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Abstract

This paper establishes a new, limitative relation
between the polymorphic lambda calculus and
the kind of higher-order type theory which is em-
bodied in the logic of toposes. It is shown that
any embedding in a topos of the cartesian closed
category of (closed) types of a model of the poly-
morphic lambda calculus must place the poly-
morphic types well away from the powertypes
o — Q of the topos, in the sense that o —
is a subtype of a polymorphic type only in the
case that o is empty (and hence o — Q is ter-
minal). As corollaries, we obtain strengthenings
of Reynolds’ result on the non-existence of set-
theoretic models of polymorphism.

Introduction

The results reported in this paper have their
origin in Reynolds’ discovery that the standard
set-theoretic model of the simply typed lambda
calulus cannot be extended to model the poly-
morphic, or second-order, typed lambda calcu-
lus. In [9] Reynolds speculated that there might
be a model of polymorphism in which the types
o are interpreted (in an environment) as sets
[o], in such a way that a function type o — o’
is interpreted standardly as the set of all func-
tions from [o] to [o']. (Second-order product
types Ila.o[a] were to be interpreted in some
non-standard way—the thought being that sim-
ple cardinality considerations preclude the pos-
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sibility of also interpreting Ila. o[a] standardly
via an indexed cartesian product of sets). In [10]
Reynolds formulated a precise definition of what
constitutes such a model and then proved that
no such structure exists.

This result soon became well known, but per-
haps not so well understood (by this author, at
least). Shortly afterwards Plotkin gave a ver-
sion of the proof which clarified Reynolds’ orig-
inal proof in two ways. Firstly, Plotkin took
Reynolds’ notion of ‘set-theoretic model of poly-
morphism’ and generalized it to a notion of a
K-model, where K is a cartesian closed cate-
gory (ccc) whose objects are used for the denota-
tions of the closed polymorphic types. Secondly,
Plotkin isolated the key step in Reynolds’ proof
as a special case of a proposition about functors
T : K — K which are ezpressible in a K-model
via expressions in the polymorphic lambda cal-
culus. The proposition is that every such functor
has a weakly initial algebra: see [11].

Reynolds’ notion of model in [10] corresponds
to the special case of a K-model with the ccc
K equal to Set, the category of sets and func-
tions. So in the terminology of [11], the result in
[10] is that no Set-model exists. However, one
can interpret Reynolds’ original question about
the possibility of giving a set-theoretic model of
polymorphism in a slightly more general way:

Question 1 (Mitchell) Is there a K-model
with K a full sub-ccc of Set?

Specifying a full sub-ccc of Set amounts to giv-
ing a collection of sets which is closed under tak-
ing finite cartesian products and under set expo-
nentiation; and then a X-model for such a X does
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indeed provide a semantics for polymorphism in
which types o are interpreted as sets [o] (the
sets which are objects of K) and function types
o — o' are interpreted as the sets [o] — [o'] of all
functions from [o] to [¢']. So this would appear
to meet the criteria for a set-theoretic semantics
of polymorphism whose function types are stan-
dard. Unfortunately, as it stands, the proof in
[11] that there is no Set-model does not extend
to resolve the above question. However, it is an
immediate corollary of the main result of this pa-
per (Theorem 1) that the only KC-models with K
a full sub-ccc of Set are degenerate, in the sense
that oll the objects of KC are sets with at most one
element.

In order to state the main result, we must
consider another extension of the simply typed
lambda calculus somewhat different from the
polymorphic calculus, namely the Higher-Order
Logic of Toposes, or HOLT for short. In HOLT,
the usual apparatus of the simply typed lambda
calculus (function types, application and lambda
abstraction) is extended by finite product types
(with associated projection and pairing opera-
tions) and by a ground type 2 of ‘truth values’
equipped with an equality test =,: 0 = 0 — Q
for each type 0. As a logic, HOLT can be formu-
lated as a system for deriving equations between
terms of equal type using the usual rules of equa-
tional logic augmented by certain axioms (such
as the # and n axioms for A-abstraction and ex-
tensionality axioms for the equality tests). The
close correspondence between theories in the sim-
ply typed lambda calculus and cartesian closed
categories extends to a similar correspondence
between theories in HOLT and toposes (which
are those ccc’s which also possess a subobject
classifier). We refer the reader to Part II of [6]
for a detailed account of this correspondence and
for other, equivalent formulations of the higher-
order logic of toposes.

One of these equivalent formulations, and
probably the most convenient one, is as a predi-
cate logic. Singling out the terms of type {2 and
calling them formulas, then all the usual propo-
sitional operations on formulas (conjunction A,
disjunction V, implication =, and so on) are de-
finable, as are quantified formulas (Vz € o. ¢,

dz € 0.¢). A type of the form o — Q acts as
a powertype for the type o, because the terms
of type o — Q act like the characteristic func-
tions of subtypes of o—given a formula ¢ : Q
possibly involving a variable = : o, we can sepa-
rate out the subtype ‘{z € o | ¢}’ via the lambda
abstraction Ax € 0.¢ : 0 = 2. From this view-
point, HOLT is a kind of intuitionistic set theory.
Intuitionistic, because although €2 contains con-
stants t and f for ‘truth’ and ‘falsity’, in general a
topos does not satisfy the Law of Excluded Mid-
dle, which says that every element of Q is either
torf: (VpeQ (p=qt)V(p=af)) =aqt.

Experience with toposes over the last 15 or so
years shows that it is possible to encode a lot of
mathematical constructs within the language of
HOLT. Moreover, because the higher-order logic
of toposes is intuitionistic, many possibilites for
the particular topos Set which are ruled out by
the non-constructive nature of classical set the-
ory, become feasible for a more general topos.
This is precisely the case for models of polymor-
phism. In [8] it was shown how to fully em-
bed any categorical-style model of second-order
typed lambda calculus in a topos in such a way
that the original model appears in the corre-
sponding internal logic of the topos as a ‘set
of sets, U, closed under exponentiation and U-
indexed cartesian products’. Such a structure in
a topos models not only the function types of the
polymorphic calculus in a standard way, but also
the second-order product types. As well as the
examples manufactured in [8], one ‘naturally oc-
curing’ example is the much-studied modest sets
model of polymorphism, for which the envelop-
ing topos is Hyland’s effective topos : see [3] and
[2]. But a non-trivial example of this kind of
structure is not possible in the topos Set: simple
cardinality considerations show that any such U
would have to contain only sets with at most one
element.

The categorical-style models, P, of polymor-
phism considered in [8] (and before that in
[12]) are in particular -models in the sense of
Reynolds and Plotkin where I = P(1,U) is the
cce of (denotations of) closed types and terms
in the model P. The construction of [8] results
in a certain topos & derived from P, containing
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K as a full sub-ccc (and with other properties
besides: one should note that any ccc K can be
embedded as a sub-ccc of a topos, for example
via the Yoneda embedding of K into the cate-
gory of presheaves on K valued in a category of
suitably large sets). In such a situation, it is
natural to ask how the polymorphic types (i.e.
the objects of K) relate to the larger collection
of HOLT types (i.e. the objects of £). In partic-
ular, is it possible for K to be the whole of £7 In
other words, after Reynolds we cannot hope for
a Set-model, but perhaps it is possible to have
an £-model with £ a non-trivial topos 7 Unfor-
tunately even this is not possible, since we will
prove:

Theorem 1 Suppose that € is a topos and K is
a full sub-ccc of £ for which there is a K-model
(in the sense of [11]) of the polymorphic typed
lambda calculus . If X is an object of £ and the
powerobject X — € is a subobject of an object in
K, then X is empty, that is, X is isomorphic to
the initial object 0.

In particular, if I were the whole of £, then
every object of £ would be empty and hence £
would be t¢rivial, in the sense of being equivalent
to the one-object-one-morphism category:

Corollary 1 There is no K-model of polymor-
phism for which K is a non-trivial topos.

Another special case of the theorem is when
E = Set. Then Q = {t,f} is a two element set
and so an object X contains a powerobject as a
subobject just in case X is a set with at least two
different elements. Consequently we obtain the
result which was mentioned above:

Corollary 2 All K-models of polymorphism
with K a full sub-ccc of Set are degenerate, in
the sense that all the objects of IC are sets with
at most one element.

Our proof of Theorem 1 builds on the argu-
ment given in [11] for the non-existence of a
Set-model. In section 1, we briefly recall the
Reynolds-Plotkin result on polymorphically ex-
pressible functors. In section 2 we sketch the

main new argument, which produces from the
hypotheses of the theorem an object I in &£
equipped with an isomorphism (I —P)—P = I,
where P is the powerobject X — €. Finally in
section 3 we recall the fact that a suitable form
of Cantor’s Theorem is provable in the higher-
order logic of toposes, and then deduce from the
above isomorphism that X is isomorphic to 0.

Acknowledgement The first version 1 ob-
tained of Theorem 1 was weaker than the one
presented here, in that it contained the addi-
tional assumption that the ccc K has equalizers
(of parallel pairs of morphisms); this weaker ver-
sion is still sufficient to deduce Corollary 1, since
toposes are in particular ccc’s with equalizers. 1
am grateful to John Mitchell for spurring me on
to remove the unecessary assumption of equaliz-
ers and in particular for raising the Question 1
which is answered here in the negative.

1 Polymorphic Expressibility

We need to consider not just the pure polymor-
phic typed lambda calculus, but that defined
over some signature containing type constants k,
type operators F' of various arities n > 1 (which
can be applied to an n-tuple of types o1,...,0,
to produce another type F(oy,...,0,) ) and in-
dividual constants k% of various types o. So the
polymorphic types o are built up from type vari-
ables aq, g, ... using the grammar

ocu=al|k|F(o,...,0)|c—0|lla.o

and then the terms ¢ of each type o are built
up from individual variables z{, 27, ... using the
following rules (where ‘¢ : ¢’ means that ¢ is a
well-formed term of type o):

e if ¢ is a variable or constant, then ¢? : o;
e ift:o0—7 and s: o, then ts: 7;
o if t:7, then \z.t:0—T;

e if t: Ila. o, then ¢, : o[ /o]
(the type is the result of substituting 7 for
a in o);
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e ift: o, then Aa.t : lla. o provided that « is
not free in any type which is the type of an
individual variable occurring freely in ¢.

The last clause refers to the freeness of variables:
the type variable « is bound in Ila. o and Aa.t
as is the individual variable % in Az?. ¢; all other
occurences of variables are free. A type or term
with no free type variables will be called (type-
)closed.

A description of a categorical semantics of
these polymorphic types and terms based upon
Lawvere’s notion of ‘hyperdoctrine’ is given in
[12] (for the higher-order calculus) and in some
detail in [8]. In this semantics § and n conver-
sion hold for both kinds of abstraction (A and
A). In [11] an environment-style semantics is
given, which is intentionally quite weak (it sat-
isfies 8 and 7 conversion for A-abstraction and a
limited form of S-conversion for A-abstraction)
and is tailored to obtaining the results of that
paper and no more. (See also [1] for a seman-
tics in a similar style; and see [7] for a de-
tailed comparison between the categorical- and
the environment-style models in the case of the
simply typed lambda calculus.)

For both kinds of model, part of the structure
is a cartesian closed category K which is used in
particular to give denotations to the closed types
and terms. Since this part of a model plays the
principle role in [11], Reynolds and Plotkin call
their models of polymorphism K-models. We will
not recall here the details of the definitions of ei-
ther the categorical or the Reynolds-Plotkin no-
tions of model of polymorphism. Instead we note
that the first kind can be regarded as a particular
instance of the second, but that all the ‘naturally
occuring’ models (known to the author) satisfy
the more stringent requirements of the categori-
cal semantics.

Now let I be a fixed ccc for which there is
some K-model. We recall the result in [11] on
polymorphic expressibility of a functor T : K —
KC (see below for an explanation of this notion):

Proposition 1 (Reynolds-Plotkin)
If T : K — K is expressible in o K-model,
then there is a weakly initial T-algebra, that is,

an object W of K equipped with a morphism
w: T(W) — W with the property that for any
similar data f : T(K) — K there is some (not
necessarily unique) morphism f: W — K sat-
isfying fow = f o T'(f).

For our purposes here it is sufficient to use a
slightly stronger notion of polymorphic express-
ibility than that which is given in [11]. So we
will say that T : K — K is expressible in a K-
model if there is a type with at most one free
type variable, 7[a], and a term ¢ : . II6. (0 —
B) — (7]a] — 7[B]) which together ‘induce the
action of T" on K’. This means that if K is an
object of K, evaluating 7[a] in the environment
which assigns K to « yields another object of K,
which is to be T(K); and similarly, evaluating
taﬂwa% in a suitable environment determined by
f: K — K'willyield T(f) : T(K) — T(K').

The only example of a polymorphically ex-
pressible functor we need to consider is that given
by double exponentiation by an object. For any
object K of K, let T, : K — K be the functor

Tk(—) = ((-)— K)— K.

If K is the denotation of some closed type k in a
K-model, then Tk is expressible in that model:
for we can take

Tla) = (a—K)—k
t = Ao AB. Ay Au. Az u(z oy)

where y : a— f,u : (a > K) > K,z : f— Kk and
zoy = Az®. z(yx). (See [11], Proposition 2.) By
changing model we can remove the restriction on
K, and obtain:

Corollary 3 Let K be a ccc for which there is a
K-model and let K be any object of K. Then the
functor Tk : K — K possesses a weakly initial
algebra.

Proof From the remarks above, to apply Propo-
sition 1 it is sufficient to find a K-model for a sig-
nature of type and individual constants for which
K is the denotation of some closed type over the
signature. This may not be the case for the sig-
nature and K-model of it which are given at first.
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However, we can expand the signature by adding
a new type constant naming the object K; and it
is then possible to extend the original KC-model
to a new K-model of the bigger signature. Then
Ty is expressible in this new model and so by
Proposition 1, it has a weakly initial algebra.
(End of Proof)

The proof of Corollary 3 highlights an impor-
tant difference between the style of model in [11]
and the categorical notion of model [8]: a K-
model is given relative to a particular signature,
whereas a categorical model is not. Instead, a
categorical model is capable of giving a seman-
tics for any signature once a structure for that
signature has been specified in the model. Thus
the change of model in the above proof would be
unnecessary if we restricted attention just to the
categorical style of model.

2 Initial Tp-Algebras

In this section we suppose given a cartesian
closed category IC for which there is a KC-model
of polymorphism. Suppose also that £ is a topos
containing K as a full sub-ccc: in other words, we
can regard the objects of K as a subcollection of
the objects of £ which is closed under the oper-
ations of taking finite products and exponentials
in £. Suppose further that X is an object of
& and that the powerobject P = (X — Q) is a
subobject of an object in K, so that there is a
monomorphism m : P —— K with K in IC. The
aim in this section is to show how to construct
an object I in & together with an isomorphism
i:(I—-P)—»P=1.

By definition, an object I together with a mor-
phism 7 : ((I = P) — P) — I constitutes an
algebra (1,14) for the functor

Tp(-)=((-)—=P)—=P: £ —E.

These algebras are the objects of a category
Tp-Alg, whose morphisms (I,i) — (J,7) are
morphisms f : I — J in & satisfying that
joTp(f) = foi. It is well known that if (I,7) is
an initial object in this category, then 4 is neces-
sarily an isomorphism (see [5], [13], [L1]). (Recall

that an object 0 in a category is initial if for every
object X there is a unique morphism 0 — X;
a weakly initial object satisfies the same condi-
tion except for the uniqueness requirement on
the morphism.)

So to fulfil our aim of constructing an object I
and isomorphism i : ((I - P)— P) = I, we must
construct an initial algebra for Tp. In fact we
only construct an initial algebra for the restric-
tion of Tp to an endofunctor § — &, where §
is a certain full subcategory of £ to be defined
below—but this is sufficient. The construction
is in two steps:

Step 1 It is the case that Tp is a natural re-
tract of Tk, that is, there are natural transfor-
mations ¢ : Tp — Tk and p : Ty — Tp with
pot =id. (This is because P = (X — ), be-
ing a powerobject in a topos, is injective and
hence the monomorphism m : P »— K has
a left inverse, i.e. there is £ : K — P with
¢ o m = id; indeed, one suitable ¢ is defined in
the internal higher-order logic of the topos £ by
Mo € K.{z € X |VSeP.m(S)=k==z¢€S}.
So we can take t = ((—=) = £) = m and p =
((=)—=m)—L)

Recall that by hypothesis, the objects of K
are a subcollection of those of £ and are closed
under exponentiation in £. Thus Tk is an end-
ofunctor of both I and the enveloping topos &.
By Corollary 3 we have an algebra (W, w) for Tk
which is weakly initial for the collection of Tk-
algebras (F,e) whose underlying object E is in
K. Then by composing with the component of ¢
at W, uw : Tp(W) — Tg(W), we can turn the
Tk-algebra (W, w) into a Tp-algebra (W, woty ).

Step 2 Form the Tp-algebra (I,:) which inter-
nally to the topos £ is the intersection of all the
Tp-subalgebras of (W, w o ty). (In general, such
a construction is possible because Tp is an ‘&-
indexed functor’; but given the specific form of
P as X - Q and Tp as ((—) - P)— P, one can
also give an explicit description of I using the in-
ternal higher-order logic of £: I is the subobject
of W described by

{ye W |VS € (W—=Q).(Vu € Tp(W).
‘u € Tp(S) = witw(u)) € S) =y € S},
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where ‘u € Tp(S)’ stands for Vz,z' € X.Vy €
WNzeW—=P. (zculz)\z' € z(y) =y €S).)

Definition Let S be the full subcategory of £
whose objects are subobjects of objects in K.

Lemma 1 If E is in S, then so is Tp(E).

Proof Since P is a powerobject, Tp maps mono-
morphisms to split monomorphisms. (For if
a: E —— A is a monomorphism, then Tp(a) can
be described in the internal higher-order logic
of £ as Au € Tp(E). Az € (A — P).u(z o a);
and then a left inverse r : Tp(A) — Tp(FE)
for Tp(a) is described by Au € Tp(A).\z €
(E — P).u(Ja(z)), where Ja(z) € (A — P) is
Ay € A {zeX |weE. ez ANa(v) =y},
where we are using the fact that P is X —.)
Thus given F in &, witnessed by some mono-
morphism ¢ : £ ~— A with A in K, then
the composition of the monomorphism Tp(a) :
Tp(E) »— Tp(A) with the monomorphism
ta 2 Tp(A) —— Tk(A) constructed in Step 1
above, witnesses that Tp(E) is also in S.
(End of Proof)

Thus T'p restricts to an endofunctor of S. We
claim that (I,7) constructed in Step 2 is an initial
algebra for Tp : § — S. To see this, we use
the following consequence of the weak initiality
property of (W, w):

Lemma 2 For every Tp-algebra (E,e) with E
in S, there is a morphism in Tp-Alg from a Tp-
subalgebra of (W, w o) to (E,e).

Proof Since F is in §, there is a monomorphism
a: FE —— A with A in . Then as we noted in
the proof of Lemma 1, Tp(a) is a split monomor-
phism, with left inverse r : Tp(A) — Tp(E)
say. Using r and p : Ty — Tp from Step 1,
we get a Tk-algebra (A,aoeoropy). Since A
is in K, the weak initiality property of (W, w)
furnishes a Tx-algebra morphism f : (W, w) —
(A,aoeoropy) and hence a Tp-algebra mor-
phism f : (W,wouy) — (A4,aceor). But (E,e)
is a Tp-subalgebra of (A,aoeor) via the mono-
morphism a; so forming the pullback in Tp-Alg

of this subalgebra along f, we obtain a subalge-
bra of (W, w o ty) equipped with a morphism to
(E,e).

(End of Proof)

The following two properties of (I,7) with re-
gard to (external) Tp-subalgebras of (W, w o tyy)
are both straightforward consequences of the def-
inition of (1,1).

Lemma 3 (i) (1,i) is a subalgebra of any Tp-
subalgebra of (W, w oty ); and
(ii) (I,i) contains no proper Tp-subalgebra.

Then Lemma 2 and Lemma 3(i) together im-
ply that (1,%) is weakly initial for Tp : S — S.
(Note that since I is a subobject of W, it is in
S.) But then Lemma 3(ii) shows that (I,%) is
actually initial: given two Tp-algebra morphisms
fig: (I,i) — (E,e) with E in S, forming the
equalizer of f and g we get a subalgebra of (1,1%),
which by (ii) must be the whole of I—so that the
equalizer of f and ¢ is an isomorphism and thus
f=g

Thus (1,4) is an initial algebra for Tp : § —
S and as we remarked above, this implies that
i: (I — P)— P) — I is an isomorphism, as
required.

3 Cantor’s Theorem in a
Topos

Classically, Cantor’s Theorem says that the car-
dinality of a set [ is less than that of its pow-
erset PI. Specifically, the existence of a surjec-
tive mapping from a subset of I onto PI leads
to a contradiction via the well known diagonal
argument. The hypothesis amounts to asserting
the existence of a relation R C I x PI satisfying
M(R) and E(R) where

M(R) = VYuel.VUU' ePI.
R(u,U) A R(u,U") = U =U"
E(R) = YU €PIL3ue I.R(uU).

Then forming

D={uel|3U €ePl.Ru,U)N-u€eU},
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since F(R) holds we can find d € I satisfying
R(d, D) and hence

deD < 3UEPLRAU)A-dEU

(by definition of D)

< 3JU €PIL.R(d,U) AR(d,D)
AN=d eU
(since R(d, D) holds)

& U ePlL.U=DA-deU
(since M (R) holds)

& —~deU

But (d € D & —d € D) is always false, so we
have a contradiction.

The above expressions and argument translate
directly into the higher order logic of toposes
with I —Q for PI, R of type (I x (I —+Q))—=Q,
etc. (In particular, the Law of Excluded Mid-
dle is not needed for the diagonal argument.) In
other words, for any object [ in a topos, the fol-
lowing sentence in the internal language of the
topos is satisfied:

VR e (I x (I—9Q))—=Q.~(M(R) A E(R)) (1)

where M(R) and E(R) are as above. Here we
need the following corollary of this fact:

Lemma 4 Suppose that £ is a topos and that
X and I are objects of € for which there is an
isomorphism i : (I = P)— P) =2 I, where P is
the powerobject X — 2. Then X = 0.

Proof To see that X = 0 it is sufficient to
show that in the internal higher-order logic of
& the sentence Vr € X.f is satisfied. Argu-
ing informally, given z € X we have AS €
P.(Sz) : P — Q which provides a left inverse
for \w € Q. {z' € X |w} : Q@ - P. Then (as
in section 2) To becomes a natural retract of
Tp and in particular, there is a monomorphism
mg: (I —Q) =) — (I - P)—P). But
then defining R, € (I x (I —Q))— by

R, (u,U) &
uw=i(m,({U € I=-Q|U =U}))

one has M (R,) A E(R;), which by (1) is equal to
f. So f can be derived from the assumption =z €

X; in other words Vz € X.f holds, as required.
(End of Proof)

We can now complete the proof of Theorem 1.
Suppose € is a topos containing a full sub-ccc X
and that a X-model of polymorphism exists. If
X is an object of £ for which the powerobject
P = (X — Q) is a subobject of some object in IC,
we saw in section 2 that there is an object I in
& together with an isomorphism i : ((I — P) —
P) = I. Then by the above lemma, we have that
X =0.

Conclusion

The setting we have considered is one in which a
model of the polymorphic lambda calculus is em-
bedded in a model of a certain kind of construc-
tive set theory—the higher-order logic of toposes.
In view of the results of [8], we can say that such
a situation is the norm rather than the excep-
tion; and for at least one important model of
polymorphism (the modest sets, where the en-
veloping topos is Hyland’s effective topos), it is
the natural setting.

In this setting, we have seen that the proper-
ties which the object of truth values, €2, and the
equality tests, =,: 0 — 0 — (2, possess in a topos,
imply that a powertype o — {2 can be contained
in a type arising from the model of polymorphism
only in the trivial case that o is empty. This
result puts limitations on the kind of cartesian
closed category K for which there is a K-model of
polymorphism (Corollaries 1 and 2). In particu-
lar it shows, possibly surprisingly, that Reynolds’
result on the non-existence of Set-models has
nothing to do with the non-constructive nature
of classical set theory and everything to do with
the fact that the category of sets is a topos.
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