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Abstract. This tutorial paper discusses a particular style of operational
semantics that enables one to give a ‘syntax-directed’ inductive defini-
tion of termination which is very useful for reasoning about operational
equivalence of programs. We restrict attention to contextual equivalence
of expressions in the ML family of programming languages, concentrating
on functions involving local state. A brief tour of structural operational
semantics culminates in a structural definition of termination via an ab-
stract machine using ‘frame stacks’. Applications of this to reasoning
about contextual equivalence are given.
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1 Introduction

The various approaches to giving meanings to programming languages fall broad-
ly into three categories: denotational, axiomatic and operational. In a denota-
tional semantics the meaning of programs is defined abstractly using elements
of some suitable mathematical structure; in an axiomatic semantics, meaning is
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defined via some logic of program properties; and in an operational semantics it
is defined by specifying the behaviour of programs during execution. Operational
semantics used to be regarded as less useful than the other two approaches for
many purposes, because it tends to be quite concrete, with important general
properties of a programming language obscured by a low-level description of how
program execution takes place. The situation changed with the development of a
structural approach to operational semantics initiated by Plotkin, Milner, Kahn,
and others. Structural operational semantics is now widely used for specifying
and reasoning about the semantics of programs.

In this tutorial paper I will concentrate upon the use of structural operational
semantics for reasoning about program properties. More specifically, I will look
at operationally-based proof techniques for contextual equivalence of programs
(or fragments of programs) in the ML language—or rather, in a core language
with function and reference types that is common to the various languages in
the ML family, such as Standard ML [9] and Caml [5]1. ML is a functional
programming language because it treats functions as values on a par with more
concrete forms of data: functions can be passed as arguments, can be returned
as the result of computation, can be recursively defined, and so on. It is also
a procedural language because it permits the use of references (or ‘cells’, or
‘locations’) for storing values: references can be declared locally in functions
and then created dynamically and their contents read and updated as function
applications are evaluated. Although this mix of (call-by-value) higher order
functions with local, dynamically allocated state is conveniently expressive, there
are many subtle properties of such functions up to contextual equivalence. The
traditional methods of denotational semantics do not capture these subtleties
very well—domain-based models either tend to be far from ‘fully abstract’, or
very complicated, or both. Consequently a sort of ‘back to basics’ movement
has arisen that attempts to develop theories of program equivalence for high-
level languages based directly on operational semantics (see [11] for some of the
literature).

There are several different styles of structural operational semantics (which I
will briefly survey). However, I will try to show that one particular and possibly
unfamiliar approach to structural operational semantics using a ‘frame stack’
formalism—derived from the approach of Wright and Felleisen [18] and used in
the redefinition of ML by Harper and Stone [6]—provides a more convenient
basis for developing properties of contextual equivalence of programs than does
the evaluation (or ‘natural’, or ‘big-step’) semantics used in the official definition
of Standard ML [9].

Further Reading. Most of the examples and technical results in this paper to do
with operational properties of ML functions with local references are covered in
more detail in the paper [15] written jointly with Ian Stark. More recent work
on this topic includes the use of labelled transition systems and bisimulations by
Jeffrey and Rathke [7]; and the use by Aboul-Hosn and Hannan of static restric-

1 I will use the concrete syntax of Caml.
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tions on local state in functions to give a more tractable theory of equivalence [1].
The use of logical relations based on abstract machine semantics to analyse other
programming language features, such as polymorphism, is developed in [13, 14,
3]; see also [2] and [6].

Exercises. Some exercises are given in Appendix B.

Notation. A list of the notations used in this paper is given in Appendix C.

Acknowledgement. I am grateful to members of the audience of the lectures on
which this paper is based for their lively feedback; and to an anonymous referee
of the original version of this paper, whose detailed comments helped to improve
the presentation.

2 Functions with Local State

Consider the following two Caml expressions p and m:

p � let a = ref 0 in
fun(x : int) -> (a := !a + x ; !a )

(1)

m � let b = ref 0 in
fun(y : int) -> (b := !b - y ; 0 - !b )

(2)

I claim that these Caml expressions (of type int -> int) are semantically equiv-
alent, in the sense that we can use them interchangeably in any place in an ML
program that expects an expression of type int -> int without affecting the
overall behaviour of the program. Such notions of equivalence of programs go by
the name of contextual equivalence. Here is an informal definition of this notion,
that holds good for any particular kind of programming language:

Two phrases of a programming language are contextually equivalent if
any occurrences of the first phrase in a complete program can be replaced
by the second phrase without affecting the observable results of executing
the program.

This kind of program equivalence is also known as operational, or observational
equivalence. To be more precise about it we have to define, for the programming
language that concerns us, what we mean by a ‘complete program’ and by the
‘observable results’ of executing it. In fact different choices can be made for
these notions, leading to possibly different notions of contextual equivalence for
the same programming language. We postpone more precise definitions until the
next section. First, let us work with this informal definition and explore some of
the subtleties of mixing ML’s functional and ‘stateful’ features.

The intuitive reason why the expressions p and m are contextually equivalent
is that the property

‘the contents of b is the negative of the contents of a ’
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is an invariant that is true throughout the life-time of the two expressions: it is
true when they are first evaluated to get functions of type int -> int (because
-!a = -0 = 0 = !b at that point); and whenever those functions are applied
to an argument, although there are side-effects on the contents of a and b ,
the truth of the property remains invariant. Moreover, because the property
holds, the values returned by the two functions (the contents of a in one case
and the negative of the contents of b in the other case) are equal. So even
though the contents of a and b may be different, since the only way we can
use ML programs to observe properties of these locations is via applications of
the functions created by evaluating p and m, we will never detect a difference
between these two expressions.

That is the intuitive justification for the contextual equivalence of the ex-
pressions p and m. But it depends on assertions like

‘the only way we can use ML programs to observe properties of these
locations [the ones declared locally in the expressions] is via applications
of the functions created by evaluating p and m’

whose validity is not immediately obvious. To rub home the point, let us look
at another example.

f � let a = ref 0 in
let b = ref 0 in
fun(x : int ref) -> if x == a then b else a

(3)

g � let c = ref 0 in
let d = ref 0 in
fun(y : int ref) -> if y == d then d else c

(4)

Are these Caml expressions (of type int ref->int ref) contextually equivalent?
We might be led to think that they are equivalent, via the following informal
reasoning, similar to that above. If we apply f to an argument �, because we
can always rename the bound identifiers a and b without changing the meaning
of f 2, it seems that � can never be equal to a and hence f � is contextually
equivalent to the private location let a = ref 0 in a . Similarly g � should
be contextually equivalent to the private location let c = ref 0 in c . But
let a = ref 0 in a and let c = ref 0 in c , being α-convertible, are contextually
equivalent. So f and g give contextually equivalent results when applied to any
argument. If ML function expressions satisfied the usual extensionality principle
for mathematical functions (see Fig. 1), then we could conclude that f and g are
contextually equivalent.

The presence of dynamically created state in ML function expressions can
cause them to not satisfy extensionality up to contextual equivalence. In par-
ticular the function expressions f and g defined in equations (3) and (4) are

2 As we might hope, α-convertible expressions, i.e. ones differing only up to the names
of their bound identifiers, turn out to be contextually equivalent.
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‘Two functions (defined on the same set of arguments) are equal if they give equal
results for each possible argument.’

– True of mathematical functions (e.g. in set theory).
– False for ML function expressions in general.
– True for ML function expressions in canonical form (i.e. lambda abstractions), if

we take ‘equal’ to mean contextually equivalent.
– True for pure functional programming languages (see [11]).
– True for languages with Algol-like block-structured local state (see [12]).

Fig. 1. Function Extensionality Principle

not contextually equivalent. To see this consider the following Caml interaction,
where we observe a difference between the two expressions3.

# let f = let a = ref 0 in let b = ref 0 in
fun(x : int ref) -> if x == a then b else a ;;

val f : int ref -> int ref = <fun>
# let g = let c = ref 0 in

let d = ref 0 in
fun(y : int ref) -> if y == d then d else c ;;

val g : int ref -> int ref = <fun>
# let t = fun(h : int ref -> int ref) ->

let z = ref 0 in h (h z ) == h z ;;
val t : (int ref -> int ref) -> bool = <fun>
# t f ;;
- : bool = false
# t g ;;
- : bool = true

Thus the expression

t � fun(h : int ref -> int ref) ->
let z = ref 0 in h (h z ) == h z

(5)

has the property that t f evaluates to false whereas t g evaluates to true. (Why?
If you are not familiar with the way ML expressions evaluate, read Sect. A.3 and
then try Exercise B.1.) Thus f and g are not contextually equivalent expressions.

This example illustrates the fact that proving contextual inequivalence of
two expressions is quite straightforward in principle—one just has to devise a
suitable program that can use the expressions and give a different observable
result with each. Much harder is the task of proving that expressions are con-
textually equivalent, since it appears that one has to consider all possible ways
a program can use the expressions. For example, once we have given a proper

3 I used the Objective Caml 〈www.ocaml.org〉 version 3.0 interpreter.
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ML evaluation relation s, e ⇒ v, s′ where




s = initial state
e = closed expression to be evaluated
v = resulting closed canonical form
s′ = final state

is inductively generated by rules following the structure of e; for example:

s, e1 ⇒ v1, s
′

s′, e2[v1/x ] ⇒ v2, s
′′

s, let x = e1 in e2 ⇒ v2, s
′′

(See Sect. A.3 for the full definition.)
Specifying semantics via such an evaluation relation is also known as big-step (anon),
natural (Kahn [8]), or relational (Milner) semantics.

Fig. 2. ML Evaluation Relation (simplified, environment-free form)

definition of the notion of contextual equivalence, how do we give a rigorous
proof that the expression in equation (1) is contextually equivalent to that in
equation (2)? The rest of this paper introduces some methods for carrying out
such proofs.

3 Contextual Equivalence

I hope the examples in Sect. 2, despite their artificiality, indicate that ML’s
combination of

recursively defined, higher order, call-by-value functions
+

statically scoped, dynamically created, mutable state

makes reasoning about properties of contextual equivalence of ML expressions
very complicated. In fact even quite simple, general properties of contextual
equivalence (such as the suitably restricted form of functional extensionality
mentioned in Fig. 1) are hard to establish directly. To explain why, we need
to look at the precise definition of ML contextual equivalence. To do that, I
have to recall the form of operational semantics used in the Definition of Stan-
dard ML [9]: see Fig. 2. The fragment of ML we will work with is given in
Sects A.1 and A.2. The full set of rules inductively defining the evaluation re-
lation for this fragment of ML is given in Sect. A.3. In fact this is a simplified
form of the evaluation relation actually used in the Definition of Standard ML.
The latter has an environment component binding free identifiers to semantic
values, whereas we will get by with this simpler form, in which the environment
has been ‘substituted in’. (Full ML also needs various auxiliary relations, for ex-
ample to deal with exception-handling, but that will not concern us here.) One
advantage of this ‘substituted in’ formulation is that the results of evaluation do
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not have to be specified as a separate syntactic category of ‘semantic values’, but
rather are a subset of all the expressions, namely the ones in canonical form (see
Sect. A.3); this simplifies the statement of some properties of the operational se-
mantics (such as the Type Soundness Theorem A.1). A minor side-effect of this
‘substituted in’ formulation is that the names of storage locations4, � (drawn
from a fixed, countably infinite set Loc), can occur in expressions explicitly—
rather than implicitly via value identifiers bound to locations in the environment.
Since we only consider locations for storing integers (see Fig. 6 in Sect. 5), we
can take a memory state to be a finite function from the set Loc of names of
storage locations to the set Z of integers.

Turning now to the definition of contextual equivalence, recall from Sect. 2
that we have to make precise two things:

– what constitutes a program
– what results of program execution we observe.

ML only evaluates expressions after they have been type-checked. So we take a
program to be a well-typed expression with no free value identifiers: see Fig. 3.
The rules inductively defining the type assignment relation for our fragment of
ML are given in Sect. A.4. The Type Soundness Theorem A.1 in that section
recalls an important relationship between typing and evaluation that we will use
without comment from now on. (See Exercise B.2.)

ML type assignment relation Γ � e : ty where




Γ = typing context
e = expression to be typed

ty = type
is inductively generated by axioms and rules following the structure of e; for example:

Γ � e1 : ty1
Γ [x �→ ty1] � e2 : ty2
x /∈ dom(Γ )
Γ � (let x = e1 in e2) : ty2

(See Sect. A.4 for the full definition.)
The set of ML programs of type ty Progty is defined to be { e | ∅ � e : ty }.

Fig. 3. ML programs are typed

The final ingredient needed for the definition of contextual equivalence is to
specify which results of program execution we observe. In Sect. 2, I used the
Objective Caml interpreter to observe a difference between the two expressions
defined in equations (3) and (4). From this point of view, two results of evalua-
tion, v, s and v′, s′ say, are observationally equal if obs(v, s) = obs(v′, s′), where
obs is the function recursively defined by
4 or addresses, as the authors of [9] call them.
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obs(c, s) = c, if c = true, false, n, ()
obs(v1 , v2, s) = obs(v1, s) , obs(v2, s)

obs(fun(x : ty) -> e, s) = <fun>
obs(fun f = (x : ty) -> e, s) = <fun>

obs(�, s) = {contents=n}, if (� �→ n) ∈ s




(6)

and which maps to a set of result expressions r given by

r ::= true
false
n (n ∈ Z)
()
r , r
<fun>
{contents=n} (n ∈ Z).

But what if I had used a different interpreter—would it affect the notion of con-
textual equivalence? Probably not. Evidence for this is given by the fact that we
can replace obs by a constant function and still get the same notion of contextual
equivalence (see Exercise B.3). In other words, rather than observing particular
things about the final results of evaluation, we can just as well observe the fact
that there is some final result at all, i.e. observe termination of evaluation. This
gives us the following definition of contextual equivalence.

Definition 3.1 (Contextual preorder/equivalence). Given e1, e2 ∈ Progty ,
define

e1 =ctx e2 : ty � e1 ≤ctx e2 : ty & e2 ≤ctx e1 : ty
e1 ≤ctx e2 : ty � ∀x , e, ty ′, s ((x : ty � e : ty ′) & s, e[e1/x ] ⇓ ⊃ s, e[e2/x ] ⇓)

where s, e⇓ indicates termination:

s, e⇓ � ∃v, s′(s, e ⇒ v, s′).

Remark 3.2 (Contexts). The program equivalence of Definition 3.1 is ‘con-
textual’ because it examines the termination properties of programs e[ei/x ] that
contain occurrences of the expressions ei being equated. If we replace ei by a
place-holder ‘−’ (usually called a hole), then we get e[−/x ], which is an exam-
ple of what is usually called a (program) context. The programs ei are closed
expressions; for contextual equivalence of open expressions (ones possibly con-
taining free identifiers) we would need to consider more general forms of context
than e[−/x ], namely ones in which the hole can occur within the scope of a
binder, such as fun(y : ty) -> −. For simplicity, I have restricted attention to
contextual equivalence of closed expressions, where we can use expressions with
a free identifier in place of such general contexts without affecting =ctx.

Definition 3.1 is difficult to work with directly when it comes to reasoning
about programs up to contextual equivalence. One problem is the quantification
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over all contexts e[−/x ]. Thus to prove a property of e1 up to contextual equiv-
alence, it is not good enough just to know how e1 evaluates—we have to prove
termination properties for all uses e[e1/x ] of it in a context e[−/x ]. But in fact
there is a more fundamental problem: the definition of ⇓ is not syntax-directed.
For example, from the definition of the ML evaluation relation, we know that

s, let x = e1 in e2 ⇓
holds if

s′, e2[v1/x ] ⇓
where s, e1 ⇒ v1, s

′; however, e2[v1/x ] is not built from subphrases of the original
phrase let x = e1 in e2.

Thus at first sight it seems that one cannot expect to prove properties in-
volving termination (and in particular, properties of contextual equivalence) by
induction on the structure of expressions. Indeed, in the literature one finds more
complicated forms of induction used (involving measures of the size of contexts
and the length of terminating sequences of reductions), often in combination
with non-obvious strengthenings of induction hypotheses. However, we will see
that it is possible to reformulate the operational semantics of ML to get a struc-
turally inductive definition of termination that facilitates inductive reasoning
about contextual equivalence, =ctx. To achieve that, we need to review the orig-
inal approach to structural operational semantics of Plotkin [17] and subsequent
refinements of it.

4 Structural Operational Semantics

The inductively defined ML evaluation relation (Fig. 2 and Sect. A.3) is an
example of the Structural approach to Operational Semantics (SOS) popularised
by Plotkin [17]. SOS more closely reflects our intuitive understanding of various
language constructs than did previous approaches to operational semantics using
abstract machines, which tended to pull apart the syntax of those constructs and
build non-intuitive auxiliary data structures. The word ‘structural’ refers to the
fact that the rules of SOS inductive definitions are syntax-directed, i.e. follow
the abstract, tree structure of the syntax. For example, the structure of the ML
expression e determines what are the possible rules that can be used to deduce
s, e ⇒ v, s′ from other valid instances of the ML evaluation relation. This is of
great help when it comes to using an induction principle to prove properties of
the inductively defined relation.

The SOS in [17] is formulated in terms of a transition relation (also known as
a ‘reduction’, or ‘small-step’ relation). An appropriate transition relation for the
fragment of ML we are considering takes the form of a binary relation between
(state, expression)-pairs

(s , e) → (s′ , e′)

that is inductively generated by rules following the structure of e. See Sect. A.5
for the complete definition. Theorem A.2 in that section sums up the relationship
between the transition and evaluation relations.
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The rules inductively defining such transition relations usually divide into
two kinds: ones giving the basic steps of reduction, such as

v a canonical form
(s , let x = v in e) → (s , e[v/x ])

and ones for simplification steps that say how reductions may be performed
within a context, such as

(s , e1) → (s′ , e′
1)

(s , let x = e1 in e2) → (s′ , let x = e′
1 in e2)

.

The latter can be more succinctly specified using the notion of evaluation con-
text [18], as follows.

Lemma 4.1 (Felleisen-style presentation of →). (s , e) → (s′ , e′) holds
if and only if e = E [r] and e′ = E [r′] for some evaluation context E and basic
reduction (s , r) → (s′ , r′), where:

– evaluation contexts are expression contexts (i.e. syntax trees of expressions
with one leaf replaced by a placeholder, or hole, denoted by [−]) that want
to evaluate their hole; for the fragment of ML we are using, the evaluation
contexts are given by

E ::= [−]
if E then e else e
E op e for op ∈ {=, +, -, :=, ==, ;, ,}
v op E for op ∈ {=, +, -, :=, ==, ,}
op E for op ∈ {!, ref , fst , snd }
E e
v E
let x = E in e

(7)

where e ranges over closed expressions (Sect. A.2) and v over closed expres-
sions in canonical form (Sect. A.3);

– basic reductions (s , r) → (s′ , r′) are the axioms in the Plotkin-style induc-
tive definition of → (see Sect. A.5);

– E [r] denotes the expression resulting from replacing the ‘hole’ [−] in E by the
expression r. ��
The validity of Lemma 4.1 depends upon the fact (proof omitted) that every

closed expression not in canonical form is uniquely of the form E [r] for some
evaluation context E and some redex r, i.e. some expression appearing on the
left-hand side of one of the basic reductions. So if we have a configuration (s , e)
with e not in canonical form, then e is of the form E [r], there is a basic reduction
(s , r) → (s′ , r′) and we make the next step of transition from (s , e) by
replacing r by its corresponding reduct r′ at the same time changing the state
from s to s′.
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Transitions 〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉 where




s, s′ = states
Fs, Fs ′ = frame stacks

e, e′ = closed expressions
are defined by cases (i.e. no induction), according to the structure of e and (then) Fs.
For example:

〈s , Fs , let x = e1 in e2〉 → 〈s , Fs ◦ (let x = [−] in e2) , e1〉
〈s , Fs ◦ (let x = [−] in e) , v〉 → 〈s , Fs , e[v/x ]〉

(See Sect. A.6 for the full definition.)
Initial configurations of the abstract machine take the form 〈s , Id , e〉 and terminal
configurations take the form 〈s , Id , v〉, where Id is the empty frame stack and v is a
closed canonical form.

Fig. 4. An ML abstract machine

We can decompose any evaluation context into a nested composition of basic
evaluation contexts, or so-called evaluation frames. In this way we arrive at
a more elementary transition relation for ML—more elementary because the
transition steps are defined by case analysis rather than by induction. This is
shown in Fig. 4 and defined in detail in Sect. A.6 (see also [6] for a large-scale
example of this style of SOS). The nested compositions of evaluation frames are
usually called frame stacks. For the fragment of ML we are considering, they are
given by:

Fs ::= Id empty
Fs ◦ F non-empty

and the evaluation frames F by:
F ::= if [−] then e else e

[−] op e for op ∈ {=, +, -, :=, ==, ;, ,}
v op [−] for op ∈ {=, +, -, :=, ==, ,}
op [−] for op ∈ {!, ref , fst , snd }
[−] e
v [−]
let x = [−] in e .

(Just as not all expressions are well-typed, not all of the evaluation stacks in the
above grammar are well typed. Typing for frame stacks is defined in Sect. 5.)

The relationship between the abstract machine steps and the evaluation re-
lation of ML is summed up by Theorem A.3 in Sect. A.6. In particular we can
express termination of evaluation in terms of termination of the abstract ma-
chine:

s, e⇓ ≡ ∃s′, v (〈s , Id , e〉 →∗ 〈s′ , Id , v〉) .

What one gains from the formulation of ML’s operational semantics in terms of
this abstract machine is the following simple, but key, observation.



Operational Semantics and Program Equivalence 389

The termination relation of the abstract machine

↘ � { 〈s , Fs , e〉 | ∃s′, v (〈s , Fs , e〉 →∗ 〈s′ , Id , v〉) }
has a direct, inductive definition following the structure of e and Fs: see
Sect. A.7.

We have thus achieved the aim of reformulating the structural operational se-
mantics of ML to get a structurally inductive characterisation of termination.
Before outlining what can be done with this, it is perhaps helpful to contemplate
the picture in Fig. 5, summing up the relationship between ⇓ and ↘.
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Fig. 5. The relationship between ⇓ and ↘

5 Applications of the Abstract Machine Semantics

Recall the two ML expressions p and m defined by equations (1) and (2). In
Sect. 2 it was claimed that they are contextually equivalent and some informal
justification for this claim was given there. Now we can sketch how to turn
that informal justification into a proper method of proof that uses a certain
kind of binary ‘logical relation’ between ML expressions whose definition and
properties depend on the abstract machine semantics of the previous section.
Full details and several more examples of the use of this method can be found
in [15]5. The logical relation provides a method for proving contextual preorders
5 In that work the logical relation is given in a symmetrical form that characterises

contextual equivalence; here we use a one-sided version, a logical ‘simulation’ relation
that characterises the contextual preorder (see Definition 3.1).
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and equivalences that formalises intuitive uses of invariant properties of local
state: given some binary relation between states, logically related expressions
have the property that the change of state produced by evaluating them sends
related states to related states (and produces logically related final values). This
is made precise by property (I) in Theorem 5.2 below. One complication of
ML compared with block-structured languages like Algol, is that local state is
dynamically allocated: given an evaluation s, e ⇒ v, s′, the finite set dom(s′) of
locations on which the final state s′ is defined contains dom(s), but may also
contain other locations, ones that have been allocated during evaluation. Thus
in formulating the notion of evaluation-invariant state-relations we have to take
into account how the state on freshly allocated locations should be related. We
accomplish this with the following definition.

Definition 5.1 (State-relations). We will refer to finite sets of locations as
worlds (with a nod to the ‘possible worlds’ of Kripke semantics) and write them
as w, w1, w2, . . . The set St(w) of states in world w is defined to be the set Z

w of
integer-valued functions defined on w. The set Progty(w) of programs in world
w of type ty is defined to be

{
e ∈ Progty

∣∣ loc(e) ⊆ w
}
. The set Rel(w1, w2)

of state-relations between worlds w1 and w2 is defined to be the set of all non-
empty6 subsets of St(w1) × St(w2). Given two state-relations r ∈ Rel(w1, w2)
and r′ ∈ Rel(w′

1, w
′
2) with w1 ∩ w′

1 = ∅ and w2 ∩ w′
2 = ∅, their smash product

r ⊗ r′ ∈ Rel(w1 ∪ w′
1, w2 ∪ w′

2) is

r ⊗ r′ � { (s1s
′
1, s2s

′
2) | (s1, s2) ∈ r & (s′

1, s
′
2) ∈ r′ }

where if s and s′ are states, then ss′ is the state with dom(ss′) = dom(s) ∪
dom(s′) and for all � ∈ dom(ss′)

(ss′)(�) =
{

s′(�) if � ∈ dom(s′)
s(�) if � ∈ dom(s) − dom(s′).

We say that a state relation r′ ∈ Rel(w′
1, w

′
2) extends a state relation r ∈

Rel(w1, w2), and write
r′ � r

if r′ = r⊗r′′ for some r′′ (so in particular wi ⊆ w′
i for i = 1, 2). (See Exercise B.5

for an alternative characterisation of the extension relation �.)

Theorem 5.2 (‘Logical’ simulation relation between ML programs, pa-
rameterised by state-relations). For each state-relation r ∈ Rel(w1, w2) we
can define a relation

e1 ≤r e2 : ty (e1 ∈ Progty(w1), e2 ∈ Progty(w2))

(for each type ty), with the following properties:
6 This non-emptiness condition is a technical convenience which, among other things,

simplifies the definition of the logical relation (Definition 5.4) at ground types.
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(I) The simulation property of ≤r: to prove e1 ≤r e2 : ty, it suffices to
show that whenever

(s1, s2) ∈ r and s1, e1 ⇒ v1, s
′
1

then there exists r′ � r and v2, s
′
2 such that

s2, e2 ⇒ v2, s
′
2, v1 ≤r′ v2 : ty and (s′

1, s
′
2) ∈ r′ .

(II) The extensionality properties of ≤r on canonical forms:
(i) For ty ∈ {bool, int, unit}, v1 ≤r v2 : ty if and only if v1 = v2.
(ii) v1 ≤r v2 : int ref if and only if !v1 ≤r !v2 : int and for all n ∈ Z,

(v1 := n) ≤r (v2 := n) : unit.
(iii) v1 ≤r v2 : ty1 * ty2 if and only if fst v1 ≤r fst v2 : ty1 and snd v1 ≤r

snd v2 : ty2.
(iv) v1 ≤r v2 : ty1 -> ty2 if and only if for all r′ � r and all v′

1, v
′
2

v′
1 ≤r′ v′

2 : ty1 ⊃ v1 v′
1 ≤r′ v2 v′

2 : ty2.

(The last property is characteristic of (Kripke) logical relations [16, 10].)
(III) The relationship between ≤r and contextual equivalence: for all

types ty, finite sets w of locations, and programs e1, e2 ∈ Progty(w)

e1 ≤ctx e2 : ty iff e1 ≤idw e2 : ty

where idw ∈ Rel(w, w) is the identity state-relation for w:

idw � { (s, s) | s ∈ St(w) } .

Hence e1 and e2 are contextually equivalent if and only if both e1 ≤idw

e2 : ty and e2 ≤idw e1 : ty. ��
We have two problems to discuss. First, why does the family of relations

− ≤r − : ty (r ∈ Rel(w1, w2), w1, w2 finite subsets of Loc, ty a type)

exist with the properties claimed in Theorem 5.2? Secondly, how do we use it to
prove contextual equivalences like p =ctx m :int->int from Sect. 2? We address
the second problem first. It is only when we get round to the first problem that
we will see why the abstract machine semantics of the previous section is so
useful.

Proof of the Contextual Equivalence of p and m. Consider the programs
defined by equations (1) and (2). To prove p =ctx m : int -> int, we have to
show p ≤ctx m : int -> int and m ≤ctx p : int -> int. We give the proof of
the first contextual preorder; the argument for the second one is similar. Since
p, m ∈ Progint->int(∅), by Theorem 5.2(III), to prove p ≤ctx m : int -> int
it suffices to prove p ≤id∅ m : int -> int. We do that by appealing to the
simulation property of ≤id∅ given by Theorem 5.2(I). Note that St(∅) contains
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only one element, namely the empty state ∅; hence the identity state-relation
id∅ just contains the pair (∅, ∅) and we have to check the simulation property
holds for this pair of states. So suppose

∅, p ⇒ v, s.

It follows from the syntax-directed nature of the rules for evaluation in Sect. A.3
that v and s are uniquely determined up to the name of a freshly created location,
call it �1:

v = fun(x : int) -> �1 := !�1 + x ; !�1 and s = {�1 �→ 0}.

Choosing another new location �2, define

r � { (s1, s2) | s1(�1) = −s2(�2) } ∈ Rel({�1}, {�2}).

Clearly r � id∅ holds. Also the evaluation ∅, m ⇒ v′, s′ holds with

v′ = fun(y : int) -> �2 := !�2 - y ; 0 - !�2 and s′ = {�2 �→ 0}.

We certainly have (s, s′) ∈ r, since 0 = −0. So we just have to check that
v ≤r v′ : int -> int. To do that we appeal to Theorem 5.2(II)(iv) and show for
all r′ � r and all n ≤r′ n′ :int that v n ≤r′ v′ n′ :int. By Theorem 5.2(II)(i), this
amounts to showing

v n ≤r′ v′ n : int, for all n ∈ Z. (8)

We do this by once again appealing to the simulation property Theorem 5.2(I):
given any (s1, s2) ∈ r′, since r′ � r we have (s1�{�1}, s2�{�2}) ∈ r and hence
s1(�1) = −s(�2) = k, say. Then

s1, v n ⇒ n′, s1[�1 �→ n′] and s2, v
′ n ⇒ n′, s1[�2 �→ −n′]

with n′ = k + n. From the definition of r′ � r in Definition 5.1 it follows that
(s1[�1 �→ n′], s1[�2 �→ −n′]) ∈ r′; and n′ ≤r′ n′ : int by Theorem 5.2(II)(i). So
the simulation property does indeed imply equation (8) and hence we do have
v ≤r v′ : int -> int, as required. ��

Existence of the Logical Simulation Relation. We turn now to the problem
of why the logical simulation relation described in Theorem 5.2 exists. Why
can’t we just take the simulation property (I) of the theorem as the definition
of − ≤r − : ty at non-canonical expressions in terms of the logical simulation
relation restricted to canonical expressions?—for then we could give a definition
of the latter by induction on the structure of the type ty , using the extensionality
properties in (II). The answer is that it seems impossible to connect such a
version of − ≤r − : ty with contextual equivalence as in property (III) of the
theorem, defeating the purpose of introducing these relations in the first place.
The reason for this lies in the fact that we are dealing with a fragment of ML
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with recursively defined functions fun f = (x : ty) -> e (and hence which
is a Turing-powerful programming language, i.e. which can express all partial
recursive functions from numbers to numbers)7. It turns out that each such
recursively defined function is the least upper bound with respect to ≤ctx of its
finite unfoldings:

(fun f = (x : ty) -> e) ≤ctx g : ty -> ty ′ ≡ ∀n ≥ 0 (fn ≤ctx g : ty -> ty ′) (9)

where the expressions fn are the ‘finite unfoldings’ of fun f = (x : ty) -> e,
defined as follows:

f0 � fun f = (x : ty) -> f x
fn+1 � fun(x : ty) -> e[fn/f ]

}
(10)

The least upper bound property in equation (9) follows immediately from the
definition of ≤ctx and the following ‘Unwinding Theorem’.

Theorem 5.3 (An unwinding theorem). Given

f : ty -> ty ′, x : ty � e : ty ′

for each n ≥ 0 define fn ∈ Progty->ty′ as in equation (10). Then for all

f : ty -> ty ′ � e′ : ty ′′

and all states s, it is the case that

s, e′[(fun f = (x : ty) -> e)/f ] ⇓ ≡ ∃n ≥ 0 (s, e′[fn/f ] ⇓) .

��
Proof. We can use the structurally inductive characterisation of termination
afforded by Theorem A.4 to reduce the proof to a series of simple (if tedious)
inductions. Writing fω for fun f = (x : ty) -> e, first show that

〈s , Fs[fn/f ] , e′[fn/f ]〉↘ ⊃ 〈s , Fs[fω/f ] , e′[fω/f ]〉↘
holds for all s, Fs, e′ and n, by induction on the derivation of 〈s , Fs[fn/f ] ,
e′[ff/f ]〉↘ from the rules in Sect. A.7. Conversely, show for that

〈s , Fs[fω/f ] , e′[fω/f ]〉↘ ⊃ ∃n ≥ 0(〈s , Fs[fn/f ] , e′[fn/f ]〉↘)

holds all s, Fs and e′, by induction on the derivation of 〈s, Fs[fω/f ] , e′[fω/f ]〉↘.
Doing this requires proving a sublemma to the effect that

〈s , Fs[fn/f ] , e′[fn/f ]〉↘ ⊃ 〈s , Fs[fn+1/f ] , e′[fn+1/f ]〉↘
which is done by induction on n, with the base case n = 0 proved by induction
on the derivation of 〈s , Fs[f0/f ] , e′[f0/f ]〉↘. The unwinding theorem follows
from these results by taking Fs = Id and applying Theorem A.4. ��
7 Compared with either Caml or Standard ML, fun f = (x :ty) -> e is a non-standard

canonical form; it is equivalent to the Caml expression let rec f = (fun(x : ty) ->
e) in f—see Sect. A.2.
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If the logical relation ≤idw
is to coincide with ≤ctx as in Theorem 5.2(III), it

must have a property like (9). More generally, each ≤r should have a syntactic
version of the ‘admissibility’ property that crops up in domain theory:

e′[(fun f = (x :ty) -> e)/f ] ≤r g :ty ≡ ∀n ≥ 0 (e′[fn/f ] ≤r g :ty1->ty2). (11)

The problem with trying to use the simulation property of Theorem 5.2(I) as
a definition of ≤r is that the existential quantification over extensions r′ � r
occurring in it makes it unlikely that equation (11) could be proved for that
definition (although I do not have a specific counter-example to hand).

One can get round these difficulties by defining the logical simulation rela-
tion between expressions, ≤r, in terms of a similar, auxiliary relation between
frame stacks, Stackty(r); this in turn is defined using an auxiliary relation be-
tween canonical forms, Valty(r), that builds in the extensionality properties of
Theorem 5.2(II). Since only well-typed expressions are considered, before giving
the definitions of these auxiliary relations we need to define typing for (closed)
frame stacks. We write � Fs : ty � ty ′ to indicate that Fs is a well-typed, closed
frame stack taking an argument of type ty and returning a result of type ty ′.
This relation is inductively defined by the rules

� Id : ty � ty

� Fs : ty ′ � ty ′′

x /∈ fv(F)
[x �→ ty ] � F [x] : ty ′

� Fs ◦ F : ty � ty ′′

The set of well-typed frame stacks taking an argument of type ty and only in-
volving locations in the world w is defined to be

Stackty(w) � { Fs | ∃ty ′(� Fs : ty � ty ′) } . (12)

Definition 5.4 (A logical simulation relation). For all worlds w1, w2, state-
relations r ∈ Rel(w1, w2) and types ty , we define binary relations between pro-
grams, frame stacks and canonical forms:

≤r ⊆ Progty(w1) × Progty(w2)
Stackty(r) ⊆ Stackty(w1) × Stackty(w2)

Valty(r) ⊆ Valty(w1) × Valty(w2).

The relations between programs are defined in terms of those between frame
stacks:

e1 ≤r e2 : ty � (13)
∀r′ � r, ∀(s′

1, s
′
2) ∈ r′,∀(Fs1,Fs2) ∈ Stackty(r′)

(〈s′
1 , Fs1 , e1〉↘ ⊃ 〈s′

2 , Fs2 , e2〉↘) .

The relations between frame stacks are defined in terms of those between canon-
ical forms:

(Fs1,Fs2) ∈ Stackty(r) � (14)
∀r′ � r, ∀(s′

1, s
′
2) ∈ r′,∀(v1, v2) ∈ Valty(r′)

(〈s′
1 , Fs1 , v1〉↘ ⊃ 〈s′

2 , Fs2 , v2〉↘) .
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The relations between canonical forms are defined by induction on the structure
of the type ty , for all w1, w2 and r simultaneously:

(v1, v2) ∈ Valbool(r) ≡ v1 = v2 (15)
(v1, v2) ∈ Valint(r) ≡ v1 = v2 (16)

((), ()) ∈ Valunit(r) (17)
(v1, v2) ∈ Valint ref(r) ≡ !v1 ≤r !v2 : int &

∀n ∈ Z((v1 := n) ≤r (v2 := n) : unit)
(18)

(v1, v2) ∈ Valty1*ty2
(r) ≡ fst v1 ≤r fst v2 : ty1 &

snd v1 ≤r snd v2 : ty2

(19)

(v1, v2) ∈ Valty1->ty2
(r) ≡ ∀r′ � r, ∀v′

1,∀v′
2

(v′
1 ≤r′ v′

2 : ty1 ⊃ v1 v′
1 ≤r′ v2 v′

2 : ty2).
(20)

We extend the logical relation to open expressions via closing substitutions (of
canonical forms for value identifiers). Thus given Γ � e : ty and Γ � e′ : ty where
Γ = [x 1 �→ ty1, . . . , x n �→ tyn] say, and given r ∈ Rel(w1, w2) with loc(ei) ⊆ wi

for i = 1, 2, we define
Γ � e ≤r e′ : ty (21)

to mean that for all extensions r′ � r and all related canonical forms (vi, v
′
i) ∈

Valtyi
(r′) (i = 1..n), it is the case that e[�v/�x ] ≤r′ e′[�v′/�x ] : ty holds.

Proof of Theorem 5.2 (sketch). The proof that the relations ≤r of Defini-
tion 5.4 have all the properties required by Theorem 5.2 is quite involved. The
details can be found in Sects 4 and 5 of [15]. Here is a guide to finding one’s way
through those details.

For part (I) of the theorem we use the following connection between eval-
uation and the structurally inductive termination relation (a generalisation of
Theorem A.4):

〈s , Fs , e〉↘ ≡ ∃s′, v (s, e ⇒ v, s′ & 〈s′ , Fs , v〉↘) .

This, together with definitions (13) and (14), yield property (I) as in the proof
of [15, Proposition 5.1].

Part (II) of the theorem follows from definitions (15)–(20) once we know
that the restriction of the relation − ≤r − : ty to canonical forms coincides with
Valty(r)(−,−); this is proved in [15, Lemma 4.4].

For part (III) of the theorem we have to establish the so-called “fundamental
property” of the logical relation, namely that its extension to open expressions
as in (21) is preserved by all the expression-forming constructs of the language.
For example

if Γ [f �→ ty1 -> ty2][x �→ ty1] � e ≤r e′ : ty2
then Γ � (fun f = (x : ty1) -> e) ≤r

(fun f = (x : ty1) -> e′) : ty1 -> ty2 .

(22)
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This property and similar ones for each of the other expression-forming con-
structs are proved in [15, Proposition 4.8]. In particular, the proof of (22) makes
use of the Unwinding Theorem 5.3 to establish Γ � (fun f = (x : ty1) -> e) ≤r

(fun f = (x : ty1) -> e′) : ty1 -> ty2 from the fact (proved by induction on n)
that Γ � fn ≤r f ′

n : ty1 -> ty2 holds for the finite approximations fn, f ′
n defined

as in (10).
One immediate consequence of this fundamental property of the logical re-

lation is that ≤idw
is a reflexive relation. Also, it is not hard to see that if two

expressions are logically related and we change one of them up to the contex-
tual preorder, we still have logically related expressions. Thus if e1 ≤ctx e2 : ty ,
since we have e1 ≤idw

e1 : ty , we also have e1 ≤idw
e2 : ty . This is one half

of property (III). The other half also follows from the fundamental property.
For if e1 ≤idw

e2 : ty , then for any context x : ty � e : ty ′ (where without
loss of generality we assume loc(e) ⊆ w), the fundamental property implies
that e[e1/x ] ≤idw e[e2/x ] : ty ′ holds. So if s, e[e1/x ] ⇓, then by Theorem A.4
〈s , Id , e[e1/x ]〉↘. Using the easily verified fact that (Id , Id) ∈ Stackty(idw), it
follows from e[e1/x ] ≤idw e[e2/x ]:ty ′ and definition (13) that 〈s , Id , e[e2/x ]〉↘
and hence that s, e[e2/x ] ⇓. Since this holds for all contexts e, we conclude that
e1 ≤idw e2 : ty does indeed imply that e1 ≤ctx e2 : ty . ��

Open Problems. The definition of ≤r, with its interplay between expression-
relations and frame stack-relations, was introduced to get round the difficulty
of establishing the necessary fundamental properties of the logical relation (and
hence property (III) of Theorem 5.2) in the presence of recursively defined func-
tions. Note that these difficulties have to be tackled even if the particular exam-
ples of contextual equivalence we are interested in do not involve such functions
(as in fact was the case in this paper). This reflects the unfortunate non-local
aspect of the definition of contextual equivalence: even if the expressions we are
interested in do not involve a particular language construct, we have to consider
their behaviour in all contexts and the context may make use of the construct.
Thus adding recursive functions complicates reasoning about non-recursive func-
tions with local state. What other features of ML might cause trouble? I have
listed some important ones in Fig. 6. There is some reason to think we could
reason about the contextual equivalence of ML structures and functors using the
logical relations methods outlined here: see the results about existential types
in [13]. The other features—recursive mutable data, references to values of arbi-
trary type, and object-oriented features—are more problematic. One difficulty is
that the definition of the logical relation (Definition 5.4) proceeds by induction
on the structure of types. In the presence of recursive types one has to use some
other approach in order to avoid a circular definition; here syntactic versions
of the construction of recursively defined domains [4] may be of assistance. A
more subtle problem is that some of our definitions (for example the notion of
extension of state-relations in Definition 5.1) exploit the fact that we restricted
attention to memory states with a very simple, ‘flat’ structure; many of the
features listed in Fig. 6 cause memory states to have a complicated, recursive
structure that blocks the use of some of the definitions as they stand.
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Can the method of proving contextual equivalences outlined here be extended to larger
fragments of ML with:

– structures and signatures (abstract data types)
– functions with local references to values of arbitrary types

(and ditto for exception packets)
– recursively defined, mutable data structures
– OCaml-style objects and classes?

Are there other forms of logical relation, useful for proving contextual equivalences?

Fig. 6. Some things we do not yet know how to do

Finally, it should be pointed out that the simulation property of the logical
relation in Theorem 5.2(I) is only a sufficient, but not a necessary condition for
e1 ≤ctx e2 : ty to hold. For example

awk � let a = ref 0 in
fun(f : unit -> unit) -> (a := 1 ; f () ; !a )

(23)

satisfies awk =ctx (fun(g : unit -> unit) -> g () ; 1) : (unit -> unit) -> int,
but it is not possible to use Theorem 5.2 to prove it; see Example 5.9 of [15],
which discusses this example.

6 Conclusion

We have described a method for proving contextual equivalence of ML functions
involving local state, based on a certain kind of logical relation parameterised
by state-relations. Theorem 5.2 summarises the properties of this logical rela-
tion that are needed for applications. However, the construction of a suitable
logical relation is complicated by the presence of recursive definitions in ML. We
got around this complication by using a reformulation of the structural oper-
ational semantics of ML in terms of frame stacks. This reformulation provides
a structurally inductive characterisation of termination of ML evaluation that
is not only used in the definition of the logical relation, but also provides a
very useful tool for proving general properties of evaluation, like the Unwinding
Theorem 5.3.

A Appendix: A Fragment of ML

A.1 Types

ty ::= bool booleans
int integers
unit unit
int ref integer storage locations
ty * ty pairs
ty -> ty functions
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A.2 Expressions

e ::= x , f value identifiers (x , f ∈ Var)
true boolean constants
false
if e then e else e conditional
n integer constants (n ∈ Z)
e = e integer equality
e + e addition
e - e subtraction
() unit value
!e look-up
e := e assignment
ref e storage creation
e == e location equality
e ; e sequence
e , e pair
fst e first projection
snd e second projection
fun(x : ty) -> e function abstraction
fun f = (x : ty) -> e recursively defined function
e e function application
let x = e in e local definition
� storage locations (� ∈ Loc)

Notes.

1. The concrete syntax of expressions is like that of Caml rather than Stan-
dard ML (not that there are any very great differences between the two
languages for the fragment we are using).

2. As well as having a canonical form for function abstractions, it simplifies the
presentation of the operational semantics to have a separate canonical form
fun f = (x : ty) -> e for recursively defined functions. In Caml this could
be written as

let rec f = (fun(x : ty) -> e) in f .

3. Var and Loc are some fixed, countably infinite sets (disjoint from each other,
and disjoint from the set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}).

4. What we call storage locations are called addresses in [9]. They do not occur
explicitly in the ML expressions written by users, but rather, occur implicitly
via environments binding value identifiers to addresses (and to other kinds
of semantic value). We will use a formulation of ML’s operational semantics
that does without environments, at the minor expense of having to consider
an extended set of expressions, in which names of storage locations can occur
explicitly.
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5. We write loc(e) for the finite subset of Loc consisting of all storage locations
occurring in the expression e.

6. We write fv(e) for the finite subset of Var consisting of all value identifiers
occurring freely in the expression e. This finite set is defined by induction
on the structure of e. The only interesting clauses are for the syntax-forming
operations that are binders:

fv(fun(x : ty) -> e) � fv(e) − {x }
fv(fun f = (x : ty) -> e) � fv(e) − {f , x }

fv(let x = e1 in e2) � fv(e1) ∪ (fv(e2) − {x }).

A.3 Evaluation Relation

This is of the form
s, e ⇒ v, s′

where

– e is a closed expression (i.e. fv(e) is empty)
– v is a closed canonical form, which by definition is a closed expression in the

subset of expressions generated by the grammar

v ::= x , f
true
false
n
()
v , v
fun(x : ty) -> e
fun f = (x : ty) -> e
�

– s, s′ are states, which by definition are finite functions from Loc to Z

– loc(e) ⊆ dom(s) and loc(v) ⊆ dom(s′).

The evaluation relation is inductively defined by the following rules. (The no-
tation e[e1/x ] used in some of the rules indicates the substitution of e1 for all
free occurrences of x in e; similarly, e[e1/x 1, e2/x 2, . . .] indicates simultaneous
substitution; in this paper we will only need to consider the substitution of
closed expressions, so I omit a discussion of avoiding capture of free identifiers
by binders during substitution. The notation s[� �→ n] used in some of the rules
denotes the state mapping � to n and otherwise acting like s.)

Canonical forms:

v in canonical form
s, v ⇒ v, s
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Conditional:

s, e ⇒ true, s′

s′, e1 ⇒ v, s′′

s, if e then e1 else e2 ⇒ v, s′′

s, e ⇒ false, s′

s′, e2 ⇒ v, s′′

s, if e then e1 else e2 ⇒ v, s′′

Integer equality:

s, e1 ⇒ n, s′

s′, e2 ⇒ n, s′′

s, e1 = e2 ⇒ true, s′′

s, e1 ⇒ n1, s
′

s′, e2 ⇒ n2, s
′′

n1 �= n2

s, e1 = e2 ⇒ false, s′′

Arithmetic:

s, e1 ⇒ n1, s
′

s′, e2 ⇒ n2, s
′′

op ∈ {+, -}
n is the result of combining n1 and n2 according to op
s, e1 op e2 ⇒ n, s′′

Look-up:

s, e ⇒ �, s′

(� �→ n) ∈ s′

s, !e ⇒ n, s′

Assignment:

s, e1 ⇒ �, s′

s′, e2 ⇒ n, s′′

s, e1 := e2 ⇒ (), s′′[� �→ n]

Storage creation:

s, e ⇒ n, s′

� /∈ dom(s′)
s, ref e ⇒ �, s′[� �→ n]

Location equality:

s, e1 ⇒ �, s′

s′, e2 ⇒ �, s′′

s, e1 == e2 ⇒ true, s′′

s, e1 ⇒ �1, s
′

s′, e2 ⇒ �2, s
′′

�1 �= �2
s, e1 == e2 ⇒ false, s′′
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Sequence:

s, e1 ⇒ v1, s
′

s′, e2 ⇒ v2, s
′′

s, e1 ; e2 ⇒ v2, s
′′

Pair:

s, e1 ⇒ v1, s
′

s′, e2 ⇒ v2, s
′′

s, (e1 , e2) ⇒ (v1 , v2), s′′

Projections:

s, e ⇒ (v1 , v2), s′

s, fst e ⇒ v1, s
′

s, e ⇒ (v1 , v2), s′

s, snd e ⇒ v2, s
′

Function application:

s, e1 ⇒ v1, s
′

s′, e2 ⇒ v2, s
′′

v1 = fun(x : ty) -> e
s′′, e[v2/x ] ⇒ v3, s

′′′

s, e1 e2 ⇒ v3, s
′′′

s, e1 ⇒ v1, s
′

s′, e2 ⇒ v2, s
′′

v1 = fun f = (x : ty) -> e
s′′, e[v1/f , v2/x ] ⇒ v3, s

′′′

s, e1 e2 ⇒ v3, s
′′′

Local definition:

s, e1 ⇒ v1, s
′

s′, e2[v1/x ] ⇒ v2, s
′′

s, let x = e1 in e2 ⇒ v2, s
′′

A.4 Type Assignment Relation

This is of the form
Γ � e : ty

where

– the typing context Γ is a function from a finite set dom(Γ ) of variables to
types

– e is an expression
– ty is a type.

It is inductively generated by the following rules. (The notation Γ [x �→ ty ] used
in some of the rules indicates the typing context mapping x to ty and otherwise
acting like Γ .)
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Value identifiers:

x ∈ dom(Γ )
Γ (x ) = ty
Γ � x : ty

Boolean constants:

b ∈ {true, false}
Γ � b : bool

Conditional:

Γ � e : bool
Γ � e1 : ty
Γ � e2 : ty
Γ � (if e then e1 else e2) : ty

Integer constants:

n ∈ Z

Γ � n : int

Integer equality:

Γ � e1 : int
Γ � e2 : int
Γ � (e1 = e2) : bool

Arithmetic:

Γ � e1 : int
Γ � e2 : int
op ∈ {+, -}
Γ � (e1 op e2) : int

Unit value:

Γ � () : unit

Look-up:

Γ � e : int ref
Γ � !e : int

Assignment:

Γ � e1 : int ref
Γ � e2 : int
Γ � (e1 := e2) : unit
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Storage creation:

Γ � e : int
Γ � ref e : int ref

Location equality:

Γ � e1 : int ref
Γ � e2 : int ref
Γ � (e1 == e2) : bool

Sequence:

Γ � e1 : ty1
Γ � e2 : ty2
Γ � (e1 ; e2) : ty2

Pair:

Γ � e1 : ty1
Γ � e2 : ty2
Γ � e1 , e2 : ty1 * ty2

Projections:

Γ � e : ty1 * ty2
Γ � fst e : ty1

Γ � e : ty1 * ty2
Γ � snd e : ty2

Function abstraction:

Γ [x �→ ty1] � e : ty2
x /∈ dom(Γ
Γ � (fun(x : ty1) -> e) : ty1 -> ty2

Recursively defined function:

Γ [f �→ ty1 -> ty2][x �→ ty1] � e : ty2
f , x /∈ dom(Γ )
f �= x
Γ � (fun f = (x : ty1) -> e) : ty1 -> ty2

Function application:

Γ � e1 : ty2 -> ty1
Γ � e2 : ty2
Γ � e1 e2 : ty1
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Local definition:

Γ � e1 : ty1
Γ [x �→ ty1] � e2 : ty2
x /∈ dom(Γ )
Γ � (let x = e1 in e2) : ty2

Storage locations:

� ∈ Loc
Γ � � : int ref

Theorem A.1 (Type soundness).

(e, s ⇒ v, s′) & (∅ � e : ty) ⊃ (∅ � v : ty). ��

A.5 Transition Relation

This is of the form
(s , e) → (s′ , e′)

where e, e′ are closed expressions and s, s′ are memory states with loc(e) ⊆
dom(s) and loc(e′) ⊆ dom(s′). The transition relation is inductively defined by
the following rules.

Basic reductions:

(s , if true then e1 else e2) → (s , e1)

(s , if false then e1 else e2) → (s , e2)

(s , n = n) → (s , true)
n1 �= n2

(s , n1 = n2) → (s , false)

op ∈ {+, -}
n is the result of combining n1 and n2 according to op
(s , n1 op n2) → (s , n)

(� �→ n) ∈ s
(s , !�) → (s , n)

(s , � := n) → (s[� �→ n] , ())

� /∈ dom(s)
(s , ref n) → (s[� �→ n] , �)
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(s , � == �) → (s , true)
�1 �= �2
(s , �1 == �2) → (s , false)

v a canonical form
(s , (v ; e)) → (s , e)

v1, v2 canonical forms
(s , fst (v1 , v2)) → (s , v1)

v1, v2 canonical forms
(s , snd (v1 , v2)) → (s , v1)

v1 = fun(x : ty) -> e
v2 a canonical form
(s , v1 v2) → (s , e[v2/x ])

v1 = fun f = (x : ty) -> e
v2 a canonical form
(s , v1 v2) → (s , e[v1/f , v2/x ])

v a canonical form
(s , let x = v in e) → (s , e[v/x ])

Simplification steps:

(s , e) → (s′ , e′)
(s , if e then e1 else e2) → (s′ , if e′ then e1 else e2)

(s , e1) → (s′ , e′
1)

op ∈ {=, +, -, :=, ==, ;, ,}
(s , e1 op e2) → (s′ , e′

1 op e2)

(s , e) → (s′ , e′)
v a canonical form
op ∈ {=, +, -, :=, ==, ,}
(s , v op e) → (s′ , v op e′)

(s , e1) → (s′ , e′
1)

op ∈ {!, ref , fst , snd }
(s , op e) → (s′ , op e′)

(s , e1) → (s′ , e′
1)

(s , e1 e2) → (s′ , e′
1 e2)

(s , e) → (s′ , e′)
v a canonical form
(s , v e) → (s′ , v e′)

(s , e1) → (s′ , e′
1)

(s , let x = e1 in e2) → (s′ , let x = e′
1 in e2)

Theorem A.2 (The relationship between evaluation and transition).

(s, e ⇒ v, s′) ≡ (s , e) →∗ (s′ , v)

where →∗ is the reflexive-transitive closure of →. ��

A.6 An Abstract Machine

The configurations of the machine take the form 〈s , Fs , e〉 where s is a state
(cf. Sect. A.3), e is a closed expression (cf. Sect. A.2) and Fs is a closed frame
stack. The frame stacks are given by:
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Fs ::= Id empty
Fs ◦ F non-empty

where F is an evaluation frame:

F ::= if [−] then e else e
[−] op e for op ∈ {=, +, -, :=, ==, ;, ,}
v op [−] for op ∈ {=, +, -, :=, ==, ,}
op [−] for op ∈ {!, ref , fst , snd }
[−] e
v [−]
let x = [−] in e

(where e ranges over expressions and v over expressions in canonical form). The
set fv(Fs) of free value identifiers of a frame stack Fs are all those value identifiers
occurring freely in its constituent expressions; Fs is closed if fv(Fs) is empty.

The transitions of the abstract machine, 〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉, are
defined by case analysis of, firstly, the structure of e and then the structure of
Fs:

Case e = v is in canonical form:

〈s , Fs ◦ (if [−] then e1 else e2) , v〉 → 〈s , Fs , e1〉, if v = true
〈s , Fs ◦ (if [−] then e1 else e2) , v〉 → 〈s , Fs , e2〉, if v = false
〈s , Fs ◦ ([−] op e) , v〉 → 〈s , Fs ◦ (v op [−]) , e〉, for op ∈ {=, +, -, :=, ==, ,}
〈s , Fs ◦ (v′ op [−]) , v〉 → 〈s , Fs , v′′〉,

if v′′ is the result of combining v′ and v according to op ∈ {=, +, -, ==, ,}
〈s , Fs ◦ (� := [−]) , v〉 → 〈s[� �→ n] , Fs , ()〉, if v = n
〈s , Fs ◦ (![−]) , v〉 → 〈s , Fs , n〉, if v = � and (� �→ n) ∈ dom(s)
〈s , Fs ◦ (ref [−]) , v〉 → 〈s[� �→ n] , Fs , �〉, if v = n and � /∈ dom(s)
〈s , Fs ◦ ([−] ; e) , v〉 → 〈s , Fs , e〉
〈s , Fs ◦ (fst [−]) , v〉 → 〈s , Fs , v1〉, if v = (v1 , v2)
〈s , Fs ◦ (snd [−]) , v〉 → 〈s , Fs , v2〉, if v = (v1 , v2)
〈s , Fs ◦ ([−] e) , v〉 → 〈s , Fs ◦ (v [−]) , e〉
〈s , Fs ◦ (v′ [−]) , v〉 → 〈s , Fs , e[v/x ]〉, if v′ = fun(x : ty) -> e
〈s , Fs ◦ (v′ [−]) , v〉 → 〈s , Fs , e[v′/f , v/x ]〉, if v′ = fun f = (x : ty) -> e
〈s , Fs ◦ (let x = [−] in e) , v〉 → 〈s , Fs , e[v/x ]〉

Case e is not in canonical form:

〈s , Fs , if e then e1 else e2〉 → 〈s , Fs ◦ (if [−] then e1 else e2) , e〉
〈s , Fs , e1 op e2〉 → 〈s , Fs ◦ ([−] op e2) , e1〉, for op ∈ {=, +, -, :=, ==, ;.,}
〈s , Fs , op e〉 → 〈s , Fs ◦ (op [−]) , e〉, for op ∈ {!, ref , fst , snd }
〈s , Fs , e1 e2〉 → 〈s , Fs ◦ ([−] e2) , e1〉
〈s , Fs , let x = e1 in e2〉 → 〈s , Fs ◦ (let x = [−] in e2) , e1〉



Operational Semantics and Program Equivalence 407

Theorem A.3 (The relationship between evaluation and the abstract
machine).

〈s , Fs , e〉 →∗ 〈s′ , Id , v〉 ≡ (s,Fs[e] ⇒ v, s′)

where the application Fs[e] of a frame stack Fs to an expression e is defined by
induction on the length of Fs as follows:

{ Id [e] � e

(Fs ◦ F)[e] � Fs[F [e]]

(each evaluation frame F is an evaluation context containing a hole [−] that can
be replaced by e to obtain an expression F [e]). ��

A.7 A Structurally Inductive Termination Relation

This is of the form
〈s , Fs , e〉↘

where s is a memory state, Fs a frame stack and e a closed expression. It is
inductively defined by the following rules.

v a canonical form
〈s , Id , v〉↘

〈s , Fs , e1〉↘
v = true
〈s , Fs ◦ (if [−] then e1 else e2) , v〉↘

〈s , Fs , e2〉↘
v = false
〈s , Fs ◦ (if [−] then e1 else e2) , v〉↘

〈s , Fs ◦ (v op [−]) , e〉↘
op ∈ {=, +, -, :=, ==, ,}
〈s , Fs ◦ ([−] op e) , v〉↘

〈s , Fs , v′′〉↘
op ∈ {=, +, -, :=, ==, ,}
v′′ is result of combining v′ and v according to op
〈s , Fs ◦ (v′ op [−]) , v〉↘

〈s[� �→ n] , Fs , ()〉↘
v = n
〈s , Fs ◦ (� := [−]) , v〉↘
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〈s , Fs , n〉↘
v = �
(� �→ n) ∈ dom(s)
〈s , Fs ◦ (![−]) , v〉↘

〈s[� �→ n] , Fs , �〉↘
v = n
� /∈ dom(s)
〈s , Fs ◦ (ref [−]) , v〉↘

〈s , Fs , e〉↘
〈s , Fs ◦ ([−] ; e) , v〉↘

〈s , Fs , v1〉↘
v = (v1 , v2)
〈s , Fs ◦ (fst [−]) , v〉↘

〈s , Fs , v2〉↘
v = (v1 , v2)
〈s , Fs ◦ (snd [−]) , v〉↘

〈s , Fs ◦ (v [−]) , e〉↘
〈s , Fs ◦ ([−] e) , v〉↘

〈s , Fs , e[v/x ]〉↘
v′ = fun(x : ty) -> e
〈s , Fs ◦ (v′ [−]) , v〉↘

〈s , Fs , e[v′/f , v/x ]〉↘
v′ = fun f = (x : ty) -> e
〈s , Fs ◦ (v′ [−]) , v〉↘

〈s , Fs , e[v/x ]〉↘
〈s , Fs ◦ (let x = [−] in e) , v〉↘

〈s , Fs ◦ (if [−] then e1 else e2) , e〉↘
〈s , Fs , if e then e1 else e2〉↘

〈s , Fs ◦ ([−] op e2) , e1〉↘
op ∈ {=, +, -, :=, ==, ,}
〈s , Fs , e1 op e2〉↘

〈s , Fs ◦ (op [−]) , e〉↘
op ∈ {!, ref , fst , snd }
〈s , Fs , op e〉↘

〈s , Fs ◦ ([−] e2) , e1〉↘
〈s , Fs , e1 e2〉↘

Comparing the abstract machine steps in Sect. A.6 with the above rules it is
not hard to see that we have:
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Theorem A.4.

〈s , Fs , e〉↘ ≡ ∃s′, v (〈s , Fs , e〉 →∗ 〈s′ , Id , v〉) .

Hence by Theorem A.3, s, e⇓ holds if and only if 〈s , Id , e〉↘ does. ��

B Exercises

Exercise B.1. Let f , g and t be defined as in equations (3), (4) and (5). Use
the rules in Sect. A.3 to prove that

∅, t f ⇒ false, s and ∅, t g ⇒ true, s

hold for some state s. (Here ∅ denotes the empty state, whose domain of definition
is dom(∅) = ∅, the empty set of locations.)

Exercise B.2. Prove the type soundness property of evaluation stated in The-
orem A.1. Use induction on the derivation of the evaluation e, s ⇒ v, s′. You will
first need to prove the following substitution property of the type assignment
relation:

Γ � e : ty & Γ [x �→ ty ] � e′ : ty ′ ⊃ Γ � e′[e/x ] : ty ′.

Exercise B.3. Given e1, e2 ∈ Progty , define e1 ≤obs e2 : ty to mean that for all
x : ty � e : ty ′ and all states s

s, e[e1/x ] ⇒ v1, s1 ⊃ ∃v2, s2 . (s, e[e2/x ] ⇒ v2, s2) & obs(v1, s1) = obs(v2, s2)

where the function obs is defined in equation (2). Prove that e1 ≤obs e2 : ty holds
if and only if e1 ≤ctx e2 : ty does.

Exercise B.4. Prove Theorem A.2 relating the evaluation and transition rela-
tions of ML. First prove

(s , e) → (s′ , e′) ⊃ ∀v, s′′. (s′, e′ ⇒ v, s′′) ⊃ (s, e ⇒ v, s′′)

by induction on the derivation of (s , e) → (s′ , e′); deduce that if (s , e) →∗

(s′ , v), then s, e ⇒ v, s′. Prove the converse by induction on the derivation of
s, e ⇒ v, s′.

Exercise B.5. Given r ∈ Rel(w1, w2) and r′ ∈ Rel(w′
1, w

′
2) with w′

1 ⊇ w1 and
w′

2 ⊇ w2, show that r′ � r (Definition 5.1) holds if and only if for all (s′
1, s

′
2) ∈ r′

(s′
1�w1 , s

′
2�w2) ∈ r & ∀(s1, s2) ∈ r . (s′

1s1, s
′
2s2) ∈ r′.

(Here s�w denotes the restriction of the function s to w; and s′s is the state
determined by the states s′ and s as in Definition 5.1.)

Exercise B.6. Use the Unwinding Theorem 5.3 to prove the property of ≤ctx
stated in equation (9).
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Exercise B.7. Suppose f ∈ Progint->int is a closed expression with loc(f) =
∅ and such that for all n ∈ Z it is the case that ∅, f n⇓ holds. Show that f =ctx
memo f : int -> int where

memo f � let a = ref 0 in
let r = ref (f 0) in
fun(x : int) -> (if x = !a then ()

else (a := x ; r := f x )) ; !r .

(See [15, Example 5.7], if you get stuck.)

C List of Notation

& logical conjunction.
⊃ logical implication.
≡ logical bi-implication.
=ctx contextual equivalence—see Definition 3.1.
≤ctx contextual preorder—see Definition 3.1.
≤r logical simulation relation—see Theorem 5.2 and Def-

inition 5.4.
� extension relation between state-relations—see Defi-

nition 5.1.
dom(f) the domain of definition of a partial function f .
e[e1/x ] expression resulting from the substitution of expres-

sion e1 for all free occurrences of x in expression e.
e[e1/x 1, . . . , en/x n] expression resulting from the simultaneous substitu-

tion of expression ei for all free occurrences of x i in
expression e (for i = 1, . . . , n).

E an evaluation context—see equation (7) in Sect. 4.
E [e] the expression resulting from replacing the ‘hole’ [−]

in an evaluation context E by the expression e.
F an evaluation frame, special case of an evaluation

context—see Sect. A.6.
F [e] the expression resulting from replacing the ‘hole’ [−]

in an evaluation frame F by the expression e.
Fs a frame stack—see Sect. A.6.
Fs[e] the expression resulting from applying the frame

stack Fs to the expression e—see Theorem A.3.
� Fs : ty � ty ′ type assignment relation for frame stacks—see (12).
f [x �→ y] a partial function mapping x to y and otherwise act-

ing like the partial functionf .
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fv(e) finite set of free value identifiers of an expression e.
idw identity state-relation at world w—see Theo-

rem 5.2(III).
Γ � e : ty type assignment relation—see Sect. A.4.
Loc the fixed set of names of storage locations.
loc(e) finite set of storage locations occurring in the expres-

sion e.
∅ the empty set; the empty partial function; the empty

state; the empty typing context.
Progty the set of closed expressions of type ty—see Defini-

tion 5.1.
Progty(w) the set of closed expressions of type ty with locations

in the finite set w.
Rel(w1, w2) the set of binary relations between states in St(w1)

and in St(w1).
s, e ⇒ v, s′ evaluation relation—see Sect. A.3.
s, e⇓ termination relation derived from the evaluation re-

lation ⇒—see Definition 3.1.
(s , e) → (s′ , e′) transition relation—see Sect. A.5.
〈s , Fs , e〉 → 〈s′ , Fs ′ , e′〉 transition of the abstract machine—see Sect. A.6.
〈s , Fs , e〉↘ structurally inductive termination relation—see

Sect. A.7.
St(w) the set of memory states defined on a finite set w of

locations (i.e. Z
w, the set of functions from w to Z).

Stackty(w) the set of closed frame stacks taking an argument
of type ty and with locations in a finite set w of
locations—see (12).

Valty(w) the set of canonical forms of type ty with locations
in a finite set w of locations—see Sect. A.3.

w a finite subset of Loc, regarded as a ‘world’.
Z the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}.
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