hence
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a = (a a′)·a′ by axioms(S2) and(S3)

#(a a′)·(a.x) by axiom(E2) ona′ # a.x

= a′.((a a′)·x) by axioms(E5) and(S3)

= a.x by axiom(A1).

For (46), givena : A, a′ : A′ andx : S with a′ # x, we argue by cases according to whetherA andA′
are the same and whethera′ = a or not. If the sorts are the same anda′ = a, then we havea′ # a.x by
(45); in the other three cases we always havea′ # a (using axioms (F2) and (F3)); so sincea′ # a and
a′ # x, we havea′ # a.x by Proposition 3 (which holds for the extended syntax by virtue of axiom (E5)).

For (47), givena : A, a′ : A′ andx : S with a′ # a anda′ # a.x, by axiom (F4) we can finda′′ : A′
with a′′ # a, a′′ # x anda′′ # a.x. Then

a.x = (a′ a′′)·a.x by axiom(F1)

= ((a′ a′′)·a).(a′ a′′)·x) by axiom(E5)

= a.((a′ a′′)·x) by axiom(F1)

and hencex = (a′ a′′)·x by axiom (A1). Sincea′′ # x, we geta′ = (a′ a′′)·a′′ # (a′ a′′)·x = x, as re-
quired. �

The intended interpretation of atom-abstraction is given by the following construction on nominal
sets.

Definition 5 (Nominal set of atom-abstractions). Given a nominal setX and a nominal set of atomsAn

(cf. Definition 2), thenominal set of atom-abstractions[An]X is defined as follows.
Underlying set|[An]X| is the set of equivalence classes for the equivalence relation onAn × |X| that

relates(a, x) and(a′, x′) if and only if (a a′′)·Xx = (a′ a′′)·Xx′ for some (or indeed any)a′′ ∈ An

such thata′′ /∈ suppX(x) ∪ suppX(x′) ∪ {a, a′}. We writea.x for the equivalence class of the pair
(a, x).

Swapping actionis inherited from that for the productAn × X:

(b b′)·[An]X(a.x) � a′.x′, wherea′ = (b b′)a andx′ = (b b′)·Xx.

With these definitions one can check that the requirements of Definition 1 are satisfied; in particular the
support ofa.x turns out to be the finite setsuppX(x) − {a} (cf. Proposition 5).

Thus if a sort of atomsA gets interpreted as a nominal set of atoms[[A]] and a sortS gets interpreted
as a nominal set[[S]], then the sort[A]S is interpreted as the nominal set of atom-abstractions[[[A]]][[S]].
Similarly if t1 : A and t2 : S, then[[t1.t2]] = [[t1]].[[t2]] ∈ [[[A]]][[S]]. With these definitions, the sound-
ness result of Theorem 1 continues to hold. To prove this one needs the following, more symmetric
characterisation in Nominal Logic of equality of atom-abstractions; it matches the definition of the
equivalence relation used to define|[An]X| from An × |X| in Definition 5 (see also the definition of∼α

in Example 1).

Proposition 6. If A is a sort of atoms andS is any sort, then the following formula is provable in
Nominal Logic.

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔ ( Na′′ : A) (a a′′)·x = (a′ a′′)·x′ (48)
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Proof. First supposea.x = a′.x′ holds. By axiom (Q), to prove( Na′′ : A) (a a′′)·x = (a′ a′′)·x′ we
have to find somea′′ # a, a′, x, x′ such that(a a′′)·x = (a′ a′′)·x′. By axiom (F4), we can certainly find
a′′ satisfyinga′′ # a, a′, x, x′. If in addition we havea = a′, then by axiom (A1) we also havex = x′
and we are done. So supposea �= a′, in which case by axiom (A1) we also havea′ # x andx′ = (a a′)·x.
Hence

(a′ a′′)·x′ = (a′ a′′)·(a a′)·x
= ((a′ a′′)·a (a′ a′′)·a′)·(a′ a′′)·x by axiom(E1)

= (a a′′)·(a′ a′′)·x by Proposition 1
= (a a′′)·x by axiom(F1)

as required.
Conversely, if( Na′′ : A) (a a′′)·x = (a′ a′′)·x′ does hold, then by axiom (Q) there is somea′′ with

a′′ # a, a′, x, x′ and

(a a′′)·x = (a′ a′′)·x′ (49)

If a = a′, then applying(a a′′)·(−) to both sides of (49), by axiom (S2) we get

x = (a a′′)·(a a′′)·x = (a a′′)·(a a′′)·x′ = x′

and hencea.x = a′.x′. So supposea �= a′. Applying (a′ a′′)·(−) to a′′ # x′, by axioms (E2) and (S3) we
geta′ # (a′ a′′)·x′ and hence by (49) thata′ # (a a′′)·x. Hence

a′ = (a a′′)·a′ by Proposition 1
#(a a′′)·(a a′′)·x by axiom(E2)

= x by axiom(S2).

and then also
x′ = (a′ a′′)·(a′ a′′)·x′ by axiom(S2)

= (a′ a′′)·(a a′′)·x by (49)
= ((a′ a′′)·a (a′ a′′)·a′′)·(a′ a′′)·x by axiom(E1)

= (a a′)·(a′ a′′)·x by Proposition 1
= (a a′)·x by axiom(F1).

Thusa.x = a′.x′ by axiom (Q). �

The construction in Definition 5 is used in [13,17] to treat, within the Fraenkel–Mostowski permuta-
tion model of set theory, sets of parse trees moduloα-equivalence as inductively defined sets with useful
associated structural induction/recursion principles. For example, [17, Theorem 6.2] shows that the set
of α-equivalence classes ofλ-terms (Example 1) has an inductive characterisation as the least nominal
set satisfying

X = A + (X × X) + [A]X (50)

(whereA is a nominal set of atoms,+ indicates disjoint union and× cartesian product). From this we
can derive a theory in Nominal Logic forλ-terms moduloα-equivalence, in much the same way as the
inductive description of the natural numbers (namely, the least setX such thatX = 1 + X) can lead to
Peano’s axioms for arithmetic.

Example 6 (Nominal theory ofλ-terms moduloα-equivalence). The signature of this theory has a sort
of atomsVar, a sort of dataTerm, function symbols
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var : Var −→ Term
app : Term, Term−→ Term
lam : [Var]Term−→ Term

and the following axioms.

(∀a : Var)(∀t, t ′ : Term) ¬ var(a) = app(t, t ′) (51)

(∀a : Var)(∀s : [Var]Term) ¬ var(a) = lam(s) (52)

(∀s : [Var]Term)(∀t, t ′ : Term) ¬ lam(s) = app(t, t ′) (53)

(∀t : Term) (∃a : Var) t = var(a)

∨ (∃t ′, t ′′ : Term) t = app(t ′, t ′′) (54)

∨ (∃s : [Var]Term) t = lam(s)

(∀a, a′ : Var) var(a) = var(a′) ⇒ a = a′ (55)

(∀t, t ′, t ′′, t ′′′ : Term) app(t, t ′) = app(t ′′, t ′′′) ⇒ t = t ′′ ∧ t ′ = t ′′′ (56)

(∀s, s′ : [Var]Term) lam(s) = lam(s′) ⇒ s = s′ (57)

(∀
x : 
S)(∀a : Var) ϕ(var(a), 
x)

∧ (∀t, t ′ : Term) ϕ(t, 
x) ∧ ϕ(t ′, 
x) ⇒ ϕ(app(t, t ′), 
x)

∧ ( Na : Var)(∀t : Term) ϕ(t, 
x) ⇒ ϕ(lam(a.t), 
x)

⇒ (∀t : Term) ϕ(t, 
x)

(58)

Axioms (51)–(57) just state that there is a bijection (induced byvar, app and lam) betweenTermand
the disjoint union ofVar, Term× Termand[Var]Term. The interesting axiom is the last one, (58). It is
an induction principle reflecting the initiality of (50) (cf. [17, Theorem 6.8]), much as Peano’s induction
axiom reflects the initiality of the set of natural numbers.

To illustrate the use of axiom (58) consider adding to the theory a relation symbolSubstor arity
Term, Var, Term, Termand the following axiom.

Subst(t, a, t ′, t ′′) ⇔
t ′ = var(a) ∧ t ′′ = t

∨ (∃a′ : Var) t ′ = var(a′) ∧ ¬a′ = a ∧ t ′′ = var(a′)
∨ (∃t ′1, t ′′1 , t ′2, t ′′2 : Term) t ′ = app(t ′1, t ′2) ∧ t ′′ = app(t ′′1 , t ′′2 )

∧ Subst(t, a, t ′1, t ′′1 ) ∧ Subst(t, a, t ′2, t ′′2 )

∨ (∃a′ : Var)(∃t ′1, t ′′1 : Term) t ′ = lam(a′.t ′1) ∧ t ′′ = lam(a′.t ′′1 )

∧ a′ # t ∧ Subst(t, a, t ′1, t ′′1 )

(59)

The intention is thatSubstis the graph of the capture-avoiding substitution function. The reason for
formulating this with a relation symbol rather than a function symbol (as we did in Example 3) is to
allow us to state thatSubstis indeed the graph of atotal function

(∀t, t ′ : Term)(∀a : Var)(∃!t ′′ : Term) Subst(t, a, t ′, t ′′) (60)

even though axiom (59) only specifies the result of substitution under aλ-binder when the bound variable
a′ is sufficiently fresh (i.e., whena′ # t holds). Indeed, in the presence of the other axioms, (60) follows
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by applying the structural induction principle (58) to prove(∀t ′ : Term)ϕ(t ′, t, a) whereϕ(t ′, t, a) is
(∃!t ′′ : Term) Subst(t, a, t ′, t ′′). We omit the details.

Remark 4 (Definability of atom-abstraction). Atom-abstraction sorts are convenient for expressing prop-
erties of binding operations, but they do not represent an essential extension of the version of Nominal
Logic we presented in Section 5. The situation is analogous to the one for cartesian products, which are
definable within ordinary first-order logic: given sortsS1, S2 andS, there is a first-order theory in all of
whose models the interpretation ofS is isomorphic to the cartesian product of the interpretations ofS1
andS2. Indeed there are several such theories; for example, take a function symbolpair : S1, S2 −→ S

and axioms

(∀x1, x
′
1 : S1)(∀x2, x

′
2 : S2) pair(x1, x2) = pair(x′

1, x
′
2) ⇒ (x1 = x′

1) ∧ (x2 = x′
2) (61)

(∀x : S)(∃x1 : S1)(∃x2 : S2) x = pair(x1, x2) (62)

Within Nominal Logic there is a similar definability result for atom-abstraction sorts. Given sortsA, S

andS′ (with A a sort of atoms), and a function symbolabs: A, S −→ S′, the axioms

(∀a, a′ : A) (∀x, x′ : S) abs(a, x) = abs(a′, x′) ⇔
( Na′′ : A) (a a′′)·x = (a′ a′′)·x′ (63)

(∀x′ : S′)(∃a : A)(∃x : S) x′ = abs(a, x) (64)

ensure that in the semantics of Section 3, the interpretation ofS′ is isomorphic to[An]X, whereAn and
X are the nominal sets interpretingA andS respectively.

The following result shows that atom-abstraction sorts[A]X have a dual nature: their elementsa.x

embody not only the notion of abstraction as a ‘(bound variable, body)-pair modulo renaming the bound
variable’, but also the notion of abstraction as a function (albeit a partial one) from atoms to individuals
(cf. Section 9).

Proposition 7. The following formula is provable in Nominal Logic.

(∀y : [A]S)(∀a : A) a # y ⇒ (∃!x : S) y = a.x (65)

(where∃! means‘ there exists a unique. . .’ and has the usual encoding in first-order logic).

Proof. The uniqueness part of (65) follows from

(∀a : A)(∀x, x′ : S) a.x = a.x′ ⇒ x = x′

which is a corollary of axioms (A1) and (S1). For the existence part of (65), note that by Proposition 4

(∀y : [A]S)(∀a : A) a # y ⇒ (∃x : S) y = a.x

holds if and only if

(∀y : [A]S)(∃a : A) a # y ∧ (∃x : S) y = a.x

and the latter follows from axiom (A2) and Proposition 5 (specifically, property (45)).�
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8. Choice

In informal arguments about syntax one often says things like ‘choosea fresh name such that. . . ’.
Axiom (F4) ensures that we can comply with such directives for Nominal Logic’s formalisation of
freshness. But it is important to note thatin nominal Logic such choices cannot be made uniformly in
the parameters: it is in general inconsistent with the other axioms to skolemize (F4) by adding function
symbolsfresh: 
S −→ A satisfying(∀
x : 
S) fresh(
x) # 
x. Here is the simplest possible example of this
phenomenon.

Proposition 8. SupposeA is a sort of atoms. The formula

(∀a : A)(∃a′ : A) ¬ a = a′ (66)

is a theorem of Nominal Logic. However, it is inconsistent to assume there is a function that, for each
atom, picks out an atom different from it. In other words, the Nominal Logic theory with a function
symbolf : A −→ A and the axiom

(∀a : A) ¬ a = f (a) (67)

is inconsistent.

Proof. The formula (66) is an immediate consequence of axioms (F2) and (F4). For the second part
we show that(∃a : A) a = f (a) is a theorem. First note that by axiom (F4) (with the empty list of
parameters
x), there is an atoma of sortA.4 We show thata = f (a). For anya′ : A, by Proposition 3
we havea′ # a ⇒ a′ # f (a), i.e., (by axiom (F2)) ¬ a′ = a ⇒ ¬ a′ = f (a), i.e.,a′ = f (a) ⇒ a′ = a.
Takinga′ to bef (a), we getf (a) = a. �

This phenomenon is a reflection of the fact that the categoryNom of nominal sets fails to satisfy
the Axiom of Choice (see [12] for a categorical treatment of choice), which in turn reflects the fact
that, by design, the Axiom of Choice fails to hold in the Fraenkel–Mostowski permutation model of set
theory [25]. However, there is no problem with principles ofuniquechoice (in contrast to the situation
for the Theory of Contexts [23], a close cousin of Nominal Logic). For example, if a Nominal Logic
theory has a model inNomsatisfying the sentence

(∀
x : 
S)(∃!x′ : S′) ϕ(
x, x′) (68)

then the theory extended by a function symbolf : 
S −→ S′ and axiom

(∀
x : 
S) ϕ(
x, f (
x)) (69)

can also be modelled inNom(simply because in a cartesian category any subobject satisfying the prop-
erties of a single-valued and total relation is the graph of some morphism). Unfortunately a far more
common situation than (68) is to have ‘conditional unique existence’:

(∀
x : 
S) δ(
x) ⇒ (∃!x′ : S′) ϕ(
x, x′) (70)

so thatϕ(
x, x′) is the graph of apartial function with domain of definition containing those
x such that
δ(
x). We have already seen an example of this in Proposition 7. If the formula (70) is a theorem of a
Nominal Logic theory, adding a function symbolf : 
S −→ S′ and axiom

4 The reader can deduce at this point that the author, being of a category-theoretic bent, is not assuming a formulation of
first-order logic that entails that all sorts are non-empty. Possibly empty sorts, like the empty set, have their uses!
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(∀
x : 
S) δ(
x) ⇒ ϕ(
x, f (
x)) (71)

to the theory can result in inconsistency. This is becausef represents atotal function from 
S to S′.
Given terms
t : 
S, even if δ(
t) does not hold and so (71) cannot be used to deduce properties of the
termf (
t) : S′, nevertheless one may be able to use results such as Proposition 3 to deduce properties of
f (
t) : S′ that lead to inconsistency, especially ifS′ happens to be a sort of atoms. The simplest possible
example of this phenomenon is when
S is the empty list of sorts andδ is false. In this case formula (70)
is trivially a theorem; the skolemizing functionf is a constant of sortS′, so if that is a sort of atoms we
get inconsistency by Corollary 1.

This difficulty with introducing notations for possibly partially defined expressions is masked in [16]
by the untyped nature of FM-set theory.5 That work introduces, among other things, a term-former for
concretionof atom-abstractions at atoms, skolemizing the conditional unique existence formula (65) of
Proposition 7. Terms involving concretion only have a definite meaning when certain preconditions are
met. Nevertheless they can be given a semantics as total elements of the universe of FM-sets simply by
taking their meaning when the preconditions are not met to be some default element with empty support
(the empty set, say). Such a ‘hack’ is available to us in classical logic when there are enough terms of
empty support. One such term is enough in an untyped setting such as FM-set theory. In a many-sorted
Nominal Logic theory there is nothing to guarantee that a sortS possesses a termt : S of empty support
(i.e., satisfying(∀a : A) a # t for all sorts of atomsA); indeed Corollary 1 shows that sorts of atoms do
not possess such terms in a consistent theory. To provide Nominal Logic with a richer term language,
incorporating such things as concretions of atom-abstractions at atoms and maybe more besides (such
aslocally fresh atoms– see [17, Lemma 6.3] et seq), one may be able to adapt the work of Miller [30,
Section 6] on a sound treatment of skolemization in higher order logic without choice (see also [10,
Section 7]). One might also consider merging Nominal Logic’s novel treatment of atoms and freshness
with some conventional treatment of the logic of partial expressions (such as [2, Section VI.1] or [37]).
We leave such considerations to the future and turn instead to a brief survey of existing work more
directly related to the concerns of this paper.

9. Related work

One can classify work on fully formal treatments of names and binding according to the mathematical
construct used to model the notion of abstraction:
• Abstractions as (name, term)-pairs.Here one tries to work directly with parse trees and the relation

of α-equivalence between them; [28,38] are examples of work in this spirit. The drawback of this
approach is not so much that many tedious details left implicit by informal practice become explicit,
but rather that many of these details have to be revisited on a case-by-case basis for each object
language. The use of parse trees containing de Bruijn indices [7] is more elegant; but this has its own
complications and also side-steps the issue of formalising informal practice to do with named bound
variables.

5 It is also masked in the programming language FreshML sketched in [35], which has a richer term language than does
Nominal Logic; this is because FreshML features unrestricted fixed point recursion in order to be Turing powerful, and hence
naturally contains partially defined expressions.
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• Abstractions as functions from terms to terms.The desire to take care of the tedious details ofα-equiv-
alence and substitution once and for all at the meta-level leads naturally to encodings of object-level
syntax in a typedλ-calculus moduloα, β (andη) equivalence. This is the approach ofhigher-order
abstract syntax(HOAS) [32], an idea dating back to Church and then Martin-Löf. It is well-supported
by existing systems for machine-assisted reasoning based on typedλ-calculus. It does not lend itself
very easily to principles of structural recursion and induction for the encoded object-language, but
nevertheless such principles have been developed. For example, McDowell and Miller have developed
a way of using Hallnäs’ notion of partial inductive definitions [20] to enable inductive reasoning
about HOAS specifications in an intuitionistic higher-order logic [27]; and Despeyroux, Pfenning and
Schürmann have developed a modal typedλ-calculus that allows primitive recursive functions on
HOAS-encoded object-language syntax without destroying the adequacy of the encoding [8,36].

• Abstractions as functions from names to terms.TheTheory of Contexts[23] reconciles the elegance of
higher-order abstract syntax with the desire to deal with names at the object-level and have relatively
simple forms of structural recursion/induction. It does so by axiomatising a suitable type of names
within classical higher order logic. The Theory of Contexts involves a ‘non-occurrence’ predicate and
axioms quite similar to those for freshness in FM-set theory [17] and in the Nominal Logic presented
here. However, ‘non-occurrence’ in [23] is dependent upon the object language, whereas our notion
of freshness is a purely logical property, independent of any particular object syntax with binders.
(The same remark applies to the axiomatisation ofα-equivalence ofλ-terms in higher order logic
in [18]; and to the extension of first-order logic with binders studied in [9].) Furthermore, the use
of total functions on names to model abstraction means that the Theory of Contexts is incompatible
with the Axiom of Unique Choice (cf. Section 8), forcing the theory to have a relational rather than
functional feel: see [29]. On the other hand, the Theory of Contexts is able to take advantage of
existing machine-assisted infrastructure (namely Coq [6]) quite easily, whereas Gabbay had to work
hard to adapt the Isabelle [31] set theory package to produce his Isabelle/FM-sets package: see [13,
Chapter III] and [15].

The notion of abstraction that is definable within Nominal Logic (see Section 7) captures something
of the first and third approaches mentioned above: atom-abstractions are defined to be pairs in which
the name-component has been made anonymous via swapping; but we saw in Proposition 7 that atom-
abstractions also behave like functions, albeit partial ones. Whatever the pros and cons of the various
views of name abstraction, at least one can say that, being first-order, Nominal Logic gives a more
elementary explanation of names and binding than much the work mentioned above; and a more funda-
mental one, I would claim, because of the independence of the notions of atoms, swapping, freshness
and atom-abstraction from any particular object-level syntax involving binders.

10. Conclusion

Nominal Logic gives a first-order axiomatisation of some of the key concepts of FM-set theory –
atoms, swapping and freshness – which were used in [17] to model syntax moduloα-equivalence with in-
ductively defined sets whose structural induction/recursion properties remain close to informal practice.
We have seen that, being first-order, Nominal Logic does not give a complete axiomatisation of the
notion of finite supportthat underlies the notion of freshness in FM-sets. Nevertheless, the first-order
properties of a notion offreshness of namespresented in this paper seem sufficient to develop a use-
ful theory, independent of any particular object-level language involving binders. Indeed, many of the
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axioms listed in Appendix A arose naturally in Gabbay’s implementation of FM-set theory in the Isabelle
system [13,15] as the practically useful properties of finite support. Nominal Logic and the theories
we can formulate in it, are a vehicle for exhibiting those properties clearly. They are also a necessary
precursor for the study of the computational properties of the logic of freshness: work is in progress on
a version of first-order logic programming extended with Nominal Logic’s primitives of swapping and
freshness of atoms (cf. Hamana’s logic programming language [21] based on the presheaf semantics of
binding in [11]).

However, if one wants a single, expressive foundational theory in which to develop the mathematics
of syntax in the style of this paper, one can use FM-set theory (and its automated support within Isa-
belle); or, as Gabbay argues in [14], a version of higher-order logic incorporating atoms, swapping and
freshness.

Finally, even if one does not care about the details of Nominal Logic, I think that two simple, but
important ideas underlying it are worth taking on board for the practice of operational semantics (be it
with pencil-and-paper, or with machine assistance):
• Name-swapping(a b)·(−) has much more convenient logical properties than renaming{b/a}(−).
• The only assertions about syntax we should deal with are ones whose validity is invariant under

swapping bindable names.
Even if one only takes the naïve view of abstractions as (name, term)-pairs, it seems useful to define
α-equivalence and capture-avoiding substitution in terms of name-swapping and to take account of equi-
variance in inductive arguments. We gave some illustrations of this in Section 2. A further example is
provided by the work of Caires and Cardelli on modal logic for the spatial structure of concurrent sys-
tems [3,4]; this and the related work [5] make use of the freshness quantifier of Section 6. See also [22]
for the use of permutative renaming to treat naming aspects of process calculi.
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Appendix A: Syntax and axioms of nominal logic

A.1 Signatures and sorts

A nominal logicsignatureis specified by the following data.
• A collection of ground sort symbols, partitioned into two kinds:sorts of atomsandsorts of data.
• A collection offunction symbols, each equipped with anarity consisting of a list of argument sorts and

a result sort (where the sorts over the signature are defined below); we writef : 
S −→ S to indicate
that function symbolf has argument sorts given by the list
S and result sortS.
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• A collection of relation symbols, each equipped with anarity consisting of a list of argument sorts;
we writeR < : 
S to indicate that relation symbolR has argument sorts given by the list
S.
The sorts over a signature are built up by forming atom-abstraction sorts from the ground sort

symbols:

SortsS ::= A sorts of atoms

D sorts of data

[A]S sorts of atom-abstractions

A.2 Terms and formulas

Given a nominal logic signature, we fix mutually disjoint, countably infinite sets of variable symbols
of each sort over the signature.

The termsover the signature are inductively defined as follows. Each well-formed term has a unique
sort; we writet : S to indicate thatt is a term of sortS.
• x : S, if x is a variable symbol of sortS.
• f (t1, . . . , tn) : S, if f : S1, . . . , Sn −→ S andt1 : S1, . . . , tn : Sn.
• (t1 t2)·t3 : S, if t1 : A, t2 : A andt3 : S, with A a sort of atoms andS any sort.
• t1.t2 : [A]S, if t1 : A andt2 : S, with A a sort of atoms.

Theformulasover the signature are inductively defined as follows.
• R(t1, . . . , tn) is a formula, ifR < : S1, . . . , Sn andt1 : S1, . . . , tn : Sn.
• t1 = t2 is a formula, ift1 : S andt2 : S for some sortS.
• t1 # t2 is a formula, ift1 : A for some sort of atomsA andt2 : S for some sortS.
• ¬ϕ, φ ∧ ψ , φ ∨ ψ , φ ⇒ ψ andφ ⇔ ψ are formulas, ifϕ andψ are.
• (∀x : S)ϕ and(∃x : S)ϕ are formulas, ifϕ is a formula, whereS is any sort andx is a variable symbol

of sortS.
• ( Nx : A)ϕ is a formula, ifϕ is a formula, whereA is any sort of atoms andx is a variable symbol of

sortA.
Like ∀ and∃, the freshness quantifier Nis a binder – the free variables of( Nx : A)ϕ are all the free
variables ofϕ exceptx.

A.3 Axioms

A nominal logictheoryconsists of a signature and a collection of formulas over the signature, called
the (non-logical) axioms of the theory. Thetheoremsof the theory are all the formulas derivable using
the rule of Modus Ponens from the usual axioms of first-order logic with equality augmented by the
following axioms specific to nominal logic. In what follows,A andA′ range over sorts of atoms,S

ranges over arbitrary sorts, and
S over lists of sorts.

Properties of swapping

(∀a : A)(∀x : S) (a a)·x = x (S1)

(∀a, a′ : A)(∀x : S) (a a′)·(a a′)·x = x (S2)
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(∀a, a′ : A) (a a′)·a = a′ (S3)

Equivariance

(∀a, a′ : A)(∀b, b′ : A′)(∀x : S) (a a′)·(b b′)·x = ((a a′)·b (a a′)·b′)·(a a′)·x (E1)

(∀a, a′ : A)(∀b : A′)(∀x : S) b # x ⇒ (a a′)·b # (a a′)·x (E2)

(∀a, a′ : A)(∀
x : 
S) (a a′)·f (
x) = f ((a a′)·
x) (E3)

wheref is a function symbol of arity
S −→ S and(a a′)·
x indicates the finite list of arguments given
by (a a′)·xi asxi ranges over
x.

(∀a, a′ : A)(∀
x : 
S) R(
x) ⇒ R((a a′)·
x) (E4)

whereR is a relation symbol of arity
S.

(∀b, b′ : A′)(∀a : A)(∀x : S) (b b′)·(a.x) = ((b b′)·a).((b b′)·x) (E5)

Properties of freshness

(∀a, a′ : A)(∀x : S) a # x ∧ a′ # x ⇒ (a a′)·x = x (F1)

(∀a, a′ : A) a # a′ ⇔ ¬a = a′ (F2)

(∀a : A)(∀a′ : A′) a # a′ (F3)

whereA andA′ are different sorts of atoms.

(∀
x : 
S)(∃a : A) a # 
x (F4)

wherea # 
x indicates the finite conjunction of the formulasa # xi asxi ranges over the list
x.

Definition of N

(( Na : A)ϕ) ⇔ (∃a : A)a # 
x ∧ ϕ (Q)

wherea, 
x is a list of distinct variables containing the free variables ofϕ.

Properties of atom-abstraction

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔ x(a = a′ ∧ x = x′) ∨ (a′ # x ∧ x′ = (a a′)·x) (A1)

(∀y : [A]S)(∃a : A)(∃x : S) y = a.x (A2)
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