Notes on Categorical Logic

Andrew M. Pitts
University of Cambridge Computer Laboratory

© Andrew M. Pitts 1989, 1991

Contents

INTRODUCTION

PART A: PROPOSITIONAL Logcic

1 Ordered Sets @ o i i i i i e e ettt e e e e e Al
2 Monotone Functions @ . i i i ittt eonen A7
3 Adjoint Functions @ @ i i i i i i it e e Al0
4 Propositional Theories @ i i i i i it ot v v e o Al8
5 Example (S): theories as domains A26
PART B: PREDICATE LogGic
6 Terms and Equations« i v i i i, B1
7 Indexed Preorders @ i i i i i i i i i e e et e B9
8 First-Order Logic ¢ i i i i i i e e e e e e e e e B15
9 Example: disjunction and explicit definability properties ... B22
10 Equality i i i i i it i i e e e e e e e e e e e e e B26
GLOSSARY

BIBLIOGRAPHY

i

Introduction

What is Categorical Logic? The syntax of traditional mathematical logics (such as
the first-order predicate calculus) provides formal languages for describing
mathematical structures in terms of properties of the constituent parts of the
structures—elements of sets, functions between sets, relations on sets, and so on.
This is a very straightforward approach: if you want to describe a structure, look
inside it and describe the things of which it is composed. Category theory is based
upon a less direct approach to describing properties of structures—one concentrating
not on the internal composition of the structures themselves, but on the
transformations, or ‘morphisms’, between them. One might guess that the kind of
properties describable solely in terms of morphisms would be quite limited, but
experience with category theory in the last 40 years has shown that this is far from
true. Indeed, something quite surprising is the case: namely that it is possible to
give an interpretation of the traditional syntax of mathematical logic based upon
morphisms between structures rather than on their internal composition (their
elements). Moreover, this categorical interpretation is equivalent to the traditional
one when the structures involved are just sets (and gives rise to other known
interpretations, such as forcing or realizability, by varying the category involved).
This is the starting point of ‘categorical’ logic.

Is it relevant to Computer Science? The categorical interpretation of syntax gives
explanations of various logical concepts (propositional connectives, variables,
substitution, quantifiers and equality, to name some of the ones which will crop up
in these notes) in terms of relatively few categorical ones—principal among which is
the concept of adjoint functor. This results in a unification of concepts and aids the
creation of new ones using analogies. This in part is why categorical logic has
proved useful in devising and studying semantics for non-traditional logics of
relevance to computer science. (Such as various kinds of lambda calculus.) So I
would say that categorical logic is very relevant to semantic studies in computer
science.

From a formal point of view, a categorical interpretation of some variety of
logical syntax provides a translation of that syntax into a simpler (variable-free, for
example) algebra of ‘combinators’. Then rules for evaluating the categorical
expressions induce an operational semantics for the original syntax. (The ‘Categorical
Abstract Machine’ of Cousineau, Curien and Mauny is an example of this.) So
categorical logic has a potential (only partly realized so far) for directly influencing
notions of computation.

Another aspect of the categorical logic, which I have not mentioned yet, seems
relevant to the development of specification methods in computer science. In
categorical logic, logical theories of a particular kind are themselves identified with
particular varieties of category (possibly with extra, categorical structure). The
earliest explicit example of this was Lawvere’s identification of algebraic theories
with categories possessing finite products (see section 6 in Part B of these notes).

INTRODUCTION il

The motto of category theory is ‘“‘remember the morphisms”; and here, identifying
theories with categorical structures gives rise to a rich calculus of ‘theory morphisms’
(in terms of various kinds of functor) which includes the traditional notions of
‘model’ of a theory and ‘interpretation’ (or ‘translation’) of one theory in another.
Thus we can apply categorical methods at this higher level of theories and theory
morphisms to compare and combine different theories. A little domain-theoretic
illustration of this is given in section 5 in Part A of these notes.

Contents of these notes. Some knowledge of the beginning ideas of category theory
will be assumed. A Glossary collects together some definitions and fixes the
notation.

Part A is concerned with the categorical semantics of propositions and the
relation of logical entailment. In this semantics propositions ¢ are interpreted as
objects [¢] in some suitable category, and proofs of logical entailment ¢F e are
interpreted as morphisms [¢]——[¥] in the category. If we are not interested in the
structure of proofs, but only in the relation of entailment, then we can restrict
attention to categories which are preorders—ones in which there is at most one
morphism between any pair of objects. This is the viewpoint of Part A. It is a good
starting place, since the preorder versions of general categorical notions are easier to
grasp. The crucial aspect of the categorical interpretation of the propositional
connectives is that it characterizes their meaning in terms of operations in the
preordered set built up by a series of adjunctions.

Part B treats (many-sorted) equational logic (section 6) and its realtion to
categories with finite products, and then goes on to full first-order predicate logic
(section 8) and its categorical semantics using indexed preorders (Lawvere’s
‘hyperdoctrines’). We concentrate first on the calculus without equality predicates,
because its categorical semantics is less well known (and more relevant to some of
the potential computer science applications). Equality predicates are discussed in
section 10. What emerges is an adjoint formulation of first-order logic possessing an
interesting symmetry (a symmetry different from that of the Gentzen Sequent
Calculus for first-order logic—cf. the remarks of Girard in [Gi]). Section 9 illustrates
the proof-theoretic application of these techniques by giving a categorical proof (due
to Freyd) of the disjunction and explicit definability properties of intuitionistic
predicate calculus.

If there were ever a Part C it would give the categorical approach to
higher-order logics and type theories. (Meanwhile, see [LS] for the former at least.)

The four ‘worlds’ (D ® G (. Running through the notes are four extended
examples which (with apologies to Barwise and Co.) we call

® Tarski’s World (T)
® Kleene’s World ®
e Scotrs World (S

e Lawvere’s World (D

and whose appearance at various points in the notes is indicated by the
corresponding symbol. Alas, we do little but scratch the surface of these worlds.

INTRODUCTION iv

(D is the world of classical logic and set theory. ® is the world of the recursive
‘realizability’ semantics of intuitionistic logic; see [Hy] for an account of the
categorical and topos-theoretic riches here. @ is the world of domain theory and
L(ogic of)C(omputable)F(unctions); categorical investigations here are the subject of
current research. @ is the world of a categorically axiomatized category of sets and
functions. This last is really a variable example (ho!ho!’): requirements on an
arbitrary category are built up embodying categorical versions of logical and
set-theoretic properties of ‘the’ category of sets and functions, leading to the notion
of ‘elementary topos’ (see [Johl], [LS, Part II] and [Be]).

tsSee [La3].

AOQ

Part A

Propositional Logic

Al

1 Ordered Sets

1.1 Definitions. A preorder on a set X is a binary relation < which is

reflexive: x<x (all xeX) and
transitive: x<y and y<z imply x<z (all x,yeX).

If x<y and y<x, then we write x2y and say that x and y are isomorphic elements.
Clearly & is an eqivalence relation, i.e. is reflexive, transitive and

symmetric: x2y implies y=x (allx,yeX).

A partial order is a preorder for which the relation = coincides with equality, so
that < is

antisymmetric: x<y and y<x imply x=y (all x,yeX).

A preordered set (X,<) is a set equipped with a preorder. Most of the time we will
refer to X as the preordered set without mentioning the associated relation <
explicitly. A set equipped with a partial order is often referred to as a poset. If X is
a preordered set, we can manufacture a poset by quotienting the set X by the
equivalence relation & of isomorphism determined by the preorder < on X: the
resulting set X/ ={[x]| x€X} of equivalence classes has a well-defined partial
order on it given by

[x]<[y] if and only if x <.
The poset X/= is called the poset reflection of the preorder X.

1.2 Exercise. Note that the quotient function ¢: X—— X/ given by ¢(x)=[x], is
monotone—meaning that x<y implies ¢(x)<¢(y). Show that it is ‘universal’ amongst
monotone functions from X into a poset, in the sense that if f1 X——Y 1is any
monotone function to a poset Y, then there is a unique monotone function
X/2——Y whose composition with ¢ is f.

1.3 Examples. (i) @ The set of subsets of a set X, P(X) is partially ordered by the
relation of inclusion: AC B if for all xeX, xe€A4 implies xeB.

(ii) @© Here is the generalization of (i) to an arbitrary category C. (Some of the
basic definitions of category theory and our choice of notation can be found in the
Glossary.) For a given Xe€obC, the collection of monomorphisms with codomain X
is preordered by the relation

(A—2—X) < (B—2-X) if and only if there is some (necessarily

mono-)morphism A—L5 B with bo f=a.

It is a simple exercise to prove that the notion of isomorphism associated with this
preorder is

1 ORDERED SETS A2

(A—2 X)) (B—25X) if and only if there is some isomorphism
iI:A2 B in C with boi=a.

The equivalence classes for this relation of isomorphism are called subobjects of X,
and the collection of all such is denoted Subc(X) (or just Sub(X) if C is
understood). The preorder on monomorphisms induces a partial order on subobjects as
in 1.1. It is a common notational convenience to confuse a subobject with any
monomorphism A>——X in its equivalence class.

When C=S8et is the category of sets and functions there is a bijection between
the collection of subobjects of X and the set P(X) of (i). This bijection is given one
way by sending a subset AC X to the equivalence class of the monomorphism
A——X obtained by restricting the identity function on X to A; in the other
direction, send a subobject to {f[x)| x€A} where f: A——X is any monomorphism
representing the subobject. (Exercise: work through the details of this; on the way
you will need to prove that a morphism in Set is mono just in case it is an
injective function.)

Note that in general there may be a possibly large number of subobjects of any
given object in a category C. However, the above remark shows that when C=Set,
Subs(X) is again a set.

(iii)) Let N denote the set of natural numbers. For any set X, let (X—PN)
denote the set of functions from X to the powerset of N. Define a binary relation <
on this set by:

p < q if and only if there is a partial recursive function ¢: N——N such that for
all xeX and neN, if nep(x), then (n) is defined and belongs to g¢(x); in this
case we say that ¢ witnesses the fact that p< g and write p:p < ¢ to indicate
this.

Since the identity function N-——N is partial recursive we have that < is reflexive;
and since the composition of two partial recursive functions is another such, we have
that < is transitive. We will denote by R(X) the preordered set ((X—PN),<).
(Exercise: show that when X=1 a one element set, the poset reflection of R(1) only
contains two distinct elements, call them L and T, with L<T. Is R(2) as simple as

this?)

(iv) If X and Y are preordered sets, we can make a new one, called their product,
by taking the cartesian product of the sets

XxY = {(x,y)| x€X and yeY}
and imposing on this set the reflexive, transitive relation given by
(x,y)<(x',y’) if and only if x<x’ in X and y<y’ in Y.

(Exercise. Prove that this gives the categorical product (see Glossary) of X and Y in
the category of preordered sets and monotone functions (see Definition 2.1).)

(v) If X is a preordered set, its opposite X°P is the preordered set obtained by
changing the preorder < on the set X to <°P, where for all x,yeX, x<°Py if and
only if y<x.

1 ORDERED SETS A3

The Principle of Duality for preorders is that whenever we have an order-theoretic
concept or property, we get another one (called its dual) by replacing the preorders
involved with their opposites. Here are some examples:

1.4 Definitions. Let X be a preordered set and SCX a subset. An element x€X is
an upper bound for S if s<x for all seS. Dually, ye X is a lower bound for S if it
is an upper bound for S in X°P, in other words if y<s in X for all s€S. An
element xeX is a greatest element of S if it an upper bound which belongs to S;
similarly a lower bound for S which also belongs to S is called a least element of
S.

1.5 Proposition. Any two greatest elements of S are isomorphic: we say that ‘the’
greatest element of S is defined ‘uniquely up to isomorphism’. Similarly for least
elements.

Proof. If x and x’ are both greatest elements of S then x<x’ since x€S and x’ is
an upper bound of S; but symmetrically x’<x, so xx/. 0O

1.6 Remark. Conventially the word ‘maximal’ (respectively ‘minimal’) is reserved for
a different concept than that of ‘greatest’ (respectively ‘least’): x€S is a maximal
element of S if for all s€8, x<s implies x2s. (Dually, yeS is minimal if for all
s€S, s<y implies s=y.) For example in the poset {0,1,I'} with 0<0<1<1 and
0<1/<1’, but no other relations, 1 and 1’ are both maximal elements, but neither is
greatest.

1.7 Definitions. Let X be a preordered set. The meet (or inf, or gib) of a subset
SCX is the greatest element in the set of lower bounds of S. If it exists, it is
unique up to isomorphism by Proposition 1.5 and is denoted AS. Thus ASe€X has
the property that for all xe X:

(.1 x<AS if and only if for all s€S, x<s.

Note that the reflexivity and transitivity of < imply that (1.7) is equivalent to the
conjunction of

(1.2) for all seS, AS<s and
(1.3) (x<s, all ses) implies x<AS.

Dually, the join (or sup, or Iub) of S is the least element of the set of upper bounds
of S and is denoted VS.
Some special cases:

(i) Case S=0. AP is written T and called the top of X; V@ is written L and
called the bottom of X. Thus T and 1 are defined up to isomorphism by the
properties

(1.4) for all xeX, x<T and
(1.5) for all xeX, L<x.

(ii) Case S={x,y}. A(x,»} is written xAy and called the (binary) meet of x and
v; V{x,y} is written xVy and called the (binary) join of x and y. They are defined

1 ORDERED SETS A4

up to isomorphism by the properties

(1.6) for all ze X, z<xAy if and only if (z<x and z<y);
(1.7) for all zeX, xvy<z if and only if (x<z and y<2z).

If X posseses a top element and all binary meets, then (by induction) it has meets
of all finite subsets and we call X finitely complete. Dually, if X has joins of all
finite subsets, we will say it is finitely cocomplete.

(iii) Case S is a directed subset—which by definition means that every finite
subset of S has an upper bound in S. This is equivalent to saying that every pair of
elements of S has an upper bound in S and that S is non-empty (because ‘finite’
includes the case ‘empty’ and examing the definition carefully, you will see that for
the empty subset of S to have an upper bound in S it is necessary and sufficient
just that there be some element in S.) We say that X is directed-cocomplete if it
has joins of all directed subsets. We will call X a dcpo if it is a
directed-cocomplete poset. (N.B. Since the empty set is not directed, a dcpo does
not necessarily possess a bottom element.)

1.8 Remark. There is a clash of terminology at this point between domain theory
and category theory. A ‘complete poset’, or ‘cpo’, is usually taken in domain theory
to mean a poset with joins of all directed subsets and a bottom element—in other
words with certain types of joins. But in category theory, ‘completeness’ refers to the
existence of meets (or, more generally, of limits) whereas existence of joins {or more
generally, colimits) is referred to as ‘cocompleteness’. Thus to category-theorists, a
‘complete’ poset is one with meets of all subsets and a ‘cocomplete’ poset is one
with all joins; however, they also know that:

1.9 Proposition. A preordered set has all joins if and only if it has all meets.
Proof. The interdefinability of meets and joins is given by the formulas

AS = V{xeX|x<s, all se€S} and VS = A{xeX|s<x, all seS},
where SCX. O

1.10 Examples. (i) (D For a set X, the poset P(X) is complete: for SCP(X), AS is
given by the intersection S ={x€X | x€A4, all AeS}; and and V.S is given by the
union | JS ={x€X | x€A, some A€S}. In particular T is X and L is @.

(ii) ® For a set X, the preordered set R(X) has a top element, namely the
function T: X—— PN sending each x€X to N itself. (For any peR(X), the identity
function N—— N witnesses the fact that p<T.) Note that in R{X) there are in fact
many different top elements, but they are all isomorphic (necessarily, by Proposition
1.5). For example, for each k€N the function xeX+—>{k}€PN also gives a top
element of R(X) (as witnessed by the recursive function N——N which sends all
neN to k). R(X) is truly a preorder and not a poset.

Next we wish to show that R(X) has binary meets. For this we use a recursive
pairing function (-,-): NxN——N (such as (n,m) = +(n+m)(n+m+1)+n, for example)
with corresponding recursive projections (-)o: N——N and (-);:N——>N. These are

1 ORDERED SETS AS

recursive functions satisfying ((#,m))o=n and ((n,m))y=m, all nmeN. (The
particular pairing mentioned is surjective, but we do not need to use that fact.) The
pairing function determines a function A:PNxPN——>PN sending ACN and BCN
to

AAB = {{(n,m)| ne A and me B}.

Then the meet of p and ¢ in R(X) is given by pAgq: X——PN where for each xeX

(pAg)(x) = p(x)Ag(x) = {(n,m)| nep(x) and meq(x)}.

For (-)o:pAg<p and (-):pAq<gq; and if reR(X) with @:r<p and ¥:r<q for
partial recursive functions @:N——N and %¥:N——N, then the partial recursive
function n——{p{n),x4(n)) witnesses that r<pAq. Thus each R(X) is finitely
complete.

It is also the case that R(X) is finitely cocomplete. A bottom element is given
by L:X——>PN where L(x)=09, all xeX. And given p,geR(X), their join is given
by given by pvg: X—— PN where for each xe X

(pv@)(x) = {(0,n}eN| nep(x)}U{(l,m)| meq(x)}.

In other words (pV g)(x) = p(x)V q(x), where V:PNx PN—— PN is the function
(A, B)—> AVB={(0,n)eN | ne A} U {(1,m) | me B}.

(Exercise. Prove that this does indeed give finite joins in R(X).)

(iii) @ If X is an object in a category C then Subc(X) always has a top
element, namely the subobject determined by the identity morphism idy:X——X
(which is of course a monomorphism). In general that is all we can say. However, if
C has pullbacks (see Glossary) then each Sub(X) has binary meets: the meet of
A——X and B——X is given by first forming the pullback square

AxyB——A4
B—X
and then using the easily verified facts (Exercises!) that

¢ the puliback of a monomorphism is a monomorphism
¢ the composition of two monomorphisms is a monomorphism

to conclude that AxyB——A>——X determines a subobject of X; and the universal
property of the above pullback square implies in particular that this subobject is the
meet of the subobjects A——X and B>——X.

(iv) @ Let D be a dcpo (see 1.7(iii)). A subset CC D is called

inductive if whenever SC D is directed and SCC, then \V/SeC;
downwards closed if x<yeC implies xeC;

upwards closed if x>yeC implies xeC;

convex if y<x<z with y,zeC implies xeC.

(Exercise. Show that C is convex if and only if it is equal to the intersection of an
upwards closed subset with a downwards closed one.)

1 ORDERED SETS A6

The Scott closed subsets of D are those C which are both inductive and
downwards closed. Let F(D) denote the poset of all Scott closed subsets of D
partially ordered by subset inclusion. It is easy to see that the intersection of a
collection of inductive (respectively upwards closed, downwards closed, or convex)
subsets is another such. In particular, it follows that F(D) has all meets and that
they are calculated as in P(D). Hence by Proposition 1.9, F(D) also has all
joins—although these joins are not necessarily given by set theoretic union. In
general, the most we can say is that finite joins are given by union. (Exercise. Prove
that the union of two Scott closed subsets is again Scott closed.)

1.11 Remark: preordered sets are categories. If C is a category such that the
function

morC——— obCx obC

f +———(domyf,codf)

is injective (in other words, for all parallel pairs of morphisms f,g:?7——37? in C,
S =g), then the morphisms of C amount to specifying a relation between the objects.
That relation is reflexive (because of identity morphisms) and transitive (because of
composition of morphisms), in other words, is a preorder.

Conversely, every preordered set X determines a category of this kind with
obC = X by declaring that morphisms x——y are instances of the preorder relation:
there is a morphism from x to y, call it (x,y), just in case x<y. Thus the identity
on x is (x,x) (reflexivity!) and the composition (y,z)o(x,y) is (x,z) (transitivity!).

A7

2 Monotone Functions

2.1 Definition. A function f: X——Y between preordered sets is monotone if

x<x' in X implies Ax)<Ax')in'Y.

2.2 Examples. (i) (D If f: X——Y is a function between sets, we get a monotone
function f1:P(Y)—— P(X) by taking inverse images of subsets: for BCY

YB) = {xeX|Ax)eB}.

(ii) @ Suppose that C is a category with pullbacks (see Glossary). The pullback
along a morphism f: X——Y of a monomorphism b: B——Y results in a morphism
J*(b): X xyy B——X which is again a monomorphism. Thus ‘pullback along S’ gives a
function from the monomorphisms with codomain Y to the monomeorphisms with
codomain X. This function is montone for the preorder defined in 1.3(ii). For
suppose that (B>—2-Y) < (B—255Y), so that there is some g: B— B with Mog=b.
We have to show that (X XyB)MX)S (X xyB'MX) by producing an
h: X xy B— X xy B with f*(b')oh = f*(b);, but the universal property of the pullback
square for f and ¥ furnishes such an 4:

b
sf() B g
XxyB --%— XxyB—B

)) ¥

x—IL Ly,

Since pullback along f respects the preorder on monomorphisms, it induces a
well-defined monotone function between posets of subobjects which we denote by

7 1: Sub(Y)—— Sub(X).

It is convenient to denote the result of applying 1 to (the subobject determined by)
B—Y by fY{B)»—X.

When C=S8et, it is easily verified that under the identification of subobjects with
subsets established in 1.3(ii), the operation of pulling back subobjects along a
function becomes identified with the operation defined in (i) of taking inverse
images of subsets.

(iii) ® Every function f: X——Y induces a function f*:{Y—=PN)——(X—PN)
given by precomposition with f: f*(p) = pof. Given p,qe(Y—PN), if p:p<gq in R(Y),
then clearly ¢ also witnesses that f*(p)<sf*(¢) in R(X). So we have a monotone
function

r*:R(Y)— R(X).

2 MONOTONE FUNCTIONS A8

(iv) @ By definition, a function f: D—— E between dcpo’s is continuous if it is
monotone and preserves directed joins: the latter means that for all directed subsets
SCD

AVS) = V[As)| seS)

(Note that the join on the right hand side exists because the monotonicity of f
implies that {f{s)|s€S}C E is directed.) In this case the inverse image function
F1:P(E)——P(D) sends Scott closed subsets of E to Scott closed subsets of E.
(Preservation by f! of the property of being downwards closed is a consequence of
monotonicity of f, whilst preservation by f of the property of being inductive is a
consequence of f preserving directed joins.) Hence f~ 1 restricts to give a monotone
function

f*:F(E)—F(D).

(Exercise. Show conversely that a function f:D——>FE is continuous if
f1:P(E)—— P(D) sends Scott closed subsets of E to Scott closed subsets of D.)

2.3 Definition. If f,g: X_—3Y are monotone functions between preordered sets,
define

(2.1) f<g if and only if for all xeX, fix)<g(x).

Clearly, this establishes a preorder on the set of all monotone functions from X to
Y: we denote the resulting preordered set by [X,Y] (In contrast to (X—Y), which
denotes the set of all functions from X to Y.)

2.4 Proposition. (i) The collection of monotone functions between preorders contains
the identity functions and is closed under composition. (Hence there is a category,
denoted Preord, of preordered sets and monotone functions.) Moreover, composition
(g,/)—>gof is a monotone function [Y,Z]x[X,Y]—[X, Z].

(ii) If X, Y and Z are preorders, a function f:XxY——Z is monotone if and
only if it is monotone in each variable separately, which means for all x,x'€ X and
»'eYy

x<x'! implies Ax,y)<Ax'y) and
y<y' implies Ax,y)<Ax,»') .

Proof. Left as easy Exercises. O

As one might expect, two preorders X and Y are isomorphic if they are
isomorphic objects (see Glossary) in the category Preord, which is to say that there
are monotone functions f: X——Y and g:Y——X with gof=idy and fog=idy. So
in particular f is a bijection of sets. Conversely, a bijection f is an isomorphism in
Preord if it both preserves and reflects order: x<x’ in X if and only if Ax)<Ax')
in Y.

Warning. A monotone bijection is not necessarily an isomorphism of preordered
sets. (Exercise. What is the simplest example of this failure?)

In practice the more useful relation between preorders is not isomorphism, but
rather equivalence:

2 MoNOTONE FUNCTIONS A9

2.5 Definition. A monotone function f: X——Y between preordered sets is
(i) fuil if for all x,x’e X, Ax)<Ax') implies x< x/;
(ii) essentially surjective if for all y€Y there is some x€X with fx)xy;
(iii) a weak equivalence if it is both full and essentially surjective;
(iv) an equivalence if it possesses an essential inverse—which is a monotone
function g:Y——X satisfying gof=idy in [X, X] and fog2idy in [Y,Y]; in
this case we say that X and Y are equivalent and write X ~ VY.

2.6 Example. The quotient function X—— X/ from a preordered set to its poset
reflection is a weak equivalence. It is only an isomorphism when X is already a
poset.

2.6 Remarks. (i) A full monotone function between posets is necessarily an injective
function and is usually called an embedding of posets.

(ii) Each equivalence is a weak equivalence. Conversely, if f: X——Y is a weak
equivalence, we can use the Axiom of Choice to construct a function g:Y——X
which for each yeY picks out some g(y)eX with Ag(y))=y. (There is such an
element because f is essentially surjective.) This g is automatically monotone since if
y<y!, then flg(y)) 2 y<y’'= Ae(y’')), so that g(y)<g(y!) since f is full. Moreover for
each x€ X, putting y=Ax), we have Alg(y)) X y=ARx), so that g(y) > x by fullness of
Jf, which is to say that g{A{x)) = x. So all in all f is an equivalence with essential
inverse g. (Note that if X were a poset, the Axiom of Choice would not be needed
in this construction since for each y there would be a unique x with Ax)2y.)

Thus modulo the Axiom of Choice, the notions of ‘weak equivalence’ and
‘equivalence’ coincide. In practice the weak equivalence of two preordered sets is
enough for them to share similar order-theoretic properties.

2.7 Remark: monotone functions are functors. In 1.11 we noted that preordered sets
can be regarded as particular kinds of category—ones for which there is at most one
morphism between any pair of objects. Consequently category theoretic notions make
sense for preordered sets. In particular, specifying a functor (see Glossary} between
two such categories amounts to giving a monotone function. And given two
monotone functions f,g: X__3JY regarded as functors, there is at most one natural
transformation (see Glossary) from f to g, and there is one just in case f<g in
[X,Y]

The notions of fullness and equivalence given above coincide with the usual
category theoretic ones because any functor between preordered sets is automatically
faithful (see Glossary).

In the next section we turn our attention to what is probably the most important
concept in category theory, that of ‘adjoint functor’, and see what it looks like for
the particularly simple case of preorders.

AlO

3 Adjoint Functions

3.1 Definition. A pair of monotone functions f: X——Y and g:Y——X between
preordered sets determines an adjunction if for all xeX and yeY

(3.7) Ax)<yinY if and only if x<g(y) in X.

In this case we write f- g and say ‘f is left adjoint to g, or ‘g is right adjoint to f
(Mnemonic: left adjoints appear on the left of < in the above definition and right
adjoints on the right.)

The following lemmas establish the basic properties of adjoints.

3.2 Proposition. (‘Unit and counit’ characterization of adjunction.) Given fe[X,Y]
and gelY,X], f-g if and only if idy<gof in [X,X] and fog<idy in [Y,Y].

Proof. =: For all xeX, Ax)<Ax), so x<g(A(x)) by (3.1); so idy<gof by (2.1).
Similarly, since for all yeY g(y)<g(y), we have flg(r))<y by (3.1), i.e. fog<idy.

«: If Ax)<y, then by monotonicity of g g(Ax))<g(»); but x<g(Ax)) by
hypothesis, so x<g(y) by transitivity. A similar argument using fog<idy, gives the
converse implication in (3.7). 0O

3.3 Proposition. (‘Pointwise’ characterization of adjoints.) A monotone function
g:Y——X between preordered sets possesses a left adjoint if and only if there is a
function assigning to each xe€X an element Ax)EY satisfying

* x<gAx)) and
& for all yeY, if x<gly) then Ax)<y .

(An element f{x) satisfying the above two conditions is said to be a ‘value of the
left adjoint to g at x’ even if such elements do not exist for all x€X. Note that
Ax) is determined uniquely up to isomorphism by the two conditions.)

Proof. In view of (3.7) and Proposition 3.2, if f-4g then x——f(x) is a function
satisfying the requirements. Conversely, given such a function it is enough to see
that it is monotonic: for then the second hypothesis gives one half of (3.7) directly
and the first hypothesis gives the other half indirectly, arguing as in Proposition 3.2.
But if x<x’ in X, then x<x’'<g(f{x’)), so taking y=f(x’) in the second hypotheses
we have flx)<y=Ax'), as required for monotonicity. O

3.4 Proposition. (Uniqueness of adjoints up to isomorphism.) Suppose f,f'e[X,Y]
and g,g'€(Y,X] with f-g and f'-g'. Then f< f' if and only if g’ <g. Hence f= f’
if and only if g’ g. In particular, the adjoint of a monotone function is unique up
to isomorphism if it exists; and if X and Y are posets, the adjoints are actually
unique if they exist.

3 ADJOINT FUNCTIONS All

Proof. We use Propositions 2.4(i) and 3.2. If £ < f’, then
g < gofog’ since idy<egof

goflog
g since f’og'<idy.

IA IA

Converesly if g/’< g, then

f < foglof! since idy<g'of’
< fogof’
< f! since fog<id. O

3.5 Proposition. (Composition of adjoints.) Given preordered sets and monotone
functions

& k-
2

if f-lg and h- k, then hof-gok.

Proof. For all x€X and z€Z, AAx))<z iff Ax)<k(z) (since Ak} iff x<g(k(z))
(since fHg). O

3.6 Proposition. Note that a monotone function f:X——Y also determines a
monotone function from X°P to Y°P, which we will denote by f°P:X°P——Y°P,
Then g°P-f°P if f-4g (Thus the Principle of Duality (¢f 1.3(v)) turns statements
about left adjoints into ones about right adjoint and vice versa.)

Proof. For all xeX and yeY, g°P(»)<°P x iff x<eg(y), iff Ax)<y, iff y<°Pf°P(x). O

3.7 Theorem. Let f: X——Y be a monotone function between preordered sets.

(i) If f has a right adjoint then it preserves all joins which exist in X: in other
words, if SCX and \/S exists, then \/{A(s)|s€S} exists in Y and is isomorphic to
AVS). (Dually, if f has a left adjoint it preserves all meets.)

(ii) (Adjoint Functor Theorem for preorders.) Conversely, provided X has joins
of all subsets, [has a right adjoint if it preserves them. (Dually, f has a left adjoint
if X has and f preserves all meets. Recall from Proposition 1.9 that X has all meets
if and only if it has all joins.)

Proof. (i) Suppose f-g and that \/S exists for some SCX. Then for all yeY,
AVS)<y iff VS<gly), iff for all seS s<g(y), iff for all seS fis)<y. Hence AVS) is
indeed the join of {f{s)|s€S} in Y.

(ii) For each yeY, define

gy) = V{x | Ax)<s}

By hypothesis Ag(y)) = V{Ax)|Ax)<y} and clearly this join is <yp. Moreover, if
Ax)<y for some x€X, then x<g(y) by definition of g(y). Hence the hypotheses of
the dual of Proposition 3.3 hold and we can conclude that y——g(y) determines a
right adjoint for £ 0O

3 ADJOINT FUNCTIONS Al2

3.8 Examples. (Adjoints abound!)

(i) Let 1 denote the poset {0} with 0<0. (1 is a terminal object in Preord.) For
each preordered set X, the unique function X——1 (is monotone and) has a right
adjoint if and only if X has a top element—in which case the right adjoint is the
function 1— X with O——T. Dually, X——1 has a left adjoint if and only if X
has a bottom element.

(ii) For each preordered set X the diagonal function A:X——Xx X given by
A(x)=(x,x) is monotone; it has a right adjoint if and only if X has binary
meets—in which case the right adjoint is given by (x,x’)eXx Xr——oxAXx'eX.
Dually, A has a left adjoint just when X has binary joins.

(Exercise. Generalize (i) and (ii) to an adjoint characterization of infinite meets
and joins.)

(iii) D (Quantifiers as adjoints.) The monotone function f1:P(Y)—>P(X) of
2.2(1) possesses both left and right adjoints. The left adjoint is denoted
37:P(X)——P(Y) and sends AC X to

AA4) = {Ax)| xe€d} = {yeY|3IxeX(fAx)=y and x€4d)}.

(Exercise. Check that 3AA)C B iff ACfY(B) for any BCY.) Because of the first of
the above equalities 3f{4) is often called the image of A along f (and denoted just
by AA4)); because of the second of the equalities, 3f is called existential
quantification along f. Dually, the right adjoint to f is denoted Vf:P(X)— P(Y)
and sends ACX to

VAA) = {yeY|FH{c4} = {reY|VxeX (Ax)=y implies xcA4)}.

VAA) is sometimes called the dual image of A along f and Vf is called universal
quantification along f. (Exercise. Check that f(B)C A iff BCVf(4).)

The connection with quantification is even plainer when we take f to be a
product projection, say ®;: XxY——X. Then for ACXxY and BCX

w}(B) = {(x,»)EXxY| x€ B},
Imy(A4) = {xeX |IeY (x,y)eAd} and
Vm(4) = {x€X | VyeY (x,y)eA}.

Thus 1r{1(B) is the ‘weakening’ of the property B of elements x€X to a
property of elements (x,y)€eXxY by ignoring y. So we may say (with
Lawvere) that “existential quantification is left adjoint to weakening and
universal quantification is right adjoint to weakening”. Another, formal
justification for this slogan will emerge in section 8.

(iv) @ Generalizing (iii) from Set to an arbitrary category C with pullbacks,
given a morphism f:X——Y in C, the values of the left and right adjoints to
F1:Sub(Y)—— Sub(X) at a subobject A——X, if they exist, will be denoted

IAA)——Y and VAA»—Y

and called the existential and universal quantifications of A——X along f.

(Exercise. Show that f: X——Y is a cover (see Glossary) if and only if JAT)
exists and IA[T)=TeSub(Y). Show that the left adjoints 3f exist for all f if and only
if C has image factorizations (see Glossary).)

3 ADJOINT FUNCTIONS Al3

(Exercise. Recall that the composition of two monomorphisms is again a
monomorphism. Hence show that if f:X——>Y is a monomorphism, then
3f: Sub(X)——> Sub(Y) exists and is given by composition with f.)

(v} ® If D is a dcpo, we saw in 1.10(iv) that meets in F(D) are calculated as in
P(D)—by intersections; thus the inclusion F(D)——P(D) preserves all meets and
hence by Theorem 3.7(ii) it has a left adjoint, P(D)——F(D) whose value at a
subset SC D is the Scott closed set

S = MCeF(D)|scc},

called the closure of S.

If f:D——>FE is a continuous function between dcpo’s, then we saw in 2.2(iv)
that f1:P(E)——P(D) restricts to give f*:F(E)—— F(D). Since the former preserves
all meets (since from (iii) it has a left adjoint) and meets for F(E) are calculated as
in P(E), it follows that f* preserves meets. Hence by 3.7(ii) it has a left adjoint,
which will be denoted fi: F(D)—— F(E). (Exercise. Prove that for CeF(D), A(C) is
the closure of the image of C along f: A(C)=3AC).)

It is not the case in general that f* has a right adjoint. (Execise. Give an
example of a continuous f for which f* does not have a right adjoint.)

(vi) ® The montone function f*:R(Y)——R(X) of 2.2(iii) has both left and
right adjoints, which will again be denoted respectively 3f and Vf Given
PE(X—PN), I(p)e(Y-PN) is the function

yeYr— U{n(x) | Ax)=y}.
In other words
neIf(p)y) if and only if nep(x) for some x€X with Ax)=y.

To see that this does give the value of the left adjoint to f* at p, first note that for
any ¢€(Y—PN) and yeY, JAS*q)(y) = U{a(A(x)) | Ax)=»} C q(y) so that id:3f(f*q)<q
in R(Y). Moreover, if pe(X—PN) and ¢:3f(p)<g in R(Y), for some partial recursive
¢:N——N, then we have

for all xeX, yeY and neN, if Ax)=yp and nep(x), then ¢(n) is defined and
belongs to q(y),

which means that for each x€X, ¢ maps p(x) into g(f{x)). Hence ¢:p<f*(q) in
R(X). Thus 3r - ¥ by Proposition 3.3.

We turn now to a description of V/:R(X)——R(Y). To do this we must consider
codes of partial recursive functions. Let

NxN—N
(n,m)——n-m

denote a partial recursive application. In other words, n-m is the value at m of the
nth partial recursive function in some well-behaved enumeration, if the latter is
defined there. (The notation {s}(m) is the traditional one for z-m.) For each partial
recursive p:N——N there is some (in fact, necessarily infinitely many) neN such
that for all meN @(m) is defined if and only if #-m is and in that case they are
equal; # is called a code for . For partially defined expressions ¢ which may or
may not denote elements of N we introduce the following abbreviations:

3 ADJOINT FUNCTIONS Ald

t| means ‘¢ is defined’;
t=<t’ means °t] iff /] and in that case they are equal’.

Also we will tend to write just st for s-¢; and in multiple applications we will often
omit brackets and use the convention that application associates to the left: thus rs¢
stands for (7-s)-t for example. We will also use the A-notation for partial functions:
if {x) is some expression involving n, An.#An) denotes the partial function which is
defined at neN iff {»)] and in that case has that value there.

The partial resursive application makes N a ‘partial combinatory algebra’ in the
sense that there are numbers (‘combinators’) K,SeN satisfying for all x,y,zeN that

Kx| and Kxy = x
Sx|, Sxy| and Sxyz =< xz(yz).

Now given pe(X—PN) and yeY, define VAp)(»)CN by

nevAp)(y) if and only if for all xeX and meN, if Ax)=y then n-m| and
n-me p(x).

Then it is the case that f*(VAp))<p is witnessed by the partial recursive function
An.n-0 (for which S(SKK)(KO) is a code); and if we have p:f¥¢)<p for some
ge(Y-PN) and partial recursive ¢, then ¢g<Vflp) is witnessed by In.K.p(n) (for
which S(KK)'@" is a code, if "¢’ is a code for). Hence by Proposition 3.3 VAp) is
indeed a value of the right adjoint to f* at p.

(Exercise. By analogy with the case of 3, one might expect the value of the
right adjoint at p to be given by y —— ([o(x) | A{x)=y}. Why doesn’t this work?)

(vii) @ The notion of ‘embedding-projection pair’ used in domain theory in
connection with the solution of recursive domain equations is a particular kind of
adjunction. Given dcpo’s D and E a (continuous) embedding i:D——FE is a
monotone function with a continuous right adjoint p: E—— D which is also left
inverse to i. (Note that since / has a right adjoint it must preserve existing joins and
in particular is continuous.) Thus / and p are both monotone and directed join
preserving, and satisfy poi=idp and iop<idg. Such a p is called a (continuous)
projection. Note that since adjoints to monotone functions between posets are unique,
each of i and p determines the other.

3.9 Definitions. Let X be a preordered set with binary meets. If it exists, the
(Heyting) implication of x,yeX is the element x=yeX defined uniquely up to
isomorphism by the property:

for all zeX, z<x=y if and only if zAx<y

Thus x=y is a value at yp of the right adjoint to the monotone function
(-)Ax: X——>X. (The term ‘relative pseudocomplement’ is also used for x=>y.)

A monotone function f: X——Y which preserves binary meets also preserves the
implication x=>y if Ax=>y) is a value of the right adjoint to (-)AAx) at Ay) (so that
Ax=>y) = Ax)=1)).

A preordered set with all finite meets, all finite joins and all implications is
called Heyting. A Heyting algebra is a poset which is Heyting as a preordered set.

3 ADJIOINT FUNCTIONS AlS

(Exercise. Show that a preordered set is Heyting if and only if its poset reflection is
a Heyting algebra.) A morphism of Heyting preordered sets is a monotone function
preserving finite meets, finite joins and implications. The category of Heyting
preordered sets and their morphisms will be denoted Heyt.

3.10 Proposition. (‘Frobenius Reciprocity’) Suppose that f: X——Y is a monotone,
binary meet preserving function between preordered sets with binary meets and
implications. Suppose also that f has a left adjoint £:Y-——X. Then f preserves
implications if and only if £ - f satisfies ‘Frobenius Reciprocity’:

for all xeX and yeY, IyAAx)) = ¢)Ax.

Proof. In the following two diagrams of monotone functions

X—f——>Y X(g—Y
xﬁ(—)l lf(x)=>(—) (—)/\xl I(—)Aﬂx)
X—f——->}’ X<—€—Y

the arrows in the right-hand diagram are left adjoint to the corresponding arrows in
the left-hand diagram. Hence by Propositions 3.4 and 3.5, the left-hand diagram
commutes up to isomorphism if and only if the right-hand one does. O

3.11 Proposition. (Distributivity.) If X is a preordered set with binary meets and
joins and with Heyting implications, then for all x,y,z€X

vz)nx = (WAX)IV(ZAY) (‘binary meet distributes over binary joins’) and
AZVX = (vx)A(zVX) (‘binary join distributes over binary meets’).

(So in particular, every Heyting algebra is a distributive lattice—which by definition
is a poset with all finite meets and joins in which binary meets and joins distribute
over each other.)

Proof. The first isomorphism has a ‘categorical’ proof in terms of properties of
adjoints: the monotone function (-)Ax: X——X has a right adjoint (viz. x=(-)) and
hence by 3.7(i) preserves any joins which exist, and binary ones in particular—which
is just what the first isomorphism says.

The second isomorphism 1is true for order-theoretic rather than categorical
reasons. First note the general property: u & uAv iff u<v iff uvv = v. Then using the
isomorphism we have already established, we have

(pvx)A(zvx) = (PA(zV X)) V(xA(zV X))
& (yA(zvx))V x since x<zVx
2 (DAZ)VAX)) V x
2 (YA V(pAX)VX)
~ (yAZ)V x since yAXx<x

as required. O

3.12 Definitions. In a preordered set X with finite meets and joins a complement for
X€X is an element c¢ satisfying xAc=1 and xvec=T.

3 ADJOINT FUNCTIONS Alé

(Exercise. In a distributive lattice, the complement of x is unique if it exists.)

A Boolean algebra is a distibutive lattice in which every element has a
complement. A morphism of Boolean algebras is a monotone function preserving
finite meets and joins (and hence also complements, since if f: X——Y preserves
finite meets and joins, then Ac¢) is a complement for Ax) in Y when ¢ is a
complement for x in X.) The category of Boolean algebras and their morphisms will
be denoted Ba.

313 Remark. In a Heyting preordered set X, the pseudocomplement -x of an
element x is by definition x=1. Thus -x is defined uniquely up to isomorphism by
the property

for all yeX, y<-x if and only if yAx<Ll.

3.14 Exercises. (i) In a Heyting preordered set H show that -x is actually a
complement for x iff ~xvx =T iff —x = x. Hence X is a Boolean algebra iff it is
a Heyting algebra satisfying Vx & X(—x = x).

(ii) If B is a Boolean algebra, show that pseudocomplements (exist and) are
complements; furthermore the implication x=y is given by ~xvy. Thus each Boolean
algebra is a Heyting algebra and each Boolean algebra morphism is a morphism for
the Heyting structure.

(iii) Suppose that X is a preordered set with all joins, and hence also all meets
(¢f. 1.9). Show that it is Heyting iff binary meet distributes over infinite joins, that
is, for all xeX and SCX

xAVS = V{xAs|seS).

A poset with this property is called a complete Heyting algebra, a frame, or a locale
(depending upon what kind of morphisms are being considered).

3.15 Examples. (i) (D If X is a set, P(X) is a Boolean algebra. If f: X——Y is a
function then f1:P(Y)——P(X) is a Boolean algebra morphism (since it has both
adjoints and hence preserves all meets and joins).

(i) @ If C is a category with pullbacks and universal quantification of
subobjects along morphisms (see 3.8(iv)), then in fact each Sub(X) has Heyting
implication. For, given A~<->X and B——X, the implication (A=B)——X in
Sub(X) is given by Va(al(B))>——X. This is because for any C——X, CAA——X
is given by a pullback square

CAA>—C

L]

A2 X
so that (using the second Exercise in 3.8(iv)) CAAeSub(X) is Ja(al(C)). Hence

CAA=3a(a}(C)) < B in Sub(X) iff a1(C) < al(B) in Sub(4), since Ja-a?,
iff C<Va(al(B)) in Sub(X), since al-Va,
so that Ya(al(B)) has the defining property of (4= B).

3 ADJOINT FUNCTIONS Al7

(iii) ® If D is a dcpo then F(D) is a distributive lattice (because finite meets
and joins are calculated as in P(D), by intersections and unions respectively) but not
in general a Heyting algebra. (However, F(D)°®P is a complete Heyting algebra by
Exercise 3.14(iii), since infinite joins in F(D)°® are given as in P(D)°P, by
intersections.)

(iv) @ Each R(X) is Heyting. We have already seen that it has finite meets and
joins, so we have to establish the existence of Heyting implications. Let
=:PNx PN——>PN be the function sending ACN and BCN to

A=>B = {neN|VmeA, n-m is defined and a member of B}

and for p,ge(X—PN), define p=>ge(X—PN) to be the function xr—— p{x)=>q(x).

Then for any re(X—PN), if p:rAp<q then r<p=>q is witnessed by the partial
recursive function An.S(K'¢')(Pn) (for which S(K(S(K'¢')))P is a code), where "¢’ is a
code for ¢ and P is a code for the pairing function in the sense that for all #,meN,
Pnm = (n,m). Conversely, if ¥:r<p=>q, then rAp<gq is witnessed by the partial
recursive function An.¥(Pon)(Pyn) (for which S(S(K'¢')Pp)P, is a code, when ¢ is a
code for), where P, and P, are codes for the projection functions
(-)os(-)1: N——>N. Thus p=>¢eR(X) does indeed have the property required of an
implication.

Note also from the way T,A, LV and = are defined for R(X) that each
S¥:R(Y)—>R(X) preserves the operations up to equality and is in particular a
morphism of Heyting preordered sets.

Using = we can restate the definition of Vf:R(X)——R(Y) from 3.8(vi) in a
suggestive way:

VAPI®) = Nixex (6y(Ax),5) = p(x)),
where §4-€(Y'x Y—PN) is the ‘indicator’ function

N if y=y/
Syly,y’) =
O if y#£y.

And we could have defined 3f analogously as
PN = Uxex (5UAx),5) A0(x)),

but this is in fact isomorphic to the definition we gave in 3.8(vi). (Compare these
formulas with those for 37,V/:P(X)——P(Y) in 3.8iii).)

Alg8

4 Propositional Theories

This section establishes the close relationship between preordered sets and theories in
propositional logics.

4.1 Definitions. Starting with a set A4, whose elements we will call atomic
propositions, the first-order propositions ¢ over A are given by the following
grammar

¢i=p | T | ¢Ad | L | ¢Ve | ¢=2¢| ¢

where p runs over A (There is a degree of redundancy in this definition: without
loss of expressiveness, we could define ¢ to be ¢=L and T to be -L. However, it
useful to give the definition as we have since later we will consider ‘fragments’ not
containing =.)

If H is a Heyting preordered set (see 3.9), a structure M for a set A of atomic
propositions is just a function M:A—— H. The denotation of a first-order
proposition ¢ over 4 in the structure M is an element [¢],, € H, defined inductively
by the following clauses:

if peAd, then [pJas = M(p);

[Tlas = T, the top element in H;

[¢A¥]ar = [¢Iar A [¥]as, binary meet in H;

[LIas = L, the bottom element in H,;

[¢VYlar = [$larV [¥las, binary join in H;

[¢=¥lar = [#lar = [¥]as» Heyting implication in H;
[-¢lar = —[¢las. pseudocomplement in H.

® o & ¢ 0 o o

4.2 Examples. (i) @ P(1)={0,1} with #<0@<1<1 is a (Boolean, hence a) Heyting
algebra. The above semantics of propositions in P(l1) coincides with the classical
2-valued semantics.

(ii) ® R(X) is Heyting. The semantics of propositions given in 4.1 when
restricted to such Heyting preordered sets amounts to Kleene’s ‘1945-realizability’
explanation of the propositional connectives (see [Dum, 6.2]). Writing ‘~r ¢’ instead
of ‘n€(¢lps’s we have:

nrp iff neM(p);

nr T for all neN;

nrdAy iff (n)or¢ and (n), 1

nrl for no neN;

ntovy iff ((no=0 and (n);14) or (Mo=1 and (1) £ 4);
nr¢=> iff YmeN(mr ¢ implies n-m is defined and n-mr);
ne-g¢ iff VmeN(mr¢ implies n-m is not defined).

(iii) If X is a poset, recall that a subset UCX is downwards closed if for all
x,yEX, x<yeU implies xelU. The set D(X) of all such subsets, partially ordered by

4 PROPOSITIONAL THEORIES Al9

subset inclusion, is a (complete) Heyting algebra. (Exercise. Show that D(X) is
isomorphic to [X,2], where 2=P(1) is as in (i).) Indeed meets and joins in D(X) are
given by set intersection and union respectively, whilst the Heyting implication of
UVeD(X) is UsV ={xeX |Vy<x(yeU implies yeV)}. (Exercise. Prove this.)

When restricted to Heyting algebras of the form D(X), the semantics of
propositions given in 4.1 coincides with the explanation of the propositional
connectives furnished by Kripke’s ‘forcing semantics’. Writing ‘x|~ ¢’ instead of
* x€[¢las’, We have:

x-p iff neM(p);

x I T for all xeX;

xl-dAy iff xI-¢ and xI-;

x - L for no xeX;

x|-ovey iff xI-¢ or x i Y;

xlF¢=>v¢ iff Vy<x(ylt ¢ implies yl-y);
x I--¢ iff there is no y<x with yl- ¢.

(Note that (i) is the special case of (iii) with X=1, since D(1)=P(1). On the other
hand (iii) is a special case of the ‘topological’ semantics, which is based upon the
complete Heyting algebra of open subsets (ordered by inclusion) of a topological
space.)

We turn our attention now to calculi for deriving logical entailments between
propositions in terms of ‘sequents’:

4.2 Definitions. A first-order sequent '+ ¢ over a set A of atomic propositions is a
pair consisting of a finite set I' of first-order propositions over 4 and a single
first-order proposition ¢ over A. The notation I',¢F ¢ is used for TU{¢}F %;
similarly I' A+ % means TUA <, and ¢ I % means {¢} I .

A (first-order propositional) theory T is specified by a set of atomic propositions
A and a set of sequents over A, which are called the axioms of T.

The intended meaning of the sequent I' - ¢ is that the propositions in I' together
logically entail the proposition ¢. Rules for deriving sequents are given in Table 4.3.
These rules constitute the Gentzen sequent calculus for Intuitionistic Propositional
Logic, IpC. Each of the rules is of the form

hypotheses
conclusion

where ‘hypotheses’ is a finite (possibly empty) set of sequents and ‘conclusion’ is a
sequent. A set of sequents is closed under the rules if whenever the hypotheses of
a rule are contained in the set then the conclusion is an element of the set.

4 PROPOSITIONAL THEORIES

A20

(10— (Cut) ”“Z’PIA_;Z’H”
(LWk)% (RWk)—g';—;
(RT) OFT

R T L TS
LT3
(L) p e RV) s (RaV) g5
(L=) Prl-,z,¢i;;ﬁ|—l_99 (R”)%
L)t (R)— 2P

4.3 Table: Gentzen Sequent Calculus for IpC

4.4 Definition. If T is a propositional theory, the intuitionistic theorems of T
comprise the least set of sequents (over 4) which contains the axioms of T and is
closed under the rules in Table 4.3.

4.5 Definition. A structure in a Heyting preordered set M for a set of atomic
propositions A, satisfies a sequent I' - ¢ over A4 if

Aver [Vlar < [#lar in H.

(N.B. the right-hand side is a finite meet.)

If T is a propositional theory, then a structure M for the underlying set of
atomic propositions of T is called a model of T if M satisfies all the axioms of T.
The set of models of T in H will be denoted Mod(T, H).

4.6 Remark. Call two structures M,N for A in H isomorphic and write M N, if for
all peA M(p)= Mp) in H. This gives an equivalence relation on Mod(T, H). By
induction on the structure of a proposition ¢ over A we have [¢] s [¢]n Whenever
M2 N. Consequently the quotient function ¢: H—— H/= from H onto its poset
reflection induces a function Mod(T, H)——Mod(T, H/2¢) via composition with g,
and this factors to give a bijection between Mod(T, H)/= and Mod(T, H/=).

(But note that because of the ‘contavariant’ properties of (-})=>¢ and —(-), if we

4 PROPOSITIONAL THEORIES A2l

define M< N to mean Vpe A(M(p)< Mp)), then we cannot conclude that [¢]s, < [d]a
for propositions involving = or —.)

4.7 Proposition (Soundness). If M is a model of a propositional theory T in a
Heyting algebra H, then M satisfies any sequent which is an intuitionistic theorem
of T.

Proof. One has to show for each of the rules in Table 4.3 that if M satisfies the
sequents in the hypothesis of the rule, it also satisfies the conclusion of the rule.
But via the definition of satisfaction in 4.5, verifying this property for each rule
involves straightforward calculations with the Heyting structure of H. For example
rule (L=) corresponds to the statement

if u<x and vAy<gz, then uAvA(x=>y)<z

which holds because xA(x=y)<y is always true (since (x=+y)<(x=>y)), so that the
hypotheses imply uA(x=y)<xA(x=>y)<y and hence uAvA(x=y)<vAy<z. O

The proof of Proposition 4.7 suggests that we could give an alternative
formulation of the rules of inference for IpC—one which corresponds more closely to
the semantics given to the connectives in 4.1. As we have seen in the previous
section, this semantics uses operations on preordered sets which are built up in terms
of a series of adjoint monotone functions. So we will call the corresponding logical
system an ‘Adjoint Calculus’ for IpC: its rules are given in Table 4.8. The rules for
the propositional operators take the form

sequents
sequent
A set of sequents is closed under such a ‘bi-rule’ if the set contains the sequents

above the double line if and only if it contains the sequent below the double line.
(The rule is thus an abbreviation for several ‘uni-directional’ rules.)

- 'k¢ A,¢+-%
(Id) T oFé (Cut) ALY
(T):_—__..— (A) Fl_¢ I"—¢

THT I'-¢Ad
(L) W) I'¢gr-6 TI',9F0o

I'l+¢ I ¢vy o

L,k .
()=t (==
Lke¢=7 T'F-g
4.8 Table: Adjoint Calculus for IpC

Note that the presence of the extra propositions I' in (V) mean that the character
of disjunction is captured not just by a left adjunction, but one which has a certain

4 PROPOSITIONAL THEORIES A22

‘stability’ property, viz. distributivity as in 3.11; in the presence of (=) this stability
is automatic (i.e. we could have given the rule without the extra propositions I'). (1)
is also ‘stable’ left adjunction rule, but in this case the stability gives rise to no
extra condition.

The proof of Proposition 4.7 amounts to saying that the rules in Table 4.3 are
derived rules of Table 4.8. Conversely, it is not hard to prove that the
(uni-directional versions of) the rules in 4.8 are derived rules of Table 4.3. In this
sense, the two tables give equivalent formulations of what can be proved in IpC.
However, proofs themselves in the two formulations are very different, and in fact
the Gentzen Calculus has much better proof-theoretic properties than the Adjoint
Calculus. (For example, Gentzen’s Cut Elimination Theorem (see [Dum, 4.3]) says
that proofs using the rules in 4.3 can be transformed into equivalent ones not
making use of the (Cut) rule; but [don’t think the same is true of the rules in 4.8.)

The Adjoint Calculus formulation of IpC leads directly to the construction of
Heyting preorders from propositional theories:

4.9 Construction: Classifying Preorder. Let T be a propositional theory over some
set 4 of atomic propositions. Define a relation <y on the set of first-order
propositions over 4 by

¢ <ty if and only if ¢ ¢ is an intuitionistic theorem of T (cf. 4.4)

From the remarks above, we have that ¢ <t % holds if and only if ¢+ is in the
closure of the set of axioms of T under the rules in Table 4.8. The form of those
rules gives immediately that <t makes the set of propositions into a Heyting
preordered set, with the operations of meet, join and implication given by the
corresponding propositional operations. We will denote this preordered set by CI(T)
and call it the classifying preordered set of the propositional theory T.

Since each peA is a proposition, we get a structure for 4 in CI(T) by sending p
to itself. Definition 4.1 applied to this structure just gives [¢] = ¢€CI(T), for each
proposition ¢ over A. Consequently the structure satisfies exactly those sequents
which are intuitionistic theorems of T. In particular, the structure is a model of
T—we will denote it by Gt and call it the generic mode! of T (for reasons which
will become apparent below). This gives an easy converse to Proposition 4.7:

4.10 Corollary (Completeness). The intuitionistic theorems of T are just those
sequents which are satisfied in every model of T in Heyting preordered sets.

(Remark. Sharper theorems result from restricting the class of Heyting preorders
considered. For example, Kripke’s Completeness Theorem says that the theorems of T
are just those sequents satisfied by all models of T in the (proper) class of Heyting
preorders of Example 4.2(iii). Unlike the situation for classical logic, one can prove
(hard Exercise!) that there is no single Heyting preorder (in fact, no set of them)
complete for the intuitionistic theorems of all propositional theories.)

The generic model of T in its classyfying preorder enjoys an important ‘universal
property’ with respect to models of T in Heyting preorders. In order to state the

4 PROPOSITIONAL THEORIES A23

property, we have to consider the transport of models along monotone functions.
Recall that Heyt denotes the category of Heyting preordered sets and morphisms of
such (see 3.9). Given f:H——K in Heyt and MeMod(T,H), we get a structure
J«(M) for the atomic propositions in K by composing with f: f(M)(p) = AM(p)). It
is easy to prove by induction on the structure of a proposition ¢ that

f ([[¢]]M) = [lr an

(since f preserves up to isomorphism all the operations involved in the definition of
[-] in 4.1). So if M satisfies 't ¢, then

Avyer [V]x, a0 gf(/\ryer‘ [['Y]]M) Sf([[¢]]M) = [an

so that f,(M) also satisfies I'¢. In particular, fo(M)eMod(T,K). Thus each
morphism f: H—— K in Heyt gives rise to a function

Jfx :Mod(T, H)——> Mod(T, X).

Note that this function respects the equivalence relation of 4.6: if M~ N, then

Fiu(M) = £ (N).

4.11 Theorem. Let T be a propositional theory and H a Heyting preordered set. Each
model M of T in H can be obtained by transporting the generic model of T along a
morphism m:CWT)——>H in Heyt, that is, M=my(Gy). (We say that M is
‘classified’ by m.) Moreover, such an m is determined uniquely up to isomorpism by
M. In particular, if H is a Heyting algebra, the function m+—— my(Gy) induces a
bijection

Heyt(CI(T), H) = Mod(T, H)

(where the set on the left-hand side is the set of all morphisms from CI(T) to H in
Heyt.)

Proof. Given M, define m:CI(T)——H by m(¢)=[¢lss. Then m is monotone since
if <19 in CIT), then ¢+ is a theorem of T, so that by Proposition 4.7 M
satisfies ¢F 1, which is to say that m(¢)= [¢lps<[¥lpr=m(?). Furthermore, the
clauses defining [-] in 4.1 imply that m preserves the Heyting structure of CI(T).
Finally, for each atomic proposition p, we have m(Gy)(p) = m(p) = [pPlar= M(p), so
that m(Gr)=M.

If /:CH{T)—— H in Heyt also satisfies M = f,(G) (or indeed just M= £, (GT)),
then A¢) = [¢lar can be proved by induction on the structure of ¢ starting with
f(p) = M(p) for each atomic proposition. Hence fxm. 0O

(BExercise. Show that CI(T) is determined uniquely up to equivalence of preordered
sets (cf. 2.5) and G uniquely up to isomorphism of T-models by the property given
in Theorem 4.11.)

4.12 Remark. We could restrict our attention entirely to Heyting algebras by taking
the poset reflection of CI(T) to obtain a Heyting algebra H(T)= CI(T)/=. Since for
any Heyting algebra H we have Heyt(CI(T), H) = Heyt(CI(T)/=, H), the bijection in
4.11 becomes

4 PROPOSITIONAL THEORIES A24

Heyt(H(T), H) = Mod(T, H),

that is, models of T in a Heyting algebra H are in bijection with Heyting algebra
morphisms H(T)—— A.

4.13 Proposition. Every Heyting preordered set is equivalent to CI(T) for some
propositional theory T.

Proof. If H is a Heyting preordered set, take a set of atomic propositions A=
{"h"| ke H} which is in bijection with H and consider the structure M with
M("h’)y=h. Let T be the theory over 4 whose axioms are precisely those sequents
which are satisfied by M. Then M is automatically a model of T and so by Theorem
4.11 there is some Heyting morphism m:Cl(T)—— H with my(G1)=M; indeed from
the proof of the theorem, we may take m(¢) = [¢]asp for each ¢eCIT).

Then for each AeH, m("h’)=h, so that m is surjective. Moreover, given
¢, eCHT), if [¢lpr= m(d)<m(y) = []as, then M satisfies ¢+ 1, which is therefore
an axiom of T by definition, and thus ¢<t% in CI(T). So m is both full (see 2.5)
and surjective. Hence as in Remark 2.6(ii), it is an equivalence. Thus H ~CI(T), as
required. O

4.14 Remark: “categories are theories’’. Writing T for the propositional theory
constructed from H in 4.13, we have functions in each direction between propostional
theories and Heyting preordered sets:

T — CI(T)
TH — H

These functions are essentially inverse to each other in the following sense. We
already have Cl(Ty) o~ H; and conversely, T and Tcycr) are ‘equivalent’ theories.
Equivalence for theories T and T’ means that there are ‘interpretations’ /: T—— T’
and J: T'——>T with Jo/~Idy and Jo/XIdys; and an interpretation of T in T’ is
an assignment of propositions in T’ to the atomic propositions of T in such a way
that the axioms of T become theorems of T’/. Thus giving an interpretation of T in
T/ amounts to giving a model of T in the Heyting preorder CI(T’), and hence to
giving a Heyting morphism CI(T)——CI(T).

These facts establish a correspondence between propositional theories in IpC and
Heyting preordered sets. Under this correspondence, models of a theory (and in
particular, interpretations between theories) are identified with Heyting morphisms
out of the classifying preorder of the theory. Taking poset reflections and working
with Heyting algebras, we can sum the situation up as an equivalence of categories
(see Glossary):

The category of propositional theories and interpretations
in IpC is equivalent to the category of Heyting algebras.

This is a simple (because only propositional logic is involved) example of
Lawvere’s dictum that ‘““categories are theories and models are functors”. In this case
the categories and functors involved are rather special, being just preorders and
monotone functions (c¢f. 1.11 and 2.7), and the correspondence of theories with
ordered structures goes back to Lindenmbaum and Tarski, who observed the

4 PROPOSITIONAL THEORIES A25

correspondence between theories in classical propositional logic and Boolean
algebras. We will see more complicated examples of such logic-category
correspondences later.

A26

5 Example (S): theories as domains

This whole section is an extended example illustrating the use of the kind of
correspondence between propositional theories and preordered sets which we saw in
the last section. We look at consistent theories in the fragment of first-order
propositional logic only involving T,A and L. One the one hand, they correspond
(via the classifying construction) to non-trivial, finitely complete posets with bottom;
on the other hand, they correspond (via their posets of models) to Scott domains.
This is the basis of a method for describing Scott domains, continuous functions and
embeddings which is similar to the ‘information system’ approach (see [LW] for
example), but with a more ‘logical’ flavour: see [Ab].

5.1 Definition. A pointed meet-semilattice is a poset with finite meets and a bottom
element. An equivalent, algebraic description is that it is a set A equipped with
constants T,LEA and a binary operation A: Ax A——A4 satisfying the equations:

XAy = yAX
(xAY)AZ = xA(YAZ)
XAT = x = xXAx
xXAL = L.

For the order-theoretic operations certainly obey these equations in a poset; and
given such an algebraic structure, defining x<y to mean x = xAy, we get a partial
order for which T is top element, 1 is bottom and A is binary meet.

A morphism of pointed meet-semilattices is a monotone function which preserves
finite meets and the bottom element (equivalently, which is a homomorphism for the
above algebraic structure).

A pointed meet-semilattice A is non-trivial if it contains more than one element,
which is to say 1L # T in A4.

We can repeat the development of section 4, but restricting our attention to
propositions not involving V, =, or —. This leaves the non-strict Horn propositions:

dii=p | T | dAd| L.

A pointed meet-semilattice A4 has just the right structure to interpret such
propositions as in 4.1, once we have a strucure M assigning elements M(p)e A to the
atomic propositions p. A non-strict propositional Horn theory T is a propositional
theory whose axioms are sequents only involving non-strict Horn propositions. As
before, M is a model of T if it satisfies all the axioms of T. (N.B. the notion of
satisfaction given in 4.5 only involves finite meets and so still makes sense in this
restricted setting.) Mod(T, 4) denotes the set of models of T in A The theorems of
T are those sequents derived using the relevant rules in Tables 4.3 or 4.8 (i.e. not
those for v, =, or -).

S THEORIES AS DOMAINS A27

5.2 Remark. It is not hard to see that we can change the set of axioms of a
non-strict Horn theory without changing its collection of theorems, to obtain an
axiomatization of the theory by a collection of axioms each of which is either of
the form

DA---Ap,F q
or of the form
DA Apy L

where the p; and ¢ are atomic propositions and 7#>0. The first form is a ‘strict Horn
clause’ and the second a ‘non-strict Horn clause’.

5.3 Construction. A classifying pointed meet-semilattice A(T) can be constructed for
each non-strict propositional Horn theory T just as in 4.9 and 4.12: preorder the
non-strict Horn propositions by defining ¢ <t % to mean that ¢+ is a theorem of
T, and then take the poset relection to obtain A(T). Thus the elements of A(T) are
equivalence classes of non-strict Horn propositions (over the atomic propositions of
T) under the equivalence relation: ¢4 iff ¢+ and ¢+ ¢ are theorems of T.

Then for any pointed meet-semilattice A, there is a bijection between the set of
monotone functions A(T)—— A4 preserving finite meets and L, and the set of models
of T in A (And this bijection is induced by transporting the generic model of T
along the monotone function.)

Similarly, the construction of 4.13 when restricted to non-strict Horn propositions
gives rise, for each pointed meet-semilattice 4, to a non-strict propositional Horn
theory T4 with A(T,) >~ 4.

In this way the correspondence of 4.14 restricts to one between pointed
meet-semilattices and non-strict propositional Horn theories. Under this
correspondence, the property given in 5.1 of A being ‘non-trivial’ means for A(T)
that T &t L, which is to say that TF L is not a theorem of T.

5.4 Definition. A non-strict Horn theory T is consistent if TF 1 is not a theorem of
T.

5.5 Definitions. (i) The category M; has for objects all non-trivial, pointed
meet-semilattices and for morphisms monotone functions preserving finite meets and
bottom element.

(ii) Given A4,BeobM,, the set M,(4,B) of morphisms from A to B inherits a
partial ordering from [A4, B]: f<g if and only if for all aeA4, Aa)<égla)

5.6 Summary. Let us summarize the relation between consistent, non-strict
propositional Horn theories and the category M, :

® Each consistent, non-strict propositional Horn theory T has a classifying poset
A(T)eobM, (whose elements are T-provable equivalence classes of non-strict
Horn propositions over the atomic propositions of T). A(T) comes equipped with
a generic model Gr-&Mod(T, A(T)) which has the property that for any A€obM,,
the function fr—— f(G) is a bijection

5 THEORIES AS DOMAINS A28

M, (A(T), 4) & Mod(T, 4).

In fact, we can order the models of T in A4 by defining M<N to mean
M(p)< N(p) for all atomic propositions p (and hence by induction on the
structure of ¢, M(¢)< M¢) holds for all non-strict Horn propositions ¢). Then the
above bijection is actually an isomorphism of posets.

® For each A€obM; there is some consistent, non-strict propositional Horn theory

Define an interpretation I: T—— T’ between non-strict propositional Horn theories to
be a function assigning a non-strict Horn proposition HAp) in T/ to each atomic
proposition in T with the property that {/(y)|ye€l'}F X¢) is a T’-theorem whenever
'@ is a T-axiom (where 7/ is extended from atomic to all non-strict Horn
propositions in the obvious, strucure-preserving way). Such interpretations can be
composed and there are identity interpretations: so we get a category of consistent,
non-strict propositional Horn theories. Then the above properties imply that

T+—— A(T) and A—— T, are the object parts of functors which together
make this category of theories equivalent (see Glossary) to the category M,.

5.7 Definitions. (i) An element deD in a dcpo is finite (or compact, or isolated) if
for all directed subsets SCD

d<V/S implies d<s, for some s€S.

We will denote by D; the subposet of finite elements of D. D is algebraic if for each
x€D the subset {deDs| d<x} is directed and its join is x.

(ii) A dcpo D is a Scott domain if it is algebraic, has a bottom element and has
meets of all non-empty subsets. (Exercise. Show that an algebraic dcpo is a Scott
domain iff it is non-empty and has joins of all subsets which possess upper bounds.)
We will denote by SD the category of Scott domains and continuous (= monotone
and directed-join preserving) functions; and SD, will denote the category with the
same objects, but whose morphisms are continuous functions which also preserve
meets of non-empty subsets.

Given Scott domains D and E, the sets SD(D,E) and SD,(D,E) of all
morphisms from D to £ in SD and SD, respectively, inherit a partial order from
[D,E]: p<p! iff for all xeD, p(x)<p!(x) in E.

Let 2 denote the two element poset {L,T} with L<T. Note that it is both
a non-trivial pointed meet-semilattice (it is in fact the initial object in M,) and is
also a Scott domain. Although it has almost no structure, this ‘schizophrenic’ object,
which lives both in M, and in SD, is the key to the connection between pointed
meet-semilattices and Scott domains.

5.8 Theorem (Duality for Scott Domains). (i) If A€obM,, then M,(A4,2) is a Scott
domain. Moreover, given f: A—— B in M,, composition with f induces a function

M, (f,2)= f*:M,(B,2)—>M, (4,2)
g +—— gof

5 THEORIES AS DOMAINS A29

which is in SD,. Consequently, we have a (contravariant!) functor
M, (-,2):M?*——SD, .
(ii) If D is a Scott domain, then SD,(D,2) is a pointed meet-semilattice.
Moreover, given p: D—— E in SD,, composition with p induces a function
SD,(p,2) = p*:SDA(E,2)——>SDA (D, 2)
q +—— gop
which is in M,. Consequently we have a functor
SDA(-,2):SD,—— MP.
(iii) For AeEM,, the function
ap: A—>SDA(M,(4,2),2)
defined by ap(a)(f) = fla) (all ac A and feM,(A,2)) is an isomorphism in M, .
(iv) For D a Scott domain, the function
ap: D—M, (SDA(D, 2),2)
defined by ap(x)(p) = p(x) (all xeD and peSD,(D,2)) is an isomorphism in SD,.
(v) M, and SD, are equivalent categories (see Glossary).

Proof. (i) Since 2 is a complete poset, so is [4,2] (with meets and joins being
calculated pointwise: (VS)(a):V{s(a)lsES}, etc.). It is easy to see that the meet
AS of a set S of finite meet preserving functions is again finite meet preserving;
and if the functions in S also preserve 1, then provided S is non-empty, say se€S,
then AS also preserves 1, since (/\.S')(.L)s s(L)= L. Similarly, it is not hard to show
that the join of a directed set of finite meet preserving functions is again finite meet
preserving, and trivial to see that this join also preserves L if all the constituent
functions do. So M,(4,2) is a dcpo with meets of non-empty subsets. It also has a
bottom element, namely the function

T ifa=T
aeA'—>{
L ifa#T

(which always preserves finite meets and preserves bottom because T # L1 in A). So
to see that M, (4,2) is a Scott domain, it only remains to prove that it is algebraic.
For each a# 1 in 4, define f,eM,(4,2) by

T if a<b
&(d) = {

L if agb .

Then for all geM,(4,2), L<g if and only if T =g(a). In particular f<f iff
T = fp(a), iff b<a Hence ar—— [, defines an embedding (see 2.6(i)) of posets

{aed|a+ L}°°P—— M, (4,2).

Moreover, for any directed subset SCM,(4,2), LS VS iff T= (VS)(a) = V{s(a)| seS},
iff T=s(a) for some seS, iff f;<s for some seS. Thus the f, (a#.Ll) are finite

S THEORIES AS DOMAINS A30

elements of M,(4,2). Any geM,(A4,2) can be expressed as a directed join of such
elements: for S={acAd|ga)=T} is a directed subset of A°P, so {f]|acS} is a
directed subset of M, (4,2), and g= V,cs £ (since for all beA, (Vaesf;,)(b)=‘l‘ iff
L(b)=T for some a€S, iff a<b for some a with gla)=T, iff gb)=T). It follows
that M, (4,2) is algebraic with M, (4,2);={f| a# L} 2{a€4d|a+ L}°".

The second sentence of (i) follows from the fact that directed joins and meets of
non-empty subsets in M, (A4,2) are calculated as in [B,2] (i.e. pointwise from those
in 2), together with the fact that for any monotone function f: 4—— B, the induced
monotone function f*:[B,2]——[A4,2] preserves all meets and joins.

(ii) As in (i), [D,2] is a complete poset with meets and joins calculated
pointwise from 2. Since the bottom element 1€[D,2] (viz. d—— 1) preserves
non-empty meets and directed joins, it is also the bottom element in SD,(D,2).
Similarly, the meet in [D,2] of finitely many functions preserving directed joins and
(non-empty) meets is another such (Exercise), so SD,(D,2) also has finite meets,
calculated as in [D,2]. In particular the top element of SDA(D,2) is Te[D,2], viz.
d——T; hence SD,(D,2) is non-trivial, that is L # T, since these functions differ
in value at LeD. Thus SD,(D,2)eM, .

Just as for (i), the second sentence of (ii) follows from the fact that finite meets
and bottom in SDA(D,2) are calculated as in [D,2] (i.e. pointwise from those in 2).

(iii) First note that if a<a’ in A, then for all feM,(4,2)
ap(a)(f) = Ala)< Ala’) = ap(f)a'),

so that ap{a)<ap(a’) in SDA(M, (4,2),2). Conversely, ap(a)<ap{a’) implies a<a’: for
either a=.1, in which case a<a’ automatically, or else as*.l, in which case we have
J2€EM,;(A4,2) as in the proof of (i) and then

T = f(a) = ap(al(£,) < ap(a’)([f,) = f,(a')

and hence a<a’. Therefore ap: 4——>SD,(M,(4,2),2) is an order embedding, and it
only remains to prove that it is also surjective. So given a€SD,(M,(4,2),2), we
have to find a€eA4 with ap(a)=a. If a= L =ap(l) we are done; so suppose as* L.
Hence {feM,(4,2)| a(f) =T} is non-empty, and since M, (4,2) is a Scott domain we
can take the meet of this subset:

Since a preserves non-empty meets, a(m)=AN{a{H|a()=T}=T. Now as in the
proof of (i) m = V{f,| m(a)=T} a directed join. Since a also preserves directed joins,
we get

T = a(m) = V{al£,) | m(a)=T}

and hence a(f) =T for some a€d with m(a)=T. But a(f)) =T implies m<f, by
definition of m; and m(a)=T implies f,<m by definition of f. Therefore m=f,.
Thus for all feM, (4,2), a() =T iff f=m<f, iff ap(a)(f) = fa)=T; hence ap(a)=a,
as required.

(iv) We need to identify the elements of SD,(D,2). For deD, define py: D——2
by

5 THEORIES AS DOMAINS A3l

T if d<x

Palx) ={
L ifddx.

Then p, automatically preserves meets and preserves directed joins if d is finite.
Thus we get py€SD,(D,2) when de D¢, and as before py<peSD,(D,2) iff p(d)=T.
Hence d+—— p; defines an order embedding (D;)°P—— SDA(D,2). We claim that its
image consists of exactly the non-bottom elements. For, given p# .1 in SDA(D,2),
we must have p(x) # L for some xe€D; hence {xeD|p(x)=T} is non-empty and we
can form d=/A\{xeD|p(x)=T}. Then since p preserves non-empty meets, p{d)=T
and hence for all xe€D, d<x iff p(x)=T. This, together with the fact that p is
continuous imply that deD;. (For if S is directed, then d<V/S iff T= p(VS):
V{o(s)| s€S}, iff T =p(s) for some seS, iff d<s for some seS.) Hence we have
P2E€SDA(D,2) and p= p, since for all xeD

plx)=T iff d<x iff py{x)=T.

Thus (Dg)°P = SDA(D, 2)\{.L}.

We can now prove (iv). Arguing just as in (iii), we have that
ap: D—— M, (SD.(D,2),2) is monotonic. To see that it also reflects the ordering,
suppose x,x’€D with ap(x)<ap(x’). Then for all de Dy, d<x implies

T = pa(x) = ap(x N pz) <ap(x') pg) = pAx’)

and hence d<x’. Thus {deD;|d<x}C{deD¢|d<x'} and so the fact that D is
algebraic gives

x=V[deD¢|d<x} < \V{deDs|d<x'} = x'.

Thus ap: D—— M, (SDA(D,2),2) is an order embedding, and it only remains to prove
that it is also surjective. But given 6eM, (SDA(D,2),2), consider S ={deD;|8(py)=T}.
Since Le€D; and p, = TeSD,(D,2), we have LeS—so S is non-empty. Furthermore,
given d,d’€S, since & preserves A, §(pyApy)= 8(pg)A6(py)=T; therefore we must
have pyAp4y # L (since § also preserves L), and hence for some x€D (pyAps)(x)=T,
i.e. d<x and d’<x. Then because D is a Scott domain dvd’'=A{xeD|d<x and
d'< x} exists; and it is easy to see that dvd’'e D¢ because d,d’€Dg. Thus S is non-
empty and d,d’€.S implies there is some d”€S (the join of d and 4’, in fact) with
d<d'and d’<d". In other words S is a directed set, and so we can form x = VS in D.
Then for all de D, ap(x)Npy) = pAx) =T iff d<x, iff desS, iff 6(py)=T. Thus ap(x)
and & agree at all non-bottom elements of SD,(D,2); and they agree at L since they
both preserve L. Hence 6 = ap(x) and we have that ap is a surjective order embedding,
hence an isomorphism.

(v) It is easy to see that the isomorphism of (iii) is natural (see Glossary) in A
and that the isomorphism in (iv) is natural in D. Hence the functor
M (-,2):M°P——SD, is an equivalence with essential inverse SDA(-,2):
sD,— M. O

Phew! Theorem 5.8 contains a lot of information. It is typical of a number of
duality theorems! which arise because of a ‘schizophrenic’ object: see [Joh2, VI.3]
for other, topological examples and see [MP] for a related categorical example.

tA duality theorem asserts the equivalence of some category of mathematical
structures with the opposite of some other, apparently unrelated category.

5 THEORIES As DOMAINS A32

Combining the Theorem 5.8 with the remarks in 5.6, we have that up to
isomorphism, every Scott domain is the poset Mod(T,2) of models of a consistent,
non-strict propositional Horn theory T (and interpretations I: T——T' between such
theories correspond precisely to functions between the Scoft domains which are
continuous and preserve non-empty meets). This enables one to present Scott
domains by specifying propositional theories (and proving their consistency). We give
some examples and leave the claims made in them as Exercises.

5.9 Example: flat domains. The flat domain of natural numbers N, (= Nu{l}
partially ordered by: x<y iff x =L or x =y) is isomorphic Mod(T,2) where T has
one atomic proposition

‘in’
for each neN, and has one axiom
X=n’A‘X=m’F L

for each pair of distinct numbers 7z % m.

5.10 Example: product domains. If D= Mod(T,2) and D/'=Mod(T/,2), then the
product Dx I’ (which is easily seen to be another Scott domain) is specified by the
theory TWT’ whose atomic propositions are the disjoint union of those in T and T/,
and whose axioms are all those of T and TV.

5.11 Example: function domains. If D and D’ are Scott domains, then the set
(D—D') of continuous functions from D to D/, when partially ordered as a subposet
of [D,D'], is known to again be a Scott domain. If D and Y are specified by
theories T and T’, then (D—-0’) can be specified by the following theory.

The atomic propositions of the theory are given by pairs of propositions, written
{#}P{4} (c¢f. ‘Hoare triples’), where ¢ is a non-stict Horn proposition in T with
¢ £t L, and 9 is a non-strict Horn proposition in T'.

The axioms of the theory are:

(51 {¢"}Y Py} - { o} P9} provided ¢ <t ¢’ and % <y ¢/
(5.2) TH{¢}P(T}

(5.3) {}P{¢} A {(S}P(¥'} F (g} P{ypAY}

(5.4) {}P(L}F L .

(This description of (D—D’') is based upon the observation that for A4,BeEM,, a
continuous function M,(4,2)——M,(B,2) corresponds to a monotone function
(M, (4,2))y——M,(B,2), which from the proof of 5.8(i) is the same as a montone
function {a€d|a#1}°°"——M,(B,2). The latter amounts to giving a function
{aeA| a+# 1}x B——2 which is separately order-reversing in its first variable and in
its second variable preserves (order,) finite meets and bottom; but such a function
corresponds to a relation PC{a€A| a+ 1}x B satisfying:

(a,b)e P implies (a,d)eP, when a<a’ and b<¥ (ef. (5.1)

(a,T)eP (cf. (5.2))

(a,b)eP and (a,d)eP imply (a,bAb)eP (cf. (5.3))
(a,L)gP (cf. (5.9)).

5 THEORIES AS DOMAINS A33

Compare this with Scott’s notion of ‘approximable mapping’ between information
systems—cf. [LW, 2.1].)

5.12 Exercise (for budding domain theorists). If D is a Scott domain, then so are the
upper (Smyth) powerdomain, P,(D), and lower (Hoare) powerdomain, P(D). If D is
specified by the theory T, are there nice descriptions in terms of T of theories
corresponding to F,(D) and Py(D)?

5.13 Remark: interpretations as approximations. Recall from 3.8(viii) the notion of
embedding-projection pairs between dcpo’s. Thus an embedding between Scott
domains i:D——F is a continuos function possessing a continuous
right-adjoint-left-inverse iy: E—— D. (Such an embedding gives an ‘approximation’ of
the domain F by the domain D. Embeddings are used in the solution of recursive
domain equations by calculating initial fixed points of continuous functors on the
category of domains and embeddings.)

Embedding-projection pairs have a very simple description in terms of
propositional theories. Recall from 5.6 the notion of an interpretation /: T——T’. An
interpretation is conservative if whenever an interpreted sequent {/(y)|y€el}F () is
a theorem of T/, then the original sequent I'l- ¢ is already a theorem of T. Then if
D=Mod(T,2) and E=Mod(T’,2), one can show that embeddings D——E
correspond precisely to conservative interpretations of T in T'.

BO

Part B

Predicate Logic

Bl

6 Terms and Equations

6.1 Definition. A (many-sorted, algebraic) signature L is specified by

® a set of sorts A,B,...;
® a set of operators (or function symbols) f,g,..., together with a map assigning to
each operator f its type, which is a non-empty list of sorts. The notation

f:4y...4,—>B

wl be used to indicate that f has type A,,...,A4,,B. (The number » is called the
arity of f. In the case n=0, f is more usually called a constant of sort B.)

6.2 Definition. Let ¥ be a signature. For each sort 4 in X, fix a countably infinite
set of variables of sort A. (We assume these sets are disjoint for different sorts.)
Then the terms over ¥ and their sorts are defined recursively as follows, where we
write #: 4 to indicate that ¢ is a well-formed term of sort A:

® if x is a variable of sort 4, then x: A4
e if f:4,...4,——B is an operator and #;:4;,...,1,:A4,, then A#,...,t,):B. (In
the case n=0, we will write f instead of f{).)

The usual, set-theoretic semantics for terms is based upon having a ‘structure’ for
Y, which consists of

—a set MA for each sort A4; and
—a function Mf:MA;x:--x MA,——MB for each operator f:4,...4,——B

(The set MAyx---x MA,, is the cartesian product of the sets MA; and consists of
n-tuples (a,,...,a,) with a;EMA;. In the case n=0, this cartesian product contains
just one element, the O-tuple (), and so specifying the function Mf amounts to
picking a particular element of MB.)

An environment p assigns to each variable x of each sort 4 an element
p(x)eEMA in the structure M. In the presence of such an environment, each term ¢, of
sort A say, can be assigned a meaning as an element [¢Jp in MA:

= [xJo = p(x)
- Mtl’ ree ’tn)]] = Mf([[tl]]p’ e al[tn]]p)~

For our purposes, there are two things which are unsatisfactory about this
environment-style semantics of terms:

(i) It implicitly assumes that all the sorts are interpreted as non-empty sets; for if
any of the MA were empty, then there are no environments at all.

(ii) It is given in terms of elements of sets; we would like a formulation in terms of
functions between sets which we could then generalize by replacing the role of the
category of sets and functions by other categories.

6 TERMS AND EQUATIONS B2

One can easily solve the first problem by using partial environments p in [tJp, with
the domain of definition of p a finite set of variables which includes those occurring
in . But then we can also sovle the second problem by noting that for any fixed
list of distinct variables xy:4;,...,x,:4,, the partial environments defined just on
this set of variables comprise the set MA;x.--xMA,; and then p——[t]p is a
function MA;x-.--x MA,,——> MB (if ¢:B) which captures the meaning of ¢ in the
structure. So we can get a semantics in terms of functions rather than elements if we
consider terms ‘in context’:

6.3 Definition. A context x is a finite list x,,...,x, of distinct variables. (The case
n=0 is allowed, yielding the empty context, [].) The sort of x is the list
A=A4,,...,4, of the sorts of each x;.

A term-in-context t(X) consists of a term ¢ together with a context x containing
all the variables occurring in ¢ (and possibly some others as well). In particular, if ¢
contains no variables at all (we call such a term closed) we can consider it in the
empty context; in this case we will abbreviate #[]) to just ¢.

Now suppose that C is a category with finite products (see Glossary). A structure
M in C for a signature ¥ is specified by

® an object MAe€obC for each sort 4 in ¥
® a morphism Mf:]IMA——>MB in C for each operator f:A—— B in L.

(IIMA denotes the finite product in C of the objects MA,,...,MA, when A is the
list of sorts 4,,...,4,. In the case #=0, this is the product of no objects, which is
the terminal object 1 in C—see Glossary. In the case n=1, the product of one object
is just the object itself, with identity morphism as product projection.)

For each term-in-context #(x), where x: A and ¢: B say, define a morphism

[4x)]ps: [IMA— MB

in C by recursion on the structure of ¢ as in Table 6.4. (Recall that
([£4(xX))ags- - - s[4m(X)]as) denotes the unique morphism into the product whose
composition with each product projection =; is [#(x)]as.)

e If ¢ is a variable x;, then [fx)]p, is w;, the i*P product
projection morphism.

e If ¢ is A#H,...,4,), Where f:B,...B,,—— B is an operator, then
[#x)]as is the composition

TTma-LaEas - - - [ndX)as) SMByx--x MB,—M_,mB.

6.4 Table: categorical semantics of terms-in-context

6 TERMS AND EQUATIONS B3

We will write [#(x)] for [¢(x)]asr when the structure M is understood. Note that
for a single variable x, [x(x)] is just idy,4 (When x:4). Note also that for a closed
term [¢] is a ‘global element’ of MB, that is, a morphism 1——MB from the
terminal object to MB in C.

6.5 Definition. An equation-in-context over some signature ¥
s=1 (x)

is specified by a context x and a pair of terms s and ¢ (over X) of the same sort,
whose variables occur in X. If x consists only of variables which occur in s or £ we
will abbreviate the above to just s==¢

A (many-sorted) algebraic theory T consists of a signature ¥ together with a set
of equations-in-context over X, called the axioms of T.

A structure M (in some category C with finite products) for the signature ¥ is
said to satisfy the above equation if [s(x)],r and [#(x)Jsr are equal morphisms in C.
(Note that they already have equal domain and codomain.) M is a T-algebra in the
category C if it is a structure for the underlying signature of T and satisfies all
axioms of T.

There is a whole category of T-algebras in C, denoted Mod(T,C). A morphism
A: M—— N in this category is called a T-algebra homomorphism and is specified by
a family 4,:MA—— NA of morphisms in C indexed by the sorts, and satisfying for
each operator f: A—— B that

HMA%HNA

| | w

MB NB

hp

commutes in C (where H/zA denotes Ay, X ---X Ay,). The identity on M in Mod(T,C)
has component id,,4 at sort A4; and the composition of # and k- in Mod(T,C) has
component 40k, at sort A.

6.6 Examples. (i) Referring to 5.1, the algebraic theory of ‘pointed meet-semilattices’
has the following specification:

A single sort A.
Three operators T: —— A4, 1L: —— A4 and A4 A— A.

Five equations(-in-context) A(x,y) = A, x)
AMA(x,3),2) = Mx,N¥,2))
Nx,T)=x
ANx,x)=x
Alx,L)=1.

Unravelling the definition of the semantics of terms in Table 6.4, one finds that an
algebra for this theory in a category with finite products amounts to having an
object M together with morphisms ¢,6:1— M and m: MxM——>M such that the
following diagrams commute:

6 TERMS AND EQUATIONS B4

Mx =TT p pg Mx px y T2 D) g
rN ﬁ (7"1,”20(7{'2,11'3))l lm
M Mx M m M
M SdTO0) 4 g Gidiid) m—S19To0) prps
id m id () m
M 1 T > M .

(Recall that () is our notation for the unique morphism M——1.)

(ii) (D When C is Set, the category of sets and functions, the notion of an
algebra for an algebraic theory in C coincides with the usual notion from Universal
Algebra (except that traditionally only single-sorted signatures were considered.) Thus
a T-algebra in Set for the algebraic theory of (i) is precisely a pointed
meet-semilattice in the sense of Definition 5.1.

(Exercise. The oppositet category Set®® has binary products given by disjoint
union and terminal object given by the empty set. Are there any algebras in Set®P
for the algebraic theory of (i) ?)

(iii) @ Why study T-algebras in categories other than the category of sets and
functions? One good reason (the same one which in the development of mathematics
stimulated the construction of first the rationals, then the reals, then the complex
numbers) is that we may be interested in particular kinds of equation which may not
always admit solutions in ordinary, set-valued structures. For example, in
programming language semantics one might want, for a given signature, to have
solutions for finite sets of mutually recursive equations

X1 =t1 (xl,...,x,,)

Xpy =ty (X15-405%,) .

This is not always possible for structures valued in Set, but it is possible for
structures valued in the category of pointed dcpo’s (i.e. dcpo’s with bottom) and
continuous functions. (In this category the binary product of D and E is the
cartesian product Dx E={(d,e)|deD and ecE} of the underlying sets, partially
ordered by: (d,e)<(d’,e’) iff d<d’ and e<e’. The terminal object is the one element
poset. Hence T-algebras in this category amount to ordinary, set-valued T-algebras in
which the sets interpreting the sorts are pointed dcpo’s and the functions interpreting
the operators are all continuous.)

There are very many different categories with finite products, and algebras for an
algebraic theory in one may have very different detailed structure from algebras for
the same theory in another category. Nevertheless, we can use a familiar kind of
equational logic and still preserve satisfaction of equations, whatever the underlying
category. The rules of this logic are given in Table 6.7.

tSee Glossary.

6 TERMS AND EQUATIONS B5

(Weakening)L(x) provided xCy
s=1t(y)
. . s=1t(x)
‘(Reﬂexwﬁy) P (Symmetry) ———~"— (x)

. r=s(x) s=t(x)
T tivit
(Transitivity) =1 ()

N =s’ (x) t=1t' (x,y)
(Substitution) £=5
Hs/yy= t'(s’/y) (x)
6.7 Table: Equational Logic

In the (Substitution) rule in Table 6.7, #(s/y) denotes the result of substituting
the term s for the variable y throughout ¢ (and s and y have the same sort).

A set of equations-in-context is closed under the rules in Table 6.7 if whenever
it contains the hypotheses of one of the rules, it also contains the conclusion. If T
is an algebraic theory over some signature X, the (equational) theorems of T
comprise the least set of equations-in-context over ¥ which contains the axioms of T
and is closed under the rules in Table 6.7.

6.8 Proposition (Soundness). Let C be a category with finite products, T an
algebraic theory and M a T-algebra in C. Then M satisfies any equation-in-context
which is a theorem of T.

Proof. The corresponding properties of actual equality of morphisms in C impy that
the collection of equations-in-context satisfied by M is closed under the
(Reflexivity), (Symmetry) and (Transitivity) rules in Table 6.7. Closure under the
(Substitution) and (Weakening) rules is a consequence of the lemma below, which
can be proved by induction on the structure of terms. O

6.9 Substitution Lemma. If #(x) is a term-in-context with X=Xy,...,X,, and if s;(y)
(i=1,...,n) is a term-in-context of the same sort as x;, let t(s(y)) denote the
term-in-context resulting from simultaneously substituting each s; for x; in t. Then

[e(syD] = [e(x)]o([s1(3)].. . ., [5.(M])-

6.10 Corollary. (Weakening) Suppose that ((x) is a term-in-context and that y is
another context containing all the variables in x. Then (t(y) is also a term-in-context
and)

[#(y)] = [#x)]on

where © is the unique morphism whose composition with the ith product projection
T; IS TWoyz), With ali) defined so that y,(; is the (unique) member of y equal to x;.

Proof. This is just the special case of the Substitution Lemma with s;=yy;. O

6 TERMS AND EQUATIONS B6

6.11 Remark. The Ilabelling of equations with contexts is natural if we are
considering the categorical semantics, which assigns meanings to terms-in-context
rather than to terms by themselves. However, even if we restrict attention to
set-valued structures and use a familiar environment-style semantics, the possibility
of interpreting some of the sorts of a signature by the empty set means that
equational logic for unlabelled equations is not sound. Here is an example of this
(lifted from [GM]). Let T be the following algebraic theory:

Sorts: B, H
Operators: ¢: >B, f: >B
n:B——B, c: H——B
a:B B——>B, 0:BB——B
Axioms: o(n(x),x)=1t¢
a(n(x),x)=f

ofx,x)=x
ax,x)=x
n(c(y)) = c(y).

With unlabelled equations we could argue that

t=o(n(c(»), c(»)) (using the first axiom)

= o{c(y), c(¥)) (using the fifth axiom)
= ¢(y) (using the third axiom)
= a{c(y), c(»)) (using the second axiom)
= a(n(c(y)), c(¥)) (using the fifth axiom)
=f (using the second axiom)

and hence conclude by transitivity that r=f is a theorem. But that is an unsound
conclusion, since that equation is not satisfied by the model of the theory with
M(B)={0,1}, M(H) =0, M(¢) =1, M(f) =0, etc. With equations-in-context, the closest
we can get to the above argument is to conclude that r=f (y) is a theorem of T,
where y is a variable of sort H. This means that for any model M of T in a
category, the morphisms

M(2)

10 = (M —L 12D, a1 5)) ana)1 = (i) —1— a5

are always equal—which does not necessarily mean that M(z) and M(f) are equal (as
the above model demonstrates).

6.12 Remarks. (i) (Completeness). There is an easily proved converse to Proposition
6.8, viz: an equation-in-context is a theorem of T if it is satisfied by all T-algebras
in Set. This is because for any context x = x,,...,X,, With x;: 4; say, we can form
the ‘free T-algebra on indeterminates x;:4;,...,%,:4,’, Fp(x), which has the
property that an equation in the context x is satisfied by Fp(x) iff it is a theorem of
T. In fact Fp(x) at sort A consists of the set of terms-in-context s(x) with s:4,
quotiented by the equivalence relation

s(x) ~ #(x) if and only if s=1t¢ (x) is a theorem of T.

(The collection of these quotient sets can be endowed with an obvious T-algebra
structure.)

6 TERMS AND EQUATIONS B7

(ii) (Classifying categories). The construction of these free T-algebras can be
subsumed in the construction of a single category with finite products CI(T), called
the classifying category of the algebraic theory T. CI(T) is specified uniquely up to
equivalence of categories by the requirement that that for each category C with
finite products there is a (natural) equivalence of categories

FP(C(T),C) ~ Mod(T,C) ,

where the category on the left-hand side consists of the finite product preservingt
functors CI{T)—— C and natural transformations. Briefly, one way to construct CI(T)
is to take contexts x as its objects, and for morphisms x——y take equivalence
classes of lists t(x) = 4(xX),...,%,(x) of terms-in-context with m=(length of y) and 4
of the same sort as y;, under the equivalence relation which identifies s(x) with t(x)
when s; = (x) is a theorem of T for each j=1,...,m. The identity morphism on x
is the equivalence class of x(x); and the composition of [s(x)]:x——y and
[t(y)]:y——z is [t(s(x))] (using notation for substitution as in 6.9). One can prove
(Exercise) that the empty context [] is a terminal object and that the binary product
of x and y is given by any context X'y’ where x’ (respectively y’) has the same
length and sort as x (respectively y).

(An alternative construction: it can be shown that CI(T) is equivalent to the
opposite of the full subcategoryt of Mod(T,C) whose objects are the free T-algebras
Fr(x) described in (i).)

(iii) (Internal languages). Up to equivalence, every smallt category C with finite
products is the classifying category of an algebraic theory. (The restriction on the
size of C is only there because we are assuming theories to be specified by a set of
symbols, rather than a proper class of them.) To see this, let ¥ be the signature
with

® one sort X for each Xe€obC

® one operator f:X;--- X,——Y for each non-empty list X;,...,X,,,Y of objects and
each morphism f: X;x---x X,,—Y in C.

(Pardon the overloading of symbols.) The terms over this signature constitute the
internal language of C. There is a distinguished structure for ¥ in C, namely the
one sending each X and each f to itself. Let To be the algebraic theory over ZLc
whose axioms are all those equation-in-context which are satisfied by this structure.
Then one can prove that Cl(Tg)~C.

The internal language of C provides a means for describing properties of objects
and morphisms in C. For example, writing

CFEs=1t (x)

to indicate that the canonical Te-algebra in C satisfies the equation-in-context, we
can prove:

(a) f: X—— X is the identity morphism iff CE f(x)=x (x).

(b) f:X——>Z is the composition of g:X——Y and hY—Z iff
CF Ax) = heglx)) (x).

tsee Glossary.

6 TERMS AND EQUATIONS B8

(c) An object T is a terminal object iff there is some morphism t:1—— T with
CEx =t (x) (where x is a variable of sort T).

(d) X«2-Z—2,Y is a binary product diagram iff there is some morphism
r:XxY—2zZ with CEkz=r(p(2),q9(2) (z), CEp(r(x,y)=x (x,y) and
CEq(r(x,y) =y (x,»)

Thus the internal language of a category C makes it look like a category of sets and
functions: give an object X, its ‘elements’ are the terms ¢:X; and a morphism
f: X——Y yields a function sending ‘elements’ ¢: X to ‘elements’ f(¢):7.

(iv) Taken together, (ii) and (iii) set up a correspondence (first observed by
Lawvere) between algebraic theories and categories with finite products. We can view
a particular small category with finite products C as specifying a (many-sorted)
algebraic theory independently of any particular presentation in terms of a signature
and axioms: there may be many such presentations whose syntactic details are
different, but which nevertheless specify the ‘same’ theory, in the sense that their
classifying categories are equivalent to the given category C.

Under the identification of algebraic theories with their classifying categories, the
algebras of the theory correspond to functors out of the classifying category which
preserve finite products (and homomorphisms correspond to natural transformations
between such functors). In particular, a finite product preserving functor
CI(T)——CI(T’) gives a good notion of an interpretation T—— T’/ of one theory in
another.

Once one has this categorical view of algebraic theories, one sees that there are
many ‘naturally occurring’ algebraic theories which do not arise in terms of a
presentation with operators and equations. One example of this of relevance to the
theory of computation is the algebraic theory which as a category with finite
products has for objects the finite cartesian powers of the natural numbers N, and
whose morphisms N”—— N are m-tuples of »-ary primitive recursive functions.

6.13 Summary. We conclude this section by summarizing the important features of
the categorical semantics of terms and equations in a category with finite products.

® Sorts are interpreted as object.

® A term is only interpreted in a context (a list of distinct variables containing at
least the variables mentioned in the term) and a term-in-context is interpreted as a
morphism with
® the codomain of the morphism determined by the sort of the term;
® the domain of the morphism determined by the context;
¢ variables-in-context interpreted as product projection morphisms (identity
morphisms being a special case of these);
® substitution of terms for variables interpreted via composition and pairing;
® weakening of contexts interpreted via composition with a product projection
morphism.

¢ An equation is only considered in a context (containing at least the variables
mentioned), and an equation-in-context is satisfied if the two morphisms interpreting
the equated terms-in-context are actually equal in the category.

B9

7 Indexed Preorders

We saw in sections 4 and 5 the relationship between certain kinds of preordered set
and theories in propositional logics. And in the previous section we saw how the
sorts and terms of an algebraic theory are modelled by the objects and morphisms of
a category with finite products. The next step is to put these two things together
and consider logics in which there are predicates asserting properties of terms which
can be combined using the propositional connectives and which may contain
quantification of variables ranging over the sorts. The precise syntax and categorical
semantics of such ‘first-order predicate logics’ will be given in the next section. In
this section we introduce the category-theoretic structure required—a combination of
categories with finite products and preordered sets.

7.1 Definition. Let C be a category. A C-indexed preordered set X is specified by

® a preordered set X(/) for each /eobC
® a monotone function X(a): X(/)— X(/) for each morphism a:/——>J in C

satisfying
e for each /€obC, X(id) = idx(y)
o for I—25J-E,K in C, X(a)oX(8) = X(Boa).

X(7) will be called the ‘fibre of X at P; and we will usually write a* for X(a) and
call it ‘pullback along co’.

Thus a C-indexed preordered set is something less than a functor
C°? — Preord, since the latter would be specified by similar information, but with
equalities rather than isomorphisms in the above two requirements. If all the X(/) are
posets, then the isomorphisms are necessarily equalities and the two notions coincide.
Thus a C-indexed poset is a functor from C®P to the category of posets and
monotone functions. (Exercise. Generalize the ‘poset reflection’ construction from
section 1 to give a construction of C-indexed posets from C-indexed preordered sets.)

7.2 Examples. (i) (T) Set-indexed poset P:
—fibre at 7 is poset of subsets of 7, P(J) (see 1.3(i))
-P(a) is inverse image along a, al (see 2.2(i)).

(ii) @ Suppose C has pullbacks. Then we have a C-indexed poset Subc:
—fibre at / is poset of subobjects of I, Subc(/) (see 1.3(ii))
—-Sube(a) is pullback of subobjects along a, a™ (see 2.2(ii)).

(iii) ® Set-indexed preordered set R:
—fibre at 7 is R(7) (see 1.3(iii))
~R(a) is the monotone function a* of 2.2(iii).

7 INDEXED PREORDERS B10

(iv) @ Let Dcpo be the category of dcpo’s (¢f. 1.7(iii)) and continuous functions
(cf. 2.2(iv)). Then we have a Dcpo-indexed poset F:
—fibre at 7 is the poset F(/) of Scott closed subsets (see 1.10(iv))
-F(a) is inverse image along a, a? (see 2.2(iv)).

7.3 Definition. Let C be a category and X be a C-indexed preordered set. Say that
X has finite meets (respectively finite joins or Heyting implication) if for each
IeobC, the preordered set X(/) has finite meets (respectively finite joins, or Heyting
implication) which are preserved by each monotone function a*:X(J)— X(/)
(a: I——J in C).

Top and bottom in X(/) will be denoted by T and L as usual; similarly A and V
will be used for binary meets and joins and = for Heyting implication. Then
preservation of these operations by the a* means

a¥(T)xT, a(xAx) 2 aX(x)AaX(x!), a¥(L) = L, aX(xVx’) = a¥(x)va*(x’)
and o*(x=x’) 2 a¥(x)=a*(x’).

7.4 Examples. T ® O Referring to 7.2, the Set-indexed preordered sets P and R
have finite meets, finite joins and Heyting implications. The Dcpo-indexed poset F
has finite meets and finite joins; however, it does not have Heyting implications.

Next we give the C-indexed versions of monotone functions and adjoints.

7.5 Definitions. (i) Let X and Y be C-indexed preordered sets. A C-indexed
monotene function f: X——Y is specified by

® a monotone function f;: X(/)—— Y(/) for each /€eobC

satisfying that for each a:/——J in C, froa* = a*of;. (Thus f is something weaker
than a natural transformation, but if Y is actually a C-indexed poset, then the f;
define a natural transformation from X to Y.)

Evidently such C-indexed monotone functions can be composed: (gof);= g0 fr;
and there is an identity at X, idy, for this composition: (idyc)y= idx(7)- Thus we
get a category of C-indexed preordered sets and C-indexed monotone functions,
denoted C-Preord.

The collection C-Preord(X,Y) of all C-indexed monotone functions from X to Y
is itself preordered by defining

f<g if and only if for all feobC, f;<g; in [X(/),Y()].

(ii) Given f:X——>Y and g:Y—— X in C-Preord, say that f is left adjoint to g
(and g is right adjoint to f) and write fg, if

fog<idy in C-Preord(Y,Y) and idy<gof in C-Preord(X,X).
7.6 Proposition. (Analogue of 3.3) A C-indexed monotone function g:Y——X has a

left adjoint if and only if for each IcobC there is a function assigning to each
x€X(I) an element f{x)eY(I) satisfying

7 INDEXED PREORDERS Bl11

* x<glfi(x)) in X(7)
® for all yeY(1), if x<g/(y) in X(I), then ff(x)<y in Y(I)
e for all a:I——J in C, a*(fi(x)) = f{a*(x)) in Y(J).

Proof. By Proposition 3.3, the first two conditions give that f; is a monotone
function which is left adjoint to g,. But then the last condition says that /—— f;
determines a C-indexed monotone function X——Y. Arguing as in Proposition 3.2,
we have for each /€obC that idx(,)gg,of, and fIOgISidy(]); hence idy<gof and
fog<idy, so that f4g. O

7.7 Remark. In 3.8(i) top and bottom elements in a preordered set X were
characterized in terms of right and left adjoints to (): X——1; similarly, in 3.8(ii),
binary meets and joins in X were characterized in terms of right and left adjoints to
the diagonal A: X——> X'x X. Now that we have a notion of adjoints for C-indexed
monotone functions we can examine the analogous properties for a C-indexed
preordered set X of (): X——1 and A: X—— Xx X, where

1 is the C-indexed preordered set with 1(/) =1 (one element poset); and

XxY 1is defined by: (XxY)/)=X(/)xY(/) (product in Preord) and
(XxY)a) = X(a)x Y(a).

Using Proposition 7.6, we find in each case that the existence of such adjoints is
equivalent not to just the existence of the appropriate meet or join in each fibre, but
also the preservation of those meets or joins under the pullback operations. Thus for
example A has a right adjoint iff each X(/) has binary meets and for each a:/——/J
and y,p’eX(/), a*(yAy') = o*(y)Aa*(y’) in X(1).

7.8 Construction. Let C be a category with binary products and X a C-indexed
preordered set. For each K€obC, we can define a new C-indexed preordered set XX
as follows:

® For /eobC, let X&(I)= X(KxI).
® For each a:/——J in C, let a*: XX(J)—— XX(I) be X(idgx a).

Recall (see Glossary) that idgx a:/x K—— Jx K denotes the unique morphism with
myo(idgx a) =idgom and myo(idgx a)= aomy. The uniqueness part of this property
gives that idgxidy=idg.,; and that (idgxpB)o(idgxa)=idgx(Boa). Thus these
definitions do indeed give a C-indexed preordered set.

There is a C-indexed monotone function A:X—— XX whose component at
IeobC is

Ar = (m)*: X(1)— X(Kx) = XX(1).

For, if a:/——J in C, then since myo(idgXx a) = aom,, we have
Ao a* = (my)¥o a* & (idgx a)*o (my)* = XX(a)oA,,

so that the A, satisfy the condition in Definition 7.5.

7.9 Example. Let X be a preordered set. We can construct a Set-indexed preordered
set (——X) out of X as follows:

7 INDEXED PREORDERS B12

e For each set 7, let (/- X) be the set functions from 7 to X, preordered by
x<y if and only if for all ie/, x(i/)<y(i) in X.

In this context, one tends to refer to the elements of (/—X) as /-indexed collections
of elements of X, and to write a typical element x as (x;|i€/).

¢ For each function a:/——J, ao*:(J»X)——>(/-X) is the monotone function
defined by

a*(yjljef) = (ya(,-)liel).

For a fixed set K, one can prove (Exercise) that the Set-indexed monotone
function A:(- -=X)—— (- —=X)X constructed in 7.8 has a right adjoint iff the
monotone function X——(K—X) defined by x—— (x| k€K) has a right adjoint, iff
the meet Apex Xz . exists for any K-indexed collection (xz|k€K) of elements of X.
Similarly A:(- -X)—— (- »X)X has a left adjoint iff all K-indexed collections of
elements of X have a join. This motivates the following

7.10 Definition. Let C be a category with binary products and ilet Ke€obC. A
C-indexed preordered set X has K-indexed meets if the C-indexed monotone function
A: X—— XX constructed in 7.8 has a right adjoint, denoted Vg XX X. Similarly,
X has K-indexed joins if A has a left adjoint, denoted Jg.

In view of Proposition 7.6, these conditions on X amount to the following:

(i) K-indexed meets. For IeobC and zeX(Kx /), there is Vg ,(z)€X(/) satisfying

® (m)X(Vk,((z))<z in X(KxI) (where wy:KxI——7) and
® if xeX(/) and (w2)¥(x)<z in X(Kx[), then x<Vg ,(z) in X(J).

Moreover
e for each a:/—J in C, a*(Vg, ,(2)) = k., ;((idgx @)¥(2)), all zeX(KxJ).

(The first two conditions say that Vg , is right adjoint to m,; the third condition
says that the right adjoint is ‘stable’.)

(ii) K-indexed joins. For IeobC and zeX(Kx[I), there is 3, /(z)€X(]) satisfying

o z=Z(ma)*(3k, s(2)) in X(Kx 1) (where my:Kx/——1) and
e if xeX(J) and z<(m3)X(x) in X(Kx /), then g ;(2)<x in X(J).

Moreover
® for each a:/—/J in C, a*(3g, ,(2)) gBKJ((ide a)*(z)), all zeX(KxJ).

(The first two conditions say that Jk, s is left adjoint to w5 ; the third condition says
that the left adjoint is ‘stable’.)

7.1 Examples. (i) (T) We saw in 3.8(iii) that for each a:/——J in Set,
al:P(J)——P(/) has both left (Ja) and right (Va) adjoints. In particular for
Wy:KxI—— 1, and ACKx[

Ik, (A) = Iry(A) = {ie]| IkeK (k;i)e A)}

7 INDEXED PREORDERS B13

Moreover, if a:/——J and SCKx /J, then
al(3g AS)) = {iel|3keK (k,;a(i))eS}
{iel|3keK (k,i)e(idgx a)ls})
3, ((idgex @)U(S)),

and similarly for V. Thus P has K-indexed joins and meets for all KeobSet.

(ii) @ The Set-indexed preordered set R has K-indexed meets and joins for all
sets K. From 3.8(vi) we know that the adjoints 3 , and Vg , exist for all sets K
and /; indeed for pe(Kx I—PN) we have

g [p) =3Iy iel— Upex plk; i)
and V‘Il'z(p)IiEII-——é n(k,-i')Ele 51([', i)=>p(k,'i’),

where the second expression uses the result at the end of 3.15(iv) for Vw,. In fact
since we are dealing with a projection m, rather than a general function a, the
expression for Vr, can be replaced by a simpler, isomorphic one—namely

Ve, ((p)iel— Ngex Plk; i)

With these particular expressions for the left and right adjoints to mwy:Kx /—— 1, it
is easy to calculate (same calculation as in (i), in fact) that they are actually stable
up to equality, i.e. for all functions a:/——J we have

a*OBK'_,=3K,10(ide a)* and a*OVK']——-VK,]O(idKX a)* .

(iii) @ Consider the Dcpo-indexed poset F of Example 7.2(iv). In 3.8(v) we saw
for each morphism a:/——J in Dcpo that al:F(J)——F(J) has a left adjoint a,
sending a Scott closed subset S of 7 to the closure of the direct image
a(S)={a(i)| ieS}. One might therefore expect that F has all K-indexed joins
(KeobDcpo). This is not the case, because in general the left adjoints (mwo)1 to
projections fail the third, stability condition in 7.10(ii).

(Proof. Suppose 3 ; were stable. Then for each je/ and Se€F(Kx/J), the
stability condition for a:1——J where a sends the unique element of 1 to j (such
an a is continuous) implies that je(myh(S) iff for some k€K, (k,/)€S . In other
words we would have that 3m,:P(Kx J)——P(J) takes Scott closed subsets to Scott
closed subsets. But this is by no means the case for all choices of dcpo’s K and J
For example, let K= NU{oo} made into a (‘discrete’) dcpo by taking equality as the
partial order; and let /= NU{oo} made into a dcpo by taking the usual total ordering
on N and adding oo as a top element. Then S={(n,m)eENxN|n>m} is a Scott
closed subset of KxJ (Exercise!), but m,(S)={/€/|j# 00} is not a Scott closed
subset of J [)

Thus F does not have K-indexed joins for all KeobDcpo even though left
adjoints to F(a) exist for all continuous a. In contrast, F does have K-indexed meets
for all KeobDcpo, even though right adjoints to F(a) do not exist for all a.
(Exercise. With J and K as in the previous paragraph, show that the identity
function on NU{oo} gives a morphism a:K——J in Dcpo for which F(a) does not
have a right adjoint.) For one can prove (Exercise) that for all dcpo’s X and /, the
dual image function Vm,:P(Kx 7)—— P(/) takes Scott closed subsets of Kx/ to Scott
closed subsets of / and hence resticts to give a right adjoint to (w,):F(/)—— F(Kx 1)
which inherits the third, stability condition in 7.10(i) from P.

7 INDEXED PREORDERS Bl4

To conclude this section we draw together the structure we will use to interpret
first-order predicate logic (without equality) and give it a name—a rather ugly one,
unfortunately.

7.12 Definition. A first-order hyperdoctrine (C,H) is specified by a category C with
finite products (called the base category of the hyperdoctrine) together with a
C-indexed preordered set H having finite meets, finite joins, implications and
K-indexed meets and joins for all KeobC.

Thus of the examples in 7.11, (Set,P) and (Set,R) are first-order hyperdoctrines,
but (Dcpo,F) is not.

B15

8 First-Order Logic

In this section we will use the structures of the previous section to give the
‘hyperdoctrine’ style semantics of first order logic (without equality—the semantics of
equality is discussed in section 10).

8.1 Definitions. Let us augment the notion of signature given in 6.1 by allowing not
just sorts and function symbols, but also relation symbols. Each such relation symbol
in a signature is to come supplied with a type, which in this case is a finite list of
sorts. The notation

RCA ... A,

will be used to indicate that R has type A4;...4,. (Remark. The case #=0 is
allowed, in which case R amounts to an atomic proposition in the sense of section
4))

The terms of various sorts for such a signature ¥ are just as before, in 6.2. Now
however, we can also form formulas. The (first-order) formulas ¢ over & are defined
recursively by the following clauses; at the same time we define the finite set of
free variables of a formula ¢:

® Atomic formulas. R(ty,...,t,) is a formula for each relation symbol RC 4;... 4,
and terms #:4y,...,£,:4,; its free variables are all variables occurring in the ¢;.

® Truth and falsity. T and 1 are formulas, with no free variables.
® Negation. —¢ is a formula if ¢ is, with the same free variables.

® Conjunction, disjunction and implication. ¢A%, ¢V and ¢=>+ are formulas if ¢
and ¥ are; their free variables are those of ¢ or #.

® Universal and existential quantification. Vx:A.¢ and 3x:A.¢ are formulas if ¢ is
a formula and x is a variable of sort A; their free variables are all those of ¢
except x.

With the notion of context as in 6.3, we will say that ¢(x) is a
formula-in-context if ¢ is a formula whose free variables occur in x. Thus for
example, if ¢(x,x) is a formula-in-context (with x: A4 say), then so is (3x: 4. ¢)(x).

Now suppose that (C,H) is a first-order hyperdoctrine (see Definition 7.12). A
structure in the hyperdoctrine for a signature ¥ is specified by

¢ a structure M (in the sense of section 6) in C for the sorts and function symbols
of &

® an element MREH(HMA) in the fibre of H at [IMA(= MA;x ---x MA,,, when A
is 4y ... A,) for each relation symbol RC A in .

8 FIRST-ORDER LogIcC B16

Then for each formula-in-context ¢(x) over X, where x:A say, we can define an
element

[¢(x)1as € H(IIMA)

by recursion on the structure of ¢ as in Table 8.2 (using the semantics of
terms-in-context given in Table 6.4). Note that the semantics of first-order
propositions given in section 4 is a particular case of the semantics of formulas—the
case where ¥ contains no sorts or function symbols and hence amounts to a set of
atomic propositions (c¢f. the Remark above).

o If ¢is R(fy,...,t,), then [@(x)]as is ([£1(X)Dags - -« s [6m(X)Ian) X(MR),
the pullback of MRGH(HMB along {([#(X)asgs -« 5[t (X) g :
[IMA—TIMB (where ¢;:B; and B= B, ...,B,,).

e If ¢ is T, then [@(x)]as is T, the top element in H(HMA).

e If ¢ is L, then [¢(x)Jas is L, the bottom element in H(HMA).

® If ¢ is —p, then [¢(x)]p, is the pseudocomplement =[w(x)]as-
o If ¢ is PAG, then [¢(x)]as is the binary meet [P{x)]prA[6(x)]as-
e If ¢ is V6, then [¢(x)]as is the binary join [{(x)JarsV [0(X)]ars-

e If ¢ is =0, then [¢(x)]p, is the Heyting implication
[¥(x)]ar = [6(x}]as-

o If ¢ is 3Ix:A.9, then [¢(x)Jpr is the MA-indexed join
asa, ,(l[’t/:(x,x)]]M) (where [stands for the product [JMA).

o If ¢ is Vx:A4.4, then [@x)]p, is the MA-indexed meet
Vaza, ,(]['w(x,x)]]M) (where [stands for the product JIMA).

8.2 Table: categorical semantics of first-order formulas-in-context

8.3 Examples. (i) (D The Set-indexed poset P of 7.2(i) is a first-order hyperdoctrine.
The notion of a structure in (Set,P) amounts to the usual notion from classical
model theory of a (many-sorted, set-valued) structure. If M is such a structure, then
each [#(x)]as is 2 subset of the cartesian product [IMA: it is easy to prove that a
tuple ae[IMA is in the subset if and only if the structure M satisfies the sentence
#(a) in the classical, Tarskian sense (see [CK, 1.3]).

(ii) ® The Set-indexed preordered set R of 7.2(iii) is a first-order hyperdoctrine.
We remarked in 4.2(ii) that the semantics of the propositional connectives in R
amounts to Kleene’s ‘1945-realizability’. Now we also have a semantics for
quantification over the elements of a set. Each [¢(x)],s is a function [IMA——PN.

8 FIRST-ORDER LoGIC B17

Writing “ nr ¢(a)’ for ‘ ne[¢(x)]ar(a)’ we find

e xnrdx:A.¢(a) iff for some aeMA, nr ¢(a,a)
e nrVx:A.¢4(a) iff for all aeMA, nr ¢{a,a).

Warning. If MA is countable, this kind of quantification is not the same as
‘quantification over the natural numbers’ in the world ®, for which the clauses are

e nrdm.¢(a) iff for some m, (n,m)r ¢(m,a)
o nrVm.¢(a) iff for all m, n-m] and n-mr ¢(m,a).

(iii) @ The Dcpo-indexed poset F of 7.2(iv) is not a first-order hyperdoctrine.
However, it does support the interpretation of the fragment of first-order logic
without = or 3.

8.4 Definition. Let us extend the notion of ‘sequent’ from section 4 to first-order
formulas-in-context. A first-order sequent-in-context over a signature ¥ is of the form

¢ (x)

where I" is a finite set of formulas over X, ¢ is a single formula over ¥ and x is a
context containing (at least) all the free variables in " or ¢. If I',¢ contain no free
variables then the sequent in the empty context, I'-¢ ([]), will be written just as
Tk ¢.

A structure M for ¥ in a first-order hyperdoctrine (C,H) satisfies such a
sequent-in-context if

Ayer [V(X)]ar < [#(X)]as
in H(HMA) (where x:A, say).

Our immediate aim is to extend the results of sections 4 and 6 to show that this
notion of satisfaction is sound for Intuitionistic Predicate Logic IPC. At the moment
we are not considering first-order logic with equality (predicates}—for which one
would have distinguished relation symbols =4 C 4 4 for each sort in the clauses for
formula formation. (Logics without equality are of relevance to @.) This means that
the judgement

s=1 (x)
that two terms (of the same sort, 4 say) are equal cannot be replaced by the sequent
0F =A(S, t) (X).

So we will consider systems for deriving both equations-in-context and sequents-
in-context simultaneously. ‘Adjoint-style’ rules for IPC are given in in Table 8.5,
extending both the propositional rules of Table 4.8 and the equational logic of Table
6.7. (An equivalent, Gentzen-style calculus extending Table 4.3 could be given.)

8 FIRST-ORDER LOGIC B18

I"_¢ (X) (XCY) s=s' (X) P'_¢ (y,x)

FE¢ (v) ~ D(s/y) F ¢(s'/y) (x)
(Wk) (Sub)

s=1t (x) s=s' (x) t=1t' (y,x)

sor(y) XY 1575) = 15"]3) (%)

e (x) A,k (x)

F,éF¢ (x) AT+ (x)
(1d) (Cut)
r=s (x) s=1t (x)
t=1t (x) r=1¢ (x)
s=1t (x)
(Sym)———[=s)

T (") 'emg TI'+a
'-T ' ¢Ay

) W) r¢r6 T,y+0
IL+¢ T, ovept-6

(=) o9 =) ¢k L
F-o¢=9y TF-¢

@) Loy (v,x)) I'E¢ (»,x)
C,v:4.9F% (x) FFVy:4.¢ (x)

8.5 Table: Adjoint Calculus for IPC

The word judgement will be used to refer to something which is either a sequent-
in-context or an equation-in-context. The rules in Table 8.5 are of two forms:

judgements and judgements .

judgement judgement
A collection of judgements is said to be closed under a rule of the first kind if
whenever it contains the judgements above the line, it also contains the judgement
below the line. The collection of judgements is closed under a rule of the second
kind if the collection contains the judgements above the double line if and only if
it contains the judgement below the double line.

8.5 Remarks. (i) Side conditions. It should be noted that in closing under a set of
rules, only well-formed judgements are considered (that is, ones conforming to
Definitions 6.5 and 8.5). This means that some side conditions are implicit in some
of the rules. For example in the (3) and (V) rules we must have that y¢x (for y,x to
be a well-formed context) and that y is not a free variable of " or 4 (for the
sequent-in-context below the line to be well-formed). And in the (Sub) rules y¢x
and (hence) y is not a variable occurring in s or s’.

8 FIRST-ORDER LOGIC B19

(ii) Substitution. The first (Sub) rule in Table 8.5 uses the substitution of terms
for wvariables in formulas. The usual complications enter in through formulas
containing variables which are bound by quantifiers. We are only interested in
formulas up to ‘a-conversion—changing the names of bound variables. In making a
substitution of s for y in ¢, resulting in ¢(s/y), we assume that the bound variables
of ¢ are all distinct and different from the variables in s, so that ‘y is free for s in
¢ and no variable of o is ‘captured’ by the scope of a quantifier in ¢. (We also
assume, of course, that s and y are of the same sort).

(iii) Quantification. The rules (3) and (V) give a formulation of the rules for
quantifiers which directly embodies the nature of quantification as adjoint to
weakening (cf. 3.8(iii)). Equivalent and possibly more familiar looking rules are

L, éF9 (v,%) '¢ (v,x)
P,Iy:A4.¢F % (x) CHVy:4.¢ (x)
(3 (V)
I'F ¢(s/y) (x) I',¢(s/y) F ¥ (x)
'k3y:4.¢ (x) C,Vy:A.¢F ¢ (x)

where s(x) is a term-in-context of the same sort as y. (Exercise. Show that modulo
the other rules in Table 8.5, (3) can be derived from (3’) and vice versa; show the
same for (V) and (V').)

In order to prove that the rules in Table 8.5 are sound for satisfaction of
equations-in-context (c¢f. 6.5) in the base category of a hyperdoctrine and satisfaction
of sequents-in-context (c¢f. 8.4) in the fibres, we need the following extension of the
first clause in Table 8.2.

8.6 Substitution Lemma. Suppose that ¢(x) is a formula-in-context, with
X=Xy,...,X, and x;:A; say. Suppose also that s;(y) is a term-in-context of sort A;
With Y=,....%y and y;:B; say. Let ¢(s(y)) denote the formula (in context y)
resulting from simultaneously substituting s; for x; in ¢. If M is a structure in
a first-order hyperdoctrine (C,H), then

[(sar = (IsiMars -« >[5 a0 *([#(X)]as)
in HMB;x «-- x MB,,,).

Proof. The proof is by induction on the structure of ¢.
If ¢ is atomic, say R(4,...,Z,), then by the substitution lemma for terms (Lemma
6.9) we have [#(s(x))] = [£e(¥)]o{ls1(¥)]ars - -- s[5(¥)as) soO that

[#(s(x))ar = [R(S(x)] = ([a(sZD] ... [4(S(YNDHMR)

Ea[rl(x)n, e[e ([T, - - [5,(9)])) HMR)
=[5, - [@D*([A D, ... []YHMR))
= (5D - - LseMDH[R(1(x))])
= ([5D)], - - - [N D*{[e(x)]).

If ¢ is T,L,-%,¥A0,9%Vv0, or ¢p=6, then the result follows from the induction
hypothesis plus the fact that the corresponding order-theoretic operations in the fibres
of H are preserved by the pullback functions a*.

8 FIRST-ORDER LoGic B20

If ¢ is 3x:A.9 or Vx:A.9, then the result follows from the induction hypothesis
plus the stability property of 3x , and Vg , with respect to the pullback functions a*
(see the third clauses of (i) and (ii) in Definition 7.10). O

8.7 Corollary. (Weakening) Suppose that ¢(x) is a formula-in-context and that y is
another context containing all the variables in x. Then

4] = =*([4(x)])

where ® is the unique morphism in C whose composition with the i**® product
projection morphism T; is Tg(;), With ofi) defined so that yo; is the (unique)
member of y equal to x;.

Proof. This is the special case of the Substitution Lemma with s; = ;). O

8.8 Proposition. (Soundness) If ¥ is a signature and M is a structure for ¥ in a
first-order hyperdoctrine, then the collection of judgements satisfied by M is closed
under the rules for Intuitionistic Predicate Logic in Table 8.5.

Proof. Closure under the rules coming from propositional and equational logics are
covered by the proofs of Propositions 4.7 and 6.8 respectively. That leaves the rules
for quantifiers and the first rules in (Wk) and (Sub). The first (Sub) rule is a
consequence of Lemma 8.6 and the first (Wk) rule follows from Corollary 8.7.

For closure under (V), note that by Corollary 8.7 when yé¢x and is not a free
variable of v, then [y(»,x)] = (73)*[v(x)]. Thus a structure satisfies I'+¢ (y,x) iff
(1r2)*(/\,yep[['y(x)]])g/\,yep(irz)*[[fy(x)ﬂsl[qS(y,x)]] in H(MAxHMA)(where y:A, xX:A
say, and I=TIMA), iff Ayer[¥(X)]<Vara,;[80,%)] in H([IMA) (since V.., is
right adjoint to m,), iff the structure satisfies ' Vy: 4.4 (x).

The argument for closure under (3) is similar to that for (V) except that we need
to use not only the fact that 3,,, , is left adjoint to (w;)* but also the stability
property of the adjoint called ‘Frobenius Reciprocity’, which we saw in 3.10 is a
consequence of (my)* preserving =. [

8.9 Remarks. (i) Classifying hyperdoctrines. The constructions in 4.9 of the
classifying preorder of a propositional theory and in 6.12(ii) of the classifying
category of an algebraic theory can be synthesised into the construction of a
classifying hyperdoctrine (Ct,Hy) of a first-order theory T. Such a theory is
specified by a signature and a set of axioms, which are judgements
(equations-in-context and sequents-in-context) over the signature; the theorems of T
comprise the least set of judgements containing the axioms and closed under the
rules in Table 8.5.

Then Cy is the classifying category (with finite products) for the ‘algebraic part’
of T, constructed as indicated in 6.12(ii): objects are contexts and morphisms are
equivalence classes of lists of terms-in-context under the equivalence relation given
by the equations-in-context which are theorems of T.

To get the fibre of Hy at an object (i.e. a context) X, take the formulas in
context x preordered by the relation given by the sequents in context x which are
theorems of T; then let Hy(x) be the poset reflection of this preordered set.

8 FIRST-ORDER Logic B21

The reason why we have to take poset reflections becomes apparent when we
next define the pullback functions o*:H-(y)— Hy(x) associated to the morphisms
a:x——y in Cy. These are induced by the operation of substituting a term for a
free variable in a formula. Since we take equivalence classes of terms under
T-provable equality to get the morphisms of Cr, the first (Sub) rule in Table 8.5
gives that a* is well-defined on formulas (via substitution of a representative term)
only up to T-provable isomorphism: ¢(x) = y¥(x) iff ¢+ (X) and yF ¢ (x) are
theorems of T).

The Cr-indexed poset Hy which results from this construction does indeed make
(Ct,Hy) a first-order hyperdoctrine. It contains a structure for the signature of T
which satisfies exactly those judgements which are theorems of T. And (Cy,HT)
enjoys a universal property with respect to other first-order hyperdoctrines whereby
models of T in a hyperdoctrine (C,H) correspond to morphisms (Ct,Hyp)——(C, H).
(We leave the definition of a ‘morphism of first-order hyperdoctrines’ to the reader’s
imagination.)

(ii) (Internal languages). By combining the constructions in 4.13 and 6.12(iii),
one can prove that, up to equivalence, every first-order hyperdoctrine (C,H) (with C
a smallt category) is the classifier of a first-order theory T. Roughly speaking, one
takes as signature for T sorts naming the objects of C, function symbols naming the
morphisms of C and relation symbols naming the elements of the fibres of H. There
is an evident structure for this signature in (C,H) and taking the axioms of T to be
those judgements which are satisfied by the structure, it is the case that (Cy,HT) is
equivalent to the original hyperdoctrine (C, H).

tsee Glossary.

B22

9 Example: disjunction and explicit
definability properties

First-order hyperdoctrines do more than just provide a semantics for first-order
intuitionistic logic. The constructions sketched in 8.9 are the basis of a
corresponence between first-order theories in IPC and first-order hyperdoctines which
enables us to view hyperdoctrines as specifying theories independently of any
particular presentation in terms of signature and axioms. Is this viewpoint useful?
Although the notion of ‘first-order hyperdoctrine’ may seem a rather complicated one,
it is essentially an algebraic notion, whereas the traditional notion of theory, via
syntax and proof rules, is not. So we can construct new theories out of old by
performing algebraic constructions on hyperdoctrines. Better still, since there is a
whole category of theories (theory morphisms = interpretations between theories =
models of theories in classifying hyperdoctrines = hyperdoctrine morphisms),
constructions of theories can be specified by the typical ‘universal’ constructions of
category theory. This enables powerful methods to be brought to bear to prove
properties of theories in general (rather than of a particular theory, such as first-order
arithmetic, or whatever). Here, in outline, is an example of this. (Other, more
involved examples can be found in [Pi].)

Let T be a first-order theory. If ¢ is a first-order formula (over the signature of
T) which contains no free variables, write

Tr¢

to indicate that the sequent OF ¢ (in the empty context) is a theorem of T. (A
formula with no free variables is usually called a sentence; a term with no variables
is called a closed term.) One of the justifications for calling IPC a constructive
logic (¢f. [Dum, 6.1]) is that it has the following two properties:

9.1 Theorem. (Disjunction and Explicit Definability in IPC) Let T be a first-order
theory whose only axioms are equations-in-context. Then

(i) T has the disjunction property: for all sentences ¢ and <, if T+ ¢V then
TH¢ or THq.

(ii) T has the explicit definability property: if 3x:A.¢ is a sentence and
TrH3x:A.¢, then there is some closed term t: A with T\ ¢(¢/x).

Proof. We will sketch a proof of (i) and (ii) using hyperdoctrines and a particular
instance of a categorical technique called ‘glueing’ (see [Johl, 4.2]), which is also
able to prove similar results for more complicated logics (see [LS, §22] for example).

First note that under the correspondence of first-order theories with first-order
hyperdoctrines indicated in 8.9, properties (i) and (ii) of a theory correspond to the
following properties of a first-order hyperdoctrine (C,H):

9 EXAMPLE: DP AND EP B23

(i)’ For all ¢,%p€H(1), if VY X T then ¢=T orpT.

(i1)! For all KeobC and ¢€H(Kx 1), if 3, () T then for some k:1—— K in C
(k;id (@) 2 T.

So we have to prove that the classifying hyperdoctrine (C,H) has these properties
when T satisfies the condition

(iii) The only axioms of T are equations-in-context.

This condition on T can be expessed equivalently as a condition on the classifying
hyperdoctrine (Cy,H), in terms of the universal property enjoyed by the latter.
Indeed, (iii) means that Hy is ‘freely generated’ over Ct by the relation symbols in
the signature of T:

9.2 Definition. If (C,H) is a first-order hyperdoctrine and for each /eobC we are
given a subset X(/)CH(/), then H is freely generated over C by the elements
xeX(I) (IeobC) if given any first-order hyperdoctrine K over C equipped with
functions §&;: X(/)——K(/) (/€obC), there is a C-indexed monotone function
§:H—— K defined uniquely up to isomorphism by the properties

® §, preserves finite meets, finite joins, Heyting implications and K-indexed
meets and joins (all KeobC); and

® §,(x")=6;(x) for all TeobC and xeX(]).

When T satisfies (iii), the universal property of the classifying hyperdoctrine
construction mentioned in 8.9(i) implies that Hy is freely generated over Cp by
(T-provable equivalence classes of) all the atomic formulas R(x), where x€obCr is a
context and R is a relation symbol of the appropriate sort.

So we have now translated the original problem in Theorem 9.1 into a purely
category-theoretic one:

Given a first-order hyperdoctrine (C,H) with H freely generated over C by some
sets of elements X(I)CH(I) (/€obC), prove that it satisfies (i)! and (ii)’.

(We need only prove this for the case when C is a smallt category, since we are
tacitly assuming that theories T contain only a set (rather than a proper class) of
symbols—which means that the classifiers Cr are small.)

The proof goes by constructing a new first-order hyperdoctrine over C, ﬁ, which
satisfies (i)’ and (ii)’ and which contains H as a retract. This means that there are
C-indexed monotone functions c:H—>ﬁ,p:ﬁ—>H preserving finite and indexed
meets and joins and Heyting implication, and satisfying po¢ 2 idg. Under these
circumstances it is easy to see that H satisfies (i)’ and (ii)’ when H does.

9.3 Construction. (Glueing) (C,ﬁ) is obtained from (C,H) by ‘glueing’ it to (Set,P)
(the hyperdoctrine of 8.3(i)) along the global sections functor. We first give the
construction at the level of Heyting preordered sets in (a), and then apply it
fibrewise to hyperdoctrines in (b).

(a) Let y:H—— K be a monotone function between Heyting preordered sets
which preserves finite meets. Define

tSee Glossary.

9 ExAMPLE: DP AND EP B24

Gl(y) = {(k;h)eKx H| k<y(h)}.
Then the relation

(k;h)<(KkN A iff k<k’in K and A<A’ in H
makes GI(y) into another Heyting preordered set with

top element (T,T)

binary meet (k;A2)A(k', 1) = (kAK!, hNR)

bottom element (L,.Ll)

binary join (k;2)V(k',4') = (kVKk', AV H)

Heyting implication (k,;4)= (&, 4') = ((k=>k")Ay(h=>4'), h=>H').

and the second projection function 7,:Kx H—— H restricts to give a morphism in
Heyt, p:Gl(y)—— H.

(b) Each first-order hyperdoctrine (C,H) with C a locally smallt category is
related to the particular first-order hyperdoctrine (Set,P) of 8.3(i) by taking ‘global
sections’: there is a finite product preserving functor I': C—— Set defined by

rJ—e—J) = c(1,1) =2, /)
(l—i—>1)i-——)(1°‘—"’">./),

and then there is a C-indexed monotone function «_:H(-)——P(I'(-)) whose
component at /eobC, v;: H(/)—— P(I'(/)), is defined by

v/(¢) = {ieC(1,1)| ()= T in H(1)}.

It is easy to see that each <, preserves finite meets; so we may apply the
construction in (a) to obtain

AU = Gi(y).

Thus a typical element of Gl(vy;) is a pair (4,¢) where ACC(1,]), ¢€H(/) and for
each i€d, i¥(¢)=x T. Furthermore, for each a:/——/J in C we get a monotone
function

a*: H(J))—s H(J)

by defining a*(B,v) = (al(B),a*(z)). This gives a new C-indexed preordered set A
and in fact (C,ﬁ) is again a first-order hyperdoctrine, with finite meets, finite joins
and Heyting implication in the fibres given as in (a) and for each KeobC,
K-indexed joins and meets given by

o Ik /(B,¥) = ({ieT()|(k;i)e B, some kET(K)}, 3k, ()
o Vg (B,9) = ({ieT(])| (idg, {)*(%) = T and (k,)€ B, all kET(K)}, Y, A¥)).

Note also that second projection on each fibre determines a C-indexed monotone
/N
function p: H——>H preserving finite meets, finite joins, Heyting implication and
K-indexed meets and joins (all K€obC).

It is easy to see that (Set,P) satisfies (i)’ and (ii)’ and the crucial point is that
these properties are inherited by the ‘glued’ hyperdoctrine:

tSee Glossary.

9 EXAMPLE: DP AND EP B25

9.4 Lemma. ﬁ satisfies the hyperdoctrine versions of the disjunction and explicit
definability properties (i) and (ii)’.

Proof. For (i), given (A,qS),(B,e/:)eﬁ(l), if
T (A9¢)V(B"¢) = (AU B,¢V'l/l),

then AU B = {id;}, so

either idj€A4 and then T 2 (id{)¥(¢)=¢ (since (A,d:)ef-/i\(l)),
or idjeB and then T 2 (id{)*(¥) =y (since (B,¥)eH(1)).

Similarly for (ii)’, given (A,¢)eﬁ(K><1), if
T 3x,(4,¢) = ({id; | (k,id)) €4, some keD(K)},3x1(4))

then the first component is not empty, i.e. there is some k:1—— K in C with
(k,idy)€ 4, which means that T ¢ (k,id,)*(¢) since (4,¢)eH(Kx1). O

9.5 Lemma. If H is freely generated over C by sets of elements X(I)CH(I) (as in
Definition 9.2), then p:H——>H has a right inverse, i.e. there is t:H——H
preserving the hyperdoctrine structure and satisfying pot = idyy.

Proof. For each /e€obC, define 6,:X(1)——>ﬁ(l) by 6;(x)=(v,(x),x). Then by
Definition 9.2, 6 induces 6:H——H preserving the hyperdoctrine structure and
with the property that for all /eobC and xe€X(/), §{"x") = &;(x). Then

pr(8'x")) = pr(8;(x)) = x

so that poé and idyy are both C-indexed monotone functions H——H preserving the
hyperdoctrine structure which have the same effect on the elements xe X(/) (/eobC);
so by the uniqueness part of Definition 9.2, poé = idgy. So we can take t=8 0O

We can now complete the proof of Theorem 9.1 by showing that H satisfies (i)
and (ii). Given ¢,sp€H(1), if T = ¢V, then using ¢ from Lemma 9.5,

T y(T) 2 u(eve) 2 uy(@)vyly) in HQ).

So by Lemma 9.5 either T 2 (\(¢) in which case T 2 py(t1(@)) X ¢, or else T ()
in which case T = p(¢(9)) 2. Thus H satisfies (i). And given ¢eH(Kx1) (some
KeobC), if T =3 4(4), then

T2 0(T) 2 4(31(8) 2 3 (ulg) in HQ).
So by Lemma 9.5 there is some k:1—— K in C with T & (k,id;)*(t4(¢)) and hence
T = pp 1((16; id1)*(b;(¢))) & (k;idy)*0;1(41(¢) = (k,idy)¥(¢)

so that H also satisfies (ii). O

B26

10 Equality

We have seen that the categorical semantics of the propositional connectives and
first-order quantifiers provides a characterization of these logical operations in terms
of various categorical adjunctions. We are now going to see that, within the context
of first-order logic, the same is true of equality predicates. (As with much of the
material in these notes, this observation originated with Lawvere [La2].) This is
perhaps surprising if one thinks of equality as some fairly arbitrary equivalence
relation on terms; but the assumption that all functions and relations respect the
relation is enough to give the equality predicates a canonical nature with, once
again, a neat adjoint characterization.

Let ¥ be a signature of sorts, function and relation symbols. Add to the clauses
in 8.1 defining the first-order formulas over ¥ the following clause:

® FEgquality. t=1¢ is a formula if ¢ and ¢’ are terms over ¥ of the same sort.

We wish to extending the rules of IPC to those of First-Order Intuitionistic
Predicate Calculus with Equality, IPC=. The formulation of IPC we used had both
sequents and equations. Since we now have equality predicates, it is natural to give
the rules just using sequents-in-context, replacing an equation-in-context z= ¢ (x) by
the sequent-in-context O+ t=# (x). So we discard all the rules in Table 8.5 which
mention equations-in-context and add to the remainder the usual equality axioms

(10.1) TkFx=x (x)

(10.2) x=x'"Fx'=x (x,x')

(10.3) x=x'Ax'=x"F x =x" (x,x,x")

(10.4) x=x'FHx'/x)=1¢t (x,x}y) (where f(x,y) is a term-in-context)
(10.5) x=x"ApFdx'/x) (x,x)y) (where ¢(x,y) is a formula-in-context)

together with the following simplification of the (Sub) rule in Table 8.5

TF¢ (%)
SUO) TG dlsly) ()

So the rules for IPC™ consist of (10.71)-(10.5) (regarded as rules with empty
hypotheses), (Sub), and from Table 8.5 the first (Wk) rule, the first (Id) rule, the first
(Cut) rule and the bi-rules (T), (A), (L), (V), (=), (=), (3) and (V).

(s(x) a term-in-context of the same sort as y)

10.1 Proposition. Modulo the other rules of IPC=, (10.1)-(10.5) are equivalent to the
bi-rule

IMEg(x/x") (x,y)
Tx=x"k¢ (x,x,y)

(Equ)

Proof is left as an (instructive?) Exercise in first-order logic. 0O

10 EQUuALITY B27

'¢ (x) '¢ (v,x)
Wo) g () %< (SUO) TG F #s/))
¢ (x) A,¢F9 (x)
T s @ C) =" FFp
(Equ) I'F¢(x/x") (x,y)
'x=x"F¢ (x,x’,y)
- N '¢ THY
TFT 't ¢ny
w - V) T,¢pr0 T,9¥+6
rLlk¢ T, ¢Vt 6
e+ Lok 1
(=>)—¢—¢ (-1)_———‘3—
I'F¢=9 I' - ¢
Q) oy (,x%)) I'H¢ (v,x)
MNay:4.¢F ¢ (x) T'FVy:4.¢ (x)
10.2 Table: Adjoint Calculus for IPC—

Using the simplification afforded by this proposition, the rules for IPC™ are
collected in Table 10.2: the first four rules embody basic properties of entailment
and each of the other ‘bi-rules’ embody an adjoint characterization of a particular
logical operator.

In what sense is the rule (Equ) capturing the meaning of equality in terms of an
adjunction? To answer this question, let us consider how equality is modelled in a
fisrt-order hyperdoctrine (C,H). To interpret a formulas-in-context #(x) when ¢ is
t=1t" we need for each /eobC some element

SreH(Ix I)
so that we can define for y,)’: B,

=y 0.5 = 6r15 »
and hence (substitution being modelled by the pullback functions) in general
(10.6) [t= ¢ (X)ar = ([#X)as, [(x)an)*(6ar5) € HIIMA)

where x: A and ¢¢: B, say.

10 EQUALITY B28

10.3 Proposition. Let (C,H) be a first-order hyperdoctrine equipped with elements
(6;€H(/xI)| IeobC). Extend the semantics of formulas-in-context to formulas
involving equality by adding the clause (10.6) to Table 8.2. Then the collection of
sequents-in-context satisfied by any structure in (C,H) is closed under the rules in
Table 10.2 if and only if the elements (§;€H(/x I) | I€eobC) satisfy

(10.7) &; is a value of the left adjoint to A*: H(Ix)——H(I) at T (see 3.3), where
A= (id;,id;): J——Ix I is the diagonal morphism.

Proof. Suppose first that (70.7) holds. Then the proof of the soundness of all the
rules except the new (Equ) is just as in the proof of 8.8—except that for {Wk),
(Sub), (3) and (V) we must extend the substitution lemma 8.6 (and thereby also the
weakening lemma 8.7), since we are now dealing with a larger class of formulas. But
we do indeed have the substitution property

[#(sty)] = L5, ... L5 D *(T#(01),

the proof being as in 8.6 by induction on the structure of ¢, with a new clause for
the case ¢ is r= ¢ (which is just like the case for atomic formulas because of the
way we defined [r=¢# (x)]). For (Equ), first note that modulo (=) and (V) it is
equivalent to a simpler rule without ‘parameters’:

O+ ¢(x/x’) (x)

x=x"¢ (x,x’)

(10.8)

By definition, a structure satisfies x =x’F ¢ (x,x’) iff 6p74<[¢(x,x’)]. But by
(10.7) 6ps4=3A(T) is the left adjoint of A* at T, so the sequent-in-context is
satisfied iff TSA*(I[qS(x,x']]):([[x(x)]j,[[x(x)]])*([[¢(x,x')]]) o [¢(x,x/x")] (by the
substitution property), which is to say that the structure satisfies T F ¢(x/x’) (x). So
the above rule is sound, and hence so is (Equ) as well.

Conversely if the sequents satisfied by any structure are closed under the rules in
Table 10.2, given /eobC and ReH(/x /) we can take a signature with one sort I’
and one binary relation symbol "R*C /" 'I" and consider the structure sending 7" to [
and ‘R’ to R. Then as above [['R’(x,x/x')]]gA*([{'R’(x,x’)]])=A*(R) and closure
under (Equ) gives: T<A*(R) iff §;<R. Since this holds for all ReH(/x/), &; is
necessarily a value of the left adjoint to A* at T. O

Note that property (10.7) determines the §; (/€obC) uniquely up to isomorphism
and gives equality a status similar to the other logical operators.

10.4 Definition. We will call (C,H) a first-order hyperdoctrine with equality if it is
a first-order hyperdoctrine for which each A*:H(/x/)——H(J) (/€obC) has a left
adjoint at T.

10.5 Examples. (i) (T ® (Set,P) and (Set,R) are first-order hyperdoctrines with
equality, since we saw in 3.8 that the Set-indexed posets P and R have both left
and right adjoints for all pullback functions a*. (This is no accident—see Remark
10.6 below.)

(ii) © We saw in section 7 that (Dcpo,F) is not a first-order hyperdoctrine, but
that it does support the interpretation of a fragment of first-order logic (that without

10 EQUALITY B29

= or 3). Since we know from 3.8(v) that F has left adjoints for all pullback
functions, it is the case that it satisfies condition (70.7). However, it would be wrong
to say that F supports the sound interpretation of a fragment of first-order logic with
equality, since without = in the logic, we cannot reduce (10.7) to (10.8) as we did
in the proof of 10.3. As with other ‘left adjoint’ rules, (/0.7) has a ‘stability’
condition on the adjoint built into its formulation: to satisfy it we need not only
that 3A(T)eH(/x /) exists, but also that for all yeH(/x /), yAJA(T) is a value of
the left adjoint to A* at A*(y). (This is in fact a particular instance of ‘Frobenius
Reciprocity’—see 3.10.) In F, 3A(T) fails to satisfy this °‘stability’ condition in
general.

10.6 Remarks. (i) (Generalized quantifiers) IPC= has much greater expressive power
than IPC. This is reflected by the consequences for a first-order hyperdoctrine of
satisfying the apparently limited extra property (10.7). For if (C,H) is a first-order
hyperdoctrine with equality, then for every a:/——J in C, a*:H(J)—H(/) has
both left and right adjoints, which will be denoted Ja and Va respectively. Indeed,
for e H(/) we can define

3a(g) = 3y, A(ax id)*s, A (my)*6)
Valg) = VI,J((GX id,)*s, = (‘"1)*¢)-

It is easier to see what these expressions mean and to prove that they have the
required properties if we use Proposition 10.3 and work in IPC=, where Jda(¢) and
Va(¢) correspond to generalized quantifiers which are adjoint to substitution. Thus if
t(x) is a term-in-context, ¢(x) is a formula-in-context, x:4 and y is a variable of
the same sort as ¢, define formulas-in-context (3 x:A4.¢)(y) and (Vyx:A4.¢)y) by

Ix:A.¢ = 3Ix:A.(t=y A ¢)
Vix:A.¢ = Vx:A.(t=y = ¢).
(Cf. the similar expressions in 3.8(iii) and 3.15(iv).) Then

@) ¢ -9y (x) and) Yy ¢ (x)
x:A.9F9 () PHVrx:A4.¢ ()

are derived rules of IPC= (Exercise).

(ii) (‘Beck-Chevalley Conditions’) We required the adjoints Jx, s (=3my) and
Vi, 7 (=Vm,) to have certain stability properties with respect to the pullback functions
in order to model the interaction of quantification with substitution correctly. Similarly
the general adjoints Ja and Vo have stability properties reflecting the interaction of
the generalized quantifiers with substitution on their parameters. These stability
conditions are all instances of ‘Beck-Chevalley conditions’: in general if

L—% Sk

|

J——1

10 EQUALITY B30

is a commutative square in C, then we say that the left adjoints to the pullback
functions satisfy a Beck-Chevalley Condition for the above square if B*oJa = Ifovy*.
Note that ~y*oa* 2 6*oB* (since aoy=p06), id<a*oda (since Ja-a*) and
J606*<id (since 36 4 6*), so that

JSoy* < Ifoy*oa*oda X Jsos*¥oB*oJa < B*o3a.

So the Beck-Chevalley Condition amounts to requiring the other inequality:
B*o3Jda < 3Fsoy* Dually, B¥oVa<Véoy* holds automatically and the right adjoints
are said to satisfy a Beck-Chevalley condition for the above square if the reverse
inequality holds, so that Véoy* = S*oVa.

With this terminology, it is the case that in a first-order hyperdoctrine with
equality the left and right adjoints satisfy the Beck-Chevalley Condition for certain
commutative squares which (by virtue of the finite products in C) are pullback
squares. These are the squares of the form

KxI—2 4 JRUTL NN

id x al la and al laxid.

KxJ——J J——JIxJ
Ta A
If C has all pullbacks, obviously a sufficient condition on H to ensure the adjoints
to the pullback functions satisfy these stability conditions is that the Beck-Chevalley
Condition holds for all pullback squares. This is the case for (Set,P) and (Set,R).
(Exercise. Apply 3.4 and 3.5 to deduce that the Beck-Chevalley Condition for all
pullback squares holds for 3 iff it holds for V.)

(iii) Beyond hyperdoctrines. Following the pattern set in sections 4, 6 and 8, you
are perhaps expecting me to say something about and a correspondence between
theories in IPC= and first-order hyperdoctrines with equality. However, the situation
is not as satisfactory one one might hope. We have formulated IPC= just using
judgements which are sequents-in-context (as is usual). So in a theory, if we wish to
assert that two terms (of the same sort) are equal, we stipulate 8 s = ¢ (x) as an axiom.
This sequent-in-context is satisfied in a hyperdoctrine if T & ([s(x)], [#(x)]}*(2A(T)).
For this it is sufficient, but unfortunately not always necessary, that [s(x)] and [4x)]
be equal morphisms in the base category (which is to say that the equation-in-context
s =t (x) is satisfied). So in trying to reconstruct a first-order hyperdoctrine with equality
as the classifier of some theory over IPC=, we will not always be able to capture in
sequents some of the identities which hold between morphisms in the base category.

The best way of getting round this problem is to restrict attention to first-order
hyperdoctrines as in 7.2(ii), i.e. of the form Sube where C is a category with finite
limits (and sufficient extra structure to ensure Sube is a first-order hyperdoctrine).
Such a hyperdoctrine has equality at /eobC given by the diagonal subobject
A:I——1IxI, and we have a=p iff (a,8) factors as Aoy for some v, iff
{a,B)¥(A) 2 T in Sube. There is a correspondence between such C and theories in
IPC=. (Abnd there is a simple construction reflecting an arbitrary first-order
hyperdoctrines with equality into such special ones.) The categorical semantics of
first-order logic in this (special) style interprets

10 EQUALITY B31

sorts as objects of C,
terms(-in-contex) as morphisms of C and
formulas(-in-context) as subobjects of C.

See [MR] for an exposition. Even for first-order logic without equality, one can give
a version of the categorical semantics in this style, except that formulas are
interpreted as subobjects lying in a distinguished class of subobjects which has to be
given as an extra part of the structure of C (and which in general will be a proper
subclass of all subobjects).

Gl

Glossary

CATEGORY. A category C is specified by
® A collection obC of objects of C: X,Y,Z,...
® A collection morC of morphisms of C: f,gh,...

® Operations assigning to each femorC its domain dom(f)eobC and codomain
cod(f)eobC. We write f: X——Y or X—L5Y to indicate that dom(f)=X and
cod(f)=7.

¢ An operation assigning to each XeobC the corresponding identity morphism

® An operation assigning to each composable pair of morphisms f: X——Y and
g:Y——Z (composable means cod(f) =dom(g)) their composition gof: X—>Y.
This operation of composition is
unitary: (idyof)=f=(feoidy) and
associative: (hog)of= ho(gof).

CoODOMAIN. Dual of DOMAIN.

COMMUTATIVE DIAGRAM. See DIAGRAM.

COMPOSITION. See CATEGORY.

CONTRAVARIANT FUNCTOR. See FUNCTOR.

COVER. A MORPHISM f: X——Y in a CATEGORY is a cover if whenever f=moe
with m a MONOMORPHISM, it is the case that m is an ISOMORPHISM. In a
category with PULLBACKS, a cover f is said to be stable if the result of pulling it
back along any morphism is again a cover.

DiIAGRAM. A diagram D in a CATEGORY C is specified by a GRAPH
s,t: E_3V and two functions D:V——o0bC, D: E—— morC satisfying that for each
e€ E dom(D(e)) = D(s(e)) and cod(D{e)) = D{(t(e)). The diagram commutes if for every
pair of paths (= lists of edges with #e;)=s(e;11)) eo,....e, and ebh,...,e) with
sleg) = s(ep) and He,)=«e},), it is the case that the compositions D(e,)o :-- 0 D(eg)
and D(e},)o --- o D(ep) are equal morphisms of C.

DOMAIN. See CATEGORY.

DuAaL coONcEPT. Concept applied to the OPPOSITE CATEGORY.

EPIMORPHISM. Dual of MONOMORPHISM.

GLOSSARY G2

EQUIVALENT CATEGORIES. TwWo CATEGORIES C and D are equivalent if there
are FUNCTORS F:C——D and G:D——C, and NATURAL ISOMORPHISMS
FoG=21dp and Idc = Go F. In this case we say F is an equivalence with essential
inverse G, and write C ~ D to indicate that C and D are equivalent.

FAITHFUL FUNCTOR. A FUNCTOR F:C——D is faithful if for all f,g: X—3Y
in C, F(f) = F(g) implies f=g.

FULL FUNCTOR. A FUNCTOR F:C——D is full if for all X,X’eobC and all
g: F(X)— F(X') in D, there is some f: X—— X’ in C with F(f) =g

FULL SUBCATEGORY. A SUBCATEGORY D of a CATEGORY C is full if for all
X,YeobD every MORPHISM X——Y in C is a morphism in D (so that
D(X,Y)=C(X,Y)). Thus each full subcategory of C is uniquely determined by
specifying the subset of obC comprising its OBJECTS.

FUNCTOR. A (covariant) functor F:C—— D between CATEGORIES is specified by
® An operation sending oBJECTS X in C to objects F(X) in D.

® An operation sending MORPHISMS f: X—— X’ in C to morphisms F{(f):
F(X)—— F(X’) in D. This operation should satisfy
Flidx) = idgx)
F(gof) = Flg)o F(/).

A contravariant functor from C to D is a functor C°°?——D.

The composition of functors F:C——D and G:D——E is the functor
Go F:C——E with (Go F)(X) = G(F(X)) and (Go F)(f) = G(F().

The identity functor Id:C——C has Id(X)= X and Id(/) =/ .

FUNCTOR CATEGORY. Given CATEGORIES C and D, the functor category
[C,D] (also written DC) has as OBJECTS all FUNCTORS C——D and NATURAL
TRANSFORMATIONS as MORPHISMS, with IDENTITIES and COMPOSITION given
by identity natural transformations and by vertical composition of natural
transformations.

GRAPH. A (directed) graph is specified by a set V of vertices, a set E of edges and
two functions s,t: E__3V assigning to each edge e€ E its source s(e)eV and target
t(e)eV.

HoM-FUNCTOR. If C is a CATEGORY and X,YeobC, then C(X,Y) denotes the
collection of MORPHISMS X——Y in C. C is called locally small if each C(X,Y)
is a set, i.e. an OBJECT in the category Set of sets and functions. Then
(X,Y)—— C(X,Y) is the object part of the hom-functor

C(-,+):C°P’x C—— Set

which assigns to a pair X'—{— X, Y—£5Y’ of morphisms the function

GLOSSARY G3

C(/,8):C(X,Y)—>C(X",Y")

h+———gohof.
C(f,id) is usually written f* and called precomposition with f, C(id,g) is usually
called g, and called postcomposition with g. Thus C(f,g)(4) = f*(g«(h)) = g«(f*(#)).

IDENTITY. See CATEGORY.

IMAGE FACTORIZATION. A CATEGORY C is said to have image factorizations
if every MORPHISM f factors as f=moe with m a MONOMORPHISM and e a
COVER.

INITIAL OBJECT. Dual of TERMINAL OBJECT.

ISOMORPHISM. A MORPHISM f: X——Y in a CATEGORY is an isomorphism (iso)
if there is a g:Y——X with gof=1idy and fog=idy. Such a g is necessarily unique,
is called the inverse of f and denoted f~1. We write f: X 2 Y to indicate that f is an
isomorphism. We write XY if such an f exists and say that X and Y are
Isomorphic objects in C.

LocALLY sMALL. See HOM-FUNCTOR.

MONOMORPHISM. A MORPHISM f: X——Y in a CATEGORY is a monomorphism
(mono, monic) if for all g h: X'_3 X, fog=foh implies that g=#4. The notation
f: X>——Y is used to indicate that f is a monomorphism.

MoRrPHISM. See CATEGORY.

NATURAL ISOMORPHISM. A natural isomorphism 6:F = G between FUNCTORS
F,G:C_3D is an ISOMORPHISM between F and G regarded as OBJECTS of the
FUNCTOR CATEGORY [C,D].

NATURAL TRANSFORMATION. If C,D are CATEGORIES and F,G:C_3D are
FUNCTORS, a natural transformation ¢: F—— G is specified by

® An operation assigning to each object X in C a morphism 8y: F(X)——>G(X) in
D (called the component of 6 at X). This operation should satisfy the condition
for each f: X——Y in C, G(f)obx = 6yo F(f), that is, the square

Fx)—ED |, mny

Ox 0y

G(X)

G{f)G(Y)

commutes. (One says that the family (65 | X€obC) is ‘natural in X.)

GLOSSARY G4

We often write

to indicate that F:C——D, G:C——-D and ¢: F—>G.
The vertical composition ¢o@: F—— H of natural transformations

e
C —tess D
, 11G¢ ,

has components (¢08)y = ¢yo60x. The horizontal composition ¢*8: Ho F— Ko G of
natural transformations

F H
~ ~N ~
C\ HG JD\ u¢ JE
G K

has components (¢*8)x = ¢g(x)° H(6x) (= K(0x)o ¢ x), by naturality of r,b).
OBJECT. See CATEGORY.

OPPOSITE CATEGORY. The opposite C°P of a CATEGORY C is the category with
® 0bC®° = 0obC;

® morC°® = {f°P| femorC}, where f°P is just a formal copy of f (in other words
take f——f°" to be some bijection whose codomain is disjoint from its
domain);

e dom(f°P) in C°P is cod(f) in C; cod(f°P) in C°P is dom(f) in C (in other
words, f°P: X——Y in C°® iff f:Y——X in C);

® IDENTITY on X in C°P is (idy)°P;

® (f°Pog®P) in C°P is (go/f)°P.

ProDUCTSs. Given a set / and an /-indexed collection (X;|i€/) of OBJECTS in a
CATEGORY, the product of these objects is specified by

® an object [T;e/X;

® an /-indexed collection of MORPHISMS (1r,-:],'I erXi—X; | z‘el)

having the following universal property:

for any object Y and /-indexed family (f;i:Y—> X; | iel) of morphisms, there
is a unique morphism (f;-lie]):Y—>HjE,Xj satisfying for all /el that
1r,-o(f;- l iEI) =f;'.

GLOSSARY G35

The =; are called the product projection morphisms. We say that the category has all
I-indexed products if we are given the above structure for all families (X; |i€/l). We
say that it has finite products if we are given the above structure for all families
indexed by a finite sets. By induction on the number of elements in a finite set, this
is equivalent to having /-indexed products for /=0 and /=2.

In the case that /=0, the product of no objects is an object 1, called the
TERMINAL OBJECT, with the universal property

for any object Y there is a unique morphism ():Y——l.
In the case /=2, we obtain the notion of binary product and use the notation
X xxy-I2,y
for the product of X and Y, and denote by
(f,8): Z—>XxXY

the unique morphism satisfying mo(f,g)=/:Z——>X and wyo(f,g)=g:Z—>Y. If
fi: X'——>X and g:Y'—Y, then (fom;,gom,) is denoted

Fxeg: X!xY—XxY.

A functor F:C——D preserves the product of (X;|i€l) in C if F(H,-e, X,-)
together with the morphisms F{(m;) has the above universal property for the product
of (F(X;)| i'el) in D. This is the same as requiring the morphism

(Fim) | iely: F(Il;e; X)) —— Iier F(X))
in D to be an ISOMORPHISM.

(Dual concept is called Coproduct, or Sum.)

PULLBACKS. Given MORPHISMS Y—Z s X«—£ 7 in a CATEGORY, the pullback
of g along f is a morphism f¥g):YxyZ——Y equipped with a morphism
ef(g):Yxe——>Z making the square

elg
Yxy =25,z

||

Y— X

f
commute (fof*(g) = go ef(g)) and with the universal property

for any pair of morphisms Y«2-W-2 7 with foa=gob, there is a unique
morphism ¢: W——Y xx Z satisfying f*(g)occ=a and c-,:,(g)oc: b.

(We say that a COMMUTATIVE square in a category is a pullback square if it
has a similar universal property to the one above.) We say that the category has
pullbacks if we are given the above structure for each pair of morphisms with
common codomain.

(Alternative name (Fr.): Fibred Product.)

GLOSSARY G6

PusHouUT. Dual of PULLBACK. (Alternative name (Fr.): Fibred Sum.)

SMALL CATEGORY. A CATEGORY C is small if morC and (hence) obC are sets,
i.e. objects in the category Set of sets and functions.

SUBCATEGORY. A CATEGORY D is a subcategory of another category C if obD
is a subset of obC, morD is a subset of morC and the operations in D for DOMAIN,
CODOMAIN, IDENTITY and COMPOSITION are the restrictions of those in C. The
inclusion functor D—— C obtained by restricting the identity on C, is FAITHFUL.

TERMINAL OBJECT. See PRODUCTS.

Bibliography

[Ab]

[Be]
[CK]
[Dum]
[Gi]

[GM]

[Hy]

[Johl]
[Joh2]

S. Abramsky, Domain Theory in Logical Form, Ann. Pure Applied Logic, to
appear.

J. L. Bell, Toposes and Local Set Theories (Oxford University Press, 1988).
C. C. Chang & H. J. Keisler, Model Theory (North-Holland, Amsterdam, 1973).
M. Dummett, Elements of Intuitionism (Oxford University Press, 1977).

J.-Y. Girard, Typed Lambda-Calculus (tr. P. Taylor & Y Lafont) (Cambridge
University Press), to appear.

J. A. Goguen & J. Meseguer, Initiality, Induction and Computability. In
M. Nivat & J. C. Reynolds (eds), Algebraic Methods in Semantics (Cambridge
University Press, 1985). pp 459-541.

J. M. E. Hyland, The Effective Topos. In A. S. Troelstra & D. van Dalen (eds),
The L. E. J. Brouwer Centenary Symposium (North-Holland, Amsterdam, 1982),
pp 165-216.

P. T. Johnstone, Topos Theory (Academic Press, London, 1977).
P. T. Johnstone, Stone Spaces (Cambridge University Press, 1982).

[Lal] F.W Lawvere, Adjointness in foundations, Dialectica 23(1969) 281-296.

[La2] F. W. Lawvere, Equality in Hyperdoctrines and the Comprehension Schema as

[(La3]

(LS]

(LW]

[MP]

[MR]

[Pi]

[RB]

an adjoint functor. In A. Heller (ed.), Applications of Categorical Algebra
(Proc. New York Symp.) (Amer. Math. Soc., Providence RI, 1970), pp 1-14.

F. W. Lawvere, Continuously Variable Sets: Algebraic Geometry = Geometric
Logic. In H. E. Rose & J. C. Shepherdson, Logic Colloquium 73 (North-Holland,
Amsterdam, 1975), pp 135-156.

J. Lambek & P.J. Scott, Introduction to Higher Order Categorical Logic
(Cambridge University Press, 1986).

K. G. Larsen & G. Winskel, Using information systems to solve recursive domain
equations effectively. In G. Kahn et al (eds), Semantics of Data Types, Lecture
notes in Computer Science Vol.173 (Springer-Verlag, Berlin, 1984), pp 109-129.

M. Makkai & A. M. Pitts, Some results on locally finitely presentable categories,
Trans. Amer. Math. Soc. 299(1987) 473-496.

M. Makkai & G. E. Reyes, First Order Categorical Logic, Lecture Notes in
Math. Vol. 611 (Springer-Verlag, Berlin, 1977).

A. M. Pitts, Conceptual Completeness for First-Order Intuitionistic Logic: an
Application of Categorical Logic, Amn. Pure Applied Logic, to appear.

D. E. Rydeheard & R. M. Burstall, Computational Category Theory (Prentice-Hall,
London, 1988).

