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involving the dynamic creation of mutable locations (such as ML-style references).See [17, 2, 7, 3, 18, 12, 13, 6, 4]. Our interest in this subject stems primarily from adesire to improve and deepen the techniques which are available for reasoning aboutprogram behaviour in the `impure' functional language Standard ML [9].Our motivation here is to try to identify what, if any, are the di�culties cre-ated purely by locality of state, independent of other properties such as side-e�ects,exceptional termination and non-termination due to recursion. Accordingly we con-sider higher order functions which can dynamically create fresh names of things,but which ignore completely what kind of thing (references, exceptions, etc.) is be-ing named. Names are created with local scope, can be tested for equality, and arepassed around via function application, but that is all. Because of this limited frame-work, there is some hope of obtaining de�nitive results|fully abstract models andcomplete proof techniques. As the vehicle for this study we formulate an extensionof the call-by-value, simply typed lambda calculus, called the nu-calculus and intro-duced in Sect. 2. In ML terms, it contains higher order functions over ground typesbool and unitref|the latter being the type of dynamically created references tothe unique element of type unit. This acts as a type of `names' because only onething can be (and is) stored in such a reference, so that its only characteristic is itsname. We have purposely excluded recursion from the nu-calculus and as a resultany closed expression evaluates to an essentially unique canonical form. Indeed, thenu-calculus appears at �rst sight to be an extremely simple system. On closer in-spection, we �nd that nu-calculus expressions can exhibit very subtle behaviour withrespect to an appropriate notion of observational equivalence. Thus our �rst contri-bution is somewhat in the spirit of Meyer and Seiber [7]: we observe that even for thisextremely simple case of local state there are observationally equivalent expressionswhich traditional denotational techniques will fail to identify (Example 4).In Sect. 3 we introduce a notion of `logical relation' for the nu-calculus incorpo-rating a version of representation independence for local names. Our technique is asyntactic version of the relationally parametric semantics of O'Hearn and Tennent[13]. There are also interesting similarities with Plotkin and Abadi's parametricityschema for existential types [16, Theorem 7]. We use our version of logical rela-tions to establish the termination properties of the nu-calculus (Theorem 12) and toprovide a useful notion of `applicative' equivalence between nu-calculus expressionswhich implies observational equivalence (Theorem 14). Although the two notions ofequivalence di�er at higher order types (Example 6), they coincide for expressions of�rst order types (Theorem 22) and are decidable there (Corollary 23). The proof ofthis occupies Sect. 4 and is surprisingly hard work: although applicative equivalenceprovides a compositional explanation of (observational equivalence classes of) �rstorder functions, even these can have complicated behaviour (see Example 1).Note. This paper is an expanded version of the operationally-based results an-nounced in [14]. That reference also contains an outline of our approach to thedenotational semantics of the nu-calculus.



2 The nu-calculusSyntactically, the nu-calculus is a kind of simply typed lambda calculus. The types,�, are built up from a ground type o of booleans and a ground type � of names, byforming function types, �!�0. Expressions take the formM ::= x variablej n namej true j false truth valuesj if M then M else M conditionalj M =M equality of namesj �n : M local name declarationj �x : � : M function abstractionj MM function applicationwhere x 2 Var, an in�nite set whose elements are called variables, and n 2 Nme, anin�nite set (disjoint from Var) whose elements are called names. Function abstractionis a variable-binding construct (occurrences of x in M are bound in �x : � : M),whereas local name declaration is a name-binding construct (occurrences of n in Mare bound in �n : M). We write Var(M) and Nme(M) for the �nite subsets of Varand Nme consisting of the free variables and the free names in an expressionM . Wedenote by M [M 0=x] (respectively M [M 0=n]) the result of substituting an expressionM 0 for all free occurrences of x (respectively n) inM , renaming bound variables andbound names if necessary, to avoid variable and name capture.Note. Henceforward, we implicitly identify expressions that di�er up to �-conversionof bound variables and bound names. Thus when we refer to an expression M wereally mean an �-equivalence class of expressions, referred to via one of its represen-tatives M .Expressions will be assigned types via typing assertions of the forms; � `M : �where s is a �nite subset of Nme, � is a �nite function from variables to types, � is atype, and M is an expression (more precisely, an �-equivalence class of expressions)satisfying Nme(M) � s and Var(M) � dom(� ) (the domain of de�nition of � ). Therules generating the valid typing assertions are given in Table 1. In these rules s�fngindicates the �nite set of names obtained from s by adjoining n 62 s; and � � [x : �]denotes the �nite function obtained by extending � by mapping x 62 dom(� ) to �.Clearly, if s; � ` M : � holds, then � is uniquely determined by s, � and M . Wewrite Exp�(s) def= fM j s; ; `M : �gfor the set of closed nu-calculus expression of type � with free names in the set s.The subset Can�(s) � Exp�(s)



Table 1. Rules for assigning types in the nu-calculus(x 2 dom(� ))s; � ` x : � (x) (n 2 s)s; � ` n : � (b = true; false)s; � ` b : os; � ` B : o s; � `M : � s; � `M 0 : �s; � ` if B then M else M 0 : � s; � ` N : � s; � ` N 0 : �s; � ` (N = N 0) : os� fng; � `M : �s; � ` �n : M : � s; � � [x : �] `M : �0s; � ` �x : � : M : �!�0 s; � ` F : �!�0 s; � `M : �s; � ` FM : �0of canonical nu-calculus expressions of type � with free names in the set s consistsof those closed expressions which are either names (in s), or the booleans constantstrue and false, or function abstractions.We give the operational semantics of the nu-calculus in terms of an inductivelyde�ned evaluation relation which matches the computational behaviour of equivalentML expressions. The ML equivalent of the expression �n : M islet n=ref() in M end(using the ML type unitref for the type of names). In other words the e�ect ofevaluating �n : M should be to create a fresh name n and then use it in evaluatingM . In the de�nition of ML [9] environments are used to bind identi�ers (variables)to addresses (names), whereas here we have chosen to simplify the form of the eval-uation relation by using `extended' expressions containing names explicitly. It wouldbe possible to simplify the syntax of the nu-calculus even further by identifying thesyntactic category of names with that of variables of type �. We choose not to doso because names and variables have di�erent semantic properties. For example,the operational semantics we give commutes with arbitrary substitutions on vari-ables, but only with restricted forms of substitutions on names (viz. essentially justpermutations of names): see Remark 2.An appropriate notion of state for this simple language is just a �nite subsetof Nme, indicating the names which have been created so far. So we will use anevaluation relation of the form s `M +� (s0)C (1)where s and s0 are disjoint �nite sets of names, M 2 Exp�(s) and C 2 Can�(s� s0).Note. Throughout this paper, we write s� s0 to indicate the union of two sets s ands0 that are disjoint.The intended meaning of (1) is: `in state s, expression M evaluates to canonicalform C creating fresh, local names s0 in the process'. The rules for generating therelation are given in Table 2. In rule (EQ) we use the notation �nn0 , where�nn0 def= � true if n = n0false if n 6= n0 :



It is important to note that the rules in Table 2 refer to the collection of judgementsas in (1) that are well-formed, i.e. satisfy the conditions mentioned above. For ex-ample, in rule (LOCAL) the well-formedness of the hypothesis and the conclusionentail that n is not an element of either s or s1.Table 2. Rules for evaluating nu-calculus expressions(CAN) s ` C +� C(COND1) s ` B +o (s1)true s� s1 `M +� (s2)Cs ` if B then M else M 0 +� (s1 � s2)C(COND2) s ` B +o (s1)false s� s1 `M 0 +� (s2)C0s ` if B then M else M 0 +� (s1 � s2)C0(EQ) s ` N +� (s1)n s� s1 ` N 0 +� (s2)n0s ` (N = N 0) +o (s1 � s2)�nn0(LOCAL) s� fng `M +� (s1)Cs ` �n : M +� (fng � s1)C(APP) s ` F +�!�0 (s1)�x : � : M 0 s� s1 `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C0s ` FM +�0 (s1 � s2 � s3)C0It is easy to see that evaluation is deterministic up to renaming created names,in the following sense:Lemma1. If s ` M +� (s1)C and s ` M +� (s2)C 0, then there is a bijectionR : s1 $ s2 so that C 0 is �-convertible with the expression C[n0=n j (n; n0) 2 R].Remark 2 (States are a�ne linear). The initial state s in the evaluation (1) hasthe structural properties of an a�ne linear logic context, in the sense that derivedrules of weakening and exchange are valid, but a rule of contraction is not. (Compare



the use made of a�ne linear logic by O'Hearn in [11].) Thus(WEAK) s `M +� (s1)Cs� fng `M +� (s1)C(EXCH) s� fng � fn0g `M +� (s1)Cs� fn0g � fng `M +� (s1)Care correct derived rules (the second trivially so, because we are using states thatare sets rather than lists), but(CONTR) s� fng � fn0g `M +� (s1)Cs� fn00g `M [n00=n; n00=n0] +� (s1)C[n00=n; n00=n0]is not a correct derived rule | as can be seen, for example, by taking s and s1 tobe ;, � to be o, M to be n = n0 and C to be false.More generally, given a function f : s! s0 and letting M [f ] denote the substi-tuted expression M [f(n)=n j n 2 s], we have that the rule (SUBST) below is acorrect derived rule provided that f is an injective function.(SUBST) s `M +� (s1)Cs0 `M [f ] +� (s1)C[f ]Remark 3 (Sequentiality condition). The evaluation rules in Table 2 follow thestate convention of Standard ML [9, p. 50], i.e. order of evaluation is from left toright, with state accumulating sequentially. We have formulated the operationalsemantics of the nu-calculus in this way to emphasize that it is (equivalent to) afragment of ML. However, because we are dealing with state that can be createdbut cannot be mutated, some of this sequentiality is spurious. Table 3 gives `de-sequentialized' versions of rules (COND1), (COND2), (EQ), and (APP). We claimthat using these rules instead of the corresponding rules in Table 2 does not a�ectthe collection of instances of evaluation that are derivable. This claim follows fromthe fact that a converse of the weakening rule (WEAK) is derivable:(STREN) s� s0 `M +� (s1)C (Nme(M) � s and Nme(C) � s� s1) :s `M +� (s1)CThe evaluation relation (1) can be used to de�ne a Morris-style contextual equiv-alence between nu-calculus expressions: two expressions are equivalent if they canbe interchanged in any program without a�ecting the observable result of evaluatingit. Here we will take a `program' to be a closed expression of type o, and the pos-sible observable results of evaluating a program to be the booleans true and false,disregarding any local names that are created in the process of evaluation. (It wouldnot change the notion of observational equivalence given below if we also allowedprograms to be of type � and observable results to include pre-existing names.) Inthe following de�nition, as usual the `context' B[�] is an expression in which somesubexpressions have been replaced by a place-holder, �; and then B[M ] denotes theresult of �lling the place-holder with an expression M .



Table 3. `De-sequentialized' evaluation rules(COND10) s ` B +o (s1)true s `M +� (s2)Cs ` if B then M else M 0 +� (s1 � s2)C(COND20) s ` B +o (s1)false s `M 0 +� (s2)C0s ` if B then M else M 0 +� (s1 � s2)C0(EQ0) s ` N +� (s1)n s ` N 0 +� (s2)n0s ` (N = N 0) +o (s1 � s2)�nn0(APP0) s ` F +�!�0 (s1)�x : � : M 0 s `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C0s ` FM +�0 (s1 � s2 � s3)C0De�nition 4 (Observational equivalence). Given M1;M2 2 Exp�(s), we writes `M1 �� M2to mean that for all B[�] and all b 2 ftrue; falseg,9s1(s ` B[M1] +o (s1)b), 9s2(s ` B[M2] +o (s2)b) :In this case we say that M1 and M2 are observationally equivalent.The following result shows that one need only consider contexts that immediatelyevaluate their arguments in order to establish observational equivalence. It is theanalogue of Theorem (ciu) in [4].Lemma5. s `M1 �� M2 if and only if for all b 2 ftrue; falseg and all �x : � : B 2Can�! o(s)9s1(s ` (�x : � : B)M1 +o (s1)b), 9s2(s ` (�x : � : B)M2 +o (s2)b) :The following instances of observational equivalence are easily established using thelemma.Corollary 6. 1. If M 2 Exp�(s) and n 62 s, then s ` �n : M �� M .2. If M 2 Exp�(s� fng � fn0g), then s ` �n : �n0 : M �� �n0 : �n : M .3. If s `M +� (s0)C, then s `M �� �s0 : C. Here �s0 : C stands for �n1 : : : �nk :C if s0 = fn1; : : : ; nkg for some k > 0, and stands for C if s0 = ;. (By part 2, upto observational equivalence, it does not matter which order we enumerate theelements of s0 in �s0 : C.)4. If s; [x : �] `M : �0 and C 2 Can�(s), then s ` (�x : � : M)C ��0 M [C=x].



In the next section we will show that evaluation of nu-calculus expressions alwaysterminates (Theorem 12). It follows from this and the above corollary that, up toobservational equivalence, the only closed expressions of type o are true and falseand the only closed expression of type � not involving any free names isnew def= �n : n :However, at higher types things become more complicated. The following examplegives in�nitely many expressions of type �! � which are mutually observationallyinequivalent.Example 1. For each p � 1, consider the nu-calculus expression of type �! � which�rst creates p + 1 local names n0; : : : ; np and then acts as the function cyclicallypermuting these names and mapping any other name to n0:Fp def= �n0 : : : �np : �x : � : if x = n0 then n1 elseif x = n1 then n2 else� � �if x = np then n0 else n0 :Then ; ` Fp 6��! �Fp0 whenever p 6= p0, becauseBq def= �f : �! � : �n : (f (q+2)(n) = f(n))has the property that for all q 2 f1; : : : ; pg, ; ` BqFp +o (fn0; : : : ; np; ng)true if andonly if q = p. (In Bq , f (q+2) indicates f iterated q + 2 times.)Example 2. Here is a simple example to illustrate the fact that local name declarationand function abstraction in general do not commute up to observational equivalence.The expressions M def= �n : �x : � : n and N def= �x : � : �n : nare not observationally equivalent, becauseB def= �f : �! � : (fnew = fnew) has theproperty that ; ` BM +o (fn; n1; n2g)true whereas ; ` BN +o (fn; n1; n2g)false.Example 3. The rule (APP) in Table 2 embodies a form of strict, or `call-by-value',application. Part 4 of Corollary 6 shows that the appropriate restricted form of beta-conversion (Plotkin's �v [15]) holds up to observational equivalence. Although thereis no non-termination in our simple language, the general form of beta-conversionfails for the nu-calculus, because of the dynamics of name creation. For example, thebeta redex (�x : � : x = x)new is not observationally equivalent to the correspondingreduct new = new since; ` (�x : � : x = x)new +o (fn1g)true; ` (new = new) +o (fn1; n2g)false :



For the simple functional language PCF, Milner's context lemma [8] shows thatobservational equivalence may be established by testing just with applicative con-texts, i.e. those of the form [�]C1C2 : : : Ck. Not surprisingly, this fails in the nu-calculus. For example, the expressions Fp in Example 1 are in fact indistinguishableby such applicative contexts, even though they can be distinguished by more com-plicated contexts (like Bq([�])) which carry out `anonymous' manipulation of theprivate names n0; : : : ; np. It would seem that the properties of higher order functionswhich create and pass around private names can be quite subtle. Two contrastingexamples of observational equivalence, more subtle than those in Corollary 6, aregiven below. The �rst one illustrates the fact that local names are always distinctfrom externally supplied names; the second illustrates the fact that any two localnames are indiscernible by externally supplied boolean tests. (This second equiva-lence is quite delicate|it certainly would not hold in languages where evaluation offunctions can have side-e�ects on mutable state.) The methods developed in the nextsection su�ce to prove (2), but not (3). At the moment, the only method known tous for establishing this second equivalence is denotational, i.e. via a speci�c modelof the nu-calculus: see [14, Sect. 4].Example 4.; ` �n : �x : � : (x = n) ��! o �x : � : false (2); ` �n : �n0 : �f : �! o : (fn = fn0) �(�! o)! o �f : �! o : true : (3)In (3), the boolean equality test fn = fn0 is an abbreviation forif fn then (if fn0 then true else false) else (if fn0 then false else true) :3 Representation independence for local namesThis section develops a notion of (binary) logical relation for the nu-calculus andshows how to use it to establish instances of observational equivalence between nu-calculus expressions.Given �nite subsets s1; s2 � Nme of names, we write R : s1 
 s2 to indicate thatR is (the graph of) a partial bijection from s1 to s2. In other words, R � s1 � s2satis�es m1 R m2 ^ n1 R n2 ) (m1 = n1,m2 = n2) : (4)(We use in�x notation for binary relations.) Note that R � R0 is a partial bijections1 � s01 
 s2 � s02 when R : s1 
 s2 and R0 : s01 
 s02 are disjoint partial bijections.The identity partial bijection, Is : s
 s, is given by:n1 Is n2 , n1 = n2 : (5)The domain and codomain of de�nition of a partial bijection R : s1 
 s2 will bedenoted dom(R) def= fn1 2 s1 j 9n2 2 s2 : n1 R n2g (6)cod(R) def= fn2 2 s2 j 9n1 2 s1 : n1 R n2g : (7)



Thus R is a bijection just in case dom(R) = s1 and cod(R) = s2, in which case wewrite R : s1 $ s2.De�nition 7 (Logical relations). For each type � we de�ne a family of binaryrelations between canonical expressions(R� � Can�(s1)�Can�(s2) j R : s1 
 s2)by induction on the structure of � as in (9), (10) and (11) below; clause (11) makesuse of associated relations between expressions, R� � Exp�(s1)� Exp�(s2) de�nedby (8).M1 R� M2 , 9R0 : s01 
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) : (8)s1 `M1 +� (s01)C1 ^ s2 `M2 +� (s02)C2 ^ C1 (R �R0)� C2b1 Ro b2 , b1 = b2 (9)n1 R� n2 , n1 R n2 (10)�x : � : M1 R�! �0 �x : � : M2, (11)8R0 : s01 
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :C1 (R �R0)� C2)M1[C1=x] (R�R0)�0 M2[C2=x] :(It is implicit in (8) and (11) that each s0i is required to be disjoint from si.)The family (R� j �) is a form of binary `logical relation' for nu-calculus expres-sions. Since we choose in (9) to take the logical relation to be the identity at theground type o, the whole family is determined by what we take at the other groundtype �. We wish related expressions to be mapped to related expressions by anynu-calculus function, and we have to impose the restriction (4) on the relation R toensure this property holds for the function testing equality of names. The followingproposition expresses this fundamental property of our notion of logical relation.Proposition 8 (Fundamental property of logical relations). Suppose[x1 : �1; : : : ; xk : �k ] `M : � :Then for all R : s1 
 s2, Ci 2 Can�i(s1) and Di 2 Can�i(s2) (i = 1; : : : ; k), onehas  k̂i=1Ci R�i Di!)M [C1=x1; : : : ; Ck=xk] R� M [D1=x1; : : : ; Dk=xk] :Proof. The proof proceeds by induction on the derivation of the typing assertion[x1 : �1; : : : ; xk : �k] ` M : �, and makes use of (the only if part of) the followinglemma, which is itself proved by induction on the structure of the type �. We omitthe details. ut



Lemma9. Given R : s1 
 s2 and R0 : s01 
 s02 with si and s0i disjoint (for i = 1; 2),then for all types � and all canonical expressions Ci 2 Can�(si) (i = 1; 2), C1 R� C2if and only if C1 (R�R0)� C2.Similarly, for all Mi 2 Exp�(si), M1 R� M2 if and only if M1 (R�R0)� M2.Remark. The main interest in De�nition 7 lies in clause (8) where the relation R�on expressions is de�ned in terms of the relation R� on canonical expressions. Thisclause embodies a form of `representation independence' for the dynamically createdlocal names. (Cf. Plotkin and Abadi's parametricity schema for existential types [16,Theorem 7].) One might have expected to see not (8), but ratherM1 R� M2 , (8s01; C1 2 Can�(s1 � s01) : s1 `M1 +� (s01)C1) (12)9s02; R0 : s01 
 s02; C2 2 Can�(s2 � s02) :s2 `M2 +� (s02)C2 ^ C1 (R�R0)� C2)(̂8s02; C2 2 Can�(s2 � s02) : s2 `M2 +� (s02)C2)9s01; R0 : s01 
 s02; C1 2 Can�(s1 � s01) :s1 `M1 +� (s01)C1 ^ C1 (R�R0)� C2)This deals appropriately with the possibility of non-termination. However, the simplelanguage we are considering here has the property (Theorem 12) that all expressionsconverge to canonical forms which are essentially unique (by Lemma 1), in whichcase (12) is equivalent to the simpler form (8).Clause (11) of De�nition 7 is a syntactic version of O'Hearn and Tennent's ap-proach to relational parametricity in [13]. It also exhibits the characteristic feature of`logical relations', in that two functions are de�ned to be related if they send relatedarguments to related results. To be more in keeping with the de�nition of applica-tive bisimulation in [1], one might consider an alternative de�nition in which twofunctions are related when they give related results for all arguments. For pure func-tional languages, such as the lazy lambda calculus, one expects the two approachesto be equivalent, and to equal observational equivalence: see [1, 5]. Here, the notionof `applicative equivalence' we de�ne below using De�nition 7 is contained in, butnot equal to observational equivalence; and we believe that replacing clause (11) bya `related if related on all arguments' version (which we will not formulate preciselyhere) results in an even weaker notion of equivalence.We will need to use Proposition 8 in the more general form given in the corollarybelow. Its statement makes use of the following notation for renaming expressionsalong the bijection R : dom(R)$ cod(R) obtained from a partial bijection R : s1 
s2 by restricting it to its domain of de�nition (cf. de�nitions (6) and (7)).De�nition 10. Given a partial bijection R : s1 
 s2, for any nu-calculus expres-sion M , let M [R] denote the result of simultaneously substituting for each name indom(R) the corresponding name in cod(R):M [R] def= M [n0=n j n R n0] :



Corollary 11. Suppose s1; [x1 : �1; : : : ; xk : �k] ` M : �, that R : s1 $ s2 is abijection and that R0 : s01 
 s02 is a partial bijection disjoint from R. Then for allCi 2 Can�i(s1 � s01) and Di 2 Can�i(s2 � s02) (i = 1; : : : ; k) one has k̂i=1Ci (R�R0)�i Di!)M [C1=x1; : : : ; Ck=xk] (R�R0)� M [R][D1=x1; : : : ; Dk=xk] :Proof. Apply Proposition 8 to[y1 : �; : : : ; y` : �; x1 : �1; : : : ; xk : �k] `M [yj=nj j 1 � j � `] : �where s = fn1; : : : ; n`g. utTheorem12 (Termination). For all closed expressions M , of type � and with freenames in the set s say, there is some set of names s0 (disjoint from s) and somecanonical expression C 2 Can�(s� s0) such that s `M +� (s0)C.Proof. The k = 0 case of Corollary 11 implies that M (Is)� M for all M 2 Exp�(s).Termination follows from this, given the de�nition of R� in (8). utWe now show how the fundamental property of our notion of logical relationembodied in Proposition 8 can be used to establish observational equivalences.De�nition 13 (Applicative equivalence). We say that two expressionsM1;M2 2Exp�(s) are applicatively equivalent if M1 (Is)� M2, where Is : s
 s is the identitypartial bijection on s de�ned in (5).Theorem14. Applicative equivalence implies observational equivalence.Proof. Suppose M1 (Is)� M2. We employ Lemma 5 to see that s ` M1 �� M2. By(8) there is some R0 : s01 
 s02, and C1; C2 with s ` Mi +� (s0i)Ci (i = 1; 2) andC1 (Is �R0)� C2. Then for any �x : � : B 2 Can�! o(s), applying Corollary 11 withR = Is we get B[C1=x] (Is �R0)o B[C2=x]. Hence by (8) again, there is some R00 :s001 
 s002 and b1; b2 with s� s0i ` B[Ci=x] +o (s00i )bi (i = 1; 2) and b1 (Is �R0 �R00)ob2, i.e. with b1 = b2 (by (9)). Applying the rules in Table 2, we deduce that s ` (�x :� : B)Mi +o (s0i � s00i )bi with b1 = b2. Thus Lemma 5 and the deterministic natureof the evaluation relation (Lemma 1) imply that M1 �� M2. utExample 5. Theorem 14 provides quite a powerful method for establishing some ob-servational equivalences, since the relation (Is)� is much easier to deal with than ��.For example, the observational equivalence (2) can be established by this method.For with C1 def= �x : � : (x = n) and C2 def= �x : � : falseit is not hard to see that C1 (I; �R)�! o C2 where R : fng 
 ; is necessarily theempty partial bijection; hence �n : C1 (I;)�! o C2, as required.



However, not every observational equivalence can be established via Theorem 14,as the following example shows. Thus applicative equivalence is in general a strictlyweaker relation than observational equivalence. Nevertheless, as we shall see below(Theorem 22), the converse of Theorem 14 does hold when � is a �rst order type,i.e. of the form �k!�k�1!� � �!�0 with each �i either � or o.Example 6. The pair of second order expressions in (3) are observationally equivalent(this can be established via the denotational methods sketched in [14, Sect. 4]),but they are not related by (I;)(�! o)! o. For the only possible partial bijectionR : fn; n0g 
 ; is R = ;; but �f : �! o : (fn = fn0) and �f : �! o : true arenot related by (I; � R)(�! o)! o, because for the canonical expressions C1 and C2de�ned in Example 5, C1 (I; �R)�! o C2, whereas it is not the case that (fn =fn0)[C1=f ] (I; �R)o true[C2=f ].4 Observational relationsTo investigate further the relationship between observational and applicative equiva-lence, we introduce the following generalization of the notion of observational equiv-alence which we will see satis�es all the de�ning properties of applicative equivalencein De�nition 7 except (11).De�nition 15. Given a partial bijection R : s1 
 s2 and expressionsMi 2 Exp�(si)(i = 1; 2), we write M1Robs� M2to mean that for all � 2 fo; �g and all �x : � : P 2 Can�! � (dom(R))(�x : � : P )M1 R� (�x : � : P [R])M2 :In this case we say that M1 and M2 are observationally R-related. Note that be-cause � is a ground type, the relation R� , de�ned using (8), (9) and (10), takes aparticularly simple form:{ For all Bi 2 Expo(si), B1 Ro B2 if and only if there is some b 2 ftrue; falseg sothat for each i = 1; 2 si ` Bi +o (s0i)b for some s0i.{ For all Ni 2 Exp�(si), N1 R� N2 if and only if for each i = 1; 2 si ` Ni +� (s0i)nifor some s0i and some ni 2 si � s0i satisfyingn1 R n2 or (n1 2 s01 and n2 2 s02) :The following proposition substantiates the claim that observational relationsgeneralize the notion of observational equivalence.Proposition 16. Observational equivalence coincides with being observationally Is-related. In other words, for any M1;M2 2 Exp�(s)s `M1 �� M2 ,M1(Is)obs� M2 :



Proof. Comparing De�nition 15 with the characterization of observational equiv-alence in Lemma 5, it su�ces to show that when s ` M1 �� M2 then (�x :� : P )M1 (Is)� (�x : � : P )M2, for any �x : � : P 2 Can�! �(s). Certainlys ` M1 �� M2 implies s ` (�x : � : P )M1 �� (�x : � : P )M2. So in fact it su�cesto show for any N1; N2 2 Exp�(s) thats ` N1 �� N2 ) N1 (Is)� N2 : (13)To proof (13), �rst use Theorem 12 to �nd si and ni such that s ` Ni +� (si)ni.For any n 2 s one thus has s ` (�x : � : x = n)Ni +� (si)bi, where bi = true if andonly if n = ni. Since s ` N1 �� N2, b1 = b2; hence either n1 = n2 2 s, or n1 2 s1and n2 2 s2. Thus N1 (Is)� N2, as required. utLemma17. For any partial bijection R : s1 
 s2 and any Mi 2 Exp�(si) (i = 1; 2)M1 R� M2 )M1Robs� M2 : (14)Moreover, when � 2 fo; �g the reverse implication holds.Proof. The implication (14) follows immediately from Corollary 11. To see that thesecond part of the lemma holds, note that in case � 2 fo; �g, if M1Robs� M2 thenin De�nition 15 we can take P to be x to conclude that (�x : � : x)M1 R� (�x :� : x)M2 and hence that M1 R� M2 (since Mi and (�x : � : x)Mi have the samebehaviour under evaluation). utLemma18. For any R : s1 
 s2, Mi 2 Exp�(si) (i = 1; 2) and �x : � : N 2Can�! �(dom(R)), suppose si `Mi +� (s0i)Ci (i = 1; 2)s1 � s01 ` N [C1=x] +� (s001 )n1s2 � s02 ` N [R][C2=x] +� (s002)n2 :If M1Robs� M2, then n1 2 s001 if and only if n2 2 s002 .Proof. Consider the boolean expressionB def= (�x : � : N)x = (�x : � : N)x :For each i = 1; 2 let s000i be a fresh set of names in bijection with s00i , via Ri : s00i $ s000isay. Then s1 ` (�x : � : B)M1 +o (s01 � s001 � s0001 )b1s2 ` (�x : � : B[R])M2 +o (s02 � s002 � s0002 )b2where bi = false if and only if ni 6= ni[Ri], i.e. if and only if ni 2 s00i . If M1Robs� M2then we must have b1 = b2, from which the result follows. ut



The following proposition expresses a key property of observational relationswhich is a precise analogue of the characteristic clause (8) in the de�nition of logicalrelation that we have been using. It shows why partial bijections between states(sets of names) play a prominent role in studying observational properties of thenu-calculus, since they can be used to explain observational equivalence (i.e. beingobservationally Is-related, by Proposition 16) between general expressions in termsof observational relations between canonical expressions. The proof of the propositionis quite intricate and we give it in some detail.Proposition 19. For any partial bijection R : s1 
 s2 and any Mi 2 Exp�(si)(i = 1; 2)M1Robs� M2 , 9R0 : s01 
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) : (15)s1 `M1 +� (s01)C1 ^ s2 `M2 +� (s02)C2 ^ C1(R �R0)obs� C2 :Proof. Suppose that M1Robs� M2. By Theorem 12, si ` Mi +� (s0i)Ci for some Ci 2Can�(si � s0i) (i = 1; 2). We begin by constructing a suitable partial bijection R0 :s01 
 s02.Let R0 consist of those pairs of names (n; n0) 2 s01 � s02 for which there is some�x : � : N 2 Can�! �(dom(R)) withs1 � s01 ` (�x : � : N)C1 +� (s001 )n (16)s2 � s02 ` (�x : � : N [R])C2 +� (s002 )n0 : (17)To see that R0 is a partial bijection, suppose n R0 n0, witnessed by a canonicalexpression �x : � : N satisfying (16) and (17), and suppose also m R0 m0, witnessedby some �x : � : M . Applying the test �x : � : (N = M) 2 Can�! o(dom(R)) toM1Robs� M2, we have (�x : � : (N = M))M1 Ro (�x : � : (N = M)[R])M2; from thisit follows that n = m if and only if n0 = m0. Thus R0 is indeed a partial bijection.Next we show that C1(R �R0)obs� C2. Given any �x : � : P 2 Can�! � (dom(R�R0)) with � 2 fo; �g, we have to show that (�x : � : P )C1 (R�R0)� (�x : � :P [R � R0])C2. Enumerate R0 as f(ni; n0i) j 1 � i � kg for some k � 0, and for eachi let �x : � : Ni 2 Can�! �(dom(R)) witness that ni R0 n0i (as in (16) and (17)).Consider P 0 def= (�y1 : � : � � ��yk : � : P [yi=ni j 1 � i � k])N1 � � �NkSuppose that s1 � s01 ` (�x : � : P )C1 +� (s001 )D1 (18)s2 � s02 ` (�x : � : P [R�R0])C2 +� (s002)D2 : (19)Then by construction of P 0, we also haves1 ` (�x : � : P 0)M1 +� (s01 � s� s001)D1 (20)s2 ` (�x : � : P 0[R])M2 +� (s02 � s0 � s002)D2 (21)for some s and s0. Since �x : � : P 0 2 Can�! � (dom(R)) and M1Robs� M2, we have(�x : � : P 0)M1 R� (�x : � : P 0[R])M2. Hence by (20) and (21),D1 (R� S)� D2 (22)



for some S : s01 � s � s001 
 s02 � s0 � s002 . We consider the cases � = o and � = �separately.When � = o, (22) immediately gives D1 = D2, and hence by (18) and (19),(�x : � : P )C1 (R�R0)o (�x : � : P [R�R0])C2, as required.When � = �, (22) implies eitherD1 R D2, orD1 2 s01�s�s001 andD2 2 s02�s�s002 .But in this second case, by Lemma 18(D1 2 s01 and D2 2 s02) or (D1 2 s� s001 and D2 2 s0 � s002) :By de�nition of R0, if Di 2 s0i (i = 1; 2), then D1 R0 D2. So when � = � we haveD1 R �R0 D2 or (D1 2 s� s001 and D2 2 s0 � s002 )and hence by (18) and (19), (�x : � : P )C1 (R�R0)� (�x : � : P [R � R0])C2, asrequired.This completes the proof of the implication ) in (15). The proof of the reverseimplication is quite straightforward and we omit it. utCombining Proposition 19 with Lemma 17, we have that Robs� satis�es the de�n-ing clauses (8){(10) of R� and R� in De�nition 7. It cannot also satisfy clause (11)for function types, since then Robs� and R� would coincide for all �, and hence (byProposition 16) observational equivalence would coincide with applicative equiva-lence; but by Example 6 we know that in general this is not the case. However, forfunction types �!�0 with � 2 fo; �g we can simplify clause (11) as in Proposi-tion 21 below. To establish this proposition we need the following property of therelations R� under relabelling along a bijection; it is easily established by inductionon the structure of �, using the derived rule (SUBST) from Remark 2.Lemma20. Suppose given a partial bijection R : s1 
 s2, and bijections R1 : s1 $s01 and R2 : s2 $ s02. Then for all Mi 2 Exp�(si) (i = 1; 2)M1 R� M2,M1[R1] (R2 �R �R�11 )� M2[R2]where R2 � R � R�11 is the composed relation f(n01; n02) j 9(n1; n2) 2 R : (ni; n0i) 2Ri(i = 1; 2)g.Proposition 21. Suppose given R : s1 
 s2 and Ci 2 Can�! �0(si) (i = 1; 2).1. When � = o, C1 Ro! �0 C2 if and only if for all b 2 ftrue; falseg, C1b R�0 C2b.2. When � = �, C1 R�!�0 C2 if and only if(a) for all (n1; n2) 2 R, C1n1 R�0 C2n2, and(b) C1n (R� Ifng)�0 C2nwhere n is some name not in s1 [ s2.Proof. The `only if' direction of each statement follows almost immediately fromde�nition (11). For the `if' direction, suppose given R0 : s1 
 s02 and Di 2 Can�(si�s0i) (i = 1; 2) with D1 (R� R0)� D2 : (23)It su�ces to show that C1D1 (R�R0)�0 C2D2 : (24)



In case � = o, (23) implies D1 = D2 2 ftrue; falseg, hence C1D1 R�0 C2D2 holdsby hypothesis, and therefore so does (24), by Lemma 9.In case � = �, (23) implies either (D1; D2) 2 R or (D1; D2) 2 R0. The �rstpossibility yields (24) much as in the case � = o. In the second case, we can expressR0 as R1 � R2 where R1 = f(D1; D2)g and R2 = R0 n f(D1; D2)g. Then Lemma 20and the assumption that C1n (R� Ifng)�0 C2n implies C1D1 (R �R1)�0 C2D2;hence by Lemma 9, (24) holds since R0 = R1 �R2. utTheorem22. Observational equivalence coincides with applicative equivalence forexpressions of �rst order types. In other words, if � is of the form �k!�k�1!� � �!�0with each �i either � or o, then for all M1;M2 2 Exp�(s)s `M1 �� M2,M1 (Is)� M2 :Proof. By Theorem 14 and Proposition 16, it su�ces to prove for �rst order �, andany R : s1 
 s2 and Mi 2 Exp�(si), thatM1Robs� M2)M1 R� M2 :We do this by induction on the structure of �. The base cases � = o; � are covered bythe last part of Lemma 17. For the induction step we have to show that the propertyholds of �!� (� 2 fo; �g) when it does of �. For this, by Propositions 19 and 21 itsu�ces to check that Robs�! � satis�es the analogue of the `only if' part of the latterproposition. In other words it su�ces to check that if C1Robs�!�C2, then{ when � = o, C1b R� C2b for all b 2 ftrue; falseg; and{ when � = �� for all (n1; n2) 2 R, C1n1 R� C2n2, and� C1n (R� Ifng)� C2nwhere n is any name not in s1 [ s2.We indicate the proof of the last of these properties (the others being straight-forward to establish). So suppose C1Robs�! �C2 and n 62 s1 [ s2. Given any � 2 fo; �gand any �x : � : P 2 Can�! � (dom(R � Ifng)), we have to show(�x : � : P )(C1n) (R� Ifng)� (�x : � : P )(C2n) : (25)Consider P 0 def= �n : (�x : � : P )(fn)Since �f : �!� : P 0 2 Can(�!�)! � (dom(R)), we have(�f : �!� : P 0)C1 R� (�f : �!� : P 0)C2 : (26)So if s1 � fng ` (�x : � : P )(C1n) +� (s01)D1s2 � fng ` (�x : � : P [R� Ifng])(C2n) +� (s02)D2



then by de�nition of P 0, (26) implies D1 (R �R0)� D2 for some R0 : fng � s01 
fng � s02. In case � = o this immediately gives D1 = D2 and hence that (25) holds,as required. In case � = �, it su�ces to show thatD1 = n,D2 = n : (27)For then D1 (R� Ifng �R00)� D2 for some R00 (namely R00 = R0 n f(n; n)g) andhence (25) holds, as required. To see that (27) holds, consider applying the test�f : �!� : �n : ((�x : � : P )(fn) = n) 2 Can(�! �)! o(dom(R))to C1Robs�!�C2. utCorollary 23. The relation of observational equivalence between nu-calculus expres-sions of �rst order type is decidable.Proof. By the above theorem, it su�ces to check that the relations R� are decidablefor �rst order �. For this, it is su�cient to establish the decidability of the relationsR� (for �rst order �) since Theorem 12 ensures that we can calculate s01 and s02 inclause (8), and then there are only �nitely R0 for which a decidable property has tobe checked. The decidability of R� can be established by induction on the structureof the �rst order type �, the base cases being trivial, and the induction step followingfrom Proposition 21. ut5 ConclusionThe nu-calculus combines higher order functions with an extremely simple kind ofdynamically created local state. Our original motivation for introducing and studyingsuch a computationally simple language was as a vehicle for understanding what, ifany, are the di�culties introduced by pure locality of state when reasoning aboutproperties of higher order functions. Our expectation that the di�culties would notbe very great has proved to be incorrect, as the results and examples in this papershow.On a more positive note, we have developed a useful notion of logical relationwhich builds in a version of `representation independence' for local names. We showedthat it can be used to establish observational equivalence between expressions (The-orem 14). We expect that extensions of this logical relations approach will proveuseful for studying observational equivalence in computationally more interestinglanguages (such as a larger fragment of ML with dynamically created references andexception names).For the nu-calculus, this method of establishing observational equivalence is in-complete in general (Example 6), but is complete for expressions of �rst order type(Theorem 22). Of course, the fundamental problem is that (canonical) expressions�x : �!�0 : M of function type are not in general determined up to observationalequivalence by their extensional behaviour, i.e. by the function on closed expressionsC 7!M [C=x] that they determine via application. Nevertheless, it may be that ob-servational equivalence at function types, ��! �0 , can be explained compositionally



by applying some construction to �� and ��0 . Clearly this compositionality prop-erty is enjoyed by the notion of applicative equivalence (De�nition 13). We leave asan open question whether observational equivalence also has this property.This paper has taken an operationally-based approach. Section 4 of [14] outlinesan approach to the denotational semantics of the nu-calculus which builds on work ofMoggi [10] using categorical monads. The monadic approach enforces a distinctionbetween denotations of values (expressions in canonical form) and denotations ofcomputations (arbitrary expressions). This is helpful, since it allows us to identifyexplicitly and simply what structure is needed in a model to give a static meaningfor the key dynamic aspect of the nu-calculus, viz. the action of computing a newname. Further details will appear elsewhere.Acknowledgements We are grateful to Eugenio Moggi, Peter O'Hearn, Allen Stough-ton and Robert Tennent for making their unpublished work available to us. We havebene�ted from many conversations with them on the topic of this paper.
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