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Abstract. We consider models in toposes of equational theories over the type system
consisting of the Girard-Reynolds polymorphic lambda calculus augmented with finite
product types. The particular notion of model we use is very straightforward, with
polymorphic product types and function types both being interpreted in a standard way in
the topos—the first by internal products and the second by exponentiation. We show that
every hyperdoctrine model of a polymorphic lambda theory can be fully embedded in such
a topos model. the topos constructed being simply a functor category. There are precise
correspondences between polymorphic lambda theories and their hyperdoctrine models, and
between toposes and theories in higher order intujtionistic predicate logic. So we can
conclude that every theory of the first kind can be interpreted in a theory of the second
kind in such a way that the polymorphic types are interpreted in a standard way. but so
that up to provability in the higher order theory, they have exactly the same closed terms
as before. A simple corollary of this full embedding result is the completeness of topos
models : for each polymorphic lambda theory there is a topos model whose valid
equations are exactly those derivable in the theory.
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0. Introduction

The title of this paper ought really to be "Polymorphism can be set theoretic,
constructively”, but the obvious reference to Reynolds’ paper "Polymorphism is not set
theoretic” [R2] was too tempting. The purpose of the paper is to prove particular kinds of
completeness and full embedding theorems for the polymorphic lambda calculus. In order
to explain the theorems we need to review some of the recent history of type

polymorphism:

In loc.cit.. it is shown that the standard interpretation of the first order typed lambda
calculus in the category of sets cannot be extended to a model of the second order typed
lambda calculus. Reynolds works with quite a general notion of what constitutes ‘a second
order model extending a standard first order model, but the naive idea would be to have a
set [/ of sets closed under finite cartesian products. exponentiation and [/-indexed
cartesian products: the types would be interpreted by sets which are elements of U, with
function types and polymorphic product types both being interpreted in a standard way
using set-theoretic exponentiation and product. Putting this in more category-theoretic
terms, one would have a small category U and a full and faithful functor from U to the
category of sets, G:U“—Set, so that U has and G preserves finite products,
exponentiation and products indexed by the set [/ of objects of U. A simple cardinality
argument shows that there are no non-trivial such U,G (in the sense that any such I/ can
only contain sets with at most one element). If one drops the requirement of having the
structure preserving full embedding into Set, there are of course many, highly non-trivial,
small cartesian closed categories U with the above limit closure properties — for
example Lambek's C-monoids, studied in Part 1 of [LSI1, correspond to cartesian closed U
with just two objects (a terminal object T and an object X > (XxX)=(X-X)), and which
therefore certainly have (/-indexed products. All such U give rise to models of the second
order typed lambda calculus, but not ones extending the standard set theoretic

interpretation of the first order calculus.

Recent work of Hyland. Moggi, Robinson. Rosolini [HRRI1. Carboni, Freyd and Scedrov
[CFS] shows that this non-existence of standard models is due to the non-constructive
nature of the category of sets. They have demonstrated that it is possible for elementary
toposes (which in general model a particular kind of higher order constructive logic —
see [LS]1) to contain internal full subcategories whch are closed under the operations of
taking any limits or colimits in the topos (and so in particular also are closed under
taking exponentials since these are given by powers. i.e. by internal products). The
particular topos they consider is Hyland's effective topos [H] and its internal small full
subcategory of subcountable objects, i.e. those objects which are the quotient of the

natural numbers object by a partial equivalence relation. (The related internal subcategory




given by ---closed partial equivalence relations also has these strong closure properties in
the effective topos; the objects in this subcategory have been termed the modest sets by
Dana Scott. See also [FS1.)

Thus the effective topos is a model of higher order constructive logic in which there is a
"set" U of "sets"” whose elements are closed under all the operations (indeed, far more)
needed to model the second order typed lambda calculus in a completely standard way:
the polymorphic types (of one free type variable) are interpreted as arbitrary [/-indexed
collections of “sets” in U; function types are interpreted as full function exponentials in
the topos; and the product type of a polymorphic type is interpreted as the actual product
in the topos of the corresponding indexed collection (which product is again in U despite
the size of the indexing "set"). There is no contradiction with Reynolds' result since in the
effective topos (and in toposes in general) the classically valid Law of Excluded Middle

needed to carry out his argument. is not valid.

Generalizing the naive idea of a standard set theoretic model of the second order typed
lambda calculus discussed above, by a topos model we shall mean the following: a topos
E equipped with an internal category U and a full and faithful diagram G of type U in E,
so that U has and G preserves finite products, exponentials and products indexed by the
object of objects of U. (We will spell out explicitly what such data amount to in section
3.) Much as indicated above, these properties of the internal subcategory are just what are
needed to interpret the language of the second order typed lambda calculus (by which we
shall mean Girard's system F [G1, G2]1 augmented with finite product types: see section 1),
in such a way that the equations of B-conversion. 7-conversion and surjective pairing and
the £-rules of extensionality are always satisfied. Conversely we shall prove that there are
enough topos models so that the only equational consequences of these axioms and rules

are those which are satisfied by all topos models.

More generally one can consider 2T'\C-theories T=(L,A), consisting of a suitable language
L (with symbols for constant types, type constructors and constant terms) and a set A of
equations between terms in the second order typed lambda calculus built up from the
language. A topos model of T will then mean a topos model in the sense of the previous
paragraph, together with an interpretation of the language with the property that all the
equations of A are satisfied. (Precise definitions of the notions of theory and satisfaction

are given in sections 1 and 2.) We prove:

Theorem B. (Completeness of topos models.) Let T=(L,A) be a 2TAC-theory. The equations
between second order typed lambda calculus terms built up from [ which are provable
consequences in equational logic of the axioms A of T together with the axioms of

B-conversion, 1 -conversion, surjective pairing and the {-rules, are just those satisfied by




all topos models of T. In fact for each T, there is a single topos model whose valid

equations are exactly those derivable in T.

In fact our proof of this theorem is via an even stronger result which shows there are

very many topos models:

Theorem A. (Full embedding in topos models.) Every hyperdoctrine model of the second

order typed lambda calculus fully embeds into a topos model.

The category theoretic notion of hyperdoctrine was introduced by Lawvere [L1 in his
seminal work on the connexions between categories and logic. The correspondence between
theories in a higher order (extensional) typed lambda calculus and an appropriate kind of
hyperdoctrine has been developed by R.A.G.Seely {Sel. This correspondencé readily
specializes to one between ZTAC-theories and the kind of hyperdoctrines described in
section 2 below. The passage from theory to hyperdoctrine is the familiar term-model type
construction in categorical logic of organizing the syntax, suitably quotiented by
provability in the theory, into a category with suitable extra categorical structure or

properties. In this way Theorem B is deduced from Theorem A.

The proof of Theorem A proceeds by first using the Grothendieck construction to obtain
the total category of the fibration corresponding to the given hyperdoctrine; and then one
takes the functor category of contravariant set-valued functors on this total category.
Thus the topos constructed is simply a presheaf topos and the original hyperdoctrine
embeds into it essentially via the Yoneda embedding. The method of proof is therefore
very similar to that used by Dana Scott [Scll in showing that a model of the. untyped
A-calculus can be realized as a reflexive "set” inside a presheaf topos. The fact that the
Yoneda embedding preserves any existing exponentials is a key ingredient of his proof, and
here we use this and more — namely that the Yoneda embedding preserves any existing
local exponentials and instances of right adjoints to pulling back. Part of the data which
specifies the original hyperdoctrine naturally gives rise to an internal full subcategory in
the constructed presheaf topos. The main part of the proof of Theorem A then resides in

showing that this has the requisite limit closure properties.

The significance of Theorem A is that, as long as our arguments can be carried out in
intuitionistic higher order logic (for a description of which see [LS, Part 11 for example),
then we may reason about the second order typed lambda calculus as though polymorphic
types were suitably indexed collections of sets, product types of polymorphic types were
actual cartesian products of sets, function types were full exponentials of sets. etc. Our
method of proof in fact extends to the case of higher order typed lambda calculus

(optionally augmented with sum types of polymorphic types). The corresponding kind of




hyperdoctrine has a cartesian closed base category (optionally augmented with stable left
adjoints to substitution along projections): see [Sel. The topos model constructed in the
proof of Theorem A will in this case have the further property that the internal
subcategory is closed in the topos under products indexed by any finite type on its object
of objects (and optionally closed under similarly indexed cdproducts). It is important to
note that these closure properties are still much less than those enjoyed by the internal
categories of the effective topos mentioned above: they are closed with respect to all
internal limits and (hence) colimits. The question of whether Theorems A and B can be

strengthened by restricting to such topos models is not addressed here.

Having read the above description of what will be proved in this paper, one might wonder
why it was not entitled "Polymorphism is topos theoretic”. What have these res;llts to do
with constructive set theory ? The kind of intuitionistic higher order logic which toposes
model can certainly be regarded as a constructive theory of sets. But if one wishes to
model the untyped (e.=)-language of set theory, then elementary toposes in general are
capable of modelling only a restricted form of Zermelo-Fraenkel set theory. with bounded
separation and collection axioms: see [J, Chapter 91. However, the toposes which arise in
the proofs of Theorems A and B are Grothendieck toposes, and these M.Fourman [F] has
shown admit the interpretation of a full intuitionistic Zermelo-Fraenkel set theory with
atoms, [ZFA. (Indeed, the toposes considered here are just presheaf toposes, for which the
Fourman interpretation of [ZFA takes a particularly simple form, as Dana Scott shows in
[Sc21.) Thus Theorems A and B could be rephased in terms of models of the second order
typed lambda calculus in [ZFA. (It is interesting to note that even though Hyland's
effective topos is definitely not a Grothendieck topos, nevertheless it does support an
interpretation of /[ZFA — one that is entirely analogous to the standard Heyting-valued

models. The resulting model of /ZFA is presented by C.McCarty in [McCl.)
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1 Second order equational theories

In this section we review the syntax of equational theories in a system, 2TAC, of second
order typed lambda calculus. The type system is that of the Girard-Reynolds polymorphic
lambda calculus [Gl, G2, R1, R2]1, augmented with terminal and binary product types.
(There are several good reasons for including these extra, first order types, not least of
which is their presence in cartesian closed categories.) The equational logic we consider
over the type system contains axioms for B-conversion, n-conversion, extensionality and

surjective pairing.

-~

1.1. Types. Let us fix a countably infinite set TV whose elements we shall call type
variables and denote by X,Y.Z.... Given a multiset ar:C—IN, the set Types(C) of 2TAC
types over C (denoted ®,9..) is defined inductively by the clauses given below;
simultaneously we define the finite subset FTV(®)CTV(C) of free type variables of a type
d:

if XeTV, then XeTypes(C) and FTV(X)={X);

if FeC with ar(F)=n say, and if &,....®__,cTypes(C), then F(®,...8 _, )eTypes(C) and
FTV(F(®,,....8 ,_ )=FTV(® )U..UFTV(® _.);

TeTypes(C) and FTV(T)=;

if ®¥eTypes(C), then for * = x or », (®*xW)eTypes(C) and FTVI®xE)=FTV(R)UFTV(E);

if ®cTypes(C) and XeTV, then [[X.®eTypes(C) and FTVIX.®)=FTV(®)\{X}.

If FeC and ar(F)=n, we shall call F a type constructor symbol of arity n; in the special
when case n=0, F is a type constant and we write F rather than F() for the corresponding
type. A type ® is closed if FTV(®)=0D. The type variables occurring in a type ® which are
not in FTV(®) are the bound type variables of ® (X is bound in [[X.®). As usual, we
identify types up to a-equivalence, i.e. up to change of bound type variables. If
& ¥cTypes(C) and XeFTV(®), then [X:=¥]1® will denote the result (defined up to

a-equivalence) of substituting ¥ for X throughout ®, avoiding variable capture.




1.2. Terms. Fix a countably infinite set [V of individual variables z,y,z,... . Elements of the
product [VxTypes(C) will called typed individual variables and a typical such pair will be
denoted z®. By a language [ we will mean a pair [=(C,K), where C is a multiset of type
constructor symbols and K is a set of individual constants (a,b,c,...) together with a
specification of their types (a:®,...), which we will always ‘assume to be closed types.
Given such an L, the set Terms(L) of Z2TAC terms over L (denoted s.t,...) is defined
inductively by the clauses given below; simultaneously we define the type of each term
(denoted s:®) and the finite subsets FIV(s), FTV(s) of free individual and type variables of

a term s:

if z®eVxTypes(C), then z®eTerms(L) with z2:®, FIV(z®)={z®) and FTV(z®)=FTV(®);
. if aeK, then aeTerms(l) with closed type as specified and F[V(a)=FTV(a)=®;\\

OeTerms(L) with (:T and FIV(O)=FTV())=0;

FsteTerms(L) with Fst:[[X.JIY.(XxY)-»X and FIV(Fst)=FTV(Fst)=0;

SndeTerms(L) with Snd:[[X.JIY.(XxY)»Y and FIV(Snd)=FTV(Snd)=0;

if s:® and t:¥, then (s,t):®x¥ with FIV(st)=FIV(s)UFIV(t) and FTV(st)=FTV(S)UFTV(t);

if s:(®>¥) and t:®, then st:¥ with FIV(st)=FIV(s)UFIV(t) and FTV(st)=FTV(s)UFTV(t);

if s:JIX.® and WeTypes(C), then s¥:AIX:=¥1® with F[V(s¥)=F[V(s) and

FTV(s¥) = FTV(S)UFTV(¥);

if s:¥, then Az®.5: &¥ with FIVOAz®.8)=FV(s)\{z®) and FTV(\z®.5)= FTV(®)UFTV(s);

if s:®, then AX.s: [[X.® with FIVIAX.s)=FIV(s) and FTV(AX.s)=FTV(s\{X].

A term s is closed if FIV(s)=0. The individual and type variables occurring in s but not in
the sets FIV(s), FTV(s) are the bound variables of s (z% is bound in A:c‘f.s and X is bound
in AX.s). As for types, we identify terms up to a-equivalence, i.e. up to change of bound
variables. If seTerms(L) and ¥eTypes(C), then [X:=¥1s denotes the result of substituting ¥
for a type variable X throughout s, avoiding variable capture; evidently [X:=¥ls : [X:=¥]®
when s:®. Similarly, if s:® and t:¥, then [z¥:=t1s:® denotes the result of substituting t for

the individual variable =¥ throughout s, avoiding variable capture.

1.3. Theories. Given a language L = (C,K) as above, we consider judgements which assert the

equality of two 2TAC terms of equal type. Specifically, an equality judgement will take

the form:
o os=t:P
X.z
where X=X,...X __, is a finite list of distinct type variables, g=x0‘1’0 ,...,xm_;l’m-I is a

finite list of distinct individual variables of various types over C, s and ¢t are terms over L
of type ® whose free individual variables are contained in z, and such that the free type
variables of s, t, ® and the &, are contained in X. Then a 2TAC-theory T is specified by a

language L and a set A of equality judgements over [, called the axioms of T.




1.4. Equational logic over 2TAC. We next give the basic logical axioms and rules for
deriving equality judgements in 2TAC. In particular, if T =(L,A) is a 2TAC-theory, then the
theorems of T comprise the least set of equality judgements over L containing A and the

axioms below, and closed under the rules given below:

- s=t:®
. )—(‘£ ? ’
- weakening (XCX and z<z')
- s=t:®
X'z’
+ reflexivity b s=s:®
X,z
+ s=t:®
; X,z
+ symmnetr
Y Y (o t=5:®
X.z
For=s:® o s=t:®
. X,z X.z
* transitivity
- P
X,z
- terminal Foot=0:T

0,0
+ s=s":® + t=t"¥
X

* pairin = Xz
paring . (s,0=(s ) BxT
X,z
- projections +_ Fst@®¥(sti=5:® , ko Snd®¥(s,t)=t:¥
X.z X.z
- surjectivity FX (Fst@¥r,Snd®¥r)=r:dx ¥
Z
F o Lt
. .o X,z,x >
. individual & NP TR yorues (£®<z)
X,z
b 5=5:®¥ t=t":®
+ individual application Xz Xz
e P . st=s't"¥
X,z
. individual B8 » Az®8.t)s=[z:=s1t:¥
- individual i -~ Az®.(tz) =t:8-¥ (zBLFIV())
X,z
FXX t=t":®
:] ’_z_
.t — (X£X)
ype § b AXE=AXLE .
X,z
t - FX’E—S:S:HX.@
ype apphcation o sU=g':[X:=0]P
X,z
. AX ¥ =[X:=0]1:[X:=¥]1P
type B FX,Z?.( )
. type 7 ko AX.tX)=t[[X.® (X£X) .
X,z

We shall write TI—X s=t:® to indicate that the equality judgement I—X s=t:® can be derived
as a theorem of the Z2TAC-theory T. The reader will see from the above axioms and rules

that we are considering extensional theories with surjective pairing operations. The first




order part of such theories and their relationship to carstesian closed categories are
exposed in [LS, Part I]. Seely [Sel considers the case of similar theories in full higher
order typed lambda calculus, except that he also allows a second kind of equality
judgement — namely the assertion that two types are (extensionally) equal. Influenced by
Bénabou's observations in [B] on the r6le of equality between objects (stypes) in category
theory, we have specifically left out this form of judgement as inappropriate to the
intuitive notion of type we have. Rather, in the system we are considering, one can assert

that particular terms give an isomorphism between particular types.

We conclude this section with some technical remarks about the precise form of the
equality judgements in ZTAC-theories. Because the underlying language of a theory can
introduce arbitrary constant types, it is perfectly possible for a type to possess no closed
terms, i.e. to be uninhabited. Accordingly the logical system presented above is not
equivalent to one in which the judgements are not tagged with a list z of free individual
variables. On the other hand, since there are always closed types (e.g. the terminal type
T), it is not essential that the judgements be tagged with a list X of free type variables:
using the rules (type €) and (type B), one has that Tl-X‘xs=t:<I> if f TF}_{,’;—S-'-)::Q, where X’
comprises exactly those free type variables mentioned in z, s, t, and ®, and hence need

not be given explicitly. However, the chosen form of judgement is convenient for giving

the category theoretic semantics of 27'\C, to which we now turn.

2 Hyperdoctrine models

In this section we review those parts of [Sel concerned with the connexion between
2TXC-theories and a particular variety of hyperdoctrine. The general notion of a
hyperdoctrine was introduced by Lawvere in his seminal work on the connexions between
category theory and logic; see [L] for example. It has proved to be a very flexible and
useful concept, not least in making precise the fundamental observation that theories in
many different kinds of logic can be specified in a syntax-free way as models of various
kinds of category theoretic structure, which structure can often be viewed as a particular
kind of hyperdoctrine. We refer the reader to [P] and the references there for more
information about hyperdoctrines in general. The particular kind of hyperdoctrine we will
be concerned with here is a special case of that considered by Seely in [Sel and called a
"PL category” there. He shows that there is a correspondence between these PL categories
and equational theories over the higher order typed lambda calculus: this correspondence
readily specializes to one between the 2TAC-theories defined in the previous section and

the kind of hyperdoctrine defined below. We begin by fixing some notation:



2.1. Cartesian closed categories. If a category C has a given terminal object, it will be
denoted by T. For any object A in C, the unique morphism from A to T will be denoted
A:A—T, whereas the identity morphism on A will be denoted ,. If C has given binary
products, the product of objects A and B in C will be denoted by
T, Tz
A Ax B B .
For any morphisms f:C—A, g:C—B in C, (f,gh:C——AxB will denote the unique

morphism with 7,{f,g)=f and w,(f,g)=g. For such a category C, the exponential of objects

A and B, if it exists, will be denoted A~B and the accompanying evaluation morphism by
evi(A>B)x A—B.

Thus for a morphism f:CxA——B, there is a unique morphism f:C——(A~B) with

eve(fx1 ,)=f. As usual, a category is called a cartesian closed category, or more_briefly a

cce, if it has a terminal object, binary products and exponentials.

We shall need to consider two slightly different notions of morphism between ccc's, the
second a special case of the first. As usual, a functor F:C——D is said to preserve
terminal objects if whenever T is terminal in C, then F(T) is terminal in D. Similarly F
preserves binary products if whenever AL pLpis a product diagram for A and B in C,
then F(A)&F(P)E%F(B) is one for F(A) and F(B) in D. Such a functor also preserves
exponentials if whenever F is the exponential of B by A in C (via an evaluation morphism
P-%5B with product diagram EFLP——Q%A). then F(E) is the exponential of F(B) by F(A) in
D (via Fe, Fp and Fq). Then if C and D are ccc’s, a functor F:C——D will be called a
morphism of ccc's if it preserves the terminal object, binary products and exponentials. F
is a strict morphism of ccc's if furthermore it sends the given terminal object, binary
products (and projections) and exponentials (and evaluation morphisms) in C to the given
ones in D. Thus for a strict morphism one has for example, that (F1,,Fl;) is the identity
on F(AxB)=F(A)xF(B), whereas for a morphism one has only that (F1,Flg) is an

isomorphism.

The category of small ccc's and strict morphisms of ccc’'s will be denoted Ccc. The
forgetful functor to the category of sets which takes a small ccc to its underlying set of

objects will be denoted ob:Ccc——Set.

2.2. Definition. A 2TAC-hyperdoctrine P is specified by:

(i) a small category |P| with terminal object and binary products;

(ii) a distinguished object UU in |P| which generates the other objects, /, via finite
products, i.e. each [ is U™ for some nelN (including the case n=0, when U°=T);

(ii1) a contravariant functor |[P|°"——Ccec, such that the composition |P|°P —5Cec-22: et is
the representable functor |P|(-,U/); the ccc assigned to an object / in |P| by the
functor will be denoted simply by P(/,UU), and the strict ccc morphism assigned to
a:[—J in |P| will be denoted a™*:P(J,U)—P(,U);




(iv) for each object [ of |P|, a functor [],:P(xU,U)—P(,U) right adjoint to the functor
m :P(L,U)—P(xU,U), such that these functors ]'[1 are natural in /, i.e. for any a:[—J

a*o[l =11 ,e(ax1,,)*.

|P| is the base category of the 2TAC-hyperdoctrine P, and the ccc P(/,U) is the fibre over
an object [ in the base. Note that the identity on U, regarded as on object of P(U,l), is
a generic object sense that any object A in any fibre P(/,U) is equal to a*(1,,) for some
a:[—U (namely a=A). Note also that for any object U™ of [P|, =] :P(-,U)—>P(-xU™U) has

a natural right adjoint, viz H(—)"H(—)xu"""’n(—)xuﬂ—"

The cartesian closed structure of any P(/U) will be denoted by T, x , and -, In
particular when /=T we get: \

rT T—l—:T ;U; (2.1)

Cdef
and when [=U? we get:

X = yep(T)X2m,): UxU—>U and "' “def (w)=,,2(m,) : Ux U—>U, (2.2
where the m.eP(U?U) are the projections. The fact that the operations (-)* are strict ccc

morphisms implies that for any object [ of |P|

T, =T, (2.3)
and for any A,BeP(,U)

Ax,B="x""(A,B) and A~ B="-"(A,B). (2.4)
In P(T,U) there are morphisms

GRS | B ) S (S NI 35 BN 3 )} (2.5)

'Snd T I {0 )X et )12 ) (2.6)

obtained from the two projection morphisms for (r)x  ,,2(r,) by transposing across the
exponential adjunction and across the adjunctions for []. Finally, note that for any /¢|P|,
AeP(IxU,U) and BeP(/,U), there is an internal product projection morphism

Tl A— AU, B (2.7)
in P(,U) given by wg=(1,B*(e,) where g ,m ([I;A)—A is the counit of the adjunction
x40, at A

The theory of hyperdoctrines is part of the wider theory of fibred categories. (See [B1 and
the references there.) The following remarks on particular aspects of Definition 2.2 assume

some familiarity with this theory:

2.3. Remark. The kind of hyperdoctrine defined above is "stricter” than usual, in the sense
that all the parts of the structure which are normally asked to commute up to (canonical)
isomorphisms, are here asked to commute up to equality; in particular P determines a
fibration over |P| which is split (and has various other properties). A laxer notion still
suitable for the semantics of 2TAC-theories, would be that of a category P, fibred over a

base category |P| (with finite products), with stably cartesian closed fibres, containing an
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object G which is generic in the sense that any other object can be obtained up to
isomorphism from G by change of base along a cartesian morphism, and such that P has
[/-indexed products where Uec|P| is the object underlying G. In fact it is the case that
every such P is equivalent over |P| to a 2TAC-hyperdoctrine, and the latter notion is often
more convenient to work with. However there is one aspect of Definition 2.2 which is not
mere convenience, but crucial for the construction of a topos model from a
Z2TAC-hyperdoctrine to be given in section 4. This is the requirement that the right adjoint
functor ] ; be natural in / rather than just pseudo-natural. (As noted by Coquand and
Ehrhard [CE], Seely's notion of "PL category” is "strict” in all respects except this one,
and in giving an equational presentation of the theory of PL categories they add in the
naturality of the [[-functors.) N
Next we indicate how a 2TAC-hyperdoctrine P provides a semantics for 2TAC-theories.
Roughly speaking, the denotations of types are objects in the fibres of P (which are
particular morphisms in |P|) and the denotations of terms are morphisms in the fibres.
There is a third syntactic category, variously called "kinds" or "orders”, which we have not
so far mentioned since for the second order typed lambda calculus the kinds are just
finite powers of the basic kind "Type”. The denotations of kinds are objects in |P|, and in
particular "Type" is denoted by U. To make these statements more precise, we first have
to specify an interpretation of the underlying language of the types and terms and take

account of the free type and individual variables they may have:

2.4. Structures and models. Let P be a 2TAC-hyperdoctrine and ar:C~—IN some multiset of
type constructor symbols. A C-structure M in P is specified by giving, for each FeC, an
element MFeP(Uar(F),U). Then for a type ® over C and a finite list X=X ,...,X _ of type
variables containing the free type varables of ®, define
[®, X1, e PU™U)

by structural recursion:

[X,,X1,,=7;, the ith projection morphism;

LA(®,,....8 )1, = MF([®,, XT, ;,...08 _ _ , XTp,0);

I[T,X]]M= T

[o+w, X1, =08 X], %, n[¥ X, , where x = x or ~;

IIx.®, X1, ,= HUn [®,X,X1,,.
Note that if ® is a closed type, then we can take X=() the empty list,and get [$,01,, in
P(T,.0): we will write [2],, for [®,01,, By structural induction, one can show that
substitution of types for type variables is interpreted using composition in |P|:

COX:=P1®, X1, =0[8,X,X1, 0, [¥X], ). (2.8)
Similarly, if XZFTV(®), then

[[(D,)_(,X]]M=1r,"‘[[<1>,2_(]]M , Where w:U"xU—U™ (2.9)
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If now L=(C,K} is a language (as defined in 1.2), an L-structure M in P is specified by a

C-structure together with, for each a:® in K, a global element of the object [®],, , ie. a
morphism Ma:T—{[&],, in P(T,U). Then for a 2TAC term t over L of type ® say, together
with a finite list g=xo‘1’0,...,xm_"pm-l of distinct individual variables containing F/V(t) and

with a finite list X=X .., X __,
FTVA(®),...FTV(®_ _), define

Ct,z,X1,, :0®,,XT, x--x[®
in P(U™U) by structural recursion:

[x®,

of distinct type variables containing F7TV(t) and

- X Iy 08, X1,

z,X1,,=7, , the ith projection morphism;

[0,z,X7,, =02, , X, ,x--xL®___ X7, , the unique morphism to Toms
[Fst,z,X1,, = (U'”)"‘(’Fst')o([[@o,)_(]]Mx---xl[Qm_’,X]]M) , with ‘Fst’ as in (2.5); _°
CSnd,z , X1, , = (U”)*('Snd')o([@o,,X]]Mx---x[[tbm_’,)_(]]M) , with 'Snd” as in (2.6);

. Ca,z,X1,,= (U'”)"‘(Ma)o(l[tbo,X]]Mx---x[tbm_’,)_(]]M) , for aeK;

Ksp,z,X], = Cs,z,XT, ,, [t,z,X], )

= evells,z, X1, ,Lt,z , X1, )5
Cs¥,z,X71,, = r[W;X]Mof[s,g,_X]lM , with Trw, x 1y, 25 in (2.7) (and using (2.8));
[[/\x‘lfs,g,)_(]]M = f, the exponential transpose of f=[s,z,z,X], , ;

. [[/\X.s,g,)_{]]M =7, the transpose across the adjunction 1r’*4 HU" of

g=Is,z,X X1, :“:*<iI<I,E‘I’i')—{]M )=iI<IT£<1>i X, X1, —18,X,X]1,,
(where the last clause makes use of (2.9)).
We shall say that the L-structure M satisfies an equality judgement F—X s=t:® and write
z

Me s=t:® ,
X.z

if s,z,XT,, =0, z,X 1, in P(U™,U). Then if T=(L,A) is a 2TAC-theory, we will say that an

L-structure M is a model of T if it satisfies all of the equality judgements which

comprise the set A of axioms of T. One easily proves:

2.5. Soundness Lemma. The above definition of satisfaction of an equality judgement by a
structure in a 2TAC-hyperdoctrine is sound for the equational logic of 1.4. Thus if T is
a 2TAC-theory and M is a model of T in a ZTAC-hyperdoctrine P, then for any equality
judgement one has: if TFX,;—s=t:<I> then M t}_(,gs=t:<1> .

O

2.6. Classifying hyperdoctrines and generic models. If T=(.,A4) is a 2TAC-theory, then the
2TAC types and terms over L can be used to construct a 2TAC-hyperdoctrine, called the
classifying hyperdoctrine of T, denoted P4 and defined as follows:

The objects of [Pyl are in bijection with the natural numbers: the object

corresponding to nelN will be denoted U™, and we will write U for U’ and T for U°.

Morphisms U7—U"" in |Py| are m-tuples of morphisms U™—U; and the latter are

equivalence classes [$,X] of pairs (®,X), where & is a type, X is a finite list of




distinct type variables containing F7V{(®) and the equivalence relation on such pairs is
that of a-equivalence, i.e. (®,X) is equivalent to ([X:=X'1$,X"). Composition in IPTI is

given by substitution of types for type variables.

The objects of each fibre PL(U™,U) are necessarily the morphisms U™ —U in IPTI.
Given two such objects, [®,X]1 and [¥,Y] say, a morphism [&,X]1—[¥,Y] in PT(Uﬂ,U)
is an equivalence class [t,z® X.,Y], where t:¥ is a term with FIV(t){z®), FTV(H)CX,Y
(we assume X distinct from Y), and where (t,,:z:;l’, X,Y,) is equivalent to (tz,xg,xz,zz)
iff TI—O’()/\XIZI./\J:;I’.tﬁA)_(Z)_’z./\x?.tz:HXZ.{H\II.

Composition is given by substitution of terms for individual variables and the
functors (-)* between the fibres are given by substitution of types for type variables
in both types and terms. The terminal object is [T,X]; the product of Ié,)_(] and

[¥, X1 is [®x¥,X]; and their exponential is [$-¥, X].

The right adjoint to w7 :Pp(U™Uy—PL(U™xU,U) sends [®,X,X] to ([[X.®, X1 and
t,x2, X, X1 to IAX.([z%:=2 X1t), 112 x1.

The verification that the above recipe does give a 2TAC-hyperdoctrine is a straightforward
exercise. (See also [Se, Proposition 4.61 for the full higher order case and [LS, I.111 for
the first order case.) Almost tautologically P, contains a model of T, which we shall call
the generic model of T and denote by /y. The underlying L-structure of /; sends a type
constructor F of arity n to [F(X),X1:U™—U and an individual constant a of (closed) type
® to [a,xz"OLIT,01—I[&,0]. It follows from the definitions of P, and /p that:
T&—X'g s=t:® iff [Tté_(,g s=t:® . (2.10)

In particular, the notion of a model in a Z27AC-hyperdoctrine is complete for the
equational logic of 1.4:

An equality judgement is a theorem of a ZI'AXC-theory iff it is satisfied by all models

of the theory in 2TAC-hyperdoctrines (iff it is satisfied by the generic model).
However, the generic model / has a much stronger property than just (£.10), namely:

Any model of T in any ZTAC-hyperdoctrine P can be obtained up to isomorphism as

the image of the generic model [, along an essentially unique morphism of

ZT\C-hyperdoctrines P.—P.
(A 2-hyperdoctrine morphism F:P—Q is specified by a finite product preserving functor
IF|:IP—|Q| sending the Ue|P| to the U¢|Q|, and by a natural transformation
F(_):P(—,U)—>Q(|F|(-),U) whose component functors are ccc morphisms commuting with the

right adjoints [],.)

Thus Py is the 2TAC-hyperdoctrine "freely generated” by the Z2TAC-theory T. Conversely,
up to equivalence every ZTAC-hyperdoctrine P can be presented as the classifying
hyperdoctrine of some Z2TAC-theory T: for the set C of type constructor symbols, for
each arity n take one symbol F° for each morphism F:U™—U in |P|, giving an evident

C-structure M :F +F; for the set of individual constants K, for each closed type ® over
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C and each a:T—M® in P(T,U) take a symbol "a’:®, giving a language L=(C,K) and an
evident L-structure M in P with M(a’)=a; then let T be the ZTAC-theory (L,A), where A
consists of all the equality judgements which are satisfied by the structure M. Evidently
M is a model of T, and one can show that the corresponding Z2TAC-hyperdoctrine

morphism Pp—P is an equivalence.

2.7. Summary. The notion of satisfaction of an equality judgement by a structure in a
2TAC-hyperdoctrine is both sound and complete for equational logic over the second order
typed lambda calculus. More importantly, the classifying hyperdoctrine construction sets
up a correspondence between Z2TAC-theories and ZTAC-hyperdoctrines which allows us to
view the latter notion as a "presentation-free" version of the former. Something has
definitely been achieved in this transfer from theories to hyperdoctrines, since
2TAC-hyperdoctrines are quite elementary kinds of structure: indeed they are models of a
particular, essentially equational theory and are thus amenable to study using algebraic
and category-theoretic techniques. Thus in proving the completeness and full embedding
theorems of section 4, we will be working not with Z2TAC-theories, but with the
hyperdoctrines to which they correspond and applying category theoretic constructions to
these. The equational aspect of (higher order) hyperdoctrines is emphasised by Coquand
and Ehrhard [CEl, and of course the first order part of this (the equational presentation
of the notion of ccc) lies at the heart of recent work of Cousineau, Curien and Mauny

[CCM, Cul

3 Topos models

In this section we assume some familiarity with the theory of toposes and particularly
with the use of higher order intuitionistic predicate logic to describe properties of and
make constructions in a topos via its internal language: see [], section 5.41 and [LS, Part
II1. Also implicit to the material in this section is the use of fibred (and indexed)
categories over a particular topos to provide an elementary theory of categories {(both
large and small) relative to the topos. The parts of this (not yet fully developed) theory
we shall need are sufficiently simple for them to be given explicitly in terms of more
"traditional” topos theory (by which we mean [J] up to, but not including its appendix).
[PS]1 provides a lot of material on indexed category theory, and a taste of the wider

aspects of the theory can be got from [BIl.

The reason why we have to go slightly beyond the traditional internal logic of a topos is
simple: the syntax of ZTAC-theories invovles variable types and to model this in a topos

E we will consider the generalized objects of E. To understand what is meant by this,
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recall first the notion of a generalized element of an object B in E: for each object [ of
E, the generalized elements of B at stage [ are the morphisms b:/—F5 in E, and they are
used to give the Kripke-Joyal forcing semantics of intuitionistic higher order predicate
logic in toposes (see [LS, I1.81); the global elements of B are morphisms T—5, but in
general these are insufficient for detecting properties of the object 5. Moving up a level,
the collection of objects of E (global objects, one might call them), are generally
insufficient for detecting all the properties of E as a constructive universe of "sets".
Instead one must consider, for each object I, the generalized objects of E at stage I,
which are by definition morphisms p:£~—/ in E with codomain /. The idea behind this
definition is that when E=Set, such p:E—/ correspond precisely to /~-indexed collections of
sets, (Eiliel) (by defining Ei={eeE|p(e)=i]), just as generalized elements b:[—5 correspond

to /-indexed collections of elements of B, (b(i)|iel).

Just as the generalized elements of B at stage [ form a set E(/,5), so the generalized
objects of E at stage [/ form a category (a topos in fact), namely the slice category E//
whose morphisms are commutative triangles over /. We begin by fixing some notation for

these:

3.1. Slice categories. Let C be a category. For each object / of C, let ©.:C//[—C denote
the forgetful functor from the slice category C/[: thus a typical object of C// is a
morphism in C of the form p:X (p)—/ and a typical morphism f:p—q in C// is given by a
morphism f=X (f):X (p)—X (q) in C satisfying gof =p. The identity on / in C is a terminal
object in C/[. The binary product of p and g in C// will be denoted pxq if it exists, in
which case it is necessarily given by a pullback square in C:
T px ;@) —Z (q)
|k

El(p)_p—w)[

Similarly, the exponential of p and g in C// will be denoted p-,q if it exists and called a
local exponential in C. A morphism a:[—J in C will be called squarable if the pullback
along a of any morphism with codomain J exists in C. For such an a, the operation of
pulling back along a gives a functor between slice categories, which will be denoted
a*:C/J—>C/I .
If the right adjoint to a® exists at an object p of C//, it will be denoted n_(p): there is
thus a morphism e:a*(Il_(p))—p in C// with the universal property that for any
f:a*(@—p there is a unique f:q—1II_(p) in C/J with f=ea™(f). Of course when C is a
topos it has all pullbacks, local exponentials and right adjoints to pulling back along a
morphism (see [J, 1.41); in particular, when C=Set p:E—/, and q:F—/, then for each ie/
(EAp-Q); = E;oF; , an exponential in Set,

and for each jeJ
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(z,a,p), = HE;| ali)=j}, a cartesian product in Set.
If translated into intuitionistic higher order predicate logic, these formulas remain true for
the internal logic of an arbitrary topos E. Thus for i a variable of type /, let £, be an
abbreviation for {e:E|p(e)=i)}, etc; then E satisfies:
(21(17—’14))1' ~ {rQEXF|"r is the graph of a function from E;, to F,") (3.1
(Z‘J(Hap))j ~ {r:Q™E|"r js the graph of a partial function
from {i:/|a(i)=j) to E" and Vi:l(alid)=j>r()eE,)} . (3.2)

3.2. Internal full subcategories. Consider the following construction:

Starting with a set U and a [/-indexed collection of sets (Gu|ueU), form the small
category U with underlying set of objects [/, with hom sets U(u,u)=Set(G;;GU) and
with composition and identities inherited from Set; by construction, the assignment
ur—G,, extends to a diagram of type U in Set which is a full and faithful functor
G: U~ Set.

Note that specifying the initial data for this construction is equivalent to giving a single
morphism 7:G—U in Set, where G is the disjoint union [ f{{u}xG  |lueU} and 7:(u,z)—>u
(so that G_,2=T17{u)). Now starting with any topos E and a morphism 7:G—U in E, it is
possible to carry out the analogue of the above construction, obtaining an internal
category object U in E together with a full and faithful internal diagram G of type U in

E. This is achieved as follows:

Pull back T along the two projections w:UxU—U, to get 1r‘o‘(‘r)=‘r><]U:G><U—>U><U and
1r;‘(‘r)=]U><‘r:U><G—>U><U in E/U2 Now form the local exponential 1r;(‘r)—>U21r:‘(‘r) and
suppose it is given by the morphism (d ,d):U—UxU in E; then in the internal language
of E one has (mem,mgGu and (UxG) ,=G,, so that by (3.1) (U)
u and v are variables of type U). It follows that

d,.dU_3U

is the underlying graph of a category object U in E (with composition in U being given by

{u,v w? <u,u)gGu—)Gu (where

the composition morphism ((G -G, )x(G -G )— (G ~G )luwvw:U) in E/U?). Then 7:G—U
becomes an internal diagram of type U via the action ((U,)<u,u)xGu—>Gulu,u:U ) which
(using the above identifications of internal fibres) is given by the evaluation morphism
—(G,»G ) lu,vel) of

this action across the exponential adjunction, gives the effect of G on morphisms of U;

ev: (w5 (1)~ ,207 (T))x 275 (T)— 77 (1) in E/UZ?. The transpose ((U;)m,u)
and by definition of U, this is an isomorphism — and hence G is full and faithful. U will
be called the internal full subcategory of E determined by t:G—U, and the diagram
GeEY the inclusion of U into E.

We are interested in such internal full subcategories which are closed in E under certain
internal products. In order to understand precisely what is meant by this, it is important

first to note that our terminology is slightly misleading, since an internal full subcategory
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is not a generalized collection of generalized objects of E (a concept which can be
formalized by Bénabou's notion in [Bl of "definable class of objects” of a topos), but
rather a single object whose variable elements u name variable objects G, ={g:G|t(g)=ul.
Then if we assert for example, that U is closed in E under binary products, we mean that
there is a morphism "xX:U?—U and a pullback square in E of the form:

Euz(w;(r)xuzw;‘(r)) ————— -G

wz(r)xuz‘rr;“(‘r) T (3.3)

UvZ —— U .
X

Since the pullback of 7 along "X’ has internal fibres (G,x,(u’v)Iu,v:U), the above pullback
square furnishes an internal family of isomorphisms G. .. ,2G XG, (u,v:U)\,\' so that
"x"(u,u) names the product of the objects named by u and v. Similarly, U is closed in E

under exponentiation if there is a morphism -":U?—U and a pullback square of the form:

B2 (1)> 2w, (7)) === -G
T (T)> 27 (T) T (3.4)
J
Uz — U .

U contains the terminal object of E if there is a morphism "T:T—U and a pullback

square of the form:

1. T (3.5)
T———U.

Finally, U is closed in E under U-indexed products if there is a morphism 'II':(U-U)—U
and a pullback of the form:

EU_,U(IIpev*(‘r)) ————— -G

IIpev (1) T (3.6)
J

where p:AU-U)xU—(U-0) is the first projection and ev:(U-U)xU—U is the evaluation
morphism. Using (3.2), one sees that the effect of this last pullback square is to provide
an internal family of isomorphisms G,H,(f)%H{Gf(u)W:U} indexed by f of type UU-U: thus
T'(f) names the product of the U-indexed family of objects named by f(u) for w:U.
Collecting together the data required to specify such an internal full subcategory, we

arrive at the following:

3.3. Definition. A topos model of the second order typed lambda calculus is given by an
elementary topos E together with morphisms 7:G—U, T:T—U, 'x,-":U%—>U and
T :(U-0U)r—U in E and pullback squares of the form (3.3),(3.4),(3.5) and (3.6). E will be
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called the ambient topos of the model; U will denote the internal full subcategory of E

determined by 7.

Topos models are models of the second order typed lambda calculus because:

3.4. Lemma. Every topos model of the second order typed lambda calculus gives rise to a

2TAC-hyperdoctrine P via the category valued hom functor E(-,U).

Proof. Since the internal full subcategory U is closed in E under finite products and
exponentials, U is automatically a ccc object in E. Consequently its generalized elements
at any stage [/ form a ccc (with set of objects E(/,U) and set of morphisms E(,U)); and
for any a:[—J, the operation a®™ gives a strict morphism of ccc's. Thus E(~f,U) is a
functor E°P—Ccc. Letting |P| be the full subcategory of E whose objects are the finite
powers of U, we can restrict this functor to get P=E(-,U):|P|°P—Ccc satisfying parts (i),
(1) and (ii7) of Definition 2.2. For part (iv) of the definition, we use the fact that U is
closed in E under U-indexed products. Thus H[:P([xU,U)—%P([,U) is defined on objects by
sending w:/xU—U to H[(u)='H’°U where T:/—(U-U) is the exponential transpose of u.
Similarly, T[] ; is defined on morphisms by sending m:/xU—U, to 1 [m)="I1 o771, where
T (U-U)—U, sends U-indexed collections of morphisms in U to their product in E,
(which again lies in U since it is a full sucategory and closed under such products): in
other words, Tl is uniquely defined by requiring d Il '="I'-(/, ~d.) for i=0, and (using
the internal language of E) further requiring that for m:U-U,
er(m)’G'n‘(dom)—’G'n’(d,m)
correspond under the isomorphisms
G'H'(dim) gH{Gdim(u) |u:U) (i=0,1)

to [l{m(u) |u:U). Evidently this definition of [[,:PUxUU)—P(LU) is natural in /. That it
gives a right adjoint to =" follows from the fact that «7 :E(-,U)—E(-xU,U)=E(-U") is
the representable functor induced by the diagonal internal functor T’:U——%UU — and
taking U-indexed products is right adjoint to this.

O

Since each topos model E,U determines a 2TAC-hyperdoctrine, it provides a semantics for
the types and terms of the second order typed lambda calculus, with the types being
denoted by particular morphisms in E with codomain U and the terms by morphisms with
codomain U,. In particular the definitions in 2.4 specialize to give us the notion of a topos

model of a 2ZT'\C-theory.

As we explained in the previous section, arbitrary 2TAC-hyperdoctrines provide a semantics
which is completely general. (Perhaps neutral is a better word.) In contrast, topos models
embody a very particular and apparently naive idea of the meaning of the various symbols

of the calculus: A topos is itself a model of higher order intuitionistic predicate logic; in
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a topos model of 2ZTAC, the closed types get interpreted as elements of a family U of
(names of) "sets" in this logic, and more generally the polymorphic (i.e. non-closed) types
are given by arbitrary functions from this family to itself; furthermore, x is interpreted by
taking actual cartesian products, - by taking full function exponentials and [] by taking
products of "sets"” in the family indexed by the elements of UJ. Thus in this notion of
model we allow ourselves to work in a "non-standard” universe of sets but make up for
this by insisting that the type forming operations be interpreted in a completely standard
way. This is in contrast to more traditional formulations of the notion of model of
polymorphic lambda calculus (such as in [BM] or [R21) which are couched in classical set
theory, but allow some of the operations ([] in particular) to be non-standard. The
intersection of these two approaches is trivial: when E=Set, a topos model is given by a
set U of sets closed under finite products, exponentiation and U-indexed producfs; and a
simple cardinality argument (using the principles of classical logic !) shows that any such
U must have as elements only sets with at most one element. There are therefore no

non-trivial topos models of 2TAC when the ambient topos is the category of sets.

However the more liberal nature of the internal logic of toposes in general means that
non-trivial examples of Definition 3.3 do exist. The first such is due to Hyland and Moggi,
with E being Hyland's effective topos [H1, U the object of -—-closed partial equivalence
relations on the natural number object N and T:G—U having internal fibres Gu=Eu/ Ul gy
where Eu={n:N|u(n,n)} and u|g, is the equivalence relation obtained by restriction. Dana
Scott has dubbed the (generalized) elements of U the modest sets: they have far greater
closure properties than those required by Definition 3.3 — as Hyland, Robinson and
Rosolini show in [HRRI1, the limit or colimt of any internal diagram of modest sets is
again modest. (The object of all partial equivalence relations on N in the effective topos
enjoys similar properties.) There are in all likelyhood very many interesting topos models
of 2TAC and related type theories. In the next section we will show how to manufacture
topos models from ZTAC-hyperdoctrines, so‘ that in particular there are enough such

models to distinguish the theorems of a 2TAC-theory from the non-theorems.

4 Full embedding and completeness

In this section we prove the main result of the paper by showing how each
Z2TAC-hyperdoctrine can be expanded to a topos model. To do so we will employ two
standard category theoretic tools, namely the Grothendieck construction of a split
fibration from a category-valued functor and the Yoneda embedding of a category into a

topos of presheaves.
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4.1. The Grothendieck construction. Suppose that B is a category and that P:B°P— Cat is
a contravariant functor from B into the category of small categories. Construct a new

category Gr(P) and a functor P:Gr(P)—B from P as follows:

The objects of Gr(P) are pairs (/,A), where [ is an object of B and A an object of
P(/). Given two such objects (/,A),(J,B), the morphisms (/,A)—(J,B) in Gr(P) are given
by pairs (a,f), where a:/—J in B and f:A—P(a)B in P(/). The composition of
(a,f):A[,AV—(J,B) and (B.g):(J,By—(K,C) in Gr(P) is (Bea,Pla)(g)ef). The identity on
(,A) is (1,1,)). The functor P:Gr(P)—B sends an object (/,A) to [ and a morphism
(a,f) to a.

The kind of functors into B which arise in this way can be characterized by category
theoretic properties: they are the split fibrations over B. More generally, the construction
can be applied to pseudofunctors B°P—Cat, setting up a correspondence between these
and cloven fibrations over B. We shall not need to use these concepts explicitly here, and

refer the interested reader to [Grl.

Now suppose that P is a 2ZTAC-hyperdoctrine. Recalling the notation of Definition 2.2, we
can apply the Grothendieck construction to the composition of P(-,V):|P|°P—Ccc with the
forgetful functor Ccc—Cat; we will denote the resulting category and functor simply by:
P:Gr(P)—>|P| .
Because of the special nature of P, note that the objects of Gr(P) are given just by
morphisms A:[—U in |P| with codomain U, and that a morphism (A:/[—U)—(B:J—U) in
Gr(P) is given by a pair (a,f), where a:[—J in |P| and f:A—a*(B)=(B-a) in P(LU). The
following properties of Gr(P) and P are easily verified:

4.2. Lemma. Let P be a 2TAC-hyperdoctrine. Then:

(1) Gr(P) has and P preserves finite products. The terminal object in Gr(P) is (T :T—U)
and the binary product of (A:[—U) and (B:J—U) is (1r7(A)>< Ix J‘rr;(B):[xJ—>U ) (where
the w, are the product projections for IxJ in |P|).

(ii) P has a full and faithful right adjoint T:|P|—Gr(P), given on objects by sending [

to the terminal object in the fibre over [, ie. T([)=(T:[—U).

We now focus attention on a particular morphism in Gr(P), namely:

L= ger U pl, ):U pU—U)——(T, :U—>U)=TWU). (4.0
(Our convention of using the same letter to denote both an object in a category and its
associated morphism to the terminal object has become rather confusing at this point: in
(4.) the first "I," denotes the identity on U in |P|, whereas the second denotes the
unique morphism in the ccc P(U,U) from the object I, to the terminal object.) Although
Gr(P) does not have all pullbacks, the morphism ¢t is squarable, i.e. the pullback of it

along any morphism with codomain T(U) exists. This is because such a morphism
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(a.f):(A:[—U)—TW) in Gr(P) necessarily has f=A:A—T, and then
(Axla:[—>U)—(g’1r—2-)—> (U, U—U)
(1;,m,) t
(A:[—U) TT&U)
is easily verified to be a pullback square in Gr(P). Let ¥ denote the collection of
morphisms in Gr(P) which can be obtained by pullback from ¢: thus (a,f) is in ¥ iff a is
an isomorphism and f a product projection. This class ¥ inherits good properties from P
with respect to local exponentiation and right adjoints to pulling back (cf. 3.1):
4.3. Lemma. If P is a 2T\C-hyperdoctrine and ¥ Cmor(Gr(P)) defined as above, then:
(1) Any morphism in ¥ js squarable.
(i1) For any p:Y—X and q:Z— X in X, their local exponential p-,.q exists in Gr(P) and
is an element of X.
(i) If r:W— X xT(U) is in ¥, then Hﬂ,’(r), the right adjoint at r to the pullback functor
7y :Gr(P)/ X->Gr(P)/ XxT(U), exists and is an element of X.

Proof. Since all the morphisms in ¥ are obtained by pullback, (i) follows immediately from
the fact that a pullback of a pullback is a pullback. Thus for any (,,7):(Bx,C:J—U) in
¥ and any (a,f):(A:[—U)—(B:J—U) in Gr(P), the pullback (a,f)*(/,,x) is

(1,7 ):(Ax, o C:[—=U)—(A:[—U) (4.2)

For (i), suppose that X=(A:[—U), Y=(Ax,B:[—=U), Z=(Ax,C:[>U), p=(1,,x:Ax,B—A)
and q=({,,7:Ax,C—A). Then for any morphism in Gr(P) wiﬁh codomain X,
(a.f):(D:J—U)r—X say, it is easy to see that (a,f)x,, p is

(a,feom,):(Dx Ba:J —U)—X.
Hence specifying a morphism (a,f)x,p—q in Gr(P)/X amounts to giving a morphism

Dx ,;Ba—Ca in P(J,UU); and transposing across the exponential adjunction, this amounts to

giving a morphism D—>(Ba—>JCa)=a*(B—>1C). It follows from this that we can take p-,.q
to be
(1,7 ):(Ax (B~ C):[—=U)—X, (4.3)

since morphisms in Gr(P)/X into this from (a,f) are also specified by morphisms

D—a*(B~,C). Note that as required, (4.3) is in Z.

Similar arguments show that for (ii7) we can take H"H(r) to be

(1, ,r,):(AxIHI(B):[—>U)—>X , (4.4)
when X=(A:.[—U), W= (rf(A)xIxUB:[xU—>U) and r=(iju,‘rr,):W—>(1r;‘(A):[xU—>U)%XXT(U).
0

Although Gr(P) is far from being a topos (or even locally cartesian closed), Lemma 4.3
means that the construction given in 3.2 (which uses pullbacks and local exponentials) can

be carried out starting with the morphism ¢t in Gr(P), to yield an internal full subcategory

.



there with good closure properties. To actually get an internal full subcategory in a

topos, we will use:

4.4. The Yoneda embedding. If C is a small category, [C°P Set]l will denote the topos of
presheaves on C, i.e the category of contravariant, set-valued functors on C and natural
transformations between such. H:C——I[C°P Set] will denote the Yoneda embedding — the
full and faithful functor sending an object [ in C to the hom functor H(/)=C(-,]), and
sending a morphism a:/—J to the natural transformation H(a)=a*:C(-,/)—C(-,/) whose
components are given by precomposition with a. We will need some properties of the
Yoneda embedding under taking slice categories, and for this it is convenient to work with

an equivalent version of the topos [C°P Set] in terms of "discrete fibrations™:

Since each set is a discrete category, any functor X:C°P—Set can be regarded as
category-valued and hence one can apply the Grothendieck construction of 4.1 to it to
obtain P:Gr(X)—C. Gr(X) is often called the category of elements of X, since its objects
are pairs (/,xz) with [eobC and zeX(/) (and its morphisms (/,x)—(J,y) are just those
a:[—J in C with X(a)(y)=z). The functors P:X—C that arise in this way are the discrete
fibrations, which by definition are those with

mor(X)—29 655(X)

mor(P) ob(P)
mor(C)——— ob(C)
cod

a pullback square in Set. More precisely, the Grothendieck construction (together with a
similar construction on natural transformations) gives a functor Gr:LC°P Set]l— Cat/C
which is an equivalence of categories between [C°FP,Set]l and Dfib(C), the full subcategory
of Cat/C whose objects are discrete fibrations. Under this equivalence the Yoneda
embedding H:C——I[C°P,Set] is identified with the functor C—Dfib(C) which sends an
object [ of C to the functor E,:C/[—>C of 3.1. Now simple properties of pullbacks imply
that for functors P:X—C and Q:Y—X, if P is a discrete fibration, then Q-P is one iff Q
is; consequently Dfib(C)/P=Dfib(X). Hence for any X:C°P—S8et, there is an equivalence of

categories:

[C°P Set]l/ X ~[(GrX)°P, Setl . (4.5)
In particular, when X is a hom functor H(/), (4.5) becomes:

[C°P,Setl/H([) ~[(C/[)°P, Set], (4.6)

and under this equivalence, the Yoneda embedding for C// is identified with the functor
C/[—IC°P Setl/H(/) which is "apply < to morphisms".

It is well known that H preserves any limits which exist in C. It is also the case that /~
preserves any existing exponentials — a fact put to good use by Dana Scott in [Scil. In

fact something more general is true:




4.5. Lemma. The Yoneda embedding H:C——I[C°P Set]l preserves any local exponentials and

instances of right adjoints to pulling back (II-functors) that happen to exist in C.

Proof. Local exponentials are definable in terms of II-functors: if (p is squarable and)
p~,q exists, then so does Hp(p*(q)) and they are canonically isomorphic. So it suffices to
show that H preserves any instances of II-functors. Thus given a:/—J and p:E—/ in C,
if T_(p) exists, with counit morphism e:a*(II_(p))—p say, then we must show that
transposing the morphism
(Ha)* (H(I_p)) = Hia* @, p) 1€ Hip)

across the adjunction (Ha)*4Il,, gives an isomorphism H( _p)=I, (Hp) in
[C°P,Set]l/H(J). Transferring the problem to [(C/J)°P,Set]l via the equivalence (4.6), we

-~

can calculate that for any g in C/J:

H(TI  p)(q) = [(C/J)°P,Set)( H(q), H( p)) (Yoneda lemma)
%(C/J)(Q,Hap) . (H full and faithful)
=(C/N(a*(q),p) (@™ left adjoint to IT )
~[(C/)°P Setl( (Ha)*(Hq) ,Hp) (H full, faithful and pullback preserving)
= [(C/J)°P.Set)( Hq Il (Hp)) ((Ha)* left adjoint to II, )
= (M, (Hp)(q) . (Yoneda lemma)

These isomorphisms are natural in g and give the required isomorphism H(I _p) =11, (Hp).

O

We can now state and prove our main result:

4.6. Theorem. (Full embedding in topos models.) Let P be a 2TAC-hyperdoctrine. Apply the
Grothendieck construction to P to obtain the category Gr(P), containing the morphism
t:(1, ;U-Uy—T(U) of (4.1). Then the internal full subcategory U of the topos of presheaves
[(GrP)°P .Set]l determined by H(t) is a topos model of the second order typed lambda
calculus. Moreover, the 2T A\C-hyperdoctrine P is fully embedded in the Z2T\C-hyperdoctrine
determined by this topos model, in the sense that there is a full, faithful and finite
product preserving functor
IPlor L Gr(pyor — L [(GrP)oP Set]

and a natural isomorphism P(-U)=[(GrP)°P Setl(HT(-),U).

Proof. Let us write G for the object ({,:U-U) in Gr(P). Referring to Definition 3.3, to see
that H(t):H(G)—HT(U) determines a topos model, we have to produce morphisms
TWT—HTWU), %X ,/>"HTWU)>—HT({U) and M :(HTWU)>HT(U))—HTU) in [(GrP)°P Setl,
together with corresponding pullback squares of the form (3.3), (3.4), (3.5) and (3.6). The

first three morphisms are rather easy to produce, since they already exist at the level of

|P|:

Let 'T:T—U and "x’,=»:U?—U in |P| be as in (2.1) and (2.2). Now in Gr(P), by (4.2) we
have for the two product projections = :TU?—TU (i=0,1) that:




w;‘(t) =(1,,2,m):m US—>U)—TU?.

U27
Hence by (4.2) again

T8 Xpy 27 () = (1 20 X 2T ) = (L2, X ) =T ) () (4.7)
in Gr(P)/TU?, giving a pullback square in Gr(P) of the form (3.3). Similarly, using (4.3)
we have:

o)y 2Ty O = Uy y2 w2 ) = 1,2, ) =T(=7)*(0) (4.8)

giving the required pullback of the form (3.4); and by (4.2) again,

Lpery= U3 T = U, T =TT (@) (4.9)
giving the pullback of the form (3.5) in Gr(P). Then applying H to these pullback squares
and using the result of Lemma 4.5 that H preserves the (pullbacks and) local exponentials

involved in them, we get the required pullbacks in [(GrP)°P Setl for the morphisqis
T T 51y and HTW)?> HTWA L) HT@)  (where x=x or -).
To produce a morphism TI:(HT({U)-HT(U))—HT({U) and a pullback of the form (3.6) is

more complicated, since |P| is not a ccc and the exponential HT(U)-HT(U) is not a

representable presheaf. However, consider the following calculation:

(HT(WU)-HT(U))(-) 2 [(GrP)°P,Set1(H(-) , HT(LJ)~HT(U)) (Yoneda lemma)
> [(GrP)°P,Setl(H(-)xHT(U) , HT(U)) (definition of exponential)
> [(GrP)°P,Setl(H(-xTU) ,H(TU)) (H preserves products)
=2Gr(P)(-xTU,TU) (H full and faithful)
~ |P|(P(-xTU) ,U) (P left adjoint to T)
> |P|(P(-)xU,U). (P preserves products and PT=1)

We can therefore identify the exponential HT({U)-HT(U) with the functor
IP|(P(-)xU,U):Gr(P)°P—S8et. Similarly, the hom functor HT(U) can itself be identified with
IP|(P(-),U):Gr(P)°P—8Set. But then part (iv) of Definition 2.2 gives a natural
transformation [[5_,: IPI(PC-)xU,U)—IPI(P(-),U) and we define "-":(HT(U)-HTW))—HTU)
to be this. To get a pullback square of the form (3.6) as well, we have to show that
('—*’)*(Ht)%Hpeu*(Ht) in [(GrP)°P,Setl/(HT(U)-HT(UU)). Since by (4.5) the latter is
equivalent to the topos of presheaves on Gr(|P|(P(-)xU)U)), it is sufficient to exhibit
bijections

[(GrP)°P Setl /(HT(U)-HT(U))(a , (=)* (Ht)) = (GrP)°P,Set]l/(HT(U)~HT(U) ) a, Hpeu*(Ht))
natural in a:H(X)—(HT(U)-»HT({U)) and then apply the Yoneda lemma. But if
a:P(X)xU—U corresponds to a under the identifications made above, then the definition
of -’ gives:

>oa=H(Io @), (4.10)
where FX& is the transpose of HPX&:P(X]—>U across the adjunction P4T. Now a also
corresponds to a morphism XXT(U)—T() in Gr(P) — call it a, say: then by (4.4)

(&) =1, (a* ) (4.11)
with m the first projection XxT(U)-—X. Now apply H to (4.11) and use (4.10), plus the
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fact that H preseves finite limits and II-functors (Lemma 4.5) and sends a to @, the
exponential transpose of a; we get:

(7e@)™ (Ht) =11, a* (Ht) (4.12)
in [(GrP)°P Setl/H(X), with p the first projection H(X)xHT(U)—H(X). Since a=evelax! )
and (by standard properties of II-functors) HPO(aXIHX)*%a*OHp, (4.12) gives:

a*(("=>7)* (Ht) %a*(l'Ipeu* (Ht)) .

Using this isomorphism we get a bijection between morphisms a—(~")*(Ht) and
morphisms a—>l'Ipeu*(Ht) in the slice category [(GrP)°P.Setl/(HT(U)-HT(U)). The
constructions performed to get this bijection are evidently natural in a: so as remarked
above, we can infer that they are induced by an isomorphism ('—*W*(Ht)él‘[peu*(Ht), as

required. -

This establishes that we have a topos model U in [{(GrP)°FP,Setl. Since by 4.2(ii) and
standard properties of the Yoneda embedding, HT is full, faithful and finite product
preserving, to complete the proof of Theorem 4.6 we just have to exhibit the natural
isomorphism: '

P(-,0) 2[(GrP)°P,SetI(HT(-),U) . (4.13)
Our calculations in the earlier part of this proof imply that the category object U is the

image under H of the category object V in Gr(P) with underlying graph:
d
a
(Uz,-" ’ U, T,,)=TW),
1
where d,=(r,,>") (i=0,1). Thus for (4.13) it suffices to give a natural isomorphism

viP(-,U) =Gr(PNT(-),V).

For each [e|P|, define v on objects Ae|P|([,U) by v{A)=T(A); since T is full and faithful,
this gives a bijection. To define v on morphisms, given A,B:/—U in |P|, note that
morphisms (TA,TB)—d_,d,) in Gr(P)/TU? are specified by morphisms T,—XA,B*("~>)=A>B
in P(/,U), which correspond under the exponential adjunction to morphisms A—PF5 in
P(/,U): then define v, on morphisms by sending f:A—F5 to the morphism (TATB)—(d,d,)
over TU? specified by the exponential transpose of f. Routine calculations show that this
recipe makes v; into a functor P(LU)—Gr(P)(T,V), and its construction is evidently
natural in /. It is a bijection on objects and on hom sets, and hence is an isomorphism of
categories (and also of 2TAC-hyperdoctrines therefore). This completes the proof of the
theorem.

(!

We can apply Theorem 4.6 to the classifying hyperdoctrine Py of a 2TAC-theory T (cf.
2.6). Py contains the generic model I and from (2.10) we have that:
T+ s=t:® iff [T!: s=t:® .
X X,z

Transporting Iy along the isomorphism Pp(-,U)=[(GrP;)°P,SetI(HT(-),U) of Theorem 4.6,

gives a topos model of T with the same property. So we deduce:
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4.7. Corollary. (Completeness of topos models.) Let T be a 2TAC-theory. Then the
theorems of T are precisely those equality judgements in the language of T which are
satisfied by all topos models of T; in fact there is a single topos model whose true
equality judgements are exactly the theorems of T.

d

The logical significance of Theorem 4.6 is greater than just the above corollary. Recall the
corresponence, reviewed in section 2, between theories in the second order typed lambda
calculus and hyperdoctrines; recall also the correspondence, mentioned at the beginning of
section 3, between theories in higher order intuitionistic predicate logic (or HOL, for
short) and elementary toposes. In the light of these correspondences, we may rephrase the
full embedding theorem as follows: N
Each Z2TAC-theory can be interpreted in a theory in HOL so that:
(1) the types of the ZTAC-theory have a standard interpretation in the HOL-theory (i.e.
T is terminal, x,[] are products and - is exponentiation);
(i1) any two closed terms of the Z2TAC-theory which can be proved to be equal in the
HOL-theory are already provably equal in the 2TAC-theory;
(ii1) any closed term of a type coming from the Z2TAC-theory which can be proved to
exist using HOL is provably equal to a 2T\C-term.

4.8. Extensions. We conclude by mentioning that the method of proving the full
embedding result also suffices to prove similar results for related type theories. In
particular theories in the full higher order typed lambda calculus (Girard's system F,
augmented with finite product types) correspond to the kind of hyperdoctrine where |P| is
required to be cartesian closed (and for any object V of |P|, 1r;‘:P(-,U)—>P(—><V,U) is
required to have a natural right adjoint). Since the Yoneda embedding preserves
exponentials, the internal full subcategory U constructed in [(GrP)®P Setl will now also
be closed in the topos under internal products indexed by any object in the sub-ccc of
the topos generated by the object of objects of U: indeed, as remarked in the proof of
Theorem 4.6, the proof that U has the required closure properties is easier when |P| is a
ccc. One could also augment the type theory with polymorphic sums, arriving at Seely's
notion [Sel of a "PL-theory"” and the corresponding kind of hyperdoctrine: the extra
stucture is modelled by left adjoints to (-)* functors, and these are carried through into

the topos model.
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